US20070112418A1 - Stent with spiral side-branch support designs - Google Patents
Stent with spiral side-branch support designs Download PDFInfo
- Publication number
- US20070112418A1 US20070112418A1 US11/273,186 US27318605A US2007112418A1 US 20070112418 A1 US20070112418 A1 US 20070112418A1 US 27318605 A US27318605 A US 27318605A US 2007112418 A1 US2007112418 A1 US 2007112418A1
- Authority
- US
- United States
- Prior art keywords
- stent
- spiral
- side branch
- expandable
- center point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000037361 pathway Effects 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 238000005755 formation reaction Methods 0.000 abstract 2
- 239000000463 material Substances 0.000 description 58
- WYTGDNHDOZPMIW-UHOFOFEASA-O Serpentine Natural products O=C(OC)C=1[C@@H]2[C@@H]([C@@H](C)OC=1)C[n+]1c(c3[nH]c4c(c3cc1)cccc4)C2 WYTGDNHDOZPMIW-UHOFOFEASA-O 0.000 description 28
- 239000000203 mixture Substances 0.000 description 24
- 230000001419 dependent Effects 0.000 description 20
- 239000003814 drug Substances 0.000 description 16
- 230000001413 cellular Effects 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 14
- 239000003550 marker Substances 0.000 description 14
- 230000002068 genetic Effects 0.000 description 10
- 229910001000 nickel titanium Inorganic materials 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 230000003902 lesions Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000006065 biodegradation reaction Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- -1 platinum-iridium Chemical compound 0.000 description 6
- 230000002792 vascular Effects 0.000 description 6
- 210000001367 Arteries Anatomy 0.000 description 4
- ZFGMDIBRIDKWMY-PASTXAENSA-N Heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 4
- 210000000554 Iris Anatomy 0.000 description 4
- 229920000954 Polyglycolide Polymers 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive Effects 0.000 description 4
- 235000019994 cava Nutrition 0.000 description 4
- 229910000701 elgiloys (Co-Cr-Ni Alloy) Inorganic materials 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000004633 polyglycolic acid Substances 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 229920000160 (ribonucleotides)n+m Polymers 0.000 description 2
- 210000000013 Bile Ducts Anatomy 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000003693 Hedgehog Proteins Human genes 0.000 description 2
- 108090000031 Hedgehog Proteins Proteins 0.000 description 2
- 229960002897 Heparin Drugs 0.000 description 2
- 210000003090 Iliac Artery Anatomy 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N Intaxel Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 229910000575 Ir alloy Inorganic materials 0.000 description 2
- 240000001439 Opuntia Species 0.000 description 2
- 229960001592 Paclitaxel Drugs 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229920000431 Shape-memory polymer Polymers 0.000 description 2
- 229910000639 Spring steel Inorganic materials 0.000 description 2
- 210000001635 Urinary Tract Anatomy 0.000 description 2
- 210000003462 Veins Anatomy 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 2
- 238000002399 angioplasty Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 239000000788 chromium alloy Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229960005188 collagen Drugs 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229920003013 deoxyribonucleic acid Polymers 0.000 description 2
- 229940079593 drugs Drugs 0.000 description 2
- 239000003527 fibrinolytic agent Substances 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 239000007952 growth promoter Substances 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 239000002628 heparin derivative Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000747 poly(lactic acid) polymer Polymers 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 239000004632 polycaprolactone Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 200000000008 restenosis Diseases 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000002966 stenotic Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229930003347 taxol Natural products 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229920000428 triblock copolymer Polymers 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/856—Single tubular stent with a side portal passage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91525—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91558—Adjacent bands being connected to each other connected peak to peak
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91575—Adjacent bands being connected to each other connected peak to trough
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/005—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0058—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/005—Rosette-shaped, e.g. star-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0091—Three-dimensional shapes helically-coiled or spirally-coiled, i.e. having a 2-D spiral cross-section
Abstract
An expandable stent may be made having an expandable spiral side branch support section having a spiral configuration and disposed about a center point. The expandable spiral side branch support section is configured to expand outward to allow for the formation of a bifurcated stent with a side branch.
Description
- Not Applicable
- Not Applicable
- Stents, grafts, stent-grafts, vena cava filters and similar implantable medical devices, collectively referred to hereinafter as stents, are radially expandable endoprostheses which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. Stents may be implanted in a variety of body lumens or vessels such as within the vascular system, urinary tracts, bile ducts, etc. Stents may be used to reinforce body vessels and to prevent restenosis following angioplasty in the vascular system. They may be self-expanding or expanded by an internal radial force, such as when mounted on a balloon.
- Stents are generally tubular devices for insertion into body lumens. Balloon expandable stents require mounting over a balloon, positioning, and inflation of the balloon to expand the stent radially outward. Self-expanding stents expand into place when unconstrained, without requiring assistance from a balloon. A self-expanding stent is biased so as to expand upon release from the delivery catheter. Some stents may be characterized as hybrid stents which have some characteristics of both self-expandable and balloon expandable stents.
- Stents may be constructed from a variety of materials such as stainless steel, Elgiloy, nitinol, shape memory polymers, etc. Stents may also be formed in a variety of manners as well. For example, a stent may be formed by etching or cutting the stent pattern from a tube or section of stent material; a sheet of stent material may be cut or etched according to a desired stent pattern whereupon the sheet may be rolled or other wise formed into the desired tubular or bifurcated tubular shape of the stent; one or more wires or ribbons of stent material may be braided or otherwise formed into a desired shape and pattern.
- Within the vasculature however, it is not uncommon for stenoses to form at a vessel bifurcation. A bifurcation is an area of the vasculature or other portion of the body where a first (or parent) vessel is bifurcated into two or more branch vessels. Where a stenotic lesion or lesions form at such a bifurcations, the lesion(s) can affect only one of the vessels (i.e., either of the branch vessels or the parent vessel) two of the vessels, or all three vessels. Many prior art stents however are not wholly satisfactory for use where the site of desired application of the stent is juxtaposed or extends across a bifurcation in an artery or vein such, for example, as the bifurcation in the mammalian aortic artery into the common iliac arteries.
- All U.S. patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety
- Without limiting the scope of the invention a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
- A brief abstract of the technical disclosure in the specification is provided as well only for the purposes of complying with 37 C.F.R. 1.72. The abstract is not intended to be used for interpreting the scope of the claims.
- The present invention includes many different embodiments. Various embodiments of the invention are directed to designs of stents, bifurcated stents and/or the methods utilized to deliver a bifurcated stent to a bifurcation site.
- In one or more embodiments, the invention is directed to an expandable stent having a flow path therethrough and an exterior surface and an interior surface, a constant inner diameter and an outer diameter. The stent comprises an expandable spiral side branch support section having a spiral configuration and disposed about a center point. The center point is located at a first longitudinal coordinate and circumferential coordinate. The spiral side branch support section comprises at least one spiral arm forming a curve extending at least partially around the center point. The at least one spiral arm has a first end and a second end, the second end positioned closer to the center point than the first end. The stent has no more than one spiral branch support section disposed about a center point located at the first longitudinal coordinate.
- In one or more embodiments, the invention is directed to an expandable stent having a longitudinal flowpath therethrough and having an exterior surface and an interior surface, an inner diameter and an outer diameter. The stent comprises an expandable spiral side branch support section which lies flush with the inner surface of the remainder of the stent. The expandable spiral side branch has a spiral configuration and is disposed about a center point located at a first longitudinal coordinate and circumferential coordinate. The spiral side branch support section comprises at least one spiral arm forming a curve extending at least partially around the center point. The at least one spiral arm has a first end and a second end, the second end positioned closer to the center point than the first end. The stent has no more than one spiral branch support section disposed about a center point located at the first longitudinal coordinate.
- The invention is also directed to bifurcated stents formed by providing any of the expandable stents disclosed herein, expanding the stent to a first diameter and expanding the at least one spiral arm outward to define a second flowpath which branches off the longitudinal flowpath.
- The invention is also directed to, in combination, a catheter and an expandable stent having a tubular surface disposed about a longitudinal flowpath, the tubular surface including at least one arm which is arranged along the surface about an opening, the opening having a first size in an unexpanded state of the stent, the at least one arm arranged to define a spiral, the expandable stent disposed about the catheter, the catheter including an elongated member which extends through the expandable spiral side branch support section.
- Additional details and/or embodiments of the invention are discussed below.
- A detailed description of the invention is hereafter described with specific reference being made to the drawings.
-
FIG. 1 is a side view of the stent with a spiral side branch section that has one spiral arm in the unexpanded state. -
FIG. 2 is a view of the stent with a spiral side branch section that has a plurality of spiral arms in the expanded state. -
FIG. 3 is a side view of the stent with a spiral side branch section that has a circumferential member engaged to a plurality of spiral arms in the unexpanded state. -
FIG. 4 is a side view of the stent with another embodiment of the spiral side branch section ofFIG. 3 in the unexpanded state. -
FIG. 5 is a side view of the stent with a spiral side branch section that has a plurality of spiral arms with free ends in the unexpanded state. -
FIG. 6 is a side view of the stent with a spiral side branch section that has a plurality of spiral arms and a circumferential member with a serpentine shape in the unexpanded state. -
FIG. 7 is a side view of the stent with a spiral side branch section that has a plurality of serpentine shaped circumferential members and a plurality of spiral arms in an unexpanded state. -
FIG. 8 a is a side view of the stent with a spiral side branch section that has a circumferential member with a locking mechanism and a plurality of spiral arms in an unexpanded state. -
FIG. 8 b shows a locking mechanism which may be used in the stent ofFIG. 8 a. -
FIG. 8 c shows the locking mechanism ofFIG. 8 b immediately prior to engagement -
FIG. 9 is a side view of the stent inFIG. 8 a with a radiopaque marker on the circumferential member. -
FIG. 10 a is a side view of the stent ofFIG. 8 a with the spiral side branch section in an expanded state, the spiral arms are straight when in an expanded state. -
FIG. 10 b is a side view of the stent ofFIG. 8 a with the spiral branch section in an expanded state, the spiral arms are curved when in an expanded state. -
FIG. 11 is a side view of the stent with a spiral side branch section in an unexpanded state consisting of four spiral arms. -
FIG. 12 is a side view of the stent with a spiral side branch section that has four spiral arms, each spiral arm having an opening in the width of the spiral arm, in an unexpanded state. -
FIG. 13 is a side view of the stent with the spiral side branch section ofFIG. 11 in an expanded state. -
FIG. 14 is a side view of an embodiment of the stent with a spiral side branch section that has a plurality of serpentine shaped circumferential members and a plurality of spiral arms in an unexpanded state. -
FIG. 15 is a perspective view of the embodiment inFIG. 14 in an expanded state. -
FIG. 16 is a side view of an embodiment of the stent with a spiral side branch section that has a plurality of interconnected spiral arms in an unexpanded state. -
FIG. 17 is a perspective view of the embodiment inFIG. 16 in an expanded state. - While this invention may be embodied in many different forms, there are described in detail herein specific embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
- For purposes of this disclosure, like reference numerals in the figures shall refer to like features unless otherwise indicated.
- As used herein the term ‘stent’ refers to an expandable prosthesis for implantation into a body lumen or vessel and includes devices such as stents, grafts, stent-grafts, vena cava filters, expandable frameworks, etc.
- Referring now to the drawings which are for the purposes of illustrating embodiments of the invention only and not for purposes of limiting same, in at least one embodiment of the invention, an example of which is shown in
FIG. 1 ,stent 20, shown in side view, comprises an expandable spiral sidebranch support section 24. Expandable spiral sidebranch support section 24 has a spiral configuration and is disposed about acenter opening 32 and center point. The center point is located at a first longitudinal coordinate and a first circumferential coordinate. The longitudinal coordinate indicates where, along the length of the stent, the center point is located. The circumferential coordinate indicates where, about the circumference of the stent, the center point lies. The spiral sidebranch support section 24 comprises at least onespiral arm 28 forming a curve extending at least partially around the center point. The at least one spiral arm has a first end and a second end. One of the two ends is positioned closer to the center point than the other of the two ends. - The stent of
FIG. 1 has no more than one spiralbranch support section 24 located at the first longitudinal coordinate. Thus, there are no other spiral branch support sections which are disposed about the circumference of the stent and located at the first longitudinal coordinate. In other embodiments of the invention, additional spiral branch support sections may be located at the first longitudinal coordinate or any other longitudinal and circumferential coordinate. Moreover, the spiral sidebranch support section 24 has only onespiral arm 28. - The
outer support member 30 can have any shape, for example a shape that corresponds to the cellular design of theprimary stent section 22, a circular shape, or a serpentine shape. Theouter support member 30 ofFIGS. 2-13 has a circular shape. Theouter support member 30 ofFIGS. 2-13 has at least onespiral arm 28 extending therefrom. If the spiralside branch section 24 hascircumferential members 34, thecircumferential members 34 can have any shape. In at least one embodiment, all thecircumferential members 34 have the same shape. - Any suitable stent geometry may be used for the main body of the stent. The pattern of interconnected
serpentine bands 19 shown is shown by way of example only. The struts that form the serpentine band may be straight as shown inFIG. 1 or may be bent. The stent ofFIG. 14 shows straight and bent struts. - If the
spiral arm 28 has sufficient length, thespiral arm 28 will form a spiral around theopening 32 in the spiralside branch section 24. Eachspiral arm 28 has adistal end 50 and aproximal end 52. Thedistal end 50 of thespiral arm 28 is positioned closer to the center of theopening 32 of the spiralside branch section 24 than theproximal end 52. - A non-bifurcated stent is formed when only the
primary branch section 22 is in an expanded state. A bifurcated stent is formed when both theprimary branch section 22 and the spiralside branch section 24 are in an expanded state. - In
FIG. 1 , theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. The spiralside branch section 24 has anouter support member 30 and onespiral arm 28. Theproximal end 52 of thespiral arm 28 is engaged to theouter support member 30. Thedistal end 50 of thespiral arm 28 is closer to the center of theopening 32 of the spiralside branch section 24 than theproximal end 52. - More generally, the stent of
FIG. 1 may have more than one spiral side branch section. Where there is a plurality of side branch sections, the side branches may be disposed at different locations along the length of the stent, different circumferential locations about the stent or both. Where a plurality of side branch sections is present, the side branches may be of the same length or of different lengths. The side branch sections may have only one spiral arm per side branch section or one or more of the side branch sections may each have a plurality of spiral arms. - The stent of
FIG. 1 may prove to be advantageous as compared with some of the known petal designs for bifurcated stents. In the case of the latter stents, some of the petals typically have to be bent at an angle in excess of 90 degrees resulting in high stresses on those petals. No such extreme bending occurs during deployment of the stent ofFIG. 1 as well as during deployment of other stents disclosed herein. - Another embodiment of the invention is shown at 20 in
FIG. 2 .Stent 20, shown in an expanded state, has aprimary branch section 22 and a spiralside branch section 24 that extends from theprimary branch section 22. Theprimary branch section 22 is a substantially tubular body disposed about a longitudinal axis. Those skilled in the art will recognize that the pattern of theprimary branch section 22 can have any cellular design. In some embodiments of the invention, theprimary branch section 22 may be characterized as a substantially solid or porous tubular member. - The expandable
primary branch section 22 has a first diameter in an unexpanded state (not shown) and a second diameter in an expanded state. In an unexpanded state of the stent, the entirety of the spiralside branch section 24 forms a part of the surface of the substantially tubular body of theprimary branch section 22. The unexpanded version of the stent has only one longitudinal flowpath and does not include a portion which branches off of the longitudinal flowpath. - The spiral
side branch section 24 has anouter support member 30 and at least onespiral arm 28 that curves around anopening 32 in the spiralside branch section 24. - In
FIG. 2 theprimary branch section 22 and the spiralside branch section 24 are shown in an expanded state. The spiralside branch section 24 of thestent 20 has anouter support member 30 and a plurality ofspiral arms 28. Theproximal end 52 of eachspiral arm 28 is engaged to theouter support member 30. When the spiralside branch section 24 is in an expanded state thespiral arms 28 form a plurality of helices depending upon the number ofspiral arms 28. - Another embodiment of the invention is shown in an unexpanded state in side view in
FIG. 3 . In the embodiment ofFIG. 3 , theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. The spiralside branch section 24 has anouter support member 30, a plurality ofspiral arms 28 and acircumferential member 34. The shape of thecircumferential member 34 is a 5 point star. The proximal ends 52 of thespiral arms 28 are engaged to theouter support member 30. The distal ends 50 of thespiral arms 28 may be engaged to thecircumferential member 34 either at the apexes of the star shapedcircumferential member 34 or between the apexes of the star shapedcircumferential member 34. - Further as shown in
FIG. 3 , thespiral arms 28 are engaged to thecircumferential member 34 at theapexes 31. In addition, thecircumferential member 34 bounds afirst area 58 in an unexpanded state. Thefirst area 58 is smaller than the area bounded by thecircumferential member 34 in an expanded state. - Another embodiment of the invention is shown in side view in
FIG. 4 . In the embodiment ofFIG. 4 , theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. Spiralside branch section 24 includes acircumferential member 34 that is a 6 point star. - The invention is also directed to a stent having a side wall with a plurality of openings therethrough, at least one of the openings being in the form of a star-shaped opening bounded by a star shaped member. The star-shaped opening may be a star with three to nine points, as shown by way of example in
FIG. 3 by a five pointed star, or a six pointed star shown inFIG. 4 . Typically, there will be additional expandable structure connecting the star shaped structure to the remainder of the stent. The additional structure is configured to be expandable to form a side branch. - The stent typically will have the star shaped opening in the unexpanded state. Desirably, the stent may be expanded to form a main body and a side branch extending therefrom. The side branch may be formed by disposing a balloon catheter through the side branch terminating in the star shaped opening and inflating the balloon. Where the stent is self-expanding, the side branch structure may be allowed to self-expand.
- In the embodiment of
FIG. 5 , theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. The spiralside branch section 24 has anouter support member 30 and a plurality ofspiral arms 28. The proximal ends 52 of the spiral arms are engaged to theouter support member 30. The distal ends 50 of thespiral arms 28 are free ends. - In one or more embodiments, the invention is directed to a stent comprising a plurality of spiral arms with free ends, as shown by way of example in
FIG. 5 . The stent may be in an unexpanded or expanded state (not shown). In an expanded state, the free ends extend outward from a main body of the stent and form a side branch. - In the embodiment of
FIG. 6 , theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. The spiralside branch section 24 has anouter support member 30, a plurality ofspiral arms 28 and acircumferential member 34 with a serpentine shape that has turns 36. The proximal ends 52 of thespiral arms 28 are engaged to theouter support member 30. The distal ends 50 of thespiral arms 28 are engaged to thecircumferential member 34 between theturns 36. Alternatively the distal ends 50 of thespiral arms 28 may be engaged to thecircumferential member 34 at theturns 36. Thecircumferential member 34 hasfirst diameter 58 in an unexpanded state as measured by the distance between opposite turns. Thefirst diameter 58 is smaller than the diameter of thecircumferential member 34 in an expanded state. - The invention is also directed to a stent having a
side branch section 24 with alternatingring members 34 andspiral arms 28 between the alternatingring members 34, as shown by way of example inFIGS. 7 and 14 . The embodiment inFIG. 14 shows a side branch with threeconcentric rings 34 a,b,c and three sets ofspiral arms 28 a,b,c. It is within the scope of the embodiment to have more than three concentric rings and three sets of spiral arms. In the embodiment ofFIG. 7 theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. The spiralside branch section 24 has anouter support member 30, a plurality ofspiral arms 28 a, each spiral arm having adistal end 50 a and aproximal end 52 a, acircumferential member 34 a with a serpentine shape that has turns 36, a plurality ofspiral arms 28 b, eachspiral arm 28 b having adistal end 50 b and aproximal end 52 b, and acircumferential member 34 b with a serpentine shape that has turns 36. - The proximal ends 52 a of the
spiral arms 28 a are engaged to theouter support member 30. The distal ends 50 a of thespiral arms 28 a are engaged to theturns 36 of thecircumferential member 34 a. The proximal ends 52 b of thespiral arms 28 b are engaged to thecircumferential member 34 a between theturns 36. The distal ends 50 b of thespiral arms 28 b are engaged to thecircumferential member 34 b at theturns 36. - In the embodiment of
FIG. 14 , theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. The spiralside branch section 24 has anouter support member 30, a plurality ofspiral arms 28 a, each spiral arm having adistal end 50 a and aproximal end 52 a, acircumferential member 34 a with a serpentine shape that has turns 36, a plurality ofspiral arms 28 b, eachspiral arm 28 b having a distal end and a proximal end, acircumferential member 34 b with a serpentine shape that has turns 36, a plurality ofspiral arms 28 c, eachspiral arm 28 c having a distal end and a proximal end. - The proximal ends 52 a of the
spiral arms 28 a are engaged to theouter support member 30. The distal ends 50 a of thespiral arms 28 a are engaged to theturns 36 of thecircumferential member 34 a. The proximal ends of thespiral arms 28 b are engaged to theturns 36 of thecircumferential member 34 a. The distal ends of thespiral arms 28 b are engaged to theturns 36 of thecircumferential member 34 b. The proximal ends of thespiral arms 28 c are engaged to theturns 36 of thecircumferential member 34 b. The distal ends of thespiral arms 28 c are engaged to the turns of the circumferential member 34 c.FIG. 15 shows the embodiment of the spiral branch section inFIG. 14 in an expanded state. - In at least one embodiment, there is an
intermediate ring 34 with peaks and troughs in the unexpanded state, such as is depicted inFIG. 14 . The troughs are connected to the peaks of the outer ring. The peaks are connected to the inner ring. The curvature of the peaks and troughs is similar between rings. - The invention is also directed to a stent having a
side branch section 24 with a plurality of interconnected spiral arms that extend in a pinwheel fashion around a center point, as shown by way of example inFIG. 16 . The spiralside branch section 24 has anouter support member 30, a plurality ofspiral arms 28, each spiral arm having adistal end 50 and aproximal end 52 and a plurality ofconnectors 38. The plurality ofconnectors 38 engage the proximal ends 52 of thespiral arms 28 to theouter support member 30 and the plurality ofconnectors 38 interconnect thespiral arms 28 at a plurality of locations. In this embodiment there are eightspiral arms 28, however there can be more than eightspiral arms 28.FIG. 17 shows the spiral side branch embodiment ofFIG. 16 in an expanded state. - In the embodiment of
FIG. 8 a, theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. The spiralside branch section 24 has anouter support member 30, a plurality ofspiral arms 28, each spiral arm having adistal end 50 and aproximal end 52, acircumferential member 34 and alocking mechanism 42. Thecircumferential member 34 has afirst diameter 58 in an unexpanded state. Thefirst diameter 58 is smaller than the diameter of thecircumferential member 34 in an expanded state. Thelocking mechanism 42 only allows thecircumferential member 34 to open in one direction. An example of a suitable locking mechanism is shown by way of example inFIG. 8 b.FIG. 8 b shows atongue 103 and groove 101 mechanism. The mechanism is shown inFIG. 8 c immediately prior to engagement. - In the embodiment of
FIG. 9 , theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. Thecircumferential member 34 of the spiralside branch section 24 ofFIG. 8 a has aradiopaque marker 48. Theradiopaque marker 48 allows a practitioner to advance thestent 20 to thebifurcation 10 and visually align the spiralside branch section 24 of thestent 20 with thebranch vessel 14 using fluoroscopy or other means. Theradiopaque marker 48 may be comprise any suitable radiopaque material. - The invention is also directed to a bifurcated stent having a main branch and a side branch extending from the main branch. The side branch includes a lock. The lock may be configured to lock the side branch in an expanded configuration.
- The invention is also directed to a stent having a sidewall with an iris-shaped structure. Examples of such are shown in
FIGS. 3-9 where theside branch section 24 forms the iris shaped structure. In some embodiments, the iris-shaped structure will be present in the unexpanded state of the stent. The iris-shaped structure will desirably be expandable outward to form a side branch having a flow path therethrough, the side branch extending outward from a main flow path of the stent. The iris-shaped structure may optionally comprise a plurality of curved members such as the spiral arms disclosed above which together form a spiral pattern about a center point. In some embodiments, the curved members will be of equal length and/or shape. - In some embodiments, the curved members will have free ends. This is shown by way of example in
FIG. 5 . Curved members in the form ofspiral arms 28 have one free end. - In other embodiments, one end of the curved arms will extend from an outer ring-like pathway and the other end of the curved arms will extend from an inner ring. An example of such a structure is shown in
FIG. 3 . The inner ring structure is in the form ofcircumferential member 34 which is a 5 pointed star while the outer ring structure is in the form of anouter support member 30 which is in the form of a circle. Another example of such is the stent ofFIG. 6 . The curved arms are attached at one end toouter support member 30 in the form of a circular structure. The curved arms are attached at the other end to a firstcircumferential member 34 a which forms a propeller-like structure. The propeller-like structure may also be described as being a substantially circular structure with a plurality of folds extending therefrom.Stent 20 ofFIG. 6 further includes a second propeller-like structure extending from the first propeller-like structure. - In the embodiment of
FIGS. 10 a and 10 b, the spiralside branch section 24 ofFIG. 7 is in an expanded state. Thecircumferential member 34 has an expandeddiameter 60. When expanded, thespiral arms 28 of theside branch section 24 either can be straight as depicted inFIG. 10 a or curved as depicted inFIG. 10 b. - In the embodiment of
FIG. 11 , theprimary branch section 22 and the spiralside branch section 24 are shown in an unexpanded state. The spiralside branch section 24 has anouter support member 30 and a plurality ofspiral arms 28 d. Thespiral arms 28 d have a width, length andproximal end 52. The embodiment shown inFIG. 11 has fourspiral arms 28 d. Thespiral arms 28 d can have any length. In this embodiment, all thespiral arms 28 d in a spiralside branch section 24 will have the same length. In at least one embodiment, all thespiral arms 28 d are not the same length. InFIG. 11 , the width of thespiral arms 28 d is solid. In another embodiment as shown inFIG. 12 , the interior portion of the width of thespiral arm 28 d may have anopening 39 therethrough. InFIG. 13 , the spiralside branch section 24 ofFIG. 11 is in an expanded state. - In yet another embodiment of the invention, a stent may be provided with a side branch support section with one or more self-expandable members extending therefrom. The self-expandable member may be in the form of a shape memory wire whose memorized shape is that of a coil. Any suitable shape memory material may be used including nitinol. The wire may be coiled when in the martensitic state and straightened and projecting outward in the austenitic state with a transition temperature at or below body temperature. The stent may be maintained in its straightened shape via a sheath. Once the one or more wires are in the bifurcated vessel, upon removal of the sheath, the one or more wires may assume the form of a coil. The wires may be welded to the main body of the stent or otherwise suitably attached thereto. It is within the scope of the invention to include only one such wire per side branch to be formed or to include two, three, four, five or more wires per side branch location.
- In another embodiment of the invention, the self-expanding wires need not be attached to the main body of the stent. Rather, the one or more wires may be delivered to the desired bodily location once a primary stent, optionally balloon expandable, has been delivered to the desired bodily location. The delivery of the one or more wires to the side branch may also be simultaneous with the delivery of the primary stent. Where two wires which form coils are to be used, the wires may be arranged such that they form counter-wound helices.
- Any of the inventive stents disclosed herein may have a uniform inner diameter and/or a uniform outer diameter in the unexpanded state and/or in an expanded state. The inventive stents disclosed herein may also be provided in an embodiment in which the inner and/or outer diameters are not uniform. For example, one or more portions of the stent may have a tapered outer diameter. The main body may be tapered, the side branch may be tapered or both may be tapered.
- In any of the inventive stents disclosed herein, the spiral side branch section may have one or more spiral arms. The spiral side branch may be of uniform diameter when expanded or variable diameter when expanded. As an example of the latter, the spiral side branch, when expanded, may have a portion which tapers. The spiral side branch may taper from a larger diameter at the bifurcation to a smaller diameter further into the bifurcation vessel.
- In many of the embodiments shown in the figures, there is no more than one spiral branch support section located in a given circumferential section of the stent. In other embodiments of the invention, additional spiral branch support sections may be located within a given circumferential segment of the stent. The inventive stents may also have multiple spiral branch support sections disposed along the length of the stent.
- Also, in many of the figures, portions of the inventive stent are drawn without showing structure. It is understood that any suitable structure may be employed including, but not limited to, the cellular patterns, shown by way of example only, in U.S. Pat. Nos. 6,835,203, 6348065, and 6013091.
- At least some of the embodiments disclosed herein, for example, that of
FIG. 1 , are advantageous in that they do not require the spiral arms to be bent back at angles in excess of 90 degrees when the side branch is expanded. Many of the prior art bifurcated stents which have petals will include petals which are bent back in excess of 90 degrees when the side branch is deployed. - At least some of the embodiments, for example, at least that of
FIG. 1 , are advantageous in that, for a given length of starting material (for example, a tubular blank), a longer side branch section can be made via the use of spirals. - In at least one embodiment, the invention is directed to a stent that has an expandable primary branch section and a separately expandable spiral side branch section that forms a part of the primary branch section. The expandable primary branch section is a substantially tubular body disposed about a longitudinal axis. The expandable primary branch section has a first diameter in an unexpanded state and a second diameter in an expanded state. The spiral side branch section has an unexpanded state and an expanded state. In an unexpanded state the entirety of the spiral side branch section forms a part of the surface of the substantially tubular body of the primary branch section. Thus, the spiral side branch section has the same uniform thickness as the primary branch section. The spiral side branch section has an outer support member and at least one spiral arm that curves around an opening in the spiral side branch section. The outer support member can have any shape, e.g. a shape that corresponds to the cellular design of the primary stent section, a circular shape or a serpentine shape. Each spiral arm has a proximal end and a distal end. The distal end of the spiral arm is positioned closer to the center of the opening of the spiral side branch support section than the proximal end. A non-bifurcated stent is formed when the primary branch section is in an expanded state and the spiral side branch section is in an unexpanded state. A bifurcated stent is formed when both the primary branch section and the spiral side branch section are in an expanded state.
- In at least one embodiment, the spiral side branch section has only one spiral arm that expands into a coil when the spiral side branch section is in an expanded state.
- In at least one embodiment, the spiral side branch section has a plurality of spiral arms. The distal ends of the spiral arms expand into a helix or multiple helices when the spiral side branch section is in an expanded state. The spiral design provides uniform support and a custom fit for tapering vessels.
- In at least one embodiment, the spiral side branch section has a plurality of spiral arms and a circumferential member. The circumferential member has a first diameter in an unexpanded state and second diameter in an expanded state, the second diameter is larger than the first diameter. A plurality of spiral arms is engaged to the circumferential member. The circumferential member can be any shape. Some shapes, such as a star, can have apexes and valleys. If the shape has apexes and valleys, the spiral arms can be engaged to the circumferential member at the apexes, at the valleys, or anywhere in between. The circumferential member provides support at the distal end of the spiral side branch section.
- In another embodiment the circumferential member has a serpentine shape, which has turns. In one embodiment the plurality of spiral arms are engaged to the circumferential member at the turns. In another embodiment the plurality of spiral arms are engaged to the circumferential member between the turns.
- In at least one embodiment, the spiral side branch section has a plurality of circumferential members and a plurality of spiral arms. Each circumferential member can be any shape, but preferably all the circumferential members of a particular spiral side branch design have the same shape. Each circumferential member has a first diameter in an unexpanded state that is different from the first diameter of the other circumferential members, i.e. a first diameter that is either larger or smaller than the first diameter of the other circumferential members. The circumferential members are arranged so that the circumferential member with the smallest first diameter, the first circumferential member, is located closest to the center of the spiral side branch opening and the circumferential member with the largest first diameter, the nth circumferential member, is located farthest away from the center of the spiral side branch section opening. The circumferential members are engaged to neighboring circumferential members by a plurality of spiral arms.
- In another embodiment there are two serpentine circumferential members and a plurality of spiral arms. Each serpentine circumferential member has a first diameter in an unexpanded state. The first diameters of the two serpentine circumferential members are different, one serpentine circumferential member having a first diameter smaller than the other serpentine circumferential member. The primary branch section can be engaged to an outer support member of the spiral side branch section. The outer support member is engaged to the proximal ends of some of the plurality of spiral arms. The distal ends of some of the plurality of spiral arms are engaged to the circumferential member with the largest first diameter at the apexes of the curved undulations. The proximal ends of some of the plurality of spiral arms are engaged to the valleys of the first circumferential member. The distal ends of the second set of spiral arms are engaged to the apexes of the curved undulations of the circumferential member with the smaller first diameter. The multiple circumferential members provide circumferential support at multiple locations of the side branch lumen while the spiral arms provide flexibility and good conformability at difficult lesion areas.
- In at least one embodiment, the spiral side branch section has a circumferential member, a plurality of spiral arms and a locking mechanism. The primary stent section can be engaged to an outer support member of the spiral side branch section. The outer support member is engaged to the circumferential member by a plurality of spiral segments where at least one of the spiral arms is held in place to the circumferential member by a locking mechanism. The circumferential member can be any shape. The locking mechanism allows the rings to open in only one direction. The locking center ring provides distal support for the side branch lumen.
- In at least one embodiment, the spiral side branch has at least three spiral arms. The spiral arms have a width, a length and an apex. The spiral arms may be self- expanding or balloon expandable. The length of the spiral arms can vary but preferably all the spiral arms in a spiral side branch section will have the same length. In another embodiment, there may be an opening within the width of the spiral arm.
- The inventive stents may be deployed to a desired bodily location by a catheter. The inventive stent may be disposed about a catheter. If a bifurcated stent is desired, the catheter used to deliver the stent can have an elongated member that extends through the opening of the side branch section of the stent. The elongated member may be a guide wire, a catheter tube or a balloon. The catheter is used to advance the stent to the desired bodily location.
- The invention is also directed to any of the inventive stents disclosed here in combination with or disposed about a delivery catheter. Optionally, the delivery catheter may include a first guide wire extending along the longitudinal flow path of the main body of the stent and a second guide wire extending out through the side branch support section.
- The inventive stents may be made from any suitable biocompatible materials including one or more polymers, one or more metals or combinations of polymer(s) and metal(s). Examples of suitable materials include biodegradable materials that are also biocompatible. Biodegradable means that a material will undergo breakdown or decomposition into harmless compounds as part of a normal biological process. Suitable biodegradable materials include polylactic acid, polyglycolic acid (PGA), collagen or other connective proteins or natural materials, polycaprolactone, hylauric acid, adhesive proteins, co-polymers of these materials as well as composites and combinations thereof and combinations of other biodegradable polymers. Other polymers that may be used include polyester and polycarbonate copolymers. Examples of suitable metals include, but are not limited to, stainless steel, titanium, tantalum, platinum, tungsten, gold and alloys of any of the above-mentioned metals. Examples of suitable alloys include platinum-iridium alloys, cobalt-chromium alloys including Elgiloy and Phynox, MP35N alloy and nickel-titanium alloys, for example, Nitinol.
- The inventive stents may be made of shape memory materials such as superelastic Nitinol or spring steel, or may be made of materials which are plastically deformable. In the case of shape memory materials, the stent may be provided with a memorized shape and then deformed to a reduced diameter shape. The stent may restore itself to its memorized shape upon being heated to a transition temperature and having any restraints removed therefrom.
- The inventive stents may be manufactured by methods including cutting or etching a design from a tubular stock or from a flat sheet. In the latter case, the sheet may be rolled into a stent and the edges optionally joined together via welding, gluing or any other suitable technique. The stent may also be made by fabricating individual portions of the stent and then joining the portions together. For example, the main portion of the stent and the side branch portion may be separately manufactured and then joined together via welding, the use of adhesives or any other suitable technique. The stent may also be manufactured by any other suitable technique known in the art or subsequently developed.
- The invention is also directed to the manufacture of the inventive stents disclosed herein. To that end, the invention is directed to a method comprising the steps of providing a tube or sheet of stent material and cutting any of the inventive stent patterns disclosed herein into the tube or sheet. In the case of a sheet, the edges of the sheet may optionally be joined together. The resulting tube with the stent pattern may then be subject to standard polishing and cleaning steps as know in the art.
- The invention is also directed to treatment methods using any of the inventive stents disclosed herein. To that end, any of the inventive stents disclosed herein may be disposed about a stent delivery catheter. The catheter may be inserted in a bodily lumen and delivered to a desired bodily location, typically a region with a bifurcation. In the case of a balloon catheter, the stent may be expanded with a single balloon or with a plurality of balloons. In the former case, a blister balloon may be used to expand both the main branch of the stent as well as the side branch. In the latter case, a second balloon could be used to at least partially expand the side branch section of the stent into a bifurcation in a vessel and, optionally, yet another balloon could be used to fully expand the side branch. In some embodiments, a special guide wire may be used to initiate the side branch section into the bifurcation and a balloon then used to expand the side branch section. In the case of a self-expanding stent, a sheath or other restrain may be removed allowing the stent to self expand. In the case of hybrid stents, a balloon may be used to expand a portion of the stent and a sheath or other restrain withdraw from a portion of the stent. Subsequent to deployment of the stent, the catheter may be withdrawn from the body.
- In some embodiments the stent, the delivery system or other portion of the assembly may include one or more areas, bands, coatings, members, etc. that may be detected by imaging modalities such as X-Ray, MRI, ultrasound, etc. In some embodiments, at least a portion of the stent and/or adjacent assembly is at least partially radiopaque. A radiopaque marker on the outer support member may facilitate placement of the stent. Optionally, a marker could be located at the spiral side branch section of the stent at a bifurcation. Similarly, a radiopaque marker on the distal end of at least one spiral arm may facilitate placement of the spiral side branch section of the stent at a bifurcation.
- In some embodiments, the stent or portions thereof may include one or more mechanisms for the delivery of a therapeutic agent. In one embodiment, the side branch section may be provided with the therapeutic agent. Often the agent will be in the form of a coating or other layer (or layers) of material placed on a surface region of the stent, which is adapted to be released at the site of the stent's implantation or areas adjacent thereto.
- A therapeutic agent may be a drug or other pharmaceutical product such as non-genetic agents, genetic agents, cellular material, etc. Some examples of suitable non-genetic therapeutic agents include but are not limited to: anti-thrombogenic agents such as heparin, heparin derivatives, vascular cell growth promoters, growth factor inhibitors, Paclitaxel, etc. Where an agent includes a genetic therapeutic agent, such a genetic agent may include but is not limited to: DNA, RNA and their respective derivatives and/or components; hedgehog proteins, etc. Where a therapeutic agent includes cellular material, the cellular material may include but is not limited to: cells of human origin and/or non-human origin as well as their respective components and/or derivatives thereof. Where the therapeutic agent includes a polymer agent, the polymer agent may be a polystyrene-polyisobutylene-polystyrene triblock copolymer (SIBS), polyethylene oxide, silicone rubber and/or any other suitable substrate.
- The invention also includes the following embodiments as characterized in the following numbered statements:
- 1. In combination, a catheter and an expandable stent having a tubular surface disposed about a longitudinal flowpath, the tubular surface including at least one arm which is arranged along the surface about an opening, the opening having a first size in an unexpanded state of the stent, the at least one arm arranged to define a spiral, the expandable stent disposed about the catheter, the catheter including an elongated member which extends through the opening.
- 2. The combination of statement 1 wherein the elongated member comprises a guide wire.
- 3. The combination of statement 1 wherein the elongated member comprises a catheter tube.
- 4. The combination of statement 1 wherein the elongated member comprises a balloon.
- 5. A stent having a side wall with a plurality of openings therethrough, at least one of the openings being in the form of a star-shaped opening bounded by a star shaped member.
- 6. The stent of statement 5 wherein the star-shaped opening is a three pointed to a nine pointed star.
- 7. The stent of statement 5 wherein the star-shaped opening is a five pointed star.
- 8. The stent of statement 5 wherein the star-shaped opening is a six pointed star.
- 9. The stent of statement 5 wherein the star-shaped opening is bounded by a star shaped structure.
- 10. The stent of statement 5 wherein two of the openings are bounded by a star shaped member, the first star shaped member having a shorter pathway than the second star shaped member.
- 11. The stent of statement 5 in an expanded state, the stent having a main branch and a side branch extending therefrom.
- 12. A bifurcated stent formed by inserting an elongated member through the stent and inserting an elongated member through the star shaped opening, expanding the stent so as to create a side branch and a main branch.
- 13. A stent comprising a plurality of spiral arms with free ends.
- 14. The stent of statement 13 in an expanded state, the free ends extending outward from a main body of the stent and forming a side branch.
- 15. The stent of statement 13 having an inner diameter and an outer diameter, the inner diameter being constant along the length of the stent and the outer diameter being constant along the length of the stent.
- 16. The stent of statement 13 wherein the spiral arms lie flush along the surface of the stent.
- 17. The stent of statement 13 in an unexpanded state wherein the spiral arms spiral about a common center point.
- 18. A bifurcated stent having a main branch and a side branch extending from the main branch, the side branch including a lock.
- 19. The stent of statement 18 wherein the lock may be configured to lock the side branch in an expanded configuration.
- 20. A stent having a side wall with an iris-shaped structure.
- 21. The stent of
statement 20 wherein the iris-shaped structure is present in the unexpanded state of the stent. - 22. The stent of statement 21 wherein the iris-shaped structure may be expandable outward to form a bifurcated stent having a side branch.
- 23. The stent of
statement 22 wherein the iris-shaped structure comprises a plurality of curved members which together form a spiral pattern about a center point. - 24. The stent of statement 23 wherein the curved members will be of equal length and/or shape.
- 25. The stent of statement 23 wherein the curved members each have free ends.
- 26. The stent of statement 23 wherein the iris shaped structure includes an outer ring and an inner ring, the outer ring disposed about the inner ring.
- 27. The stent of statement 26 wherein the inner ring is star shaped.
- 28. The stent of statement 26 wherein the inner ring is sized to receive a balloon catheter therethrough.
- 29. The stent of statement 26 comprising a plurality of concentric inner rings.
- 30. A stent having a side wall with an outer support member with spiral members extending therefrom.
- 31. A stent having a side wall with a plurality of interconnected members that extend in a pinwheel fashion around a center point.
- 32. A stent having a side wall with alternating ring members and spiral arms.
- 33. A stent having a single longitudinal flowpath extending in the longitudinal direction, the stent comprising a plurality of spiral members which are configured to be expanded outward to define a second flowpath which branches outward from the longitudinal flowpath.
- 34. A bifurcated stent made by providing the stent of statement 33 and expanding the plurality of spiral members outward.
- 35. The bifurcated stent of
statement 34 wherein in an unexpanded state, the spiral members are formed in a helical pattern and in an expanded state, the spiral members are straight. - 36. The bifurcated stent of
statement 34 wherein in an unexpanded state, the spiral members are formed in a helical pattern and in an expanded state, the spiral members are curved. - 37. In combination, any of the stents of statements 4-32 and a catheter, the stent disposed about the catheter.
- 38. A stent delivery catheter with any of the stents of statements 4-32 disposed thereabout.
- 39. A stent delivery catheter with any of the stents of statements 4-32 disposed at a distal end portion of the catheter.
- 40. A method of manufacturing a stent comprising the steps of:
- providing a tube having a sidewall;
- removing material from the sidewall of tube, the remaining material of the sidewall of the tube forming a stent pattern, the remaining material including at least one spiral portion, the spiral portion including at least one spiral arm having a free end.
- 41. The method of statement 40 further comprising the steps of:
- expanding the tube; and
- expanding the spiral portion so as to form a side branch with a lumen that extends at angle from the tube.
- 42. A method of manufacturing a stent comprising the steps of:
- providing a tube having a sidewall;
- removing material from the sidewall of tube, the remaining material of the sidewall of the tube forming a stent pattern, the remaining material including at least one spiral portion and no more than one spiral portion at a given longitudinal location along the tube, the spiral portion including at least one spiral arm.
- 43. The method of
statement 42 further comprising the steps of: - expanding the tube; and
- expanding the spiral portion so as to form a side branch with a lumen that extends at angle from the tube.
- 44. A method of manufacturing a stent comprising the steps of:
- providing a tube having a sidewall;
- removing material from the sidewall of tube, the remaining material of the sidewall of the tube forming a stent pattern, the remaining material including at least one spiral portion, the spiral portion including a plurality of concentric, closed pathways each of which extends only part of the way about the longitudinal axis of the tube, the closed pathways connected one to the other via spiral arms which together form one or more spiral configurations.
- 45. The method of statement 44 further comprising the steps of:
- expanding the tube; and
- expanding the spiral portion so as to form a side branch with a lumen that extends at angle from the tube.
- The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. The various elements shown in the individual figures and described above may be combined or modified for combination as desired. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”.
- Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
- This completes the description of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.
Claims (20)
1. An expandable stent having an exterior surface and an interior surface, an inner diameter and an outer diameter, the inner diameter being constant, there being a longitudinal flowpath through the stent, the stent comprising an expandable spiral side branch support section having a spiral configuration and disposed about a center point, the center point located at a first longitudinal coordinate and circumferential coordinate, the spiral side branch support section comprising at least one spiral arm forming a curve extending at least partially around the center point, the at least one spiral arm having a first end and a second end, the second end positioned closer to the center point than the first end, the stent having no more than one spiral branch support section disposed about a center point located at the first longitudinal coordinate.
2. The stent of claim 1 , wherein the distal end of the at least one spiral arm is a free end.
3. The stent of claim 1 having only one expandable spiral side branch support section.
4. The stent of claim 3 wherein the one expandable spiral side branch support section comprises only one spiral arm.
5. The stent of claim 3 wherein the one expandable spiral side branch support section comprises a plurality of spiral arms.
6. The stent of claim 5 , wherein each of the spiral arms is attached at one end to a member which forms a circumferential member extending along the exterior surface of the stent, the circumferential member extending only part of the way about the longitudinal axis of the stent.
7. The stent of claim 6 wherein the circumferential member includes at least one apex and one valley.
8. The stent of claim 7 wherein the circumferential member has a serpentine shape, the serpentine shape having turns.
9. The stent of claim 6 , wherein the circumferential member has a locking mechanism.
10. The stent of claim 1 having a plurality of expandable spiral side branch sections.
11. The stent of claim 10 wherein each of at least two of the expandable spiral side branch sections comprise a plurality of spiral arms.
12. The stent of claim 1 having at least one expandable spiral side branch section which comprises a plurality of spiral arms, each of the spiral arms attached at one end to a first member which forms a first closed pathway about the center point and at another end to a second member which forms a second closed pathway about the center point, the first closed pathway being longer than the second closed pathway.
13. An expandable stent having an exterior surface and an interior surface, an inner diameter and an outer diameter, there being a longitudinal flowpath through the stent, the stent comprising an expandable spiral side branch support section which lies flush with the inner surface of the remainder of the stent, the expandable spiral side branch having a spiral configuration and disposed about a center point, the center point located at a first longitudinal coordinate and circumferential coordinate, the spiral side branch support section comprising at least one spiral arm forming a curve extending at least partially around the center point, the at least one spiral arm having a first end and a second end, the second end positioned closer to the center point than the first end, the stent having no more than one spiral branch support section disposed about a center point located at the first longitudinal coordinate.
14. The stent of claim 13 having only one expandable spiral side branch support section.
15. The stent of claim 13 wherein the one expandable spiral side branch support section comprises only one spiral arm.
16. The stent of claim 13 wherein the one expandable spiral side branch support section comprises a plurality of spiral arms.
17. A bifurcated stent formed by:
providing the expandable stent of claim 1;
expanding the stent to a first diameter expanding the at least one spiral arm outward to define a second flowpath which branches off the longitudinal flowpath.
18. The stent of claim 17 wherein at least one of the expanding steps is accomplished with a balloon.
19. The stent of claim 17 wherein at least one of the expanding steps is accomplished by withdrawing a sheath which is disposed over at least a portion of the stent.
20. In combination, a catheter and an expandable stent having a tubular surface disposed about a longitudinal flowpath, the tubular surface including at least one arm which is arranged along the surface about an opening, the opening having a first size in an unexpanded state of the stent, the at least one arm arranged to define a spiral, the expandable stent disposed about the catheter, the catheter including an elongated member which extends through the opening.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/273,186 US20070112418A1 (en) | 2005-11-14 | 2005-11-14 | Stent with spiral side-branch support designs |
EP06801697A EP1948100A1 (en) | 2005-11-14 | 2006-08-17 | Stent with spiral side-branch support designs |
PCT/US2006/032088 WO2007055768A1 (en) | 2005-11-14 | 2006-08-17 | Stent with spiral side-branch support designs |
CA002624607A CA2624607A1 (en) | 2005-11-14 | 2006-08-17 | Stent with spiral side-branch support designs |
JP2008540015A JP2009515589A (en) | 2005-11-14 | 2006-08-17 | Stent with helical side branch support design |
US11/604,613 US7842081B2 (en) | 2005-11-14 | 2006-11-27 | Stent with spiral side-branch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/273,186 US20070112418A1 (en) | 2005-11-14 | 2005-11-14 | Stent with spiral side-branch support designs |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/604,613 Continuation-In-Part US7842081B2 (en) | 2005-11-14 | 2006-11-27 | Stent with spiral side-branch |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070112418A1 true US20070112418A1 (en) | 2007-05-17 |
Family
ID=37649501
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/273,186 Abandoned US20070112418A1 (en) | 2005-11-14 | 2005-11-14 | Stent with spiral side-branch support designs |
US11/604,613 Expired - Fee Related US7842081B2 (en) | 2005-11-14 | 2006-11-27 | Stent with spiral side-branch |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/604,613 Expired - Fee Related US7842081B2 (en) | 2005-11-14 | 2006-11-27 | Stent with spiral side-branch |
Country Status (5)
Country | Link |
---|---|
US (2) | US20070112418A1 (en) |
EP (1) | EP1948100A1 (en) |
JP (1) | JP2009515589A (en) |
CA (1) | CA2624607A1 (en) |
WO (1) | WO2007055768A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070118200A1 (en) * | 2005-11-18 | 2007-05-24 | Boston Scientific Scimed, Inc. | Bifurcation stent delivery system |
US20070168020A1 (en) * | 2001-02-26 | 2007-07-19 | Brucker Gregory G | Bifurcated stent and delivery system |
US20070208418A1 (en) * | 2006-03-06 | 2007-09-06 | Boston Scientific Scimed, Inc. | Bifurcated stent |
US20080065197A1 (en) * | 2006-09-12 | 2008-03-13 | Boston Scientific Scimed, Inc. | Bifurcated Stent |
US20080119925A1 (en) * | 2006-11-16 | 2008-05-22 | Boston Scientific Scimed, Inc. | Bifurcated Stent |
US20090012596A1 (en) * | 2007-07-06 | 2009-01-08 | Boston Scientific Scimed, Inc. | Stent with Bioabsorbable Membrane |
US20090093874A1 (en) * | 2002-10-29 | 2009-04-09 | Microfabrica Inc. | Medical Devices and EFAB Methods and Apparatus for Producing Them |
US20110172762A1 (en) * | 2006-02-13 | 2011-07-14 | William A. Cook Australia Pty. Ltd. | Side branch stent graft construction |
US20110251670A1 (en) * | 2010-04-07 | 2011-10-13 | Arash Kheradvar | Expandable stent that collapses into a non-convex shape and expands into an expanded, convex shape |
US8133199B2 (en) | 2008-08-27 | 2012-03-13 | Boston Scientific Scimed, Inc. | Electroactive polymer activation system for a medical device |
DE102015122679A1 (en) * | 2015-12-23 | 2017-06-29 | Acandis Gmbh & Co. Kg | Medical implant and set |
US10470871B2 (en) | 2001-12-20 | 2019-11-12 | Trivascular, Inc. | Advanced endovascular graft |
US11399929B2 (en) * | 2017-02-24 | 2022-08-02 | Bolton Medical, Inc. | Vascular prosthesis with crimped adapter and methods of use |
US11547584B2 (en) | 2017-02-24 | 2023-01-10 | Bolton Medical, Inc. | Delivery system and method to radially constrict a stent graft |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7204848B1 (en) | 1995-03-01 | 2007-04-17 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US20070208419A1 (en) * | 2006-03-06 | 2007-09-06 | Boston Scientific Scimed, Inc. | Bifurcation stent with uniform side branch projection |
US7744643B2 (en) * | 2006-05-04 | 2010-06-29 | Boston Scientific Scimed, Inc. | Displaceable stent side branch structure |
US7988720B2 (en) | 2006-09-12 | 2011-08-02 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US20080177377A1 (en) * | 2006-11-16 | 2008-07-24 | Boston Scientific Scimed, Inc. | Bifurcation Stent Design with Over Expansion Capability |
US20080281395A1 (en) * | 2007-05-07 | 2008-11-13 | Boston Scientific Scimed, Inc. | Ratcheting bio cell designs |
DE102007060497A1 (en) * | 2007-12-06 | 2009-06-10 | Joline Gmbh & Co. Kg | Implantable vascular support |
US8187313B2 (en) * | 2008-08-01 | 2012-05-29 | Boston Scientific Scimed, Inc. | Bifurcation catheter assembly side catheter branch construction and methods |
US8540764B2 (en) | 2009-04-17 | 2013-09-24 | Medtronic Vascular, Inc. | Mobile external coupling for branch vessel connection |
US8506622B2 (en) | 2009-04-17 | 2013-08-13 | Medtronic Vascular, Inc. | Mobile external coupling for branch vessel connection |
US8852268B2 (en) * | 2009-09-16 | 2014-10-07 | Bentley Surgical Gmbh | Stent having expandable elements |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
US20110224785A1 (en) | 2010-03-10 | 2011-09-15 | Hacohen Gil | Prosthetic mitral valve with tissue anchors |
US9132009B2 (en) | 2010-07-21 | 2015-09-15 | Mitraltech Ltd. | Guide wires with commissural anchors to advance a prosthetic valve |
US9763657B2 (en) | 2010-07-21 | 2017-09-19 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US8992604B2 (en) | 2010-07-21 | 2015-03-31 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
WO2012154782A1 (en) | 2011-05-11 | 2012-11-15 | Tyco Healthcare Group Lp | Vascular remodeling device |
WO2013021374A2 (en) | 2011-08-05 | 2013-02-14 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
EP3417813B1 (en) | 2011-08-05 | 2020-05-13 | Cardiovalve Ltd | Percutaneous mitral valve replacement |
US20140324164A1 (en) | 2011-08-05 | 2014-10-30 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US8852272B2 (en) * | 2011-08-05 | 2014-10-07 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US8771341B2 (en) | 2011-11-04 | 2014-07-08 | Reverse Medical Corporation | Protuberant aneurysm bridging device and method of use |
US9072620B2 (en) | 2011-11-04 | 2015-07-07 | Covidien Lp | Protuberant aneurysm bridging device deployment method |
ES2934670T3 (en) | 2013-01-24 | 2023-02-23 | Cardiovalve Ltd | Ventricularly Anchored Prosthetic Valves |
EP3174502B1 (en) | 2014-07-30 | 2022-04-06 | Cardiovalve Ltd | Apparatus for implantation of an articulatable prosthetic valve |
CA2967904C (en) | 2014-12-18 | 2023-01-10 | Endospan Ltd. | Endovascular stent-graft with fatigue-resistant lateral tube |
CN107205818B (en) | 2015-02-05 | 2019-05-10 | 卡迪尔维尔福股份有限公司 | Artificial valve with the frame that slides axially |
US9974651B2 (en) | 2015-02-05 | 2018-05-22 | Mitral Tech Ltd. | Prosthetic valve with axially-sliding frames |
US20180116832A1 (en) * | 2015-05-08 | 2018-05-03 | Jayandiran Pillai | Stent and stent set |
FR3042702B1 (en) * | 2015-10-26 | 2021-12-24 | Id Nest Medical | ELASTIC CROWN AND ASSOCIATED TREATMENT DEVICE FOR IMPLEMENTATION IN A BODY FLUID CIRCULATION DUCT |
US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
CN109789018B (en) | 2016-08-10 | 2022-04-26 | 卡迪尔维尔福股份有限公司 | Prosthetic valve with coaxial frame |
USD800908S1 (en) | 2016-08-10 | 2017-10-24 | Mitraltech Ltd. | Prosthetic valve element |
US10575948B2 (en) | 2017-08-03 | 2020-03-03 | Cardiovalve Ltd. | Prosthetic heart valve |
US10888421B2 (en) | 2017-09-19 | 2021-01-12 | Cardiovalve Ltd. | Prosthetic heart valve with pouch |
US10537426B2 (en) | 2017-08-03 | 2020-01-21 | Cardiovalve Ltd. | Prosthetic heart valve |
US11246704B2 (en) | 2017-08-03 | 2022-02-15 | Cardiovalve Ltd. | Prosthetic heart valve |
GB201720803D0 (en) | 2017-12-13 | 2018-01-24 | Mitraltech Ltd | Prosthetic Valve and delivery tool therefor |
GB201800399D0 (en) | 2018-01-10 | 2018-02-21 | Mitraltech Ltd | Temperature-control during crimping of an implant |
US11154410B2 (en) * | 2018-06-29 | 2021-10-26 | Monarch Biosciences, Inc. | Spiral-based thin-film mesh systems and related methods |
CN110801310B (en) * | 2019-10-21 | 2022-03-29 | 黄健兵 | Novel aortic arch part area branch tectorial membrane support type blood vessel sub-assembly |
Citations (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US574890A (en) * | 1897-01-12 | Clothes-drier | ||
US4309994A (en) * | 1980-02-25 | 1982-01-12 | Grunwald Ronald P | Cardiovascular cannula |
US4896670A (en) * | 1988-04-19 | 1990-01-30 | C. R. Bard, Inc. | Kissing balloon catheter |
US4905667A (en) * | 1987-05-12 | 1990-03-06 | Ernst Foerster | Apparatus for endoscopic-transpapillary exploration of biliary tract |
US4994071A (en) * | 1989-05-22 | 1991-02-19 | Cordis Corporation | Bifurcating stent apparatus and method |
US5387235A (en) * | 1991-10-25 | 1995-02-07 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5591228A (en) * | 1995-05-09 | 1997-01-07 | Edoga; John K. | Methods for treating abdominal aortic aneurysms |
US5607444A (en) * | 1993-12-02 | 1997-03-04 | Advanced Cardiovascular Systems, Inc. | Ostial stent for bifurcations |
US5609605A (en) * | 1994-08-25 | 1997-03-11 | Ethicon, Inc. | Combination arterial stent |
US5609627A (en) * | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US5613980A (en) * | 1994-12-22 | 1997-03-25 | Chauhan; Tusharsindhu C. | Bifurcated catheter system and method |
US5617878A (en) * | 1996-05-31 | 1997-04-08 | Taheri; Syde A. | Stent and method for treatment of aortic occlusive disease |
US5632762A (en) * | 1995-11-09 | 1997-05-27 | Hemodynamics, Inc. | Ostial stent balloon |
US5632763A (en) * | 1995-01-19 | 1997-05-27 | Cordis Corporation | Bifurcated stent and method for implanting same |
US5632772A (en) * | 1993-10-21 | 1997-05-27 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5709713A (en) * | 1995-03-31 | 1998-01-20 | Cardiovascular Concepts, Inc. | Radially expansible vascular prosthesis having reversible and other locking structures |
US5720735A (en) * | 1997-02-12 | 1998-02-24 | Dorros; Gerald | Bifurcated endovascular catheter |
US5749825A (en) * | 1996-09-18 | 1998-05-12 | Isostent, Inc. | Means method for treatment of stenosed arterial bifurcations |
US5755773A (en) * | 1996-06-04 | 1998-05-26 | Medtronic, Inc. | Endoluminal prosthetic bifurcation shunt |
US5755734A (en) * | 1996-05-03 | 1998-05-26 | Medinol Ltd. | Bifurcated stent and method of making same |
US5755771A (en) * | 1994-11-03 | 1998-05-26 | Divysio Solutions Ulc | Expandable stent and method of delivery of same |
US5755778A (en) * | 1996-10-16 | 1998-05-26 | Nitinol Medical Technologies, Inc. | Anastomosis device |
US5893887A (en) * | 1997-10-14 | 1999-04-13 | Iowa-India Investments Company Limited | Stent for positioning at junction of bifurcated blood vessel and method of making |
US5906640A (en) * | 1994-11-03 | 1999-05-25 | Divysio Solutions Ulc | Bifurcated stent and method for the manufacture and delivery of same |
US6013054A (en) * | 1997-04-28 | 2000-01-11 | Advanced Cardiovascular Systems, Inc. | Multifurcated balloon catheter |
US6013091A (en) * | 1997-10-09 | 2000-01-11 | Scimed Life Systems, Inc. | Stent configurations |
US6017324A (en) * | 1998-10-20 | 2000-01-25 | Tu; Lily Chen | Dilatation catheter having a bifurcated balloon |
US6017363A (en) * | 1997-09-22 | 2000-01-25 | Cordis Corporation | Bifurcated axially flexible stent |
US6030414A (en) * | 1997-11-13 | 2000-02-29 | Taheri; Syde A. | Variable stent and method for treatment of arterial disease |
US6033435A (en) * | 1997-11-03 | 2000-03-07 | Divysio Solutions Ulc | Bifurcated stent and method for the manufacture and delivery of same |
US6033433A (en) * | 1997-04-25 | 2000-03-07 | Scimed Life Systems, Inc. | Stent configurations including spirals |
US6033434A (en) * | 1995-06-08 | 2000-03-07 | Ave Galway Limited | Bifurcated endovascular stent and methods for forming and placing |
US6053775A (en) * | 1997-10-22 | 2000-04-25 | Stocko Metallwarenfabriken Henkels Und Sohn Gmbh & Co. | Chip card contacting unit |
US6059825A (en) * | 1992-03-05 | 2000-05-09 | Angiodynamics, Inc. | Clot filter |
US6059824A (en) * | 1998-12-23 | 2000-05-09 | Taheri; Syde A. | Mated main and collateral stent and method for treatment of arterial disease |
US6063111A (en) * | 1998-03-31 | 2000-05-16 | Cordis Corporation | Stent aneurysm treatment system and method |
US6068655A (en) * | 1996-06-06 | 2000-05-30 | Seguin; Jacques | Endoprosthesis for vascular bifurcation |
US6168621B1 (en) * | 1998-05-29 | 2001-01-02 | Scimed Life Systems, Inc. | Balloon expandable stent with a self-expanding portion |
US6183509B1 (en) * | 1995-05-04 | 2001-02-06 | Alain Dibie | Endoprosthesis for the treatment of blood-vessel bifurcation stenosis and purpose-built installation device |
US6203568B1 (en) * | 1996-04-05 | 2001-03-20 | Medtronic, Inc. | Endoluminal prostheses having position indicating markers |
US6210380B1 (en) * | 1998-08-24 | 2001-04-03 | Advanced Cardiovascular Systems, Inc. | Bifurcated catheter assembly |
US6210433B1 (en) * | 2000-03-17 | 2001-04-03 | LARRé JORGE CASADO | Stent for treatment of lesions of bifurcated vessels |
US6210429B1 (en) * | 1996-11-04 | 2001-04-03 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6231599B1 (en) * | 1998-03-04 | 2001-05-15 | Scimed Life Systems, Inc. | Stent cell configurations |
US20010003161A1 (en) * | 1996-11-04 | 2001-06-07 | Vardi Gil M. | Catheter with side sheath |
US20010004706A1 (en) * | 1996-01-26 | 2001-06-21 | Hikmat Hojeibane | Bifurcated axially flexible stent |
US6334864B1 (en) * | 2000-05-17 | 2002-01-01 | Aga Medical Corp. | Alignment member for delivering a non-symmetric device with a predefined orientation |
US20020013618A1 (en) * | 1998-02-12 | 2002-01-31 | Marotta Thomas R. | Endovascular prosthesis |
US20020013619A1 (en) * | 1998-10-29 | 2002-01-31 | Shanley John F. | Expandable medical device with ductile hinges |
US6348065B1 (en) * | 1995-03-01 | 2002-02-19 | Scimed Life Systems, Inc. | Longitudinally flexible expandable stent |
US20020022874A1 (en) * | 1999-12-10 | 2002-02-21 | Wilson W. Stan | Bifurcated stent delivery system having retractable sheath |
US6355060B1 (en) * | 1994-06-08 | 2002-03-12 | Medtronic Ave, Inc. | Apparatus and method for deployment release of intraluminal prostheses |
US20020035392A1 (en) * | 1999-12-15 | 2002-03-21 | Wilson W. Stan | Stent and stent delivery assembly and method of use |
US6361544B1 (en) * | 1997-08-13 | 2002-03-26 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US20020042650A1 (en) * | 1998-01-14 | 2002-04-11 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US20020052648A1 (en) * | 2000-10-13 | 2002-05-02 | Mcguckin James F. | Covered stent with side branch |
US6383213B2 (en) * | 1999-10-05 | 2002-05-07 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6395018B1 (en) * | 1998-02-09 | 2002-05-28 | Wilfrido R. Castaneda | Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels |
US20030028233A1 (en) * | 1996-11-04 | 2003-02-06 | Vardi Gil M. | Catheter with attached flexible side sheath |
US6517558B2 (en) * | 1999-01-15 | 2003-02-11 | Ventrica, Inc. | Methods and devices for forming vascular anastomoses |
US6520988B1 (en) * | 1997-09-24 | 2003-02-18 | Medtronic Ave, Inc. | Endolumenal prosthesis and method of use in bifurcation regions of body lumens |
US20030050688A1 (en) * | 2001-09-13 | 2003-03-13 | Fischell David R. | Stent with angulated struts |
US20030055483A1 (en) * | 2001-08-23 | 2003-03-20 | Gumm Darrell C. | Rotating stent delivery system for side branch access and protection and method of using same |
US6540779B2 (en) * | 1996-05-03 | 2003-04-01 | Medinol Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
US20030074047A1 (en) * | 1996-05-03 | 2003-04-17 | Jacob Richter | Method of delivering a bifurcated stent |
US20030097169A1 (en) * | 2001-02-26 | 2003-05-22 | Brucker Gregory G. | Bifurcated stent and delivery system |
US6579309B1 (en) * | 1999-08-06 | 2003-06-17 | Biotronik Mess-Und Therapiegerate Gmbh & Co. Ingenieurburo Berlin | Stent for vessel branchings |
US20030114912A1 (en) * | 2000-05-30 | 2003-06-19 | Jacques Sequin | Endoprosthesis deployment system for treating vascular bifurcations |
US20040006381A1 (en) * | 2000-05-30 | 2004-01-08 | Jacques Sequin | Noncylindrical drug eluting stent for treating vascular bifurcations |
US20040015227A1 (en) * | 1996-11-04 | 2004-01-22 | Gil Vardi | Extendible stent apparatus |
US6689156B1 (en) * | 1999-09-23 | 2004-02-10 | Advanced Stent Technologies, Inc. | Stent range transducers and methods of use |
US6695877B2 (en) * | 2001-02-26 | 2004-02-24 | Scimed Life Systems | Bifurcated stent |
US20040044396A1 (en) * | 1997-05-27 | 2004-03-04 | Clerc Claude O. | Stent and stent-graft for treating branched vessels |
US20040059406A1 (en) * | 2002-09-20 | 2004-03-25 | Cully Edward H. | Medical device amenable to fenestration |
US20040088007A1 (en) * | 2002-11-05 | 2004-05-06 | Scimed Life Systems, Inc. | Assymmetric bifurcated crown |
US20050010278A1 (en) * | 1996-11-04 | 2005-01-13 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US20050015108A1 (en) * | 2003-07-18 | 2005-01-20 | Advanced Stent Technologies, Inc. | Catheter balloon systems and methods |
US6858038B2 (en) * | 2002-06-21 | 2005-02-22 | Richard R. Heuser | Stent system |
US20050060027A1 (en) * | 1999-01-13 | 2005-03-17 | Advanced Stent Technologies, Inc. | Catheter balloon systems and methods |
US6884258B2 (en) * | 1999-06-04 | 2005-04-26 | Advanced Stent Technologies, Inc. | Bifurcation lesion stent delivery using multiple guidewires |
US20050102023A1 (en) * | 2003-08-21 | 2005-05-12 | Amnon Yadin | Stent with protruding branch portion for bifurcated vessels |
US6896699B2 (en) * | 1997-08-13 | 2005-05-24 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US20060036315A1 (en) * | 2001-09-24 | 2006-02-16 | Advanced Stent Technologies, Inc. | Stent with protruding branch portion for bifurcated vessels |
US20060041303A1 (en) * | 2004-08-18 | 2006-02-23 | Israel Henry M | Guidewire with stopper |
US20060079956A1 (en) * | 2004-09-15 | 2006-04-13 | Conor Medsystems, Inc. | Bifurcation stent with crushable end and method for delivery of a stent to a bifurcation |
US20070005125A1 (en) * | 2002-04-10 | 2007-01-04 | Boston Scientific Scimed, Inc. | Hybrid stent |
Family Cites Families (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4774949A (en) | 1983-06-14 | 1988-10-04 | Fogarty Thomas J | Deflector guiding catheter |
US4769005A (en) | 1987-08-06 | 1988-09-06 | Robert Ginsburg | Selective catheter guide |
US5147385A (en) | 1989-11-01 | 1992-09-15 | Schneider (Europe) A.G. | Stent and catheter for the introduction of the stent |
AR246020A1 (en) | 1990-10-03 | 1994-03-30 | Hector Daniel Barone Juan Carl | A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms. |
ES2071279T3 (en) | 1990-10-04 | 1995-06-16 | Schneider Europ Ag | EXPANSION BALL CATHETER. |
US5628783A (en) | 1991-04-11 | 1997-05-13 | Endovascular Technologies, Inc. | Bifurcated multicapsule intraluminal grafting system and method |
US5304220A (en) | 1991-07-03 | 1994-04-19 | Maginot Thomas J | Method and apparatus for implanting a graft prosthesis in the body of a patient |
FR2678508B1 (en) | 1991-07-04 | 1998-01-30 | Celsa Lg | DEVICE FOR REINFORCING VESSELS OF THE HUMAN BODY. |
US5693084A (en) | 1991-10-25 | 1997-12-02 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5342387A (en) | 1992-06-18 | 1994-08-30 | American Biomed, Inc. | Artificial support for a blood vessel |
US5487730A (en) * | 1992-12-30 | 1996-01-30 | Medtronic, Inc. | Balloon catheter with balloon surface retention means |
US5441515A (en) * | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5395846A (en) | 1993-06-25 | 1995-03-07 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Amino Bi- and tri-carbocyclic aklane bis-aryl squalene synthase inhibitors |
IL106738A (en) | 1993-08-19 | 1998-02-08 | Mind E M S G Ltd | Device for external correction of deficient valves in venous junctions |
US5639278A (en) | 1993-10-21 | 1997-06-17 | Corvita Corporation | Expandable supportive bifurcated endoluminal grafts |
US5636641A (en) * | 1994-07-25 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | High strength member for intracorporeal use |
US7204848B1 (en) | 1995-03-01 | 2007-04-17 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US5707348A (en) * | 1995-06-06 | 1998-01-13 | Krogh; Steve S. | Intravenous bandage |
FR2737969B1 (en) | 1995-08-24 | 1998-01-30 | Rieu Regis | INTRALUMINAL ENDOPROSTHESIS IN PARTICULAR FOR ANGIOPLASTY |
US5824036A (en) | 1995-09-29 | 1998-10-20 | Datascope Corp | Stent for intraluminal grafts and device and methods for delivering and assembling same |
US5776161A (en) | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
US5669924A (en) | 1995-10-26 | 1997-09-23 | Shaknovich; Alexander | Y-shuttle stent assembly for bifurcating vessels and method of using the same |
FR2740346A1 (en) | 1995-10-30 | 1997-04-30 | Debiotech Sa | ANGIOPLASTY DEVICE FOR ARTERIAL BIFURCATION |
US5824040A (en) | 1995-12-01 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses and therapies for highly variable body lumens |
US6258116B1 (en) | 1996-01-26 | 2001-07-10 | Cordis Corporation | Bifurcated axially flexible stent |
BE1010183A3 (en) | 1996-04-25 | 1998-02-03 | Dereume Jean Pierre Georges Em | Luminal endoprosthesis FOR BRANCHING CHANNELS OF A HUMAN OR ANIMAL BODY AND MANUFACTURING METHOD THEREOF. |
US5922021A (en) | 1996-04-26 | 1999-07-13 | Jang; G. David | Intravascular stent |
US6440165B1 (en) | 1996-05-03 | 2002-08-27 | Medinol, Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
US5851464A (en) | 1996-05-13 | 1998-12-22 | Cordis Corporation | Method of making a fuseless soft tip catheter |
US5669932A (en) | 1996-05-29 | 1997-09-23 | Isostent, Inc. | Means for accurately positioning an expandable stent |
MX9800715A (en) | 1996-05-31 | 1998-04-30 | Bard Walway Ltd | Bifurcated endovascular stents and method and apparatus for their placement. |
US5697971A (en) | 1996-06-11 | 1997-12-16 | Fischell; Robert E. | Multi-cell stent with cells having differing characteristics |
US5676697A (en) | 1996-07-29 | 1997-10-14 | Cardiovascular Dynamics, Inc. | Two-piece, bifurcated intraluminal graft for repair of aneurysm |
US7341598B2 (en) | 1999-01-13 | 2008-03-11 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
US7220275B2 (en) * | 1996-11-04 | 2007-05-22 | Advanced Stent Technologies, Inc. | Stent with protruding branch portion for bifurcated vessels |
US7591846B2 (en) * | 1996-11-04 | 2009-09-22 | Boston Scientific Scimed, Inc. | Methods for deploying stents in bifurcations |
US5972017A (en) | 1997-04-23 | 1999-10-26 | Vascular Science Inc. | Method of installing tubular medical graft connectors |
FR2756173B1 (en) | 1996-11-22 | 1999-02-12 | Marcade Jean Paul | MODULAR AND EXPANDABLE ENDOPROSTHESIS FOR THE ARTERIAL NETWORK |
US5749890A (en) | 1996-12-03 | 1998-05-12 | Shaknovich; Alexander | Method and system for stent placement in ostial lesions |
DE29701758U1 (en) | 1997-02-01 | 1997-03-27 | Jomed Implantate Gmbh | Radially expandable stent for implantation in a body vessel, particularly in the area of a vascular branch |
DE29701883U1 (en) | 1997-02-04 | 1997-03-27 | Beck Harry | Central lubrication |
US6096073A (en) | 1997-02-25 | 2000-08-01 | Scimed Life Systems, Inc. | Method of deploying a stent at a lesion site located at a bifurcation in a parent vessel |
US20020133222A1 (en) * | 1997-03-05 | 2002-09-19 | Das Gladwin S. | Expandable stent having a plurality of interconnected expansion modules |
JP4083241B2 (en) | 1997-04-23 | 2008-04-30 | アーテミス・メディカル・インコーポレイテッド | Bifurcated stent and distal protection system |
DE69835634T3 (en) | 1997-05-07 | 2010-09-23 | Cordis Corp. | Intravascular stent and insertion system (obstruction of the ostium of a vessel) |
DE29708803U1 (en) | 1997-05-17 | 1997-07-31 | Jomed Implantate Gmbh | Radially expandable stent for implantation in a body vessel in the area of a vascular branch |
US5906641A (en) | 1997-05-27 | 1999-05-25 | Schneider (Usa) Inc | Bifurcated stent graft |
EP0891751A1 (en) | 1997-07-18 | 1999-01-20 | Thomas Prof. Dr. Ischinger | Vascular stent for bifurcations, sidebranches and ostial lesions and an application catheter and method for implantation |
IT1293690B1 (en) | 1997-08-08 | 1999-03-08 | Sorin Biomedica Cardio Spa | ANGIOPLASTIC STENT, PARTICULARLY FOR THE TREATMENT OF AORTO-HOSPITAL AND HOSPITAL INJURIES. |
US6086611A (en) | 1997-09-25 | 2000-07-11 | Ave Connaught | Bifurcated stent |
DE69830227T2 (en) | 1997-11-07 | 2006-02-02 | Ave Connaught | BALLOON CATHETER FOR THE REPAIR OF REFILLING BLOOD VESSELS |
US5961548A (en) | 1997-11-18 | 1999-10-05 | Shmulewitz; Ascher | Bifurcated two-part graft and methods of implantation |
CA2220864A1 (en) | 1998-01-20 | 1999-07-20 | Nisar Huq | A bifurcation stent |
AU2684499A (en) | 1998-02-17 | 1999-08-30 | G. David Jang | Tubular stent consists of chevron-shape expansion struts and ipsilaterally attached m-frame connectors |
US6113579A (en) | 1998-03-04 | 2000-09-05 | Scimed Life Systems, Inc. | Catheter tip designs and methods for improved stent crossing |
US5938697A (en) * | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US6099497A (en) | 1998-03-05 | 2000-08-08 | Scimed Life Systems, Inc. | Dilatation and stent delivery system for bifurcation lesions |
US6093203A (en) | 1998-05-13 | 2000-07-25 | Uflacker; Renan | Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation |
US6129738A (en) | 1998-06-20 | 2000-10-10 | Medtronic Ave, Inc. | Method and apparatus for treating stenoses at bifurcated regions |
US6261319B1 (en) | 1998-07-08 | 2001-07-17 | Scimed Life Systems, Inc. | Stent |
US6264662B1 (en) | 1998-07-21 | 2001-07-24 | Sulzer Vascutek Ltd. | Insertion aid for a bifurcated prosthesis |
US6143002A (en) | 1998-08-04 | 2000-11-07 | Scimed Life Systems, Inc. | System for delivering stents to bifurcation lesions |
CA2350499C (en) | 1998-12-11 | 2008-01-29 | Endologix, Inc. | Endoluminal vascular prosthesis |
IT1309583B1 (en) | 1999-02-26 | 2002-01-24 | Ams Italia S R L | PERFECTED CATHETER FOR VASCULAR INTERVENTIONS. |
US6261316B1 (en) | 1999-03-11 | 2001-07-17 | Endologix, Inc. | Single puncture bifurcation graft deployment system |
US6258099B1 (en) * | 1999-03-31 | 2001-07-10 | Scimed Life Systems, Inc. | Stent security balloon/balloon catheter |
US6290673B1 (en) * | 1999-05-20 | 2001-09-18 | Conor Medsystems, Inc. | Expandable medical device delivery system and method |
US7387639B2 (en) | 1999-06-04 | 2008-06-17 | Advanced Stent Technologies, Inc. | Short sleeve stent delivery catheter and methods |
DE19934923A1 (en) | 1999-07-20 | 2001-01-25 | Biotronik Mess & Therapieg | Balloon catheter |
US6293968B1 (en) * | 1999-09-02 | 2001-09-25 | Syde A. Taheri | Inflatable intraluminal vascular stent |
WO2001021095A2 (en) | 1999-09-23 | 2001-03-29 | Advanced Stent Technologies, Inc. | Bifurcation stent system and method |
US6387120B2 (en) | 1999-12-09 | 2002-05-14 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6325822B1 (en) | 2000-01-31 | 2001-12-04 | Scimed Life Systems, Inc. | Braided stent having tapered filaments |
US6348086B1 (en) | 2000-02-16 | 2002-02-19 | 3M Innovative Properties Company | Combination blower wheel and filter cartridge system for HVAC applications |
US6827735B2 (en) | 2000-03-03 | 2004-12-07 | Cook Incorporated | Endovascular device having a stent |
US6468301B1 (en) | 2000-03-27 | 2002-10-22 | Aga Medical Corporation | Repositionable and recapturable vascular stent/graft |
US6805704B1 (en) | 2000-06-26 | 2004-10-19 | C. R. Bard, Inc. | Intraluminal stents |
US7101391B2 (en) * | 2000-09-18 | 2006-09-05 | Inflow Dynamics Inc. | Primarily niobium stent |
US6699278B2 (en) | 2000-09-22 | 2004-03-02 | Cordis Corporation | Stent with optimal strength and radiopacity characteristics |
US6582394B1 (en) | 2000-11-14 | 2003-06-24 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcated vessels |
US6645242B1 (en) | 2000-12-11 | 2003-11-11 | Stephen F. Quinn | Bifurcated side-access intravascular stent graft |
AU2003279704A1 (en) * | 2000-12-27 | 2004-04-08 | Advanced Stent Technologies, Inc. | Stent with protruding branch portion for bifurcated vessels |
WO2002067816A1 (en) | 2001-02-26 | 2002-09-06 | Scimed Life Systems, Inc. | Bifurcated stent and delivery system |
FR2822370B1 (en) | 2001-03-23 | 2004-03-05 | Perouse Lab | TUBULAR ENDOPROSTHESIS COMPRISING A DEFORMABLE RING AND REQUIRED OF INTERVENTION FOR ITS IMPLANTATION |
US6749628B1 (en) | 2001-05-17 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US8337540B2 (en) | 2001-05-17 | 2012-12-25 | Advanced Cardiovascular Systems, Inc. | Stent for treating bifurcations and method of use |
JP2004529735A (en) | 2001-06-18 | 2004-09-30 | イーバ コーポレイション | Prosthetic implants and their use |
US6743259B2 (en) * | 2001-08-03 | 2004-06-01 | Core Medical, Inc. | Lung assist apparatus and methods for use |
US7004963B2 (en) * | 2001-09-14 | 2006-02-28 | Scimed Life Systems, Inc. | Conformable balloons |
US6939368B2 (en) * | 2002-01-17 | 2005-09-06 | Scimed Life Systems, Inc. | Delivery system for self expanding stents for use in bifurcated vessels |
IL149829A (en) * | 2002-05-23 | 2012-10-31 | Ronnie Levi | Medical device having an unravelable portion |
EP1513470A2 (en) | 2002-05-28 | 2005-03-16 | The Cleveland Clinic Foundation | Minimally invasive treatment system for aortic aneurysms |
US6761734B2 (en) | 2002-07-22 | 2004-07-13 | William S. Suhr | Segmented balloon catheter for stenting bifurcation lesions |
WO2004026174A2 (en) | 2002-09-20 | 2004-04-01 | Conor Medsystems, Inc. | Expandable medical device with openings for delivery of multiple beneficial agents |
US7314480B2 (en) | 2003-02-27 | 2008-01-01 | Boston Scientific Scimed, Inc. | Rotating balloon expandable sheath bifurcation delivery |
US7731747B2 (en) * | 2003-04-14 | 2010-06-08 | Tryton Medical, Inc. | Vascular bifurcation prosthesis with multiple thin fronds |
US20040225345A1 (en) * | 2003-05-05 | 2004-11-11 | Fischell Robert E. | Means and method for stenting bifurcated vessels |
RU2318474C1 (en) | 2003-10-10 | 2008-03-10 | Аршад КВАДРИ | System and method for endoluminal prosthetics of branched vessels and those with bifurcations |
AT402666T (en) | 2003-10-10 | 2008-08-15 | Cook Inc | DEHNIBLE PROSTHESIS WINDOW |
US20050131526A1 (en) | 2003-12-10 | 2005-06-16 | Shing-Chiu Wong | Stent and balloon system for bifurcated vessels and lesions |
US7686841B2 (en) | 2003-12-29 | 2010-03-30 | Boston Scientific Scimed, Inc. | Rotating balloon expandable sheath bifurcation delivery system |
US7922753B2 (en) | 2004-01-13 | 2011-04-12 | Boston Scientific Scimed, Inc. | Bifurcated stent delivery system |
US7225518B2 (en) | 2004-02-23 | 2007-06-05 | Boston Scientific Scimed, Inc. | Apparatus for crimping a stent assembly |
US20050209673A1 (en) | 2004-03-04 | 2005-09-22 | Y Med Inc. | Bifurcation stent delivery devices |
JP4575451B2 (en) | 2004-09-02 | 2010-11-04 | メッド・インスティテュート・インコーポレイテッド | Modular prosthesis and method for vascular branches |
AT508714T (en) * | 2005-01-10 | 2011-05-15 | Trireme Medical Inc | STENT WITH SELF-EXPANDABLE AREA |
JP5000656B2 (en) * | 2005-08-22 | 2012-08-15 | インセプト・リミテッド・ライアビリティ・カンパニー | Flare deployable stent and apparatus and method for manufacturing and using the same |
-
2005
- 2005-11-14 US US11/273,186 patent/US20070112418A1/en not_active Abandoned
-
2006
- 2006-08-17 JP JP2008540015A patent/JP2009515589A/en not_active Withdrawn
- 2006-08-17 EP EP06801697A patent/EP1948100A1/en not_active Withdrawn
- 2006-08-17 WO PCT/US2006/032088 patent/WO2007055768A1/en active Application Filing
- 2006-08-17 CA CA002624607A patent/CA2624607A1/en not_active Abandoned
- 2006-11-27 US US11/604,613 patent/US7842081B2/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US574890A (en) * | 1897-01-12 | Clothes-drier | ||
US4309994A (en) * | 1980-02-25 | 1982-01-12 | Grunwald Ronald P | Cardiovascular cannula |
US4905667A (en) * | 1987-05-12 | 1990-03-06 | Ernst Foerster | Apparatus for endoscopic-transpapillary exploration of biliary tract |
US4896670A (en) * | 1988-04-19 | 1990-01-30 | C. R. Bard, Inc. | Kissing balloon catheter |
US4994071A (en) * | 1989-05-22 | 1991-02-19 | Cordis Corporation | Bifurcating stent apparatus and method |
US5387235A (en) * | 1991-10-25 | 1995-02-07 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US6059825A (en) * | 1992-03-05 | 2000-05-09 | Angiodynamics, Inc. | Clot filter |
US5632772A (en) * | 1993-10-21 | 1997-05-27 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5607444A (en) * | 1993-12-02 | 1997-03-04 | Advanced Cardiovascular Systems, Inc. | Ostial stent for bifurcations |
US5868777A (en) * | 1993-12-02 | 1999-02-09 | Advanced Cardiovascular Systems, Inc. | Method for repairing a bifurcated vessel |
US5609627A (en) * | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US6355060B1 (en) * | 1994-06-08 | 2002-03-12 | Medtronic Ave, Inc. | Apparatus and method for deployment release of intraluminal prostheses |
US5609605A (en) * | 1994-08-25 | 1997-03-11 | Ethicon, Inc. | Combination arterial stent |
US5906640A (en) * | 1994-11-03 | 1999-05-25 | Divysio Solutions Ulc | Bifurcated stent and method for the manufacture and delivery of same |
US5755771A (en) * | 1994-11-03 | 1998-05-26 | Divysio Solutions Ulc | Expandable stent and method of delivery of same |
US5613980A (en) * | 1994-12-22 | 1997-03-25 | Chauhan; Tusharsindhu C. | Bifurcated catheter system and method |
US5632763A (en) * | 1995-01-19 | 1997-05-27 | Cordis Corporation | Bifurcated stent and method for implanting same |
US6348065B1 (en) * | 1995-03-01 | 2002-02-19 | Scimed Life Systems, Inc. | Longitudinally flexible expandable stent |
US5709713A (en) * | 1995-03-31 | 1998-01-20 | Cardiovascular Concepts, Inc. | Radially expansible vascular prosthesis having reversible and other locking structures |
US6183509B1 (en) * | 1995-05-04 | 2001-02-06 | Alain Dibie | Endoprosthesis for the treatment of blood-vessel bifurcation stenosis and purpose-built installation device |
US6346089B1 (en) * | 1995-05-04 | 2002-02-12 | Alain Dibie | Endoprosthesis for the treatment of blood-vessel bifurcation stenosis and purpose-built installation device |
US5591228A (en) * | 1995-05-09 | 1997-01-07 | Edoga; John K. | Methods for treating abdominal aortic aneurysms |
US6033434A (en) * | 1995-06-08 | 2000-03-07 | Ave Galway Limited | Bifurcated endovascular stent and methods for forming and placing |
US5632762A (en) * | 1995-11-09 | 1997-05-27 | Hemodynamics, Inc. | Ostial stent balloon |
US20010004706A1 (en) * | 1996-01-26 | 2001-06-21 | Hikmat Hojeibane | Bifurcated axially flexible stent |
US20030009209A1 (en) * | 1996-01-26 | 2003-01-09 | Hikmat Hojeibane | Bifurcated axially flexible stent |
US6203568B1 (en) * | 1996-04-05 | 2001-03-20 | Medtronic, Inc. | Endoluminal prostheses having position indicating markers |
US20030074047A1 (en) * | 1996-05-03 | 2003-04-17 | Jacob Richter | Method of delivering a bifurcated stent |
US6540779B2 (en) * | 1996-05-03 | 2003-04-01 | Medinol Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
US5755734A (en) * | 1996-05-03 | 1998-05-26 | Medinol Ltd. | Bifurcated stent and method of making same |
US5755735A (en) * | 1996-05-03 | 1998-05-26 | Medinol Ltd. | Bifurcated stent and method of making same |
US5617878A (en) * | 1996-05-31 | 1997-04-08 | Taheri; Syde A. | Stent and method for treatment of aortic occlusive disease |
US5755773A (en) * | 1996-06-04 | 1998-05-26 | Medtronic, Inc. | Endoluminal prosthetic bifurcation shunt |
US6068655A (en) * | 1996-06-06 | 2000-05-30 | Seguin; Jacques | Endoprosthesis for vascular bifurcation |
US5749825A (en) * | 1996-09-18 | 1998-05-12 | Isostent, Inc. | Means method for treatment of stenosed arterial bifurcations |
US5755778A (en) * | 1996-10-16 | 1998-05-26 | Nitinol Medical Technologies, Inc. | Anastomosis device |
US20040015227A1 (en) * | 1996-11-04 | 2004-01-22 | Gil Vardi | Extendible stent apparatus |
US20010003161A1 (en) * | 1996-11-04 | 2001-06-07 | Vardi Gil M. | Catheter with side sheath |
US20030028233A1 (en) * | 1996-11-04 | 2003-02-06 | Vardi Gil M. | Catheter with attached flexible side sheath |
US6692483B2 (en) * | 1996-11-04 | 2004-02-17 | Advanced Stent Technologies, Inc. | Catheter with attached flexible side sheath |
US20050010278A1 (en) * | 1996-11-04 | 2005-01-13 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6210429B1 (en) * | 1996-11-04 | 2001-04-03 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US5720735A (en) * | 1997-02-12 | 1998-02-24 | Dorros; Gerald | Bifurcated endovascular catheter |
US6033433A (en) * | 1997-04-25 | 2000-03-07 | Scimed Life Systems, Inc. | Stent configurations including spirals |
US6334870B1 (en) * | 1997-04-25 | 2002-01-01 | Scimed Life Systems, Inc. | Stent configurations including spirals |
US6013054A (en) * | 1997-04-28 | 2000-01-11 | Advanced Cardiovascular Systems, Inc. | Multifurcated balloon catheter |
US20040044396A1 (en) * | 1997-05-27 | 2004-03-04 | Clerc Claude O. | Stent and stent-graft for treating branched vessels |
US6361544B1 (en) * | 1997-08-13 | 2002-03-26 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6896699B2 (en) * | 1997-08-13 | 2005-05-24 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6508836B2 (en) * | 1997-08-13 | 2003-01-21 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6017363A (en) * | 1997-09-22 | 2000-01-25 | Cordis Corporation | Bifurcated axially flexible stent |
US7018400B2 (en) * | 1997-09-24 | 2006-03-28 | Medtronic Vascular, Inc. | Endolumenal prothesis and method of use in bifurcation regions of body lumens |
US6520988B1 (en) * | 1997-09-24 | 2003-02-18 | Medtronic Ave, Inc. | Endolumenal prosthesis and method of use in bifurcation regions of body lumens |
US6013091A (en) * | 1997-10-09 | 2000-01-11 | Scimed Life Systems, Inc. | Stent configurations |
US5893887A (en) * | 1997-10-14 | 1999-04-13 | Iowa-India Investments Company Limited | Stent for positioning at junction of bifurcated blood vessel and method of making |
US6053775A (en) * | 1997-10-22 | 2000-04-25 | Stocko Metallwarenfabriken Henkels Und Sohn Gmbh & Co. | Chip card contacting unit |
US6033435A (en) * | 1997-11-03 | 2000-03-07 | Divysio Solutions Ulc | Bifurcated stent and method for the manufacture and delivery of same |
US6030414A (en) * | 1997-11-13 | 2000-02-29 | Taheri; Syde A. | Variable stent and method for treatment of arterial disease |
US20020042650A1 (en) * | 1998-01-14 | 2002-04-11 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6706062B2 (en) * | 1998-01-14 | 2004-03-16 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6395018B1 (en) * | 1998-02-09 | 2002-05-28 | Wilfrido R. Castaneda | Endovascular graft and process for bridging a defect in a main vessel near one of more branch vessels |
US20020013618A1 (en) * | 1998-02-12 | 2002-01-31 | Marotta Thomas R. | Endovascular prosthesis |
US20020026232A1 (en) * | 1998-02-12 | 2002-02-28 | Marotta Thomas R. | Endovascular prosthesis |
US6231599B1 (en) * | 1998-03-04 | 2001-05-15 | Scimed Life Systems, Inc. | Stent cell configurations |
US6063111A (en) * | 1998-03-31 | 2000-05-16 | Cordis Corporation | Stent aneurysm treatment system and method |
US6168621B1 (en) * | 1998-05-29 | 2001-01-02 | Scimed Life Systems, Inc. | Balloon expandable stent with a self-expanding portion |
US6210380B1 (en) * | 1998-08-24 | 2001-04-03 | Advanced Cardiovascular Systems, Inc. | Bifurcated catheter assembly |
US20030093109A1 (en) * | 1998-08-24 | 2003-05-15 | Mauch Kevin M. | Bifurcated catheter assembly |
US6017324A (en) * | 1998-10-20 | 2000-01-25 | Tu; Lily Chen | Dilatation catheter having a bifurcated balloon |
US20020013619A1 (en) * | 1998-10-29 | 2002-01-31 | Shanley John F. | Expandable medical device with ductile hinges |
US6059824A (en) * | 1998-12-23 | 2000-05-09 | Taheri; Syde A. | Mated main and collateral stent and method for treatment of arterial disease |
US20050060027A1 (en) * | 1999-01-13 | 2005-03-17 | Advanced Stent Technologies, Inc. | Catheter balloon systems and methods |
US6517558B2 (en) * | 1999-01-15 | 2003-02-11 | Ventrica, Inc. | Methods and devices for forming vascular anastomoses |
US6884258B2 (en) * | 1999-06-04 | 2005-04-26 | Advanced Stent Technologies, Inc. | Bifurcation lesion stent delivery using multiple guidewires |
US6579309B1 (en) * | 1999-08-06 | 2003-06-17 | Biotronik Mess-Und Therapiegerate Gmbh & Co. Ingenieurburo Berlin | Stent for vessel branchings |
US6689156B1 (en) * | 1999-09-23 | 2004-02-10 | Advanced Stent Technologies, Inc. | Stent range transducers and methods of use |
US6383213B2 (en) * | 1999-10-05 | 2002-05-07 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US20020022874A1 (en) * | 1999-12-10 | 2002-02-21 | Wilson W. Stan | Bifurcated stent delivery system having retractable sheath |
US6361555B1 (en) * | 1999-12-15 | 2002-03-26 | Advanced Cardiovascular Systems, Inc. | Stent and stent delivery assembly and method of use |
US20020035392A1 (en) * | 1999-12-15 | 2002-03-21 | Wilson W. Stan | Stent and stent delivery assembly and method of use |
US6210433B1 (en) * | 2000-03-17 | 2001-04-03 | LARRé JORGE CASADO | Stent for treatment of lesions of bifurcated vessels |
US6334864B1 (en) * | 2000-05-17 | 2002-01-01 | Aga Medical Corp. | Alignment member for delivering a non-symmetric device with a predefined orientation |
US20030114912A1 (en) * | 2000-05-30 | 2003-06-19 | Jacques Sequin | Endoprosthesis deployment system for treating vascular bifurcations |
US20040006381A1 (en) * | 2000-05-30 | 2004-01-08 | Jacques Sequin | Noncylindrical drug eluting stent for treating vascular bifurcations |
US20020072790A1 (en) * | 2000-10-13 | 2002-06-13 | Rex Medical | Methods of implanting covered stents with side branch |
US20020052648A1 (en) * | 2000-10-13 | 2002-05-02 | Mcguckin James F. | Covered stent with side branch |
US6695877B2 (en) * | 2001-02-26 | 2004-02-24 | Scimed Life Systems | Bifurcated stent |
US20030097169A1 (en) * | 2001-02-26 | 2003-05-22 | Brucker Gregory G. | Bifurcated stent and delivery system |
US20030055483A1 (en) * | 2001-08-23 | 2003-03-20 | Gumm Darrell C. | Rotating stent delivery system for side branch access and protection and method of using same |
US20030050688A1 (en) * | 2001-09-13 | 2003-03-13 | Fischell David R. | Stent with angulated struts |
US20060036315A1 (en) * | 2001-09-24 | 2006-02-16 | Advanced Stent Technologies, Inc. | Stent with protruding branch portion for bifurcated vessels |
US20070005125A1 (en) * | 2002-04-10 | 2007-01-04 | Boston Scientific Scimed, Inc. | Hybrid stent |
US6858038B2 (en) * | 2002-06-21 | 2005-02-22 | Richard R. Heuser | Stent system |
US20040059406A1 (en) * | 2002-09-20 | 2004-03-25 | Cully Edward H. | Medical device amenable to fenestration |
US20040088007A1 (en) * | 2002-11-05 | 2004-05-06 | Scimed Life Systems, Inc. | Assymmetric bifurcated crown |
US20050015108A1 (en) * | 2003-07-18 | 2005-01-20 | Advanced Stent Technologies, Inc. | Catheter balloon systems and methods |
US20050102023A1 (en) * | 2003-08-21 | 2005-05-12 | Amnon Yadin | Stent with protruding branch portion for bifurcated vessels |
US20060041303A1 (en) * | 2004-08-18 | 2006-02-23 | Israel Henry M | Guidewire with stopper |
US20060079956A1 (en) * | 2004-09-15 | 2006-04-13 | Conor Medsystems, Inc. | Bifurcation stent with crushable end and method for delivery of a stent to a bifurcation |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7758634B2 (en) * | 2001-02-26 | 2010-07-20 | Boston Scientific Scimed, Inc. | Bifurcated stent and delivery system |
US20070168020A1 (en) * | 2001-02-26 | 2007-07-19 | Brucker Gregory G | Bifurcated stent and delivery system |
US10470871B2 (en) | 2001-12-20 | 2019-11-12 | Trivascular, Inc. | Advanced endovascular graft |
US11439497B2 (en) | 2001-12-20 | 2022-09-13 | Trivascular, Inc. | Advanced endovascular graft |
US20090093874A1 (en) * | 2002-10-29 | 2009-04-09 | Microfabrica Inc. | Medical Devices and EFAB Methods and Apparatus for Producing Them |
US20070118200A1 (en) * | 2005-11-18 | 2007-05-24 | Boston Scientific Scimed, Inc. | Bifurcation stent delivery system |
US20110172762A1 (en) * | 2006-02-13 | 2011-07-14 | William A. Cook Australia Pty. Ltd. | Side branch stent graft construction |
US8574288B2 (en) * | 2006-02-13 | 2013-11-05 | Cook Medical Technologies Llc | Side branch stent graft construction |
US7833264B2 (en) * | 2006-03-06 | 2010-11-16 | Boston Scientific Scimed, Inc. | Bifurcated stent |
US20070208418A1 (en) * | 2006-03-06 | 2007-09-06 | Boston Scientific Scimed, Inc. | Bifurcated stent |
US20080065197A1 (en) * | 2006-09-12 | 2008-03-13 | Boston Scientific Scimed, Inc. | Bifurcated Stent |
US20080119925A1 (en) * | 2006-11-16 | 2008-05-22 | Boston Scientific Scimed, Inc. | Bifurcated Stent |
US7842082B2 (en) | 2006-11-16 | 2010-11-30 | Boston Scientific Scimed, Inc. | Bifurcated stent |
US20090012596A1 (en) * | 2007-07-06 | 2009-01-08 | Boston Scientific Scimed, Inc. | Stent with Bioabsorbable Membrane |
US7637940B2 (en) | 2007-07-06 | 2009-12-29 | Boston Scientific Scimed, Inc. | Stent with bioabsorbable membrane |
US8133199B2 (en) | 2008-08-27 | 2012-03-13 | Boston Scientific Scimed, Inc. | Electroactive polymer activation system for a medical device |
US8702788B2 (en) * | 2010-04-07 | 2014-04-22 | California Institute Of Technology | Expandable stent that collapses into a non-convex shape and expands into an expanded, convex shape |
US20110251670A1 (en) * | 2010-04-07 | 2011-10-13 | Arash Kheradvar | Expandable stent that collapses into a non-convex shape and expands into an expanded, convex shape |
DE102015122679A1 (en) * | 2015-12-23 | 2017-06-29 | Acandis Gmbh & Co. Kg | Medical implant and set |
US11399929B2 (en) * | 2017-02-24 | 2022-08-02 | Bolton Medical, Inc. | Vascular prosthesis with crimped adapter and methods of use |
US11547584B2 (en) | 2017-02-24 | 2023-01-10 | Bolton Medical, Inc. | Delivery system and method to radially constrict a stent graft |
Also Published As
Publication number | Publication date |
---|---|
CA2624607A1 (en) | 2007-05-18 |
US7842081B2 (en) | 2010-11-30 |
JP2009515589A (en) | 2009-04-16 |
EP1948100A1 (en) | 2008-07-30 |
US20070112419A1 (en) | 2007-05-17 |
WO2007055768A1 (en) | 2007-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7842081B2 (en) | Stent with spiral side-branch | |
US7540881B2 (en) | Bifurcation stent pattern | |
US8043366B2 (en) | Overlapping stent | |
US8317855B2 (en) | Crimpable and expandable side branch cell | |
US7959669B2 (en) | Bifurcated stent with open ended side branch support | |
US7959668B2 (en) | Bifurcated stent | |
EP2658485B1 (en) | Stent | |
US9427340B2 (en) | Stent with protruding branch portion for bifurcated vessels | |
US8414639B2 (en) | Closed-cell flexible stent hybrid | |
US8480728B2 (en) | Stent side branch deployment initiation geometry | |
US7842082B2 (en) | Bifurcated stent | |
US20070260304A1 (en) | Bifurcated stent with minimally circumferentially projected side branch | |
US20070225798A1 (en) | Side branch stent | |
US20070208419A1 (en) | Bifurcation stent with uniform side branch projection | |
US7951191B2 (en) | Bifurcated stent with entire circumferential petal | |
US20110160840A1 (en) | Repetitive Cell Bifurcation / Side Branch Ostia Support Stent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EIDENSCHINK, TRACEE;MEYER, MICHAEL P.;HEIDNER, MATT;AND OTHERS;SIGNING DATES FROM 20051026 TO 20051106;REEL/FRAME:017169/0940 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |