US20060004323A1 - Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures - Google Patents

Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures Download PDF

Info

Publication number
US20060004323A1
US20060004323A1 US10944270 US94427004A US2006004323A1 US 20060004323 A1 US20060004323 A1 US 20060004323A1 US 10944270 US10944270 US 10944270 US 94427004 A US94427004 A US 94427004A US 2006004323 A1 US2006004323 A1 US 2006004323A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
balloon
device
system according
balloon catheter
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10944270
Inventor
John Chang
Joshua Makower
Julia Vrany
Amrish Walke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acclarent Inc
Original Assignee
Acclarent Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/24Surgical instruments, devices or methods, e.g. tourniquets for use in the oral cavity, larynx, bronchial passages or nose; Tongue scrapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/18Internal ear or nose parts, e.g. ear-drums
    • A61F2/186Nose parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0102Insertion or introduction using an inner stiffening member, e.g. stylet or push-rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0138Tip steering devices having flexible regions as a result of weakened outer material, e.g. slots, slits, cuts, joints or coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • A61B2017/22039Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire eccentric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22061Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation for spreading elements apart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00321Head or parts thereof
    • A61B2018/00327Ear, nose or throat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0177Introducing, guiding, advancing, emplacing or holding catheters having external means for receiving guide wires, wires or stiffening members, e.g. loops, clamps or lateral tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1072Balloon catheters with special features or adapted for special applications having balloons with two or more compartments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1079Balloon catheters with special features or adapted for special applications having radio-opaque markers in the region of the balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/109Balloon catheters with special features or adapted for special applications having balloons for removing solid matters, e.g. by grasping or scraping plaque, thrombus or other matters that obstruct the flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • A61M2029/025Dilators made of swellable material characterised by the guiding element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0681Sinus (maxillaris)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1025Respiratory system
    • A61M2210/1028Larynx
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1006Balloons formed between concentric tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1011Multiple balloon catheters

Abstract

Sinusitis and other disorders of the ear, nose and throat are diagnosed and/or treated using minimally invasive approaches with flexible or rigid instruments. Various methods and devices are used for remodeling or changing the shape, size or configuration of a sinus ostium or duct or other anatomical structure in the ear, nose or throat; implanting a device, cells or tissues; removing matter from the ear, nose or throat; delivering diagnostic or therapeutic substances or performing other diagnostic or therapeutic procedures. Introducing devices (e.g., guide catheters, tubes, guidewires, elongate probes, other elongate members) may be used to facilitate insertion of working devices (e.g. catheters e.g. balloon catheters, guidewires, tissue cutting or remodeling devices, devices for implanting elements like stents, electrosurgical devices, energy emitting devices, devices for delivering diagnostic or therapeutic agents, substance delivery implants, scopes etc.) into the paranasal sinuses or other structures in the ear, nose or throat.

Description

    RELATED APPLICATION
  • This application is a continuation-in-part of copending U.S. patent application Ser. No. 10/829,917 entitled “Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat” filed on Apr. 21, 2004, the entire disclosure of which is expressly incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates generally to medical devices and methods and more particularly to minimally invasive, devices, systems and methods for treating sinusitis and other ear, nose & throat disorders.
  • BACKGROUND
  • The nose is responsible for warming, humidifying and filtering inspired air and for conserving heat and moisture from expired air. The nose is formed mainly of cartilage, bone, mucous membranes and skin.
  • The bones in the nose contain a series of cavities known as paranasal sinuses that are connected by passageways. The paranasal sinuses include frontal sinuses, ethmoid sinuses, sphenoid sinuses and maxillary sinuses. The paranasal sinuses are lined with mucous-producing epithelial tissue and ultimately opening into the nasal cavity. Normally, mucous produced by the epithelial tissue slowly drains out of each sinus through an opening known as an ostium. If the epithelial tissue of one of these passageways becomes inflamed for any reason, the cavities which drain through that passageway can become blocked. This blockage can be periodic (resulting in episodes of pain) or chronic. This interference with drainage of mucous (e.g., occlusion of a sinus ostium) can result in mucosal congestion within the paranasal sinuses. Chronic mucosal congestion of the sinuses can cause damage to the epithelium that lines the sinus with subsequent decreased oxygen tension and microbial growth (e.g., a sinus infection).
  • Sinusitis:
  • The term “sinusitis” refers generally to any inflammation or infection of the paranasal sinuses caused by bacteria, viruses, fungi (molds), allergies or combinations thereof. It has been estimated that chronic sinusitis (e.g., lasting more than 3 months or so) results in 18 million to 22 million physician office visits per year in the United States.
  • Patients who suffer from sinusitis typically experience at least some of the following symptoms:
      • headaches or facial pain
      • nasal congestion or post-nasal drainage
      • difficulty breathing through one or both nostrils
      • bad breath
      • pain in the upper teeth
        Thus, one of the ways to treat sinusitis is by restoring the lost mucous flow. The initial therapy is drug therapy using anti-inflammatory agents to reduce the inflammation and antibiotics to treat the infection. A large number of patients do not respond to drug therapy. Currently, the gold standard for patients with chronic sinusitis that do not respond to drug therapy is a corrective surgery called Functional Endoscopic Sinus Surgery.
        Current and Proposed Procedures for Sinus Treatment
  • Functional Endoscopic Sinus Surgery
  • In FESS, an endoscope is inserted into the nose and, under visualization through the endoscope, the surgeon may remove diseased or hypertrophic tissue or bone and may enlarge the ostia of the sinuses to restore normal drainage of the sinuses. FESS procedures are typically performed with the patient under general anesthesia.
  • Although FESS continues to be the gold standard therapy for surgical treatment of severe sinus disease, FESS does have several shortcomings. For example, FESS can cause significant post-operative pain. Also, some FESS procedures are associated with significant postoperative bleeding and, as a result, nasal packing is frequently placed in the patient's nose for some period of time following the surgery. Such nasal packing can be uncomfortable and can interfere with normal breathing, eating, drinking etc. Also, some patients remain symptomatic even after multiple FESS surgeries. Additionally, some FESS procedures are associated with risks of iatrogenic orbital, intracranial and sinonasal injury. Many otolaryngologists consider FESS an option only for patients who suffer from severe sinus disease (e.g., those showing significant abnormalities under CT scan). Thus, patients with less severe disease may not be considered candidates for FESS and may be left with no option but drug therapy. One of the reasons why FESS procedures can be bloody and painful relates to the fact that instruments having straight, rigid shafts are used. In order to target deep areas of the anatomy with such straight rigid instrumentation, the physician needs to resect and remove or otherwise manipulate any anatomical structures that may lie in the direct path of the instruments, regardless of whether those anatomical structures are part of the pathology.
  • Balloon Dilation Based Sinus Treatment
  • Methods and devices for sinus intervention using dilating balloons have been disclosed in U.S. Pat. No. 2,525,183 (Robison) and United States Patent Publication No. 2004/0064150 A1 (Becker). For example, U.S. Pat. No. 2,525,183 (Robison) discloses an inflatable pressure device which can be inserted following sinus surgery and inflated within the sinus. The patent does not disclose device designs and methods for flexibly navigating through the complex nasal anatomy to access the natural ostia of the sinuses. The discussion of balloon materials is also fairly limited to thin flexible materials like rubber which are most likely to be inadequate for dilating the bony ostia of the sinus.
  • United States patent publication No. 2004/0064150 A1 (Becker) discloses balloon catheters formed of a stiff hypotube to be pushed into a sinus. The balloon catheters have a stiff hypotube with a fixed pre-set angle that enables them to be pushed into the sinus. In at least some procedures wherein it is desired to position the balloon catheter in the ostium of a paranasal sinus, it is necessary to advance the balloon catheter through complicated or tortuous anatomy in order to properly position the balloon catheter within the desired sinus ostium. Also, there is a degree of individual variation in the intranasal and paranasal anatomy of human beings, thus making it difficult to design a stiff-shaft balloon catheter that is optimally shaped for use in all individuals. Indeed, rigid catheters formed of hypotubes that have pre-set angles cannot be easily adjusted by the physician to different shapes to account for individual variations in the anatomy. In view of this, the Becker patent application describes the necessity of having available a set of balloon catheters, each having a particular fixed angle so that the physician can select the appropriate catheter for the patient's anatomy. The requirement to test multiple disposable catheters for fit is likely to be very expensive and impractical. Moreover, if such catheter are disposable items (e.g., not sterilizable and reusable) the need to test and discard a number of catheters before finding one that has the ideal bend angle could be rather expensive.
  • Thus, although the prior art discloses the use of dilating balloons for sinus treatments, it does not disclose the various means for navigation through the complex anatomy without significant manipulation of non-pathogenic anatomical regions that obstruct direct access to the sinus openings. Further, the prior art only discloses balloons of relatively simple shapes or materials for dilating sinus openings. Further, this art does not sufficiently elaborate beyond endoscopy on other means for imaging or tracking the position of such devices within the sinus anatomy.
  • Thus, there is a need for new devices and methods for easily navigating the complex anatomy of the nasal cavities and paranasal sinuses and for treating disorders of the paranasal sinuses with minimal complications due to individual variations in anatomy and causing minimal trauma to or disruption of anatomical structures that are not pathogenic.
  • SUMMARY OF THE INVENTION
  • In general, the present invention provides methods, devices and systems for diagnosing and/or treating sinusitis or other conditions of the ear, nose or throat.
  • In accordance with the present invention, there are provided methods wherein one or more flexible or rigid elongate devices as described herein are inserted in to the nose, nasopharynx, paranasal sinus, middle ear or associated anatomical passageways to perform an interventional or surgical procedure. Examples of procedures that may be performed using these flexible catheters or other flexible elongate devices include but are not limited to: remodeling or changing the shape, size or configuration of a sinus ostium or other anatomical structure that affects drainage from one or more paranasal sinuses; cutting, ablating, debulking, cauterizing, heating, freezing, lasing, forming an osteotomy or trephination in or otherwise modifying bony or cartilaginous tissue within paranasal sinus or elsewhere within the nose; removing puss or aberrant matter from the paranasal sinus or elsewhere within the nose; scraping or otherwise removing cells that line the interior of a paranasal sinus; delivering contrast medium; delivering a therapeutically effective amount of a therapeutic substance; implanting a stent, tissue remodeling device, substance delivery implant or other therapeutic apparatus; cutting, ablating, debulking, cauterizing, heating, freezing, lasing, dilating or otherwise modifying tissue such as nasal polyps, abberant or enlarged tissue, abnormal tissue, etc.; grafting or implanting cells or tissue; reducing, setting, screwing, applying adhesive to, affixing, decompressing or otherwise treating a fracture; delivering a gene or gene therapy preparation; removing all or a portion of a tumor; removing a polyp; delivering histamine, an allergen or another substance that causes secretion of mucous by tissues within a paranasal sinus to permit assessment of drainage from the sinus; implanting a cochlear implant or indwelling hearing aid or amplification device, etc.
  • Still further in accordance with the invention, there are provided devices and systems for performing some or all of the procedures described herein. Introducing devices may be used to facilitate insertion of working devices (e.g. catheters e.g. balloon catheters, tissue cutting or remodeling devices, guidewires, devices for implanting elements like stents, electrosurgical devices, energy emitting devices, devices for delivering diagnostic or therapeutic agents, substance delivery implants, scopes etc) into the paranasal sinuses and other structures in the ear, nose or throat.
  • Still further in accordance with the invention, there are provided apparatus and methods for navigation and imaging of the interventional devices within the sinuses using endoscopic including stereo endoscopic, fluoroscopic, ultrasonic, radiofrequency localization, electromagnetic, magnetic and other radiative energy based modalities. These imaging and navigation technologies may also be referenced by computer directly or indirectly to pre-existing or simultaneously created 3-D or 2-D data sets which help the doctor place the devices within the appropriate region of the anatomy.
  • Further aspects, details and embodiments of the present invention will be understood by those of skill in the art upon reading the following detailed description of the invention and the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic diagram of a system for catheter-based minimally invasive sinus surgery of the present invention being used to perform a sinus surgery procedure on a human patient.
  • FIG. 1A is an enlarged view of portion “1A” of FIG. 1.
  • FIGS. 2A through 2D are partial sagittal sectional views through a human head showing various steps of a method for gaining access to a paranasal sinus using a guide and thereafter dilating or remodeling the ostial opening into the paranasal sinus.
  • FIGS. 2E through 2H are partial sagittal sectional views through a human head showing various steps of a method for gaining access to a paranasal sinus using a steerable guide and thereafter.
  • FIGS. 2I through 2L are partial sagittal sectional views through a human head showing various steps of a method for gaining access to a paranasal sinus using an introducing device in the form of a guidewire with a preset shape.
  • FIGS. 2M through 20 are partial sagittal sectional views through a human head showing various steps of a method for gaining access to a paranasal sinus using a balloon catheter that has a guide protruding from its distal end.
  • FIGS. 2P through 2X are partial sagittal sectional views through a human head showing various steps of a method of accessing an ethmoid sinus through a natural or artificially created opening of the ethmoid sinus.
  • FIGS. 2Y through 2AC are partial coronal sectional views through a human head showing various steps of a method for treating a mucocele in a frontal sinus.
  • FIGS. 3A through 3C are partial coronal sectional views through a human head showing various steps of a method of accessing a paranasal sinus through an artificially created opening of the paranasal sinus.
  • FIG. 4A shows a partial longitudinal sectional view of a system for dilating a sinus ostium or other intranasal anatomical structure, such system comprising three progressively larger dilators useable in sequence.
  • FIGS. 4B through 4E show various steps of a method of dilating a nasal cavity using a working device comprising a balloon catheter with a pressure-expandable stent.
  • FIG. 4F shows a partial perspective view of a working device that comprises a side suction and/or side cutter.
  • FIG. 4G shows a partial perspective view of a working device that comprises a rotating cutter to cut away tissue.
  • FIGS. 4H and 4I show various steps of a method of dilating the ostium of a paranasal sinus or other nasal passageway using a mechanical dilator.
  • FIGS. 4J and 4K show perspective views of a mechanical dilator comprising a screw mechanism.
  • FIGS. 4L and 4M show sectional views of a mechanical dilator that comprises a pushable member.
  • FIGS. 4N and 4O show sectional views of a mechanical dilator that comprises a pullable member.
  • FIGS. 4P and 4Q show sectional views of a mechanical dilator that comprises a hinged member.
  • FIGS. 4R through 4W are schematic diagrams of alternative configurations for the distal portions of mechanical dilators of the types shown in FIGS. 4H through 4Q.
  • FIG. 5A shows a perspective view of a balloon that comprises a conical proximal portion, a conical distal portion and a cylindrical portion between the conical proximal portion and the conical distal portion.
  • FIG. 5B shows a perspective view of a conical balloon.
  • FIG. 5C shows a perspective view of a spherical balloon.
  • FIG. 5D shows a perspective view of a conical/square long balloon.
  • FIG. 5E shows a perspective view of a long spherical balloon.
  • FIG. 5F shows a perspective view of a bi-lobed “dog bone” balloon.
  • FIG. 5G shows a perspective view of an offset balloon.
  • FIG. 5H shows a perspective view of a square balloon.
  • FIG. 5I shows a perspective view of a conical/square balloon.
  • FIG. 5J shows a perspective view of a conical/spherical long balloon.
  • FIG. 5K shows a perspective view of an embodiment of a tapered balloon.
  • FIG. 5L shows a perspective view of a stepped balloon.
  • FIG. 5M shows a perspective view of a conical/offset balloon.
  • FIG. 5N shows a perspective view of a curved balloon.
  • FIG. 5O shows a partial perspective view of a balloon catheter device comprising a balloon for delivering diagnostic or therapeutic substances.
  • FIG. 5P shows a partial perspective view of a balloon/cutter catheter device comprising a balloon with one or more cutter blades.
  • FIGS. 5Q and 5Q′ shows a perspective view of a balloon catheter device comprising a balloon with a reinforcing braid attached on the external surface of the balloon. FIG. 5Q′ shows a perspective view of a reinforcing braid that can be used with the balloon catheter device in FIGS. 5Q and 5Q′.
  • FIG. 5R shows a partial sectional view of a balloon catheter wherein inflation ports are located near the distal end of the balloon.
  • FIG. 5S shows a partial sectional view of an embodiment of a balloon catheter comprising multiple balloons inflated by a single lumen.
  • FIG. 5T shows a partial sectional view of a balloon catheter comprising multiple balloons inflated by multiple lumens.
  • FIGS. 5U through 5AB show perspective and sectional views of various embodiments of balloon catheters having sensors mounted thereon or therein.
  • FIG. 6A shows a partial perspective view of a shaft design useable in the various devices disclosed herein, wherein the shaft comprises an external spiral wire.
  • FIG. 6B shows a partial perspective view of a shaft design for the various devices disclosed herein, wherein the shaft comprises a stiffening wire.
  • FIG. 6C shows a partial perspective view of an embodiment of a shaft design for the various devices disclosed herein, wherein the shaft comprises stiffening rings.
  • FIG. 6D shows a partial perspective view of a shaft design for the various devices disclosed herein, wherein the shaft comprises controllable stiffening elements.
  • FIG. 6E shows a partial perspective view of a shaft design for the various devices disclosed herein, wherein the shaft comprises a hypotube.
  • FIG. 6F shows a partial perspective cut-away view of a shaft design for the various devices disclosed herein, wherein the shaft comprises a braid.
  • FIG. 6F′ is an enlarged side view of the braid of the device of FIG. 6F.
  • FIG. 6G shows a partial perspective view of an embodiment of a device comprising a shaft having a plastically deformable region.
  • FIG. 6H shows a partial perspective view of a device comprising a shaft having a flexible element.
  • FIG. 6I shows a partial perspective view of a shaft comprising a malleable element.
  • FIG. 6J shows a partial perspective view of the shaft of FIG. 6I in a bent configuration.
  • FIG. 6K shows a cross sectional view through plane 6K-6K of FIG. 6I.
  • FIG. 6L shows a partial sectional view of an embodiment of a controllably deformable shaft.
  • FIG. 6M shows a partial sectional view of the controllably deformable shaft of FIG. 6L in a deformed state.
  • FIG. 6N shows a perspective view of a balloon catheter comprising a rigid or semi-rigid member.
  • FIGS. 6O through 6Q show sectional views of a balloon catheter that comprises an insertable and removable element.
  • FIG. 7A shows a cross sectional view through a balloon catheter shaft comprising two cylindrical lumens.
  • FIG. 7B shows a cross sectional view through a balloon catheter shaft comprising an inner lumen and an annular outer lumen disposed about the inner lumen.
  • FIG. 7C shows a cross sectional view through a balloon catheter shaft which comprises a first tubular element with a first lumen, a second tubular element with a second lumen and a jacket surrounding the first and second tubular elements.
  • FIG. 7D shows a cross sectional view through a balloon catheter shaft comprising three lumens.
  • FIG. 7E shows a cross sectional view through a balloon catheter shaft comprising a cylindrical element, a tubular element that has a lumen and a jacket surrounding the cylindrical element and the tubular element.
  • FIG. 7F shows a cross sectional view of through a balloon catheter shaft comprising an embedded braid.
  • FIG. 7G shows a partial perspective view of a catheter shaft comprising a zipper lumen with a guide extending through a portion of the zipper lumen.
  • FIG. 7H shows a cross sectional view through line 7H-7H of FIG. 7G.
  • FIG. 7I shows is a partial longitudinal sectional view of a catheter shaft comprising a rapid exchange lumen with a guide extending through the rapid exchange lumen.
  • FIG. 7J shows a cross sectional view of the catheter shaft of FIG. 7I through line 7J-7J.
  • FIG. 7K shows a cross sectional view of the catheter shaft of FIG. 7I through line 7K-7K.
  • FIG. 7L is a partial perspective view of a balloon catheter device of the present invention comprising a through-lumen and a balloon inflation lumen within the shaft of the catheter.
  • FIG. 7M is a cross sectional view through line 7M-7M of FIG. 7L.
  • FIG. 7N is a cross sectional view through line 7N-7N of FIG. 7L.
  • FIG. 7O is a partial perspective view of another balloon catheter device of the present invention comprising a through lumen within the shaft of the catheter and a balloon inflation tube disposed next to and optionally attached to the catheter shaft.
  • FIG. 7P is a cross sectional view through line 7P-7P of FIG. 7O.
  • FIG. 7Q is a cross sectional view through line 7Q-7Q of FIG. 7O.
  • FIG. 8A shows a partial perspective view of a catheter shaft comprising distance markers.
  • FIG. 8B shows a partial perspective view of a catheter shaft comprising one type of radiopaque markers.
  • FIG. 8C shows a partial perspective view of a catheter shaft comprising another type of radiopaque markers.
  • FIG. 8D shows a partial perspective view of a balloon catheter comprising an array of radiopaque markers arranged on the outer surface of the balloon.
  • FIG. 8E shows a partial perspective view of a balloon catheter comprising an array of radiopaque markers arranged on an inner surface of the balloon.
  • FIG. 8E′ is a longitudinal sectional view of FIG. 8E.
  • DETAILED DESCRIPTION
  • The following detailed description, the accompanying drawings and the above-set-forth Brief Description of the Drawings are intended to describe some, but not necessarily all, examples or embodiments of the invention. The contents of this detailed description do not limit the scope of the invention in any way.
  • A number of the drawings in this patent application show anatomical structures of the ear, nose and throat. In general, these anatomical structures are labeled with the following reference letters:
    Nasal Cavity NC
    Nasopharynx NP
    Frontal Sinus FS
    Ethmoid Sinus ES
    Ethmoid Air Cells EAC
    Sphenoid Sinus SS
    Sphenoid Sinus Ostium SSO
    Maxillary Sinus MS
    Mucocele MC
  • FIGS. 1 and 1A provide a general showing of a minimally invasive surgery system of the present invention comprising a C-arm fluoroscope 1000 that is useable to visualize a first introducing device 1002 (e.g., a guide catheter or guide tube), a second introducing device 1004 (e.g., a guidewire or elongate probe) and a working device 1006 (e.g., a balloon catheter, other dilation catheter, debrider, cutter, etc.). FIGS. 2A-8E′ show certain non-limiting examples of the introducing devices 1002 (e.g., a guide catheter or guide tube), 1004 (guides, guidewires, elongate probes, etc.) and working devices 1006 (e.g., a balloon catheters, other dilation catheters, debrider, cutters, etc.) that may be useable in accordance with this invention. The devices 1002, 1004, 1006 may be radiopaque and/or may incorporate radiopaque markers such that C-arm fluoroscope 1000 may be used to image and monitor the positioning of the devices 1002, 1004, 1006 during the procedure. In addition to or, as an alternative to the use of radiographic imaging, the devices 1002, 1004, 1006 may incorporate and/or may be used in conjunction with one or more endoscopic devices, such as the typical rigid or flexible endoscopes or stereo endocscopes used by otolaryngologists during FESS procedures. Also, in addition to or as an alternative to radiographic imaging and/or endoscopic visualizations, some embodiments of the devices 1002, 1004, 1006 may incorporate sensors which enable the devices 1002, 1004, 1006 to be used in conjunction with image guided surgery systems or other electro-anatomical mapping/guidance systems including but not limited to: VectorVision (BrainLAB AG); HipNav (CASurgica); CBYON Suite (CBYON); InstaTrak, FluoroTrak, ENTrak (GE Medical); StealthStation Treon, iOn (Medtronic); Medivision; Navitrack (Orthosoft); OTS (Radionics); VISLAN (Siemens); Stryker Navigation System (Stryker Leibinger); Voyager, Z-Box (Z-Kat Inc.) and NOGA and CARTO systems (Johnson & Johnson). Commercially available interventional navigation systems can also be used in conjunction with the devices and methods. Further non-fluoroscopic interventional imaging technologies including but not limited to: OrthoPilot (B. Braun Aesculap); PoleStar (Odin Medical Technologies; marketed by Medtronic); SonoDoppler, SonoWand (MISON); CT Guide, US Guide (UltraGuide) etc. may also be used in conjunction with the devices and methods. Guidance under magnetic resonance is also feasible if the catheter is modified to interact with the system appropriately.
  • It is to be appreciated that the devices and methods of the present invention relate to the accessing and dilation or modification of sinus ostia or other passageways within the ear nose and throat. These devices and methods may be used alone or may be used in conjunction with other surgical or non-surgical treatments, including but not limited to the delivery or implantation of devices and drugs or other substances as described in copending U.S. patent application Ser. No. 10/912,578 entitled Implantable Devices and Methods for Delivering Drugs and Other Substances to Treat Sinusitis and Other Disorders filed on Aug. 4, 2004, the entire disclosure of which is expressly incorporated herein by reference.
  • FIGS. 2A through 2D are partial sagittal sectional views through a human head showing various steps of a method of gaining access to a paranasal sinus using a guide catheter. In FIG. 2A, a first introducing device in the form of a guide catheter 200 is introduced through a nostril and through a nasal cavity NC to a location close to an ostium SSO of a sphenoid sinus SS. The guide catheter 200 may be flexible. Flexible devices are defined as devices with a flexural stiffness less than about 200 pound-force per inch over a device length of one inch. The guide catheter 200 may be straight or it may incorporate one or more preformed curves or bends. In embodiments where the guide catheter 200 is curved or bent, the deflection angle of the curve or bend may be in the range of up to 135°. Examples of specific deflection angles formed by the curved or bent regions of the guide catheter 200 are 0°, 30°, 45°, 60°, 70°, 90°, 120° and 135°. Guide catheter 200 can be constructed from suitable elements like Pebax, Polyimide, Braided Polyimide, Polyurethane, Nylon, PVC, Hytrel, HDPE, PEEK, metals like stainless steel and fluoropolymers like PTFE, PFA, FEP and EPTFE. Guide catheter 200 can have a variety of surface coatings e.g. hydrophilic lubricious coatings, hydrophobic lubricious coatings, abrasion resisting coatings, puncture resisting coatings, electrically or thermal conductive coatings, radiopaque coatings, echogenic coatings, thrombogenicity reducing coatings and coatings that release drugs. In FIG. 2B, a second introduction device comprising a guidewire 202 is introduced through the first introduction device (i.e., the guide catheter 200) so that the guidewire 202 enters the sphenoid sinus SS through the ostium SSO. Guidewire 202 may be constructed and coated as is common in the art of cardiology. In FIG. 2C, a working device 204 for example a balloon catheter is introduced over guidewire 202 into the sphenoid sinus SS. Thereafter, in FIG. 2D, the working device 204 is used to perform a diagnostic or therapeutic procedure. In this particular example, the procedure is dilation of the sphenoid sinus ostium SSO, as is evident from FIG. 2D. However, it will be appreciated that the present invention may also be used to dilate or modify any sinus ostium or other man-made or naturally occurring anatomical opening or passageway within the nose, paranasal sinuses, nasopharynx or adjacent areas. After the completion of the procedure, guide catheter 200, guidewire 202 and working device 204 are withdrawn and removed. As will be appreciated by those of skill in the art, in this or any of the procedures described in this patent application, the operator may additionally advance other types of catheters or of the present invention, a guidewire 202 may be steerable (e.g. torquable, actively deformable) or shapeable or malleable. Guidewire 202 may comprise an embedded endoscope or other navigation or imaging modalities including but not limited to fluoroscopic, X-ray radiographic, ultrasonic, radiofrequency localization, electromagnetic, magnetic, robotic and other radiative energy based modalities. In this regard, some of the figures show optional scopes SC is dotted lines. It is to be appreciated that such optional scopes SC may comprise any suitable types of rigid or flexible endoscopes and such optional scopes SC may be separate from or incorporated into the working devices and/or introduction devices of the present invention.
  • FIGS. 2E through 2H are partial sagittal sectional views through a human head showing various steps of a method of gaining access to a paranasal sinus using a steerable catheter. In FIG. 2E, an introducing device in the form of a steerable catheter 206 is introduced through a nostril. Although commercially available devices are neither designed, nor easily usable for this technique in the sinuses, examples of a device which has a steerable tip with functionality similar to that described here include but are not limited to the Naviport™ manufactured by Cardima, Inc. in Fremont, Calif.; Attain Prevail and Attain Deflectable catheters manufactured by Medtronic; Livewire Steerable Catheters manufactured by St. Jude Medical Inc.; Inquiry™ Steerable Diagnostic Catheters manufactured by Boston Scientific; TargetCath™ manufactured by EBI; Safe-Steer Catheter manufactured by Intraluminal Therapeutics, Inc.; Cynosar manufactured by Catheter Research, Inc.; Torque Control Balloon Catheter manufactured by Cordis Corp. and DynamicDeca Steerable Catheter and Dynamic XT Steerable Catheter manufactured by A.M.I. Technologies Ltd, Israel. Steerable catheter 206 comprises a proximal portion, a distal portion and a controllably deformable region between the proximal portion and the distal portion. In FIG. 2F, the steerable catheter 206 is steered through the nasal anatomy so that the distal portion of steerable catheter 206 is near an ostium SSO of a sphenoid sinus SS. In FIG. 2G, a working device in the form of a balloon catheter 208 is introduced through steerable catheter 206 so that it enters sphenoid sinus SS through the ostium SSO. Thereafter, balloon catheter 208 is adjusted so that the balloon of the balloon catheter is located in the ostium SSO. In FIG. 2H, balloon catheter 208 is used to dilate the ostium SSO. After completion of the procedure, steerable catheter 206 and balloon catheter 208 are withdrawn from the nasal anatomy. In this example, only a first introduction device in the form of a steerable catheter 206 is used to effect insertion and operative positioning of the working device (which in this example is balloon catheter 208). It will be appreciated, however, in some procedures, a second introduction device (e.g., an elongate guide member, guidewire, elongate probe, etc.) could be advanced through the lumen of the steerable catheter 206 and the working device 208 could then be advanced over such second introduction device to the desired operative location.
  • FIGS. 2I through 2L are partial sagittal sectional views through a human head showing various steps of a method for gaining access to a paranasal sinus using an introducing device in the form of a guidewire with a preset shape. In FIG. 2I, an introducing device in the form of a guidewire 210 with a preset shape is introduced in a nasal cavity. Guidewire 210 comprises a proximal portion and a distal portion and is shaped such that it can easily navigate through the nasal anatomy. In one embodiment, guidewire 210 is substantially straight. In another embodiment, guidewire 210 comprises an angled, curved or bent region between the proximal portion and the distal portion. Examples of the deflection angle of the angled, curved or bent regions are 0°, 30°, 45°, 60°, 70°, 90°, 120° and 135°. In FIG. 2J, guidewire 210 is advanced through the nasal anatomy so that the distal tip of guidewire enters a sphenoid sinus SS through an ostium SSO. In FIG. 2K, a working device in the form of a balloon catheter 212 is advanced along guidewire 210 into the sphenoid sinus SS. Typically, as described more fully herebelow, the working device will have a guidewire lumen extending through or formed in or on at least a portion of the working device 212 to facilitate advancement of the working device 212 over the guidewire 212 in the manner well understood in the art of interventional medicine. Thereafter, the position of balloon catheter 212 is adjusted so that the balloon of the balloon catheter is located in the ostium SSO. As described elsewhere in this application, the balloon catheter 212 may be radiopaque and/or may incorporate one or more visible or imageable markers or sensors. In FIG. 2L, balloon catheter 212 is used to dilate the ostium SSO. After completion of the procedure, guidewire 210 and balloon catheter 212 are withdrawn from the nasal anatomy. In one embodiment, balloon catheter 212 is shapeable or malleable.
  • FIGS. 2M through 2O are partial sagittal sectional views through a human head showing various steps of a method of gaining access to a paranasal sinus using a balloon catheter comprising a steering wire at its distal end. In FIG. 2M, a working device comprising a balloon catheter 214 comprising a proximal portion and distal portion is introduced in a nasal cavity. Balloon catheter 214 comprises a steering wire 216 at its distal end. In FIG. 2N, balloon catheter 214 is advanced through the nasal anatomy into a sphenoid sinus SS through a sphenoid sinus ostium SSO. Thereafter, the position of balloon catheter 214 is adjusted so that the balloon of the balloon catheter is located in the ostium SSO. In FIG. 20, balloon catheter 214 is used to dilate the ostium SSO. After completion of the procedure, balloon catheter 214 is withdrawn from the nasal anatomy. In one embodiment, steering wire 216 can be retracted into or advanced from balloon catheter 214. The retraction or advancement of steering wire can be controlled by several means like a thumb wheel, a slide, a button hooked up to electronic motor and a trigger. In another embodiment, steering wire 216 may be hollow or may incorporate one or more lumen(s) to enable it to introduce or remove devices or diagnostic or therapeutic agents, examples of which are described in copending U.S. patent application Ser. No. 10/912,578 entitled Implantable Devices and Methods for Delivering Drugs and Other Substances to Treat Sinusitis and Other Disorders filed on Aug. 4, 2004, the entire disclosure of which is expressly incorporated herein by reference.
  • FIGS. 2P through 2X are partial sagittal sectional views through a human head showing various steps of a method for accessing an ethmoid sinus through a natural or artificially created opening of the ethmoid sinus. In FIG. 2P, an introducing device in the form of a guide catheter 218 is introduced in an ethmoid sinus ES. Ethmoid sinus ES comprises multiple ethmoid air cells EAC. In FIG. 2Q, a guidewire 220 is introduced through guide catheter into a first EAC. Thereafter, in FIG. 2R, a balloon catheter 222 is introduced over guidewire 220 into the first EAC. In FIG. 2S, balloon catheter 222 is inflated to dilate the structures of ES. In FIG. 2T, guide catheter 218, guidewire 220 and balloon catheter 222 are withdrawn leaving a first new passage in the ES. The newly created passage in the ES facilitates drainage of the mucous through the ES. Alternatively, in FIG. 2U, only balloon catheter 222 is withdrawn. The position of guide catheter 218 is adjusted and guidewire 220 is introduced into a second EAC. In FIG. 2V, balloon catheter 222 is introduced over guidewire 220 into the second EAC. In FIG. 2W, balloon catheter 222 is inflated to dilate the structures of ES. In FIG. 2X, guide catheter 218, guidewire 220 and balloon catheter 222 are withdrawn leaving a second new passage in the ES. The second new passage in the ES further facilitates drainage of the mucous through the ES. This method of dilating the structures of ES can be repeated to create multiple new passages in the ES.
  • FIGS. 2Y through 2AC are partial coronal sectional views through a human head showing various steps of a method for treating a mucocele in a frontal sinus. In FIG. 2Y, an introducing device in the form of a guide catheter 224 is introduced in a frontal sinus FS through the nasal cavity NC. Frontal sinus FS has a mucocele MC to be treated. In FIG. 2Z, a penetrating device 226 comprising a sharp tip 228 is introduced through guide catheter 224 such that penetrating device 226 punctures the MC at least partially. In FIG. 2M, a balloon catheter 230 is introduced over penetrating device 226 into the MC. Thereafter, in FIG. 2AB, balloon catheter 230 is inflated to rupture the MC and allow the drainage of contents of the MC. In FIG. 2AC, penetrating device 226 and balloon catheter 230 are withdrawn.
  • The methods disclosed herein may also comprise the step of cleaning or lavaging anatomy within the nose, paranasal sinus, nasopharynx or nearby structures including but not limited to irrigating and suctioning. The step of cleaning the target anatomy can be performed before or after a diagnostic or therapeutic procedure.
  • The methods of the present invention may also include one or more preparatory steps for preparing the nose, paranasal sinus, nasopharynx or nearby structures for the procedure, such as spraying or ravaging with a vasoconstricting agent (e.g., 0.025-0.5% phenylephyrine or Oxymetazoline hydrochloride (Neosynephrine or Afrin) to cause shrinkage of the nasal tissues, an antibacterial agent (e.g., provodine iodine (Betadine), etc. to cleanse the tissues, etc.
  • FIGS. 3A through 3C are partial coronal sectional views through a human head showing various steps of a method of accessing a paranasal sinus through an artificially created opening of the paranasal sinus. In FIG. 3A, a puncturing device 300 is inserted through a nostril and used to create an artificial opening in a maxillary sinus. There are several puncturing devices well known in the art like needles including needles, needles with bent shafts, dissectors, punches, drills, corers, scalpels, burs, scissors, forceps and cutters. In FIG. 3B, puncturing device 300 is withdrawn and a working device for example a balloon catheter 302 is introduced through the artificial opening into the maxillary sinus. In FIG. 3C, balloon catheter 302 is used to dilate the artificially created opening in the maxillary sinus. After this step, the balloon catheter 302 is withdrawn. It will be appreciated that, in some embodiments, the puncturing device 300 may have a lumen through which an introduction device (e.g., a guidewire or other elongate probe or member), may be inserted into the maxillary sinus and the puncturing device 300 may then be removed leaving such introduction device (e.g., a guidewire or other elongate probe or member) in place. In such cases, the working device (e.g., balloon catheter 302) may incorporate a lumen or other structure that allows the working device (e.g., balloon catheter 300) to be advanced over the previously inserted introduction device (e.g., a guidewire or other elongate probe or member).
  • In the methods illustrated so far, balloon catheters were used only as an example for the several alternate working devices that could be used with this invention. FIG. 4A shows a sectional view of an example of a working device comprising a set of three sequential dilators: a first sequential dilator 402, a second sequential dilator 404 and a third sequential dilator 406. The D3 of third sequential dilator 406 is greater than the diameter D2 of second sequential dilator 404 which in turn is greater than the diameter D1 of first sequential dilator 402. The sequential dilators may comprise one or more bent or angled regions. The sequential dilators can be constructed from a variety of biocompatible materials like stainless steel 316. A variety of other metals, polymers and materials can also be used to construct the sequential dilators.
  • FIGS. 4B through 4E show various steps of a method of dilating a nasal cavity using a working device comprising a balloon catheter with a pressure-expandable stent. In FIG. 4B, an introducing device e.g. a guidewire 416 is introduced into a nasal cavity e.g. an ostium of a sinus. In FIG. 4C, a balloon catheter 418 is introduced over guidewire 416 into the nasal cavity. Balloon catheter 418 comprises a pressure-expandable stent 420. The position of balloon catheter 418 is adjusted so that pressure-expandable stent 420 is located substantially within the target anatomy where the stent is to be deployed. In FIG. 4D, the balloon of balloon catheter 418 is expanded to deploy pressure-expandable stent 420. In FIG. 4E, balloon catheter 418 is withdrawn leaving pressure-expandable stent 420 in the nasal cavity. Several types of stent designs can be used to construct stent 420 like metallic tube designs, polymeric tube designs, chain-linked designs, spiral designs, rolled sheet designs, single wire designs etc. These designs may have an open celled or closed celled structure. A variety of fabrication methods can be used for fabricating stent 420 including but not limited to laser cutting a metal or polymer element, welding metal elements etc. A variety of materials can be used for fabricating stent 420 including but not limited to metals, polymers, foam type materials, plastically deformable materials, super elastic materials etc. Some non-limiting examples of materials that can be used to construct the stent are silicones e.g. silastic, polyurethane, gelfilm and polyethylene. A variety of features can be added to stent 420 including but not limited to radiopaque coatings, drug elution mechanisms etc.
  • FIG. 4F shows a partial perspective view of an embodiment of a working device comprising a side suction and/or cutting device 422 comprising a device body 424 having a side opening 426. Cutting device 422 is advanced into a passageway such as a nostril, nasal cavity, meatus, ostium, interior of a sinus, etc. and positioned so that side opening 426 is adjacent to matter (e.g., a polyp, lesion, piece of debris, tissue, blood clot, etc.) that is to be removed. Cutting device 422 is rotated to cut tissue that has been positioned in the side opening 426. Cutting device 422 may incorporate a deflectable tip or a curved distal end which may force side opening 426 against the tissue of interest. Further, this cutting device 422 may have an optional stabilizing balloon incorporated on one side of cutting device 422 to press it against the tissue of interest and may also contain one or more on-board imaging modalities such as ultrasound, fiber or digital optics, OCT, RF or electromagnetic sensors or emitters, etc.
  • FIG. 4G shows a partial perspective view of an embodiment of a working device comprising a rotating cutter device to cut away tissue. Rotating cutter device 428 comprises a rotating member 430 enclosed in an introducing device 432. Rotating member 430 comprises a rotating blade 434 located near the distal region of rotating member 430. Rotating blade 434 may be retractable into rotating member 430. Rotating cutter device 428 is inserted in a passageway 436 such as a nostril, nasal cavity, meatus, ostium, interior of a sinus, etc. and positioned so that rotating blade 434 is adjacent to matter (e.g., a polyp, lesion, piece of debris, tissue, blood clot, etc.) that is to be removed. Thereafter, rotating member 430 is rotated to cause rotating blade 434 to remove tissue. In one embodiment, rotating member 430 can be retracted into introducing device 432. In another embodiment, rotating cutter device 428 may comprise a mechanism for suction or irrigation near the distal end of rotating cutter device 428.
  • FIGS. 4H and 4I show various steps of a method of dilating a nasal cavity using a working device comprising a mechanical dilator 408. Mechanical dilator 408 comprises an outer member 410, an inner member 412 and one or more elongate bendable members 414. Inner member 412 can slide within outer member 410. The proximal ends of bendable members 414 are attached to distal end of outer member 410 and the distal ends of bendable members 414 are attached to distal end of inner member 412. In FIG. 4H, mechanical dilator 408 is inserted into an opening in the nasal anatomy e.g. an ostium of a sinus. Mechanical dilator 408 is positioned in the opening such that bendable members 414 are within the opening in the nasal anatomy. In FIG. 41, relative motion of outer member 410 and inner member 412 causes the distal end of outer member 410 to come closer to the distal end of inner member 412. This causes bendable members 414 to bend such that the diameter of the distal region of mechanical dilator 408 increases. This causes bendable members 414 to come into contact with the opening in the nasal anatomy and exert an outward pressure to dilate the opening. Various components of mechanical dilator 408 like outer member 410, inner member 412 and bendable members 414 can be constructed from suitable biocompatible materials like stainless steel 316. A variety of other metals, polymers and materials can also be used to construct the various components of mechanical dilator 408. In one embodiment, outer member 410 is substantially rigid and inner member 412 is flexible. Outer member 410 can be substantially straight or may comprise one or more bent or angled regions. Inner member 412 may comprise one or more lumens.
  • FIGS. 4J and 4K illustrate a perspective view of a design of a mechanical dilator comprising a screw mechanism. FIG. 4J shows the mechanical dilator comprising an outer member 438 and an inner screw member 440. Inner screw member 440 is connected to outer member 438 through a first pivot 442 located on the distal end of outer member 438. The distal end of inner screw member 440 is connected to a second pivot 444. The mechanical dilator further comprises one or more bendable members 446. The distal end of bendable members 446 is attached to second pivot 444 and the proximal end of bendable members 446 is attached to fist pivot 442. In FIG. 4K, inner screw member 440 is rotated in one direction. This causes second pivot 444 to come closer to first pivot 442. This causes bendable members 446 to bend in the radial direction exerting an outward radial force. This force can be used to dilate or displace portions of the anatomy. Outer member 438 can be substantially straight or may comprise one or more bent or angled regions. Inner screw member 440 may comprise one or more lumens.
  • FIGS. 4L and 4M illustrate sectional views of a design of a mechanical dilator comprising a pushable member. FIG. 4L shows the mechanical dilator comprising an outer member 448 comprising one or more bendable regions 449 on the distal end of outer member 448. Mechanical dilator further comprises an inner pushable member 450 comprising an enlarged region 452 on the distal end of inner pushable member 450. In FIG. 4M, inner pushable member 450 is pushed in the distal direction. This exerts an outward force on bendable regions 449 causing bendable regions 449 to bend in a radial direction exerting an outward force. This force can be used to dilate or displace portions of the anatomy. Outer member 448 can be substantially straight or may comprise one or more bent or angled regions. Inner pushable member 450 may comprise one or more lumens.
  • FIGS. 4N and 4O illustrate sectional views of a design of a mechanical dilator comprising a pullable member. FIG. 4N shows the mechanical dilator comprising an outer member 454 comprising one or more bendable regions 456 on the distal end of outer member 454. Mechanical dilator further comprises an inner pullable member 458 comprising an enlarged region 460 on the distal end of inner pullable member 458. In FIG. 4O, inner pullable member 458 is pulled in the proximal direction. This exerts an outward force on bendable regions 456 causing bendable regions 456 to bend in a radial direction exerting an outward force. This force can be used to dilate or displace portions of the anatomy. Outer member 454 can be substantially straight or may comprise one or more bent or angled regions. Inner pullable member 458 may comprise one or more lumens.
  • FIGS. 4P and 4Q illustrate sectional views of a design of a mechanical dilator comprising a hinged member. FIG. 4P shows the mechanical dilator comprising an outer member 462 comprising one or more bendable regions 464 located on the distal end of outer member 462. The mechanical dilator also comprises an inner member 466 located within outer member 462. In one embodiment, inner member 466 is tubular. The distal end of inner member 466 comprises one or more first hinges 468. First hinges 468 are hinged to the proximal ends of one or more moving elements 470. Distal ends of moving elements 470 are hinged to one or more second hinges 472 located on the inner surface of outer member 462. In FIG. 4Q, inner member 466 is pushed in the distal direction. This causes moving elements 470 to exert an outward radial force on bendable regions 464 causing bendable regions 464 to bend in an outward radial direction with an outward force. This outward force can be used to dilate or displace portions of the anatomy. Outer member 462 can be substantially straight or may comprise one or more bent or angled regions. Inner member 466 may comprise one or more lumens.
  • FIGS. 4R through 4W illustrate examples of configurations of mechanical dilators in FIGS. 4H through 4Q. FIG. 4R shows a sectional view of a mechanical dilator comprising an inner member 474, an outer stationary member 476 and an outer bendable member 478. In FIG. 4S, movement of inner member 474 displaces outer bendable member 478 in the radial direction with a force. This force can be used to dilate or displace portions of the anatomy. This configuration is useful to exert force in a particular radial direction. FIG. 4S′ shows a partial perspective view of the outer stationary member 476 of FIG. 4R. FIG. 4T shows a sectional view of a mechanical dilator comprising an inner member 480, a first outer hemi-tubular member 482 and a second outer hemi-tubular member 484. In FIG. 4U, movement of inner member 480 displaces first outer hemi-tubular member 482 and second outer hemi-tubular member 484 in the radial direction with a force. This force can be used to dilate or displace portions of the anatomy. This configuration is useful to exert force in two diametrically opposite regions. FIG. 4U′ shows a partial perspective view of the first outer hemi-tubular member 482 and the second outer hemi-tubular member 484 of FIG. 4T. FIG. 4V shows a sectional view of a mechanical dilator comprising an inner member 486, a first outer curved member 488 and a second outer curved member 490. In FIG. 4W, movement of inner member 486 displaces first outer curved member 488 and second outer curved member 490 in the radial direction with a force. This force can be used to dilate or displace portions of the anatomy. This configuration is useful to exert force over smaller areas in two diametrically opposite regions. FIG. 4W′ shows a partial perspective view of the first outer curved member 488 and the second outer curved member 490 of FIG. 4V. Similar designs for mechanical dilators in FIGS. 4H through 4Q are possible using three or more displaceable members. The inner member in the mechanical dilators disclosed herein may be replaced by a balloon for displacing the outer members to exert an outward radial force.
  • Several other designs of the working device may also be used including but not limited to cutters, chompers, rotating drills, rotating blades, tapered dilators, punches, dissectors, burs, non-inflating mechanically expandable members, high frequency mechanical vibrators, radiofrequency ablation devices, microwave ablation devices, laser devices (e.g. CO2, Argon, potassium titanyl phosphate, Holmium:YAG and Nd:YAG laser devices), snares, biopsy tools, scopes and devices that introduce diagnostic or therapeutic agents.
  • FIG. 5A shows a perspective view of an embodiment of a balloon comprising a conical proximal portion, a conical distal portion and a cylindrical portion between the conical proximal portion and the conical distal portion. FIGS. 5B to 5N show perspective views of several alternate embodiments of the balloon. FIG. 5B shows a conical balloon, FIG. 5C shows a spherical balloon, FIG. 5D shows a conical/square long balloon, FIG. 5E shows a long spherical balloon, FIG. 5F shows a dog bone balloon, FIG. 5G shows a offset balloon, FIG. 5H shows a square balloon, FIG. 5I shows a conical/square balloon, FIG. 5J shows a conical/spherical long balloon, FIG. 5K shows a tapered balloon, FIG. 5L shows a stepped balloon, FIG. 5M shows a conical/offset balloon and FIG. 5N shows a curved balloon.
  • The balloons disclosed herein can be fabricated from biocompatible materials including but not limited to polyethylene terephthalate, Nylon, polyurethane, polyvinyl chloride, crosslinked polyethylene, polyolefins, HPTFE, HPE, HDPE, LDPE, EPTFE, block copolymers, latex and silicone. The balloons disclosed herein can be fabricated by a variety of fabrication methods including but not limited to molding, blow molding, dipping, extruding etc.
  • The balloons disclosed herein can be inflated with a variety of inflation media including but not limited to saline, water, air, radiographic contrast materials, diagnostic or therapeutic substances, ultrasound echogenic materials and fluids that conduct heat, cold or electricity.
  • The balloons in this invention can also be modified to deliver diagnostic or therapeutic substances to the target anatomy. For example, FIG. 50 shows a partial perspective view of an embodiment of a balloon catheter device 500 comprising a balloon for delivering diagnostic or therapeutic substances. Balloon catheter device 500 comprises a flexible catheter 502 having a balloon 504 thereon. The catheter device 500 is advanced, with balloon 504 deflated, into a passageway such as a nostril, nasal cavity, meatus, ostium, interior of a sinus, etc. and positioned with the deflated balloon 504 situated within an ostium, passageway or adjacent to tissue or matter that is to be dilated, expanded or compressed (e.g., to apply pressure for hemostasis, etc.). Thereafter, the balloon 504 may be inflated to dilate, expand or compress the ostium, passageway, tissue or matter. Thereafter the balloon 504 may be deflated and the device 500 may be removed. This balloon 504 may also be coated, impregnated or otherwise provided with a medicament or substance that will elute from the balloon into the adjacent tissue (e.g., bathing the adjacent tissue with drug or radiating the tissue with thermal or other energy to shrink the tissues in contact with the balloon 504). Alternatively, in some embodiments, the balloon may have a plurality of apertures or openings through which a substance may be delivered, sometimes under pressure, to cause the substance to bathe or diffuse into the tissues adjacent to the balloon. Alternatively, in some embodiments, radioactive seeds, threads, ribbons, gas or liquid, etc. may be advanced into the catheter shaft 502 or balloon 504 or a completely separate catheter body for some period of time to expose the adjacent tissue and to achieve a desired diagnostic or therapeutic effect (e.g. tissue shrinkage, etc.).
  • The balloons in this invention can have a variety of surface features to enhance the diagnostic or therapeutic effects of a procedure. For example, FIG. 5P shows a partial perspective view of an embodiment of a balloon/cutter catheter device 506 comprising a flexible catheter 508 having a balloon 510 with one or more cutter blades 512 formed thereon. The device 506 is advanced, with balloon 510 deflated, into a passageway such as a nostril, nasal cavity, meatus, ostium, interior of a sinus, etc. and positioned with the deflated balloon 510 situated within an ostium, passageway or adjacent to tissue or matter that is to be dilated, expanded or compressed and in which it is desired to make one or more cuts or scores (e.g. to control the fracturing of tissue during expansion and minimize tissue trauma etc.). Thereafter, the balloon 510 is inflated to dilate, expand or compress the ostium, passageway, tissue or matter and causing the cutter blade(s) 512 to make cut(s) in the adjacent tissue or matter. Thereafter the balloon 510 is deflated and the device 506 is removed. The blade may be energized with mono or bi-polar RF energy or otherwise heated such that it will cut the tissues while also causing hemostasis and/or to cause thermal contraction of collagen fibers or other connective tissue proteins, remodeling or softening of cartilage, etc.
  • The balloons in this invention can have a variety of reinforcing means to enhance the balloon properties. For example, FIGS. 5Q and 5Q′ show perspective views of an embodiment of a balloon catheter device 514 comprising a flexible catheter 516 having a balloon 518 with one or more reinforcing means 520 thereon. In this example, reinforcing means 520 is a braid attached on the external surface of balloon 518. The reinforcing braid can be constructed from suitable materials like polymer filaments (e.g. PET or Kevlar filaments), metallic filaments (e.g. SS316 or Nitinol filaments) and metallic or non-metallic meshes or sheets. A variety of other reinforcing means can be used including but not limited to reinforcing coatings, external or internal reinforcing coils, reinforcing fabric, reinforcing meshes and reinforcing wires, reinforcing rings, filaments embedded in balloon materials etc. FIG. 5Q″ shows a perspective view of a reinforcing braid that can be used with the balloon catheter device in FIGS. 5Q and 5Q′.
  • The balloons in this invention can have a variety of inflation means to enhance the balloon properties. FIG. 5R shows a partial sectional view of an embodiment of a balloon catheter 522 comprising a shaft 524 and a balloon 526. Shaft 524 comprises a balloon inflation lumen. The distal portion of balloon inflation lumen terminates in inflation ports 528 located near the distal end of balloon 526. Thus, when balloon catheter 522 is inserted in an orifice and balloon 526 is inflated, the distal portion of balloon 526 inflates earlier than the proximal portion of balloon 526. This prevents balloon 526 from slipping back out of the orifice.
  • FIGS. 5S through 5T illustrate designs of balloon catheters comprising multiple balloons. FIG. 5S shows a partial sectional view of an embodiment of a balloon catheter 530 comprising a shaft 532 with a lumen 533. Lumen 533 opens into three orifices located on shaft 532 namely a first orifice 534, a second orifice 536 and a third orifice 538. The three orifices are used to inflate three balloons. First orifice 534 inflates a first balloon 540, second orifice 536 inflates a second balloon 542 and third orifice 538 inflates third balloon 544. In one embodiment, first balloon 540 and third balloon 544 are inflated with a single lumen and second balloon 542 is inflated with a different lumen. In another embodiment, first balloon 540, second balloon 542 and third balloon 544 interconnected and are inflated with a single lumen. A valve mechanism allows first balloon and second balloon to inflate before allowing second balloon to inflate.
  • Alternatively, the balloons can be inflated by separate lumens. FIG. 5T shows a partial sectional view of an embodiment of a balloon catheter 546 comprising a shaft 548 comprising a first inflation lumen 550, a second inflation lumen 552 and a third inflation lumen 554. The three inflation lumens are used to inflate three non-connected balloons. First inflation lumen 550 inflates a first balloon 556, second inflation lumen 552 inflates a second balloon 558 and third inflation lumen 554 inflates a third balloon 560.
  • The devices disclosed herein may comprise one or more navigation or visualization modalities. FIGS. 5U through 5AB illustrate perspective and sectional views of various embodiments of a balloon catheter comprising sensors. FIG. 5U shows a partial perspective view of a balloon catheter comprising an outer member 562, an inner member 564 and a balloon 566 attached to distal region of outer member 562 and distal region of inner member 564. The balloon catheter further comprises a first sensor 568 located on the distal region of outer member 562 and a second sensor 570 located on the distal region of inner member 564. FIG. 5V shows a crossection through plane 5V-5V in FIG. 5U. Outer member 562 comprises a first sensor lumen 572 to receive the lead from first sensor 568. Inner member 564 comprises a second sensor lumen 574 to receive the lead from second sensor 570. Inner member 564 further comprises a circular lumen 576. Outer member 562 and inner member 564 enclose an annular lumen 578. In one embodiment, annular lumen 578 is a balloon inflation lumen.
  • FIG. 5W shows a partial perspective view of a balloon catheter comprising an outer member 580, an inner member 582 and a balloon 584 attached to distal region of outer member 580 and distal region of inner member 582. The balloon catheter further comprises a first sensor 586 located on the distal region of inner member 582 and a second sensor 588 located on the distal region of inner member 582 distal to first sensor 586. FIG. 5X shows a cross section through plane 5X-5X in FIG. 5W. Inner member 582 comprises a first sensor lumen 590 to receive the lead from first sensor 586 and a second sensor lumen 592 to receive the lead from second sensor 588. Inner member 582 further comprises a circular lumen 594. Outer member 580 and inner member 582 enclose an annular lumen 596. In one embodiment, annular lumen 596 is a balloon inflation lumen.
  • FIG. 5Y shows a partial perspective view of a balloon catheter comprising an outer member 598, an inner member 600 and a balloon 602 attached to distal region of outer member 598 and distal region of inner member 600. The balloon catheter further comprises a first sensor 604 located on the distal region of outer member 598 and a second sensor 606 located on the distal region of outer member 598 distal to first sensor 604. FIG. 5Z shows a cross section through plane 5Z-5Z in FIG. 5Y. Outer member 598 comprises a first sensor lumen 608 to receive the lead from first sensor 604 and a second sensor lumen 610 to receive the lead from second sensor 606. Inner member 600 comprises a circular lumen 612. Outer member 598 and inner member 600 enclose an annular lumen 614. In one embodiment, annular lumen 614 is a balloon inflation lumen.
  • The leads from the sensors may be attached on the surface of an element of the balloon catheter without being enclosed in a lumen. FIG. 5M shows a partial perspective view of a balloon catheter comprising an outer member 616, an inner member 618 and a balloon 620 attached to distal region of outer member 616 and distal region of inner member 618. The balloon catheter further comprises a first sensor 624 located on the distal region of outer member 616 and a second sensor 626 located on the distal region of inner member 618. Second sensor 626 comprises a lead 628. FIG. 5AB shows a cross section through plane 5AB-5AB in FIG. 5M. Outer member 616 comprises a first sensor lumen 630 to receive the lead from first sensor 624. Inner member 618 comprises a circular lumen 632. Lead 628 from second sensor 626 is attached on the outer surface of inner member 618 and is oriented parallel to inner member 618. Outer member 616 and inner member 618 enclose an annular lumen 634. In one embodiment, annular lumen 634 is a balloon inflation lumen. The sensors mentioned in FIGS. 5U through 5AB can be electromagnetic sensors or sensors including but not limited to location sensors, magnetic sensors, electromagnetic coils, RF transmitters, mini-transponders, ultrasound sensitive or emitting crystals, wire-matrices, micro-silicon chips, fiber-optic sensors, etc.
  • FIGS. 6A through 6G illustrate partial perspective views of several embodiments of shaft designs for the various devices disclosed herein. These shaft designs are especially useful for devices that encounter high torque or high burst pressures or require enhanced pushability, steerability and kink resistance. FIG. 6A shows a partial perspective view of an embodiment of a shaft 602 comprising a spiral element 604 wound around the shaft. Spiral element 604 can be made of suitable materials like metals (e.g. SS316L, SS304) and polymers. In one embodiment, spiral element 604 is in the form of round wire of diameter between 0.04 mm to 0.25 mm. In another embodiment, spiral element is in the form of flat wire of cross section dimensions ranging from 0.03 mm×0.08 mm to 0.08 mm×0.25 mm. FIG. 6B shows a partial perspective view of an embodiment of a shaft 606 comprising a reinforcing filament 608. Reinforcing filament 608 is substantially parallel to the axis of shaft 606. Shaft 606 with reinforcing filament 608 can be covered with a jacketing layer. Reinforcing filament 608 can be made of suitable materials like metals, polymers, glass fiber etc. Reinforcing filament 608 can also have shape memory characteristics. In one embodiment, reinforcing filament 608 is embedded in shaft 606. In another embodiment, reinforcing filament is introduced through a lumen in shaft 606. Shaft 606 may comprise more than one reinforcing filament 608. FIG. 6C shows a partial perspective view of an embodiment of a shaft 610 comprising one of more stiffening rings 612 along the length of shaft 610. FIG. 6D shows a partial perspective view of an embodiment of a shaft 614 comprising a series of controllably stiffening elements 616 along the length of the shaft. Shaft 614 further comprises a tension wire 618 that runs through controllably stiffening elements 616 and is attached to the most distal stiffening element. The tension in tension wire 618 causes controllably stiffening elements 616 to come into contact with each other with a force. Friction between controllably stiffening elements 616 causes shaft 614 to have a certain stiffness. Increasing the tension in tension wire 618 increases the force with which controllably stiffening elements 616 come into contact with each other. This increases the friction between controllably stiffening elements 616 which in turn increases the stiffness of shaft 614. Similarly, reducing the tension in tension wire 618 reduces the stiffness of shaft 614. Controllably stiffening elements 616 can be made from suitable materials like metal, polymers and composites. In one embodiment, controllably stiffening elements 616 are separated from each other by one or more springs. Tension wire 618 can be made from metals like SS316. Tension wire 618 may also be used to cause the device to actively bend or shorten in response to tension. FIG. 6E shows a partial perspective view of an embodiment of a shaft 620 comprising a hypotube 622. In one embodiment, hypotube 622 is located on the exterior surface of shaft 620. In another embodiment, hypotube 622 is embedded in shaft 620. Hypotube 620 can be made of metals like stainless steel 316 or suitable polymers. FIGS. 6F and 6F′ show a partial perspective view of an embodiment of a shaft 624 comprising a reinforcing element 626 in the form of a reinforcing braid or mesh located on the outer surface of shaft 624. Reinforcing element 626 can be made of suitable materials like polymer filaments (e.g. PET or Kevlar filaments), metallic wires e.g. SS316 wires etc. The braid pattern can be regular braid pattern, diamond braid pattern, diamond braid pattern with a half load etc. In one embodiment, the outer surface of reinforcing element 626 is covered with a jacketing layer.
  • The shafts of various devices disclosed herein may be non homogenous along their length. Examples of such shafts are illustrated in FIGS. 6G through 6H. FIG. 6G shows a partial perspective view of an embodiment of a device comprising a shaft 628 comprising a proximal portion 630, a distal portion 632, a working element 634 and a plastically deformable region 636 located between the proximal portion 630 and distal portion 632. Plastically deformable region 636 can be deformed by a physician to adjust the angle between proximal portion 630 and distal portion 632. This enables the devices to be used for several different anatomical regions of the same patient. Also, such devices can be adjusted for optimal navigation through a patient's anatomy. In one embodiment, shaft 628 comprises multiple plastically deformable regions. In another embodiment plastically deformable region 636 is located within working element 634. Such a design comprising one or more plastically deformable regions can be used for any of the devices mentioned herein like catheters with working elements, guide catheters, guide catheters with a pre-set shape, steerable guide catheters, steerable catheters, guidewires, guidewires with a pre-set shape, steerable guidewires, ports, introducers, sheaths etc.
  • FIG. 6H shows a partial perspective view of an embodiment of a device comprising a shaft with a flexible element. The design is illustrated as a shaft 638 comprising a proximal portion 640, a distal portion 642 and a working element 644 (e.g. a balloon). Shaft 638 further comprises a flexible element 646 located between proximal portion 640 and distal portion 642. This design enables proximal portion 640 to bend with respect to distal portion 642 making it easier to navigate through the complex anatomy and deliver working element 644 to the desired location. In one embodiment, shaft 638 comprises multiple flexible elements. In another embodiment, flexible element 646 is located within working element 644. Such a design comprising one or more flexible elements can be used for any of the devices mentioned herein like catheters with working elements, guide catheters, guide catheters with a pre-set shape, steerable guide catheters, steerable catheters, guidewires, guidewires with a pre-set shape, steerable guidewires, ports, introducers, sheaths etc.
  • FIGS. 6I through 6K illustrate an example of a shaft comprising a malleable element. FIG. 6I shows a partial perspective view of an embodiment of a shaft 648 comprising malleable element 650 and a lumen 652 wherein shaft 648 is in a substantially straight configuration. Malleable element 650 is embedded in shaft 648 such that the axis of malleable element 650 is substantially parallel to the axis of shaft 648. FIG. 6J shows a partial perspective view of the embodiment of FIG. 6I in a bent configuration. FIG. 6K shows a cross sectional view through plane 6K-6K of FIG. 6I showing shaft 648 comprising malleable element 650 and a lumen 652. In one embodiment, shaft 648 comprises more than one malleable element.
  • FIGS. 6L through 6M show an embodiment of a controllably deformable shaft. FIG. 6L shows a partial sectional view of an embodiment of a controllably deformable shaft 654 comprising a pull wire 656 attached to a pull wire terminator 658 located near the distal end of shaft 654. FIG. 6M shows a partial sectional view of the controllably deformable shaft 654 of FIG. 6L in a bent orientation when pull wire 656 is pulled in the proximal direction. The deformation can be varied by varying the location of pull wire terminator 658 and the stiffness of various sections of shaft 658. The stiffness of a section of shaft 658 can be varied by adding reinforcing coatings, external or internal reinforcing coils, reinforcing fabric, reinforcing meshes and reinforcing wires, hinged elements, embedded filaments, reinforcing rings etc.
  • FIG. 6N shows a perspective view of a balloon catheter comprising a rigid or semi-rigid member. The balloon catheter comprises a rigid or semi-rigid member 660 and a balloon 662 located on the distal region of rigid or semi-rigid member 660. Rigid or semi-rigid member 660 may comprise one or more lumens. Rigid or semi-rigid member 660 may comprise one or more bent, curved or angled regions. Balloon 662 is inflated by a balloon inflation tube 664 comprising a hub 666 at the proximal end of balloon inflation tube 664. In one embodiment, balloon inflation tube 664 is fully attached along its length to rigid or semi-rigid member 660. In another embodiment, balloon inflation tube 664 is partially attached along its length to rigid or semi-rigid member 660.
  • FIGS. 6O through 6Q illustrate sectional views of a balloon catheter comprising an insertable and removable element. FIG. 60 shows a balloon catheter 668 comprising a balloon 670, a first lumen 672 and a balloon inflation lumen 674 opening into balloon 670 through an inflation port 676. FIG. 6P shows an insertable element 678 having a proximal end 680 and a distal end 682. In one embodiment, distal end 682 ends in a sharp tip for penetrating tissue. In one embodiment, insertable element 678 comprises one or more bent, angled or curved regions 684. Insertable element 678 can be fabricated from a variety of materials to obtain properties including but not limited to rigidity, shape memory, elasticity, ability to be plastically deformed etc. In FIG. 6Q, insertable element 678 is inserted into balloon catheter 668 through first lumen 672. This combination can be used to perform a diagnostic or therapeutic procedure. Insertable element 678 may be removed during or after the procedure.
  • FIGS. 7A through 7K show cross sectional views of several embodiments of lumen orientation in the devices disclosed herein. FIG. 7A shows a cross sectional view of an embodiment of a shaft 702 comprising a first lumen 704 and a second lumen 706. In one embodiment, first lumen 704 is a guidewire lumen and second lumen 706 is an inflation lumen. FIG. 7B shows a cross sectional view of an embodiment of a shaft 708 comprising a first lumen 710 and a annular second lumen 712 such that second annular lumen 712 is substantially coaxial with first lumen 710. In one embodiment, first lumen 710 is a guidewire lumen and annular second lumen 712 is an inflation lumen. FIG. 7C shows a cross sectional view of an embodiment of a shaft 714 comprising a first tubular element 716 comprising a first lumen 718, a second tubular element 720 comprising a second lumen 722 and a jacket 724 surrounding first tubular element 716 and second tubular element 720. In one embodiment, first lumen 718 is a guidewire lumen and second lumen 722 is an inflation lumen. FIG. 7D shows a cross sectional view of an embodiment of a shaft 726 comprising a first lumen 728, a second lumen 730 and a third lumen 732. In one embodiment, first lumen 728 is a guidewire lumen, second lumen 730 is an irrigation/aspiration lumen and third lumen 732 is an inflation lumen. FIG. 7E shows a cross sectional view of an embodiment of a shaft 734 comprising a cylindrical element 736, a tubular element 738 comprising a lumen 740 and a jacket 742 surrounding cylindrical element 736 and tubular element 738. FIG. 7F shows a cross sectional view of an embodiment of a shaft 744 comprising a tubular member 746 comprising a first lumen 748 and a second lumen 750; a first coating 752 located on the outer surface of tubular member 746; a braid 754 located on the outer surface of first coating 752 and a second coating 756 surrounding braid 754. First lumen 748 is lined with a suitable coating 758 like hydrophilic lubricious coating, hydrophobic lubricious coating, abrasion resisting coating etc. In one embodiment, first lumen 748 is a guidewire lumen and second lumen 750 is an inflation lumen. The lumens disclosed herein can be lined with suitable coatings like hydrophilic lubricious coatings, hydrophobic lubricious coatings, abrasion resisting coatings, radiopaque coatings, echogenic coatings etc.
  • FIG. 7G shows a partial perspective view of an embodiment of a shaft 754* comprising a first lumen 756* and a zipper lumen 758*. Zipper lumen 758* allows a device like a guidewire 760* to be easily introduced into or removed from shaft 754*. FIG. 7H shows a cross sectional view through plane 7H-7H in FIG. 7G showing the orientations of first lumen 756* and zipper lumen 758*.
  • FIG. 7I shows a cross sectional view of an embodiment of a shaft 762 comprising a first lumen 764 and a rapid exchange lumen 766. Rapid exchange lumen 766 extends from the distal end of shaft 762 to a proximal region. Rapid exchange lumen 766 enables shaft 762 to be easily and quickly introduced or removed over an exchange device like a guidewire 768. FIG. 7J shows a cross sectional view through plane 7J-7J in FIG. 7I showing first lumen 764 and rapid exchange lumen 766. FIG. 7K shows a cross sectional view through plane 7K-7K in FIG. 7I showing first lumen 764.
  • FIGS. 7L through 7Q shows perspective and sectional views of lumens for the devices disclosed herein that are not present throughout the length of the devices. FIG. 7L shows a perspective view of a balloon catheter comprising a shaft 770, a balloon 772 and a lumen 774 that is present throughout shaft 770. The balloon catheter further comprises a balloon inflation lumen 776 that opens into balloon 772. The distal end of balloon inflation lumen 776 is plugged with a plug 778. FIG. 7M shows a crossection through plane 7M-7M in FIG. 7L showing shaft 770 comprising lumen 774 and balloon inflation lumen 776. FIG. 7N shows a crossection through plane 7N-7N in FIG. 7L showing shaft 770 comprising lumen 774 and plug 778. FIG. 7O shows a perspective view of a balloon catheter comprising a shaft 780, a balloon 782 and a lumen 786 that is present throughout shaft 780. The balloon catheter further comprises a balloon inflation lumen 784. The distal end of balloon inflation lumen 784 opens into balloon 782. FIG. 7P shows a crossection through plane 7P-7P in FIG. 7O showing shaft 780 comprising lumen 786 and balloon inflation lumen 784. FIG. 7Q shows a crossection through plane 7Q-7Q in FIG. 7O showing shaft 780 comprising lumen 786.
  • FIGS. 8A through 8E show partial perspective views of several embodiments of markers that may be present on the elements of the devices mentioned herein. FIG. 8A shows a partial perspective view of an embodiment of a shaft 800 comprising a plurality of distance markers 802 located along the length of shaft 800. FIG. 8B shows a partial perspective view of an embodiment of a shaft 804 comprising a plurality of radiographic markers 806 located along the length of shaft 804. FIG. 8C shows a partial perspective view of an embodiment of a shaft 808 comprising a plurality of ring shaped radiographic markers 810 located along the length of shaft 808. FIG. 8D shows a partial perspective view of an embodiment of a balloon catheter 812 comprising a shaft 814 and a balloon 816. Balloon 816 comprises a plurality of radiographic markers 818 located on the outer surface of the balloon 816. Such markers 818 may be in a linear arrangement, non-linear arrangement or any other configuration that performs the desired marking function (e.g., delineating the length and/or diameter of the balloon, marking the proximal and/or distal ends of the balloon, etc.). FIGS. 8E and 8E′ show partial perspective and longitudinal sectional views of an embodiment of a balloon catheter 820 comprising a shaft 822 and a balloon 824. Balloon 824 comprises a plurality of radiographic markers 826 located on the inner surface of the balloon 824. Such markers 826 may be in a linear arrangement, non-linear arrangement or any other configuration that performs the desired marking function (e.g., delineating the length and/or diameter of the balloon, marking the proximal and/or distal ends of the balloon, etc.). The devices disclosed herein may also comprise several other types of markers like ultrasound markers, radiofrequency markers and magnetic markers. Similarly, the devices disclosed herein may also comprise one or more sensors like electromagnetic sensors, electrical sensors, magnetic sensors, light sensors and ultrasound sensors.
  • The term “diagnostic or therapeutic substance” as used herein is to be broadly construed to include any feasible drugs, prodrugs, proteins, gene therapy preparations, cells, diagnostic agents, contrast or imaging agents, biologicals, etc. Such substances may be in bound or free form, liquid or solid, colloid or other suspension, solution or may be in the form of a gas or other fluid or nan-fluid. For example, in some applications where it is desired to treat or prevent a microbial infection, the substance delivered may comprise pharmaceutically acceptable salt or dosage form of an antimicrobial agent (e.g., antibiotic, antiviral, antiparasitic, antifungal, etc.), a corticosteroid or other anti-inflammatory (e.g., an NSAID), a decongestant (e.g., vasoconstrictor), a mucous thinning agent (e.g., an expectorant or mucolytic), an agent that prevents of modifies an allergic response (e.g., an antihistamine, cytokine inhibitor, leucotriene inhibitor, IgE inhibitor, immunomodulator), etc. Other non-limiting examples of diagnostic or therapeutic substances that may be useable in this invention are described in copending U.S. patent application Ser. No. 10/912,578 entitled Implantable Devices and Methods for Delivering Drugs and Other Substances to Treat Sinusitis and Other Disorders filed on Aug. 4, 2004, the entire disclosure of which is expressly incorporated herein by reference.
  • The term “nasal cavity” used herein to be broadly construed to include any cavity that is present in the anatomical structures of the nasal region including the nostrils and paranasal sinuses.
  • The term “trans-nasal” means through a nostril.
  • Although the methods and devices disclosed herein are illustrated in conjunction with particular paranasal sinuses, it is understood that these methods and devices can be used in other paranasal sinuses as well as other anatomical passageways of the ear, nose or throat.
  • Optionally, any of the working devices and guide catheters described herein may be configured or equipped to receive or be advanced over a guidewire or other guide member (e.g., an elongate probe, strand of suure material, other elongate member) unless to do so would render the device inoperable for its intended purpose. Some of the specific examples described herein include guidewires, but it is to be appreciated that the use of guidewires and the incorporation of guidewire lumens is not limited to only the specific examples in which guidewires or guidewire lumens are shown. The guidewires used in this invention may be constructed and coated as is common in the art of cardiology. This may include the use of coils, tapered or non-tapered core wires, radioopaque tips and/or entire lengths, shaping ribbons, variations of stiffness, PTFE, silicone, hydrophilic coatings, polymer coatings, etc. For the scope of this invention, these wires may possess dimensions of length between 5 and 75 cm and outer diameter between 0.005″ and 0.050″.
  • Several modalities can be used with the devices and methods disclosed herein for navigation and imaging of the devices within the anatomy. For example, the devices disclosed herein may comprise an endoscope for visualization of the target anatomy. The devices may also comprise ultrasound imaging modalities to image the anatomical passageways and other anatomical structures. The devices disclosed herein may comprise one or more magnetic elements especially on the distal end of the devices. Such magnetic elements may be used to navigate through the anatomy by using external magnetic fields. Such navigation may be controlled digitally using a computer interface. The devices disclosed herein may also comprise one or more markers (e.g. infra-red markers). The markers can be used to track the precise position and orientation of the devices using image guidance techniques. Several other imaging or navigating modalities including but not limited to fluoroscopic, radiofrequency localization, electromagnetic, magnetic and other radiative energy based modalities may also be used with the methods and devices disclosed herein. These imaging and navigation technologies may also be referenced by computer directly or indirectly to pre-existing or simultaneously created 3-D or 2-D data sets which help the doctor place the devices within the appropriate region of the anatomy.
  • The distal tip of devices mentioned herein may comprise a flexible tip or a soft, atraumatic tip. Also, the shaft of such devices may be designed for enhanced torquability.
  • The embodiments herein have been described primarily in conjunction with minimally invasive procedures, but they can also be used advantageously with existing open surgery or laparoscopic surgery techniques.
  • It is to be appreciated that the invention has been described hereabove with reference to certain examples or embodiments of the invention but that various additions, deletions, alterations and modifications may be made to those examples and embodiments without departing from the intended spirit and scope of the invention. For example, any element or attribute of one embodiment or example may be incorporated into or used with another embodiment or example, unless to do so would render the embodiment or example unsuitable for its intended use. All reasonable additions, deletions, modifications and alterations are to be considered equivalents of the described examples and embodiments and are to be included within the scope of the following claims.

Claims (114)

  1. 1. A method for diagnosing and/or treating sinusitis or another disorder affecting the nose, paranasal sinuses or other anatomical structures of the ear, nose or throat in a human or animal subject, said method comprising the steps of:
    a. providing an introducing device that has a proximal end and a distal end;
    b. advancing the introducing device through the nose and to a position near an opening of a paranasal sinus;
    c. providing a working device that is positionable in an operative location and useable to perform a diagnostic or therapeutic procedure within the opening of the paranasal sinus or within the paranasal sinus;
    d. using the introducing device to facilitate advancement of the working device to the operative location; and
    e. using the working device to perform a diagnostic or therapeutic procedure within the opening of the paranasal sinus or within the paranasal sinus.
  2. 2. A method according to claim 1 wherein the introducing device is selected from the group consisting of: guide catheters, guide catheters with a pre-set shape, steerable guide catheters, steerable catheters, guidewires, guidewires with a pre-set shape, steerable guidewires, ports, introducers and sheaths.
  3. 3. A method according to claim 1 wherein the introducing device is a generally tubular introducing device having a lumen extending therethrough and wherein the method further comprises the steps of:
    providing a second introduction device and
    inserting the second introduction device through the lumen of the generally tubular introducing device; and
    wherein Step d comprises using the introducing device and the second introducing device to facilitate advancement of the working device to the operative location.
  4. 4. A method according to claim 3 wherein the second introduction device is selected from the group consisting of: elongate guide members, elongate probes, guidewires, steerable guidewires, catheters and tubular members sized to be advanced through the lumen of the tubular introduction device.
  5. 5. A method according to claim 3 wherein the second introduction device is a guidewire and wherein the working device has a guidewire receiving lumen that extends through at least a portion of the working device such that the working device may be advanced over the guidewire.
  6. 6. A method according to claim 5 wherein the guidewire is steerable.
  7. 7. A method according to claim 1 wherein the opening of the paranasal sinus is a natural ostium or duct of the paranasal sinus.
  8. 8. A method according to claim 1 wherein the opening of the paranasal sinus is an artificially created opening of the paranasal sinus.
  9. 9. A method according to claim 8 wherein the opening is an antrostomy opening formed in a maxillary sinus.
  10. 10. A method according to claim 8 wherein the artificially created opening is created by using a device selected from the group consisting of: needles, dissectors, punches, rotating drills, corers, scalpels, burs, scissors, forceps, cutters, chompers, radiofrequency ablation devices, microwave ablation devices, laser devices, rotating blades and cutting balloons.
  11. 11. A method according to claim 1 wherein the method is performed using a guidance method selected from the group consisting of endoscopic guidance, fluoroscopic guidance, X-ray radiographic guidance, ultrasound guidance, robotic guidance, radio-frequency localization, electromagnetic sensing and positioning and 3-D guidance.
  12. 12. A method according to claim 1 wherein the working device is used to perform a procedure selected from the group consisting of:
    a. delivering an imageable or traceable substance;
    b. delivering a therapeutically effective amount of a therapeutic substance;
    c. implanting a stent, tissue remodeling device, substance delivery implant or other therapeutic apparatus;
    d. cutting, ablating, debulking, cauterizing, heating, lasing, dilating or otherwise modifying tissue;
    e. grafting or implanting cells or tissue;
    f. reducing, setting, screwing, applying adhesive to, affixing, decompressing or otherwise treating a fracture;
    g. delivering a gene or gene therapy preparation;
    h. cutting, ablating, debulking, cauterizing, heating, lasing, forming an osteotomy in or otherwise modifying bony or cartilaginous tissue within paranasal sinus or elsewhere within the nose;
    i. remodeling or changing the shape, size or configuration of a sinus ostium or duct or other anatomical structure that affects drainage from one or more paranasal sinuses;
    j. remodeling or changing the shape, size or configuration of a passage way other than a paranasal sinus within the nose or nasopharynx.
    k. performing an antrostomy of a paranasal sinus;
    l. performing an antrostomy of a maxillary meatus;
    m. performing a sinusotomy of a paranasal sinus;
    n. performing an ethmoidectomy;
    o. removing puss or aberrant matter from the paranasal sinus or elsewhere within the nose; and
    p. scraping or otherwise removing cells that line the interior of a paranasal sinus;
    q. removing all or a portion of a tumor;
    r. removing a polyp; and
    s. delivering histamine, an allergen or another substance that causes secretion of mucous by tissues within a paranasal sinus to permit assessment of drainage from the sinus.
  13. 13. A method according to claim 1 wherein the working device is selected from the group consisting of balloon catheters, cutting balloons, cutters, chompers, rotating cutters, rotating drills, rotating blades, sequential dilators, tapered dilators, punches, dissectors, burs, non-inflating mechanically expandable members, high frequency mechanical vibrators, dilating stents and radiofrequency ablation devices, microwave ablation devices, laser devices, snares, biopsy tools, scopes and devices that introduce diagnostic or therapeutic agents.
  14. 14. A method according to claim 1 wherein:
    Step d comprises advancing a tube through the introducing device to a location within a paranasal sinus; and
    Step e comprises delivering a flowable contrast agent into a paranasal sinus through the tube and subsequently imaging the flowable contrast agent to assess the manner in which the flowable contrast agent drains from the paranasal sinus.
  15. 15. A method according to claim 14 wherein the flowable contrast agent has a viscosity similar to the viscosity of mucous.
  16. 16. A method according to claim 14 wherein the imaging is carried out using an imaging apparatus that is moveable and wherein the imaging apparatus is moved to different positions to different vantage points relative to the patient's anatomy.
  17. 17. A method according to claim 1 wherein the working device comprises a scope and wherein Step e comprises using the scope to visualize structures within the nose and/or paranasal sinuses.
  18. 18. A method according to claim 13 wherein the scope is used to guide, facilitate or verify positioning of another working device.
  19. 19. A method according to claim 1 wherein the method further comprises the step of inserting a scope into the nose or nasal cavity or paranasal sinus and using the scope to view at least a portion of the procedure.
  20. 20. A method according to claim 1 wherein the working device comprises a balloon catheter that has a flexible catheter shaft and a balloon on said catheter shaft.
  21. 21. A method according to claim 20 wherein the catheter shaft comprises at least one flexible region of flexural stiffness less than 200 pound-force per inch for a flexible region length of one inch.
  22. 22. A method according to claim 17 wherein the scope is used to guide, facilitate or verify positioning of a guide catheter and wherein another working apparatus is then advanced through the guide catheter after the guide catheter has been positioned.
  23. 23. A method for performing a diagnostic or therapeutic procedure within the paranasal sinuses, ear, nose or throat of a human or animal subject, said method comprising the steps of:
    A) providing an working device that is trans-nasally insertable into the nose, paranasal sinuses or other anatomical structure of the ear, nose or throat, said working device comprising an elongate flexible shaft, at least one stiffening element for temporarily stiffening said flexible shaft and a working part useable to perform the diagnostic or therapeutic procedure;
    B) trans-nasally advancing the working device to an operative position within the nose, paranasal sinuses, ear, nose or throat; and
    C) using the working part to perform the diagnostic or therapeutic procedure;
    wherein, the stiffening element is used to stiffen the flexible shaft of the working device during at least a portion of the procedure.
  24. 24. A method according to claim 23 wherein the working device is a balloon catheter having a flexible catheter shaft, a stiffening element for temporarily stiffening the catheter shaft and a balloon.
  25. 25. A method according to claim 24 wherein Step C comprises advancing the balloon catheter to a position within the ostium of a paranasal sinus or within a paranasal sinus and therafter inflating the balloon.
  26. 26. A method according to claim 25 wherein the stiffening element is used to stiffen the catheter shaft during the insertion and positioning of the catheter and is subsequently removed after the catheter has been positioned within the ostium or paranasal sinus.
  27. 27. A method according to claim 24 wherein the stiffening element comprises a stylet that is insertable into at least a portion of the catheter shaft to impart stiffness thereto.
  28. 28. A method according to claim 24 wherein the stiffening element comprises a stiffening member that is attachable to and removable from at least a portion of the flexible catheter shaft.
  29. 29. A method according to claim 24 wherein the stiffening element comprises a sleeve that is temporarily positionable over at least a portion of the flexible catheter shaft to impart stiffness thereto.
  30. 30. A method for diagnosing and/or treating sinusitis or another disorder affecting the nose, paranasal sinuses or other anatomical structures of the ear, nose or throat, said method comprising the steps of:
    a. providing an working device comprising
    a proximal end;
    a distal end;
    at least one stiffening element between the proximal end and the distal end wherein the stiffening element is selected from the group consisting of spiral wires, braids, stiffening wires, stiffening rings, stiffening coatings, stiffening meshes, controllably stiffening elements, insertable or removable stiffening elements; and
    a working element on or near the distal end;
    b. advancing the working device in a nasal cavity so that the distal end of the working device is in the vicinity of an opening of a paranasal sinus; and
    c. performing a diagnostic or therapeutic procedure using the working device.
  31. 31. The method according to claim 30 wherein the working element is selected from the group consisting of inflatable balloons, rotating cutters, high frequency mechanical vibrators, rotating drills, sequential dilators, tapered dilators, punches, electrocautery devices, cutters, mechanically expandable members, dilating stents and devices that introduce diagnostic or therapeutic agents.
  32. 32. A method for diagnosing and/or treating sinusitis or another disorder affecting the nose, paranasal sinuses or other anatomical structures of the ear, nose or throat, said method comprising the steps of:
    A) providing an working device comprising
    a proximal end;
    a distal end;
    at least one flexible element between the proximal end and the distal end, wherein the flexible element is selected from the group consisting of shape memory elements, braided elements, spiral elements, coated elements, ringed elements, elastic elements, super elastic elements, controllably stiffening elements; and
    a working element on or near the distal end, wherein the working element is selected from the group consisting of balloon catheters, rotating cutters, high frequency mechanical vibrators, rotating drills, sequential dilators, tapered dilators, punches, electrocautery devices, cutters, mechanically expandable members, dilating stents and devices that introduce diagnostic or therapeutic agents;
    B) advancing the working device in a nasal cavity so that the distal end of the working device is in the vicinity of an opening of a paranasal sinus; and
    C) performing a diagnostic or therapeutic procedure using the working device.
  33. 33. A system for diagnosing and/or treating sinusitis or another disorder affecting the nose, paranasal sinuses or other anatomical structures of the ear, nose or throat comprising:
    an introducing member comprising a proximal end and a distal end for insertion into in a nasal cavity; and
    a working device that can be advanced along the introducing member.
  34. 34. The system according to claim 33 wherein the introducing member is selected from the group consisting of catheters, guide catheters, guide catheters with a pre-set shape, steerable guide catheters, steerable catheters, guidewires, guidewires with a pre-set shape, steerable guidewires, ports, introducers and sheaths.
  35. 35. The system according to claim 33 wherein the introducing member is a guide catheter comprising a proximal end and a distal end and a lumen extending from the proximal end to the distal end and wherein the system further comprises a guidewire that can be inserted through the lumen of the guide catheter.
  36. 36. The system according to claim 33 wherein the nasal cavity is a natural ostium of a paranasal sinus.
  37. 37. The system according to claim 33 wherein the nasal cavity is an artificially created opening of a paranasal sinus.
  38. 38. The system according to claim 37 wherein the artificially created opening of the paranasal sinus is created by using a device selected from the group consisting of needles, dissectors, punches, drills, corers, scalpels, burs, scissors, forceps and cutters.
  39. 39. The system according to claim 33 wherein the method is performed using a guidance method selected from the group consisting of endoscopic guidance, fluoroscopic guidance, X-ray radiographic guidance, ultrasound guidance, robotic guidance, radio-frequency visualization, and 3-D guidance.
  40. 40. The system according to claim 33 wherein the working device is used to perform a procedure selected from the group consisting of:
    delivering an imageable or traceable substance;
    delivering a therapeutically effective amount of a therapeutic substance;
    implanting a stent, tissue remodeling device, substance delivery implant or other therapeutic apparatus;
    cutting, ablating, debulking, cauterizing, heating, lasing, dilating or otherwise modifying tissue;
    grafting or implanting cells or tissue;
    reducing, setting, screwing, applying adhesive to, affixing, decompressing or otherwise treating a fracture;
    delivering a gene or gene therapy preparation;
    cutting, ablating, debulking, cauterizing, heating, lasing, forming an osteotomy in or otherwise modifying bony or cartilaginous tissue within paranasal sinus or elsewhere within the nose;
    remodeling or changing the shape, size or configuration of a sinus ostium or duct or other anatomical structure that affects drainage from one or more paranasal sinuses;
    remodeling or changing the shape, size or configuration of a passage way other than a paranasal sinus within the nose or nasopharynx.
    performing an antrostomy of a paranasal sinus;
    performing an antrostomy of a maxillary meatus;
    performing a sinusotomy of a paranasal sinus;
    performing an ethmoidectomy;
    removing puss or aberrant matter from the paranasal sinus or elsewhere within the nose; and
    scraping or otherwise removing cells that line the interior of a paranasal sinus;
    removing all or a portion of a tumor;
    removing a polyp; and
    delivering histamine, an allergen or another substance that causes secretion of mucous by tissues within a paranasal sinus to permit assessment of drainage from the sinus;
    delivering a flowable contrast agent into a paranasal sinus and subsequently imaging the flowable contrast agent to assess the manner in which the flowable contrast agent drains from the paranasal sinus.
  41. 41. The system according to claim 40 wherein the flowable contrast agent has a viscosity similar to the viscosity of mucous.
  42. 42. A method according to claim 40 wherein the imaging of the flowable contrast agent is carried out using an imaging apparatus that is moveable and wherein the imaging apparatus is moved to different positions to different vantage points relative to the patient's anatomy.
  43. 43. The system according to claim 33 wherein the working device is used to remodel or change the shape, size or configuration of a natural or artificially created passage way within the nose or nasopharynx using a device selected from the group consisting of balloon catheters, rotating cutters, rotating brushes, rotating drills, high frequency mechanical vibrators, sequential dilators, tapered dilators, swellable dilators, punches, radiofrequency ablation devices, microwave ablation devices, cutters, mechanically expandable members, dilating stents and devices that introduce diagnostic or therapeutic agents.
  44. 44. The system according to claim 33 wherein the working device comprises a scope inserted into the nose or paranasal sinus to visualize structures within the nose and/or paranasal sinuses.
  45. 45. The system according to claim 44 wherein the scope is used to guide, facilitate or verify positioning of another working device.
  46. 46. The system according to claim 33 wherein the working device comprises a balloon catheter.
  47. 47. The system according to claim 46 wherein the balloon catheter comprises a balloon that can be inflated in steps so that the diameter of the balloon increases in steps of 0.5 mm till a maximum balloon diameter of 20 mm.
  48. 48. The system according to claim 46 wherein the length of the balloon catheter is from 4 inches to 10 inches.
  49. 49. The system according to claim 46 wherein the balloon of the balloon catheter has an asymmetrical crossection.
  50. 50. The system according to claim 46 wherein the balloon of the balloon catheter is inflated by an inflation medium selected from the group consisting of water, saline, radiographic contrast material, therapeutic substance, ultrasound echogenic material, heat conducting fluid and electricity conducting fluid.
  51. 51. The system according to claim 46 wherein the balloon of the balloon catheter is inflated by inflation means selected from the group consisting of
    hydraulic inflation means; and
    sequential inflation means through a plurality of balloon inflation ports.
  52. 52. The system according to claim 46 wherein the balloon of the balloon catheter is selected from the group consisting of straight balloons, spherical balloons, conical balloons, conical/square long balloons, long spherical balloons, cylindrical balloons, curved balloons, offset balloons, conical/offset balloons, square balloons, conical/square balloons, conical/spherical long balloons, tapered balloons, stepped balloons and dog bone balloons.
  53. 53. The system according to claim 46 wherein the balloon of the balloon catheter is manufactured from a material selected from the group consisting of polyethylene terephthalate, Nylon, polyurethane, polyvinyl chloride, crosslinked polyethylene, polyolefins, HPTFE, HPE, HDPE, LDPE, EPTFE, block copolymers, latex and silicone.
  54. 54. The system according to claim 46 wherein the balloon catheter comprises makers selected from the group consisting of radiographic markers, visual markers, ultrasound markers, radiofrequency markers and magnetic markers.
  55. 55. The system according to claim 46 wherein the balloon catheter comprises sensors selected from the group consisting of electromagnetic sensors, electrical sensors, magnetic sensors, light sensors and ultrasound sensors.
  56. 56. The system according to claim 46 wherein the balloon catheter is introduced into the target anatomy by an introducing method selected from the group consisting of over-the-wire method, rapid exchange method and no-wire method.
  57. 57. The system according to claim 46 wherein the balloon of the balloon catheter is folded such that the folded balloon surface has a configuration selected from the group consisting of
    a non-pleated configuration,
    a multi-pleated configuration wherein the pleats are oriented along the same tangential direction and
    a multi-pleated configuration wherein at least two pleats are oriented along opposite tangential directions.
  58. 58. The system according to claim 46 wherein the balloon of the balloon catheter encloses a enclosed length of the working device wherein the flexural stiffness of the enclosed length is less than 200 pound-force per inch for an enclosed length of one inch.
  59. 59. The system according to claim 46 wherein the balloon catheter comprises a wire on the tip of the balloon catheter for navigation through the anatomy.
  60. 60. The system according to claim 46 wherein the surface of the balloon of the balloon catheter is coated with a coating selected from the group consisting of hydrophilic lubricious coatings, hydrophobic lubricious coatings, abrasion resisting coatings, puncture resisting coatings, conductive coatings, radiopaque coatings, echogenic coatings, thrombogenicity reducing coatings and coatings that release drugs.
  61. 61. The system according to claim 60 wherein the coating on the balloon is applied by a process selected from the group consisting of dip application, bonding, impregnation, vapor deposition and Ultraviolet curing.
  62. 62. The system according to claim 46 wherein material of the balloon of the balloon catheter has a thickness from 0.0001 to 0.01 inches.
  63. 63. The system according to claim 46 wherein the balloon of the balloon catheter has a burst pressure greater than 14 atmospheres.
  64. 64. The system according to claim 46 wherein the balloon of the balloon catheter is designed such that when the balloon is inflated to a burst pressure, the balloon bursts preferentially at a bond between a proximal region of the balloon and the balloon catheter.
  65. 65. The system according to claim 46 wherein the balloon catheter comprises a stent for delivery into the anatomy before or after a dilation procedure.
  66. 66. The system according to claim 46 wherein the balloon of the balloon catheter comprises features on the exterior surface selected from the group consisting of cutting blades and ridges.
  67. 67. The system according to claim 46 wherein the balloon of the balloon catheter comprises means for energy transfer.
  68. 68. The system according to claim 67 wherein the balloon of the balloon catheter is used to transfer energy selected from the group consisting of radiofrequency energy, thermal energy and electrical energy.
  69. 69. The system according to claim 46 wherein the balloon of the balloon catheter comprises reinforcement means selected from the group consisting of reinforcing meshes, reinforcing coatings, reinforcing braids, reinforcing wires, embedded reinforcing filaments, reinforcing rings and reinforcing fabric, external or internal reinforcing coils etc.
  70. 70. The system according to claim 46 wherein the balloon of the balloon catheter comprises micropores on its surface for delivering agents.
  71. 71. The system according to claim 46 wherein the shaft of the balloon catheter is substantially stiff.
  72. 72. The system according to claim 46 wherein the shaft of the balloon catheter comprises at least one plastically deformable element.
  73. 73. The system according to claim 46 wherein the shaft of the balloon catheter comprises at least one steerable or deflectable element.
  74. 74. The system according to claim 46 wherein the shaft of the balloon catheter comprises a material selected from the group consisting of PeBax, Polyimide, Braided Polyimide, Polyurethane, Nylon, PVC, Hytrel 8238, Teco 60D, metal wires like stainless steel wires and Fluoropolymers like PTFE, PFA, FEP and ETFE.
  75. 75. The system according to claim 46 wherein the shaft of the balloon catheter comprises at least one controllably stiffening element.
  76. 76. The system according to claim 46 wherein the shaft of the balloon catheter comprises a lumen selected from the group consisting of end-to-end lumen, zipper lumen, rapid exchange lumen, parallel lumen surrounded by a jacket and coaxial lumen.
  77. 77. The system according to claim 46 wherein the shaft of the balloon catheter comprises a composite braid.
  78. 78. The system according to claim 77 wherein the composite braid comprises a material selected from the group consisting of stainless steel, Kevlar, Nitinol, Polyimide, Dacron, Nylon and EPTFE.
  79. 79. The system according to claim 77 wherein the composite braid is in a form selected from the group consisting of meshes, fabrics, braids, coils, parallel members and rings.
  80. 80. The system according to claim 46 wherein the shaft of the balloon catheter comprises a strain relief section.
  81. 81. The system according to claim 46 wherein the shaft of the balloon catheter has varying stiffness along the length of the shaft.
  82. 82. The system according to claim 46 wherein the shaft of the balloon catheter comprises of at least one lumen of a substantially non-circular cross-section.
  83. 83. The system according to claim 46 wherein the shaft of the balloon catheter comprises a marker selected from the group consisting of visual markers, radiographic markers, ultrasound markers, radiofrequency markers and magnetic markers.
  84. 84. The system according to claim 46 wherein the shaft of the balloon catheter comprises a coating on its outer surface selected from the group consisting of hydrophilic lubricious coatings, hydrophobic lubricious coatings, abrasion resisting coatings, puncture resisting coatings, conductive coatings, radiopaque coatings, echogenic coatings, thrombogenicity reducing coatings and coatings that release drugs.
  85. 85. The system according to claim 84 wherein the coating is applied by a process selected from the group consisting of dip application, bonding, impregnation, vapor deposition and Ultraviolet curing.
  86. 86. The system according to claim 46 wherein the shaft of the balloon catheter comprises a region with an angle, curve or bend.
  87. 87. The system according to claim 86 wherein the angle, curve or bend can be adjusted.
  88. 88. The system according to claim 46 wherein the balloon catheter comprises a hub with multiple ports.
  89. 89. The system according to claim 46 wherein the balloon catheter comprises a hub with a port selected from the group consisting of guidewire ports, inflation ports, vacuum ports, flushing ports and electrical connection ports.
  90. 90. The system according to claim 46 wherein the balloon catheter comprises a hub comprising orientation markers.
  91. 91. The system according to claim 46 wherein the balloon catheter comprises a hub comprising a handle.
  92. 92. The system according to claim 46 wherein the balloon catheter comprises a hub comprising a valve.
  93. 93. The system according to claim 46 wherein the balloon catheter comprises a hub comprising one or more extension tubes.
  94. 94. A system for diagnosing and/or treating sinusitis or another disorder affecting the nose, paranasal sinuses or other anatomical structures of the ear, nose or throat comprising:
    an introducing member comprising a proximal end and a distal end for insertion into in a nasal cavity;
    an ostium dilating device that can be advanced along the introducing member.
  95. 95. A system for diagnosing and/or treating sinusitis or another disorder affecting the nose, paranasal sinuses or other anatomical structures of the ear, nose or throat comprising:
    an introducing member comprising a proximal end and a distal end for insertion into in a nasal cavity;
    a working device that can be advanced along the introducing member wherein the working device comprises a shaft of a stiffness less than 200 pound-force per inch over a shaft length of one inch.
  96. 96. A system for diagnosing and/or treating sinusitis or another disorder affecting the nose, paranasal sinuses or other anatomical structures of the ear, nose or throat comprising:
    an introducing member comprising a proximal end and a distal end for insertion into in a nasal cavity;
    a working device that can be advanced along the introducing member
    wherein the surface of contact between the introducing member and the working device comprise at least one lubricious surface.
  97. 97. A method for improving drainage from an ethmoid sinus having an ostium and one or more adjacent ethmoid air cells in a human or animal subject, said method comprising the steps of:
    A) inserting a guide through the ostium and into the ethmoid sinus;
    B) advancing an enlarging device over the guide to a position within the ostium and using that enlarging device to enlarge the ostium;
    C) advancing a penetrating device into the ethmoid sinus and using that penetrating device to form an opening between the ethmod sinus and an ethmoid air cell;
    D) advancing a guide from the ethmoid sinus, through the opening and into the ethmoid air cell; and
    E) advancing an enlarging device over the guide of step D to a position within the opening and using the enlarging device to enlarge the opening.
  98. 98. A method according to claim 97 further comprising the steps of:
    F) advancing a penetrating device over the guide and using that penetrating device to form a second opening between the ethmod air cell and a second ethmoid air cell; and
    G) advancing the guide from the ethmoid air cell, through the second opening and into the second ethmoid air cell; and
    H) advancing an enlarging device over the guide to a position within the second opening and using the enlarging device to enlarge the second opening.
  99. 99. A method according to claim 98 further comprising the steps of:
    I) advancing a penetrating device over the guide and using that penetrating device to form a third opening between the second ethmod air cell and a third ethmoid air cell; and
    J) advancing the guide from the second ethmoid air cell, through the third opening and into the third ethmoid air cell; and
    K) advancing an enlarging device over the guide to a position within the third opening and using the enlarging device to enlarge the third opening.
  100. 100. A method according to claim 97 further comprising the steps of:
    I) retracting the guide into the ethmoid sinus;
    J) advancing a penetrating device over the guide and using that penetrating device to form a second opening between the ethmod sinus and a second ethmoid air cell; and
    G) advancing the guide from the ethmoid sinus, through the second opening and into the second ethmoid air cell; and
    H) advancing an enlarging device over the guide to a position within the second opening and using the enlarging device to enlarge the second opening.
  101. 101. A method according to claim 98 further comprising the steps of:
    II) retracting the guide into the ethmoid air cell;
    J) advancing a penetrating device over the guide and using that penetrating device to form a third opening between the ethmod air cell and a third ethmoid air cell; and
    G) advancing the guide from the ethmoid sinus, through the third opening and into the third ethmoid air cell; and
    H) advancing an enlarging device over the guide to a position within the third opening and using the enlarging device to enlarge the third opening.
  102. 102. A method according to claim 97 wherein, in Step C, the penetrating device is advanced over the guide that was used in Steps A and B.
  103. 103. A method according to claim 97 wherein the guide used in Steps D and E is the same guide that was used in Steps A and B.
  104. 104. A method according to claim 97 wherein the guide used in Steps D and E is different from the guide that was used in Steps A and B.
  105. 105. A method according to claim 97 wherein the guide used in Steps A and B comprises a guidewire.
  106. 106. A method according to claim 97 wherein the guide used in Steps D and E comprises a guidewire.
  107. 107. A method according to claim 97 wherein the enlarging device used in Step E is the same enlarging device that was used in Step B.
  108. 108. A method according to claim 97 wherein the enlarging device used in Step E is different from the enlarging device that was used in Step B.
  109. 109. A method according to claim 97 wherein the enlarging device used in Step B comprises a dilator.
  110. 110. A method according to claim 109 wherein the dilator comprises a balloon.
  111. 111. A method according to claim 109 wherein the dilator comprises at least two sequential dilators of progressively larger diameter.
  112. 112. A method according to claim 109 wherein the dilator comprises a mechanical dilator having a plurality of struts that are alternately moveable between a collapsed configuration and an expanded configuration.
  113. 113. A method according to claim 97 wherein the penetrating device comprises a tubular member that has a penetrating distal tip.
  114. 114. A method according to claim 97 wherein the penetrating device comprises a mechanical boring device.
US10944270 2004-04-21 2004-09-17 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures Abandoned US20060004323A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10829917 US7654997B2 (en) 2004-04-21 2004-04-21 Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US10944270 US20060004323A1 (en) 2004-04-21 2004-09-17 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures

Applications Claiming Priority (84)

Application Number Priority Date Filing Date Title
US10944270 US20060004323A1 (en) 2004-04-21 2004-09-17 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US11037548 US7462175B2 (en) 2004-04-21 2005-01-18 Devices, systems and methods for treating disorders of the ear, nose and throat
US11116118 US7720521B2 (en) 2004-04-21 2005-04-26 Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US11150847 US7803150B2 (en) 2004-04-21 2005-06-10 Devices, systems and methods useable for treating sinusitis
US11193020 US20060063973A1 (en) 2004-04-21 2005-07-29 Methods and apparatus for treating disorders of the ear, nose and throat
JP2007532485A JP5345318B2 (en) 2004-09-17 2005-09-14 Apparatus and method to extend and change the 腔口 sinuses and other nasal or paranasal structures
EP20130179223 EP2662109B1 (en) 2004-09-17 2005-09-14 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
ES05798331T ES2428631T3 (en) 2004-09-17 2005-09-14 Apparatus and methods to dilate and modify sinus ostia and other intranasal or paranasal structures
ES13179223T ES2540963T3 (en) 2004-09-17 2005-09-14 Apparatus and methods to dilate and modify sinus ostia and other intranasal or paranasal structures
EP20150163549 EP2959865A1 (en) 2004-09-17 2005-09-14 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
EP20050798331 EP1789110B1 (en) 2004-09-17 2005-09-14 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
PCT/US2005/033090 WO2006034008A3 (en) 2004-09-17 2005-09-14 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
DE200520022020 DE202005022020U1 (en) 2004-09-17 2005-09-14 Means for extending and modifying ostia of the sinuses and other intranasal or paranasal structures
PCT/US2006/002004 WO2006078884A3 (en) 2004-04-21 2006-01-18 Devices, systems and methods for treating disorders of the ear, nose and throat
US11355512 US8894614B2 (en) 2004-04-21 2006-02-16 Devices, systems and methods useable for treating frontal sinusitis
US11436892 US20070208252A1 (en) 2004-04-21 2006-05-17 Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US11647530 US20070167682A1 (en) 2004-04-21 2006-12-27 Endoscopic methods and devices for transnasal procedures
US11648158 US8702626B1 (en) 2004-04-21 2006-12-29 Guidewires for performing image guided procedures
US11655794 US8858586B2 (en) 2004-04-21 2007-01-18 Methods for enlarging ostia of paranasal sinuses
US11725151 US9089258B2 (en) 2004-04-21 2007-03-15 Endoscopic methods and devices for transnasal procedures
US11789704 US8747389B2 (en) 2004-04-21 2007-04-24 Systems for treating disorders of the ear, nose and throat
US11803695 US9554691B2 (en) 2004-04-21 2007-05-14 Endoscopic methods and devices for transnasal procedures
US11804309 US8932276B1 (en) 2004-04-21 2007-05-16 Shapeable guide catheters and related methods
US11888273 US20070270644A1 (en) 2004-04-21 2007-07-31 Endoscopic methods and devices for transnasal procedures
US11888284 US9265407B2 (en) 2004-04-21 2007-07-31 Endoscopic methods and devices for transnasal procedures
US11888107 US8146400B2 (en) 2004-04-21 2007-07-31 Endoscopic methods and devices for transnasal procedures
US11925357 US8088101B2 (en) 2004-04-21 2007-10-26 Devices, systems and methods for treating disorders of the ear, nose and throat
US11925540 US7500971B2 (en) 2004-04-21 2007-10-26 Devices, systems and methods for treating disorders of the ear, nose and throat
US11926326 US7645272B2 (en) 2004-04-21 2007-10-29 Devices, systems and methods for treating disorders of the ear, nose and throat
US11926565 US8961495B2 (en) 2004-04-21 2007-10-29 Devices, systems and methods for treating disorders of the ear, nose and throat
US11926377 US7641644B2 (en) 2004-04-21 2007-10-29 Devices, systems and methods for treating disorders of the ear, nose and throat
US11926467 US8123722B2 (en) 2004-04-21 2007-10-29 Devices, systems and methods for treating disorders of the ear, nose and throat
US11926524 US7727226B2 (en) 2004-04-21 2007-10-29 Devices, systems and methods for treating disorders of the ear, nose and throat
US11929237 US8090433B2 (en) 2004-04-21 2007-10-30 Methods and apparatus for treating disorders of the ear nose and throat
US11928097 US8715169B2 (en) 2004-04-21 2007-10-30 Devices, systems and methods useable for treating sinusitis
US11929667 US9814379B2 (en) 2004-04-21 2007-10-30 Methods and apparatus for treating disorders of the ear nose and throat
US11928160 US7771409B2 (en) 2004-04-21 2007-10-30 Devices, systems and methods useable for treating sinusitis
US11928346 US8172828B2 (en) 2004-04-21 2007-10-30 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US11929147 US8080000B2 (en) 2004-04-21 2007-10-30 Methods and apparatus for treating disorders of the ear nose and throat
US11929808 US20080275483A1 (en) 2004-04-21 2007-10-30 Methods and Apparatus for Treating Disorders of the Ear Nose and Throat
US11930716 US9167961B2 (en) 2004-04-21 2007-10-31 Methods and apparatus for treating disorders of the ear nose and throat
US11930786 US8961398B2 (en) 2004-04-21 2007-10-31 Methods and apparatus for treating disorders of the ear, nose and throat
US12496226 US9399121B2 (en) 2004-04-21 2009-07-01 Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US12543445 US8764726B2 (en) 2004-04-21 2009-08-18 Devices, systems and methods useable for treating sinusitis
US12561147 US8414473B2 (en) 2004-04-21 2009-09-16 Methods and apparatus for treating disorders of the ear nose and throat
US12727190 US8828041B2 (en) 2004-04-21 2010-03-18 Devices, systems and methods useable for treating sinusitis
US12729109 US9055965B2 (en) 2004-04-21 2010-03-22 Devices, systems and methods useable for treating sinusitis
US12756099 US8852143B2 (en) 2004-04-21 2010-04-07 Devices, systems and methods for treating disorders of the ear, nose and throat
US12768963 US8945088B2 (en) 2004-04-21 2010-04-28 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US12793352 US20110004057A1 (en) 2004-04-21 2010-06-03 Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US12828170 US8764709B2 (en) 2004-04-21 2010-06-30 Devices, systems and methods for treating disorders of the ear, nose and throat
US12949708 US20110060214A1 (en) 2004-04-21 2010-11-18 Systems and Methods for Performing Image Guided Procedures Within the Ear, Nose, Throat and Paranasal Sinuses
US13301406 US20120071824A1 (en) 2004-04-21 2011-11-21 Devices, Systems and Methods for Treating Disorders of the Ear, Nose and Throat
US13315191 US9107574B2 (en) 2004-04-21 2011-12-08 Endoscopic methods and devices for transnasal procedures
US13355758 US8721591B2 (en) 2004-04-21 2012-01-23 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US13451453 US9468362B2 (en) 2004-04-21 2012-04-19 Endoscopic methods and devices for transnasal procedures
JP2012266049A JP6042193B2 (en) 2004-09-17 2012-12-05 System for extending and changing an opening leading to a paranasal sinus
US13840430 US8777926B2 (en) 2004-04-21 2013-03-15 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures
US13858580 US9826999B2 (en) 2004-04-21 2013-04-08 Methods and apparatus for treating disorders of the ear nose and throat
US14221621 US9241834B2 (en) 2004-04-21 2014-03-21 Devices, systems and methods for treating disorders of the ear, nose and throat
US14221550 US20140296898A1 (en) 2004-04-21 2014-03-21 Devices, systems and methods useable for treating sinusitis
US14221714 US20140200444A1 (en) 2004-04-21 2014-03-21 Guidewires for performing image guided procedures
US14265787 US20140336693A1 (en) 2004-04-21 2014-04-30 Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US14265888 US9700326B2 (en) 2004-04-21 2014-04-30 Shapeable guide catheters and related methods
US14266025 US9220879B2 (en) 2004-04-21 2014-04-30 Devices, systems and methods useable for treating sinusitis
US14464948 US20140364725A1 (en) 2004-04-21 2014-08-21 Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US14515687 US9610428B2 (en) 2004-04-21 2014-10-16 Devices, systems and methods useable for treating frontal sinusitis
US14566845 US9713700B2 (en) 2004-04-21 2014-12-11 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US14568498 US20150165176A1 (en) 2004-04-21 2014-12-12 Methods and apparatus for treating disorders of the ear, nose and throat
US14614799 US9370649B2 (en) 2004-04-21 2015-02-05 Devices, systems and methods useable for treating sinusitis
US14658432 US20150250992A1 (en) 2004-04-21 2015-03-16 Mechanical dilation of the ostia of paranasal sinuses and other passageways of the ear, nose and throat
US14993444 US20160192830A1 (en) 2004-04-21 2016-01-12 Endoscopic methods and devices for transnasal procedures
US15083826 US20160270863A1 (en) 2004-04-21 2016-03-29 Systems and Methods for Performing Image Guided Procedures Within the Ear, Nose, Throat and Paranasal Sinuses
US15187938 US20170007281A1 (en) 2004-04-21 2016-06-21 Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US15417712 US20170197067A1 (en) 2004-04-21 2017-01-27 Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US15417655 US20170202480A1 (en) 2004-04-21 2017-01-27 Guidewires for performing image guided procedures
US15465978 US10034682B2 (en) 2004-04-21 2017-03-22 Devices, systems and methods useable for treating frontal sinusitis
US15624111 US20170348516A1 (en) 2004-04-21 2017-06-15 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US15624093 US20170340340A1 (en) 2004-04-21 2017-06-15 Shapeable guide catheters and related methods
US15651101 US20180001065A1 (en) 2004-04-21 2017-07-17 Devices, systems and methods useable for treating sinusitis
US15795834 US20180110407A1 (en) 2004-04-21 2017-10-27 Methods and apparatus for treating disorders of the ear nose and throat
US15803106 US20180125348A1 (en) 2004-04-21 2017-11-03 Methods and apparatus for treating disorders of the ear nose and throat
US15802637 US20180125336A1 (en) 2004-04-21 2017-11-03 Endoscopic methods and devices for transnasal procedures
US15814984 US20180125515A1 (en) 2004-04-21 2017-11-16 Methods and apparatus for treating disorders of the ear nose and throat

Related Parent Applications (6)

Application Number Title Priority Date Filing Date
US10829917 Continuation-In-Part US7654997B2 (en) 2004-04-21 2004-04-21 Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US10829917 Division US7654997B2 (en) 2004-04-21 2004-04-21 Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US10892917 Continuation-In-Part US7600241B2 (en) 1999-12-20 2004-07-16 Document data structure and method for integrating broadcast television with web pages
US10912578 Continuation-In-Part US7361168B2 (en) 2004-04-21 2004-08-04 Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US11037548 Continuation-In-Part US7462175B2 (en) 2004-04-21 2005-01-18 Devices, systems and methods for treating disorders of the ear, nose and throat
US11116118 Continuation-In-Part US7720521B2 (en) 2004-04-21 2005-04-26 Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses

Related Child Applications (15)

Application Number Title Priority Date Filing Date
US10829917 Continuation-In-Part US7654997B2 (en) 2004-04-21 2004-04-21 Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US10912578 Continuation-In-Part US7361168B2 (en) 2004-04-21 2004-08-04 Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US11037548 Continuation-In-Part US7462175B2 (en) 2004-04-21 2005-01-18 Devices, systems and methods for treating disorders of the ear, nose and throat
US11116118 Continuation-In-Part US7720521B2 (en) 2004-04-21 2005-04-26 Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US11150847 Continuation-In-Part US7803150B2 (en) 2004-04-21 2005-06-10 Devices, systems and methods useable for treating sinusitis
US11150874 Continuation-In-Part US20060284428A1 (en) 2005-06-13 2005-06-13 High reliability gate lock for exterior use
US11193020 Continuation-In-Part US20060063973A1 (en) 2004-04-21 2005-07-29 Methods and apparatus for treating disorders of the ear, nose and throat
US11725151 Continuation-In-Part US9089258B2 (en) 2004-04-21 2007-03-15 Endoscopic methods and devices for transnasal procedures
US11803695 Continuation-In-Part US9554691B2 (en) 2004-04-21 2007-05-14 Endoscopic methods and devices for transnasal procedures
US11925540 Continuation-In-Part US7500971B2 (en) 2004-04-21 2007-10-26 Devices, systems and methods for treating disorders of the ear, nose and throat
US11926326 Continuation-In-Part US7645272B2 (en) 2004-04-21 2007-10-29 Devices, systems and methods for treating disorders of the ear, nose and throat
US11926524 Continuation-In-Part US7727226B2 (en) 2004-04-21 2007-10-29 Devices, systems and methods for treating disorders of the ear, nose and throat
US11928346 Continuation US8172828B2 (en) 2004-04-21 2007-10-30 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US12768963 Continuation US8945088B2 (en) 2004-04-21 2010-04-28 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US13451453 Continuation-In-Part US9468362B2 (en) 2004-04-21 2012-04-19 Endoscopic methods and devices for transnasal procedures

Publications (1)

Publication Number Publication Date
US20060004323A1 true true US20060004323A1 (en) 2006-01-05

Family

ID=36090513

Family Applications (7)

Application Number Title Priority Date Filing Date
US10944270 Abandoned US20060004323A1 (en) 2004-04-21 2004-09-17 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US11928346 Active 2025-02-27 US8172828B2 (en) 2004-04-21 2007-10-30 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US12768963 Active 2025-07-19 US8945088B2 (en) 2004-04-21 2010-04-28 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US13355758 Active US8721591B2 (en) 2004-04-21 2012-01-23 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US13840430 Active US8777926B2 (en) 2004-04-21 2013-03-15 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures
US14566845 Active 2024-08-01 US9713700B2 (en) 2004-04-21 2014-12-11 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US15624111 Pending US20170348516A1 (en) 2004-04-21 2017-06-15 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures

Family Applications After (6)

Application Number Title Priority Date Filing Date
US11928346 Active 2025-02-27 US8172828B2 (en) 2004-04-21 2007-10-30 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US12768963 Active 2025-07-19 US8945088B2 (en) 2004-04-21 2010-04-28 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US13355758 Active US8721591B2 (en) 2004-04-21 2012-01-23 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US13840430 Active US8777926B2 (en) 2004-04-21 2013-03-15 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures
US14566845 Active 2024-08-01 US9713700B2 (en) 2004-04-21 2014-12-11 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US15624111 Pending US20170348516A1 (en) 2004-04-21 2017-06-15 Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures

Country Status (6)

Country Link
US (7) US20060004323A1 (en)
EP (3) EP2959865A1 (en)
JP (2) JP5345318B2 (en)
DE (1) DE202005022020U1 (en)
ES (2) ES2428631T3 (en)
WO (1) WO2006034008A3 (en)

Cited By (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116958A1 (en) * 2001-02-06 2004-06-17 Achim Gopferich Spacing device for releasing active substances in the paranasal sinus
US20040243158A1 (en) * 2003-01-21 2004-12-02 Angioscore, Inc., A Delaware Corporation Apparatus and methods for treating hardened vascular lesions
US20050021071A1 (en) * 2003-01-21 2005-01-27 Angioscore, Inc. Apparatus and methods for treating hardened vascular lesions
US20050240147A1 (en) * 2004-04-21 2005-10-27 Exploramed Ii, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US20050245906A1 (en) * 2004-04-21 2005-11-03 Exploramed Nc1, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US20060063973A1 (en) * 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US20060086701A1 (en) * 2004-10-27 2006-04-27 Daniel Perreault Method of applying one or more electromagnetic beams to form a fusion bond on a workpiece such as a medical device
US20060095066A1 (en) * 2004-04-21 2006-05-04 Exploramed Nc1, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US20060164680A1 (en) * 2005-01-25 2006-07-27 Hyuck Kim Printing system and method of printing data on a designated paper
US20060167531A1 (en) * 2005-01-25 2006-07-27 Michael Gertner Optical therapies and devices
US20060259005A1 (en) * 2005-05-11 2006-11-16 Angioscore, Inc. Methods and systems for delivering substances into luminal walls
US20070005093A1 (en) * 2005-07-01 2007-01-04 Cox John A System for tissue dissection and retraction
US20070073269A1 (en) * 2005-09-23 2007-03-29 Becker Bruce B Multi-conduit balloon catheter
US20070129751A1 (en) * 2004-04-21 2007-06-07 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US20070167682A1 (en) * 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US20070179518A1 (en) * 2006-02-02 2007-08-02 Becker Bruce B Balloon Catheters and Methods for Treating Paranasal Sinuses
US20070208252A1 (en) * 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US20070208301A1 (en) * 2005-06-10 2007-09-06 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US20070219600A1 (en) * 2006-03-17 2007-09-20 Michael Gertner Devices and methods for targeted nasal phototherapy
US20070249896A1 (en) * 2004-04-21 2007-10-25 Eric Goldfarb Endoscopic methods and devices for transnasal procedures
US20070250105A1 (en) * 2006-04-21 2007-10-25 Ressemann Thomas V Device and method for treatment of sinusitus
US20070282305A1 (en) * 2004-04-21 2007-12-06 Eric Goldfarb Endoscopic methods and devices for transnasal procedures
WO2007146880A2 (en) 2006-06-09 2007-12-21 Traxtal Inc. System for image-guided endovascular prosthesis and method for using same
US20080082045A1 (en) * 2006-09-15 2008-04-03 Eric Goldfarb Methods and devices for facilitating visualization in a surgical environment
US20080125720A1 (en) * 2006-05-17 2008-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US20080147097A1 (en) * 2003-10-09 2008-06-19 Sentreheart, Inc. Apparatus and method for the ligation of tissue
US20080167527A1 (en) * 2007-01-09 2008-07-10 Slenker Dale E Surgical systems and methods for biofilm removal, including a sheath for use therewith
WO2008082494A2 (en) * 2006-12-20 2008-07-10 The Trustees Of The University Of Pennsylvania Esophagial visualization device
WO2008045242A3 (en) * 2006-10-04 2008-07-17 Acclarent Inc Implantable devices and methods for treating sinusitis and other disorders
US20080172033A1 (en) * 2007-01-16 2008-07-17 Entellus Medical, Inc. Apparatus and method for treatment of sinusitis
US20080183128A1 (en) * 2007-01-24 2008-07-31 John Morriss Methods, devices and systems for treatment and/or diagnosis of disorders of the ear, nose and throat
US20080195041A1 (en) * 2004-04-21 2008-08-14 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose and throat
US20080214891A1 (en) * 2007-03-01 2008-09-04 Slenker Dale E Systems and methods for biofilm removal, including a biofilm removal endoscope for use therewith
US20080215082A1 (en) * 2002-09-30 2008-09-04 Becker Bruce B Method for treating obstructed paranasal sphenoid sinuses
US20080243067A1 (en) * 2007-03-29 2008-10-02 Dan Rottenberg Lumen reentry devices and methods
US20080243183A1 (en) * 2007-03-30 2008-10-02 Miller Gary H Devices, systems, and methods for closing the left atrial appendage
US20080249504A1 (en) * 2007-04-06 2008-10-09 Lattouf Omar M Instrument port
US20080269643A1 (en) * 2007-04-30 2008-10-30 John Morriss Methods and devices for ostium measurement
WO2008134288A3 (en) * 2007-04-24 2008-12-24 Acclarent Inc Mechanical dilation of the ostia of paranasal sinuses and other passageways of the ear, nose and throat
US20080319424A1 (en) * 2004-04-21 2008-12-25 Acclarent, Inc. Devices and Methods for Delivering Therapeutic Substances for the Treatment of Sinusitis and Other Disorders
US20090017090A1 (en) * 2006-07-10 2009-01-15 Arensdorf Patrick A Devices and methods for delivering active agents to the osteomeatal complex
US20090030409A1 (en) * 2007-07-27 2009-01-29 Eric Goldfarb Methods and devices for facilitating visualization in a surgical environment
US20090047326A1 (en) * 2003-03-14 2009-02-19 Eaton Donald J Sinus delivery of sustained release therapeutics
US20090076446A1 (en) * 2007-09-14 2009-03-19 Quest Medical, Inc. Adjustable catheter for dilation in the ear, nose or throat
US20090082797A1 (en) * 2007-09-20 2009-03-26 Fung Gregory W Devices and methods for remote suture management
US20090131785A1 (en) * 2007-11-15 2009-05-21 University Of Florida Research Foundation, Inc. Variable occlusional balloon catheter assembly
US20090156980A1 (en) * 2005-04-04 2009-06-18 Sinexus, Inc. Device and methods for treating paranasal sinus conditions
US20090171430A1 (en) * 2007-12-31 2009-07-02 Boston Scientific Scimed, Inc. Bifurcation stent delivery system and methods
US20090177272A1 (en) * 2007-12-18 2009-07-09 Abbate Anthony J Self-expanding devices and methods therefor
US20090187098A1 (en) * 2004-04-21 2009-07-23 Acclarent, Inc. Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose, and/or Throat
US20090198216A1 (en) * 2004-04-21 2009-08-06 Acclarent, Inc. Frontal sinus spacer
US20090204142A1 (en) * 2006-05-26 2009-08-13 Becker Bruce B Nasolacrimal system surgical tool and method
US20090312745A1 (en) * 2004-04-21 2009-12-17 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US20090318875A1 (en) * 2006-05-15 2009-12-24 Mayo Foundation For Medical Education And Research Devices and methods to treat nasal passages
WO2010014421A1 (en) 2008-07-30 2010-02-04 Acclarent, Inc. Swing prism endoscope
US20100099946A1 (en) * 2004-04-21 2010-04-22 Acclarent, Inc. Methods and apparatus for treating disorders of the ear nose and throat
US7720521B2 (en) 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US20100168511A1 (en) * 2008-12-29 2010-07-01 Acclarent, Inc. System and method for dilating an airway stenosis
US20100174308A1 (en) * 2004-04-21 2010-07-08 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20100198191A1 (en) * 2007-12-20 2010-08-05 Acclarent, Inc. Method and system for treating target tissue within the eustachian tube
US20100234875A1 (en) * 2008-10-30 2010-09-16 R4 Vascular, Inc. Rupture-resistant compliant radiopaque catheter balloon and methods for use of same in an intravascular surgical procedure
CN101884587A (en) * 2010-07-27 2010-11-17 于汉岗;赵伯君 Multifunctional beating device for dredging meridians
US20100305697A1 (en) * 2009-03-31 2010-12-02 Acclarent, Inc. System and Method For Treatment of Non-Ventilating Middle Ear by Providing a Gas Pathway Through the Nasopharynx
US20100312101A1 (en) * 2009-06-05 2010-12-09 Entellus Medical, Inc. Frontal sinus dilation catheter
US20110015667A1 (en) * 2009-06-05 2011-01-20 Entrigue Surgical, Inc. Systems, Devices and Methods for Providing Therapy to an Anatomical Structure
US20110015612A1 (en) * 2009-07-15 2011-01-20 Regents Of The University Of Minnesota Implantable devices for treatment of sinusitis
US20110022026A1 (en) * 2009-07-21 2011-01-27 Lake Region Manufacturing, Inc. d/b/a Lake Region Medical. Inc. Methods and Devices for Delivering Drugs Using Drug-Delivery or Drug-Coated Guidewires
US20110046654A1 (en) * 2009-08-24 2011-02-24 Shyam Kuppurathanam Textile-reinforced high-pressure balloon
US20110054503A1 (en) * 2009-09-02 2011-03-03 Isa Rizk Systems, methods and devices for ablation, crossing, and cutting of occlusions
US20110071349A1 (en) * 2009-09-23 2011-03-24 Entellus Medical, Inc. Endoscope system for treatment of sinusitis
US20110087247A1 (en) * 2009-04-01 2011-04-14 Fung Gregory W Tissue ligation devices and controls therefor
US20110118551A1 (en) * 2009-11-14 2011-05-19 SPI Surgical, Inc. Collateral soft tissue protection surgical device
US20110125091A1 (en) * 2009-05-15 2011-05-26 Abbate Anthony J Expandable devices and methods therefor
US20110137393A1 (en) * 2009-12-03 2011-06-09 Pawsey Nicholas C Stiffiner having an enlarged bombous distal end region and corresponding cochlear implant stimulating assembly
US20110144660A1 (en) * 2005-04-07 2011-06-16 Liddicoat John R Apparatus and method for the ligation of tissue
US20110160740A1 (en) * 2009-12-28 2011-06-30 Acclarent, Inc. Tissue Removal in The Paranasal Sinus and Nasal Cavity
WO2011084655A1 (en) * 2009-12-16 2011-07-14 Acclarent, Inc. Devices and methods for treating sinus disease
US20110190867A1 (en) * 2008-08-28 2011-08-04 Carlos Vonderwalde Directional expansion of intraluminal devices
WO2012040179A2 (en) 2010-09-24 2012-03-29 Acclarent, Inc. Sinus illumination lightwire device
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8172828B2 (en) 2004-04-21 2012-05-08 Acclarent, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US20120203069A1 (en) * 2009-11-14 2012-08-09 Blake Hannaford Surgical shield for soft tissue protection
US8241266B2 (en) 2007-04-05 2012-08-14 Entellus Medical, Inc. Apparatus and method for treatment of ethmoids
US8241316B2 (en) 2008-04-25 2012-08-14 Paul Oberle Inflatable nasopharyngeal stent
US8277477B2 (en) 2009-02-20 2012-10-02 Paul Oberle Mechanically deployable upper airway stent
US20120253114A1 (en) * 2011-03-29 2012-10-04 Terumo Kabushiki Kaisha Otorhinolaryngological treatment device and method
US20120253123A1 (en) * 2011-03-29 2012-10-04 Terumo Kabushiki Kaisha Otorhinolaryngological treatment device and method
WO2013016052A2 (en) 2011-07-25 2013-01-31 Acclarent, Inc. Devices and methods for transnasal irrigation or suctioning of the sinuses
US8435261B2 (en) 2009-07-15 2013-05-07 Regents Of The University Of Minnesota Treatment and placement device for sinusitis applications
US20130116549A1 (en) * 2010-10-18 2013-05-09 Erhan H. Gunday Anchored Working Channel
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
WO2013142333A1 (en) * 2012-03-19 2013-09-26 Cook Medical Technologies Llc Medical devices, methods and kits for delivering medication to a bodily passage
US20130267885A1 (en) * 2006-11-07 2013-10-10 Dc Devices, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US20130281778A1 (en) * 2012-04-19 2013-10-24 Terumo Kabushiki Kaisha Treatment instrument for medical use and method
EP2664350A1 (en) * 2008-07-30 2013-11-20 Acclarent, Inc. Paranasal ostium finder devices
WO2013179217A1 (en) 2012-05-29 2013-12-05 Alvimedica Tibbi Ürünler San. Ve Diş Tic. A.Ş. A balloon dilatation catheter for treatment of paranasal sinus diseases
US8657846B2 (en) 2006-04-21 2014-02-25 Entellus Medical, Inc. Guide catheter and method of use
WO2014043586A1 (en) * 2012-09-13 2014-03-20 Have Glass, Llc 4-way cystoscopy catheter with low profile balloon
EP2712649A1 (en) * 2012-07-18 2014-04-02 Terumo Kabushiki Kaisha Medical treatment instrument
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US20140114233A1 (en) * 2005-07-22 2014-04-24 The Foundry, Llc Methods and systems for toxin delivery to the nasal cavity
US8721663B2 (en) 1999-05-20 2014-05-13 Sentreheart, Inc. Methods and apparatus for transpericardial left atrial appendage closure
US8763222B2 (en) 2008-08-01 2014-07-01 Intersect Ent, Inc. Methods and devices for crimping self-expanding devices
US20140213968A1 (en) * 2013-01-31 2014-07-31 Medtronic Xomed, Inc. Inflation device for balloon sinus dilation
US8801670B2 (en) 2008-02-27 2014-08-12 Entellus Medical, Inc. Apparatus and method for accessing a sinus cavity
US20140228636A1 (en) * 2013-02-08 2014-08-14 Ninepoint Medical, Inc. Balloon system including registration marking
US8834513B2 (en) 2009-06-05 2014-09-16 Entellus Medical, Inc. Method and articles for treating the sinus system
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US20140336463A1 (en) * 2009-03-16 2014-11-13 Alan H. Shikani Rhinotopic therapy for the treatment of chronic rhinosinusitis biofilm disruption, treatment of mucosal granulation and sinus polyps
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US8974473B2 (en) 1999-05-20 2015-03-10 Sentreheart, Inc. Methods and apparatus for transpericardial left atrial appendage closure
US20150081032A1 (en) * 2007-07-30 2015-03-19 Audubon Technologies, Llc Device for maintaining patent paranasal sinus ostia
US8986201B2 (en) 2009-11-14 2015-03-24 Spiway Llc Surgical tissue protection sheath
US9005284B2 (en) 2010-04-15 2015-04-14 Entellus Medical, Inc. Method and apparatus for treating dilating the ethmoid infundibulum
US9011326B2 (en) 2009-11-14 2015-04-21 Spiway Llc Soft tissue shield for trans-orbital surgery
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US20150133856A1 (en) * 2012-09-19 2015-05-14 Olympus Medical Systems Corp. Auxiliary insertion and removal device
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9072626B2 (en) 2009-03-31 2015-07-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9149176B2 (en) 2012-09-13 2015-10-06 Emmy Medical, Llc 4-way cystoscopy catheter
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
EP2930944A1 (en) * 2014-04-07 2015-10-14 Oticon A/s Hearing aid comprising a flexible connection member
US20150290438A1 (en) * 2011-03-01 2015-10-15 Lawrence J. Gerrans Nasal Delivery of Agents with Nested Balloon Catheter
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9173977B2 (en) 2010-04-19 2015-11-03 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9180308B1 (en) * 2008-01-18 2015-11-10 Ricky A. Frost Laser device for intracranial illumination via oral or nasal foramina access
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9192748B2 (en) 2010-05-07 2015-11-24 Entellus Medical, Inc. Sinus balloon dilation catheters and sinus surgury tools
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9248266B2 (en) 2013-12-17 2016-02-02 Biovision Technologies, Llc Method of performing a sphenopalatine ganglion block procedure
US20160038342A1 (en) * 2014-08-11 2016-02-11 Acclarent, Inc. Tympanostomy tube delivery device with rotatable flexible shaft
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9277995B2 (en) 2010-01-29 2016-03-08 Corvia Medical, Inc. Devices and methods for reducing venous pressure
US9283360B2 (en) 2011-11-10 2016-03-15 Entellus Medical, Inc. Methods and devices for treating sinusitis
EP2995335A1 (en) * 2014-09-11 2016-03-16 Pine Medical Limited Drug coated balloon catheter and method of manufacture thereof
CN105431194A (en) * 2013-07-29 2016-03-23 艾姆瑞科医疗系统有限公司 Actively tracked medical devices
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9326665B2 (en) 2007-01-09 2016-05-03 Medtronic Xomed, Inc. Surgical instrument, system, and method for biofilm removal
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
WO2016073498A1 (en) * 2014-11-07 2016-05-12 Boston Scientific Scimed, Inc. Medical device having an atraumatic distal tip
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9408608B2 (en) 2013-03-12 2016-08-09 Sentreheart, Inc. Tissue ligation devices and methods therefor
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9451981B2 (en) 2009-11-14 2016-09-27 Spiway Llc Surgical tissue protection sheath
US9456812B2 (en) 2006-11-07 2016-10-04 Corvia Medical, Inc. Devices for retrieving a prosthesis
US20160287835A1 (en) * 2015-04-02 2016-10-06 Nogina, LLC Method for treating angina
US20160287055A1 (en) * 2015-03-30 2016-10-06 Acclarent, Inc. Guide catheter with image capture and light emission features
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9474915B2 (en) 2010-09-24 2016-10-25 Entrigue Surgical, Inc. Systems, devices and methods for providing therapy to an anatomical structure using high frequency pressure waves and/or cryogenic temperatures
US9486281B2 (en) 2010-04-13 2016-11-08 Sentreheart, Inc. Methods and devices for accessing and delivering devices to a heart
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9486614B2 (en) 2011-06-29 2016-11-08 Entellus Medical, Inc. Sinus dilation catheter
US9498206B2 (en) 2011-06-08 2016-11-22 Sentreheart, Inc. Tissue ligation devices and tensioning devices therefor
US20160354587A1 (en) * 2009-01-23 2016-12-08 Intersect Ent, Inc. Devices and methods for dilating tissues
US9516995B2 (en) 2013-12-17 2016-12-13 Biovision Technologies, Llc Surgical device for performing a sphenopalatine ganglion block procedure
RU167882U1 (en) * 2015-11-16 2017-01-11 Курманбек Апендиевич Сулайманов Tool for mobilizing hooklike process in complex ostiomeatal
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9636173B2 (en) 2010-10-21 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9642993B2 (en) 2011-12-22 2017-05-09 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having selectable flow rates
EP2569045A4 (en) * 2010-05-13 2017-05-10 Sanovas, Inc. Resector balloon system
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9694163B2 (en) 2013-12-17 2017-07-04 Biovision Technologies, Llc Surgical device for performing a sphenopalatine ganglion block procedure
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9707131B2 (en) 2007-04-19 2017-07-18 Tusker Medical, Inc. System and method for the simultaneous automated bilateral delivery of pressure equalization tubes
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9757193B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US9770366B2 (en) 2009-07-15 2017-09-26 Tusker Medical, Inc. Tympanic membrane pressure equalization tube delivery system
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9808144B2 (en) 2008-07-30 2017-11-07 Acclarent, Inc. Swing prism endoscope
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9827040B2 (en) 2002-04-08 2017-11-28 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for intravascularly-induced neuromodulation
US9827367B2 (en) 2008-04-29 2017-11-28 Medtronic Xomed, Inc. Surgical instrument, system, and method for frontal sinus irrigation
US9833360B2 (en) 2014-08-12 2017-12-05 Tusker Medical, Inc. Tympanostomy tube delivery device with replaceable shaft portion
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US9833359B2 (en) 2014-08-12 2017-12-05 Tusker Medical, Inc. Tympanostomy tube delivery device with cutter force clutch
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US9919144B2 (en) 2011-04-08 2018-03-20 Medtronic Adrian Luxembourg S.a.r.l. Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US9931026B2 (en) 2015-03-30 2018-04-03 Acclarent, Inc. Balloon catheter with image capture and light emission features
EP3300679A1 (en) * 2016-09-14 2018-04-04 Biosense Webster (Israel), Ltd. Wireless tool for treatment of ear, nose, throat
US9936956B2 (en) 2015-03-24 2018-04-10 Sentreheart, Inc. Devices and methods for left atrial appendage closure
US9937036B2 (en) 2006-11-07 2018-04-10 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9962530B2 (en) 2012-09-10 2018-05-08 Acclarent, Inc. Inflator for dilation of anatomical passageway
US9962531B2 (en) 2012-09-10 2018-05-08 Acclarent, Inc. Inflator for dilation of anatomical passageway
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US9993627B2 (en) 2008-11-12 2018-06-12 Sanovas Intellectual Property, Llc Fluid source with physiological feedback
US10016580B2 (en) 2013-12-17 2018-07-10 Biovision Technologies, Llc Methods for treating sinus diseases
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US10052465B2 (en) 2005-07-22 2018-08-21 The Foundry, Llc Methods and systems for toxin delivery to the nasal cavity

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
US20040199052A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US7816975B2 (en) * 2005-09-20 2010-10-19 Hewlett-Packard Development Company, L.P. Circuit and method for bias voltage generation
US20070293946A1 (en) * 2006-05-12 2007-12-20 Entrigue Surgical, Inc. Middle Turbinate Medializer
EP2024000A4 (en) * 2006-05-23 2011-11-16 Entrigue Surgical Inc Sinus tube
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
WO2008150767A3 (en) * 2007-05-31 2009-01-29 Boston Scient Scimed Inc Active controlled bending in medical devices
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
WO2009036290A1 (en) * 2007-09-14 2009-03-19 Entrigue Surgical, Inc. Implant system
US20090080737A1 (en) * 2007-09-25 2009-03-26 General Electric Company System and Method for Use of Fluoroscope and Computed Tomography Registration for Sinuplasty Navigation
JP5628673B2 (en) 2007-09-26 2014-11-19 セント ジュード メディカル インコーポレイテッド Foldable artificial heart valve
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US9462932B2 (en) 2008-01-24 2016-10-11 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
CA2961051A1 (en) * 2008-02-29 2009-09-03 Edwards Lifesciences Corporation Expandable member for deploying a prosthetic device
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
ES2645920T3 (en) 2008-06-06 2017-12-11 Edwards Lifesciences Corporation Transcatheter heart valve low profile
US9750625B2 (en) 2008-06-11 2017-09-05 C.R. Bard, Inc. Catheter delivery device
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
ES2584315T3 (en) 2008-07-15 2016-09-27 St. Jude Medical, Inc. Collapsible designs and reexpansible Prosthetic heart valve sleeve and complementary technological applications
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US8945142B2 (en) 2008-08-27 2015-02-03 Cook Medical Technologies Llc Delivery system for implanting nasal ventilation tube
WO2010033682A1 (en) 2008-09-17 2010-03-25 Entrigue Surgical, Inc. Methods and systems for medializing a turbinate
US8690936B2 (en) 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
US9254168B2 (en) 2009-02-02 2016-02-09 Medtronic Advanced Energy Llc Electro-thermotherapy of tissue using penetrating microelectrode array
WO2010144483A1 (en) * 2009-06-08 2010-12-16 Trireme Medical, Inc. Side branch balloon
WO2011031748A1 (en) 2009-09-08 2011-03-17 Salient Surgical Technologies, Inc. Cartridge assembly for electrosurgical devices, electrosurgical unit and methods of use thereof
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US20110208117A1 (en) * 2010-02-25 2011-08-25 Hawkins Charles R Catheter
WO2011112991A1 (en) 2010-03-11 2011-09-15 Salient Surgical Technologies, Inc. Bipolar electrosurgical cutter with position insensitive return electrode contact
US8920417B2 (en) 2010-06-30 2014-12-30 Medtronic Advanced Energy Llc Electrosurgical devices and methods of use thereof
WO2012004679A3 (en) 2010-07-09 2012-08-23 Highlife Sas Transcatheter atrio-ventricular valve prosthesis
US9326853B2 (en) 2010-07-23 2016-05-03 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
WO2012030673A3 (en) 2010-08-30 2012-04-19 SinuSys Corporation Devices for dilating a paranasal sinus opening and for treating sinusitis
US8568475B2 (en) 2010-10-05 2013-10-29 Edwards Lifesciences Corporation Spiraled commissure attachment for prosthetic valve
CA2813419A1 (en) 2010-10-05 2012-04-12 Edwards Lifesciences Corporation Prosthetic heart valve
US9022967B2 (en) 2010-10-08 2015-05-05 Sinopsys Surgical, Inc. Implant device, tool, and methods relating to treatment of paranasal sinuses
EP2934284A4 (en) * 2012-12-24 2016-08-10 Sanovas Inc Anchored working channel
US9023040B2 (en) 2010-10-26 2015-05-05 Medtronic Advanced Energy Llc Electrosurgical cutting devices
EP2663357A4 (en) * 2011-01-10 2017-12-06 Spotlight Technology Partners LLC Apparatus and methods for accessing and treating a body cavity, lumen, or ostium
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US9427281B2 (en) 2011-03-11 2016-08-30 Medtronic Advanced Energy Llc Bronchoscope-compatible catheter provided with electrosurgical device
WO2012132114A1 (en) 2011-03-29 2012-10-04 テルモ株式会社 Device for otorhinolaryngological therapy
US9238126B2 (en) * 2011-04-08 2016-01-19 Sanovas Inc. Biofeedback controlled deformation of sinus ostia
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
US8795357B2 (en) 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
WO2013016275A1 (en) 2011-07-22 2013-01-31 Cook Medical Technologies Llc Irrigation devices adapted to be used with a light source for the identification and treatment of bodily passages
ES2394433B1 (en) * 2011-07-25 2013-09-30 Miguel AHUMADA VIDAL internal nasal dilator and implantation method.
KR20140049566A (en) * 2011-07-25 2014-04-25 아클라런트, 인코포레이션 Devices and methods for transnasal dilation and irrigation of the sinuses
US9339384B2 (en) 2011-07-27 2016-05-17 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
US9480559B2 (en) 2011-08-11 2016-11-01 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US9457173B2 (en) 2011-09-10 2016-10-04 Cook Medical Technologies Llc Methods of providing access to a salivary duct
US9750565B2 (en) 2011-09-30 2017-09-05 Medtronic Advanced Energy Llc Electrosurgical balloons
US9375138B2 (en) 2011-11-25 2016-06-28 Cook Medical Technologies Llc Steerable guide member and catheter
US9168131B2 (en) 2011-12-09 2015-10-27 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
JP2015037452A (en) * 2011-12-15 2015-02-26 テルモ株式会社 Dilatation catheter
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9131980B2 (en) 2011-12-19 2015-09-15 Medtronic Advanced Energy Llc Electrosurgical devices
US9956042B2 (en) 2012-01-13 2018-05-01 Vanderbilt University Systems and methods for robot-assisted transurethral exploration and intervention
JP2013165887A (en) 2012-02-16 2013-08-29 Terumo Corp Expansion catheter
US8556883B2 (en) * 2012-02-27 2013-10-15 Rafic Saleh Medical surgical navigation sensor mounting system
US9138569B2 (en) 2012-02-29 2015-09-22 SinuSys Corporation Devices and methods for dilating a paranasal sinus opening and for treating sinusitis
US9572964B2 (en) * 2012-04-11 2017-02-21 Sinapsys Surgical, Inc. Implantation tools, tool assemblies, kits and methods
US9579448B2 (en) * 2012-04-13 2017-02-28 Acclarent, Inc. Balloon dilation catheter system for treatment and irrigation of the sinuses
US9687303B2 (en) 2012-04-20 2017-06-27 Vanderbilt University Dexterous wrists for surgical intervention
US9539726B2 (en) * 2012-04-20 2017-01-10 Vanderbilt University Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots
US9549720B2 (en) 2012-04-20 2017-01-24 Vanderbilt University Robotic device for establishing access channel
US20130282190A1 (en) * 2012-04-24 2013-10-24 General Electric Company System and method for configuration and management of power plant assets
JP2015128455A (en) * 2012-04-24 2015-07-16 テルモ株式会社 Medical treatment tool
US9226792B2 (en) 2012-06-12 2016-01-05 Medtronic Advanced Energy Llc Debridement device and method
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
US9510946B2 (en) 2012-09-06 2016-12-06 Edwards Lifesciences Corporation Heart valve sealing devices
US9549666B2 (en) 2012-11-10 2017-01-24 Curvo Medical, Inc. Coaxial micro-endoscope
US9233225B2 (en) 2012-11-10 2016-01-12 Curvo Medical, Inc. Coaxial bi-directional catheter
CN103007425B (en) * 2012-11-13 2013-11-06 浦易(上海)生物技术有限公司 Balloon system for treating nasosinusitis or allergic rhinitis
EP2922592A4 (en) 2012-11-21 2016-10-19 Edwards Lifesciences Corp Retaining mechanisms for prosthetic heart valves
US9463307B2 (en) 2012-12-21 2016-10-11 Medtronic Xomed, Inc. Sinus dilation system and method
US20150335860A1 (en) * 2012-12-31 2015-11-26 Clearstream Technologies Limited Catheter with markings to facilitate alignment
JP6246835B2 (en) 2013-01-25 2017-12-13 シノプシス サージカル インコーポレイテッドSinopsys Surgical,Inc. Sinus Access implant device and associated tools, methods, and kits
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9168129B2 (en) 2013-02-12 2015-10-27 Edwards Lifesciences Corporation Artificial heart valve with scalloped frame design
US9289582B2 (en) 2013-02-25 2016-03-22 Terumo Kabushiki Kaisha Methods for treating sinus ostia using balloon catheter devices having a bendable balloon portion
US9956383B2 (en) 2013-03-15 2018-05-01 Cook Medical Technologies Llc Medical devices and methods for providing access to a bodily passage during dilation
US9345864B2 (en) 2013-03-15 2016-05-24 Terumo Kabushiki Kaisha Methods for treating sinus ostia using balloon catheter devices having a slidable balloon portion
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
CN107334563A (en) 2013-05-20 2017-11-10 爱德华兹生命科学公司 Prosthetic heart valve delivery apparatus
US9687263B2 (en) 2013-05-30 2017-06-27 SinuSys Corporation Devices and methods for inserting a sinus dilator
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
CN105658178B (en) 2013-06-25 2018-05-08 坦迪尼控股股份有限公司 Thrombosis and structures for managing the prosthetic heart valve compliant feature
US9700459B2 (en) 2013-10-16 2017-07-11 Sinopsys Surgical, Inc. Apparatuses, tools and kits relating to fluid manipulation treatments of paranasal sinuses
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US9504454B2 (en) * 2013-11-19 2016-11-29 King Abdulaziz University Transoral repair of choanal atresia
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
CN104906682A (en) 2014-01-24 2015-09-16 史蒂文·沙勒布瓦 Articulating balloon catheter and method for using the same
KR20150091983A (en) * 2014-02-04 2015-08-12 (주)네오팜 Composition for preventing hair loss or promoting hair growth
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
JP2015192727A (en) * 2014-03-31 2015-11-05 日本ゼオン株式会社 Tube stent delivery device
USD802127S1 (en) 2014-06-02 2017-11-07 Simplicity, Llc Nasal dilator
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
USD772408S1 (en) 2014-07-09 2016-11-22 Simplicity Nasal dilator
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
ES2577288B1 (en) * 2015-01-13 2017-04-24 Anaconda Biomed, S.L. Thrombectomy device
EP3277191A1 (en) * 2015-03-31 2018-02-07 Ziva Medical, Inc. Methods and systems for the manipulation of ovarian tissues
US10010417B2 (en) 2015-04-16 2018-07-03 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10064718B2 (en) 2015-04-16 2018-09-04 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US20170000990A1 (en) * 2015-06-30 2017-01-05 Lawrence J. Gerrans Sinus Ostia Dilation System
US20170000981A1 (en) * 2015-06-30 2017-01-05 Lawrence J. Gerrans Body Cavity Dilation System
CA3000878A1 (en) * 2015-10-07 2017-04-13 Mayo Foundation For Medical Education And Research Electroporation for obesity or diabetes treatment
KR101731187B1 (en) * 2015-11-17 2017-04-27 부산대학교 산학협력단 Ultrasonic identifiable catheter
CN105413039A (en) * 2015-12-15 2016-03-23 刘金殿 Nasopharyngeal guiding apparatus
KR200482235Y1 (en) * 2015-12-28 2017-01-02 이성완 Paranasal sinuses expanding remedy device
US20180071281A1 (en) * 2016-08-19 2018-03-15 Gerbe Labs Inc. Treating chronic rhinosinusitis
JP2017140359A (en) * 2016-10-26 2017-08-17 ウルフ トリー メディカル インコーポレイテッド Miniature fluid atomizer
US20180116550A1 (en) 2016-11-01 2018-05-03 Biosense Webster (Israel) Ltd. Rigid ENT Tool

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US504424A (en) * 1893-09-05 Oscar de pezzer
US2525183A (en) * 1947-03-20 1950-10-10 Jehu M Robison Antral pressure device
US3800788A (en) * 1972-07-12 1974-04-02 N White Antral catheter for reduction of fractures
US4102342A (en) * 1975-12-29 1978-07-25 Taichiro Akiyama Valved device
US4338941A (en) * 1980-09-10 1982-07-13 Payton Hugh W Apparatus for arresting posterior nosebleeds
US4737141A (en) * 1983-07-26 1988-04-12 Fundatech S.A. Method of draining the maxillary sinus for the treatment of maxillary sinusitis
US4748969A (en) * 1987-05-07 1988-06-07 Circon Corporation Multi-lumen core deflecting endoscope
US4755171A (en) * 1987-05-29 1988-07-05 Tennant Jerald L Tubular surgical device
US4883465A (en) * 1988-05-24 1989-11-28 Brennan H George Nasal tampon and method for using
US5021043A (en) * 1989-09-11 1991-06-04 C. R. Bard, Inc. Method and catheter for dilatation of the lacrimal system
US5139832A (en) * 1988-10-14 1992-08-18 Mitsubishi Jukogyo Kabushiki Kaisha Shape memory film
US5167220A (en) * 1990-08-09 1992-12-01 Brown Cathy K Systems and methods for maintaining a clear visual field during endoscopic procedures
US5168864A (en) * 1991-09-26 1992-12-08 Clarus Medical Systems, Inc. Deflectable endoscope
US5169386A (en) * 1989-09-11 1992-12-08 Bruce B. Becker Method and catheter for dilatation of the lacrimal system
US5336163A (en) * 1993-01-06 1994-08-09 Smith & Nephew Richards, Inc. Expandable nasal stent
US5454817A (en) * 1994-04-11 1995-10-03 Katz; David L. Oto-nasal foreign body extractor
US5496338A (en) * 1993-06-29 1996-03-05 Machida Endoscope Co., Ltd. Medical instrument for treating sinusitis
US5546964A (en) * 1994-02-02 1996-08-20 Stangerup; Sven-Eric Method for treating a bleeding nose
US5601594A (en) * 1995-09-14 1997-02-11 Best; Barry D. Nasal stent
US5693065A (en) * 1996-06-25 1997-12-02 Rains, Iii; B. Manrin Frontal sinus stent
US5789391A (en) * 1996-07-03 1998-08-04 Inspire Pharmaceuticals, Inc. Method of treating sinusitis with uridine triphosphates and related compounds
US5827224A (en) * 1995-11-22 1998-10-27 Shippert; Ronald D. Pressure applying fluid transfer medical device
US5980551A (en) * 1997-02-07 1999-11-09 Endovasc Ltd., Inc. Composition and method for making a biodegradable drug delivery stent
US6027478A (en) * 1997-10-09 2000-02-22 Medical Purchasing Group, Inc. Nasal cavity drainage and stoppage system
US6053172A (en) * 1995-06-07 2000-04-25 Arthrocare Corporation Systems and methods for electrosurgical sinus surgery
US6083188A (en) * 1998-02-04 2000-07-04 Becker; Bruce B. Lacrimal silicone stent with very large diameter segment insertable transnasally
US6109268A (en) * 1995-06-07 2000-08-29 Arthrocare Corporation Systems and methods for electrosurgical endoscopic sinus surgery
US6113567A (en) * 1995-10-25 2000-09-05 Becker; Bruce B. Lacrimal silicone tube with reduced friction
US6190381B1 (en) * 1995-06-07 2001-02-20 Arthrocare Corporation Methods for tissue resection, ablation and aspiration
US6238391B1 (en) * 1995-06-07 2001-05-29 Arthrocare Corporation Systems for tissue resection, ablation and aspiration
US6293957B1 (en) * 1995-04-17 2001-09-25 Medtronic Xomed, Inc. Method of performing sinus surgery utilizing & sinus debrider instrument
US20010027307A1 (en) * 1998-04-27 2001-10-04 Dubrul William Richard Dilating and support apparatus with disease inhibitors and methods for use
US6394093B1 (en) * 1999-05-13 2002-05-28 Scott Lethi Nasopharyngeal airway with inflatable cuff
US6425877B1 (en) * 1999-04-02 2002-07-30 Novasys Medical, Inc. Treatment of tissue in the digestive circulatory respiratory urinary and reproductive systems
US20020165521A1 (en) * 2001-05-04 2002-11-07 Iulian Cioanta Low thermal resistance elastic sleeves for medical device balloons
US6537294B1 (en) * 2000-10-17 2003-03-25 Advanced Cardiovascular Systems, Inc. Delivery systems for embolic filter devices
US6596009B1 (en) * 1999-07-28 2003-07-22 Jeffrey Jelic Retrievable endoscopic orbital floor splint
US20030208194A1 (en) * 1995-06-07 2003-11-06 Hovda David C. Systems and methods for electrosurgical treatment of turbinates
US6663589B1 (en) * 2000-06-20 2003-12-16 Haim Halevy Catheter system
US6685648B2 (en) * 1996-10-11 2004-02-03 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US20040058992A1 (en) * 2002-09-25 2004-03-25 Andrea Marinello Apparatus for the introduction of a new system for the treatment of maxillary and frontal sinusitis and neuritis and neuralgia of the trigeminal nerve
US20040064083A1 (en) * 2002-09-30 2004-04-01 Becker Bruce B. Transnasal method and catheter for lacrimal system
US20040064150A1 (en) * 2002-09-30 2004-04-01 Becker Bruce B. Balloon catheters and methods for treating paranasal sinuses
USD501677S1 (en) * 2003-12-11 2005-02-08 Bruce B. Becker Dilatation balloon catheter
US7022105B1 (en) * 1996-05-06 2006-04-04 Novasys Medical Inc. Treatment of tissue in sphincters, sinuses and orifices
US20070073269A1 (en) * 2005-09-23 2007-03-29 Becker Bruce B Multi-conduit balloon catheter
US7500971B2 (en) * 2004-04-21 2009-03-10 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat

Family Cites Families (820)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US513667A (en) 1894-01-30 Sliding staple for hasps
US446173A (en) 1891-02-10 Hasp and staple
US2899227A (en) 1959-08-11 Charles-louis gschwend
US705346A (en) * 1901-11-02 1902-07-22 Jonathan R Hamilton Dilator.
US816792A (en) 1904-09-06 1906-04-03 Oliver H P Green Lock.
US798775A (en) 1905-04-13 1905-09-05 Valorus A Bradbury Dispensing-bottle.
US1080934A (en) 1912-08-19 1913-12-09 Walter L Shackleford Rectal tube.
US1200267A (en) 1915-02-04 1916-10-03 Motors Lock Company Of America Lock for automobile-hoods.
US1650959A (en) 1926-04-08 1927-11-29 Louis K Pitman Surgical instrument
US1735519A (en) 1926-07-17 1929-11-12 Arlyn T Vance Physician's dilator
US1878671A (en) 1929-07-02 1932-09-20 John Murray Dilator
US1828986A (en) 1929-09-26 1931-10-27 Golder E Stevens Dilating irrigator
US2201749A (en) 1939-02-15 1940-05-21 Vandegrift Middleton Expanding vein tube
US2493326A (en) 1949-03-01 1950-01-03 John H Trinder Tampon for control of intractable nasal hemorrhages
US2847997A (en) 1956-01-13 1958-08-19 James J Tibone Catheter
US3037286A (en) 1957-01-28 1962-06-05 North American Aviation Inc Vector gage
US2906179A (en) 1957-01-28 1959-09-29 North American Aviation Inc Vector gage
US3009265A (en) 1960-05-09 1961-11-21 Superior Plastics Inc Anatomical device
US2995832A (en) 1960-08-01 1961-08-15 Alderson Res Lab Inc Training aid for intravenous therapy
US3173418A (en) 1961-01-10 1965-03-16 Ostap E Baran Double-wall endotracheal cuff
US3435826A (en) 1964-05-27 1969-04-01 Edwards Lab Inc Embolectomy catheter
US3347061A (en) 1965-01-11 1967-10-17 Eaton Yale & Towne Flexible drive mechanism
US3393073A (en) 1965-04-16 1968-07-16 Eastman Kodak Co High contrast photographic emulsions
US3376659A (en) 1965-06-09 1968-04-09 Bard Inc C R Demonstration device
US3447061A (en) 1965-07-12 1969-05-27 Basic Inc Multi-phase rectifier with inherent phase balance
US3384970A (en) 1965-09-22 1968-05-28 Boice Gages Inc Precision coordinates measurement apparatus for gaging and layout operations
US3486539A (en) 1965-09-28 1969-12-30 Jacuzzi Bros Inc Liquid dispensing and metering assembly
US3469578A (en) 1965-10-12 1969-09-30 Howard R Bierman Infusion device for ambulatory patients with flow control means
US3509638A (en) 1966-08-04 1970-05-05 Midland Ross Corp Treating apparatus
US3506005A (en) 1967-02-23 1970-04-14 Arthur S Gilio Pressure infusion device for medical use
US3552384A (en) 1967-07-03 1971-01-05 American Hospital Supply Corp Controllable tip guide body and catheter
US3515888A (en) 1967-10-27 1970-06-02 California Computer Products Manual optical digitizer
US3481043A (en) 1967-12-12 1969-12-02 Bendix Corp Gaging machine
US3531868A (en) 1968-04-18 1970-10-06 Ford Motor Co Surface scanner for measuring the coordinates of points on a three-dimensional surface
US3527220A (en) 1968-06-28 1970-09-08 Fairchild Hiller Corp Implantable drug administrator
US3993073A (en) 1969-04-01 1976-11-23 Alza Corporation Novel drug delivery device
US3948262A (en) 1969-04-01 1976-04-06 Alza Corporation Novel drug delivery device
US3967618A (en) 1969-04-01 1976-07-06 Alza Corporation Drug delivery device
US3624661A (en) 1969-05-14 1971-11-30 Honeywell Inc Electrographic printing system with plural staggered electrode rows
US3834394A (en) 1969-11-21 1974-09-10 R Sessions Occlusion device and method and apparatus for inserting the same
US3903893A (en) 1970-05-04 1975-09-09 Alexander L Scheer Nasal hemostatic device
US4052505A (en) 1975-05-30 1977-10-04 Alza Corporation Ocular therapeutic system manufactured from copolymer
US4069307A (en) 1970-10-01 1978-01-17 Alza Corporation Drug-delivery device comprising certain polymeric materials for controlled release of drug
GB1340788A (en) 1971-02-04 1974-01-30 Matburn Holdings Ltd Nasal tampons
US3731963A (en) 1971-04-20 1973-05-08 R Pond Electrically actuated lock mechanism
US3804081A (en) 1971-07-29 1974-04-16 Olympus Optical Co Endoscope
US3802096A (en) 1971-08-09 1974-04-09 H Matern Composite model for medical study
US3948254A (en) 1971-11-08 1976-04-06 Alza Corporation Novel drug delivery device
US3993072A (en) 1974-08-28 1976-11-23 Alza Corporation Microporous drug delivery device
US3850176A (en) 1972-02-07 1974-11-26 G Gottschalk Nasal tampon
US3910617A (en) 1972-02-20 1975-10-07 Square D Co Solenoid operated electric strike
JPS4920979A (en) 1972-06-19 1974-02-23
JPS4932484U (en) 1972-06-19 1974-03-20
DE2239432B2 (en) 1972-08-10 1976-08-26 Geraet for the delivery of drugs
US4016251A (en) 1972-08-17 1977-04-05 Alza Corporation Vaginal drug dispensing device
US3792391A (en) 1972-12-18 1974-02-12 L Ewing Electrically operated two position electromechanical mechanism
US3921636A (en) 1973-01-15 1975-11-25 Alza Corp Novel drug delivery device
US3993069A (en) 1973-03-26 1976-11-23 Alza Corporation Liquid delivery device bladder
US3847145A (en) 1973-04-13 1974-11-12 M Grossan Nasal irrigation system
US4450150A (en) 1973-05-17 1984-05-22 Arthur D. Little, Inc. Biodegradable, implantable drug delivery depots, and method for preparing and using the same
US3859993A (en) * 1973-08-27 1975-01-14 Daniel G Bitner Operating table accessory
DE2541084C3 (en) 1975-09-15 1978-12-07 Siemens Ag, 1000 Berlin Und 8000 Muenchen
US4138151A (en) 1976-07-30 1979-02-06 Olympus Optical Company Limited Detent device for locking the lid of a cassette receiving compartment of a tape recorder
US4471779A (en) 1976-08-25 1984-09-18 Becton, Dickinson And Company Miniature balloon catheter
JPS5618817Y2 (en) 1976-10-18 1981-05-02
US4207890A (en) 1977-01-04 1980-06-17 Mcneilab, Inc. Drug-dispensing device and method
JPS567971Y2 (en) 1977-07-23 1981-02-21
US4184497A (en) 1977-08-26 1980-01-22 University Of Utah Peritoneal dialysis catheter
US4198766A (en) 1978-06-21 1980-04-22 Baxter Travenol Laboratories, Inc. Intravenous training/demonstration aid
USRE31351E (en) 1978-08-04 1983-08-16 Bell Telephone Laboratories, Incorporated Feedback nonlinear equalization of modulated data signals
US4213095A (en) 1978-08-04 1980-07-15 Bell Telephone Laboratories, Incorporated Feedforward nonlinear equalization of modulated data signals
US4217898A (en) 1978-10-23 1980-08-19 Alza Corporation System with microporous reservoir having surface for diffusional delivery of agent
US4268115A (en) 1979-06-01 1981-05-19 Tetra-Tech, Inc. Quick-release fiber-optic connector
US4299226A (en) 1979-08-08 1981-11-10 Banka Vidya S Coronary dilation method
JPS6119859B2 (en) 1979-08-14 1986-05-19 Nissan Motor
US4299227A (en) 1979-10-19 1981-11-10 Lincoff Harvey A Ophthalmological appliance
US4312353A (en) 1980-05-09 1982-01-26 Mayfield Education And Research Fund Method of creating and enlarging an opening in the brain
DE3041873C2 (en) 1980-11-06 1982-12-23 Danfoss A/S, 6430 Nordborg, Dk
US4437856A (en) * 1981-02-09 1984-03-20 Alberto Valli Peritoneal catheter device for dialysis
FR2502499B1 (en) 1981-03-27 1987-01-23 Farcot Jean Christian An apparatus for blood retroperfusion, intended in particular for the treatment of arterial blood by myocardial injection in the coronary sinus
GB2112055B (en) 1981-06-17 1985-04-17 Bauer Kaba Ag Lock cylinder with integrated electromagnetic locking
US4435716A (en) 1981-09-14 1984-03-06 Adrian Zandbergen Method of making a conical spiral antenna
DE3202878C2 (en) 1982-01-29 1985-10-31 Geze Gmbh, 7250 Leonberg, De
US4571239A (en) 1982-03-01 1986-02-18 Heyman Arnold M Catheter-stylet assembly for slipover urethral instruments
GB2125874B (en) 1982-08-17 1985-08-14 Michael David Dunn Solenoid operated locks
US4464175A (en) 1982-08-25 1984-08-07 Altman Alan R Multipurpose tamponade and thrombosclerotherapy tube
US4499899A (en) 1983-01-21 1985-02-19 Brimfield Precision, Inc. Fiber-optic illuminated microsurgical scissors
US4581017B1 (en) 1983-03-07 1994-05-17 Bard Inc C R Catheter systems
US4639244A (en) 1983-05-03 1987-01-27 Nabil I. Rizk Implantable electrophoretic pump for ionic drugs and associated methods
US4564364A (en) 1983-05-26 1986-01-14 Alza Corporation Active agent dispenser
EP0129634B1 (en) 1983-06-27 1988-05-04 Börje Drettner An instrument for the treatment of sinusitis
US4554929A (en) 1983-07-13 1985-11-26 Advanced Cardiovascular Systems, Inc. Catheter guide wire with short spring tip and method of using the same
US4675613A (en) 1983-08-11 1987-06-23 Hewlett-Packard Company Noise compensated synchronous detector system
US4571240A (en) 1983-08-12 1986-02-18 Advanced Cardiovascular Systems, Inc. Catheter having encapsulated tip marker
CA1232814A (en) 1983-09-16 1988-02-16 Hidetoshi Sakamoto Guide wire for catheter
US4585000A (en) 1983-09-28 1986-04-29 Cordis Corporation Expandable device for treating intravascular stenosis
US4606346A (en) 1984-01-11 1986-08-19 Olle Berg Intranasal device
US4589868A (en) 1984-03-12 1986-05-20 Dretler Stephen P Expandable dilator-catheter
JPS60253428A (en) 1984-05-30 1985-12-14 Sumitomo Electric Industries Fiberscope with bending mechanism
US4569347A (en) 1984-05-30 1986-02-11 Advanced Cardiovascular Systems, Inc. Catheter introducing device, assembly and method
US4851228A (en) 1984-06-20 1989-07-25 Merck & Co., Inc. Multiparticulate controlled porosity osmotic
US4596528A (en) 1984-07-02 1986-06-24 Lewis Leonard A Simulated skin and method
US4705801A (en) 1984-10-16 1987-11-10 Ciba-Geigy Corporation Production for producing 3-cyano-4-phenyl indoles and intermediates
US5019075A (en) 1984-10-24 1991-05-28 The Beth Israel Hospital Method and apparatus for angioplasty
US4637389A (en) 1985-04-08 1987-01-20 Heyden Eugene L Tubular device for intubation
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4619274A (en) 1985-04-18 1986-10-28 Advanced Cardiovascular Systems, Inc. Torsional guide wire with attenuated diameter
US4645495A (en) 1985-06-26 1987-02-24 Vaillancourt Vincent L Vascular access implant needle patch
DE3688175D1 (en) 1985-10-15 1993-05-06 Olivetti & Co Spa Button with selectable symbol.
US4748986A (en) 1985-11-26 1988-06-07 Advanced Cardiovascular Systems, Inc. Floppy guide wire with opaque tip
US4691948A (en) 1985-11-27 1987-09-08 A-Dec, Inc. Fail-secure lock system
US4669469A (en) 1986-02-28 1987-06-02 Devices For Vascular Intervention Single lumen atherectomy catheter device
US5350395A (en) 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4708834A (en) 1986-05-01 1987-11-24 Pharmacaps, Inc. Preparation of gelatin-encapsulated controlled release composition
US4672961A (en) 1986-05-19 1987-06-16 Davies David H Retrolasing catheter and method
US4795439A (en) 1986-06-06 1989-01-03 Edward Weck Incorporated Spiral multi-lumen catheter
US5019372A (en) 1986-06-27 1991-05-28 The Children's Medical Center Corporation Magnetically modulated polymeric drug release system
US4854330A (en) 1986-07-10 1989-08-08 Medrad, Inc. Formed core catheter guide wire assembly
US4920967A (en) 1986-07-18 1990-05-01 Pfizer Hospital Products Group, Inc. Doppler tip wire guide
US4847258A (en) 1986-08-26 1989-07-11 Ciba-Geigy Corporation Substituted benzoylphenylureas compounds useful as pesticides
US4803076A (en) 1986-09-04 1989-02-07 Pfizer Inc. Controlled release device for an active substance
US4726772A (en) 1986-12-01 1988-02-23 Kurt Amplatz Medical simulator
US5312430A (en) 1986-12-09 1994-05-17 Rosenbluth Robert F Balloon dilation catheter
US4771776A (en) 1987-01-06 1988-09-20 Advanced Cardiovascular Systems, Inc. Dilatation catheter with angled balloon and method
US4819619A (en) * 1987-01-16 1989-04-11 Augustine Scott D Device for inserting a nasal tube
US4815478A (en) 1987-02-17 1989-03-28 Medtronic Versaflex, Inc. Steerable guidewire with deflectable tip
US4736970A (en) 1987-03-09 1988-04-12 Mcgourty Thomas K Electrically controlled door lock
US4811743A (en) * 1987-04-21 1989-03-14 Cordis Corporation Catheter guidewire
US4793359A (en) 1987-04-24 1988-12-27 Gv Medical, Inc. Centering balloon structure for transluminal angioplasty catheter
US4867138A (en) 1987-05-13 1989-09-19 Olympus Optical Co., Ltd. Rigid electronic endoscope
US4796629A (en) 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
DE3719250A1 (en) 1987-06-10 1988-12-22 Kellner Hans Joerg Dr Med endoscope
US4917667A (en) 1988-02-11 1990-04-17 Retroperfusion Systems, Inc. Retroperfusion balloon catheter and method
WO1989005134A1 (en) 1987-11-30 1989-06-15 Loefstedt Sigmund Johannes New device and new method for drug administration
US5041089A (en) 1987-12-11 1991-08-20 Devices For Vascular Intervention, Inc. Vascular dilation catheter construction
US4846186A (en) 1988-01-12 1989-07-11 Cordis Corporation Flexible guidewire
US5372138A (en) 1988-03-21 1994-12-13 Boston Scientific Corporation Acousting imaging catheters and the like
US4998917A (en) 1988-05-26 1991-03-12 Advanced Cardiovascular Systems, Inc. High torque steerable dilatation catheter
US4940062A (en) 1988-05-26 1990-07-10 Advanced Cardiovascular Systems, Inc. Guiding member with deflectable tip
US5030227A (en) 1988-06-02 1991-07-09 Advanced Surgical Intervention, Inc. Balloon dilation catheter
JPH01305965A (en) 1988-06-06 1989-12-11 Fuji Syst Kk Catheter provided with balloon
WO1989012477A1 (en) * 1988-06-13 1989-12-28 Yaroslavsky Mezhotraslevoi Nauchno-Tekhnichesky Ts Device for diagnosing and treating nasal diseases
DE68901817D1 (en) 1988-06-29 1992-07-23 Jaico Cv Pressure capsule for spritzbehaelter and spritzbehaelter, which employs such a capsule.
US5267965A (en) 1988-07-06 1993-12-07 Ethicon, Inc. Safety trocar
EP0355996A3 (en) 1988-07-21 1990-05-02 Advanced Interventional Systems, Inc. Guidance and delivery system for high-energy pulsed laser light and endoscope
DE8810044U1 (en) 1988-08-03 1988-11-17 Effner Gmbh optical adjustment
US5067489A (en) 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
US4917419A (en) 1988-08-22 1990-04-17 Mora Jr Saturnino F Electromechanical door lock system
US4898577A (en) 1988-09-28 1990-02-06 Advanced Cardiovascular Systems, Inc. Guiding cathether with controllable distal tip
JPH0296072A (en) 1988-09-30 1990-04-06 Aisin Seiki Co Ltd Lid lock device
US4984581A (en) 1988-10-12 1991-01-15 Flexmedics Corporation Flexible guide having two-way shape memory alloy
US5090910A (en) 1988-10-14 1992-02-25 Narlo Jeanie R Multiple three dimensional facial display system
US4943275A (en) 1988-10-14 1990-07-24 Abiomed Limited Partnership Insertable balloon with curved support
US4961433A (en) 1988-11-02 1990-10-09 Cardiometrics, Inc. Guide wire assembly with electrical functions and male and female connectors for use therewith
US5001825A (en) 1988-11-03 1991-03-26 Cordis Corporation Catheter guidewire fabrication method
US5189110A (en) 1988-12-23 1993-02-23 Asahi Kasei Kogyo Kabushiki Kaisha Shape memory polymer resin, composition and the shape memorizing molded product thereof
US5087246A (en) 1988-12-29 1992-02-11 C. R. Bard, Inc. Dilation catheter with fluted balloon
US5378234A (en) 1993-03-15 1995-01-03 Pilot Cardiovascular Systems, Inc. Coil polymer composite
US4998916A (en) 1989-01-09 1991-03-12 Hammerslag Julius G Steerable medical device
US5221260A (en) 1989-01-13 1993-06-22 Scimed Life Systems, Inc. Innerless dilatation balloon catheter
US5087244A (en) 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US5662674A (en) 1989-02-03 1997-09-02 Debbas; Elie Apparatus for locating a breast mass
US4966163A (en) 1989-02-14 1990-10-30 Advanced Cardiovascular Systems, Inc. Extendable guidewire for vascular procedures
US5024650A (en) 1989-02-15 1991-06-18 Matsushita Electric Works, Ltd. Stress dissolving refreshment system
US4946466A (en) 1989-03-03 1990-08-07 Cordis Corporation Transluminal angioplasty apparatus
RU1768142C (en) 1989-03-29 1992-10-15 Ярославский Межотраслевой Научно-Технический Центр Device for therapy of sinuitis
US4919112B1 (en) 1989-04-07 1993-12-28 Low-cost semi-disposable endoscope
KR940005307B1 (en) 1989-04-28 1994-06-16 사또우 유끼오 Readily operable catheter guide wire using shape memory alloy with pseudo elasticity
DE68916960T2 (en) 1989-05-24 1994-11-03 Tsukada Medical Research Co A balloon exhibiting instrument for continuously injecting a medical liquid.
US5009655A (en) 1989-05-24 1991-04-23 C. R. Bard, Inc. Hot tip device with optical diagnostic capability
US4994033A (en) 1989-05-25 1991-02-19 Schneider (Usa) Inc. Intravascular drug delivery dilatation catheter
JPH05503857A (en) 1989-06-07 1993-06-24
US5207695A (en) * 1989-06-19 1993-05-04 Trout Iii Hugh H Aortic graft, implantation device, and method for repairing aortic aneurysm
ES2081372T3 (en) 1989-06-28 1996-03-01 David S Zimmon Balloon tamponade devices.
DE3923851C1 (en) 1989-07-19 1990-08-16 Richard Wolf Gmbh, 7134 Knittlingen, De
DE3927001A1 (en) 1989-08-16 1991-02-21 Lucien C Dr Med Olivier catheter system
US5484409A (en) 1989-08-25 1996-01-16 Scimed Life Systems, Inc. Intravascular catheter and method for use thereof
US5180368A (en) 1989-09-08 1993-01-19 Advanced Cardiovascular Systems, Inc. Rapidly exchangeable and expandable cage catheter for repairing damaged blood vessels
DE69002295D1 (en) 1989-09-25 1993-08-26 Schneider Usa Inc Multilayer extrusion process as gefaessplastik for manufacture of balloons for.
US5256144A (en) 1989-11-02 1993-10-26 Danforth Biomedical, Inc. Low profile, high performance interventional catheters
US5335671A (en) 1989-11-06 1994-08-09 Mectra Labs, Inc. Tissue removal assembly with provision for an electro-cautery device
US5026384A (en) 1989-11-07 1991-06-25 Interventional Technologies, Inc. Atherectomy systems and methods
US5112228A (en) 1989-11-13 1992-05-12 Advanced Cardiovascular Systems, Inc. Vascular model
US5215105A (en) 1989-11-14 1993-06-01 Custom Medical Concepts, Inc. Method of treating epidural lesions
US5137517A (en) 1989-11-28 1992-08-11 Scimed Life Systems, Inc. Device and method for gripping medical shaft
US5053007A (en) 1989-12-14 1991-10-01 Scimed Life Systems, Inc. Compression balloon protector for a balloon dilatation catheter and method of use thereof
US5209730A (en) 1989-12-19 1993-05-11 Scimed Life Systems, Inc. Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor
US5156595A (en) 1989-12-28 1992-10-20 Scimed Life Systems, Inc. Dilatation balloon catheter and method of manufacturing
US5060660A (en) 1990-02-28 1991-10-29 C. R. Bard, Inc. Steerable extendable guidewire with adjustable tip
US5478565A (en) 1990-03-27 1995-12-26 Warner-Lambert Company Treatment of sinus headache
US5238004A (en) 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5171233A (en) 1990-04-25 1992-12-15 Microvena Corporation Snare-type probe
EP0527939B1 (en) 1990-05-11 1997-07-09 Applied Medical Resources, Inc. Dilatation catheter assembly with cutting element
EP0527969A1 (en) 1990-05-11 1993-02-24 SAAB, Mark, A. High-strength, thin-walled single piece catheters
EP0600864B1 (en) 1990-05-23 1996-09-04 Atos Medical Ab Device for applying a drain
JPH05507226A (en) 1990-06-15 1993-10-21
US5044678A (en) 1990-07-25 1991-09-03 Lectron Products, Inc. Solenoid operated latch device with movable pole piece
US5055051A (en) 1990-08-03 1991-10-08 Dornier Medical Systems, Inc. Semi-anthropomorphic biliary/renal training phantom for medical imaging and lithotripsy training
US5163989A (en) 1990-08-27 1992-11-17 Advanced Cardiovascular Systems, Inc. Method for forming a balloon mold and the use of such mold
US5345945A (en) 1990-08-29 1994-09-13 Baxter International Inc. Dual coil guidewire with radiopaque distal tip
US5197457A (en) 1990-09-12 1993-03-30 Adair Edwin Lloyd Deformable and removable sheath for optical catheter
DE4032096C2 (en) 1990-10-10 1995-03-30 Boehringer Ingelheim Kg Use emulsifier emulsion polymers in pharmaceutical preparations sustained release
JP2699641B2 (en) 1990-10-11 1998-01-19 日本電気株式会社 Phase jitter suppression circuit
JPH0683726B2 (en) 1990-10-12 1994-10-26 ダイヤメディカルサプライ株式会社 The catheter guide wire
US5169043A (en) 1990-12-12 1992-12-08 Catania Claude L Versatile carrying bag
DE69129098T2 (en) 1990-12-18 1998-09-17 Advanced Cardiovascular System A method for producing a super-elastic guide member
US5843089A (en) 1990-12-28 1998-12-01 Boston Scientific Corporation Stent lining
US5102402A (en) 1991-01-04 1992-04-07 Medtronic, Inc. Releasable coatings on balloon catheters
US5368558A (en) 1991-01-11 1994-11-29 Baxter International Inc. Ultrasonic ablation catheter device having endoscopic component and method of using same
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US5465717A (en) 1991-02-15 1995-11-14 Cardiac Pathways Corporation Apparatus and Method for ventricular mapping and ablation
US5139510A (en) 1991-02-22 1992-08-18 Xomed-Treace Inc. Nasal packing device
WO1992015286A1 (en) 1991-02-27 1992-09-17 Nova Pharmaceutical Corporation Anti-infective and anti-inflammatory releasing systems for medical devices
US5183470A (en) 1991-03-04 1993-02-02 International Medical, Inc. Laparoscopic cholangiogram catheter and method of using same
US5195168A (en) 1991-03-15 1993-03-16 Codex Corporation Speech coder and method having spectral interpolation and fast codebook search
US6733473B1 (en) 1991-04-05 2004-05-11 Boston Scientific Corporation Adjustably stiffenable convertible catheter assembly
US5824044A (en) 1994-05-12 1998-10-20 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system
US5211952A (en) 1991-04-12 1993-05-18 University Of Southern California Contraceptive methods and formulations for use therein
US5226302A (en) 1991-04-15 1993-07-13 Loctec Corporation Six-way self-adjusting lock for use on truck storage boxes and the like
CA2069052A1 (en) 1991-05-21 1992-11-22 L. Venkata Raman Superelastic formable guidewire
US5127393A (en) 1991-05-28 1992-07-07 Medilase, Inc. Flexible endoscope with rigid introducer
US5386817A (en) 1991-06-10 1995-02-07 Endomedical Technologies, Inc. Endoscope sheath and valve system
US5429582A (en) 1991-06-14 1995-07-04 Williams; Jeffery A. Tumor treatment
CA2068584C (en) 1991-06-18 1997-04-22 Paul H. Burmeister Intravascular guide wire and method for manufacture thereof
US5264260A (en) 1991-06-20 1993-11-23 Saab Mark A Dilatation balloon fabricated from low molecular weight polymers
US5236422A (en) 1991-06-24 1993-08-17 Eplett Jr James D Antiseptic urinary catheter cuff
US5766151A (en) 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5269752A (en) 1991-09-12 1993-12-14 Bennett Laurence M Method of extracorporeal treatment using a kink resistant catheter
US5252183A (en) 1991-09-13 1993-10-12 Abb Lummus Crest Inc. Process of pulping and bleaching fibrous plant material with tert-butyl alcohol and tert-butyl peroxide
US6086585A (en) 1995-06-07 2000-07-11 Arthrocare Corporation System and methods for electrosurgical treatment of sleep obstructive disorders
US6832996B2 (en) 1995-06-07 2004-12-21 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
US5304123A (en) 1991-10-24 1994-04-19 Children's Medical Center Corporation Detachable balloon catheter for endoscopic treatment of vesicoureteral reflux
US5333620A (en) 1991-10-30 1994-08-02 C. R. Bard, Inc. High performance plastic coated medical guidewire
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5246016A (en) 1991-11-08 1993-09-21 Baxter International Inc. Transport catheter and multiple probe analysis method
US5251092A (en) 1991-11-27 1993-10-05 Protek Devices, Lp Receptacle assembly with both insulation displacement connector bussing and friction connector coupling of power conductors to surge suppressor circuit
US5243996A (en) 1992-01-03 1993-09-14 Cook, Incorporated Small-diameter superelastic wire guide
US5273052A (en) 1992-01-08 1993-12-28 Danforth Biomedical, Incorporated Guidewire with reversible contact seal for releasable securement to catheter
DE69330119D1 (en) 1992-01-09 2001-05-17 Advanced Cardiovascular System Device for exchanging a guidewire
US5250059A (en) 1992-01-22 1993-10-05 Devices For Vascular Intervention, Inc. Atherectomy catheter having flexible nose cone
US5341240A (en) 1992-02-06 1994-08-23 Linvatec Corporation Disposable endoscope
JPH05211985A (en) 1992-02-07 1993-08-24 Olympus Optical Co Ltd Endoscope guide apparatus for cerebral ventricle
US5263926A (en) 1992-02-18 1993-11-23 Wilk Peter J Device and related method for reducing swelling of hemorrhoidal tissues
US5409444A (en) 1992-03-04 1995-04-25 Kensey Nash Corporation Method and apparatus to reduce injury to the vascular system
EP0566245B1 (en) 1992-03-19 1999-10-06 Medtronic, Inc. Intraluminal stent
US5346075A (en) * 1992-04-17 1994-09-13 Johnson & Johnson Medical, Inc. Apparatus and method for holding a medical instrument
US5334143A (en) * 1992-04-17 1994-08-02 Carroll Brendon J Method to remove common bile duct stones
US5368566A (en) 1992-04-29 1994-11-29 Cardiovascular Dynamics, Inc. Delivery and temporary stent catheter having a reinforced perfusion lumen
US5275593A (en) 1992-04-30 1994-01-04 Surgical Technologies, Inc. Ophthalmic surgery probe assembly
US5817102A (en) 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
US5584827A (en) 1992-05-18 1996-12-17 Ultracell Medical Technologies, Inc Nasal-packing article
US5713848A (en) 1993-05-19 1998-02-03 Dubrul; Will R. Vibrating catheter
US5772680A (en) 1992-06-02 1998-06-30 General Surgical Innovations, Inc. Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
US5255679A (en) 1992-06-02 1993-10-26 Cardiac Pathways Corporation Endocardial catheter for mapping and/or ablation with an expandable basket structure having means for providing selective reinforcement and pressure sensing mechanism for use therewith, and method
US5324284A (en) 1992-06-05 1994-06-28 Cardiac Pathways, Inc. Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method
US5348537A (en) 1992-07-15 1994-09-20 Advanced Cardiovascular Systems, Inc. Catheter with intraluminal sealing element
US5313967A (en) 1992-07-24 1994-05-24 Medtronic, Inc. Helical guidewire
US5707376A (en) 1992-08-06 1998-01-13 William Cook Europe A/S Stent introducer and method of use
US5514131A (en) 1992-08-12 1996-05-07 Stuart D. Edwards Method for the ablation treatment of the uvula
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
DE69325692D1 (en) 1992-08-18 1999-08-26 Spectranetics Corp Guide wire with fiber optics
US5391179A (en) 1992-09-04 1995-02-21 Mezzoli; Giorgio Nasal and/or rhinopharyngeal tampon
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
CA2125693C (en) 1992-10-15 2005-05-03 Alan D. Ford An infusion pump with an electronically loadable drug library
US5295694A (en) 1992-10-27 1994-03-22 Levin John M Laparoscopic surgery simulating game
US5356418A (en) 1992-10-28 1994-10-18 Shturman Cardiology Systems, Inc. Apparatus and method for rotational atherectomy
US5336178A (en) 1992-11-02 1994-08-09 Localmed, Inc. Intravascular catheter with infusion array
US5314408A (en) 1992-11-13 1994-05-24 Cardiovascular Imaging Systems, Inc. Expandable member for a catheter system
US5549542A (en) 1992-11-17 1996-08-27 Life Medical Technologies, Inc. Deflectable endoscope
ES2102187T3 (en) 1992-11-18 1997-07-16 Spectrascience Inc Apparatus for imaging diagnosis.
US5391147A (en) 1992-12-01 1995-02-21 Cardiac Pathways Corporation Steerable catheter with adjustable bend location and/or radius and method
US5341818A (en) 1992-12-22 1994-08-30 Advanced Cardiovascular Systems, Inc. Guidewire with superelastic distal portion
US5314417A (en) 1992-12-22 1994-05-24 Ethicon, Inc. Safety trocar
US5368564A (en) 1992-12-23 1994-11-29 Angeion Corporation Steerable catheter
CN2151720Y (en) 1993-01-08 1994-01-05 陈吉峰 Hemostat for nasal cavity and nasopharynx cavity
WO1994015533A3 (en) 1993-01-18 1994-09-01 John Crowe Endoscope forceps
JP3345147B2 (en) 1993-01-26 2002-11-18 エヌイーシートーキン株式会社 Blood vessel dilator and catheter
US5699796A (en) 1993-01-29 1997-12-23 Cardima, Inc. High resolution intravascular signal detection
US5407433A (en) 1993-02-10 1995-04-18 Origin Medsystems, Inc. Gas-tight seal accommodating surgical instruments with a wide range of diameters
US5329927A (en) 1993-02-25 1994-07-19 Echo Cath, Inc. Apparatus and method for locating an interventional medical device with a ultrasound color imaging system
US5318528A (en) 1993-04-13 1994-06-07 Advanced Surgical Inc. Steerable surgical devices
WO1994023669A1 (en) 1993-04-13 1994-10-27 Boston Scientific Corporation Prosthesis delivery system with dilating tip
US5985307A (en) 1993-04-14 1999-11-16 Emory University Device and method for non-occlusive localized drug delivery
US5350396A (en) 1993-04-15 1994-09-27 Hood Laboratories Nasal splint
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
ES2113568T3 (en) 1993-04-27 1998-05-01 Solvay Fluor & Derivate Process for the preparation of carboxylic acid esters from carboxylic acid halides and alcohols.
US5346508A (en) 1993-04-29 1994-09-13 Scimed Life Systems, Inc. Apparatus and method for performing diagnostics and intravascular therapies
US5617870A (en) 1993-04-29 1997-04-08 Scimed Life Systems, Inc. Intravascular flow measurement system
US5873835A (en) 1993-04-29 1999-02-23 Scimed Life Systems, Inc. Intravascular pressure and flow sensor
US6139510A (en) 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
DE4315821A1 (en) 1993-05-12 1994-11-17 Christian Dr Med Milewski Device for packing and for holding open of bone limited body cavities and passageways after surgical manipulation
US5334187A (en) 1993-05-21 1994-08-02 Cathco, Inc. Balloon catheter system with slit opening handle
US5372584A (en) 1993-06-24 1994-12-13 Ovamed Corporation Hysterosalpingography and selective salpingography
US5402799A (en) 1993-06-29 1995-04-04 Cordis Corporation Guidewire having flexible floppy tip
JPH09503675A (en) 1993-07-02 1997-04-15 マテリアル・エボルーション・アンド・デベロップメント・ユーエスエー、インコーポレーテッド Implantable system for cell growth control
DE69728257D1 (en) 1996-01-08 2004-04-29 Biosense Inc Device for myocardial vascular neoplasm
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5472449A (en) 1993-07-26 1995-12-05 Chou; Kuei C. Permanent pigment applicator having a detachable needle coupler
US5415633A (en) 1993-07-28 1995-05-16 Active Control Experts, Inc. Remotely steered catheterization device
US5441494A (en) 1993-07-29 1995-08-15 Ethicon, Inc. Manipulable hand for laparoscopy
US6277107B1 (en) 1993-08-13 2001-08-21 Daig Corporation Guiding introducer for introducing medical devices into the coronary sinus and process for using same
US5562619A (en) 1993-08-19 1996-10-08 Boston Scientific Corporation Deflectable catheter
US5578048A (en) * 1993-09-15 1996-11-26 United States Surgical Corporation Manipulator apparatus
WO1995008945A3 (en) 1993-09-20 1995-04-20 Boston Scient Corp Multiple biopsy sampling device
US5607386A (en) 1993-09-21 1997-03-04 Flam; Gary H. Malleable fiberoptic intubating stylet and method
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5400783A (en) 1993-10-12 1995-03-28 Cardiac Pathways Corporation Endocardial mapping apparatus with rotatable arm and method
US5465733A (en) 1993-10-14 1995-11-14 Hinohara; Tomoaki Guide wire for catheters and method for its use
US5450853A (en) 1993-10-22 1995-09-19 Scimed Life Systems, Inc. Pressure sensor
US5445646A (en) 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5437282A (en) 1993-10-29 1995-08-01 Boston Scientific Corporation Drive shaft for acoustic imaging catheters and flexible catheters
US5814029A (en) 1994-11-03 1998-09-29 Daig Corporation Guiding introducer system for use in ablation and mapping procedures in the left ventricle
US5720300A (en) 1993-11-10 1998-02-24 C. R. Bard, Inc. High performance wires for use in medical devices and alloys therefor
US5334167A (en) 1993-11-19 1994-08-02 Cocanower David A Modified nasogastric tube for use in enteral feeding
US5507301A (en) 1993-11-19 1996-04-16 Advanced Cardiovascular Systems, Inc. Catheter and guidewire system with flexible distal portions
US5459700A (en) 1993-11-22 1995-10-17 Advanced Cardiovascular Systems, Inc. Manual timer control for inflation device
US6673025B1 (en) 1993-12-01 2004-01-06 Advanced Cardiovascular Systems, Inc. Polymer coated guidewire
US5451221A (en) 1993-12-27 1995-09-19 Cynosure, Inc. Endoscopic light delivery system
US5538510A (en) 1994-01-31 1996-07-23 Cordis Corporation Catheter having coextruded tubing
US5904701A (en) 1994-02-14 1999-05-18 Daneshvar; Yousef Device for aiding procedural and therapeutic interventions of the gastrointestinal tract
US5591194A (en) 1994-02-18 1997-01-07 C. R. Bard, Inc. Telescoping balloon catheter and method of use
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
DE4405720C1 (en) 1994-02-23 1995-10-19 Wolf Gmbh Richard Instrument for endoscopic treatment of carpal tunnel syndrome
US5690373A (en) 1994-02-25 1997-11-25 Trimec Securities Pty. Limited Electromagnetic lock
US5582167A (en) 1994-03-02 1996-12-10 Thomas Jefferson University Methods and apparatus for reducing tracheal infection using subglottic irrigation, drainage and servoregulation of endotracheal tube cuff pressure
US5425370A (en) 1994-03-23 1995-06-20 Echocath, Inc. Method and apparatus for locating vibrating devices
US5887467A (en) 1994-03-30 1999-03-30 U-Code, Inc. Pawl & solenoid locking mechanism
US5533985A (en) 1994-04-20 1996-07-09 Wang; James C. Tubing
US5507795A (en) 1994-04-29 1996-04-16 Devices For Vascular Intervention, Inc. Catheter with perfusion system
US5599304A (en) * 1994-05-10 1997-02-04 Mount Sinai School Of Medicine Of The City University Of New York Sinonasal suction apparatus
US5551946A (en) 1994-05-17 1996-09-03 Bullard; James R. Multifunctional intubating guide stylet and laryngoscope
US5497783A (en) 1994-05-18 1996-03-12 Scimed Life Systems, Inc. Guidewire having radioscopic tip
US5478309A (en) 1994-05-27 1995-12-26 William P. Sweezer, Jr. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
US5569183A (en) 1994-06-01 1996-10-29 Archimedes Surgical, Inc. Method for performing surgery around a viewing space in the interior of the body
JPH07327916A (en) 1994-06-02 1995-12-19 Olympus Optical Co Ltd Visual field direction varying type endoscope
DE69532503D1 (en) 1994-06-17 2004-03-04 Hisamitsu Pharmaceutical Co Electrode for iontophoresis and apparatus therefor
US5633000A (en) 1994-06-23 1997-05-27 Axxia Technologies Subcutaneous implant
DE69426071D1 (en) * 1994-06-24 2000-11-09 Schneider Europ Gmbh Buelach Medical appliance for the treatment of a portion of a body vessel by ionizing radiation
US5857998A (en) 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5439446A (en) 1994-06-30 1995-08-08 Boston Scientific Corporation Stent and therapeutic delivery system
US5458572A (en) 1994-07-01 1995-10-17 Boston Scientific Corp. Catheter with balloon folding into predetermined configurations and method of manufacture
US5441497A (en) 1994-07-14 1995-08-15 Pdt Cardiovascular, Inc. Light diffusing guidewire
US5486181A (en) 1994-08-04 1996-01-23 Implex Corporation Acetabular cup, method and tool and installing the same
US6579285B2 (en) 1994-09-09 2003-06-17 Cardiofocus, Inc. Photoablation with infrared radiation
EP0951874A3 (en) 1994-09-15 2000-06-14 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications using a reference unit secured to a patients head
US5673707A (en) 1994-09-23 1997-10-07 Boston Scientific Corporation Enhanced performance guidewire
US5558652A (en) 1994-10-06 1996-09-24 B. Braun Medical, Inc. Introducer with radiopaque marked tip and method of manufacture therefor
US5722401A (en) 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
US6503185B1 (en) 1994-10-27 2003-01-07 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
DK0788351T3 (en) 1994-11-10 2003-05-26 Univ Kentucky Res Found An implantable, refillable device for speed controlled drug delivery directly to an interior portion of the body
US6059752A (en) 1994-12-09 2000-05-09 Segal; Jerome Mechanical apparatus and method for dilating and irradiating a site of treatment
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5664580A (en) 1995-01-31 1997-09-09 Microvena Corporation Guidewire having bimetallic coil
US5599576A (en) 1995-02-06 1997-02-04 Surface Solutions Laboratories, Inc. Medical apparatus with scratch-resistant coating and method of making same
US5599284A (en) 1995-02-08 1997-02-04 Shea; John P. Pre-operative nasal splint for endoscopic sinus surgery and method
US6830785B1 (en) 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
WO1996029071A1 (en) 1995-03-21 1996-09-26 Ramot University Authority For Applied Research & Industrial Development Ltd. Uses of antibacterial compounds
DE69624227T2 (en) 1995-03-23 2003-06-12 Advanced Animal Technology Ltd Substance delivery device
EP0819014B1 (en) 1995-03-30 2003-02-05 Heartport, Inc. Endovascular cardiac venting catheter
EP0819013B1 (en) 1995-03-30 2004-06-23 Heartport, Inc. System for performing endovascular procedures
KR960032597U (en) 1995-03-31 1996-10-24 Reserved recording function switchgear of the tape recorder
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US6638291B1 (en) 1995-04-20 2003-10-28 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
US5752522A (en) 1995-05-04 1998-05-19 Cardiovascular Concepts, Inc. Lesion diameter measurement catheter and method
US6122541A (en) 1995-05-04 2000-09-19 Radionics, Inc. Head band for frameless stereotactic registration
US5735817A (en) 1995-05-19 1998-04-07 Shantha; T. R. Apparatus for transsphenoidal stimulation of the pituitary gland and adjoining brain structures
US5656030A (en) 1995-05-22 1997-08-12 Boston Scientific Corporation Bidirectional steerable catheter with deflectable distal tip
JPH08317989A (en) 1995-05-24 1996-12-03 Piolax Inc Guide wire for medical care
DE69623532T2 (en) 1995-05-26 2003-03-20 Ishihara Sangyo Kaisha A process for producing 4-trifluoromethylnicotinic acid
US5833650A (en) 1995-06-05 1998-11-10 Percusurge, Inc. Catheter apparatus and method for treating occluded vessels
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5707389A (en) 1995-06-07 1998-01-13 Baxter International Inc. Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
WO1996040342A1 (en) 1995-06-07 1996-12-19 Cardima, Inc. Guiding catheter for coronary sinus
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
WO1999030655A1 (en) 1997-12-15 1999-06-24 Arthrocare Corporation Systems and methods for electrosurgical treatment of the head and neck
US5782795A (en) 1995-06-30 1998-07-21 Xomed Surgical Products, Inc. Surgical suction cutting instrument with internal irrigation
US6258046B1 (en) 1995-07-06 2001-07-10 Institute Of Critical Care Medicine Method and device for assessing perfusion failure in a patient by measurement of blood flow
US5645789A (en) 1995-07-20 1997-07-08 Navius Corporation Distensible pet balloon and method of manufacture
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5669388A (en) 1995-09-06 1997-09-23 Echocath, Inc. Apparatus and method for automatic placement of transducer
GB9619011D0 (en) 1995-09-15 1996-10-23 Zeneca Ltd Chemical process
US20020006961A1 (en) 1999-05-14 2002-01-17 Katz Stanley E. Method and composition for treating mammalian nasal and sinus diseases caused by inflammatory response
US6027461A (en) 1995-10-11 2000-02-22 Micro Therapeutics, Inc. Infusion guidewire having fixed core wire and flexible radiopaque marker
DE69633411D1 (en) 1995-10-13 2004-10-21 Transvascular Inc A device for avoidance of arterial constrictions and / or to perform other interventions transvaskularer
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US6375615B1 (en) 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US5916149A (en) 1995-10-25 1999-06-29 Ryan, Jr.; Edwin H. Shielded illumination device for ophthalmic surgery and the like
US6287315B1 (en) 1995-10-30 2001-09-11 World Medical Manufacturing Corporation Apparatus for delivering an endoluminal prosthesis
US6019736A (en) 1995-11-06 2000-02-01 Francisco J. Avellanet Guidewire for catheter
US5749848A (en) 1995-11-13 1998-05-12 Cardiovascular Imaging Systems, Inc. Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment
US5843050A (en) 1995-11-13 1998-12-01 Micro Therapeutics, Inc. Microcatheter
US6913763B2 (en) 1996-11-19 2005-07-05 Intrabrain International Nv Method and device for enhanced delivery of a biologically active agent through the spinal spaces into the central nervous system of a mammal
FI100318B (en) 1995-11-23 1997-11-14 Fiskars Consumer Oy Ab articulated hand tools
US5733248A (en) 1995-11-29 1998-03-31 Scimed Life Systems, Inc. Universal guide catheter
US5722984A (en) 1996-01-16 1998-03-03 Iso Stent, Inc. Antithrombogenic radioactive coating for an intravascular stent
US5653230A (en) * 1996-01-19 1997-08-05 Cook Incorporated Percutaneous balloon dilational tracheostomy tube
US6039699A (en) 1996-01-22 2000-03-21 Cordis Corporation Stiff catheter guidewire with flexible distal portion
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5711315A (en) 1996-02-15 1998-01-27 Jerusalmy; Israel Sinus lift method
US5885258A (en) 1996-02-23 1999-03-23 Memory Medical Systems, Inc. Medical instrument with slotted memory metal tube
US6860264B2 (en) 1996-02-26 2005-03-01 Evergreen Medical Incorporated Method and apparatus for endotracheal intubation using a light wand and curved guide
US5817013A (en) 1996-03-19 1998-10-06 Enable Medical Corporation Method and apparatus for the minimally invasive harvesting of a saphenous vein and the like
US5682199A (en) 1996-03-28 1997-10-28 Jedmed Instrument Company Video endoscope with interchangeable endoscope heads
US5779699A (en) 1996-03-29 1998-07-14 Medtronic, Inc. Slip resistant field focusing ablation catheter electrode
US5980503A (en) 1996-04-08 1999-11-09 Guidant Corporation Endoscopic cardioplegia infusion cannula and method of use
JP2000507869A (en) 1996-04-10 2000-06-27 クラーデン アクチエンゲゼルシヤフト Method of determining the passage of A Proximal interdental spaces
EP1171032A4 (en) 1999-04-15 2008-10-29 Surgi Vision Methods for in vivo magnetic resonance imaging
US6171298B1 (en) 1996-05-03 2001-01-09 Situs Corporation Intravesical infuser
US6183461B1 (en) 1998-03-11 2001-02-06 Situs Corporation Method for delivering a medication
US6503087B1 (en) 1996-05-08 2003-01-07 Gaumard Scientific, Inc. Interactive education system for teaching patient care
US6270477B1 (en) 1996-05-20 2001-08-07 Percusurge, Inc. Catheter for emboli containment
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
JPH1024098A (en) 1996-07-10 1998-01-27 Terumo Corp Balloon and balloon catheter
US5865767A (en) 1996-07-10 1999-02-02 Cordis Corporation Guidewire having compound taper
US5664567A (en) 1996-07-16 1997-09-09 Linder; Gerald S. Fenestrated nasopharyngeal airway for drainage
US6569147B1 (en) 1996-07-26 2003-05-27 Kensey Nash Corporation Systems and methods of use for delivering beneficial agents for revascularizing stenotic bypass grafts and other occluded blood vessels and for other purposes
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US5797878A (en) 1996-08-15 1998-08-25 Guidant Corporation Catheter having optimized balloon taper angle
US5833682A (en) 1996-08-26 1998-11-10 Illumenex Corporation Light delivery system with blood flushing capability
CA2209366C (en) * 1996-09-13 2004-11-02 Interventional Technologies, Inc. Incisor-dilator with tapered balloon
US5843113A (en) 1996-10-08 1998-12-01 High; Kenneth Endocystotomy tool
US5971975A (en) 1996-10-09 1999-10-26 Target Therapeutics, Inc. Guide catheter with enhanced guidewire tracking
US6016439A (en) 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US5820568A (en) 1996-10-15 1998-10-13 Cardiac Pathways Corporation Apparatus and method for aiding in the positioning of a catheter
US5779669A (en) 1996-10-28 1998-07-14 C. R. Bard, Inc. Steerable catheter with fixed curve
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
US5836638A (en) 1996-12-09 1998-11-17 Illinois Tool Works Inc. Fuel door assembly
US5830188A (en) 1996-12-11 1998-11-03 Board Of Regents, The University Of Texas System Curved cannula for continuous spinal anesthesia
US5766194A (en) 1996-12-23 1998-06-16 Georgia Skin And Cancer Clinic, Pc Surgical apparatus for tissue removal
US5935061A (en) 1997-01-03 1999-08-10 Biosense, Inc. Obstetrical instrument system and method
US6007516A (en) 1997-01-21 1999-12-28 Vasca, Inc. Valve port and method for vascular access
US6669689B2 (en) 1997-02-27 2003-12-30 Cryocath Technologies Inc. Cryosurgical catheter
WO1998038929A1 (en) 1997-03-06 1998-09-11 Percusurge, Inc. Intravascular aspiration system
US5879324A (en) 1997-03-06 1999-03-09 Von Hoffmann; Gerard Low profile catheter shaft
US6652480B1 (en) 1997-03-06 2003-11-25 Medtronic Ave., Inc. Methods for reducing distal embolization
US6159170A (en) 1997-03-13 2000-12-12 Borodulin; German Universal mechanical dilator combined with massaging action
US6007991A (en) 1997-03-28 1999-12-28 The Research Foundation Of Suny Antisense oligonucleotides for mitogen-activated protein kinases as therapy for cancer
US6524299B1 (en) 1997-04-09 2003-02-25 Target Therapeutics, Inc. Flow-directed catheter
US5941816A (en) 1997-04-15 1999-08-24 Clarus Medical Systems, Inc. Viewing system with adapter handle for medical breathing tubes
US6019777A (en) 1997-04-21 2000-02-01 Advanced Cardiovascular Systems, Inc. Catheter and method for a stent delivery system
US5862693A (en) 1997-05-02 1999-01-26 Fort Lock Corporation Electronically controlled security lock
US6016429A (en) 1997-05-28 2000-01-18 Northern Telecom Limited Method and apparatus for minimizing cellular network costs when upgrading the electronics in an existing cellular system
WO1998055173A1 (en) 1997-06-04 1998-12-10 Advanced Cardiovascular Systems, Inc. Steerable guidewire with enhanced distal support
US5997562A (en) * 1997-06-13 1999-12-07 Percusurge, Inc. Medical wire introducer and balloon protective sheath
DE19728273C1 (en) 1997-07-02 1998-12-10 Fuss Fritz Gmbh & Co Locking device for furniture
US6514249B1 (en) 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
US20010004644A1 (en) 1997-07-21 2001-06-21 Levin Bruce H. Compositions, kits, apparatus, and methods for inhibiting cephalic inflammation
US6432986B2 (en) 1997-07-21 2002-08-13 Bruce H. Levin Compositions, kits, and methods for inhibiting cerebral neurovascular disorders and muscular headaches
US7799337B2 (en) 1997-07-21 2010-09-21 Levin Bruce H Method for directed intranasal administration of a composition
US5928192A (en) * 1997-07-24 1999-07-27 Embol-X, Inc. Arterial aspiration
DE19732031C1 (en) 1997-07-25 1999-04-22 Solvay Fluor & Derivate 2-phase production of Carbonsäureestern
US5908407A (en) 1997-07-25 1999-06-01 Neuroperfusion, Inc. Retroperfusion catheter apparatus and method
US6015414A (en) 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
US5902247A (en) 1997-09-09 1999-05-11 Bioenterics Corporation Transilluminating catheter
US6066149A (en) 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
DE69837611T2 (en) 1997-10-01 2007-12-27 Boston Scientific Ltd., St. Michael dilation
US6042561A (en) 1997-10-22 2000-03-28 Ash Medical Systems, Inc. Non-intravascular infusion access device
FR2770409B1 (en) 1997-10-31 2000-06-23 Soprane Sa universal catheter
JP4121615B2 (en) 1997-10-31 2008-07-23 オリンパス株式会社 Endoscope
US6048299A (en) 1997-11-07 2000-04-11 Radiance Medical Systems, Inc. Radiation delivery catheter
US6179811B1 (en) 1997-11-25 2001-01-30 Medtronic, Inc. Imbedded marker and flexible guide wire shaft
EP0920882A3 (en) 1997-12-04 2000-01-05 Schneider Inc. Balloon dilatation-drug delivery catheter and stent deployment-drug delivery catheter in rapid exchange configuration
US6117105A (en) 1997-12-08 2000-09-12 Cardeon Corporation Aortic catheter and methods for inducing cardioplegic arrest and for selective aortic perfusion
WO1999032041A1 (en) 1997-12-23 1999-07-01 Somnus Medical Technologies, Inc. Apparatus for reducing tissue volumes by the use of energy
US6093150A (en) 1997-12-31 2000-07-25 Acuson Corporation Ultrasound otoscope
US7008412B2 (en) 1998-01-06 2006-03-07 Cathlogic, Inc. Subcutaneous port catheter system and associated method
US5989231A (en) 1998-01-15 1999-11-23 Scimed Life Systems, Inc. Optical gastrostomy and jejunostomy
US6159178A (en) 1998-01-23 2000-12-12 Heartport, Inc. Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested
US6295990B1 (en) * 1998-02-03 2001-10-02 Salient Interventional Systems, Inc. Methods and systems for treating ischemia
US6190332B1 (en) 1998-02-19 2001-02-20 Percusurge, Inc. Core wire with shapeable tip
US7169141B2 (en) 1998-02-24 2007-01-30 Hansen Medical, Inc. Surgical instrument
US6176829B1 (en) 1998-02-26 2001-01-23 Echocath, Inc. Multi-beam diffraction grating imager apparatus and method
JPH11265567A (en) 1998-03-17 1999-09-28 Mitsumi Electric Co Ltd Disk drive
DE19813383A1 (en) 1998-03-26 1999-10-07 Storz Karl Gmbh & Co Device, with a transmitter unit via which the position of a medical instrument within a CAS system can be detected
JP4448614B2 (en) 1998-03-31 2010-04-14 メドトロニック バスキュラー インコーポレイテッドMedtronic Vascular,Inc. Tissue penetrating catheter system with a built-in image transducers
US6013019A (en) 1998-04-06 2000-01-11 Isostent, Inc. Temporary radioisotope stent
US6364856B1 (en) 1998-04-14 2002-04-02 Boston Scientific Corporation Medical device with sponge coating for controlled drug release
US5968085A (en) 1998-04-20 1999-10-19 Medtronic, Inc. Pacing lead with integral guidance using ultrasound
CA2326001A1 (en) 1998-04-24 1999-11-04 Genentech, Inc. Fizz proteins
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6306105B1 (en) 1998-05-14 2001-10-23 Scimed Life Systems, Inc. High performance coil wire
US6183464B1 (en) 1998-06-01 2001-02-06 Inviro Medical Devices Ltd. Safety syringe with retractable needle and universal luer coupling
US6048358A (en) 1998-07-13 2000-04-11 Barak; Shlomo Method and apparatus for hemostasis following arterial catheterization
US6352503B1 (en) 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
US5979290A (en) 1998-07-20 1999-11-09 Simeone; Salvatore Mine clearing device
US6226542B1 (en) 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
NL1009738C2 (en) * 1998-07-24 2000-01-25 Cordis Europ Balloon catheter filling body having for the placing of a stent.
US5954694A (en) 1998-08-07 1999-09-21 Embol-X, Inc. Nested tubing sections and methods for making same
US6168586B1 (en) 1998-08-07 2001-01-02 Embol-X, Inc. Inflatable cannula and method of using same
US6129713A (en) 1998-08-11 2000-10-10 Embol-X, Inc. Slidable cannula and method of use
CN2352818Y (en) 1998-08-12 1999-12-08 李平 Medical use light guide
US6716216B1 (en) 1998-08-14 2004-04-06 Kyphon Inc. Systems and methods for treating vertebral bodies
US6669711B1 (en) 1998-08-17 2003-12-30 Koken Co. Ltd. Operation balloon
JP3244660B2 (en) 1998-08-17 2002-01-07 旭光学工業株式会社 Endoscopic treatment tool
JP2002523152A (en) 1998-08-19 2002-07-30 クック インコーポレイティド Preformed wire guide
US6149213A (en) 1998-10-01 2000-11-21 Southco, Inc. Blind latch keeper
US6056702A (en) 1998-10-02 2000-05-02 Cordis Corporation Guidewire with outer sheath
EP1120129B1 (en) 1998-10-05 2008-10-01 Kaneka Corporation Balloon catheter
EP1123068A1 (en) 1998-10-21 2001-08-16 John T. Frauens Apparatus for percutaneous interposition balloon arthroplasty
WO2000027461A9 (en) 1998-11-09 2000-11-30 Datascope Investment Corp Intra-aortic balloon catheter having an ultra-thin stretch blow molded balloon membrane
US6174280B1 (en) 1998-11-19 2001-01-16 Vision Sciences, Inc. Sheath for protecting and altering the bending characteristics of a flexible endoscope
US6234958B1 (en) 1998-11-30 2001-05-22 Medical Access Systems, Llc Medical device introduction system including medical introducer having a plurality of access ports and methods of performing medical procedures with same
US6464650B2 (en) 1998-12-31 2002-10-15 Advanced Cardiovascular Systems, Inc. Guidewire with smoothly tapered segment
US6206870B1 (en) 1999-01-21 2001-03-27 Quest Medical, Inc. Catheter stylet handle
WO2000044432A1 (en) 1999-01-27 2000-08-03 Levin Bruce H Compositions, kits, apparatus, and methods for inhibiting cerebral neurovascular disorders and muscular headaches
DE19906191A1 (en) 1999-02-15 2000-08-17 Ingo F Herrmann Mouldable endoscope for transmitting light and images with supplementary device has non-round cross section along longitudinal section for inserting in human or animal body opening
US6398758B1 (en) 1999-02-16 2002-06-04 Stephen C. Jacobsen Medicament delivery system
US6332891B1 (en) 1999-02-16 2001-12-25 Stryker Corporation System and method for performing image guided surgery
US6468297B1 (en) 1999-02-24 2002-10-22 Cryovascular Systems, Inc. Cryogenically enhanced intravascular interventions
US20120071710A1 (en) 1999-03-01 2012-03-22 Gazdzinski Robert F Endoscopic smart probe and method
DE60045216D1 (en) 1999-03-03 2010-12-23 Optinose As Nasal administration device
WO2000053252A1 (en) 1999-03-08 2000-09-14 University Of Virginia Patent Foundation Device and method for delivering a material into the paranasal sinus cavities
US6148823A (en) 1999-03-17 2000-11-21 Stereotaxis, Inc. Method of and system for controlling magnetic elements in the body using a gapped toroid magnet
US6200257B1 (en) 1999-03-24 2001-03-13 Proxima Therapeutics, Inc. Catheter with permeable hydrogel membrane
US6258065B1 (en) 1999-03-26 2001-07-10 Core Dynamics, Inc. Surgical instrument seal assembly
US6389313B1 (en) 1999-03-26 2002-05-14 Kevin S. Marchitto Laser probes for drug permeation
DE69917213T2 (en) 1999-03-29 2005-07-28 Cook Inc., Bloomington A guidewire
DE69927474T2 (en) 1999-03-29 2006-07-06 Cook Inc., Bloomington A guidewire
US6328564B1 (en) 1999-04-06 2001-12-11 Raymond C. Thurow Deep ear canal locating and head orienting device
US6319275B1 (en) 1999-04-07 2001-11-20 Medtronic Ave, Inc. Endolumenal prosthesis delivery assembly and method of use
US6231543B1 (en) 1999-04-15 2001-05-15 Intella Interventional Systems, Inc. Single lumen balloon catheter
US6689146B1 (en) 1999-04-29 2004-02-10 Stryker Corporation Powered surgical handpiece with integrated irrigator and suction application
US6268574B1 (en) 1999-04-29 2001-07-31 Rudolph R. Edens Electrical and pneumatic lock-out device
DE59900101D1 (en) 1999-04-29 2001-06-28 Storz Karl Gmbh & Co Kg A medical instrument for dissecting tissue
WO2000065987A1 (en) 1999-04-30 2000-11-09 Applied Medical Resources Corporation Guidewire
US20040127820A1 (en) 2001-09-05 2004-07-01 Clayman Ralph V. Guidewire
JP2002543877A (en) 1999-05-07 2002-12-24 サルヴィアック・リミテッド The embolic protection device
US6146415A (en) 1999-05-07 2000-11-14 Advanced Cardiovascular Systems, Inc. Stent delivery system
US6758830B1 (en) 1999-05-11 2004-07-06 Atrionix, Inc. Catheter positioning system
WO2001022897A1 (en) 1999-09-28 2001-04-05 Novasys Medical, Inc. Treatment of tissue by application of energy and drugs
DE19924440A1 (en) 1999-05-28 2000-12-07 Storz Karl Gmbh & Co Kg Shaft for a flexible endoscope
US6079755A (en) 1999-06-07 2000-06-27 Chang; Chih Chung Electromagnetic lock device
US6206900B1 (en) 1999-06-11 2001-03-27 The General Hospital Corporation Clot evacuation catheter
US6890329B2 (en) 1999-06-15 2005-05-10 Cryocath Technologies Inc. Defined deflection structure
CA2377430A1 (en) 1999-06-15 2000-12-21 Cryocath Technologies Inc. Deflection structure
DE29923582U1 (en) * 1999-07-08 2000-12-14 Hintersdorf Steffen A device for application within the nose portion, in particular for insertion into the nasal cavities
JP3447984B2 (en) 1999-07-21 2003-09-16 朝日インテック株式会社 Medical guide wire
US8002740B2 (en) 2003-07-18 2011-08-23 Broncus Technologies, Inc. Devices for maintaining patency of surgically created channels in tissue
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
EP1202771A1 (en) 1999-08-12 2002-05-08 Wilson-Cook Medical Inc. Dilation balloon having multiple diameters
US6638233B2 (en) 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
US6249180B1 (en) 1999-09-08 2001-06-19 Atmel Corporation Phase noise and additive noise estimation in a QAM demodulator
US6221042B1 (en) 1999-09-17 2001-04-24 Scimed Life Systems, Inc. Balloon with reversed cones
US6939361B1 (en) 1999-09-22 2005-09-06 Nmt Medical, Inc. Guidewire for a free standing intervascular device having an integral stop mechanism
JP2001095815A (en) * 1999-09-28 2001-04-10 Olympus Optical Co Ltd Microwave coagulation applicator
US6398775B1 (en) 1999-10-21 2002-06-04 Pulmonx Apparatus and method for isolated lung access
WO2001028618A3 (en) * 1999-10-22 2001-12-27 Boston Scient Corp Double balloon thrombectomy catheter
US6290689B1 (en) 1999-10-22 2001-09-18 Corazón Technologies, Inc. Catheter devices and methods for their use in the treatment of calcified vascular occlusions
US6536437B1 (en) 1999-10-29 2003-03-25 Branislav M. Dragisic Cuffed nasal airway and anesthetic wand system
US6529756B1 (en) 1999-11-22 2003-03-04 Scimed Life Systems, Inc. Apparatus for mapping and coagulating soft tissue in or around body orifices
US6533754B1 (en) 1999-11-26 2003-03-18 Terumo Kabushiki Kaisha Catheter
US6156294A (en) 1999-11-28 2000-12-05 Scientific Development And Research, Inc. Composition and method for treatment of otitis media
US20030018291A1 (en) 1999-12-08 2003-01-23 Hill Frank C. Ear tube and method of insertion
DE10042330A1 (en) 1999-12-22 2002-03-14 Hans Sachse Intestinal probe, wall strengthened
EP1241993B1 (en) 1999-12-22 2007-03-28 Boston Scientific Limited Endoluminal occlusion-irrigation catheter
US6450975B1 (en) 1999-12-30 2002-09-17 Advanced Cardiovascular Systems, Inc. Ultrasonic transmission guide wire
DE10102433B4 (en) 2000-01-21 2008-07-10 Pentax Corp. Flexible tube for an endoscope
US7184827B1 (en) 2000-01-24 2007-02-27 Stuart D. Edwards Shrinkage of dilatations in the body
US6386197B1 (en) 2000-01-27 2002-05-14 Brook D. Miller Nasal air passageway opening device
US20010034530A1 (en) 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
US6312438B1 (en) 2000-02-01 2001-11-06 Medtronic Xomed, Inc. Rotary bur instruments having bur tips with aspiration passages
EP1251899B1 (en) 2000-02-04 2012-04-25 CONMED Endoscopic Technologies, Inc. Triple lumen stone balloon catheter
US6589164B1 (en) 2000-02-15 2003-07-08 Transvascular, Inc. Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices
US6527753B2 (en) 2000-02-29 2003-03-04 Olympus Optical Co., Ltd. Endoscopic treatment system
US6485475B1 (en) 2000-03-01 2002-11-26 The Board Of Regents Of The University Texas System Introducer needle for continuous perineural catheter placement
US6443947B1 (en) 2000-03-01 2002-09-03 Alexei Marko Device for thermal ablation of a cavity
US6494894B2 (en) 2000-03-16 2002-12-17 Scimed Life Systems, Inc. Coated wire
USD450382S1 (en) 2000-03-17 2001-11-13 Astrazeneca Ab Catheter
US6485500B1 (en) 2000-03-21 2002-11-26 Advanced Cardiovascular Systems, Inc. Emboli protection system
US6440061B1 (en) 2000-03-24 2002-08-27 Donald E. Wenner Laparoscopic instrument system for real-time biliary exploration and stone removal
US6511418B2 (en) 2000-03-30 2003-01-28 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for calibrating and endoscope
US6517478B2 (en) 2000-03-30 2003-02-11 Cbyon, Inc. Apparatus and method for calibrating an endoscope
US6984203B2 (en) 2000-04-03 2006-01-10 Neoguide Systems, Inc. Endoscope with adjacently positioned guiding apparatus
US6478776B1 (en) 2000-04-05 2002-11-12 Biocardia, Inc. Implant delivery catheter system and methods for its use
US6638268B2 (en) 2000-04-07 2003-10-28 Imran K. Niazi Catheter to cannulate the coronary sinus
US6860849B2 (en) 2000-05-08 2005-03-01 Pentax Corporation Flexible tube for an endoscope
GB0011053D0 (en) 2000-05-09 2000-06-28 Hudson John O Medical device and use thereof
US20040034311A1 (en) 2000-05-19 2004-02-19 Albert Mihalcik Guidewire with viewing capability
CA2410971C (en) 2000-05-31 2007-12-18 Brian K. Courtney Embolization protection system for vascular procedures
US6719749B1 (en) 2000-06-01 2004-04-13 Medical Components, Inc. Multilumen catheter assembly and methods for making and inserting the same
US6409863B1 (en) 2000-06-12 2002-06-25 Scimed Life Systems, Inc. Methods of fabricating a catheter shaft having one or more guidewire ports
FR2810458B1 (en) 2000-06-16 2004-04-09 Entrelec Sa Electrical interconnection comb
JP3345645B2 (en) 2000-06-20 2002-11-18 東京大学長 Body cavity observation apparatus
US6875212B2 (en) * 2000-06-23 2005-04-05 Vertelink Corporation Curable media for implantable medical device
US6572590B1 (en) 2000-07-13 2003-06-03 Merit Medical Systems, Inc. Adjustable quick-release valve with toggle capability
JP2002028166A (en) * 2000-07-18 2002-01-29 Olympus Optical Co Ltd Treatment device for nasal cavity
US6440389B1 (en) 2000-07-19 2002-08-27 The General Hospital Corporation Fluorescent agents for real-time measurement of organ function
US20050107738A1 (en) 2000-07-21 2005-05-19 Slater Charles R. Occludable intravascular catheter for drug delivery and method of using the same
US6817364B2 (en) 2000-07-24 2004-11-16 Stereotaxis, Inc. Magnetically navigated pacing leads, and methods for delivering medical devices
RU2213530C2 (en) 2000-07-26 2003-10-10 Сунцов Виктор Владимирович Method and device for treating the cases of paranasal sinusitis
JP4429495B2 (en) 2000-07-28 2010-03-10 オリンパス株式会社 Endoscope
DE10038376C2 (en) 2000-08-07 2003-04-30 Zangenstein Elektro Door lock for the door of an electric household appliance
US6569146B1 (en) 2000-08-18 2003-05-27 Scimed Life Systems, Inc. Method and apparatus for treating saphenous vein graft lesions
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
US6607546B1 (en) 2000-09-01 2003-08-19 Roger E. Murken Nasal catheter
US6503263B2 (en) 2000-09-24 2003-01-07 Medtronic, Inc. Surgical micro-shaving instrument with elevator tip
US6719763B2 (en) 2000-09-29 2004-04-13 Olympus Optical Co., Ltd. Endoscopic suturing device
US7052474B2 (en) 2000-10-02 2006-05-30 Sandhill Scientific, Inc. Pharyngoesophageal monitoring systems
US6702735B2 (en) 2000-10-17 2004-03-09 Charlotte Margaret Kelly Device for movement along a passage
US6585639B1 (en) 2000-10-27 2003-07-01 Pulmonx Sheath and method for reconfiguring lung viewing scope
US20020055746A1 (en) 2000-11-03 2002-05-09 Alan Burke Method and apparatus for extracting foreign bodies from nasal passages and the like
JP2002146659A (en) 2000-11-07 2002-05-22 Sumitomo Electric Ind Ltd Metallic nonwoven fabric and method for producing the same
US6571131B1 (en) 2000-11-10 2003-05-27 Biosense Webster, Inc. Deflectable catheter with modifiable handle
US6543452B1 (en) 2000-11-16 2003-04-08 Medilyfe, Inc. Nasal intubation device and system for intubation
WO2002040088A9 (en) 2000-11-20 2004-02-12 Surgivision Inc Connector and guidewire connectable thereto
US6716813B2 (en) * 2000-11-28 2004-04-06 House Ear Institute Use of antimicrobial proteins and peptides for the treatment of otitis media and paranasal sinusitis
EP1341476A2 (en) 2000-12-01 2003-09-10 Nephros Therapeutics, Inc. Intrasvascular drug delivery device and use therefor
US7004173B2 (en) 2000-12-05 2006-02-28 Lumend, Inc. Catheter system for vascular re-entry from a sub-intimal space
US6500130B2 (en) 2000-12-21 2002-12-31 Scimed Life Systems, Inc. Steerable guidewire
US6672773B1 (en) 2000-12-29 2004-01-06 Amkor Technology, Inc. Optical fiber having tapered end and optical connector with reciprocal opening
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
KR100731007B1 (en) 2001-01-15 2007-06-22 앰코 테크놀로지 코리아 주식회사 stack-type semiconductor package
CN100491914C (en) 2001-01-30 2009-05-27 Z-凯特公司 Tool calibrator and tracker system
DE10104663A1 (en) 2001-02-02 2002-08-08 Solvay Fluor & Derivate Production of fluorine compounds
US6997931B2 (en) 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
JP3939158B2 (en) 2001-02-06 2007-07-04 オリンパス株式会社 Endoscope apparatus
US8617048B2 (en) 2001-03-09 2013-12-31 Boston Scientific Scimed, Inc. System for implanting an implant and method thereof
US6645223B2 (en) 2001-04-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Deployment and recovery control systems for embolic protection devices
US6585718B2 (en) * 2001-05-02 2003-07-01 Cardiac Pacemakers, Inc. Steerable catheter with shaft support system for resisting axial compressive loads
US6712757B2 (en) 2001-05-16 2004-03-30 Stephen Becker Endoscope sleeve and irrigation device
EP1395306B1 (en) * 2001-05-21 2006-05-31 Medtronic, Inc. Malleable elongated medical device
US8403954B2 (en) 2001-05-22 2013-03-26 Sanostec Corp. Nasal congestion, obstruction relief, and drug delivery
US7532920B1 (en) 2001-05-31 2009-05-12 Advanced Cardiovascular Systems, Inc. Guidewire with optical fiber
US7140480B2 (en) 2001-06-07 2006-11-28 Drussel Wilfley Design, Llc Centrifugal clutch and cover mount assembly therefor
US6966906B2 (en) 2001-06-08 2005-11-22 Joe Denton Brown Deflection mechanism for a surgical instrument, such as a laser delivery device and/or endoscope, and method of use
US20030045859A1 (en) * 2001-06-11 2003-03-06 Larry Dominguez Delivery system using balloon catheter
EP1404297B1 (en) 2001-06-12 2011-04-27 The Johns Hopkins University School Of Medicine Reservoir device for intraocular drug delivery
US20030013985A1 (en) 2001-07-12 2003-01-16 Vahid Saadat Method for sensing temperature profile of a hollow body organ
US7160255B2 (en) 2001-07-12 2007-01-09 Vahid Saadat Method and device for sensing and mapping temperature profile of a hollow body organ
JP4326942B2 (en) 2001-07-17 2009-09-09 フォックス・ホロー・テクノロジーズ・インコーポレーテッド Liquid exchange system for localized irrigation and aspiration while controlling the amount of liquid
WO2003009027A1 (en) 2001-07-20 2003-01-30 The University Of Sydney Casting preforms for optical fibres
US7438701B2 (en) 2001-07-26 2008-10-21 Durect Corporation Local concentration management system
US6616659B1 (en) 2001-07-27 2003-09-09 Starion Instruments Corporation Polypectomy device and method
US20030040697A1 (en) 2001-08-17 2003-02-27 Antares Pharma, Inc. Administration of insulin by jet injection
JP4761671B2 (en) * 2001-08-29 2011-08-31 テルモ株式会社 Shape memory balloon, its manufacturing method and a balloon catheter
US20070112358A1 (en) 2001-09-06 2007-05-17 Ryan Abbott Systems and Methods for Treating Septal Defects
US20040249243A1 (en) 2001-09-21 2004-12-09 Kleiner Daniel Eduard Tamponade apparatus and method of using same
US6918882B2 (en) 2001-10-05 2005-07-19 Scimed Life Systems, Inc. Guidewire with stiffness blending connection
US20030073900A1 (en) 2001-10-12 2003-04-17 Pranitha Senarith System and method for monitoring the movement of an interventional device within an anatomical site
JP3772107B2 (en) 2001-10-12 2006-05-10 オリンパス株式会社 The endoscope system
FR2832516B1 (en) 2001-11-19 2004-01-23 Tokendo Sarl rotary endoscopes referred distal deviated
US7488313B2 (en) 2001-11-29 2009-02-10 Boston Scientific Scimed, Inc. Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US6832715B2 (en) 2001-12-03 2004-12-21 Scimed Life Systems, Inc. Guidewire distal tip soldering method
US6612999B2 (en) 2001-12-06 2003-09-02 Cardiac Pacemakers, Inc. Balloon actuated guide catheter
US6755812B2 (en) 2001-12-11 2004-06-29 Cardiac Pacemakers, Inc. Deflectable telescoping guide catheter
US20030144683A1 (en) 2001-12-13 2003-07-31 Avantec Vascular Corporation Inflatable members having concentrated force regions
EP1319366A1 (en) 2001-12-14 2003-06-18 BrainLAB AG Magnetic navigation for a catheter
US7736301B1 (en) 2001-12-18 2010-06-15 Advanced Cardiovascular Systems, Inc. Rotatable ferrules and interfaces for use with an optical guidewire
US20030114732A1 (en) 2001-12-18 2003-06-19 Advanced Cardiovascular Systems, Inc. Sheath for guiding imaging instruments
US6939374B2 (en) 2001-12-21 2005-09-06 Scimed Life Systems, Inc. Stents, stenting systems, and related methods for agent delivery
US6955657B1 (en) 2001-12-31 2005-10-18 Advanced Cardiovascular Systems, Inc. Intra-ventricular substance delivery catheter system
US6740030B2 (en) 2002-01-04 2004-05-25 Vision Sciences, Inc. Endoscope assemblies having working channels with reduced bending and stretching resistance
US7493156B2 (en) 2002-01-07 2009-02-17 Cardiac Pacemakers, Inc. Steerable guide catheter with pre-shaped rotatable shaft
US20040158229A1 (en) 2002-01-24 2004-08-12 Quinn David G. Catheter assembly and method of catheter insertion
CN1329004C (en) 2002-02-01 2007-08-01 艾罗克林有限公司 Method and device for diagnosis using an oscillating airflow
US7381205B2 (en) * 2002-02-07 2008-06-03 Carag Ag Displacement device for a catheter
US6610059B1 (en) 2002-02-25 2003-08-26 Hs West Investments Llc Endoscopic instruments and methods for improved bubble aspiration at a surgical site
JP2003320031A (en) 2002-02-26 2003-11-11 Buaayu:Kk Balloon catheter
US7128718B2 (en) 2002-03-22 2006-10-31 Cordis Corporation Guidewire with deflectable tip
US7074426B2 (en) 2002-03-27 2006-07-11 Frank Kochinke Methods and drug delivery systems for the treatment of orofacial diseases
US6855136B2 (en) 2002-04-03 2005-02-15 Gore Enterprise Holdings, Inc. Infusion catheter having an atraumatic tip
US6942635B2 (en) 2002-04-04 2005-09-13 Angiodynamics, Inc. Blood treatment catheter and method
EP3189781A1 (en) 2002-04-17 2017-07-12 Covidien LP Endoscope structures and techniques for navigating to a target in branched structure
DE10217559B4 (en) 2002-04-19 2004-02-19 Universitätsklinikum Freiburg A device for minimally invasive, intravascular Aortenklappenextraktion
US20040020492A1 (en) 2002-05-02 2004-02-05 Dubrul William R. Upper airway device and method
US7610104B2 (en) 2002-05-10 2009-10-27 Cerebral Vascular Applications, Inc. Methods and apparatus for lead placement on a surface of the heart
ES2369640T3 (en) 2002-05-24 2011-12-02 Angiotech International Ag Compositions and methods for coating medical implants.