WO2019010986A1 - 显示面板及其制造方法、显示装置 - Google Patents

显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2019010986A1
WO2019010986A1 PCT/CN2018/077907 CN2018077907W WO2019010986A1 WO 2019010986 A1 WO2019010986 A1 WO 2019010986A1 CN 2018077907 W CN2018077907 W CN 2018077907W WO 2019010986 A1 WO2019010986 A1 WO 2019010986A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
panel
display panel
region
underlayer
Prior art date
Application number
PCT/CN2018/077907
Other languages
English (en)
French (fr)
Inventor
郭远辉
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/327,448 priority Critical patent/US10707433B2/en
Publication of WO2019010986A1 publication Critical patent/WO2019010986A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • Embodiments of the present disclosure relate to the field of display technologies, and in particular, to a display panel, a method of fabricating the same, and a display device.
  • OLED display panels have been used more and more.
  • the curved OLED display panel (having at least one curved surface area) is more and more popular in the market because of its unique shape and meeting specific display requirements.
  • One of the objects of the present disclosure is to provide a display panel, a method of fabricating the same, and a display device.
  • a display panel includes: a substrate, a pad layer disposed on the substrate; a first electrode disposed on the pad layer; and an electroluminescent functional layer disposed on And the second electrode is disposed on the electroluminescent functional layer, wherein a longitudinal section of the underlayer has a contour that is concave from the first electrode toward the substrate as a whole, And in the longitudinal section, the thickness of the region of the mat near the center of the panel is not greater than the thickness of the region near the edge of the panel.
  • the underlayer in the longitudinal section, has a plurality of protruding structures on a surface thereof facing away from the substrate.
  • the height of the protruding structure on the region near the center of the panel is not greater than the height of the protruding structure on the region near the edge of the panel.
  • the protrusion direction of the protrusion structure on the region near the center of the panel forms an angle with the plane of the substrate not less than the protrusion direction of the protrusion structure on the area near the edge of the panel The angle at which the plane of the substrate is formed.
  • the protrusion direction of the protrusion structure is from the substrate to the first electrode near an axis perpendicular to a center of the panel.
  • the protrusion direction of the protrusion structure is away from the substrate to the first electrode away from an axis perpendicular to a center of the panel.
  • the underlayer includes a planar region and a curved region on both sides of the planar region in the longitudinal cross-section, the planar region having the same thickness, the thickness of the curved region facing the two of the panel The edges of the sides gradually increase.
  • the underlayer includes a planar region and a curved surface region on both sides of the planar region in the longitudinal cross-section, the protruding structures on the planar region having the same height, on the curved surface region The height of the protruding structure gradually increases toward the edges of both sides of the panel.
  • the protrusion direction of the protrusion structure on the planar area is perpendicular to the plane of the substrate, and the protrusion direction of the protrusion structure on the curved area forms an angle with the plane of the substrate toward the edges of the sides of the panel. slowing shrieking.
  • a bottom of the protruding structure extends to the substrate.
  • the thickness of the underlayer gradually increases from the center of the panel toward both side edges of the panel.
  • the thickness of the underlayer is gradually increased stepwise from the center of the panel toward both side edges of the panel.
  • the underlayer in a lateral cross section, has the same thickness from the center of the panel to both side edges of the panel.
  • the first electrode is disposed in conformity with a shape of the underlayer.
  • a method of manufacturing a display panel comprising: providing a first substrate; forming a underlayer on the first substrate; forming a first electrode on the underlayer; Forming an electroluminescent functional layer on the first electrode; and forming a second electrode on the electroluminescent functional layer, wherein a longitudinal section of the underlayer has a whole from the first electrode toward the substrate A concave profile, and the thickness of the region of the longitudinal section of the mat adjacent the center of the panel is no greater than the thickness of the region near the edge of the panel.
  • forming the underlayer on the substrate includes: laying a photoresist layer on the substrate; and molding the photoresist layer.
  • molding the photoresist layer includes: molding, by molding, the planar layer and a curved surface region on both sides of the planar region in the longitudinal cross section.
  • a method of manufacturing a display panel further includes: employing a two-beam interference lithography process such that a longitudinal section of the underlayer forms a plurality of protrusion structures on a surface thereof facing away from the substrate.
  • a method of manufacturing a display panel further includes: peeling off the first substrate; and pasting the display panel after peeling off the first substrate onto the second substrate, wherein a curved surface of the underlayer in the display panel The position of the region is aligned with the curved surface region of the second substrate, and the position of the planar region of the underlayer in the display panel is aligned with the planar region of the second substrate.
  • a display device comprising the display panel of the embodiment of the first aspect.
  • FIG. 1 illustrates a structural schematic view of a longitudinal section of an OLED display panel in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 2 illustrates a structural schematic view of a longitudinal section of an OLED display panel according to another exemplary embodiment of the present disclosure.
  • FIG. 3 illustrates a structural schematic view of a longitudinal section of an OLED display panel according to another exemplary embodiment of the present disclosure.
  • FIG. 4 illustrates a structural schematic view of a longitudinal section of an OLED display panel according to another exemplary embodiment of the present disclosure.
  • FIG. 5 illustrates a structural schematic view of a longitudinal section of an OLED display panel according to another exemplary embodiment of the present disclosure.
  • FIG. 6 illustrates a structural schematic view of a longitudinal section of an OLED display panel according to another exemplary embodiment of the present disclosure.
  • FIG. 7 illustrates a structural schematic view of a longitudinal section of an OLED display panel according to another exemplary embodiment of the present disclosure.
  • FIG. 8A-8H are schematic views showing a manufacturing process of the OLED display panel shown in Fig. 7.
  • FIG. 9 is a schematic view showing a use state of the OLED display panel as shown in FIG.
  • Fig. 10A is a partial structural schematic view showing a longitudinal section of a standard OLED display panel as a comparative example
  • 10B is a partial structural schematic view showing a longitudinal section of a standard OLED display panel as another comparative example
  • FIG. 10C is a partial structural schematic view showing a longitudinal section of another standard OLED display panel as a comparative example.
  • FIG. 1 When an element such as a layer, a film, a region or a substrate is referred to as being “on” or “under” another element, the element can be “directly” There may be intermediate elements.
  • the drawings in the present disclosure are schematic views of a longitudinal section, and the longitudinal section in the present disclosure refers to a section taken along the horizontal direction of the user when the user faces the display panel, in particular, in the longitudinal section, the display panel is It can be bent in the use state. Unless otherwise stated, “near the center of the panel”, “the edge near the panel”, “away from the center of the panel” used in the present disclosure are referred to as the positional relationship in the longitudinal section.
  • FIG. 1 illustrates a structural schematic view of a longitudinal section of an OLED display panel 100 in accordance with an exemplary embodiment of the present disclosure.
  • the display panel 100 includes a substrate 11, a pad layer 12 on the substrate 11, a first electrode 13 on the pad layer 12, an organic light-emitting function layer 14 on the first electrode 13, and an organic light-emitting layer.
  • the second electrode 15 on the functional layer 14.
  • the thickness of the region of the mat 12 adjacent the center C-C of the panel is less than the thickness of the region of the mat 12 adjacent the edge E-E of the panel.
  • the area near the center of the panel and the area near the edge of the panel mean that one area is closer to the center C-C of the panel than the other, and the other area is closer to the edge E-E of the panel.
  • the substrate 11 can be, for example, a glass substrate.
  • the mat 12 can be made, for example, of a photoresist material.
  • the first electrode 13 and the second electrode 15 may be made of a metal such as copper, aluminum, molybdenum, niobium, silver or titanium or an alloy material thereof.
  • One of the first electrode 13 and the second electrode 15 may be an anode, and the other may be a cathode.
  • the organic light-emitting functional layer 14 may include a functional layer such as a hole injection layer, a hole transport layer, an organic light-emitting layer, an electron transport layer, and an electron injection layer. When a voltage is applied between the first electrode 13 and the second electrode 15, the organic light-emitting function layer 14 can emit light.
  • the organic light-emitting function layer 14 may include a plurality of array-arranged sub-pixel units that respectively emit red, green, or blue light to realize color display.
  • Fig. 1 only schematically shows the basic structure of an OLED display panel.
  • the display panel 100 may also include other layer structures and components known in the art, which is not limited in this disclosure.
  • a flexible TFT array may be included between the glass substrate 11 and the underlayer 12.
  • the thickness of the substrate 11 is, for example, in the range of 0.1 to 0.5 mm.
  • the thickness of the underlayer 12 is, for example, in the range of 100 to 2000 nm.
  • the thickness of the first electrode 13 is, for example, in the range of 50 to 200 nm.
  • the thickness of the organic light-emitting functional layer 14 is, for example, in the range of 150 to 1000 nm.
  • the thickness of the second electrode 15 is, for example, in the range of 5 to 50 nm.
  • the thickness of the region of the mat 12 adjacent the center C-C of the panel is less than the thickness of the region of the mat 12 adjacent the edge E-E of the panel.
  • the thickness of the mat 12 may gradually increase from the center C-C of the panel toward the edge E-E of the panel, so that the upper surface 121 of the mat 12 forms a smooth concave curved surface.
  • the present disclosure is not limited thereto, and the thickness of the mat 12 may also be increased from the center C-C of the panel toward the edge E-E of the panel.
  • a planar region is formed in the intermediate portion of the mat 12, and a curved region is formed in the edge region on both sides of the mat 12.
  • the mat 12 may also be stepped upward from the center C-C of the panel toward the edge E-E of the panel.
  • the OLED display can be eliminated by making the underlayer in the OLED display panel such that the thickness of the region of the underlayer near the center of the panel is smaller than the thickness of the region of the underlayer near the edge of the panel. The color difference between the center area and the edge area of the panel.
  • FIG. 2 illustrates a structural schematic view of a longitudinal section of an OLED display panel 200 in accordance with another exemplary embodiment of the present disclosure.
  • the display panel 200 includes a substrate 21, a pad layer 22 on the substrate 21, a first electrode 23 on the pad layer 22, an organic light-emitting function layer 24 on the first electrode 23, and an organic light-emitting layer.
  • the second electrode 25 on the functional layer 24.
  • the thickness of the region of the mat 22 adjacent the center C-C of the panel is less than the thickness of the region of the mat 12 adjacent the edge E-E of the panel.
  • This embodiment can also obtain the effect of eliminating the chromatic aberration phenomenon between the central region and the edge region of the OLED display panel as in the embodiment shown in FIG. 1.
  • the embodiment shown in FIG. 2 differs from the embodiment shown in FIG. 1 in that the display panel 200 further includes a plurality of protrusion structures 221 formed on the surface of the pad layer 22 facing away from the substrate 21.
  • the cross-sectional shape of the protrusion structure 221 may be, for example, a zigzag shape, a wave shape, a triangle shape, a trapezoid shape, or the like.
  • FIG. 3 illustrates a structural schematic view of a longitudinal section of an OLED display panel 300 in accordance with another exemplary embodiment of the present disclosure.
  • the OLED display panel 300 of FIG. 3 is a variant embodiment of the OLED display panel 200 of FIG.
  • the display panel 300 includes a substrate 31, a pad layer 32 on the substrate 31, a first electrode 33 on the pad layer 32, an organic light-emitting function layer 34 on the first electrode 33, and an organic light-emitting layer.
  • the second electrode 35 on the functional layer 34.
  • the thickness of the region of the mat 32 adjacent the center C-C of the panel is less than the thickness of the region of the mat 13 adjacent the edge E-E of the panel.
  • a plurality of protrusion structures 321 are formed on the surface of the pad layer 32 facing away from the substrate 31. This embodiment can also obtain the effect of the embodiment shown in FIG. 2.
  • the embodiment shown in FIG. 3 differs from the embodiment shown in FIG. 2 in that, in the display panel 300, the bottom of the protruding structure 321 can penetrate the underlayer 22 to the upper surface of the substrate 21. In other words, the entire bedding layer 32 can each be constructed of a raised structure. This embodiment can further eliminate the chromatic aberration phenomenon between the central area and the edge area of the OLED display panel. Other aspects of this embodiment are the same as those of the embodiment shown in FIG. 2, and details are not described herein again.
  • FIG. 4 illustrates a structural schematic view of a longitudinal section of an OLED display panel according to another exemplary embodiment of the present disclosure.
  • the display panel 400 includes a substrate 41, a pad layer 42 on the substrate 41, a first electrode 43 on the pad layer 42, an organic light-emitting function layer 44 on the first electrode 43, and an organic light-emitting layer.
  • the second electrode 45 on the functional layer 44.
  • the thickness of the region of the mat 42 adjacent the center C-C of the panel is less than the thickness of the region of the mat 42 adjacent the edge E-E of the panel.
  • a plurality of protrusion structures 421 are formed on the surface of the pad layer 42 facing away from the substrate 41. This embodiment can also obtain the effect of the embodiment shown in FIG. 2.
  • the height H 1 of the protrusion structure 421 on the area near the center CC of the panel 400 is smaller than the area near the edge EE of the panel.
  • the chromatic aberration phenomenon between the central region and the edge region of the OLED display panel can be further eliminated by making the height of the protruding structure on the region near the center of the panel smaller than the height of the protruding structure of the region near the edge of the panel.
  • Other aspects of this embodiment are the same as those of the embodiment shown in FIG. 2, and details are not described herein again.
  • FIG. 5 illustrates a structural schematic view of a longitudinal section of an OLED display panel according to another exemplary embodiment of the present disclosure.
  • the display panel 500 includes a substrate 51, a pad layer 52 on the substrate 51, a first electrode 53 on the pad layer 52, an organic light-emitting function layer 54 on the first electrode 53, and an organic light-emitting layer.
  • the second electrode 55 on the functional layer 54.
  • the thickness of the region of the mat 52 adjacent the center C-C of the panel is less than the thickness of the region of the mat 52 adjacent the edge E-E of the panel.
  • a plurality of protrusion structures 521 are formed on the surface of the pad layer 52 facing away from the substrate 51.
  • the height of the protrusion structure 521 on the area near the center C-C of the panel 500 is smaller than the height of the protrusion structure 521 on the area near the edge E-E of the panel. This embodiment can also obtain the effect of the embodiment as shown in FIG.
  • the protruding structure 521 is inclined in a direction toward the center line CC of the panel, that is, the tip end of the protruding structure is directed along the center line of the panel.
  • the direction of CC Moreover, the angle ⁇ 1 formed by the protrusion direction XX of the protrusion structure 521 on the area near the center CC of the panel 500 and the plane of the substrate 51 is larger than the protrusion direction of the protrusion structure 521 on the area near the edge EE of the panel and the plane of the substrate 51.
  • the angle ⁇ 2 The protruding direction of the protruding structure 521 refers to a direction in which the center line of the protruding structure extends. Other aspects of this embodiment are the same as those of the embodiment shown in FIG. 4, and details are not described herein again.
  • the angle of the protrusion direction of the protrusion structure 521 on the pad layer 52 and the plane in which the substrate 51 is formed may gradually decrease from the center C-C of the panel toward the edge E-E of the panel.
  • the protrusion direction of the protrusion structure 521 at the center CC of the pad layer 12 is perpendicular to the display panel, and the protrusion direction of the protrusion structure 521 at the edge EE of the pad layer 12 is close to 0 degree of the plane of the display substrate.
  • the angle of the protrusion direction of the protrusion structure 521 on the pad layer 52 and the plane in which the substrate 51 is located may gradually change from 90 degrees to 0 degrees.
  • the present disclosure is not limited thereto, and the angle formed by the protrusion direction of the protrusion structure 521 and the plane in which the substrate 51 is located may also be increased from the center C-C of the panel toward the edge E-E of the panel.
  • the protruding direction of the protruding structure 521 on the planar region in the middle of the underlayer 52 is formed with the plane of the substrate 51.
  • the angles may all be 90 degrees, and the angle of the protrusion direction of the protrusion structure 521 on the curved surface area and the plane in which the substrate 51 is located may gradually decrease toward both sides of the panel.
  • Other aspects of this embodiment are the same as those of the embodiment shown in FIG. 4, and details are not described herein again.
  • This embodiment can be used for a convex display device.
  • the convex display device means that the display surface of the display device facing the viewer is a convex surface.
  • the display panel 500 shown in FIG. 5 it is necessary to peel the glass substrate 51, and then paste the other portion of the display panel 500 onto the surface of the rigid curved substrate of the display device.
  • the surface of the rigid curved substrate is a convex surface
  • the protruding direction of the protruding structure 521 of the cushion layer 52 of the display panel 500 is inclined from the center line toward the panel to be substantially parallel to The center line of the panel can further eliminate the chromatic aberration between the central area and the edge area of the OLED display panel.
  • FIG. 6 illustrates a structural schematic view of a longitudinal section of an OLED display panel 600 in accordance with another exemplary embodiment of the present disclosure.
  • the display panel 600 includes a substrate 61, a pad layer 62 on the substrate 61, a first electrode 63 on the pad layer 62, an organic light-emitting function layer 64 on the first electrode 63, and an organic light-emitting layer.
  • the second electrode 65 on the functional layer 64.
  • the thickness of the region of the mat 62 adjacent the center CC of the panel is less than the thickness of the region of the mat 62 adjacent the edge EE of the panel.
  • a plurality of protrusion structures 621 are formed on the surface of the pad layer 62 facing away from the substrate 61.
  • the height H 1 of the protrusion structure 621 on the area near the center CC of the panel 600 is smaller than the height H 2 of the protrusion structure 621 on the area near the edge EE of the panel.
  • This embodiment can also obtain the effect of the embodiment as shown in FIG.
  • the protrusion structure 621 is inclined in a direction away from the center line CC of the panel, that is, the tip end of the protrusion structure is directed away from the panel.
  • the direction of the center line CC Moreover, the angle ⁇ 1 formed by the protrusion direction XX of the protrusion structure 621 on the area near the center CC of the panel 600 and the plane of the substrate 61 is larger than the protrusion direction of the protrusion structure 621 on the area near the edge EE of the panel and the plane of the substrate 61.
  • the angle ⁇ 2 Other aspects of this embodiment are the same as those of the embodiment shown in FIG. 4, and details are not described herein again.
  • the angle at which the protrusion direction of the protrusion structure 621 on the pad layer 62 forms a plane with the plane of the substrate 61 may gradually decrease from the center C-C of the panel toward the edge E-E of the panel.
  • the protrusion direction of the protrusion structure 621 at the center CC of the pad layer 62 is perpendicular to the display panel, and the protrusion direction of the protrusion structure 621 at the edge EE of the pad layer 62 is close to the plane of the plane of the display substrate. degree.
  • the angle of the protrusion direction of the protrusion structure 621 on the pad layer 62 and the plane in which the substrate 61 is located may gradually change from 90 degrees to nearly 0 degrees.
  • the present disclosure is not limited thereto, and the angle ⁇ formed by the protrusion direction of the protrusion structure 621 and the plane of the substrate 61 may also be increased from the center C-C of the panel toward the edge E-E of the panel.
  • the protruding direction of the protruding structure 621 on the planar region in the middle of the underlayer 62 is formed with the plane of the substrate 61.
  • the angles may all be 90 degrees, and the angle formed by the protrusion direction of the protrusion structure 621 on the curved surface area and the plane in which the substrate 61 is located may gradually decrease toward both sides of the panel.
  • Other aspects of this embodiment are the same as those of the embodiment shown in FIG. 4, and details are not described herein again.
  • This embodiment can be used for a concave display device.
  • the concave display device means that the display surface of the display device facing the viewer is a concave surface.
  • the glass substrate 61 needs to be peeled off, and then the other portion of the display panel 600 is pasted onto the surface of the rigid curved substrate of the display device.
  • the surface of the rigid curved substrate is a concave surface
  • the protruding direction of the protruding structure 621 of the cushion layer 62 of the display panel 600 is inclined from the center line toward the panel to be substantially parallel to The center line of the panel can further eliminate the chromatic aberration between the central area and the edge area of the OLED display panel.
  • FIG. 7 shows a schematic structural view of an OLED display panel 700 in accordance with an embodiment of the present disclosure.
  • the display panel 700 includes a substrate 70, a TFT array 71 on the substrate 70, a pad layer 72 on the TFT array 71, an anode 73 on the pad layer 72, and an organic light-emitting function layer 74 on the anode 73. And a cathode 75 on the organic light-emitting functional layer 74.
  • the organic light-emitting functional layer 74 is shown to include a hole transport layer 74a, a light-emitting layer 74b, and an electron transport layer 74c.
  • the anodes 73 may be in an array structure, and each anode unit corresponds to one TFT in the TFT array, and the anode 73 is integrally disposed in conformity with the shape of the pad layer 72.
  • the cathode 75 may be in the form of an array corresponding to the array of anodes, and may also be a single-sided electrode.
  • the pad layer 72 includes a planar area 72a and a curved surface area 72b on both sides of the planar area 72a.
  • the planar area 72a has the same thickness, and the thickness of the curved surface area 72b gradually increases toward both sides of the panel 700.
  • a plurality of protrusion structures 721 are formed on the surface of the pad layer 72 facing away from the substrate 71.
  • the heights of the protrusion structures 721 on the planar area 72a in the middle of the pad layer 72 are the same, and the heights of the protrusion structures 721 on the curved surface area 72b of the pad layer 72 are gradually increased toward the sides of the panel, respectively.
  • the angle of the protrusion direction of the protrusion structure 721 on the planar area 72a in the middle of the pad layer 72 and the plane in which the substrate 71 is located are both 90 degrees, and the protrusion structure 721 on the curved surface area 72b is inclined in the direction toward the center line CC of the panel. That is, the tip end of the protruding structure points in a direction near the center line CC of the panel.
  • the angle at which the protrusion direction of the protrusion structure 721 forms a plane with the plane of the substrate 71 gradually decreases toward the edge of the panel 700.
  • Other aspects of this embodiment are the same as those of the embodiment shown in FIG. 4, and details are not described herein again. This embodiment can also obtain the effect of eliminating the chromatic aberration phenomenon between the central area and the edge area of the display panel.
  • FIG. 8A-8G are schematic views showing a manufacturing process of the OLED display panel shown in Fig. 7.
  • a glass substrate (first substrate) 70 is provided.
  • a TFT array 71 is formed on the glass substrate 70.
  • the array 71 includes TFT transistors for driving the anode 73 and other necessary components.
  • a pad layer 72 is formed on the TFT array 71.
  • a negative photoresist layer having a thickness in the range of 200 to 4000 nm is laid on the TFT array 71 for forming a underlayer.
  • the thickness of the region of the underlayer 72 near the center of the panel is made smaller than the thickness of the region of the underlayer 72 near the edge of the panel, for example by molding.
  • the photoresist layer is molded using a mold plate such that the surface of the photoresist layer facing away from the substrate has a desired shape.
  • the cushion layer 72 is formed into a planar region 72a at a central portion of the panel and a curved region 72b at both sides of the planar region 72a by molding, the planar region 72a having the same thickness, and the thickness of the curved region 72b facing the panel 700
  • the edges of the sides are gradually increasing.
  • the thickness of the planar region 72a is in the range of 100-1500 nm
  • the thickness of the curved region 72b is in the range of 100-2000 nm.
  • a plurality of protrusion structures 721 are formed on the surface of the pad layer 72 facing away from the substrate 71.
  • a plurality of protrusion structures 721 are formed on the upper surface of the underlayer by a two-beam interference lithography process.
  • the double-beam interference lithography process is used to prepare the protruding structure 721.
  • the optical path system is relatively simple, can achieve small resolution, and does not require strict light source conditions, can be applied to most photoresists, has high feasibility, and is suitable for producing large sizes. Panel.
  • the formed protrusion structures 721 can have different heights by changing the power of the beams.
  • the heights of the protrusion structures 721 on the planar area 72a in the middle of the pad layer 72 are the same, and the heights of the protrusion structures 721 on the curved surface area 72b of the pad layer 72 are gradually increased toward the sides of the panel, respectively.
  • the height of the protrusion structure may be in the range of 100-2000 nm.
  • the power of the beam can be selected such that the protrusion structure 721 extends through the pad layer 72 to the substrate 71.
  • the light beam can always perform lithography perpendicular to the surface of the substrate 71.
  • the light beam is also perpendicular to the upper surface of the planar region 72a, thereby forming a protruding structure in which the projection direction is substantially perpendicular to the upper surface of the cushion layer 72.
  • the light beam is incident on the upper surface of the curved surface region 72b at an incident angle of less than 90 degrees, and the light is obliquely inclined in a direction away from the center of the display panel, thereby embossing the protrusion structure 721 formed by photolithography.
  • the direction is inclined toward the center of the display panel.
  • the beam may be photolithographically performed perpendicular to the upper surface of the pad layer 72.
  • the light beam is perpendicular to the upper surface of the planar region 72a, thereby forming a protruding structure in which the projection direction is substantially perpendicular to the upper surface of the cushion layer 72.
  • the light beam is also perpendicular to the upper surface of the curved surface region 72b (ie, perpendicular to the tangent to the curved surface region), and the angle of the protrusion formed by the photolithographically formed protruding structure 721 and the plane of the substrate 71 faces the panel 700.
  • the edges of the edges gradually decrease.
  • a first electrode 73 that is, an anode, is formed on the pad layer 72 on which the protrusion structure 721 is formed.
  • a metal layer of uniform thickness may be deposited on the upper surface of the underlayer 72 by evaporation or sputtering such that the metal layer substantially has a shape conforming to the shape of the upper surface of the underlayer 72.
  • the material of the metal layer may specifically be a metal such as copper, aluminum, molybdenum, niobium, silver or titanium or an alloy thereof.
  • the metal layer is then patterned, for example by an etch process, to form the anode of the OLED display panel.
  • an organic light-emitting function layer 74 and a second electrode 75 are sequentially formed on the first electrode 73.
  • forming the organic light-emitting function layer 74 includes: first, as shown in FIG. 8G, a hole injection layer or a hole transport layer 74a is deposited on the first electrode 73 by a spin coating process.
  • the thickness of the hole injection layer or hole transport layer 74a may be thick to form a substantially flat upper surface.
  • the thickness of the hole injection layer or hole transport layer 74a may be in the range of 100 to 2000 nm.
  • the light-emitting layer 74b and the electron transport layer or the electron injection layer 74c are prepared by a common film formation process such as an evaporation process, and the layers are respectively patterned to form light-emitting units capable of emitting light of different colors.
  • the thickness of the light-emitting layer 74b may be in the range of 5 to 100 nm
  • the thickness of the electron-transport layer 74c may be in the range of 5 to 100 nm.
  • a metal layer is deposited on the upper surface of the organic light-emitting function layer 74 by a sputtering process, and the material of the metal layer may specifically be metal such as copper, aluminum, molybdenum, niobium, silver or titanium or Alloy material.
  • the metal layer is then patterned, for example by an etch process, to form the cathode 75 of the display panel. In this way, the OLED display panel 700 as shown in FIG. 7 can be obtained.
  • the glass substrate 70 is peeled off from the finished OLED display panel main body, and the peeled OLED display panel main body is attached on the surface of the rigid curved substrate (second substrate) to obtain a curved OLED display panel 900.
  • the position of the curved surface region 720b of the pad layer 720 in the organic light emitting diode display panel 700 is aligned with the curved surface region of the rigid curved substrate having a corresponding shape, and the planar region 720a of the pad layer 720 in the organic light emitting diode display panel 700 is disposed. The position is aligned with the planar area of the rigid curved substrate, and the curved OLED display panel is obtained after pasting.
  • FIG. 9 is a schematic view showing a use state of the OLED display panel as shown in FIG.
  • the curved OLED display panel 900 includes a planar area 900a located at a central area of the display panel and a curved surface area 900b located on both sides of the planar area 900a, which can be used for a convex display device.
  • the glass substrate 70 in the display panel shown in FIG. 7 is peeled off, and the display panel after peeling off the board
  • FIG. 9 is a schematic view showing a use state of the OLED display panel as shown in FIG.
  • the curved OLED display panel 900 includes a planar area 900a located at a central area of the display panel and a curved surface area 900b located on both sides of the planar area 900a, which can be used for a convex display device.
  • the protrusion directions of the protrusion structures 721 on the pad layer 72 in the display panel 900 all become vertically upward, that is, parallel to the center line of the display panel.
  • the screens of the planar area 900a and the curved surface area 900b do not exhibit significant chromatic aberration.
  • the thickness of the mat layer is always the same from the center of the panel toward the sides of the panel.
  • the underlayer in the lateral cross-section of the display panel, may be of the same or similar design as the longitudinal cross-section of the underlayer in the various embodiments described above.
  • the foregoing embodiments of the present disclosure are described by taking an OLED display panel as an example. Those skilled in the art can understand that the technical solution in the present disclosure can also be applied to a QLED display panel, and the QLED display panel is similar to the OLED display panel, and the difference is at least different.
  • the electroluminescent functional layer of the OLED display panel is an organic light emitting functional layer
  • the electroluminescent layer of the QLED display panel is an inorganic light emitting functional layer.
  • FIG. 1 For embodiments of the present disclosure also provide a display device comprising the display panel as described in the foregoing embodiments.
  • the display device is, for example, a device having a display function such as a mobile phone, a tablet computer, a notebook computer, a digital photo frame, a personal digital assistant, a navigator, a television, a desktop computer, or the like. This disclosure does not limit this.
  • FIG. 10A is a partial structural view showing a longitudinal section of a standard OLED device 1A as a comparative example
  • FIG. 10B is a partial structural view showing a longitudinal section of a standard OLED device 1B as another comparative example
  • FIG. 10C shows A partial structural schematic view of a longitudinal section of another standard OLED device 1C as a comparative example.
  • Figures 10A-10C show only the glass substrate 1, the TFT substrate 2 and the underlayer 3 of the OLED device, and the raised structures 31 on the underlayer 3, other portions not shown.
  • the height H 1 of the protruding structure of the underlayer 3 is 40 nm, and the angle between the protruding structure 31 and the substrate 1 is 90 degrees.
  • the height H 2 of the protrusion structure 31 of the pad layer 3 is 80 nm, and the angle between the protrusion structure 31 and the substrate 1 is 90 degrees, and other parameters are the same as those of the OLED device of FIG. 10A.
  • the height H 3 of the protrusion structure 21 of the pad layer 2 is 80 nm, and the angle ⁇ between the protrusion structure 21 and the substrate 1 is 80 degrees, and other parameters are the same as those of the OLED device of FIG. 10B.
  • represents the angle between the line of sight and the normal to the display panel
  • represents the angle of the line of sight of the line of sight on the display panel to the horizontal axis of the first quadrant.
  • a positive viewing angle is observed in the area near the center of the panel, and a side viewing angle is observed in the area near the edge of the panel.
  • the simulation results show that when the middle position of the display panel is set to device 10A and the two sides are set to device 10C, the color difference between the positive viewing angle and the side viewing angle is the smallest, and the uniformity of the panel is the best, which proves that the method of the present disclosure can be effective. Eliminate the chromatic aberration between the central area and the edge area of the OLED display panel.
  • Embodiments of another aspect of the present disclosure are also directed to a display device including the display panel of each of the above embodiments.
  • the display device may include a device having a display function, such as a mobile phone, a tablet computer, a notebook computer, a digital photo frame, a personal digital assistant, a navigator, a television, and the like, which is not limited in the present disclosure.
  • a display device of the present disclosure it is possible to eliminate the chromatic aberration phenomenon between the central region and the edge region of the display device having the curved surface, and improve the quality of the display screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及及其制造方法、显示装置,所述显示面板包括:基板,垫层,设置在所述基板上;第一电极,设置在所述垫层上;电致发光功能层,设置在所述第一电极上;以及第二电极,设置在所述电致发光功能层上,其中,所述垫层的纵向截面整体上具有从所述第一电极朝向所述基板下凹的轮廓,并且在所述纵向截面中,所述垫层的靠近面板的中心的区域的厚度不大于靠近面板的边缘的区域的厚度。

Description

显示面板及其制造方法、显示装置
相关申请的交叉引用
本申请要求2017年7月11日提交中国专利局的专利申请201710563547.6的优先权,其全部内容通过引用合并于本申请中。
技术领域
本公开的实施例涉及显示技术领域,尤其涉及一种显示面板及其制造方法以及一种显示装置。
背景技术
有机发光二极管(OLED)显示面板已经得到越来越多的应用。在OLED显示面板中,曲面OLED显示面板(具有至少一个曲面区域)因其造型独特,满足特定的显示需求,越来越受到市场的欢迎。但是,在曲面OLED显示面板中,显示面板的中心区域和边缘区域之间具有色差。
公开内容
本公开的目的之一是提供一种显示面板及其制造方法以及一种显示装置。
根据本公开的一个方面的实施例,提供一种显示面板,包括:基板,垫层,设置在所述基板上;第一电极,设置在所述垫层上;电致发光功能层,设置在所述第一电极上;以及第二电极,设置在所述电致发光功能层上,其中,所述垫层的纵向截面整体上具有从所述第一电极朝向所述基板下凹的轮廓,并且在所述纵向截面中,所述垫层的靠近面板的中心的区域的厚度不大于靠近面板的边缘的区域的厚度。
根据本公开的一个实施例,在所述纵向截面中,所述垫层在其背离所述基板的表面上具有多个突起结构。
根据本公开的一个实施例,所述靠近面板的中心的区域上的所述突起结构的高度不大于靠近面板的边缘的区域上的所述突起结构的高度。
根据本公开的一个实施例,所述靠近面板的中心的区域上的所述突起结构的突起方向与基板所在平面形成的角度不小于靠近面板的边缘的区域上的所述突起结构的突起方向与基板所在平面形成的角度。
根据本公开的一个实施例,所述突起结构的突起方向从所述基板到所述第一电极靠近垂直于所述面板的中心的轴线。
根据本公开的一个实施例,所述突起结构的突起方向从所述基板到所述第一电极远离垂直于所述面板的中心的轴线。
根据本公开的一个实施例,所述垫层包括平面区域和在所述纵向截面中位于平面区域两侧的曲面区域,所述平面区域具有相同的厚度,所述曲面区域的厚度朝向面板的两侧的边缘逐渐增加。
根据本公开的一个实施例,所述垫层包括平面区域和在所述纵向截面中位于平面区域两侧的曲面区域,所述平面区域上的突起结构具有相同的高度,所述曲面区域上的突起结构的高度朝向面板的两侧的边缘逐渐增加。
根据本公开的一个实施例,所述平面区域上的突起结构的突起方向垂直于基板所在平面,所述曲面区域上的突起结构的突起方向与基板所在平面形成的角度朝向面板的两侧的边缘逐渐减小。
根据本公开的一个实施例,所述突起结构的底部延伸至所述基板。
根据本公开的一个实施例,在所述纵向截面中,所述垫层的厚度从面板的中心朝向面板的两侧边缘逐渐增加。
根据本公开的一个实施例,在所述纵向截面中,所述垫层的厚度从面板的中心朝向面板的两侧边缘逐渐分段增加。
根据本公开的一个实施例,在横向截面中,所述垫层从面板的中心到面板的两侧边缘具有相同的厚度。
根据本公开的一个实施例,所述第一电极顺应所述垫层的形状设置。
根据本公开的另一个方面的实施例,提供一种制造显示面板的方法,包括:提供第一基板;在所述第一基板上形成垫层;在所述垫层上形成第一电极;在所述第一电极上形成电致发光功能层;以及在所述电致发光功能层上形成第二电极,其中,所述垫层的纵向截面整体上具有从所述第一电极朝向所述基板下凹的轮廓,并且所述垫层的纵向截面的靠近面板的中心的区域的厚度不大于靠近面板的边缘的区域的厚度。
根据本公开的一个方面的实施例,在基板上形成垫层包括:在所述基板上铺设一层光刻胶层;对所述光刻胶层进行模压。
根据本公开的一个方面的实施例,对所述光刻胶层进行模压包括:通过模压使所述垫层包括平面区域和在所述纵向截面中位于平面区域两侧的曲面区域。
根据本公开的一个方面的实施例,制造显示面板的方法还包括:采用双光束干涉光刻工艺使得所述垫层的纵向截面在其背离基板的表面上形成多个突起结构。
根据本公开的一个方面的实施例,制造显示面板的方法还包括:剥离第一基板;将剥离第一基板后的显示面板粘贴到第二基板上,其中,将显示面板中的垫层的曲面区域的位置对准所述第二基板的曲面区域,将显示面板中的垫层的平面区域的位置对准所述第二基板的平面区域。
根据本公开的另一个方面的实施例,提供一种显示装置,包括第一方面的实施例所述的显示面板。
附图说明
图1示出了根据本公开的一个示例性实施例的OLED显示面板的纵向截面的结构示意图。
图2示出了根据本公开的另一个示例性实施例的OLED显示面板的纵向截面的结构示意图。
图3示出了根据本公开的另一个示例性实施例的OLED显示面板的纵向截面的结构示意图。
图4示出了根据本公开的另一个示例性实施例的OLED显示面板的纵向截面的结构示意图。
图5示出了根据本公开的另一个示例性实施例的OLED显示面板的纵向截面的结构示意图。
图6示出了根据本公开的另一个示例性实施例的OLED显示面板的纵向截面的结构示意图。
图7示出了根据本公开的另一个示例的实施例的OLED显示面板的纵向截面的结构示意图。
图8A-8H是示出了图7所示的OLED显示面板的制作过程的示意图。
图9是示出了如图7的所示的OLED显示面板的使用状态的示意图。
图10A示出了作为比较示例的标准OLED显示面板的纵向截面的部分 结构示意图;
图10B示出了作为另一比较示例的标准OLED显示面板的纵向截面的部分结构示意图;以及
图10C示出了作为比较示例的另一标准OLED显示面板的纵向截面的部分结构示意图。
具体实施方式
为更清楚地阐述本公开的目的、技术方案及优点,以下将结合附图对本公开的实施例进行详细的说明。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。应当理解,下文对于实施例的描述旨在对本公开的总体构思进行解释和说明,而不应当理解为是对本公开的限制。在说明书和附图中,相同或相似的附图标记指代相同或相似的部件或构件。为了清晰起见,附图不一定按比例绘制,并且附图中可能省略了一些公知部件和结构。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”“顶”或“底”等等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。当诸如层、膜、区域或衬底基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。本公开中的附图均是纵向截面的示意图,本公开中的纵向截面是指使用者正视显示面板时,沿使用者左右水平方向截取的截面,特别地,在该纵向截面上,显示面板在使用状态下可以呈弯曲状态。除非另外说明书,本公开中使用的“靠近面板的中心”、“靠近面板的边缘”“远离面板的中心”均是在指在纵向截面中的位置关系。
图1示出了根据本公开的一个示例性实施例的OLED显示面板100的纵向截面的结构示意图。如图1所示,显示面板100包括基板11、在基板11上的垫层12、在垫层12上的第一电极13、在第一电极13上的有机发光功能层14,以及在有机发光功能层14上的第二电极15。在该纵向截面中,垫层12的靠近面板的中心C-C的区域的厚度小于所述垫层12的靠近面板的边缘E-E的区域的厚度。靠近面板的中心的区域和靠近面板的边缘的区域是指两个区域相比较而言,一个区域更靠近面板的中心C-C,另一个区域更靠近面板的边缘E-E。
基板11例如可以为玻璃基板。垫层12例如可以由光刻胶材料制成。第一电极13和第二电极15可以由铜、铝、钼、钕、银或钛等金属或它们的合金材料制成。第一电极13和第二电极15之一可以为阳极,另一个可以为阴极。有机发光功能层14可以包括空穴注入层、空穴传输层、有机发光层、电子传输层、电子注入层等功能层。当在第一电极13和第二电极15之间施加电压时,有机发光功能层14可以发光。虽然图中未示出,本领域技术人员可以理解,有机发光功能层14中可以包括多个阵列排布的子像素单元,分别发出红光、绿光或蓝光,以实现彩色显示。图1只是示意示出了OLED显示面板的基本结构。本领域技术人员可以理解,显示面板100还可以包括本领域已知的其它层结构和部件,本公开对此不加限定。例如,在玻璃基板11和垫层12之间可以包括柔性TFT阵列。
基板11的厚度例如在0.1-0.5mm范围内。垫层12的厚度例如在100-2000nm的范围内。第一电极13的厚度例如在50-200nm的范围内。有机发光功能层14的厚度例如在150-1000nm的范围内。第二电极15的厚度例如在5-50nm的范围内。
垫层12的靠近面板的中心C-C的区域的厚度小于所述垫层12的靠近面板的边缘E-E的区域的厚度。如图1所示,垫层12的厚度可以从面板的中心C-C朝向面板的边缘E-E逐渐增加,从而垫层12的上表面121形成平滑凹曲面。但本公开不限于此,垫层12的厚度也可以从面板的中心C-C朝向面板的边缘E-E分段增加。例如,在垫层12的中间区域形成平面区域,在垫层12两侧的边缘区域形成曲面区域。垫层12还可以从面板的中心C-C朝向面板的边缘E-E呈上升阶梯状。
根据图1所示的实施例,通过在OLED显示面板中制作垫层,使得垫层的靠近面板的中心的区域的厚度小于所述垫层的靠近面板的边缘的区域的厚度,能够消除OLED显示面板的中心区域和边缘区域之间的色差现象。
图2示出了根据本公开的另一个示例性实施例的OLED显示面板200的纵向截面的结构示意图。如图2所示,显示面板200包括基板21、在基板21上的垫层22、在垫层22上的第一电极23、在第一电极23上的有机发光功能层24,以及在有机发光功能层24上的第二电极25。垫层22的靠近面板的中心C-C的区域的厚度小于所述垫层12的靠近面板的边缘E-E的区域的厚度。该实施例同样可以获得如图1所示的实施例的消除OLED显示面板的中心区域和边缘区域之间的色差现象的效果。
图2所示的实施例与图1所示的实施例的不同之处在于,显示面板200还包括在垫层22的背离基板21的表面上形成的多个突起结构221。突起结构221的截面形状例如可以为锯齿形、波浪形、三角形、梯形等形状。通过设置该突起结构221,能够减小在第一电极23和第二电极25之间形成的微腔结构内部的全反射现象,增加显示面板200的出光效率。该实施例的其它方面与图1所示的实施例相同,在此不再赘述。
图3示出了根据本公开的另一个示例性实施例的OLED显示面板300的纵向截面的结构示意图。图3的OLED显示面板300是图2的OLED显示面板200的一种变形的实施例。如图3所示,显示面板300包括基板31、在基板31上的垫层32、在垫层32上的第一电极33、在第一电极33上的有机发光功能层34,以及在有机发光功能层34上的第二电极35。垫层32的靠近面板的中心C-C的区域的厚度小于垫层13的靠近面板的边缘E-E的区域的厚度。在垫层32的背离基板31的表面上形成多个突起结构321。该实施例同样可以获得如图2所示的实施例的效果。
图3所示的实施例与图2所示的实施例的不同之处在于,在显示面板300中,突起结构321的底部可以穿透垫层22延伸至基板21的上表面。换句话说,整个垫层32可以均由突起结构构成。该实施例可以进一步消除OLED显示面板的中心区域和边缘区域之间的色差现象。该实施例的其它方面与图2所示的实施例相同,在此不再赘述。
图4示出了根据本公开的另一个示例性实施例的OLED显示面板的纵向截面的结构示意图。如图4所示,显示面板400包括基板41、在基板41上的垫层42、在垫层42上的第一电极43、在第一电极43上的有机发光功能层44,以及在有机发光功能层44上的第二电极45。垫层42的靠近面板的中心C-C的区域的厚度小于所述垫层42的靠近面板的边缘E-E的区域的厚度。在垫层42的背离基板41的表面上形成多个突起结构421。该实施例同样可以获得如图2所示的实施例的效果。
与图2所示的实施例的不同之处在于,在图4所示的显示面板400中,靠近面板400中心C-C的区域上的突起结构421的高度H 1小于靠近面板的边缘E-E的区域上的突起结构421的高度H 2。根据该实施例,通过使靠近面板的中心的区域上的突起结构的高度小于靠近面板的边缘的区域的突起结构的高度,能够进一步消除OLED显示面板的中心区域与边缘区域之间的色差现象。该实施例的其它方面与图2所示的实施例相同,在此不再赘述。
图5示出了根据本公开的另一个示例性实施例的OLED显示面板的纵向截面的结构示意图。如图5所示,显示面板500包括基板51、在基板51上的垫层52、在垫层52上的第一电极53、在第一电极53上的有机发光功能层54,以及在有机发光功能层54上的第二电极55。垫层52的靠近面板的中心C-C的区域的厚度小于垫层52的靠近面板的边缘E-E的区域的厚度。在垫层52的背离基板51的表面上形成多个突起结构521。靠近面板500中心C-C的区域上的突起结构521的高度小于靠近面板的边缘E-E的区域上的突起结构521的高度。该实施例同样可以获得如图4所示的实施例的效果。
与图4所示的实施例的不同之处在于,根据图5所示的实施例,突起结构521沿朝向面板的中心线C-C的方向倾斜,即,突起结构的尖端指向沿靠近面板的中心线C-C的方向。并且,靠近面板500中心C-C的区域上的突起结构521的突起方向X-X与基板51所在平面形成的角度α 1大于靠近面板的边缘E-E的区域上的突起结构521的突起方向与基板51所在平面形成的角度α 2。突起结构521的突起方向是指突起结构的中心线延伸的方向。该实施例的其它方面与图4所示的实施例相同,在此不再赘述。
例如,垫层52上的突起结构521的突起方向与基板51所在平面形成的角度可以从面板的中心C-C朝向面板的边缘E-E逐渐减小。例如,在垫层12的位于中心C-C处的突起结构521的突起方向垂直于显示面板,而垫层12的位于边缘E-E处的突起结构521的突起方向与显示基板所在平面的夹角接近0度。从面板的中心C-C到面板的边缘E-E,垫层52上的突起结构521的突起方向与基板51所在平面形成的角度可以从90度逐渐变化为趋于0度。
但是,本公开不限于此,突起结构521的突起方向与基板51所在平面形成的角度也可以从面板的中心C-C朝向面板的边缘E-E分级增加。例如,在垫层52的中间区域形成平面区域而在垫层52的两侧形成曲面区域的情况下,在垫层52中间的平面区域上的突起结构521的突起方向与基板51所在平面形成的角度可以均为90度,而曲面区域上的突起结构521的突起方向与基板51所在平面形成的角度可以朝向面板的两侧逐渐减小。该实施例的其它方面与图4所示的实施例相同,在此不再赘述。
该实施例可以用于凸面显示装置。凸面显示装置是指显示装置的朝向观看者的显示面为凸面。当将图5所示的显示面板500用于凸面显示装置时,需要将玻璃基板51剥离,然后将显示面板500的其它部分粘贴到显示装置的刚性弯曲基板表面上。此时,由于刚性弯曲基板表面为凸面,将显示面板500粘贴到刚性弯曲基板表面上后,显示面板500的垫层52的突起结构521的突起方向由朝向面板的中心线倾斜变为基本平行于面板的中心线,从而能够进一步消除OLED显示面板的中心区域和边缘区域之间的色差现象。
图6示出了根据本公开的另一个示例性实施例的OLED显示面板600的纵向截面的结构示意图。如图6所示,显示面板600包括基板61、在基板61上的垫层62、在垫层62上的第一电极63、在第一电极63上的有机发光功能层64,以及在有机发光功能层64上的第二电极65。垫层62的靠近面板的中心C-C的区域的厚度小于所述垫层62的靠近面板的边缘E-E的区域的厚度。在垫层62的背离基板61的表面上形成多个突起结构621。靠近面板600中心C-C的区域上的突起结构621的高度H 1小于靠近面板的 边缘E-E的区域上的突起结构621的高度H 2。该实施例同样可以获得如图4所示的实施例的效果。
与图4所示的实施例的不同之处在于,在图6所示的显示面板600中,突起结构621沿远离面板的中心线C-C的方向倾斜,即,突起结构的尖端指向沿远离面板的中心线C-C的方向。并且,靠近面板600中心C-C的区域上的突起结构621的突起方向X-X与基板61所在平面形成的角度α 1大于靠近面板的边缘E-E的区域上的突起结构621的突起方向与基板61所在平面形成的角度α 2。该实施例的其它方面与图4所示的实施例相同,在此不再赘述。
例如,垫层62上的突起结构621的突起方向与基板61所在平面形成的角度可以从面板的中心C-C朝向面板的边缘E-E逐渐减小。例如,在垫层62的位于中心C-C处的突起结构621的突起方向垂直于显示面板,而垫层62的位于边缘E-E处的突起结构621的突起方向与显示基板所在平面的夹角接近于0度。从面板的中心C-C到面板的边缘E-E,垫层62上的突起结构621的突起方向与基板61所在平面形成的角度可以从90度逐渐变化为接近0度。
但是,本公开不限于此,突起结构621的突起方向与基板61所在平面形成的角度α也可以从面板的中心C-C朝向面板的边缘E-E分级增加。例如,在垫层62的中间区域形成平面区域而在垫层62的两侧形成曲面区域的情况下,在垫层62中间的平面区域上的突起结构621的突起方向与基板61所在平面形成的角度可以均为90度,而曲面区域上的突起结构621的突起方向与基板61所在平面形成的角度可以朝向面板的两侧逐渐减小。该实施例的其它方面与图4所示的实施例相同,在此不再赘述。
该实施例可以用于凹面显示装置。凹面显示装置是指显示装置的朝向观看者的显示面为凹面。当将图6所示的显示面板600用于凹面显示装置时,需要将玻璃基板61剥离,然后将显示面板600的其它部分粘贴到显示装置的刚性弯曲基板表面上。此时,由于刚性弯曲基板表面为凹面,将显示面板600粘贴到刚性弯曲基板表面上后,显示面板600的垫层62的突起结构621的突起方向由朝向面板的中心线倾斜变为基本平行于面板的 中心线,从而能够进一步消除OLED显示面板的中心区域和边缘区域之间的色差现象。
图7示出了根据本公开的一个具体实施例的OLED显示面板700的结构示意图。如图7所示,显示面板700包括基板70、在基板70上的TFT阵列71、在TFT阵列71上的垫层72,垫层72上的阳极73、在阳极73上的有机发光功能层74,以及在有机发光功能层74上的阴极75。图中示出了有机发光功能层74包括空穴传输层74a、发光层74b和电子传输层74c。其中阳极73可以为阵列结构,每一个阳极单元对应TFT阵列中的一个TFT,阳极73整体上顺应所述垫层72的形状设置。在另外的实施例中,阴极75即可以呈对应于阳极阵列的阵列结构,还可以是一单一面电极。
如图7所示,垫层72包括平面区域72a和位于平面区域72a两侧的曲面区域72b,平面区域72a具有相同的厚度,曲面区域72b的厚度朝向面板700的两侧逐渐增加。在垫层72上的背离基板71的表面上形成多个突起结构721。在垫层72中间的平面区域72a上的突起结构721的高度相同,而在垫层72的曲面区域72b上的突起结构721的高度分别朝向面板的两侧逐渐增加。在垫层72中间的平面区域72a上的突起结构721的突起方向与基板71所在平面形成的角度均为90度,而曲面区域72b上的突起结构721沿朝向面板的中心线C-C的方向倾斜,即,突起结构的尖端指向沿靠近面板的中心线C-C的方向。突起结构721的突起方向与基板71所在平面形成的角度朝向面板700的边缘逐渐减小。该实施例的其它方面与图4所示的实施例相同,在此不再赘述。该实施例同样可以获得消除显示面板的中心区域和边缘区域之间的色差现象的效果。
图8A-8G是示出了图7所示的OLED显示面板的制作过程的示意图。
如图8A所示,首先,提供玻璃基板(第一基板)70。
接着,如图8B所示,在玻璃基板70上形成TFT阵列71。该阵列71包括用于驱动阳极73的TFT晶体管以及其它必要部件。
接着,如图8C所示,在TFT阵列71上形成垫层72。例如,在TFT阵列71上铺设一层厚度在200-4000nm范围内的负性光刻胶层,用于形成垫层。
接着,如图8D所示,例如通过模压使得垫层72的靠近面板的中心的区域的厚度小于垫层72的靠近面板的边缘的区域的厚度。具体地,利用模压板对光刻胶层进行模压,使得光刻胶层的背离基板的表面具有期望的形状。在该实施例中,通过模压使垫层72形成位于面板的中心区域的平面区域72a和位于平面区域72a两侧的曲面区域72b,平面区域72a具有相同的厚度,曲面区域72b的厚度朝向面板700的两侧的边缘逐渐增加。例如,平面区域72a的厚度在100-1500nm的范围内,曲面区域72b的厚度在100-2000nm范围内。
接着,如图8E所示,在垫层72上的背离基板71的表面上形成多个突起结构721。例如,通过双光束干涉光刻工艺在垫层的上表面上形成多个突起结构721。采用双光束干涉光刻工艺制备突起结构721,光路系统比较简单,能实现较小分辨率,而且不要求严格的光源条件,能适用大多数的光刻胶,可行性高,适用于生产大尺寸的面板。
在双光束干涉光刻工艺中,通过改变光束的功率,可以使所形成的突起结构721具有不同的高度。例如,在垫层72中间的平面区域72a上的突起结构721的高度相同,而在垫层72的曲面区域72b上的突起结构721的高度分别朝向面板的两侧逐渐增加。例如,突起结构的高度可以在100-2000nm的范围内。可选地,可以选择光束的功率,使突起结构721穿透垫层72延伸至基板71。
另外,在双光束干涉光刻工艺中,光束可以始终垂直于基板71的表面执行光刻。这样,对于垫层72的平面区域72a,光束也垂直于平面区域72a的上表面,从而形成突起方向大致垂直于垫层72的上表面的突起结构。对于垫层72的曲面区域72b,光束以小于90度的入射角入射至曲面区域72b的上表面,经过折射后光线朝向远离显示面板的中心的方向倾斜,从而光刻形成的突起结构721的突起方向朝向显示面板的中心倾斜。
可选地,在双光束干涉光刻工艺中,光束可以始终垂直于垫层72的上表面执行光刻。这样,对于垫层72的平面区域72a,光束垂直于平面区域72a的上表面,从而形成突起方向大致垂直于垫层72的上表面的突起结构。对于垫层72的曲面区域72b,光束也垂直于曲面区域72b的上表面 (即垂直于曲面区域的切线),光刻形成的突起结构721的突起方向与基板71所在平面形成的角度朝向面板700的边缘逐渐减小。
接着,如图8F所示,在形成有突起结构721的垫层72上形成第一电极73,即阳极。具体地,可以通过蒸镀或溅射的方法在垫层72的上表面上沉积一层均匀厚度的金属层,使得该金属层基本上具有和垫层72的上表面的形状一致的形状。金属层的材料具体可以采用铜、铝、钼、钕、银或钛等金属或它们的合金材料。然后,例如通过刻蚀工艺图案化金属层,以形成OLED显示面板的阳极。
接着,如图8G和8H所示,在第一电极73上依次形成有机发光功能层74和第二电极75。
具体地,形成有机发光功能层74包括:首先,如图8G所示,通过旋涂工艺在第一电极73上沉积空穴注入层或空穴传输层74a。空穴注入层或空穴传输层74a的厚度可以较厚,以形成大致平坦的上表面。例如,空穴注入层或空穴传输层74a的厚度可以在100-2000nm的范围内。
接着,如图8H所示,采用普通成膜工艺例如蒸镀工艺制备发光层74b和电子传输层或电子注入层74c,并分别图案化各层以形成能够发出不同颜色光的发光单元。发光层74b的厚度可以在5-100nm的范围内,电子传输层74c厚度可以在5-100nm的范围内。接着,如图8H所示,通过溅射工艺在有机发光功能层74的上表面上沉积一层金属层,金属层的材料具体可以采用铜、铝、钼、钕、银或钛等金属或它们的合金材料。然后,例如通过刻蚀工艺图案化金属层,以形成显示面板的阴极75。这样,可以得到如图7所示的OLED显示面板700。
最后,将玻璃基板70从制成的OLED显示面板主体上剥离,并将剥离后的OLED显示面板主体贴在刚性弯曲基板(第二基板)的表面上,即可得到一曲面OLED显示面板900,用于曲面显示应用。具体地,将有机发光二极管显示面板700中的垫层720的曲面区域720b的位置对准具有对应形状的刚性弯曲基板的曲面区域,将有机发光二极管显示面板700中的垫层720的平面区域720a的位置对准所述刚性弯曲基板的平面区域,粘贴后得到曲面OLED显示面板。
图9是示出了如图7的所示的OLED显示面板的使用状态的示意图。如图9所示,曲面OLED显示面板900包括位于显示面板的中心区域的平面区域900a和位于平面区域900a两侧的曲面区域900b,可用于凸面显示装置。如图9所示,在使用状态下,图7所示的显示面板中的玻璃基板70被剥离,剥离基板70后的显示面板被粘贴到刚性第二基板70a上,形成曲面显示面板900。从图9中可以看出,在使用状态下,显示面板900中的垫层72上的突起结构721的突起方向均变为垂直向上,即平行于显示面板的中心线。对于该显示面板900,平面区域900a和曲面区域900b的画面不会出现明显的色差现象。
本公开的前述各实施例中所述的显示面板的与纵向截面垂直的横向截面中,垫层的厚度从面板中心朝向面板的两侧的边缘始终相同。在另外的实施例中,在显示面板的横向截面中,垫层可以采用与前述各实施例中垫层的纵向截面相同或相似的设计。
将本公开前述实施例以OLED显示面板为例进行说明,本领域技术人员可以理解的是,本公开中技术方案还可以应用在QLED显示面板中,QLED显示面板与OLED显示面板类似,其不同至少在于OLED显示面板的电致发光功能层为有机发光功能层,而QLED显示面板的电致发光层为无机发光功能层。
本公开另外的实施例还提供了一种显示装置,包括如前述各实施例所述的显示面板。所述显示装置例如为手机、平板电脑、笔记本电脑、数码相框、个人数字助理、导航仪、电视机、台式机等具有显示功能的装置。本公开对此不做限定。
图10A示出了作为比较示例的标准OLED器件1A的纵向截面的部分结构示意图;图10B示出了作为另一比较示例的标准OLED器件1B的纵向截面的部分结构示意图;以及图10C示出了作为比较示例的另一标准OLED器件1C的纵向截面的部分结构示意图。为清楚起见,图10A-10C仅示出了OLED器件的玻璃基板1、TFT基板2和垫层3以及垫层3上的突起结构31,其它部分未示出。
在图10A的OLED器件1A中,垫层3的突起结构的高度H 1为40nm,突起结构31与基板1之间的夹角为90度。在图10B的OLED器件1B中,垫 层3的突起结构31的高度H 2为80nm,突起结构31与基板1之间的夹角为90度,其它参数与图10A的OLED器件相同。在图10C的OLED器件1C中,垫层2的突起结构21的高度H 3为80nm,突起结构21与基板1之间的夹角α为80度,其它参数与图10B的OLED器件相同。
采用软件(Techwiz)模拟具有10A、10B和10C的结构的OLED器件1A、1B和1C在正视角(θ=0°;Φ=0°)和侧视角(θ=45°;Φ=0°)时的光学特性。θ表示视线与显示面板法线之间的角度,Φ表示视线在显示面板上的投影与第一象限水平轴的角度。
模拟的具体结果如下:
器件1A:
正视角(θ=0°;Φ=0°),绿色色坐标为(0.21,0.71)[CIE 1931],亮度为150nit。CIE表示国际标准色度空间。
侧视角(θ=45°;Φ=0°),绿色色坐标为(0.25,0.68)[CIE 1931],亮度为100nit。
器件1B:
正视角(θ=0°;Φ=0°),绿色色坐标为(0.215,0.705)[CIE 1931],亮度为180nit。
侧视角(θ=45°;Φ=0°),绿色色坐标为(0.24,0.69)[CIE 1931],亮度为120nit。
器件1C:
正视角(θ=0°;Φ=0°),绿色色坐标为(0.220,0.70)[CIE 1931],亮度为170nit。
侧视角(θ=45°;Φ=0°),绿色色坐标为(0.22,0.70)[CIE 1931],亮度为135nit。
对于曲面显示面板,靠近面板的中心的区域观察到的是正视角,而靠近面板的边缘的区域观察到的是侧视角,正视角与侧视角的光学特性差异越小时,说明显示面板的色差越小。
模拟结果表明,当显示面板的中间位置设置为器件10A,而两侧位置设置为器件10C时,正视角与侧视角的色差最小,面板的均一性最好,验证了采用本公开的方法能够有效消除OLED显示面板的中心区域和边缘区 域之间的色差现象。
本公开另一方面的实施例还涉及包括上述各实施例的显示面板的显示装置。显示装置的例子可包括手机、平板电脑、笔记本电脑、数码相框、个人数字助理、导航仪、电视机等具有显示功能的装置,本公开对此不做限定。根据本公开的显示装置,能够消除具有弯曲表面的显示装置的中心区域和边缘区域之间的色差现象,提高显示画面的质量。
虽然以上参照附图描述了本公开的不同实施例,但本领域技术人员应当理解,在不引起冲突的情况下,不同实施例之间可以相互组合或进行部分替代。在不背离本公开的构思的前提下,可以对本公开的实施例做出各种修改和变化。所有这些修改和变化都应当落入本公开的保护范围内。因此,本公开的保护范围应以权利要求限定的保护范围为准。

Claims (20)

  1. 一种显示面板,包括:
    基板,
    垫层,设置在所述基板上;
    第一电极,设置在所述垫层上;
    电致发光功能层,设置在所述第一电极上;以及
    第二电极,设置在所述电致发光功能层上,
    其中,所述垫层的纵向截面整体上具有从所述第一电极朝向所述基板下凹的轮廓,并且在所述纵向截面中,所述垫层的靠近面板的中心的区域的厚度不大于靠近面板的边缘的区域的厚度。
  2. 根据权利要求1所述的显示面板,其中,在所述纵向截面中,所述垫层在其背离所述基板的表面上具有多个突起结构。
  3. 根据权利要求2所述的显示面板,其中,所述靠近面板的中心的区域上的所述突起结构的高度不大于靠近面板的边缘的区域上的所述突起结构的高度。
  4. 根据权利要求2或3所述的显示面板,其中,所述靠近面板的中心的区域上的所述突起结构的突起方向与基板所在平面形成的角度不小于靠近面板的边缘的区域上的所述突起结构的突起方向与基板所在平面形成的角度。
  5. 根据权利要求4所述的显示面板,其中,所述突起结构的突起方向从所述基板到所述第一电极靠近垂直于所述面板的中心的轴线。
  6. 根据权利要求4所述的显示面板,其中,所述突起结构的突起方向从所述基板到所述第一电极远离垂直于所述面板的中心的轴线。
  7. 根据权利要求1所述的显示面板,其中,所述垫层包括平面区域和在所述纵向截面中位于平面区域两侧的曲面区域,所述平面区域具有相同的厚度,所述曲面区域的厚度朝向面板的两侧的边缘逐渐增加。
  8. 根据权利要求2所述的显示面板,其中,所述垫层包括平面区域和在所述纵向截面中位于平面区域两侧的曲面区域,所述平面区域上的突起结构具有相同的高度,所述曲面区域上的突起结构的高度朝向面板的两侧的边缘逐渐增加。
  9. 根据权利要求7所述的显示面板,其中,所述平面区域上的突起结构的突起方向垂直于基板所在平面,所述曲面区域上的突起结构的突起方向与基板所在平面形成的角度朝向面板的两侧的边缘逐渐减小。
  10. 根据权利要求2-6和8,9中的任一项所述的显示面板,其中,所述突起结构的底部延伸至所述基板。
  11. 根据权利要求1-6中的任一项所述的显示面板,其中,在所述纵向截面中,所述垫层的厚度从面板的中心朝向面板的两侧边缘逐渐增加。
  12. 根据权利要求1-6中的任一项所述的显示面板,其中,在所述纵向截面中,所述垫层的厚度从面板的中心朝向面板的两侧边缘逐渐分段增加。
  13. 根据权利要求1-12中的任一项所述的显示面板,其中,在横向截面中,所述垫层从面板的中心到面板的两侧边缘具有相同的厚度。
  14. 根据权利要求1-13中的任一项所述的显示面板,其中,所述第一电极顺应所述垫层的形状设置。
  15. 一种制造显示面板的方法,包括:
    提供第一基板;
    在所述第一基板上形成垫层;
    在所述垫层上形成第一电极;
    在所述第一电极上形成电致发光功能层;以及
    在所述电致发光功能层上形成第二电极,
    其中,所述垫层的纵向截面整体上具有从所述第一电极朝向所述基板下凹的轮廓,并且所述垫层的纵向截面的靠近面板的中心的区域的厚度不大于靠近面板的边缘的区域的厚度。
  16. 根据权利要求15所述的方法,其中,在基板上形成垫层包括:
    在所述基板上铺设一层光刻胶层;
    对所述光刻胶层进行模压。
  17. 根据权利要求16所述的方法,其中,对所述光刻胶层进行模压包括:
    通过模压使所述垫层包括平面区域和在所述纵向截面中位于平面区域两侧的曲面区域。
  18. 根据权利要求15-17中任一项所述的方法,还包括:
    采用双光束干涉光刻工艺使得所述垫层的纵向截面在其背离基板的表面上形成多个突起结构。
  19. 根据权利要求15-18中任一所述的方法,还包括:
    剥离第一基板;
    将剥离第一基板后的显示面板粘贴到第二基板上,其中,将显示面板中的垫层的曲面区域的位置对准所述第二基板的曲面区域,将显示面板中的垫层的平面区域的位置对准所述第二基板的平面区域。
  20. 一种显示装置,包括如权利要求1-14任一项所述的显示面板。
PCT/CN2018/077907 2017-07-11 2018-03-02 显示面板及其制造方法、显示装置 WO2019010986A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/327,448 US10707433B2 (en) 2017-07-11 2018-03-02 Display panel, method of manufacturing the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710563547.6 2017-07-11
CN201710563547.6A CN107316949B (zh) 2017-07-11 2017-07-11 显示面板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2019010986A1 true WO2019010986A1 (zh) 2019-01-17

Family

ID=60178498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077907 WO2019010986A1 (zh) 2017-07-11 2018-03-02 显示面板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US10707433B2 (zh)
CN (1) CN107316949B (zh)
WO (1) WO2019010986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908173A (zh) * 2021-02-02 2021-06-04 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316949B (zh) 2017-07-11 2020-07-31 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN108053762B (zh) * 2017-12-06 2020-12-01 京东方科技集团股份有限公司 一种柔性显示面板、其制备方法及显示装置
CN108461041A (zh) * 2018-02-02 2018-08-28 云谷(固安)科技有限公司 一种显示装置、显示装置的色偏调整方法、和显示装置的制造方法
CN108598122B (zh) * 2018-04-28 2021-08-31 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN110649174B (zh) * 2018-06-26 2022-06-28 乐金显示有限公司 发光显示装置
CN108716631A (zh) * 2018-07-26 2018-10-30 合肥惠科金扬科技有限公司 分段式背光灯、背光模组及显示器
CN109524569B (zh) * 2018-12-13 2020-12-08 合肥京东方光电科技有限公司 有机电致发光器件及其制作方法、显示面板及显示装置
KR20200080052A (ko) * 2018-12-26 2020-07-06 엘지디스플레이 주식회사 발광 표시 장치
CN110224079B (zh) * 2019-06-14 2022-06-14 京东方科技集团股份有限公司 显示基板、制作方法及显示装置
CN110556060A (zh) * 2019-09-12 2019-12-10 昆山国显光电有限公司 显示面板及其制备方法、显示装置
CN111509020B (zh) * 2020-04-29 2022-08-02 湖北长江新型显示产业创新中心有限公司 柔性显示面板和显示装置
US20240147803A1 (en) * 2021-05-26 2024-05-02 Boe Technology Group Co., Ltd. Array substrate and display apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752400A (zh) * 2008-12-10 2010-06-23 统宝光电股份有限公司 影像显示装置、影像显示系统及其制造方法
CN104733632A (zh) * 2013-12-18 2015-06-24 昆山国显光电有限公司 有机发光显示装置及其制造方法
WO2016084727A1 (ja) * 2014-11-27 2016-06-02 シャープ株式会社 発光素子、表示パネル、表示装置、電子機器、発光素子の製造方法
CN107316949A (zh) * 2017-07-11 2017-11-03 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201909A (ja) * 1992-12-28 1994-07-22 Canon Inc 回折格子の製造方法
JP2001118680A (ja) * 1999-10-18 2001-04-27 Toyota Motor Corp 有機el曲面素子の製造方法
US6888678B2 (en) * 2000-02-16 2005-05-03 Matsushita Electric Industrial Co., Ltd. Irregular-shape body, reflection sheet and reflection-type liquid crystal display element, and production method and production device therefor
JP3880356B2 (ja) * 2000-12-05 2007-02-14 キヤノン株式会社 表示装置
JP2003317971A (ja) * 2002-04-26 2003-11-07 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
US20040135160A1 (en) * 2003-01-10 2004-07-15 Eastman Kodak Company OLED device
JP2005091873A (ja) * 2003-09-18 2005-04-07 Seiko Epson Corp 電気光学装置、電子機器、および電気光学装置の製造方法
JP2005135899A (ja) * 2003-10-06 2005-05-26 Omron Corp 面光源装置及び表示装置
KR20070049211A (ko) * 2004-09-30 2007-05-10 가부시끼가이샤 도시바 유기 일렉트로루미네센스 표시 장치
CN102162954A (zh) * 2006-01-24 2011-08-24 夏普株式会社 显示装置、显示装置的制造方法、基板及彩色滤光片基板
US20080179615A1 (en) * 2007-01-26 2008-07-31 Chi-Hung Kao Light-emitting diode device
JP4418525B2 (ja) * 2008-02-28 2010-02-17 パナソニック株式会社 有機elディスプレイパネル
JP2010169722A (ja) * 2009-01-20 2010-08-05 Seiko Epson Corp 光学素子の製造方法及び光学素子
KR101879618B1 (ko) * 2011-07-01 2018-07-18 오지 홀딩스 가부시키가이샤 유기 발광 다이오드의 제조 방법, 유기 발광 다이오드, 화상 표시 장치, 조명 장치 및 기판
FR2991101B1 (fr) * 2012-05-25 2016-05-06 Saint Gobain Dispositif a diode electroluminescente organique comportant un support comprenant un element en couches transparent
JP6214077B2 (ja) * 2012-07-31 2017-10-18 株式会社Joled 表示装置、表示装置の製造方法、電子機器および表示装置の駆動方法
JP2014132299A (ja) * 2013-01-07 2014-07-17 Japan Display Inc 表示装置
TWI612689B (zh) * 2013-04-15 2018-01-21 半導體能源研究所股份有限公司 發光裝置
CN103332031B (zh) * 2013-05-30 2016-02-10 合肥京东方光电科技有限公司 印刷版的制作方法、散射膜层及其制作方法、显示装置
CN103943787B (zh) * 2014-03-28 2016-08-24 京东方科技集团股份有限公司 一种oled显示器及其制备方法
CN203760520U (zh) * 2014-03-28 2014-08-06 京东方科技集团股份有限公司 一种oled显示器
CN103985739B (zh) * 2014-05-09 2017-06-13 青岛海信电器股份有限公司 一种曲面显示面板和显示装置
CN204167324U (zh) * 2014-07-09 2015-02-18 京东方科技集团股份有限公司 一种oled显示器
CN104103673B (zh) * 2014-07-09 2017-06-20 京东方科技集团股份有限公司 一种oled显示器及其制备方法
CN104362257B (zh) 2014-10-22 2017-10-17 京东方科技集团股份有限公司 一种顶发射oled器件及其制作方法、显示设备
CN104505469B (zh) * 2015-01-04 2017-04-05 京东方科技集团股份有限公司 一种有机发光二极管显示基板及其封装方法
CN104637988A (zh) 2015-03-11 2015-05-20 京东方科技集团股份有限公司 Oled显示装置及其制备方法
CN106250800B (zh) * 2015-06-05 2021-08-27 Agc株式会社 一种保护玻璃以及便携式信息终端
CN105633121B (zh) * 2016-01-05 2019-03-12 京东方科技集团股份有限公司 一种电致发光显示面板、其制作方法及显示装置
CN106299143B (zh) * 2016-09-05 2019-03-08 京东方科技集团股份有限公司 一种准直光源、其制作方法及显示装置
CN106449657B (zh) * 2016-10-27 2020-02-04 上海天马微电子有限公司 Oled显示面板、显示装置、阵列基板及其制作方法
CN106450036B (zh) * 2016-11-24 2019-01-22 武汉华星光电技术有限公司 Oled器件封装结构、oled器件及显示屏
CN106647031B (zh) * 2016-12-27 2023-11-07 京东方科技集团股份有限公司 一种发光模块、显示装置及发光模块的制作方法
CN106842381A (zh) * 2017-03-01 2017-06-13 京东方科技集团股份有限公司 一种光学组件及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752400A (zh) * 2008-12-10 2010-06-23 统宝光电股份有限公司 影像显示装置、影像显示系统及其制造方法
CN104733632A (zh) * 2013-12-18 2015-06-24 昆山国显光电有限公司 有机发光显示装置及其制造方法
WO2016084727A1 (ja) * 2014-11-27 2016-06-02 シャープ株式会社 発光素子、表示パネル、表示装置、電子機器、発光素子の製造方法
CN107316949A (zh) * 2017-07-11 2017-11-03 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908173A (zh) * 2021-02-02 2021-06-04 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN112908173B (zh) * 2021-02-02 2022-09-27 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN107316949B (zh) 2020-07-31
CN107316949A (zh) 2017-11-03
US10707433B2 (en) 2020-07-07
US20190198793A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2019010986A1 (zh) 显示面板及其制造方法、显示装置
US10886481B2 (en) Display substrate with angle-adjusting portion, manufacturing method thereof, and display device
US11296160B2 (en) Display substrate, display apparatus, and method of fabricating the display substrate
WO2019214548A1 (zh) 显示基板及其制作方法和显示装置
US20210226175A1 (en) Display panel, method for manufacturing the same, and display device
US11778853B2 (en) Display panel comprising an encapsulation layer, display device, and manufacturing methods thereof
US11271046B2 (en) OLED display panel, method for manufacturing the same and OLED display device
WO2016101576A1 (zh) 阵列基板及其制作方法和显示装置
WO2020206977A1 (zh) 显示面板及其制备方法和半导体结构
WO2016101452A1 (zh) 显示基板及其制作方法、显示装置
WO2019114310A1 (zh) 显示基板及其制作方法、显示装置
WO2019000904A1 (zh) Oled显示基板及其制作方法、显示装置
WO2021227205A1 (zh) Oled的面板及其制造方法
WO2020238397A1 (zh) 显示面板及其制造方法、显示装置
US8038494B2 (en) Organic electroluminescent device and method of manufacturing the same
WO2019052229A1 (zh) 显示基板、显示器件和显示基板的制造方法
WO2019114332A1 (zh) 阵列基板、显示装置以及阵列基板的制造方法
WO2022088948A1 (zh) 显示面板、显示装置和显示面板的制作方法
CN106816558A (zh) 顶发射有机电致发光显示面板、其制作方法及显示装置
WO2020118812A1 (zh) 一种oled面板的制作方法及oled面板
WO2023000388A1 (zh) 显示面板及显示装置
WO2019196798A1 (zh) 像素界定层、像素结构、显示面板及显示装置
CN112563310A (zh) Oled背板结构、制作方法及显示装置
WO2021012374A1 (zh) 一种显示面板及其制作方法
JP2004521475A (ja) エレクトロルミネセント表示デバイス用の基板及びその基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18831088

Country of ref document: EP

Kind code of ref document: A1