US20140324164A1 - Techniques for percutaneous mitral valve replacement and sealing - Google Patents

Techniques for percutaneous mitral valve replacement and sealing Download PDF

Info

Publication number
US20140324164A1
US20140324164A1 US14/237,264 US201214237264A US2014324164A1 US 20140324164 A1 US20140324164 A1 US 20140324164A1 US 201214237264 A US201214237264 A US 201214237264A US 2014324164 A1 US2014324164 A1 US 2014324164A1
Authority
US
United States
Prior art keywords
prosthetic valve
support
valve
applications
typically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/237,264
Inventor
Yossi Gross
Gil HACOHEN
Eran Miller
Yuval Zipory
Tal Reich
Meir Kutzik
Rotem NEEMAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiovalve Ltd
Original Assignee
Mitraltech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201161515372P priority Critical
Priority to US201161525281P priority
Priority to US201161537276P priority
Priority to US201161555160P priority
Priority to US201261588892P priority
Priority to US13/412,814 priority patent/US8852272B2/en
Application filed by Mitraltech Ltd filed Critical Mitraltech Ltd
Priority to PCT/IL2012/000292 priority patent/WO2013021374A2/en
Priority to US14/237,264 priority patent/US20140324164A1/en
Assigned to MITRALTECH LTD. reassignment MITRALTECH LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEEMAN, Rotem, MILLER, ERAN, HACOHEN, GIL, KUTZIK, MEIR, ZIPORY, YUVAL, GROSS, YOSSI, REICH, TAL
Publication of US20140324164A1 publication Critical patent/US20140324164A1/en
Assigned to CARDIOVALVE LTD. reassignment CARDIOVALVE LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MITRALTECH LTD.
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2439Expansion controlled by filaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/243Deployment by mechanical expansion
    • A61F2/2433Deployment by mechanical expansion using balloon catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/848Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0091Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements connected by a hinged linkage mechanism, e.g. of the single-bar or multi-bar linkage type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/005Rosette-shaped, e.g. star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0015Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0069Sealing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0071Additional features; Implant or prostheses properties not otherwise provided for breakable or frangible

Abstract

Apparatus is provided for use with a native valve of a heart of a subject, the apparatus including (1) an annular upstream support portion, configured to be transluminally placed against an atrial surface of the native valve; (2) a tissue-engaging element that includes a coupling portion configured to be transluminally coupled to tissue in a ventricle of the heart; (3) an elastically-stretchable holding element, configured to secure the upstream support portion against the atrial surface by elastically coupling the coupling portion to the upstream support portion; and (4) a prosthetic valve, configured to be transluminally delivered to the native valve and intracorporeally coupled to the upstream support portion subsequently to the securing of the upstream support portion against the atrial surface. Other embodiments are also described.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application claims priority from:
    • U.S. 61/515,372 to Gross, filed Aug. 5, 2011;
    • U.S. 61/525,281 to Gross, filed Aug. 19, 2011;
    • U.S. 61/537,276 to Gross, filed Sep. 21, 2011;
    • U.S. 61/555,160 to Gross, filed Nov. 3, 2011;
    • U.S. 61/588,892 to Gross, filed Jan. 20, 2012; and
    • U.S. Ser. No. 13/412,814 to Gross, filed Mar. 6, 2012, all of which are incorporated herein by reference; and
  • this application is a Continuation-In-Part of U.S. Ser. No. 13/412,814 to Gross, filed Mar. 6, 2012.
  • This application is related to a PCT application to Gross, entitled, “Percutaneous mitral valve replacement and sealing,” filed on even date herewith.
  • FIELD OF THE INVENTION
  • Some applications of the present invention relate in general to valve replacement. More specifically, some applications of the present invention relate to prosthetic valves for replacement of a cardiac valve.
  • BACKGROUND
  • Ischemic heart disease causes regurgitation of a heart valve by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the valve annulus.
  • Dilation of the annulus of the valve prevents the valve leaflets from fully coapting when the valve is closed. Regurgitation of blood from the ventricle into the atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the ventricle secondary to a volume overload and a pressure overload of the atrium.
  • SUMMARY OF THE INVENTION
  • For some applications of the invention, a prosthetic valve support is provided for facilitating transluminal implantation of a prosthetic valve at a native valve (e.g., a native heart valve) of a subject. The prosthetic valve support is configured to be placed at the native valve, such as by placing an upstream support portion (e.g., an annular portion) of the prosthetic valve support against an upstream surface of the native valve (e.g., against a native valve annulus). The prosthetic valve is subsequently implanted at the native valve by coupling the prosthetic valve to the prosthetic valve support, such as by expanding the prosthetic valve in an opening defined by the prosthetic valve support. For some applications, the prosthetic valve support is couplable to the native valve, independently of the prosthetic valve. The implantation of the prosthetic valve at the native valve replaces native check valve functionality of the native valve with substitute check valve functionality of the prosthetic valve. For some applications, the prosthetic valve support and/or the prosthetic valve comprise tissue-engaging elements (e.g., support-anchoring elements, and valve-anchoring elements, respectively), such as anchors or clips.
  • Typically, the prosthetic valve is expanded within one or more openings defined by the prosthetic valve support, and coupling of the prosthetic valve to the prosthetic valve support is facilitated by radially-expansive force applied by the prosthetic valve against the prosthetic valve support. For some applications, additional coupling techniques, such as support-engaging elements, coupling leads, ratchet mechanisms, protrusions, and/or pockets are used.
  • For some applications, the prosthetic valve support is configured to receive, at different periods, more than one prosthetic valve. For example, a first prosthetic valve may be removed from the prosthetic valve support, and replaced with a second prosthetic valve. Alternatively, the first prosthetic valve may be left in place when the second prosthetic valve is implanted. For example, the prosthetic valve support may define more than one lumen, each lumen configured to receive a respective prosthetic valve. Alternatively, the prosthetic valve support may define a lumen that is configured (e.g., shaped) to receive a first valve at a first period, and a second valve at a second period.
  • For some applications, the prosthetic valve support comprises support-anchoring elements that are flexibly-coupled to the upstream support portion. For some such applications, the support-anchoring elements are configured to anchor the prosthetic valve support to the native valve, while allowing the leaflets of the native valve to continue to function, at least in part. For some applications, the prosthetic valve support comprises support-anchoring elements whose length is variable (e.g., adjustable).
  • For some applications of the invention, a cross-sectional area of the opening defined by the prosthetic valve support is adjustable.
  • For some applications of the invention, delivery apparatus for implantation of a medical device (e.g., a prosthetic valve and/or a prosthetic valve support) is provided, the delivery apparatus and/or the medical device being configured to allow retrievability of the medical device during one or more stages of delivery and/or deployment of the medical device.
  • There is therefore provided, in accordance with an application of the present invention, apparatus for use with a first prosthetic valve and a second prosthetic valve at a native heart valve of a subject, the apparatus including:
  • a prosthetic valve support, shaped to define at least one lumen, and configured:
      • to be implanted at the native valve,
      • to facilitate, at a first period, implantation at the native valve of the first prosthetic valve, and
      • to facilitate, at a second period, implantation at the native valve of the second prosthetic valve without removal of the first valve.
  • In an application, the prosthetic valve support is configured to facilitate the implantation of the first prosthetic valve by being configured to receive the first prosthetic valve in the at least one lumen.
  • In an application, the prosthetic valve support includes a seal, which:
      • does not cover at least a first region of the at least one lumen,
      • covers at least a second region of the at least one lumen, and
      • is configured to be openable at at least the second region,
        and the prosthetic valve support is configured:
  • to facilitate the implantation of the first prosthetic valve by being configured to receive the first prosthetic valve in the first region, and
  • to facilitate the implantation of the second prosthetic valve by being configurable, by opening of the seal, to receive the second prosthetic valve in the second region.
  • In an application, the at least one lumen is shaped to define at least a first lumen and a second lumen, and the seal covers the second lumen.
  • In an application, the first region and the second region are defined by the same lumen.
  • In an application, the apparatus includes a covering that covers the prosthetic valve support, and the seal is defined by a portion of the covering.
  • In an application, the prosthetic valve support is configured to receive the first prosthetic valve in the lumen, and is configured to facilitate the implantation of the second prosthetic valve by being configured to receive the second prosthetic valve in the same lumen.
  • In an application, the apparatus further includes the first and second prosthetic valves, the first prosthetic valve defines a lumen therethrough, and the second prosthetic valve is configured to be implanted in the lumen of the first prosthetic valve.
  • In an application:
  • the second prosthetic valve defines a lumen therethrough,
  • after the first period, and before the second period, the lumen of the first prosthetic valve has a first diameter, and
  • the prosthetic valve support is configured such that, after the second period, the lumen of the second prosthetic valve has a diameter that is at least as great as the first diameter.
  • In an application, the prosthetic valve support is configured such that, after the second period, the lumen of the second prosthetic valve has a diameter that is greater than the first diameter.
  • In an application, the prosthetic valve support includes a weak zone that circumscribes and defines the lumen, and is configured to facilitate enlarging of the lumen.
  • In an application, the prosthetic valve support is configured to facilitate enlarging of the lumen by being configured to be deformed by a radially-expansive force applied from within the lumen.
  • In an application, the prosthetic valve support includes a cylindrical element:
  • shaped to define the lumen,
  • configured to receive the first prosthetic valve at a first portion of the lumen, and
  • configured to receive the second prosthetic valve support at a second portion of the lumen.
  • In an application, the cylindrical element is configured to receive the first prosthetic valve at a first longitudinal portion of the lumen, and to receive the second prosthetic valve at a second longitudinal portion of the lumen.
  • There is further provided, in accordance with an application of the present invention, apparatus for use with a prosthetic heart valve for implantation at a native heart valve of a subject, the apparatus including:
  • a core, shaped to define at least one conduit therethrough; and
  • one or more control filaments, slidable through the conduit, and reversibly couplable to the prosthetic valve,
  • the apparatus being configured such that sliding the control filaments in a first direction through the conduit facilitates expansion of the prosthetic valve, and sliding the control filaments in a second direction through the conduit facilitates compression of the prosthetic valve.
  • In an application, the apparatus is configured such that sliding the control filaments in the first direction through the conduit facilitates radial expansion of the prosthetic valve away from the core.
  • In an application, the apparatus further includes the prosthetic valve, a delivery tube and a pushing member, and:
  • the prosthetic valve has an expanded configuration and a compressed configuration,
  • the delivery tube is configured to be transluminally delivered to the native valve,
  • the pushing member includes the core,
  • the pushing member is configured:
      • to be disposed within the delivery tube,
      • to be fixedly coupled, within the delivery tube, to the prosthetic valve in the compressed configuration thereof,
      • when fixedly coupled to the prosthetic valve, to facilitate movement of the prosthetic valve with respect to the delivery tube, and
      • to be decouplable from the prosthetic valve.
  • In an application, the apparatus further includes one or more release wires, configured to facilitate decoupling of the control filaments from the prosthetic valve.
  • In an application, the apparatus further includes one or more guide elements, radially extendable from the core, and configured to guide expansion of the prosthetic valve away from the core.
  • In an application, the guide elements are configured to automatically radially retract when the control filaments are decoupled from the prosthetic valve.
  • There is further provided, in accordance with an application of the present invention, apparatus for use at a native heart valve of a subject, the apparatus including:
  • a prosthetic valve, configured to be transluminally delivered to, and implantable at, the native valve of the subject;
  • a prosthetic valve support, configured to be transluminally delivered to the native valve of the subject, and to facilitate implantation of the prosthetic valve;
  • at least one coupling lead, extending between the prosthetic valve and the prosthetic valve support; and
  • a ratchet housing, slidably coupled to the coupling lead, and configured to be slidable over the coupling lead in a first direction, and inhibited from sliding over the coupling lead in an opposite direction,
  • the apparatus being configured such that sliding of the ratchet housing over the coupling lead in the first direction facilitates coupling of the prosthetic valve to the prosthetic valve support.
  • In an application, the coupling lead extends between a proximal portion of the prosthetic valve, and the prosthetic valve support.
  • In an application, the prosthetic valve support includes one or more support-anchoring elements, configured to couple the prosthetic valve support to the native valve, and the coupling lead extends between the prosthetic valve and the support-anchoring elements.
  • There is further provided, in accordance with an application of the present invention, apparatus for use with a native heart valve of a subject, the apparatus including:
  • a first expandable prosthetic valve component, including a crimpable frame, and configured to be transcatheterally advanceable toward the native valve while the first prosthetic valve component is in a crimped state thereof;
  • a second expandable prosthetic valve component, including a crimpable frame, and configured to be transcatheterally advanceable toward the native valve, placeable in the native valve while the second prosthetic valve component is in a crimped state thereof, and couplable to the first prosthetic valve component, expansion of the second prosthetic valve component facilitating coupling of the second prosthetic valve component to the first prosthetic valve component; and
  • one or more tissue-engagement elements, coupled to at least one of the prosthetic valve components, the tissue-engagement elements configured, when the prosthetic valve component is in an expanded state thereof, to extend from the prosthetic valve component, and to inhibit a proximal movement of the prosthetic valve component.
  • There is further provided, in accordance with an application of the present invention, apparatus for use with a prosthetic valve for implantation at a native valve of a subject, the native valve (1) defining an orifice, (2) including at least one native leaflet, having a native beating, and (3) having a native blood flow regulation functionality, the apparatus including:
      • a prosthetic valve support, including:
      • an upstream support portion, configured to be placed against an upstream side of the native valve, to have an inner perimeter that defines an opening that is configured to receive the prosthetic valve, and
        • at least one clip, configured to be coupled to a native leaflet of the native valve, the clip including a plurality of clip arms, at least one clip arm coupled to a clip-controller interface; and
      • a clip controller, couplable to the clip-controller interface, and configured to control a relative angular disposition between the clip arms.
  • For some applications, techniques described herein are practiced in combination with techniques described in one or more of the references cited in the Background section and Cross-references section of the present patent application.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-H are schematic illustrations of sequential steps in the implantation of an implant comprising a prosthetic valve and a prosthetic valve support, in accordance with some applications of the present invention;
  • FIG. 2 is a schematic illustration of a prosthetic valve support, comprising adjustable prosthetic valve support, in accordance with some applications of the invention;
  • FIG. 3 is a schematic illustration of a prosthetic valve support, comprising an adjustable prosthetic valve support, in accordance with some applications of the invention;
  • FIG. 4 is a schematic illustration of a prosthetic valve support, comprising an adjustable prosthetic valve support, in accordance with some applications of the invention;
  • FIG. 5 is a schematic illustration of a prosthetic valve support, comprising a graduated prosthetic valve support, in accordance with some applications of the invention;
  • FIG. 6 is a schematic illustration of a prosthetic valve support, comprising a flexibly-anchored prosthetic valve support, in accordance with some applications of the invention;
  • FIG. 7 is a schematic illustration of a prosthetic valve support, comprising a flexibly-anchored prosthetic valve support, in accordance with some applications of the invention;
  • FIGS. 8A-B are schematic illustrations of a prosthetic valve support, and a prosthetic valve, the prosthetic valve comprising an integrally-anchoring prosthetic valve, in accordance with some applications of the invention;
  • FIGS. 9A-E are schematic illustrations of delivery apparatus, used to deploy a medical device, in accordance with some applications of the invention;
  • FIG. 10 is a schematic illustration of a prosthetic valve support, comprising a multi-lumen prosthetic valve support, in accordance with some applications of the invention;
  • FIG. 11 is a schematic illustration of a prosthetic valve, comprising an extended-lumen prosthetic valve support, in accordance with some applications of the invention;
  • FIGS. 12A-B are schematic illustrations of a prosthetic valve support, comprising an adjustable-lumen prosthetic valve support, in accordance with some applications of the invention;
  • FIGS. 13A-D are schematic illustrations of a prosthetic valve support, comprising an asymmetric prosthetic valve support, in accordance with an application of the invention;
  • FIG. 14 is a schematic illustration of a prosthetic valve support, in accordance with some applications of the invention;
  • FIGS. 15A-E are schematic illustrations of the implantation of a prosthetic valve support and a prosthetic valve, in accordance with some applications of the invention;
  • FIG. 16 is a schematic illustration of a prosthetic valve support being deployed in a native heart valve, in accordance with some applications of the invention;
  • FIGS. 17A-D are schematic illustrations of prosthetic valve supports, comprising tissue-engaging elements, which comprise support-anchoring elements, comprising length-adjustable holding elements, in accordance with some applications of the invention;
  • FIGS. 18A-B are schematic illustrations of prosthetic valve supports, comprising tissue-engaging elements, which comprise support-anchoring elements, comprising length-adjustable holding elements, in accordance with some applications of the invention;
  • FIG. 19 is a schematic illustration of a prosthetic valve support, comprising tissue-engaging elements, which comprise support-anchoring elements, comprising length-adjustable holding elements, in accordance with some applications of the invention;
  • FIGS. 20A-F are schematic illustrations of prosthetic valve supports, comprising tissue-engaging elements, which comp support-anchoring elements, comprising flexible support-anchoring elements, in accordance with some applications of the invention;
  • FIGS. 21A-C are schematic illustrations of a prosthetic valve support, comprising an inflatable support-engaging element, in accordance with some applications of the invention;
  • FIGS. 22A-C are schematic illustrations of sequential steps in the implantation of an implant, comprising a prosthetic valve and a prosthetic valve support, coupled via coupling leads;
  • FIGS. 23A-B are schematic illustrations of a prosthetic valve support, shaped to define at least one pocket, and the coupling thereto of a prosthetic valve, in accordance with some applications of the invention;
  • FIG. 24 is a schematic illustration of a prosthetic valve support, shaped to define at least one pocket, and the coupling thereto of a prosthetic valve, in accordance with some applications of the invention;
  • FIGS. 25A-E are schematic illustrations of a retrieval device, and sequential steps in the use thereof, in accordance with some applications of the invention;
  • FIGS. 26A-C are schematic illustrations of a prosthetic valve support comprising a braided structure, and the deployment thereof, in accordance with some applications of the invention;
  • FIGS. 27A-D are schematic illustrations of delivery apparatus, in accordance with some applications of the invention;
  • FIGS. 28A-D are schematic illustrations of the deployment of a prosthetic valve in the lumen of another prosthetic valve, in accordance with some applications of the invention;
  • FIGS. 29A-F are schematic illustrations of the deployment of a prosthetic valve in the lumen of another prosthetic valve, and of a prosthetic valve support configured to facilitate such deployment, in accordance with some applications of the invention;
  • FIGS. 30A-B are schematic illustrations of the deployment of a second prosthetic valve in the lumen of a prosthetic valve support, in which a first prosthetic valve is already disposed, in accordance with some applications of the invention;
  • FIGS. 31A-C are schematic illustrations of a flexible delivery tube, configured to facilitate removal thereof from a subject, in accordance with some applications of the invention;
  • FIGS. 32A-C are schematic illustrations of a compressible delivery tube, configured to facilitate removal thereof from a subject, in accordance with some applications of the invention;
  • FIGS. 33A-C are schematic illustrations of a dismantling delivery tube, configured to facilitate removal thereof from a subject, in accordance with some applications of the invention;
  • FIG. 34 is an schematic illustration of a prosthetic valve, comprising a leaflet-engaging element, in accordance with some applications of the invention;
  • FIGS. 35A-C are schematic illustrations of a prosthetic valve support comprising temporary valve components, and sequential steps in the coupling of a prosthetic valve to the support, in accordance with some applications of the invention;
  • FIGS. 36A-D are schematic illustrations of a prosthetic valve support, comprising support-anchoring elements and stabilizing legs, in accordance with some applications of the invention;
  • FIGS. 37A-H are schematic illustrations of a prosthetic valve support, comprising support-anchoring elements and stabilizing legs, and sequential steps in the implantation thereof, in accordance with some applications of the invention;
  • FIGS. 38A-H are schematic illustrations of a prosthetic valve support, comprising support-anchoring elements and stabilizing legs, and sequential steps in the implantation thereof, in accordance with some applications of the invention;
  • FIGS. 39A-D are schematic illustrations of a medical device, comprising one or more coupling tabs, in accordance with some applications of the invention;
  • FIGS. 40A-C are schematic illustrations of a prosthetic valve, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 41A-B are schematic illustrations of a prosthetic valve, and a prosthetic valve support, comprising support-anchoring elements that are couplable to the prosthetic valve, in accordance with some applications of the invention;
  • FIGS. 42A-B are schematic illustrations of a prosthetic valve, and a prosthetic valve support, comprising support-anchoring elements that are couplable to the prosthetic valve, in accordance with some applications of the invention;
  • FIGS. 43A-C are schematic illustrations of a prosthetic valve, and a prosthetic valve support, comprising support-anchoring elements that are couplable to the prosthetic valve, in accordance with some applications of the invention;
  • FIGS. 44A-B are schematic illustrations of a prosthetic valve support, comprising support-anchoring elements, and a prosthetic valve, comprising valve-anchoring elements that are couplable to the tissue-engaging elements of the prosthetic valve support, in accordance with some applications of the invention;
  • FIGS. 45A-C are schematic illustrations of a lock for facilitating delivery of a medical device, in accordance with some applications of the invention;
  • FIGS. 46A-B are schematic illustrations of a prosthetic valve support, comprising one or more support-anchoring elements, coupled to a stabilizing strip, in accordance with some applications of the invention;
  • FIGS. 47A-C are schematic illustrations of sequential steps in the implantation of an implant, comprising a prosthetic valve and a prosthetic valve support, in accordance with some applications of the invention;
  • FIGS. 48A-C are schematic illustrations of sequential steps in the implantation of an implant, comprising a prosthetic valve and a prosthetic valve support, in accordance with some applications of the invention;
  • FIG. 49 is a schematic illustration of the prosthetic valve support, in accordance with some applications of the invention;
  • FIG. 50 is a schematic illustration of a step in the implantation of the implant, in accordance with some applications of the invention;
  • FIGS. 51A-B are schematic illustrations of the prosthetic valve support, in accordance with some applications of the invention;
  • FIG. 52 is a schematic illustration of the prosthetic valve, in accordance with some applications of the invention;
  • FIGS. 53A-C are schematic illustrations of the prosthetic valve, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 54A-D are schematic illustrations of the prosthetic valve, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 55A-E are schematic illustrations of the prosthetic valve, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 56A-D are schematic illustrations of the prosthetic valve, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 57A-D are schematic illustrations of the prosthetic valve, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 58A-D are schematic illustrations of the prosthetic valve support, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 59A-B are schematic illustrations of the prosthetic valve support, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 60A-B are schematic illustrations of the prosthetic valve support, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 61A-C are schematic illustrations of the prosthetic valve support, comprising tissue-engaging elements, in accordance with some applications of the invention;
  • FIGS. 62A-D are schematic illustrations of a delivery device for the delivery and deployment of an expandable medical device, in accordance with some applications of the invention;
  • FIGS. 63A-B are schematic illustrations of the delivery device for the delivery and deployment of an expandable medical device, in accordance with some applications of the invention;
  • FIGS. 64A-C, 65A-B, 66A-B, and 67A-B are schematic illustrations of a locking mechanism for delivery of an expandable medical device, in accordance with some applications of the invention;
  • FIGS. 68A-B and 69A-E are schematic illustrations of a retrievable prosthetic valve support, and sequential steps in the retrieval of the retrievable prosthetic valve support, in accordance with some applications of the invention;
  • FIGS. 70A-C are schematic illustrations of the prosthetic valve, comprising tissue engaging elements, in accordance with some applications of the invention;
  • FIG. 71 is a schematic illustration of an implant comprising a prosthetic valve and a prosthetic valve support, in accordance with some applications of the present invention;
  • FIGS. 72A-D are schematic illustrations of an implant, comprising a prosthetic valve support and a prosthetic valve, in accordance with some applications of the invention;
  • FIG. 73 is a schematic illustration of a prosthetic valve support, for use with a prosthetic valve, in accordance with some applications of the invention;
  • FIGS. 74A-L are schematic illustrations of steps in the implantation of an implant, comprising a prosthetic valve and a prosthetic valve support, in a native valve of a subject, in accordance with some applications of the invention;
  • FIGS. 75A-D are schematic illustrations of an implant, comprising a prosthetic valve support and a prosthetic valve, and steps in the implantation thereof, in accordance with some applications of the invention;
  • FIGS. 76A-F are schematic illustrations of steps in the implantation of an implant, comprising a prosthetic valve and a prosthetic valve support, in a native valve of a subject, in accordance with some applications of the invention;
  • FIG. 77 is a schematic illustration of an implant, implanted at the mitral valve of a subject, in accordance with some applications of the invention;
  • FIG. 78 is a schematic illustration of an implant, implanted at the tricuspid valve of a subject, in accordance with some applications of the invention;
  • FIG. 79 is a schematic illustration of an implant, implanted at the pulmonary valve of a subject, in accordance with some applications of the invention; and
  • FIG. 80 is a schematic illustration of an implant, implanted at the aortic valve of a subject, in accordance with some applications of the invention.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Reference is made to FIGS. 1A-H, which are schematic illustrations of sequential steps in the implantation in a native heart valve 23 of the heart 22 of a subject 20 of an implant 30, comprising (1) a first prosthetic valve component, i.e., prosthetic valve support 40, and (2) a second prosthetic valve component, i.e., a prosthetic valve 42, in accordance with some applications of the present invention. For such applications of the present invention, native valve 23 includes a native mitral valve 24 by way of illustration and not limitation; the scope of the present invention includes implanting implant 30 in other valves of the heart (e.g., the tricuspid valve, the pulmonary valve, or the aortic valve). FIG. 1A illustrates a cross-section through heart 22 of the subject which is used throughout FIGS. 1B-G to illustrate the implantation procedure. As shown in the cross-sectional illustration, native mitral valve 24 includes native leaflets 82, which are supported by native chordae tendineae 80.
  • FIG. 1B shows prosthetic valve support 40 being deployed in a left atrium 26. Prior to deployment, support 40 is percutaneously (e.g., transcatheterally) advanced into left atrium 26, typically via overtube 44. In some applications of the present invention, the advancement of overtube 44 toward heart valve 23 is preceded by advancement of a guidewire 45 through vasculature of the subject. Typically, guidewire 45 is used to guide overtube 44 through the vasculature. During its deployment, support 40 is moved distally (e.g., by a pushing coupling element, not shown for clarity of illustration and described hereinbelow), such that support 40 emerges from the distal end of overtube 44. Support 40 is typically expandable, and typically comprises a wire frame which comprises a shape-memory material such as, but not limited to, nickel titanium (nitinol). For some applications of the invention, support 40 comprises nickel cobalt, stainless steel and/or titanium. As support 40 gradually emerges from overtube 44, it gradually expands to assume an expanded configuration.
  • FIG. 1C shows support 40 reversibly coupled to one or more holding members 46, which exert a distal pushing force that causes support 40 to emerge from within overtube 44. Once fully exposed from within overtube 44, support 40 expands to assume the expanded configuration, as shown. In its expanded state, support 40 is annular and is shaped so as to define a lumen therethrough. Typically, prosthetic valve support 40 is shaped to define an outer edge 69 and an inner edge 68 (see FIG. 1H). Outer edge 69 typically defines the diameter of the annular prosthetic valve support, and inner edge 68 typically defines the diameter of the lumen in which prosthetic valve 42 is typically disposed. As shown in FIG. 1C, once support 40 is fully exposed from within overtube 44, holding members 46 continue to push support 40 distally (i.e., in the direction as indicated by the arrows) until support 40 is positioned against an annulus of native heart valve 23.
  • Support 40 is held against the annulus of native valve 23 (e.g., by holding members 46) such that the lumen of support 40 aligns with the lumen of the native valve, and such that atrium 26 and ventricle 28 remain in fluid communication.
  • Following the positioning of support 40 against the annulus of the native valve, prosthetic valve 42 is percutaneously (e.g., transcatheterally) advanced and delivered toward the native valve, typically along guidewire 45, as shown in FIG. 1D.
  • Prosthetic valve 42 is typically expandable, and typically comprises a wire frame which comprises a shape-memory material such as, but not limited to, nickel titanium (nitinol). For some applications of the invention, prosthetic valve 42 comprises nickel cobalt, stainless steel and/or titanium. During the advancing, prosthetic valve 42 is disposed in a distal portion of a delivery tube 60, which holds the prosthetic valve in a compressed (e.g., crimped) configuration. Delivery tube 60 is slidably advanceable within tube 44. Prosthetic valve 42 is typically delivered through the native valve and into ventricle 28, as shown in FIG. 1D. Typically, prosthetic valve 42 is delivered to the native valve while support 40 is held against the annulus of native valve 23 by holding members 46.
  • FIG. 1E shows prosthetic valve 42 being partially deployed from within delivery tube 60. As prosthetic valve 42 expands, prosthetic valve 42 expands toward assuming an expanded configuration. Prosthetic valve 42 comprises a primary structural element 130, which is typically cylindrical, prismatic, or any other suitable shape, and is shaped so to define a lumen. Prosthetic valve components (e.g., leaflets; not shown for clarity of illustration) are typically disposed within the lumen of the prosthetic valve, are coupled to a surface of structural element 130 defining the lumen, and regulate blood flow therethrough.
  • Typically, a plurality of tissue-engaging elements 62 are disposed at a distal portion of the primary structural element 130 of prosthetic valve 42. For applications in which prosthetic valve 42 comprises tissue-engaging elements 62, tissue-engaging elements 62 comprise valve-anchoring elements 64. For such applications of the present invention, primary structural element 130 of prosthetic valve 42 is generally cylindrical (e.g., shaped so as to define a right circular cylinder), and anchoring elements 64 protrude radially from a surface of the cylinder. It is to be noted that although prosthetic valve 42 is shown comprising tissue-engaging elements 62, the scope of the present application includes prosthetic valves with no tissue-engaging elements 62.
  • FIG. 1F shows prosthetic valve 42 being moved proximally, such that at least part of primary structural element 130 is disposed in the respective lumens of native valve 23 and prosthetic valve support 40, and such that valve-anchoring elements 64 contact the ventricular side of the native valve. Such contacting of elements 64 with the ventricular side of the native valve restricts further undesired atrial (i.e., proximal) movement of the prosthetic valve. Typically, the contact between valve-anchoring elements 64 and the ventricular side of the native valve occurs by valve-anchoring elements 64 protruding between chordae tendineae 80 and capturing leaflets 82 of the native valve. Responsively to the capturing by valve-anchoring elements 64, leaflets 82 are typically pushed proximally and/or outward by the prosthetic valve. In some applications of the invention, leaflets 82 are held against the outer surface of primary structural element 130 by valve-anchoring elements 64, so as to reduce blood flow between native leaflets 82 and prosthetic valve 42. In an alternative application of the invention, rather than being partially deployed in the ventricle and subsequently moved proximally (as described with reference to FIGS. 1E-F), prosthetic valve 42 is deployed directly in the lumen of the native valve.
  • Following the capturing of native leaflets 82, prosthetic valve 42 is then fully exposed from within delivery tube 60 (by pushing valve 42 relative to delivery tube 60 or by retracting delivery tube 60 with respect to valve 42) and is allowed to expand further. FIG. 1G shows prosthetic valve 42 in a deployed and expanded configuration after being fully exposed from within delivery tube 60. The expansion of prosthetic valve 42 exerts a radial force against support 40, thereby facilitating coupling of prosthetic valve 42 to support 40. Implant 30, comprising prosthetic valve 42 and support 40, is secured in place by sandwiching the native valve by the components of implant 30. That is, (1) implant 30 is inhibited from ventricular (i.e., distal) movement by support 40 and the radial force of prosthetic valve 42 exerted on support 40, and (2) implant 30 is inhibited from atrial (i.e., proximal) movement by valve-anchoring elements 64.
  • For some applications of the present invention, support 40 prevents valve 42 from expanding to assume a fully-expanded configuration (i.e., a configuration to which valve 42 would otherwise expand without being impeded by support 40 or tissue). In such applications, the radial force exerted by support 40 on valve 42 facilitates coupling and sealing between support 40 and valve 42 (for example, by increasing friction between support 40 and valve 42), and facilitates implantation of implant 30 at native valve 23.
  • FIG. 1H shows implant 30 following implantation in the mitral valve of the subject. This figure is a transverse atrial cross-section, showing prosthetic valve support 40 in contact with the atrial side of the native valve. Prosthetic valve 42 is expanded, and is disposed in, and coupled to, prosthetic valve support 40. Tissue-engaging elements 62, comprising valve-anchoring elements 64, are disposed on the ventricular side of the native valve (as described hereinabove with reference to FIGS. 1F-G), and are therefore illustrated in phantom. Valve-anchoring elements 64 are typically arranged in two clusters, each cluster being disposed on opposite sides of prosthetic valve 42.
  • Typically, when deployed as shown, prosthetic valve 42 is configured to be aligned with the native valve such that valve-anchoring elements 64 protrude toward, and engage leaflets 82 of the native valve. In some applications of the present invention, valve-anchoring elements 64 protrude toward, and engage, commissures 84 of the native valve. In some applications of the invention, a single valve-anchoring element 64 is disposed on each side of the prosthetic valve. It is to be noted that the scope of the present application includes any other suitable arrangement of valve-anchoring elements 64 with respect to valve 64. Typically, valve-anchoring elements 64 capture leaflets 82 of the native valve, holding them clear of the flow of blood through the prosthetic valve and the left ventricular outflow tract (LVOT).
  • For clarity of illustration, the lumen defined by prosthetic valve 42 is shown as being empty, such that ventricle 28 is visible. However, as described hereinabove, prosthetic valve 42 typically comprises valve components (e.g., prosthetic valve leaflets, not shown in FIG. 1H), that are disposed in the lumen of prosthetic valve 42, coupled to structural element 130, and configured to regulate blood flow through prosthetic valve 42.
  • Reference is again made to FIGS. 1A-H. For some applications, as described hereinabove, valve-anchoring elements 64 function so as to (1) prevent proximal migration of prosthetic valve 42 into the subject's atrium, while (2) creating a seal between the native valve 23 and prosthetic valve 42 by generally clamping native leaflets 82 between valve-anchoring elements 64 and primary structural element 130, valve support 40, and/or native valve annulus.
  • For other applications, prevention of proximal migration of valve 42 is maintained, while movement of native leaflets 82 with respect to prosthetic valve 42 is allowed. For example, valve-anchoring elements 64 may have the aforementioned functionalities by having lengths of less than 5 mm, and/or by having a total width of each cluster of valve-anchoring elements (corresponding to respective leaflets of the native valve) being less than 5 mm. For example, the valve may include a single valve-anchoring element 64 corresponding to each leaflet of the native valve, the width of each of the single valve-anchoring elements being less than 1 mm. Thus, the valve may be stopped from proximally migrating into the atrium by the valve-coupling elements preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve. Furthermore, the valve-anchoring elements may allow movement of the native leaflets with respect to the prosthetic valve by not generally squeezing the native leaflets between the valve-coupling elements and primary structural element 130 of the prosthetic valve. In other applications of the invention, prosthetic valve support 40 comprises support-anchoring elements (such as clips), and is directly coupled to the native valve. For some such applications, no valve-anchoring elements are used; rather, implant 30 is coupled to the native valve via prosthetic valve support 40 (e.g., as described hereinbelow, such as with reference to FIGS. 37A-H and 38A-H). For some applications, both valve-anchoring elements and support-anchoring elements are used. For some applications, by allowing movement of the native leaflets with respect to the prosthetic valve, sealing of the native leaflets against the outer surface of the primary structural element of the prosthetic valve is facilitated, in accordance with the techniques described herein.
  • For some applications of the invention, the implantation of implant 30 follows an alternative order to that described with reference to FIGS. 1A-H. For these applications of the invention, prosthetic valve 42 is initially delivered to ventricle 28. Subsequently, prosthetic valve support 40 is deployed within atrium 26. In these applications of the invention, following deployment and positioning of prosthetic valve support 40 against the annulus of native valve 23, prosthetic valve 42 is moved atrially (i.e., proximally) into the respective lumens of the native valve and prosthetic valve support 40, and is deployed, as described hereinabove.
  • For some applications of the invention, valve-anchoring elements 64 anchor prosthetic valve 42 to the native valve in a manner that restricts both proximal and distal movement of the prosthetic valve. For such applications of the invention, deployment of prosthetic valve 42 may occur in the reverse orientation, such that, following positioning in the native valve of prosthetic valve 42 compressed in delivery tube 60, the delivery tube is moved distally (i.e., ventricularly) as prosthetic valve 42 is deployed from the delivery tube. Delivery tube 60 is then removed from the subject via the lumen of the deployed prosthetic valve. It is hypothesized that this approach facilitates maneuvering of implant components and delivery apparatus, both for delivery of implant 30 and for withdrawal of delivery apparatus. For example, this approach is hypothesized to require less space on the proximal side of the native valve (e.g., in the atrium), compared to techniques whereby the prosthetic valve is deployed from the proximal side of the native valve. An example of this approach is described with reference to FIGS. 15A-E.
  • For some applications of the invention, surfaces of one or more components of implant 30 are covered at least in part with a covering (not shown). For example, surfaces of prosthetic valve support 40 and prosthetic valve 42 may be covered so as to direct substantially all blood flowing through the valve, to flow through the lumen of prosthetic valve 42. For some applications, the surface of prosthetic valve support 40 (or another component) that is placed in contact with the native valve is covered; the covering is configured to facilitate coupling of support 40 to the native valve, by enhancing fibrosis at the interface between the prosthetic valve support and the native valve.
  • The covering may comprise polyethylene terephthalate (e.g., polyester), polytetrafluoroethylene (e.g., Teflon, ePTFE), or pericardial tissue. Typically, a thickness of the covering is less than 0.2 mm, e.g., less than 0.1 mm, or less than 0.05 mm.
  • For some applications, one or more dimensions of native valve 23 (e.g., of leaflets 82, and/or of the annulus of the native valve) is measured (e.g., by using imaging techniques) prior to deployment of valve 42. Taking this measuring into account, a suitably-sized prosthetic valve is chosen to be placed in the annulus, in a manner in which a cross-sectional area of the prosthetic valve in its deployed state is less than 90% (e.g., less than 80%, or less than 60%) of the area defined by the annulus.
  • For some applications, the cross-sectional area of the prosthetic valve in its deployed state has a longest length of less than 25 mm, e.g., less than 20 mm, and/or more than 15 mm, e.g., 15-25 mm. For some applications, placing a prosthetic valve inside the native valve, with the dimensions of the native valve annulus and the prosthetic valve as described, facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve. In such applications, prosthetic valve 42 is implanted directly within native valve 23 (i.e., without support 40).
  • For some applications, prosthetic valve support 40, that is shaped to define a lumen, is placed against the annulus of native valve 23 (e.g., as described with reference to FIGS. 1A-H). The lumen of support 40 has a cross-sectional area that is less than 90% (e.g., less than 80%, or less than 60%) of an area defined by native valve 23 (e.g., area A1, FIG. 71). As described hereinabove, prosthetic valve 42 is typically coupled to prosthetic valve support 40 and, thereby, to native valve 23, at least in part by expansion of the prosthetic valve such that primary structural element 130 exerts a radial force against inner edge 68 of prosthetic valve support 40. The cross-sectional area defined by the primary structural element 130 of the prosthetic valve, upon expansion of the prosthetic valve, is limited by the cross-sectional area of the lumen of the prosthetic valve support 40 to less than 90% (e.g., less than 80%, or less than 60%) of the area defined by the annulus of the native valve. For some applications, placing a prosthetic valve support 40 at the native valve, as described, facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve.
  • Typically, placing a prosthetic valve inside the native valve with the dimensions of the native valve annulus, the prosthetic valve 42, and/or valve support 40 as described in the above paragraphs, facilitates sealing of the prosthetic valve with respect to the native valve. For some applications, the sealing is facilitated by the native leaflets being pushed against, and closing against, the outer surface of the frame of the valve during systole, in a similar manner to the manner in which native valve leaflets coapt during systole, in a healthy mitral valve.
  • Typically, as the diameter of the prosthetic valve is increased, the proportion of the native leaflets that is pushed against the outer surface of the valve during systole is increased, thereby enhancing the sealing of the native leaflets with respect to the frame of the prosthetic valve. However, beyond a given diameter, as the diameter of the prosthetic valve is increased, the native valve leaflets are pushed apart at the commissures, thereby causing retrograde leakage of blood through the commissures. Therefore, in accordance with some applications of the present invention, prosthetic valve 42, and/or valve support 40 are chosen such that the cross-sectional area of the prosthetic valve (when expanded inside the valve support) is less than 90% (e.g., less than 80%, or less than 60%) of the area defined by the annulus of native vale 23. Thus the valve support facilitates additional sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve, while not causing retrograde leakage of blood through the commissures.
  • For some applications, in order to facilitate the sealing of the native valve around the outer surface of the prosthetic valve, a material is placed on the outer surface of the prosthetic valve in order to provide a sealing interface between the prosthetic valve and the native valve. For example, a smooth material that prevents tissue growth (e.g., polytetrafluoroethylene (PTFE), and/or pericardium) may be placed on the outer surface of the prosthetic valve. Alternatively or additionally, a material that facilitates tissue growth (such as polyethylene terephthalate; PET) may be placed on the outer surface of the prosthetic valve, in order to (a) act as a sealing interface between the native valve and the prosthetic valve, and (b) facilitate tissue growth around the prosthetic valve to facilitate anchoring and/or sealing of the prosthetic valve.
  • For some applications, one or more dimensions of native valve 23 (e.g., of leaflets 82, and/or of the annulus of the native valve) are measured (e.g., by using imaging techniques) prior to deployment of prosthetic valve 42 and/or prosthetic valve support 40. Taking this measuring into account, a suitably-sized and/or suitably-configured prosthetic valve and/or prosthetic valve support is selected for implantation. For example, a prosthetic valve or prosthetic valve support comprising tissue-engaging elements 62 with appropriate configurations and/or dimensions may be selected.
  • Reference is made to FIG. 2, which is a schematic illustration of prosthetic valve support 40, comprising adjustable prosthetic valve support 40 e, which comprises tissue-engaging elements 62, comprising support-anchoring elements 66 e, in accordance with some applications of the invention. Each support anchoring element 66 e comprises, or is coupled to, a holding wire 522, which is slidably coupled to an upstream support portion 41 (e.g., an annular portion) of support 40 e. During implantation, support 40 e is anchored to native valve 23 via support-anchoring elements 66 e. For example, elements 66 e may engage commissures 84 or leaflets 82 of the native valve, as described hereinabove. The distance between upstream support portion 41 of support 40 e and a coupling portion 70 of anchoring element 66 e, is adjustable by adjusting the length of the portion of holding wire 522 that couples the upstream support portion to the coupling portion. Some examples of techniques for adjusting this length are described hereinbelow, with reference to FIGS. 3 and 4.
  • For some applications of the invention, at least part of holding wire 522 is disposed in a connector 540, which further couples coupling portion 70 to upstream support portion 41. Holding wire 522 may be slidable through connector 540. For some applications, connector 540 is more rigid than holding wire 522.
  • Reference is made to FIG. 3, which is a schematic illustration of prosthetic valve support 40, comprising adjustable prosthetic valve support 40 f, which comprises tissue-engaging elements 62, comprising support-anchoring elements 66 f, in accordance with some applications of the invention. Each support anchoring element 66 f comprises, or is coupled to, a holding wire 522 f, which is slidably coupled to upstream support portion 41 of support 40 f. During implantation, support 40 f is anchored to native valve 23 via support-anchoring elements 66 f. For example, elements 66 f may engage commissures 84 or leaflets 82 of the native valve, as described herein. The distance between upstream support portion 41 of support 40 f and a coupling portion of anchoring element 66 f, is adjustable by adjusting the length of holding wire 522 f. Typically, holding wire 522 f is slidably coupled to upstream support portion 41 of support 40 f via a ratchet 526, wherein holding wire 522 f is slidable through a ratchet housing 524, and comprises a plurality of teeth 523 which allow the holding wire to slide through the ratchet housing in one direction, and restrict such sliding in another direction. Such adjustment of holding wire 522 f may be performed while support 40 f is partially deployed, or after the support has been fully deployed.
  • FIG. 3 shows ratchet housing 524 being slidable over holding wire 522 f, such that the ratchet housing is movable with respect to upstream support portion 41 of support 40 f. For this application of the invention, a controller tube 528 is typically used to slide (e.g., push) ratchet housing 524 over holding wire 522 f, so as to adjust the distance between upstream support portion 41 of support 40 f and the coupling portion. For other applications of the invention, ratchet housing 524 is substantially stationary with respect to upstream support portion 41 (e.g., ratchet housing 524 is attached to and/or embedded in portion 41), and holding wire 522 is slid (e.g., pulled) through housing 524, so as to adjust the distance between upstream support portion 41 of support 40 f and coupling portion 70.
  • As described with reference to FIG. 2, for some applications of the invention, at least part of holding wire 522 (e.g., wire 522 f) is disposed in a connector 540 (e.g., connector 540 f), which further couples coupling portion 70 to upstream support portion 41 of support 40 f. Holding wire 522 f may be slidable through connector 540 f. Connector 540 f is typically more rigid that holding wire 522 f.
  • It is hypothesized that adjusting the position of coupling portion 70 of support-anchoring elements 66 f, with respect to upstream support portion 41 of prosthetic valve support 40 f, allows prosthetic valve support 40 f to be adapted to the anatomy of the subject during and/or subsequent to the implantation procedure.
  • Reference is made to FIG. 4, which is a schematic illustration of prosthetic valve support 40, comprising adjustable prosthetic valve support 40 g, which comprises tissue-engaging elements 62, comprising support-anchoring elements 66 g, in accordance with some applications of the invention. Each support anchoring element 66 g comprises, or is coupled to, a holding wire 522, which is slidably coupled to upstream support portion 41 of support 40 g. During implantation, support 40 g is anchored to native valve 23 via support-anchoring elements 66 g. For example, elements 66 g may engage commissures 84 or leaflets 82 of the native valve, as described herein. The distance between upstream support portion 41 of support 40 g and a coupling portion 70 (not shown) of anchoring element 66 g, is adjustable by adjusting the length of holding wire 522 g. Holding wire 522 g is coupled to a spool 460, such that operation (e.g., turning) of spool 460 withdraws and/or ejects portions of the holding wire, thereby adjusting the length of holding wire 522 g that couples the upstream support portion to the coupling portion, thereby adjusting the distance between upstream support portion 41 and coupling portion 70. Such adjustment of holding wire 522 g may be performed while support 40 g is partially deployed, or after the support has been fully deployed.
  • As described with reference to FIG. 2, for some applications of the invention, at least part of holding wire 522 (e.g., wire 522 g) is disposed in a connector 540 (e.g., connector 540), which further couples coupling portion 70 to upstream support portion 41 of support 40 g. Holding wire 522 g may be slidable through connector 540 g. In some applications, connector 540 g is more rigid that holding wire 522 g.
  • It is hypothesized that adjusting the position of coupling portion 70 of support-anchoring elements 66 g, with respect to upstream support portion 41 of prosthetic valve support 40 g, allows prosthetic valve support 40 g to be adapted to the anatomy of the subject during and/or subsequent to the implantation procedure.
  • Reference is made to FIG. 5, which is a schematic illustration of prosthetic valve support 40, comprising graduated prosthetic valve support 40 h, which comprises tissue-engaging elements 62, comprising support-anchoring elements 66 h, in accordance with some applications of the invention. Each support-anchoring element 66 h is coupled to upstream support portion 41 of support 40 h via a graduated connector 542. Graduated connector 542 comprises a plurality of coupling points 543, to which coupling portion 70 of element 66 h is couplable. Prior to implantation of prosthetic valve support 40 h, the distance between upstream support portion 41 of support 40 h and coupling portion 70 is adjustable, by selecting the coupling point 543 to which each coupling portion 70 is coupled.
  • It is hypothesized that adjusting the position of coupling portion 70 of support-anchoring elements 66 h, with respect to upstream support portion 41 of prosthetic valve support 40 h, allows prosthetic valve support 40 h to be adapted to the anatomy of the subject during and/or subsequent to the implantation procedure.
  • Reference is made to FIG. 6, which is a schematic illustration of prosthetic valve support 40, comprising flexibly-anchored prosthetic valve support 40 i, which comprises tissue-engaging elements 62, comprising support-anchoring elements 66 i, in accordance with some applications of the invention. Each support-anchoring element 66 i is coupled to upstream support portion 41 of support 40 i via a connector 540, such as flexible connector 544. Flexible connector 544 typically comprises a flexible material which typically, but not necessarily, comprises polyethylene terephthalate (e.g., polyester), polytetrafluoroethylene (e.g., Teflon, ePTFE), silicone (e.g., silicone rubber), and/or or pericardial tissue. Flexible connector 544 facilitates movement of coupling portion 70 of elements 66 i to move with respect to upstream support portion 41 of support 40 i. It is hypothesized that this flexibility allows elements 66 i to anchor prosthetic valve support 40 i to the native valve (e.g., by coupling to leaflets 82), whilst allowing leaflets 82 to continue to function, at least in part.
  • Reference is made to FIG. 7, which is a schematic illustration of prosthetic valve support 40, comprising flexibly-anchored prosthetic valve support 40 j, which comprises tissue-engaging elements 62, comprising support-anchoring elements 66 j, in accordance with some applications of the invention. Coupling portion 70 of each element 66 j is coupled to upstream support portion 41 of support 40 j via at least one connector ring 548. Connector ring 548 typically facilitates movement of coupling portion 70 with respect to upstream support portion 41. Each support-anchoring element 66 j typically comprises a connector 540, such as flexible connector 546. Flexible connector 546 typically comprises a flexible material which typically, but not necessarily, comprises polyethylene terephthalate (e.g., polyester), polytetrafluoroethylene (e.g., Teflon, ePTFE), silicone (e.g., silicone rubber), and/or or pericardial tissue. Flexible connector 546 typically further facilitates coupling portion 70 to move with respect to upstream support portion 41 of support 40 j. It is hypothesized that this flexibility allows elements 66 j to anchor prosthetic valve support 40 j to the native valve (e.g., by coupling to leaflets 82), whilst allowing leaflets 82 to continue to function, at least in part.
  • Reference is made to FIGS. 8A-B, which are schematic illustrations of prosthetic valve support 40, and prosthetic valve 42, the prosthetic valve comprising an integrally-anchoring prosthetic valve 42 a, which comprises support-engaging elements 422 comprising a plurality of integral support-engaging elements 424, in accordance with some applications of the invention. For some applications of the invention, support-engaging elements 422 comprise other valve-anchoring elements described herein, such as valve-anchoring elements 64.
  • Reference is now made to FIG. 8A. Prosthetic valve 42 a comprises a lattice structure, comprising a plurality of struts which typically collectively define a tessellation of shapes and voids. In some regions of the prosthetic valve, there is a separation between adjacent shapes. This separation allows a portion of the shape to move or be moved out of the plane of the lattice, thereby protruding from primary structural element 130 of prosthetic valve 42 a when the prosthetic valve is expanded. The protruding portion of the shapes thereby form integral support-engaging elements 424, which are typically configured to anchor prosthetic valve 42 a to the distal side of prosthetic valve support 40.
  • Reference is made to FIG. 8B, which shows implant 30, comprising prosthetic valve 42 a and prosthetic valve support 40, implanted in native valve 23. FIG. 8B shows implant 30, comprising prosthetic valve support 40 and prosthetic valve 42 a, implanted in native valve 23, comprising mitral valve 24. Prosthetic valve support 40 typically comprises a plurality of tissue-engaging elements 62, comprising support-anchoring elements 66, which engage leaflets 82 and/or chordae tendineae 80, and/or commissures 84, thereby anchoring support 40 to the native valve. Prosthetic valve 42 a is compressible (e.g., crimpable) and expandable, and typically comprises a shape-memory material, as described hereinabove with reference to prosthetic valve 42. Prosthetic valve 42 a is configured (e.g., shape-set) such that support-engaging elements 422, comprising integral support-engaging elements 424, are biased to protrude from the surface of primary structural element 130. In this application of the present invention, primary structural element 130 of prosthetic valve 42 a is generally cylindrical, and integral support-engaging elements 424 protrude radially from the surface of the cylinder. Because integral support-engaging elements 424 are formed from the regular repeating structure of the lattice that forms prosthetic valve 42 a, support-engaging elements 424 fit back into the plane of structural element 130 when valve 42 a is crimped into delivery tube 60, prior to and even during implantation. Integral support-engaging elements 424, thereby typically do not increase the length nor the transverse cross-sectional longest dimension of the crimped configuration of prosthetic valve 42, as compared to those of any other prosthetic valves that do not comprise support-engaging elements 422, or that comprise elements 422 at a proximal end thereof.
  • As described hereinabove, prosthetic valve 42 is deployed by distal movement out of delivery tube 60. FIG. 8B shows prosthetic valve 42 a in a fully-deployed state, such that integral support-engaging elements 424 have emerged from delivery tube 60, and have assumed an unconstrained, expanded, resting configuration in which the integral support-engaging elements 424 protrude radially from the surface of primary structural element 130 of the prosthetic valve. In an expanded state of at least the proximal portion of valve 42 a, as shown in FIG. 8B, integral support-engaging elements 424 typically protrude up to and including 110 degrees (e.g., between 10 and 60 degrees, such as between 15 and 30 degrees) from the surface of primary structural element 130, in a resting state of support-engaging elements 424. That is, in the protruded state, the proximal portions of support-engaging elements 424 are distanced further from structural element 130 than the distal portions of support-engaging elements 424 which function as the pivot joints 74 between support-engaging elements 424 and structural element 130, as shown in FIG. 8A.
  • In the expanded state of support-engaging elements 424, the radially-protruding proximal portions thereof typically define a cross-sectional area, the longest dimension of which is typically longer than a transverse cross-sectional longest dimension of the lumen defined by prosthetic valve support 40. That is, in the expanded state, support-engaging elements 424 increase a longest transverse cross-sectional length of prosthetic valve 42 a, such that the longest transverse cross-sectional length is longer than a longest transverse cross-sectional length of the lumen defined by prosthetic valve support 40. Thereby, the radially-protruding support-engaging elements 424 restrict proximal movement of prosthetic valve 42 a with respect to prosthetic valve support 40, thereby anchoring prosthetic valve 42 a to the distal side of prosthetic valve support 40, and to native valve 23.
  • Reference is made to FIGS. 9A-E, which are schematic illustrations of delivery apparatus 438, used to deploy a medical device 150, in accordance with some applications of the invention. Delivery apparatus 438 comprises a delivery tube 154 and a pushing member 140. Pushing member 140 comprises a support 142 and one or more coupling tabs 146, extending from the support. In the application of the invention shown in FIG. 9A, support 142 comprises a core 144, and coupling tabs 146 extend radially from the core.
  • In some applications of the invention, support 142 is shaped to define a plate 148 at the proximal end of support 142. The dimensions and relative positions of support 142, tabs 146, and plate 148 may be adjusted for the specific medical device 150 to be deployed using delivery apparatus 438. Support 142 is shaped to define a plurality of conduits 492 (e.g., holes). Delivery apparatus 438 further comprises one or more control filaments, such as retrieval wires 490, slidably disposed in conduits 492. Typically, conduits 492 provide communication between a proximal side of support 142 and a circumference of the support, such that a proximal end of each retrieval wire 490 is disposed at a site proximal to delivery tube 154, and a distal end of each wire is reversibly coupled to medical device 150, retrieval wires 490 extending through conduits 492.
  • For some applications of the invention, retrieval wires 490 are coupled to medical device 150 by being looped around parts of the medical device (e.g., looped around a strut of the lattice structure, as shown in FIG. 9D), and are uncouplable from the medical device by being unlooped. For some applications of the invention, retrieval wires 490 are coupled to medical device 150 via a lock, such as a lock comprising a plug disposed in a tubular member (e.g., as described with reference to FIGS. 45A-C and/or 64A-C, mutatis mutandis). It is to be noted that the scope of the present application includes other techniques for coupling retrieval wires 490 to medical device 150, and decoupling the retrieval wires. In the application of the invention described with reference to FIGS. 9A-E, medical device 150 comprises prosthetic valve 42.
  • FIG. 9B shows prosthetic valve 42 in a compressed (i.e., crimped) configuration for delivery and deployment using delivery apparatus 438. Prosthetic valve 42 typically has a lattice structure that defines a plurality of shapes, and respective voids 126 (FIG. 9C), and has shape memory (described in more detail hereinbelow, such as with reference to FIGS. 53A-C and 62A-D, mutatis mutandis). Prosthetic valve 42 is shown in a compressed (e.g., crimped) configuration, and as shown in the enlarged image, a proximal portion of valve 42 is disposed around (e.g., against) core 144 of pushing member 140 such that each of coupling tabs 146 is disposed within a respective void 126 defined by the lattice structure of the prosthetic valve.
  • Prosthetic valve 42 and pushing member 140 are disposed within the lumen of delivery tube 154. Delivery tube 154 restricts expansion of prosthetic valve 42, thereby holding the proximal portion of prosthetic valve 42 around core 144 of pushing member 140, in the configuration described herein. Coupling tabs 146 restrict movement of prosthetic valve 42 with respect to pushing member 140. Delivery tube 154 therefore facilitates coupling of prosthetic valve 42 to pushing member 140 via coupling tabs 146. In applications of the invention where pushing member 140 is shaped to define plate 148, the plate typically further facilitates this coupling by restricting proximal movement of prosthetic valve 42 with respect to the pushing member (i.e., by functioning as a cap). Thereby, in the compressed configuration thereof, prosthetic valve 42 is configured to be fixedly coupled to pushing member 140.
  • A control tube 152 is typically coupled at a distal end thereof to pushing member 140 (e.g., control tube 152 is coupled to support 142). Control tube 152 is shaped so as to define a lumen through which a guidewire tube 153 passes, and control tube 152 is slidable with respect to and along guidewire tube 153. Guidewire tube 153 houses guidewire 45 described hereinabove. Control tube 152 is slidably disposed within a lumen of an overtube 155.
  • FIG. 9C shows prosthetic valve 42 partially deployed from delivery tube 154. Pushing member 140, and, thereby, prosthetic valve 42, are moved distally through delivery tube 154.
  • Reference is again made to FIG. 9C. Pushing member 140 is pushed distally by pushing control tube 152 along guidewire tube 153 such that pushing member 140 pushes prosthetic valve 42. As pushing member 140 pushes valve 42 distally, distal portions of the prosthetic valve expand toward the expanded configuration as they become exposed from delivery tube 154, while the proximal end of valve 42 remains coupled to pushing member 140 via tabs 146.
  • FIG. 9D shows prosthetic valve 42 having been fully deployed from within delivery tube 154. Pushing member 140 and prosthetic valve 42 are moved further distally through delivery tube 154 by control tube 152. When the proximal portion of prosthetic valve 42 emerges from within delivery tube 154, expansion of the proximal portion of prosthetic valve 42 uncouples the prosthetic valve from coupling tabs 146 by expanding voids 126 away from tabs 146, thereby releasing the prosthetic valve from pushing member 140. For some applications, retrieval wires 490 are generally loose, such that expansion of prosthetic valve 42 pulls the wires through conduits 492, and radially outward from core 144. For some applications, retrieval wires 490 are under tension, and are released gradually, so as to control expansion of prosthetic valve 42. That is, for some applications, the expansion of prosthetic valve 42 is restricted (e.g., controlled) by the distal advancement of retrieval wires 490.
  • Should it be necessary and/or desirable during deployment, until medical device 150 (e.g., prosthetic valv