WO2019003720A1 - 自動駐車制御装置 - Google Patents

自動駐車制御装置 Download PDF

Info

Publication number
WO2019003720A1
WO2019003720A1 PCT/JP2018/019583 JP2018019583W WO2019003720A1 WO 2019003720 A1 WO2019003720 A1 WO 2019003720A1 JP 2018019583 W JP2018019583 W JP 2018019583W WO 2019003720 A1 WO2019003720 A1 WO 2019003720A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
next frame
section
route
parking
Prior art date
Application number
PCT/JP2018/019583
Other languages
English (en)
French (fr)
Inventor
宗俊 柘植
義幸 吉田
大司 清宮
敬一朗 平川
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201880031410.9A priority Critical patent/CN110621562B/zh
Priority to JP2019526686A priority patent/JP6740477B2/ja
Priority to US16/609,262 priority patent/US11155257B2/en
Priority to EP18824096.4A priority patent/EP3613647B1/en
Publication of WO2019003720A1 publication Critical patent/WO2019003720A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/026Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation combined with automatic distance control, i.e. electronic tow bar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/10Automatic or semi-automatic parking aid systems

Definitions

  • the present invention relates to an automatic parking control apparatus that controls a vehicle to a target parking position to perform parking.
  • a target parking position is determined based on information from an external world recognition device such as a camera or a sonar, and a parking path along which the vehicle moves from the current vehicle position to the target parking position is calculated.
  • an automatic parking control device that controls steering and acceleration / deceleration of a vehicle.
  • the parking path generally includes zero or more turnarounds (switching the traveling direction of the vehicle between forward and reverse).
  • the parking route is calculated as one or more section routes from the vehicle control start position or the turnaround position to the next turnaround position or the target parking position (hereinafter may be referred to as a next frame) connected.
  • the position on the parking route where the vehicle should be present at the current time and the current vehicle position calculated based on the wheel speed and the history of the steering angle It is common to detect differences and perform feedback control so that the vehicle position approaches a parking path. With this feedback control, the vehicle can be moved along the parking path.
  • the parking route from the current position to the target parking position is regenerated, and the regenerated parking route is followed. Control the vehicle so that the vehicle moves.
  • the parking path is regenerated when the target parking position is changed, or when the deviation between the actual travel path of the vehicle and the target parking path reaches a predetermined level or more.
  • the route generation processing is generally performed by stopping the vehicle once.
  • next frame can not be reached as described above while controlling the vehicle along the section route, it is possible to reach the next frame without performing normal route regeneration, if possible. It is desirable that the adjustment of the parking path and the vehicle control to be performed be performed by a lightweight process that can be performed without stopping the vehicle once.
  • Patent Document 2 As a conventional technique for this, in Patent Document 2 below, the stop position of the vehicle is predicted based on the speed and position of the vehicle, and if the predicted stop position is before the allowable range of the target stop position, the brake is turned off. There are proposed techniques for adjusting the stop position. However, Patent Document 2 is directed to a railway whose route is uniquely determined by a track, and is not taken into consideration when a vehicle deviates from the route.
  • the car does not necessarily move along the route.
  • the position and orientation of the vehicle should be determined by the position and orientation of the traveling lane, but in the case of automatic parking, only the parking route calculated by the automatic parking control device itself , It becomes a judgment ground of the position and direction where the vehicle should pass.
  • the present invention has been made in view of the above circumstances, and the purpose of the present invention is to control the vehicle in automatic parking, and when it is found that the next frame can not be reached, without relying on normal parking path regeneration. Another object of the present invention is to provide an automatic parking control device capable of correctly reaching the next frame.
  • the automatic parking control device is configured to start from the parking position or the parking position next to the parking position from the parking position to the target parking position.
  • An automatic parking control apparatus for causing a vehicle to travel along a parking route from a parking start position to a target parking position by executing traveling of the zone route to the position, and when the vehicle travels along the zone route Determining whether or not the vehicle can reach the next frame which is the target turning position or the turnaround position to be reached next, when the vehicle travels the remaining section from the current position of the section route; If it is determined that the vehicle can not reach the next frame even if the traveling of the remaining section is completed, the steering angle at the traveling completion position of the remaining section from the traveling completion position of the remaining section and By making the vehicle travel in the traveling direction, it is determined whether the vehicle can reach the next frame on the extension of the remaining section, or the remaining section until the traveling of the remaining section is completed A determination unit that determines whether or not the vehicle can reach the next frame above, and the current position of the
  • the position of the vehicle at the time when vehicle control along the section route is completed is likely to deviate from the next frame, and the position of the next frame is the section route
  • the next frame is the section route
  • normal parking path regeneration processing is not performed, there is no need to stop once, and the processing load on a CPU (Central Processing Unit) is also lightened.
  • CPU Central Processing Unit
  • FIG. 8 is a view for explaining the operation of the vehicle equipped with the automatic parking control device when the next frame is on the extension of the current section route in the first embodiment of the present invention.
  • FIG. 13 is a view for explaining another example of the operation of the vehicle equipped with the automatic parking control device when the next frame is on the extension of the current section route in the first embodiment of the present invention.
  • FIG. 8 is a view for explaining the operation of the vehicle equipped with the automatic parking control device when the next frame is on the remaining section of the current section route in the first embodiment of the present invention.
  • FIG. 13 is a view for explaining another example of the operation of the vehicle equipped with the automatic parking control device when the next frame is on the remaining section of the current section route in the first embodiment of the present invention.
  • FIG. 8 is a view for explaining the operation of the vehicle equipped with the automatic parking control device when there is no next frame on the extension line of the current section route or on the remaining section in the first embodiment of the present invention. It is a flowchart showing 1 cycle's worth of cyclic processing of an automatic parking control device at the time of making a self-vehicle run by vehicle control so that the present section course may be followed in a 1st embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a method of obtaining the vehicle position when traveling of the remaining section is completed from the current position of the vehicle and the remaining section of the section route in the first embodiment of the present invention.
  • the steering angle at the arrival position of the current section route is 0, a method for determining whether the next frame is on the extension of the current section route will be described. is there.
  • FIG. 10 is a diagram for describing a method of determining whether the next frame is on the extension of the current section route when the steering angle at the current section route at the reaching position is not 0 in the first embodiment of the present invention. .
  • FIG. 7 is a diagram for describing a vehicle control method for causing the vehicle to reach the next frame when the next frame is on the extension of the current section route in the first embodiment of the present invention.
  • FIG. 10 is a diagram for describing a vehicle control method for causing the vehicle to reach the next frame when the next frame is on the remaining section of the current section route in the first embodiment of the present invention. It is a flow chart showing one cycle of periodic processing of an automatic parking control device at the time of making a self-vehicle run by vehicles control so that a 2nd embodiment of the present invention might run along the present section course.
  • FIG. 1 is a schematic block diagram of an automatic parking control apparatus according to a first embodiment of the present invention.
  • the automatic parking control device 100 of the present embodiment performs processing of all functions related to automatic parking.
  • the automatic parking control apparatus 100 is generally realized using an electronic circuit, it is also called an automatic parking ECU (Electronic Control Unit).
  • the automatic parking control apparatus 100 includes an HMI (Human Machine Interface) 171, an external recognition sensor 172 such as a camera or a sonar, an input switch 173, or the like through a direct signal line or a vehicle control network 190 such as CAN (Controller Area Network). And, it is connected to various sensor / actuator ECUs 180 of the vehicle. As a result, the automatic parking control apparatus 100 can perform operations such as acquisition of various information such as external information, input information from the driver, and the state of the vehicle, control of the vehicle, and information provision to the driver as a whole. Configure an automatic parking system.
  • HMI Human Machine Interface
  • an external recognition sensor 172 such as a camera or a sonar
  • an input switch 173 such as a direct signal line or a vehicle control network 190 such as CAN (Controller Area Network).
  • CAN Controller Area Network
  • the automatic parking software 101 includes a state transition unit 110, an input / output processing unit 120, a display processing unit 125, a space recognition unit 130, a route generation unit 135, an arrival determination unit 140, an own vehicle position estimation unit 145, a vehicle control unit 150, etc. And various software processing units are included.
  • the state transition unit 110 controls the operation of the automatic parking control apparatus 100 as a whole, changes its own state based on information from other software processing units, and determines the next action.
  • the input / output processing unit 120 performs input / output processing with various devices outside the automatic parking control device 100, which are connected by a signal line directly connected or the vehicle control network 190. That is, processing of passing input data received from various devices to another software processing unit and processing of transmitting output data requested from other software to various devices are performed.
  • the display processing unit 125 processes the information obtained from the external world recognition sensor 172 and the information on various operation states obtained from other software processing units into data suitable for display on the HMI 171 and outputs the data to the HMI 171.
  • the space recognition unit 130 recognizes a parking frame, an obstacle, and the like based on the information from the external world recognition sensor 172 and the position and orientation of the vehicle estimated by the vehicle position estimation unit 145, and generates a space map. create.
  • the route generation unit 135 generates a parking route from the parking start position (vehicle control start position) to the target parking position based on the space map created by the space recognition unit 130 and the instruction from the state transition unit 110.
  • the arrival determination unit 140 determines whether or not the position and orientation of the vehicle estimated by the vehicle position estimation unit 145 have reached the next frame of the current section route in the parking route generated by the route generation unit 135. Determined based on.
  • the section route means a route from the parking start position (vehicle control start position) or the turning position provided at the middle of the parking path to the next turning position or the target parking position. In other words, it means a path from the parking start position or one target position to the next target position when the target parking position is defined as the turning position provided in the middle of the parking path or the target parking position is defined as the target position.
  • the next frame means a turnaround position or a target parking position (target position) to which the vehicle will reach next.
  • the vehicle position estimation unit 145 estimates the current position and direction of the vehicle based on the information such as the wheel speed of the vehicle and the history of the steering angle.
  • the vehicle control unit 150 controls the steering, acceleration / deceleration, shift, and the like of the own vehicle to cause the own vehicle to travel along the current section route.
  • the automatic parking software 101 is provided with the reach
  • the arrival adjustment unit 160 includes a determination unit 161, an operation unit 162, and an adjustment unit 163.
  • the determination unit 161 determines whether or not the vehicle reaches the next frame. In addition, when it is determined that the vehicle can not reach the next frame in the remaining section traveling, the host vehicle is allowed to travel at the steering angle and the traveling direction at the traveling completed position in the remaining section from the traveling completion position in the remaining section. It is determined whether the vehicle can reach the next frame on the extension of the remaining section. Also, along with that, even if the traveling of the remaining section is completed, it does not reach within the next frame, but whether or not the vehicle can reach the next frame on the remaining section until the traveling of the remaining section is completed (ie , Determine whether there is a next frame on the remaining section).
  • the calculation section 162 determines the next frame Calculate the adjustment distance to reach.
  • the adjustment unit 163 generates, based on the calculation result of the calculation unit 162, a parking route including an adjustment route whose travel distance has been adjusted by the adjustment distance, and information on steering and vehicle speed scheduled at each position on the parking route.
  • vehicle control based on the calculation result of the calculation unit 162 is realized.
  • FIG. 2 is a view for explaining the operation of a vehicle equipped with the automatic parking control device 100 when the next frame is on the extension of the current section route in the first embodiment of the present invention.
  • the target parking position is the original target parking position
  • An operation when changing from the dotted line frame 203A to a more appropriate target parking position (bold line frame in the figure) 203B located on the back side of the original target parking position 203A is shown.
  • the automatic parking control apparatus 100 is configured such that the current position of the vehicle on the parking path 211 is on the section path 212 where the target parking position 203A before the change is the next frame, and this section path 212 If one or more partial straight lines or partial curves are on the partial straight line or partial curve immediately before the next frame, the determination by the determination unit 161 described above and the calculation processing by the calculation unit 162 are performed.
  • the own vehicle travels within the next frame by causing the vehicle to travel at the steering angle and traveling direction at the travel completion position of the remaining section from the travel completion position of the remaining section of the section route 212. If it is determined that the route can be reached, the calculation unit 162 calculates the adjustment distance from the travel completion position (end point) of the section route 212 to the next frame, and the adjustment unit 163 travels the remaining section
  • the adjustment route 213 for causing the vehicle to travel by adding the adjustment distance while maintaining the steering angle and the traveling direction at the travel completion position of the remaining section from the completion position is the destination of the travel completion position of the remaining section of the section route 212 , On the extension of the remaining section of the section route 212). Even when the target parking position moves on the extension of the section path 212, the adjustment path 213 enables smooth parking control.
  • the generation of the adjustment path may be performed as follows.
  • the own vehicle is made to travel at the steering angle and the traveling direction at the travel completion position of the remaining section from the travel completion position of the remaining section of the section route 212.
  • the calculation unit 162 calculates the adjustment distance from the current position 205 of the section route 212 to the next frame, and the adjustment unit The adjustment route 213A for causing the vehicle to travel the adjustment distance from the current position 205 of the section route 212 while maintaining the steering angle and the traveling direction at the travel completion position of the remaining section from the travel completion position of the remaining section .
  • the adjustment route 213A also enables smooth parking control.
  • the parking path 211 is calculated as one or more section paths from the parking start position (vehicle control start position) 201 or the turning back position 202 to the next frame connected, but one section path Is generally constructed by connecting one or more partial curves or partial straight lines represented by specific mathematical expressions.
  • the types of partial curves include an arc that is a locus when traveling at a constant angle other than 0, and a clothoid curve that is a locus when traveling at a constant speed while increasing or decreasing the steering angle as a linear function There is.
  • FIG. 4 is a diagram for explaining the operation of the vehicle equipped with the automatic parking control device 100 when the next frame is on the remaining travel section of the current section route in the first embodiment of the present invention.
  • FIG. 4 shows that the target parking position is the initial target parking position when the current position 205 of the vehicle equipped with the automatic parking control device 100 moves to a position where the outside recognition sensor 172 can recognize the back of the actual parking frame. It shows the operation when the target parking position (bold line frame in the figure) 203B is located on the front side of the initial target parking position 203A from the (dotted frame in the figure) 203A.
  • the automatic parking control apparatus 100 is configured such that the current position of the vehicle on the parking path 211 is on the section path 212 where the target parking position 203A before the change is the next frame, and this section path 212 If one or more partial straight lines or partial curves are on the partial straight line or partial curve immediately before the next frame, the determination by the determination unit 161 described above and the calculation processing by the calculation unit 162 are performed.
  • the calculating unit 162 calculates the adjustment distance from the current position 205 of the section route 212 to the next frame, and the adjusting unit 163 sets the path 313A of the remaining section to the start point and the passing position. Instead of changing it, it is replaced with an adjustment route 313 B for causing the vehicle to travel by the adjustment distance from the current position 205 of the section route 212. Even when the target parking position moves to a position before the next frame of the section path 212, the adjustment path 313B enables smooth parking control.
  • the generation of the adjustment path may be performed as follows.
  • the calculation section 162 calculates the adjustment distance 313L from the travel completion position (end point) of the section route 212 to the next frame and the adjustment section 163
  • the route 313C of the remaining section is replaced with the adjustment route 313D in which the travel distance of the remaining section of the section route 212 is shortened by the adjustment distance 313L without changing the starting point and the passing position.
  • the adjustment route 313D also enables smooth parking control.
  • FIG. 6 is a view for explaining the operation of a vehicle equipped with the automatic parking control device 100 when the next frame is neither on the extension line of the current section route nor on the remaining section in the first embodiment of the present invention is there.
  • the target parking position is the original target parking position
  • This figure shows the operation when the target parking position (bold line frame in the figure) 203B is changed from the (dotted frame in the figure) 203A to a more appropriate target parking position (bold line frame in the figure) which is neither on the extension nor on the remaining section .
  • the automatic parking control apparatus 100 is configured such that the current position of the vehicle on the parking path 211 is on the section path 212 where the target parking position 203A before the change is the next frame, and this section path 212 If one or more partial straight lines or partial curves are on the partial straight line or partial curve immediately before the next frame, the determination by the determination unit 161 described above and the calculation processing by the calculation unit 162 are performed.
  • the section route 212 is adjusted by the processing of the arrival adjustment section 160 to Give up the car to reach the next frame, control the vehicle according to the initial section route 212, the initial target parking position (next frame) (in other words, the travel completion position of the remaining section of the section route 212)
  • the route generation unit 135 regenerates the parking route 211.
  • the parking path 211 may be regenerated by immediately stopping the vehicle on the section path 212 (in other words, from the position moved from the current position 205 of the section path 212 until the vehicle stops).
  • FIG. 7 is a flow chart showing one cycle of periodic processing of the automatic parking control device 100 when the host vehicle is caused to travel by vehicle control along the current section route in the first embodiment of the present invention.
  • steps S511 to 525 are the processes that characterize the present embodiment.
  • step S501 vehicle control is performed to cause the vehicle to travel along the current section route under normal feedback control (step S502). More specifically, the current position and orientation of the vehicle based on the vehicle position estimation by the vehicle position estimation unit 145 are compared with the position and orientation of the vehicle on the section route at the current traveling distance. Then, feedback control is performed to bring the current position and orientation of the vehicle closer to the desired position and orientation on the section route. If the reaching adjustment in the present embodiment is already performed, the section route adjusted by the reaching adjustment process is used for feedback control. This feedback control is performed by the vehicle control unit 150.
  • the vehicle position is the last of the section route (that is, just before the next frame). It is determined whether or not it has entered the partial curve or partial straight line (step S511), and the vehicle position is in the middle of the last partial curve or partial line of the section route, and the position of the next frame is moved It is determined whether or not (changed) (step S512). If either of the determinations in step S511 and step S512 is true, the process proceeds to step S521, and if false, the process proceeds to step S531. This determination is performed by, for example, the determination unit 161.
  • step S511 takes into consideration the case where correction can not be performed by feedback control due to accumulation of errors, external factors, and the like.
  • step S 521 it is determined whether the next frame is present on the remaining section of the section route (consisting of only one of a partial curve or a partial straight line that can be expressed by a specific mathematical expression) or an extension thereof. If the next frame has moved, the determination is made on the next frame after the movement. If it is possible to reach the next frame in the middle of the remaining section or on the extension of the remaining section, the process proceeds to step S522. If there is no next frame on the middle of the remaining section or on the extension of the remaining section, the process proceeds to step S531. Go to This determination is performed by, for example, the determination unit 161.
  • step S522 the adjustment distance to reach the next frame is calculated. This calculation is performed by the calculation unit 162.
  • step S 523 it is determined whether the process of the adjustment unit 163 should be applied, and what kind of process to apply when it is applied (step S 523). If it is determined in step S521 that the next frame is at the position where control of the remaining section of the section route has just been completed, the process directly proceeds to step S531. If it is determined that the next frame is on the extension of the remaining section, the adjustment route (an adjustment route whose travel distance has been adjusted by the adjustment distance calculated in step S522) is added ahead of the section route (step S524) ).
  • processing is performed to replace it with an adjusted route (an adjusted route whose travel distance has been adjusted by the adjustment distance calculated in step S522). S525).
  • the processes of steps S524 and S525 are performed by the adjustment unit 163.
  • step S524 or step S525 the process proceeds to step S531.
  • step S531 it is determined whether vehicle control for the vehicle to travel the current section route is completed. If the reaching adjustment of this embodiment has already been executed, the section route adjusted by the reaching adjustment process is used for determination. If it is determined in step S531 that the vehicle control is completed, the process proceeds to step S532. If the vehicle control is not completed, the process proceeds to step S541. This determination is performed by, for example, the vehicle control unit 150.
  • step S532 the position and the orientation of the next frame are compared with the current position and the orientation of the vehicle based on the vehicle position estimation, and it is determined whether or not the vehicle may be considered to have reached the next frame. This determination is performed by the arrival determination unit 140.
  • step S533 If it can not be considered that the own vehicle has reached the next frame, it is considered that the result of the vehicle control of the own vehicle deviates from the next frame, so the process proceeds to step S534 (step S533) Re-generate the parking path to and then proceed to step S535.
  • the regenerating process of the parking route in step S534 is performed by the route generating unit 135.
  • step S535 the section route is switched to the next section route.
  • the path is switched to the first section path of the regenerated parking path. If the target parking position is reached, there is no next section route, so vehicle control for causing the vehicle to travel along the parking route is completed.
  • step S541 the process of the corresponding cycle is ended.
  • FIG. 8 is a view for explaining a method of obtaining the vehicle position when traveling of the remaining section is completed from the current position of the vehicle and the remaining section of the section route in the first embodiment of the present invention.
  • the determination section 161 of the present embodiment travels the remaining section of the section route to the next frame, the determination as to whether or not the vehicle reaches the next frame, and from the travel completion position of the remaining section In order to judge whether or not the vehicle can reach the next frame by traveling at the steering angle and the traveling direction at the traveling completion position of the remaining segment, the remaining segment is compared with the current position of the vehicle as a front stage. It is necessary to calculate the position of the vehicle when traveling is completed.
  • the rear wheel axle center of the vehicle is adopted as the vehicle position. This can be roughly regarded as without centrifugal force and wheel slippage when the vehicle travels at low speed as in automatic parking, so Ackerman steering geometry can be applied to the analysis of vehicle movement, and the turning center of the vehicle is This is because it can be considered as being on the extension of the rear wheel axle.
  • the current position 205 based on the vehicle position estimation on space coordinates (ground fixed coordinates) is expressed as (X0, Y0, ⁇ 0).
  • X0 is an X coordinate
  • Y0 is a Y coordinate
  • ⁇ 0 is a yaw angle.
  • the coordinate shift from the current position when traveling of the remaining section of the section route is completed is ( ⁇ X, ⁇ Y, ⁇ ) I will represent.
  • the method of calculating ⁇ X, ⁇ Y, ⁇ depends on the method of generating the parking path.
  • the vehicle position 601 when traveling of the remaining section is completed from the current position of the vehicle can be expressed as (X0 + ⁇ X, Y0 + ⁇ Y, ⁇ 0 + ⁇ ).
  • the position of the vehicle at the time when the traveling of the remaining section is completed is determined from the current position of the vehicle, but it is determined whether the position of the vehicle at this time is within the next frame, and the vehicle at this time In order to determine whether or not the vehicle can reach the next frame by further traveling from the position, it is more convenient for the calculation to convert to the vehicle fixed coordinate system. Therefore, the coordinates of the next frame 611 are converted to a vehicle fixed coordinate system in which the rear wheel axle center of the vehicle position 601 when traveling of the remaining section is completed is defined as the origin and yaw angle 0.
  • FIG. 9 shows a method of determining whether the next frame is on the extension of the current section route when the steering angle at the current position of the section route is 0 in the first embodiment of the present invention. It is a figure explaining.
  • FIG. 9 is a diagram in which the coordinates of the next frame 611 are converted to a vehicle fixed coordinate system in which the rear wheel axle center of the vehicle position 601 when traveling of the remaining section is completed is defined as the origin and yaw angle 0.
  • the coordinates of the next frame 611 after conversion are taken as the center (xg, yg), the width dg, the depth lg, and the yaw angle ⁇ g.
  • the vehicle is made rectangular, the wheelbase of the vehicle (length from front axle to rear axle), front length (length from front end of vehicle to front axle), rear length (rear of vehicle) Let l, lf, lr, dw be the vehicle width from the end to the rear wheel axle).
  • the next frame has been reached means that all the four corners of the vehicle are within the next frame, and that the yaw angle of the vehicle is within the allowable range ( ⁇ g ⁇ ⁇ ) with respect to the yaw angle of the next frame.
  • the area of the next frame 611 is an area that satisfies all the four inequalities in Equation 1 below. [Equation 1]
  • the traveling distances until the left rear end point, the right rear end point, the left front end point, and the right front end point of the vehicle reach the straight line that forms the rear side, the right side, the left side, and the front side of the next frame are s1l, s1r, s2l,
  • the range of movement distances s1 to s2 (the range from s1 to s2, hereinafter used in the same meaning) in which all the four corners of the vehicle fit within the next frame 611 is as shown in Formula 2 below.
  • the moving distance is positive in the forward direction and negative in the reverse direction.
  • the own vehicle reaches the next frame 611 at the own vehicle position 601 when traveling of the remaining section is completed.
  • next frame 611 ahead of the vehicle position 601 when traveling of the remaining section is completed, and advancing by a distance of s1 to s2
  • the next frame 611 can be reached. If s1 s s2 ⁇ 0, the next frame 611 is behind the vehicle position 601 when traveling of the remaining section is completed, and the next frame 611 can be reached by moving backward by a distance of
  • FIG. 10 illustrates a method of determining whether the next frame is on the extension of the current section route when the steering angle at the current position of the section route is not 0 in the first embodiment of the present invention. It is a figure to do.
  • FIG. 10 is a diagram in which the coordinates of the next frame 611 are converted to a vehicle fixed coordinate system in which the rear wheel axle center of the vehicle position 601 when traveling of the remaining section is completed is defined as the origin and yaw angle 0.
  • the coordinates of the next frame 611 and the dimensions of the vehicle after conversion are placed in the same manner as in FIG. 9, and the actual steering angle when traveling of the remaining section is completed is ⁇ ( ⁇ 0).
  • the turning center is on the x-axis of the vehicle fixed coordinate system.
  • the position of this turning center is denoted as Os, and the turning radius rr, fofo, for each of the rear wheel axle center of the vehicle, the front outside vehicle end point, the front inside vehicle end point, the rear outside vehicle end point, and the rear inside vehicle end point.
  • the own vehicle reaches the next frame 611 at the vehicle position 601 when traveling of the remaining section is completed.
  • next frame 611 ahead of the vehicle position 601 when traveling of the remaining section is completed, and it moves forward by a distance of s1 to s2.
  • the next frame 611 can be reached.
  • there is a solution of ⁇ 1c and ⁇ 2c, and if ⁇ 1 ⁇ ⁇ 2 ⁇ 0 there is a next frame 611 behind the vehicle position 601 when traveling of the remaining section is completed, and only the distance
  • the next frame 611 can be reached by moving backward. If the traveling direction at the vehicle position 601 when traveling the remaining section is completed coincides with the traveling direction for reaching the next frame 611, it can be regarded that the next frame 611 is on the extension of the current section route .
  • FIG. 11 is a diagram for explaining a vehicle control method for causing the vehicle to reach the next frame when the next frame is on the extension of the current section route in the first embodiment of the present invention.
  • the initial section route (without stopping the vehicle) is maintained while maintaining the vehicle speed (vehicle speed threshold Va)
  • the travel control is performed to the initial travel completion position 601 in accordance with the change-over after reaching the next frame position) (section 902).
  • FIG. 12 is a diagram for explaining a vehicle control method for causing the vehicle to reach the next frame when the next frame is on the remaining section of the current section route in the first embodiment of the present invention.
  • the next frame 611 shown in FIGS. 9 and 10 is an extension of the current segment path. It is possible to determine in almost the same manner as the method of determining whether there is any.
  • the rear wheel axle center of the vehicle position 601 at the end of the remaining section travel is taken as the origin and yaw angle 0.
  • the rear wheel axle center of the current vehicle position 205 is coordinate-converted as the origin / yaw angle 0, and the next frame 611 is reached. The determination is made similarly.
  • the range of movement distances s1 to s2 obtained as a result of the determination is the range of travel distance required to reach the next frame 611 from the current vehicle position 205. If 0 ⁇ s1 ⁇ s2, the next frame 611 is present on the way when traveling forward in the remaining section, and the next frame 611 can be reached by advancing by the distance of s1 to s2. If s1 ⁇ s2 ⁇ 0, the next frame 611 is in the middle of traveling the remaining section backward, and the next frame 611 can be reached by retreating by a distance of
  • the traveling distance for reaching the next frame 611 may be between s1 and s2, but here, s12 is set as the target traveling distance (s1 ⁇ s12 ⁇ s2).
  • the traveling distance from the current vehicle position 205 to the traveling completion position 601 is s, and traveling is completed Let the remaining distance at the time of starting the deceleration control for stopping at the position 601 be sb.
  • the current vehicle position 205 is advanced without deceleration by a distance of s12 ⁇ sb (section 1011), and then deceleration is performed according to the initial deceleration control (section 1012). That is, in this case, the deceleration start position of the vehicle is advanced (than originally planned) to accelerate the deceleration of the vehicle.
  • deceleration is performed from the current vehicle position 205 so that the deceleration of the initial deceleration control is sb / s 12 times the deceleration. That is, in this case, the deceleration of the vehicle is increased (from the initial schedule) to accelerate the deceleration of the vehicle.
  • the initial deceleration control deceleration is multiplied by sb / s12, if it exceeds the allowable deceleration threshold value, it is judged that stopping within the next frame 611 is impossible, and the adjustment route should not be applied. I assume.
  • next frame is on the extension of the current section route, and if it is on the extension, the run is added or the next frame is the remainder of the current section route. It is determined whether or not it is on the section, and if it is on the remaining section, it is possible to make the vehicle reach the next frame and stop it by accelerating the deceleration.
  • FIG. 13 is a flow chart showing one cycle of periodic processing of the automatic parking control device when the host vehicle is caused to travel by vehicle control along the current section route in the second embodiment of the present invention.
  • the operation of the automatic parking control device according to the second embodiment is substantially the same as the operation of the automatic parking control device according to the first embodiment, but instead of the processing for one cycle becoming somewhat heavy, the arrival of the present embodiment is achieved.
  • the difference is that the adjustment operation can be suppressed if the adjustment does not operate as expected.
  • steps S501 and S502 are the same as the flowchart in the first embodiment described based on FIG.
  • step S502 ends, the process proceeds to step S1111.
  • step S1111 it is determined whether the vehicle position is located on the last partial curve or partial straight line of the section route (that is, immediately before the next frame), and if true, the process proceeds to step S1112. If false, the process proceeds to step S531.
  • step S1112 it is determined whether the newly provided path adjustment counter has exceeded a predetermined threshold value. If it is true, the process proceeds to step S531. If false, the process proceeds to step S521.
  • the route adjustment counter has an initial value of 0, and is reset to the initial value at the start of vehicle control along each section route.
  • Steps S521, S522, S523, S524, and S525 are the same as the flowchart in the first embodiment described based on FIG.
  • the process of step S524 or step S525 proceeds to step S1113.
  • step S1113 it is determined whether or not the next frame has moved immediately before execution of the current cycle processing, and if it is determined that the next frame has moved, the path adjustment counter is reset to 0 (step S1114). This is because it is considered that the application of the path adjustment is a normal operation because the next frame has moved. If it is determined in step S1113 that the next frame has not moved, and after execution of step S1114, the process proceeds to step S1115.
  • step S1115 the path adjustment counter is incremented by 1, and the process proceeds to step S531.
  • Steps S531, S532, S533, S534, S535, and S541 are the same as the flowchart in the first embodiment described based on FIG.
  • the determination unit 161 determines that the vehicle can reach the next frame, and the vehicle is traveling on the adjustment route generated according to the adjustment distance obtained from the calculation unit 162. Based on the determination result of the determination unit 161 and the calculation result of the calculation unit 162, the determination of the determination unit 161 and the calculation of the calculation unit 162 are performed again, although the position of the next frame is not changed.
  • the adjustment unit 163 adjusts the adjustment route We will not carry out readjustment.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the configurations, functions, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit. Further, each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a storage device such as a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD solid state drive
  • control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.
  • 100 automatic parking control device, 101: automatic parking software, 110: state transition unit, 120: input / output processing unit, 125: display processing unit, 130: space recognition unit, 135: route generation unit, 140: arrival determination unit, 145: vehicle position estimation unit, 150: vehicle control unit, 160: arrival adjustment unit, 161: determination unit, 162: calculation unit, 163: adjustment unit, 171: HMI, 172: external world recognition sensor, 173: input switch, 180: various sensors / actuators ECUs 190: vehicle control network 201: parking start position (vehicle control start position) 202: turnaround position 203A: target parking position (before change) 203B: target parking position (after change) , 205: current position of own vehicle, 211: parking route, 212: section route, 213: adjustment route, 313A: section route of remaining section (before adjustment , 313B: section path of the remaining section (after adjustment), 601: traveling end position of the remaining section, 611: next frame

Abstract

自動駐車において駐車経路の一部を構成する区間経路に沿って車両を制御中に、該区間経路の目標位置である次枠に到達できないことが判明した場合、通常の駐車経路再生成に頼らずに、次枠に正しく到達させることのできる自動駐車制御装置を提供する。 次枠が現在の区間経路の延長線上にあるか否かを判定し、延長線上にある場合は走り足すことにより、あるいは、次枠が現在の区間経路の残区間上にあるか否かを判定し、残区間上にある場合は減速を早めることにより、自車を次枠に到達させて停止させる。

Description

自動駐車制御装置
 本発明は、目標駐車位置まで車両を制御して駐車を行う自動駐車制御装置に関する。
 従来技術として、カメラやソナー等の外界認識装置からの情報に基づいて目標駐車位置を決定し、現在の車両位置から目標駐車位置まで車両が移動する駐車経路を算出し、その駐車経路に沿って車両の操舵や加減速を制御する自動駐車制御装置がある。
 この駐車経路には、一般に、0回以上の切返し(車両の進行方向を前進と後退とで切り替えること)が含まれる。駐車経路は、車両制御開始位置または切返し位置から、次の切返し位置または目標駐車位置(以下、次枠と呼ぶことがある)までの区間経路を、1つ以上繋げたものとして算出される。
 自動駐車制御装置が行う車両の操舵・加減速制御においては、現時点で自車が在るべき駐車経路上の位置と、車輪速や操舵角の履歴に基づいて算出した現在の自車位置との差を検出し、自車位置を駐車経路に近づけるようにフィードバック制御を行うのが一般的である。このフィードバック制御により、自車を駐車経路に沿って移動させることができる。
 しかし、このようにフィードバック制御を用いて駐車経路を構成する区間経路に沿うように車両を制御しても、制御完了時の到達位置が、その区間経路で到達すべき次枠からずれてしまう場合がある。この要因としては、誤差の蓄積や外部要因等のためにフィードバック制御で補正しきれない場合、外界認識の結果等により次枠の位置が変わってしまう場合等が考えられる。
 このように区間経路に沿った制御の完了時の到達位置が次枠からずれてしまう場合、従来は、現在位置から目標駐車位置までの駐車経路の再生成を行い、再生成した駐車経路に沿って自車が移動するように車両を制御していた。
 例えば、下記特許文献1では、目標駐車位置が変更された場合、または、実際の車両の走行軌跡と目標駐車経路とのずれが所定以上に達した場合に、駐車経路を再生成するが、この条件が満たされた場合でも、駐車経路を再生成しやすい位置まで従前の駐車経路を用いて自車を移動させる方法が提案されている。
 しかし、通常の汎用的な経路生成処理は、自車位置と目標駐車位置との位置関係が様々な場合に適用できる必要がある。また、駐車経路の一部にクロソイド曲線を用いることにより、据え切り(車両を停車させたまま操舵を行うこと)を可能な限り回避しつつ、急激な操舵を行わずに自車を誘導するための駐車経路を算出する必要もある。さらに、切返しを複数回実行することで駐車できる場合も考慮しつつ、切返し回数を最低限にする配慮も必要になる。このように、通常の経路生成処理は複雑になるため、必然的に時間がかかる処理となる。一方で、経路生成処理を開始した時点と、経路生成処理を完了して車両制御を開始する時点とで、自車の位置が異なると、生成した駐車経路で目標駐車位置へ到達できる確証がなくなってしまう。そのため、経路生成処理は、一旦車両を停車させて行うのが一般的である。
 しかし、区間経路に沿って車両を制御中に、前記のように次枠に到達できないことが判明した場合は、可能であれば、通常の経路再生成を行わずに、次枠に到達できるようにするための駐車経路や車両制御の調整を、車両を一旦停車させずに実行可能な軽量な処理で行うことが望ましい。
 これに対する従来技術として、下記特許文献2では、車両の速度と位置に基づいて車両の停止位置を予測し、この予測停止位置が目標停止位置の許容範囲よりも手前であれば、ブレーキをオフして停止位置を調整する技術が提案されている。しかし、特許文献2は、線路によって経路が一意に決まる鉄道を対象としており、車両が経路から外れてしまう場合は考慮されていない。
特許第4185957号公報 特開2011-61975号公報
 自動車等の場合は、鉄道の場合とは異なり、車両が必ず経路に沿って動くとは限らない。また、整備された車道の通常走行であれば、走行レーンの位置や向きによって車両が通るべき位置や向きもおおよそ決まるが、自動駐車の場合は、自動駐車制御装置自身が算出した駐車経路のみが、車両が通るべき位置や向きの判断根拠となる。
 その一方で、外界認識により次枠が移動したと認識した場合は、次枠の移動先によってはその次枠まで到達する駐車経路が存在しないため、駐車経路を再生成するまではどのように次枠に到達すれば良いかわからない状況に陥ってしまう。
 本発明は、前記事情に鑑みてなされたもので、その目的とするところは、自動駐車において車両を制御中に、次枠に到達できないことが判明した場合、通常の駐車経路再生成に頼らずに、次枠に正しく到達させることのできる自動駐車制御装置を提供することにある。
 上記課題を解決するために、本発明に係る自動駐車制御装置は、駐車開始位置または駐車開始位置から目標駐車位置までの駐車経路の中途に設けられた切返し位置から、次の切返し位置または目標駐車位置までの区間経路の走行を実行することによって、駐車開始位置から駐車経路に沿って目標駐車位置まで車両を走行させる自動駐車制御装置であって、前記車両がある区間経路を走行している時に、前記車両が前記区間経路の現在位置から残区間を走行した場合に、前記車両が次に到達する予定の切返し位置もしくは目標駐車位置である次枠内に到達し得るか否かを判断し、前記残区間の走行を完了しても前記次枠内に到達し得ないと判断した場合に、前記残区間の走行完了位置からさらに前記残区間の走行完了位置における操舵角および進行方向で前記車両を走行させることで、前記残区間の延長上で前記車両が前記次枠内に到達可能か否かを判断する、あるいは、前記残区間の走行を完了するまでの前記残区間上で前記車両が前記次枠内に到達可能か否かを判断する判断部と、前記判断部が、前記車両が前記次枠内に到達可能であると判断した場合、前記区間経路の現在位置もしくは走行完了位置から前記次枠に到達するまでの調整距離を演算する演算部と、前記演算部で演算された調整距離に基づいて、前記次枠まで前記車両を走行させるための調整経路を生成する調整部と、を備えることを特徴としている。
 本発明によれば、自動駐車の車両制御において、区間経路に沿った車両制御が完了した時点の自車の位置が次枠からずれそうな見込みで、かつ、次枠の位置が該区間経路の延長線上またはその区間経路上にある場合、駐車経路の再生成を行わずに、軽量処理の調整によって次枠に到達できるか否かを判断し、到達できる場合は当該調整を反映した車両制御を行って、次枠に自車を到達させて適切に停めることができる。また、外界認識の影響等で、次枠が突然移動したと認識した場合でも、次枠で自車を適切に停めることができる。加えて、通常の駐車経路再生成処理を行わないので、一旦停車する必要が無く、また、CPU(Central Processing Unit)の処理負荷も軽くなる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1実施形態における、自動駐車制御装置の概略構成図である。 本発明の第1実施形態において、次枠が現在の区間経路の延長線上にある場合の、自動駐車制御装置を搭載した車両の動作を説明する図である。 本発明の第1実施形態において、次枠が現在の区間経路の延長線上にある場合の、自動駐車制御装置を搭載した車両の動作の他例を説明する図である。 本発明の第1実施形態において、次枠が現在の区間経路の残区間上にある場合の、自動駐車制御装置を搭載した車両の動作を説明する図である。 本発明の第1実施形態において、次枠が現在の区間経路の残区間上にある場合の、自動駐車制御装置を搭載した車両の動作の他例を説明する図である。 本発明の第1実施形態において、次枠が現在の区間経路の延長線上にも残区間上にも無い場合の、自動駐車制御装置を搭載した車両の動作を説明する図である。 本発明の第1実施形態における、自車を現在の区間経路に沿うように車両制御により走行させる際の、自動駐車制御装置の周期処理の1周期分を表すフローチャートである。 本発明の第1実施形態において、自車の現在位置および区間経路の残区間から、残区間を走行完了したときの自車位置を求める方法を説明する図である。 本発明の第1実施形態において、現在の区間経路の到達位置における操舵角が0である場合に、次枠が現在の区間経路の延長線上にあるか否かを判定する方法を説明する図である。 本発明の第1実施形態において、現在の区間経路の到達位置における操舵角が0でない場合に、次枠が現在の区間経路の延長線上にあるか否かを判定する方法を説明する図である。 本発明の第1実施形態において、次枠が現在の区間経路の延長線上にある場合に、自車を次枠に到達させる車両制御方法を説明する図である。 本発明の第1実施形態において、次枠が現在の区間経路の残区間上にある場合に、自車を次枠に到達させる車両制御方法を説明する図である。 本発明の第2実施形態における、自車を現在の区間経路に沿うように車両制御により走行させる際の、自動駐車制御装置の周期処理の1周期分を表すフローチャートである。
 以下、図面を用いて、本発明の実施形態を説明する。
<第1実施形態>
 図1は、本発明の第1実施形態における、自動駐車制御装置の概略構成図である。
 本実施形態の自動駐車制御装置100は、自動駐車に関する機能全般の処理を行う。なお、自動駐車制御装置100は、一般的には電子回路を用いて実現されるため、自動駐車ECU(Electronic Control Unit)とも呼ばれる。
 自動駐車制御装置100は、直結の信号線、もしくは、CAN(Controller Area Network)等の車両制御ネットワーク190を通して、HMI(Human Machine Interface)171、カメラやソナー等の外界認識センサ172、入力スイッチ173、および、車両の各種センサ/アクチュエータECU180と接続される。これにより、自動駐車制御装置100は、外界情報、ドライバーからの入力情報、車両の状態といった各種情報の取得や、車両の制御やドライバーへの情報提供といった動作を行うことが可能になり、全体として自動駐車システムを構成する。
 自動駐車制御装置100の各種の処理は、自動駐車制御装置100内で動作する自動駐車ソフトウェア101によって実行される。自動駐車ソフトウェア101には、状態遷移部110、入出力処理部120、表示処理部125、空間認識部130、経路生成部135、到達判定部140、自車位置推定部145、車両制御部150等の、各種のソフトウェア処理部が含まれる。
 状態遷移部110は、自動駐車制御装置100全体の動作を司り、他のソフトウェア処理部からの情報をもとに自らの状態を遷移させ、次のアクションを決定する。
 入出力処理部120は、直結の信号線や車両制御ネットワーク190で接続された、自動駐車制御装置100の外部の各種装置との入出力処理を行う。すなわち、各種装置から受信した入力データを他のソフトウェア処理部に渡す処理、および、他のソフトウェアから要求された出力データを各種装置に送信する処理を行う。
 表示処理部125は、外界認識センサ172から得た情報、および、他のソフトウェア処理部から得た各種動作状況に関する情報を、HMI171の表示に適したデータに加工して、HMI171へ出力する。
 空間認識部130は、外界認識センサ172からの情報、および、自車位置推定部145によって推定された自車の位置や向きをもとに、駐車枠や障害物等を認識し、空間マップを作成する。
 経路生成部135は、空間認識部130が作成した空間マップ、および、状態遷移部110からの指示に基づいて、駐車開始位置(車両制御開始位置)から目標駐車位置までの駐車経路を生成する。
 到達判定部140は、経路生成部135によって生成された駐車経路における、現在の区間経路の次枠に到達したか否かを、自車位置推定部145によって推定された自車の位置や向きをもとに判定する。なお、区間経路とは、駐車開始位置(車両制御開始位置)または駐車経路の中途に設けられた切返し位置から、次の切返し位置または目標駐車位置までの経路を意味する。言い換えれば、駐車経路の中途に設けられた切返し位置、もしくは、目標駐車位置を目標位置と定義したときに、駐車開始位置またはある目標位置から次の目標位置までの経路を意味する。また、次枠とは、自車が次に到達する予定の切返し位置または目標駐車位置(目標位置)を意味する。
 自車位置推定部145は、自車の車輪速や操舵角の履歴等の情報をもとに、自車の現在の位置や向きを推定する。
 車両制御部150は、自車のステア、加減速、シフト等を制御することにより、現在の区間経路に沿うように自車を走行させる。
 そして、自動駐車ソフトウェア101は、本実施形態に特徴的な処理を行うためのソフトウェア処理部として、到達調整部160を備える。
 到達調整部160は、判断部161、演算部162、および、調整部163によって構成される。
 判断部161は、自車がある区間経路の現在位置から次枠までの区間経路の残区間を走行した場合に、次枠内に到達するか否かの判断を行う。また、残区間の走行で次枠内に到達し得ないと判断した場合に、残区間の走行完了位置からさらに残区間の走行完了位置における操舵角および進行方向で自車を走行させることで、残区間の延長上で自車が次枠内に到達可能か否かを判断する。また、それと共に、残区間の走行を完了しても次枠内には到達しないが、残区間の走行を完了するまでの残区間上で自車が次枠内に到達可能か否か(すなわち、残区間上に次枠が存在するか否か)を判断する。
 演算部162は、判断部161が、自車が残区間の延長上で次枠内に到達可能であると判断した場合、あるいは、残区間上に次枠が存在すると判断した場合は、次枠に到達するまでの調整距離を演算する。
 調整部163は、演算部162の演算結果に基づいて、調整距離分だけ走行距離を調整した調整経路を含む駐車経路、および、駐車経路上の各位置において予定する操舵や車速の情報を生成し、経路生成部135や車両制御部150に引き渡すことにより、演算部162の演算結果に基づく車両制御を実現する。
 図2は、本発明第1の実施形態において、次枠が現在の区間経路の延長線上にある場合の、自動駐車制御装置100を搭載した車両の動作を説明する図である。
 図2は、自動駐車制御装置100を備えた自車の現在位置205が、外界認識センサ172によって実際の駐車枠の奥まで認識できる位置まで移動したときに、目標駐車位置が当初の目標駐車位置(図中、点線枠)203Aから、当初の目標駐車位置203Aよりも奥側に位置する、より適切な目標駐車位置(図中、太線枠)203Bに変更されたときの動作を示している。
 この時、自動駐車制御装置100は、自車の現在の駐車経路211上の位置が、変更前の目標駐車位置203Aを次枠とする区間経路212上であり、かつ、この区間経路212を構成する1つ以上の部分直線または部分曲線のうち、次枠の直前の部分直線または部分曲線の上である場合は、前述の判断部161による判断および演算部162による演算の処理を行う。
 この判断部161による判断の結果、この区間経路212の残区間の走行完了位置からさらに残区間の走行完了位置における操舵角および進行方向で自車を走行させることで、自車が次枠内に到達可能であると判断された場合は、演算部162によって、区間経路212の走行完了位置(終点)から次枠に到達するまでの調整距離を演算するとともに、調整部163によって、残区間の走行完了位置から残区間の走行完了位置における操舵角および進行方向を維持して前記調整距離分だけ追加して車両を走行させる調整経路213を、区間経路212の残区間の走行完了位置の先(つまり、区間経路212の残区間の延長上)に追加する。この調整経路213により、目標駐車位置が区間経路212の延長線上に移動した場合でも、スムースな駐車制御が可能になる。
 なお、上記調整経路の生成は、以下の如くに行っても良い。
 すなわち、図3に示されるように、この判断部161による判断の結果、この区間経路212の残区間の走行完了位置からさらに残区間の走行完了位置における操舵角および進行方向で自車を走行させることで、自車が次枠内に到達可能であると判断された場合は、演算部162によって、区間経路212の現在位置205から次枠に到達するまでの調整距離を演算するとともに、調整部163によって、残区間の走行完了位置から残区間の走行完了位置における操舵角および進行方向を維持しつつ、区間経路212の現在位置205から前記調整距離分だけ車両を走行させる調整経路213Aを生成する。この調整経路213Aによっても、目標駐車位置が区間経路212の延長線上に移動した場合でも、スムースな駐車制御が可能になる。
 なお、先述の通り、駐車経路211は、駐車開始位置(車両制御開始位置)201または切返し位置202から次枠までの区間経路を、1つ以上繋げたものとして算出されるが、1つの区間経路は、特定の数式で表現される部分曲線もしくは部分直線を1つ以上つなげることによって構成されるのが一般的である。部分曲線の種類には、操舵角を0でない一定角度にして走行したときの軌跡となる円弧や、操舵角を一次関数的に増加または減少させながら定速走行したときの軌跡となるクロソイド曲線等がある。
 図4は、本発明の第1実施形態において、次枠が現在の区間経路の残走行区間上にある場合の、自動駐車制御装置100を搭載した車両の動作を説明する図である。
 図4は、自動駐車制御装置100を備えた自車の現在位置205が、外界認識センサ172によって実際の駐車枠の奥まで認識できる位置まで移動したときに、目標駐車位置が当初の目標駐車位置(図中、点線枠)203Aから、当初の目標駐車位置203Aよりも手前側に位置する、より適切な目標駐車位置(図中、太線枠)203Bに変更されたときの動作を示している。
 この時、自動駐車制御装置100は、自車の現在の駐車経路211上の位置が、変更前の目標駐車位置203Aを次枠とする区間経路212上であり、かつ、この区間経路212を構成する1つ以上の部分直線または部分曲線のうち、次枠の直前の部分直線または部分曲線の上である場合は、前述の判断部161による判断および演算部162による演算の処理を行う。
 この判断部161による判断の結果、この区間経路212の残区間の走行を完了しても次枠内には到達しないが、残区間の走行を完了するまでの残区間上に次枠が存在すると判断された場合は、演算部162によって、区間経路212の現在位置205から次枠に到達するまでの調整距離を演算するとともに、調整部163によって、残区間の経路313Aを、始点及び通過位置を変えずに、区間経路212の現在位置205から前記調整距離分だけ車両を走行させる調整経路313Bに置き換える。この調整経路313Bにより、目標駐車位置が区間経路212の次枠よりも手前に移動した場合でも、スムースな駐車制御が可能になる。
 なお、上記調整経路の生成は、以下の如くに行っても良い。
 すなわち、図5に示されるように、この判断部161による判断の結果、この区間経路212の残区間の走行を完了しても次枠内には到達しないが、残区間の走行を完了するまでの残区間上に次枠が存在すると判断された場合は、演算部162によって、区間経路212の走行完了位置(終点)から次枠に到達するまでの調整距離313Lを演算するとともに、調整部163によって、残区間の経路313Cを、始点及び通過位置を変えずに、前記調整距離313L分だけ区間経路212の残区間の走行距離を短縮させた調整経路313Dに置き換える。この調整経路313Dによっても、目標駐車位置が区間経路212の次枠よりも手前に移動した場合でも、スムースな駐車制御が可能になる。
 図6は、本発明の第1実施形態において、次枠が現在の区間経路の延長線上にも残区間上にも無い場合の、自動駐車制御装置100を搭載した車両の動作を説明する図である。
 図6は、自動駐車制御装置100を備えた自車の現在位置205が、外界認識センサ172によって実際の駐車枠の奥まで認識できる位置まで移動したときに、目標駐車位置が当初の目標駐車位置(図中、点線枠)203Aから、区間経路212の延長線上にも残区間上にも無い、より適切な目標駐車位置(図中、太線枠)203Bに変更されたときの動作を示している。
 この時、自動駐車制御装置100は、自車の現在の駐車経路211上の位置が、変更前の目標駐車位置203Aを次枠とする区間経路212上であり、かつ、この区間経路212を構成する1つ以上の部分直線または部分曲線のうち、次枠の直前の部分直線または部分曲線の上である場合は、前述の判断部161による判断および演算部162による演算の処理を行う。
 この判断部161による判断の結果、この区間経路212の延長線上にも残区間上にも次枠が存在しないと判断された場合は、到達調整部160の処理により区間経路212を調整して自車を次枠に到達させるのをあきらめ、当初の区間経路212の通りに自車を制御して、当初の目標駐車位置(次枠)(言い換えれば、区間経路212の残区間の走行完了位置)203Aに自車を停車させてから、経路生成部135によって駐車経路211の再生成を行う。あるいは、区間経路212上で即座に自車を停車させて(言い換えれば、車両が停車するまで区間経路212の現在位置205から移動した位置から)駐車経路211の再生成を行っても良い。
 図7は、本発明第1の実施形態における、自車を現在の区間経路に沿うように車両制御により走行させる際の、自動駐車制御装置100の周期処理の1周期分を表すフローチャートである。
 図7のフローチャートでは、ステップS511~525が、本実施形態の特徴をなす処理となる。
 なお、図7のフローチャートでは、自車を現在の区間経路に沿って走行させるために必要な処理についてのみ述べており、他の処理(空間認識処理、表示処理、障害物検知に関わる処理等)についての記載は省略している。
 周期処理を開始すると(ステップS501)、まず、通常のフィードバック制御により、自車を現在の区間経路に沿って走行させる車両制御を行う(ステップS502)。より具体的に述べれば、現時点の走行距離における区間経路上での自車のあるべき位置および向きと、自車位置推定部145による自車位置推定による自車の現在の位置および向きとを比較し、自車の現在の位置および向きを区間経路上でのあるべき位置および向きに近づけるようにフィードバック制御を行う。本実施形態における到達調整が既に実行されていれば、到達調整処理により調整された区間経路を、フィードバック制御に用いる。このフィードバック制御は、車両制御部150によって行われる。
 次に、本実施形態の判断部161、演算部162、および調整部163の処理を適用するタイミングか否かを判定するために、自車位置が区間経路の最後(つまり、次枠の直前)の部分曲線または部分直線に入った時点か否か(ステップS511)の判定を行うとともに、自車位置が区間経路の最後の部分曲線または部分直線の途中にあり、かつ、次枠の位置が移動した(変更された)か否か(ステップS512)の判定を行う。ステップS511およびステップS512の双方の判定のいずれかが真であればステップS521に進み、ともに偽であればステップS531に進む。この判定は、例えば判断部161によって行われる。
 なお、ステップS511の判定は、誤差の蓄積や外部要因等のためにフィードバック制御で補正しきれない場合を考慮したものである。
 ステップS521では、区間経路の残区間(特定の数式で表現できる部分曲線もしくは部分直線の1つのみで構成される)またはその延長線上に次枠が存在するか否かを判定する。次枠が移動した場合は、移動後の次枠について判定を行う。残区間の中途、もしくは残区間の延長線上にて次枠内に到達可能である場合はステップS522に進み、残区間の中途、もしくは残区間の延長線上に次枠が無い場合は、そのままステップS531に進む。この判定は、例えば判断部161によって行われる。
 ステップS522では、次枠に到達するまでの調整距離を演算する。この演算は、演算部162によって行われる。
 次に、ステップS521の判定結果およびステップS522の演算結果をもとに、調整部163の処理を適用すべきか、適用する場合はどのような処理を適用するかを決める(ステップS523)。ステップS521の判定によって、次枠が区間経路の残区間の制御をちょうど完了した位置にある場合は、そのままステップS531に移る。次枠が残区間の延長線上にあることが判明した場合は、区間経路の先に調整経路(ステップS522で算出した調整距離だけ走行距離を調整した調整経路)を継ぎ足す処理を行う(ステップS524)。次枠が残区間の中途にあることが判明した場合は、区間経路の残区間を短縮した調整経路(ステップS522で算出した調整距離だけ走行距離を調整した調整経路)に置き換える処理を行う(ステップS525)。これらのステップS524、S525の処理は、調整部163によって行われる。
 ステップS524もしくはステップS525の処理が終了したら、ステップS531に移る。
 ステップS531では、自車が現在の区間経路を走行するための車両制御が完了したか否かを判定する。本実施形態の到達調整が既に実行されていれば、到達調整処理により調整された区間経路を判定に用いる。このステップS531の判定の結果、車両制御が完了していればステップS532に進み、完了していなければステップS541に進む。この判定は、例えば車両制御部150にて行われる。
 ステップS532では、次枠の位置および向きと、自車位置推定による自車の現在の位置および向きとを比較し、自車が次枠に到達したとみなしてよいか否かを判定する。この判定は、到達判定部140にて行われる。
 次に、ステップS532の判定結果が、自車が次枠に到達したとみなせるのであれば、ステップS535へ進む(ステップS533)。自車が次枠に到達したとみなせないのであれば、自車の車両制御の結果が次枠からずれたと考えられるので、ステップS534へ進み(ステップS533)、現在の自車位置から目標駐車位置への駐車経路を再生成し、然る後にステップS535へ進む。ステップS534の駐車経路の再生成処理は、経路生成部135にて行われる。
 ステップS535では、区間経路を次の区間経路へ切り替える。この時、直前にステップS534で駐車経路再生成を行った場合は、再生成した駐車経路の最初の区間経路へ切り替える。目標駐車位置へ到達したのであれば、次の区間経路が無いことになるので、駐車経路に沿って自車を走行させる車両制御は完了となる。
 ステップS541では、該当周期の処理を終了する。
 図8は、本発明の第1実施形態において、自車の現在位置および区間経路の残区間から、残区間を走行完了したときの自車位置を求める方法を説明する図である。
 本実施形態の判断部161が行う、次枠までの区間経路の残区間を走行した場合に、自車が次枠内に到達するか否かの判断、および、残区間の走行完了位置からさらに残区間の走行完了位置における操舵角および進行方向で走行させることで、自車が次枠内に到達可能か否かの判断を行うためには、前段として、自車の現在位置から残区間を走行完了したときの自車位置を求める処理が必要である。
 なお、以降の記述では、自車位置として、車両の後輪車軸中心を採用することとする。これは、自動駐車のように低速で車両が走行する場合は、遠心力や車輪の横滑りが無いものと近似的にみなせるため、車両運動の解析にアッカーマンステアリングジオメトリを適用でき、車両の旋回中心が後輪車軸の延長線上にあるとして考えることができるためである。
 空間座標(地上固定座標)上の自車位置推定に基づく現在位置205を、(X0,Y0,Θ0)と表すこととする。ここで、X0はX座標、Y0はY座標、Θ0はヨー角である。また、現時点の走行距離における区間経路上での自車のあるべき位置から、区間経路の残区間の走行を完了したときの、現在位置からの座標移動分を、(ΔX,ΔY,ΔΘ)と表すこととする。ΔX,ΔY,ΔΘの算出方法は、駐車経路の生成方法に依存する。
 このとき、自車の現在位置から残区間を走行完了したときの自車位置601は、(X0+ΔX,Y0+ΔY,Θ0+ΔΘ)として表すことができる。
 以上により、自車の現在位置から残区間を走行完了したときの自車位置が求まったが、この時の自車位置が次枠内にあるか否かの判断、および、この時の自車位置から更に走行させることで自車が次枠内に到達可能か否かの判断を行うためには、車両固定座標系に変換した方が、計算に都合が良い。このため、残区間を走行完了したときの自車位置601の後輪車軸中心を原点・ヨー角0とする車両固定座標系に、次枠611の座標を変換する。
 図9は、本発明の第1実施形態において、現在の区間経路の到達位置における操舵角が0である場合に、次枠が現在の区間経路の延長線上にあるか否かを判定する方法を説明する図である。
 図9は、残区間を走行完了したときの自車位置601の後輪車軸中心を原点・ヨー角0とする車両固定座標系に、次枠611の座標を変換した図となっている。
 ここで、変換後の次枠611の座標を、中心(xg,yg)、幅dg、奥行きlg、ヨー角θgとする。また、計算を簡単にするために車両を長方形とし、車両のホイールベース(前輪車軸から後輪車軸までの長さ)、前部長(車両前端から前輪車軸までの長さ)、後部長(車両後端から後輪車軸までの長さ)、車幅をそれぞれl,lf,lr,dwとする。
 また、「次枠に到達した」とは、車両の四隅がすべて次枠内に収まり、かつ、車両のヨー角が次枠のヨー角に対して許容範囲内(θg±α)にあることと定義する。
 このとき、残区間を走行完了したときの自車位置601から、実舵角0のままで前進(または後退)すると、車両は後輪車軸中心をy軸上に置いたまま、まっすぐy軸に沿って走行することになる。
 次枠611の領域は、下記の数式1の4つの不等式をすべて満たす領域となる。
[数1]
Figure JPOXMLDOC01-appb-I000001
 ここで、0≦θg<π/2とする。-π/2<θg<0の場合についても、同様の考え方で解くことができる。なお、α≧π/2とすると、自車が次枠に対して向きが90°異なる場合や反対を向いた場合を許容することになり、実用上考えられない。
 自車の左後端点、右後端点、左前端点、右前端点が次枠の後辺、右辺、左辺、前辺をなす直線に到達するまでの移動距離を、それぞれs1l,s1r,s2l,s2rとすると、車両四隅がすべて次枠611内に収まる移動距離の範囲s1~s2(s1以上かつs2以下の範囲、以下同様の意味で用いられる)は、下記の数式2のようになる。
[数2]
Figure JPOXMLDOC01-appb-I000002
 なお、上記の計算において、移動距離は、前進方向を正、後退方向を負とする。
 以上の計算により、s1≦0≦s2、かつ、-α≦θg≦αであれば、残区間を走行完了したときの自車位置601において自車は次枠611に到達する。
 また、0<s1≦s2、かつ、-α≦θg≦αであれば、残区間を走行完了したときの自車位置601の前方に次枠611があり、s1~s2の距離だけ前進することで次枠611に到達可能である。s1≦s2<0であれば、残区間を走行完了したときの自車位置601の後方に次枠611があり、|s2|~|s1|の距離だけ後退することで次枠611に到達可能である。残区間を走行完了したときの自車位置601における進行方向と、次枠611に到達するための進行方向が一致すれば、次枠611が現在の区間経路の延長線上にあるとみなすことができる。
 図10は、本発明の第1実施形態において、現在の区間経路の到達位置における操舵角が0でない場合に、次枠が現在の区間経路の延長線上にあるか否かを判定する方法を説明する図である。
 図10は、残区間を走行完了したときの自車位置601の後輪車軸中心を原点・ヨー角0とする車両固定座標系に、次枠611の座標を変換した図となっている。
 ここで、変換後の次枠611の座標および車両の寸法を図9の場合と同様に置き、残区間を走行完了したときの実舵角をδ(≠0)とする。
 残区間を走行完了したときの自車位置601から、実舵角δのままで前進(または後退)すると、車両はδ>0の場合は右旋回、δ<0の場合は左旋回する。以降の議論を簡単にするために、ここでは右旋回(0<δ<π/2)とする。左旋回時は左右対称で考えればよい。
 ここではアッカーマンステアリングジオメトリを適用するため、旋回中心は車両固定座標系のx軸上に存在する。この旋回中心の位置をOsと表し、自車の後輪車軸中心、前方アウト側車両端点、前方イン側車両端点、後方アウト側車両端点、後方イン側車両端点それぞれについて、旋回半径ρr,ρfo,ρfi,ρro,ρri、および、後輪車軸中心に対する旋回角のずれθr,θfo,θfi,θro,θriを求めると、下記の数式3のようになる。
[数3]
Figure JPOXMLDOC01-appb-I000003
 上記の数式3の旋回半径と旋回角のずれに基づく車両四隅の軌跡、および、数式1の4つの不等式によって表される次枠611の領域をもとに、区間経路を走行完了したときの自車位置601から旋回移動したときに車両四隅がすべて次枠611内に収まり、かつ、旋回角が次枠611のヨー角に対して許容範囲内(θg±α)に収まる旋回角の範囲θ1~θ2を求める。
 ここで、本来は、数式1の4つの一次不等式と、四隅の軌跡を定義する4つの円関数をもとに、上記条件をすべて満たす旋回角の最小値と最大値を求めることになるが、場合分けが多く、議論が複雑になる。よって、ここでは議論を簡単にするために、車両の旋回軌跡と次枠611が図10のような位置関係の場合に限って述べる。
 図10に示した位置関係の場合で、まず、車両四隅の条件のみによる旋回角範囲θ1c~θ2cを考えると、θ1cは、次枠611の後方側直線が、後方アウト側車両端点の円軌跡と交わるときの、後輪車軸中心の旋回角である。この交点は、下記の数式4の連立方程式の解として求まる。
[数4]
Figure JPOXMLDOC01-appb-I000004
 よって、旋回角θ1cにおける後方アウト側車両端点の座標(xro1,yro1)は、下記の数式5のように求まる。
[数5]
Figure JPOXMLDOC01-appb-I000005
 この時の旋回角θ1c、およびθ1は、下記の数式6により求まる(但し、θ1c>θg+αのときは、θ1の解は無し)。
[数6]
Figure JPOXMLDOC01-appb-I000006
 同様に、旋回角θ2cにおける前方アウト側車両端点の座標(xfo2,yfo2)は、下記の数式7のように求まる。
[数7]
Figure JPOXMLDOC01-appb-I000007
 この時の旋回角θ2c、およびθ2は、下記の数式8により求まる(但し、θ2c<θg-αのときは、θ2の解は無し)。
[数8]
Figure JPOXMLDOC01-appb-I000008
 なお、図10の通りの位置関係の場合は、yfo2>0と考えられるので、数式中のプラスマイナスは+側、マイナスプラスは-側が求める解である。
 以上の計算により、θ1cおよびθ2cの解があり、かつ、θ1≦0≦θ2であれば、残区間を走行完了したときの自車位置601において自車は次枠611に到達する。
 また、θ1cおよびθ2cの解があり、かつ、0<θ1≦θ2であれば、残区間を走行完了したときの自車位置601の前方に次枠611があり、s1~s2の距離だけ前進することで次枠611に到達可能である。θ1cおよびθ2cの解があり、かつ、θ1≦θ2<0であれば、残区間を走行完了したときの自車位置601の後方に次枠611があり、|s2|~|s1|の距離だけ後退することで次枠611に到達可能である。残区間を走行完了したときの自車位置601における進行方向と、次枠611に到達するための進行方向が一致すれば、次枠611が現在の区間経路の延長線上にあるとみなすことができる。
 なお、上記のs1およびs2は、下記の数式9のように求めることができる。
[数9]
Figure JPOXMLDOC01-appb-I000009
 次に、図11、12を用いて、本発明の第1実施形態において、自車を次枠に到達させる車両制御方法の一例を説明する。
 図11は、本発明第1の実施形態において、次枠が現在の区間経路の延長線上にある場合に、自車を次枠に到達させる車両制御方法を説明する図である。
 前述の調整部163により継ぎ足された調整経路に到達する前、かつ、調整経路走行時の車速閾値Vaに達するまでは、当初の区間経路、および区間経路上の各位置において予定する操舵や車速に従って、車速がVaに減速されるまで走行制御する(区間901)。
 区間経路の残区間の走行が完了する以前の減速中に、車速が車速閾値Vaに達したら、(車両を停車させずに)その車速(車速閾値Va)を維持しつつ、当初の区間経路(次枠位置到達後の据え切りを除く)に従って、当初の走行完了位置601まで走行制御する(区間902)。
 当初の走行完了位置601からは、走行完了時点の舵角・車速等を維持して、次枠611の位置までの距離(s1~s2)の直前(調整距離分の走行が完了する直前)まで走行制御する(区間903)。
 次枠611に到達する直前(急ブレーキにならない程度のブレーキの利かせ具合で停車可能な距離)に達したら、ブレーキで減速(制動)し、車両を次枠611に停車させる(区間904)。
 最後に、次枠611にて停車後、当初の区間経路で次枠611への到達後に据え切りを予定していた場合は、据え切りを実行する。
 なお、車速閾値Vaは、減速に多少の誤差が出ても、十分に次枠611内に停車可能な速度とする。例えば、Va=1km/h程度にすれば、0.1G程度の減速度で、乾いた路面であれば減速開始から5cm程度、ぬれた路面でも10cm程度で停車できる。このため、Va=1km/hにして、次枠611までの距離の7.5cm手前から0.1G程度で減速すれば、フィードバック制御が効かなくても、2.5cm以内の誤差に収めることができる。もちろん、フィードバック制御を併用して、停車位置の精度を上げても良い。
 図12は、本発明の第1実施形態において、次枠が現在の区間経路の残区間上にある場合に、自車を次枠に到達させる車両制御方法を説明する図である。
 まず、この車両制御を適用する前に行う処理として、次枠611が現在の区間経路の残区間上にあるか否かの判定方法を説明する。
 区間経路の最後の部分直線または部分曲線が、部分直線(所定長さの線分)または円弧の場合は、図9および図10にて示した、次枠611が現在の区間経路の延長線上にあるか否かを判定する方法とほぼ同じ方法で判定することが可能である。次枠611が現在の区間経路の延長線上にあるか否かを判定する場合は、残区間を走行完了したときの自車位置601の後輪車軸中心を原点・ヨー角0としたが、次枠611が現在の区間経路の残区間上にあるか否かを判定する場合は、現在の自車位置205の後輪車軸中心を原点・ヨー角0として座標変換し、次枠611への到達可否を同様に判定する。
 判定の結果得られた移動距離の範囲s1~s2が、現在の自車位置205から次枠611に到達するために必要な走行距離の範囲となる。0<s1≦s2であれば、残区間を前進で走行したときの途中に次枠611があり、s1~s2の距離だけ前進することで次枠611に到達可能である。s1≦s2<0であれば、残区間を後退で走行したときの途中に次枠611があり、|s2|~|s1|の距離だけ後退することで次枠611に到達可能である。現在の自車位置205における進行方向と、次枠611に到達するための進行方向が一致すれば、次枠611が現在の区間経路の残区間の途中にあるとみなすことができる。
 次に、次枠611が現在の区間経路の残区間上にある場合に、自車を次枠611に到達させる車両制御方法を説明する。ここでは、簡単のために、前進の場合、すなわち0<s1≦s2の場合についてのみ述べる。後退の場合も同様に考えることができる。また、次枠611へ到達させるための走行距離はs1~s2の間であればよいが、ここでは、s12を目標走行距離とする(s1≦s12≦s2)。
 ここで、当初の区間経路、および、当初の区間経路上の各位置において予定する車速に従って減速制御する場合に、現在の自車位置205から走行完了位置601までの走行距離をsとし、走行完了位置601で停車するための減速制御を開始する時点の残距離をsbとする。
 sb≦s12の場合は、現在の自車位置205からs12-sbの距離だけ減速せずに進み(区間1011)、それから当初の減速制御通りに減速を行う(区間1012)。つまり、この場合は、車両の減速開始位置を(当初の予定より)早めて、自車の減速を早めることになる。
 s12<sb≦sの場合、現在の自車位置205から、当初の減速制御の減速度のsb/s12倍の減速度となるように減速を行う。つまり、この場合は、車両の減速度を(当初の予定より)高めて、自車の減速を早めることになる。但し、当初の減速制御の減速度をsb/s12倍した場合に、許容される減速度の閾値を超える場合は、次枠611内に停まることは無理と判断し、調整経路を適用しないこととする。
 s<sbの場合、現在の自車位置205で既に減速が始まっているので、減速区間の残りsについて、現在の自車位置205から、当初の減速制御の減速度のs/s12倍の減速度となるように減速を行う。但し、当初の減速制御の減速度をs/s12倍した場合に、許容される減速度の閾値を超える場合は、次枠611内に停まることは無理と判断し、調整経路を適用しないこととする。
 このように、本実施形態では、次枠が現在の区間経路の延長線上にあるか否かを判定し、延長線上にある場合は走り足すことにより、あるいは、次枠が現在の区間経路の残区間上にあるか否かを判定し、残区間上にある場合は減速を早めることにより、自車を次枠に到達させて停止させることが可能になる。
 すなわち、本実施形態では、自動駐車の車両制御において、区間経路に沿った車両制御が完了した時点の自車の位置が次枠からずれそうな見込みで、かつ、次枠の位置が該区間経路の延長線上またはその区間経路上にある場合、駐車経路の再生成を行わずに、軽量処理の調整によって次枠に到達できるか否かを判断し、到達できる場合は当該調整を反映した車両制御を行って、次枠に自車を到達させて適切に停めることができる。また、外界認識の影響等で、次枠が突然移動したと認識した場合でも、次枠で自車を適切に停めることができる。加えて、通常の駐車経路再生成処理を行わないので、一旦停車する必要が無く、また、CPU(Central Processing Unit)の処理負荷も軽くなる。
<第2実施形態>
 図13は、本発明の第2実施形態における、自車を現在の区間経路に沿うように車両制御により走行させる際の、自動駐車制御装置の周期処理の1周期分を表すフローチャートである。
 本第2実施形態の自動駐車制御装置の動作は、上記第1実施形態の自動駐車制御装置の動作とほぼ同じであるが、1周期分の処理が多少重くなる代わりに、本実施形態の到達調整が期待通りに動作しない場合に、調整動作を抑制できる点が異なる。
 すなわち、ステップS501、S502は、図7に基づき説明した第1実施形態におけるフローチャートと同じである。ステップS502が終了したら、ステップS1111へ進む。
 ステップS1111では、自車位置が区間経路の最後(つまり、次枠の直前)の部分曲線または部分直線の上に位置するか否かを判定し、真の場合はステップS1112へ進む。偽の場合は、ステップS531へ進む。
 ステップS1112では、新たに設けた経路調整カウンタが、所定の閾値を超えたか否かを判定し、真の場合はステップS531へ進む。偽の場合は、ステップS521へ進む。この経路調整カウンタは、初期値を0とし、各区間経路に沿った車両制御の開始時に初期値へリセットされる。前記閾値を適切に決めることにより、同一の区間経路内で実施される経路調整の回数を抑制できるため、何度調整しても正しく次枠に到達しない異常事態において、本実施形態のロジックが無駄に何度も適用されるのを回避できる。
 ステップS521、S522、S523、S524、S525は、図7に基づき説明した第1実施形態におけるフローチャートと同じである。ステップS524もしくはステップS525の処理が終了したら、ステップS1113へ進む。
 ステップS1113では、今回の周期処理の実行直前に次枠が移動したか否かを判定し、次枠が移動したと判定した場合は経路調整カウンタを0にリセットする(ステップS1114)。これは、次枠が移動したことにより、経路調整が適用されるのが正常な動作と考えられるためである。ステップS1113で次枠が移動していないと判定した場合、および、ステップS1114の実行後は、ステップS1115へ進む。
 ステップS1115では、経路調整カウンタを1だけ増やし、ステップS531へ進む。
 ステップS531、S532、S533、S534、S535、S541は、図7に基づき説明した第1実施形態におけるフローチャートと同じである。
 すなわち、本実施形態では、判断部161によって、自車が次枠内に到達可能であると判断され、演算部162から得られる調整距離に従って生成した調整経路において自車を走行させている途中に、判断部161の判断および演算部162の演算を改めて実施し、改めて実施した判断部161の判断結果および演算部162の演算結果から、次枠の位置が変更されていないにもかかわらず、自車をさらに走行させる、もしくは、自車の減速を早めることにより、自車が次枠内に到達可能であると判断されることが所定回数以上繰り返された場合に、調整部163による調整経路の再調整を実施しないこととする。これにより、上記第1実施形態と同様の作用効果が得られることに加えて、到達調整部160による到達調整が期待通りに動作しない場合に、調整動作を抑制することが可能となる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
100:自動駐車制御装置、101:自動駐車ソフトウェア、110:状態遷移部、120:入出力処理部、125:表示処理部、130:空間認識部、135:経路生成部、140:到達判定部、145:自車位置推定部、150:車両制御部、160:到達調整部、161:判断部、162:演算部、163:調整部、171:HMI、172:外界認識センサ、173:入力スイッチ、180:各種センサ/アクチュエータECU、190:車両制御ネットワーク、201:駐車開始位置(車両制御開始位置)、202:切返し位置、203A:目標駐車位置(変更前)、203B:目標駐車位置(変更後)、205:自車の現在位置、211:駐車経路、212:区間経路、213:調整経路、313A:残区間の区間経路(調整前)、313B:残区間の区間経路(調整後)、601:残区間の走行完了位置、611:次枠

Claims (10)

  1.  駐車開始位置または駐車開始位置から目標駐車位置までの駐車経路の中途に設けられた切返し位置から、次の切返し位置または目標駐車位置までの区間経路の走行を実行することによって、駐車開始位置から駐車経路に沿って目標駐車位置まで車両を走行させる自動駐車制御装置であって、
     前記車両がある区間経路を走行している時に、前記車両が前記区間経路の現在位置から残区間を走行した場合に、前記車両が次に到達する予定の切返し位置もしくは目標駐車位置である次枠内に到達し得るか否かを判断し、前記残区間の走行を完了しても前記次枠内に到達し得ないと判断した場合に、前記残区間の走行完了位置からさらに前記残区間の走行完了位置における操舵角および進行方向で前記車両を走行させることで、前記残区間の延長上で前記車両が前記次枠内に到達可能か否かを判断する、あるいは、前記残区間の走行を完了するまでの前記残区間上で前記車両が前記次枠内に到達可能か否かを判断する判断部と、
     前記判断部が、前記車両が前記次枠内に到達可能であると判断した場合、前記区間経路の現在位置もしくは走行完了位置から前記次枠に到達するまでの調整距離を演算する演算部と、
     前記演算部で演算された調整距離に基づいて、前記次枠まで前記車両を走行させるための調整経路を生成する調整部と、を備えることを特徴とする、自動駐車制御装置。
  2.  駐車開始位置または駐車開始位置から目標駐車位置までの駐車経路の中途に設けられた切返し位置から、次の切返し位置または目標駐車位置までの区間経路の走行を実行することによって、駐車開始位置から駐車経路に沿って目標駐車位置まで車両を走行させる自動駐車制御装置であって、
     前記車両が前記区間経路の現在位置から残区間を走行した場合に、前記車両が次に到達する予定の切返し位置もしくは目標駐車位置である次枠内に到達し得るか否かを判断するとともに、前記残区間の走行を完了しても前記次枠内に到達し得ないと判断した場合に、前記残区間の走行完了位置からさらに前記残区間の走行完了位置における操舵角および進行方向で前記車両を走行させることで、前記残区間の延長上で前記車両が前記次枠内に到達可能か否かを判断する判断部と、
     前記判断部が、前記残区間の延長上で前記車両が前記次枠内に到達可能であると判断した場合、前記区間経路の現在位置もしくは走行完了位置から前記次枠に到達するまでの調整距離を演算する演算部と、
     前記演算部の演算結果に基づいて、前記区間経路の現在位置から前記調整距離分だけ前記車両を走行させるための調整経路、もしくは、前記残区間の走行完了位置から前記残区間の走行完了位置における操舵角および進行方向を維持して前記調整距離分だけ追加して前記車両を走行させるための調整経路を生成する調整部と、を備えることを特徴とする、自動駐車制御装置。
  3.  請求項2に記載の自動駐車制御装置であって、
     前記残区間の走行完了位置から前記次枠まで前記車両を走行させる際に、前記残区間の走行が完了する以前の減速中に、前記車両の車速が所定の閾値に達したときに、前記車両を停車させずに前記車両の車速を前記所定の閾値に維持しつつ前記車両を走行させ、前記調整距離分の走行が完了する直前の前記次枠に停車可能な位置から前記車両に制動をかけることによって、前記車両を前記次枠に停車させることを特徴とする、自動駐車制御装置。
  4.  駐車開始位置または駐車開始位置から目標駐車位置までの駐車経路の中途に設けられた切返し位置から、次の切返し位置または目標駐車位置までの区間経路の走行を実行することによって、駐車開始位置から駐車経路に沿って目標駐車位置まで車両を走行させる自動駐車制御装置であって、
     前記車両が前記区間経路の現在位置から残区間を走行した場合に、前記車両が次に到達する予定の切返し位置もしくは目標駐車位置である次枠内に到達し得るか否かを判断するとともに、前記残区間の走行を完了しても前記次枠内に到達し得ないと判断した場合に、前記残区間の走行を完了するまでの前記残区間上で前記車両が前記次枠内に到達可能か否かを判断する判断部と、
     前記判断部が、前記残区間上で前記車両が前記次枠内に到達可能であると判断した場合、前記区間経路の現在位置もしくは走行完了位置から前記次枠に到達するまでの調整距離を演算する演算部と、
     前記演算部の演算結果に基づいて、前記区間経路の現在位置から前記調整距離分だけ前記区間経路の残区間を走行させて前記次枠内にて前記車両を停車させるための調整経路、もしくは、前記残区間の走行完了位置から前記調整距離分だけ前記区間経路の残区間の走行距離を短縮させて前記次枠内にて前記車両を停車させるための調整経路を生成する調整部と、を備えることを特徴とする、自動駐車制御装置。
  5.  請求項4に記載の自動駐車制御装置であって、
     前記車両の減速度を高める、もしくは前記車両の減速開始位置を早めて、前記車両の減速を早めることにより、前記次枠内に前記車両を停車させることを特徴とする、自動駐車制御装置。
  6.  請求項1に記載の自動駐車制御装置であって、
     前記区間経路が、特定の数式で表現される部分曲線もしくは部分直線を1つ以上つなげることによって構成されており、
     前記判断部の判断および前記演算部の演算が、前記次枠の直前に位置する前記部分曲線もしくは部分直線の上に前記車両が位置するタイミングで実施されることを特徴とする、自動駐車制御装置。
  7.  請求項6に記載の自動駐車制御装置であって、
     前記次枠の直前に位置する前記部分曲線が、円弧であることを特徴とする、自動駐車制御装置。
  8.  請求項1に記載の自動駐車制御装置であって、
     前記判断部の判断および前記演算部の演算が、前記次枠の位置が変更されたタイミングで実施されることを特徴とする、自動駐車制御装置。
  9.  請求項1に記載の自動駐車制御装置であって、
     前記判断部によって、前記車両は前記残区間の走行を完了しても前記次枠内に到達せず、かつ、前記残区間の走行完了位置から前記残区間の走行を完了したときの操舵角および進行方向のままさらに前記車両を走行させても、前記残区間の延長上で前記車両は前記次枠内に到達し得ない、あるいは、前記残区間の走行を完了するまでの前記残区間上で前記車両は前記次枠内に到達し得ないと判明した場合に、
     前記残区間の走行完了位置、もしくは前記車両が停車するまで前記区間経路の現在位置から移動した位置から前記目標駐車位置へ向かう駐車経路の再生成を行うことを特徴とする、自動駐車制御装置。
  10.  請求項1に記載の自動駐車制御装置であって、
     前記判断部によって、前記車両が前記次枠内に到達可能であると判断され、
     前記演算部から得られる前記調整距離に従って生成した調整経路において前記車両を走行させている途中に、前記判断部の判断および前記演算部の演算を改めて実施し、
     改めて実施した前記判断部の判断結果および前記演算部の演算結果から、前記次枠の位置が変更されていないにもかかわらず、前記車両をさらに走行させる、もしくは、前記車両の減速を早めることにより、前記車両が前記次枠内に到達可能であると判断されることが所定回数以上繰り返された場合に、
     前記調整部による前記調整経路の再調整を実施しないことを特徴とする、自動駐車制御装置。
PCT/JP2018/019583 2017-06-26 2018-05-22 自動駐車制御装置 WO2019003720A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880031410.9A CN110621562B (zh) 2017-06-26 2018-05-22 自动停车控制装置
JP2019526686A JP6740477B2 (ja) 2017-06-26 2018-05-22 自動駐車制御装置
US16/609,262 US11155257B2 (en) 2017-06-26 2018-05-22 Automatic parking control device
EP18824096.4A EP3613647B1 (en) 2017-06-26 2018-05-22 Automatic parking control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017124433 2017-06-26
JP2017-124433 2017-06-26

Publications (1)

Publication Number Publication Date
WO2019003720A1 true WO2019003720A1 (ja) 2019-01-03

Family

ID=64741423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019583 WO2019003720A1 (ja) 2017-06-26 2018-05-22 自動駐車制御装置

Country Status (5)

Country Link
US (1) US11155257B2 (ja)
EP (1) EP3613647B1 (ja)
JP (1) JP6740477B2 (ja)
CN (1) CN110621562B (ja)
WO (1) WO2019003720A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147220A (ja) * 2019-03-15 2020-09-17 日立オートモティブシステムズ株式会社 車両制御装置
WO2021157173A1 (ja) * 2020-02-04 2021-08-12 パナソニックIpマネジメント株式会社 運転支援装置、車両、及び、運転支援方法
JP2022127360A (ja) * 2021-02-19 2022-08-31 トヨタ自動車株式会社 車両制御方法、車両制御システム、及び車両制御プログラム
EP4067821A4 (en) * 2019-11-29 2023-04-05 Huawei Technologies Co., Ltd. PATH-PLANNING METHOD FOR A VEHICLE AND PATH-PLANNING DEVICE FOR A VEHICLE
WO2023053729A1 (ja) * 2021-09-30 2023-04-06 株式会社アイシン 駐車支援装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018204134B4 (de) * 2018-03-19 2022-03-17 Volkswagen Aktiengesellschaft Verfahren zum Ausparken eines Kraftfahrzeugs aus einem Parkplatz und Kraftfahrzeug mit einer Steuereinheit zum Ausführen eines derartigen Verfahrens
CN112141090B (zh) * 2020-06-24 2023-03-28 上汽通用五菱汽车股份有限公司 自动泊车路径规划方法、系统及计算机存储介质
CN112721704B (zh) * 2021-01-20 2022-08-19 安洁无线科技(苏州)有限公司 基于无线充电对齐技术的电动汽车自动泊车方法及系统
DE102022001119A1 (de) * 2022-03-31 2023-10-05 Mercedes-Benz Group AG Verfahren zu einer Restwegregelung für ein Fahrzeug
CN117389293A (zh) * 2023-10-31 2024-01-12 广州天海翔航空科技有限公司 巡检无人机飞行控制管理方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018821A (ja) * 1999-07-02 2001-01-23 Honda Motor Co Ltd 車両の自動操舵装置
JP2005014778A (ja) * 2003-06-26 2005-01-20 Toyota Motor Corp 車両用走行支援装置
JP4185957B2 (ja) 2007-04-27 2008-11-26 トヨタ自動車株式会社 車両用走行支援装置
JP2011061975A (ja) 2009-09-10 2011-03-24 Toshiba Corp 車両の定位置停止制御装置および定位置停止支援装置
JP2012084021A (ja) * 2010-10-13 2012-04-26 Equos Research Co Ltd 走行制御装置
JP2016084029A (ja) * 2014-10-27 2016-05-19 本田技研工業株式会社 駐車支援装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189393A (ja) * 2005-01-07 2006-07-20 Toyota Motor Corp 周辺物体情報取得装置及びこれを用いる駐車支援装置
JP4386083B2 (ja) * 2007-02-27 2009-12-16 トヨタ自動車株式会社 駐車支援装置
DE102008027779A1 (de) 2008-06-11 2009-12-17 Valeo Schalter Und Sensoren Gmbh Verfahren zur Unterstützung eines Fahrers eines Fahrzeugs beim Einparken in eine Parklücke
JP5257689B2 (ja) * 2009-03-11 2013-08-07 アイシン精機株式会社 駐車支援装置
JP2012025378A (ja) * 2010-06-25 2012-02-09 Nissan Motor Co Ltd 車両駐車支援制御装置及び車両駐車支援制御方法
JP5845131B2 (ja) * 2012-04-17 2016-01-20 株式会社日本自動車部品総合研究所 駐車空間検知装置
JP5991382B2 (ja) * 2012-11-27 2016-09-14 日産自動車株式会社 車両用加速抑制装置及び車両用加速抑制方法
JP6216155B2 (ja) * 2013-05-22 2017-10-18 クラリオン株式会社 駐車支援装置
KR102108056B1 (ko) * 2013-07-26 2020-05-08 주식회사 만도 주차 제어 장치 및 주차 제어 방법
JP5943039B2 (ja) * 2014-06-25 2016-06-29 トヨタ自動車株式会社 駐車支援装置
JP6251940B2 (ja) * 2014-06-30 2017-12-27 日立オートモティブシステムズ株式会社 駐車軌跡算出装置および駐車軌跡算出方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001018821A (ja) * 1999-07-02 2001-01-23 Honda Motor Co Ltd 車両の自動操舵装置
JP2005014778A (ja) * 2003-06-26 2005-01-20 Toyota Motor Corp 車両用走行支援装置
JP4185957B2 (ja) 2007-04-27 2008-11-26 トヨタ自動車株式会社 車両用走行支援装置
JP2011061975A (ja) 2009-09-10 2011-03-24 Toshiba Corp 車両の定位置停止制御装置および定位置停止支援装置
JP2012084021A (ja) * 2010-10-13 2012-04-26 Equos Research Co Ltd 走行制御装置
JP2016084029A (ja) * 2014-10-27 2016-05-19 本田技研工業株式会社 駐車支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3613647A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7212556B2 (ja) 2019-03-15 2023-01-25 日立Astemo株式会社 車両制御装置
WO2020189061A1 (ja) * 2019-03-15 2020-09-24 日立オートモティブシステムズ株式会社 車両制御装置
US11975709B2 (en) 2019-03-15 2024-05-07 Hitachi Astemo, Ltd. Vehicle control device
JP2020147220A (ja) * 2019-03-15 2020-09-17 日立オートモティブシステムズ株式会社 車両制御装置
EP4067821A4 (en) * 2019-11-29 2023-04-05 Huawei Technologies Co., Ltd. PATH-PLANNING METHOD FOR A VEHICLE AND PATH-PLANNING DEVICE FOR A VEHICLE
JP2021124898A (ja) * 2020-02-04 2021-08-30 パナソニックIpマネジメント株式会社 運転支援装置、車両、及び、運転支援方法
JP7316612B2 (ja) 2020-02-04 2023-07-28 パナソニックIpマネジメント株式会社 運転支援装置、車両、及び、運転支援方法
JP2023130448A (ja) * 2020-02-04 2023-09-20 パナソニックIpマネジメント株式会社 運転支援方法、及び、運転支援装置
JP7445881B2 (ja) 2020-02-04 2024-03-08 パナソニックIpマネジメント株式会社 運転支援方法、及び、運転支援装置
WO2021157173A1 (ja) * 2020-02-04 2021-08-12 パナソニックIpマネジメント株式会社 運転支援装置、車両、及び、運転支援方法
JP2022127360A (ja) * 2021-02-19 2022-08-31 トヨタ自動車株式会社 車両制御方法、車両制御システム、及び車両制御プログラム
JP7294356B2 (ja) 2021-02-19 2023-06-20 トヨタ自動車株式会社 車両制御方法、車両制御システム、及び車両制御プログラム
WO2023053729A1 (ja) * 2021-09-30 2023-04-06 株式会社アイシン 駐車支援装置

Also Published As

Publication number Publication date
JPWO2019003720A1 (ja) 2020-03-19
CN110621562B (zh) 2022-08-05
EP3613647A4 (en) 2020-12-23
US20200055514A1 (en) 2020-02-20
CN110621562A (zh) 2019-12-27
US11155257B2 (en) 2021-10-26
EP3613647A1 (en) 2020-02-26
JP6740477B2 (ja) 2020-08-12
EP3613647B1 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
JP6740477B2 (ja) 自動駐車制御装置
US11092967B2 (en) Vehicle movement control device
JP6935813B2 (ja) 運転支援方法及び運転支援装置
JP4270259B2 (ja) 障害物回避制御装置
US20180170370A1 (en) Driving supporter
US8170739B2 (en) Path generation algorithm for automated lane centering and lane changing control system
JP5751350B2 (ja) 物体認識装置および車両制御装置
WO2014057706A1 (ja) 走行支援システム及び制御装置
JP4811075B2 (ja) 回避操作算出装置、回避制御装置、各装置を備える車両、回避操作算出方法および回避制御方法
WO2018173403A1 (ja) 車両制御装置及び車両制御方法
JP6419671B2 (ja) 車両用操舵装置および車両用操舵方法
JP5299756B2 (ja) 車両
JP7006093B2 (ja) 運転支援装置
CN109835330B (zh) 车辆主动避撞的方法以及使用该方法的车辆
JP2020111299A (ja) 車両運転支援システム及び方法
JP5417832B2 (ja) 車両用運転支援装置
JP2007331580A (ja) 車両速度制御システム
JP2019059426A (ja) 運転支援装置
JP2020111302A (ja) 車両運転支援システム及び方法
JP2020100166A (ja) 車両運動制御装置及びその方法
US11939015B2 (en) Vehicle control device and vehicle control method
CN112313128A (zh) 车辆控制装置
JP2017132422A (ja) 車両制御システム
KR102572631B1 (ko) 차량의 충돌 완충 장치 및 방법
CN111176285A (zh) 一种行进路径规划的方法及装置、车辆、可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018824096

Country of ref document: EP

Effective date: 20191022

ENP Entry into the national phase

Ref document number: 2019526686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE