WO2019001137A1 - 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法 - Google Patents

一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法 Download PDF

Info

Publication number
WO2019001137A1
WO2019001137A1 PCT/CN2018/085523 CN2018085523W WO2019001137A1 WO 2019001137 A1 WO2019001137 A1 WO 2019001137A1 CN 2018085523 W CN2018085523 W CN 2018085523W WO 2019001137 A1 WO2019001137 A1 WO 2019001137A1
Authority
WO
WIPO (PCT)
Prior art keywords
bhet
waste
textile
crude
melt
Prior art date
Application number
PCT/CN2018/085523
Other languages
English (en)
French (fr)
Inventor
林树光
董兴广
罗俊生
周郑奇
Original Assignee
树业环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 树业环保科技股份有限公司 filed Critical 树业环保科技股份有限公司
Priority to US16/621,705 priority Critical patent/US20200190280A1/en
Publication of WO2019001137A1 publication Critical patent/WO2019001137A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • C08G63/866Antimony or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/165Crystallizing granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to a recycling method of waste polyester material, which realizes high-level re-recycling by chemical means, in particular to a method for re-preparing waste textile into fiber-grade polyester chips which can be applied to textile processing.
  • the waste textiles mainly exist in the form of waste garments and chemical fiber cloth trims of garment factories.
  • the main component of waste clothes and chemical fiber cloth trimmings is polyethylene terephthalate.
  • the chemical abbreviation of polyester is PET (hereinafter referred to as Polyester) is a high molecular organic chemical. Due to the lack of high-level re-resource application methods, waste textiles with waste clothes as the main form are landfilled with domestic waste. Due to the inertness of polyester itself, it takes 200-600 years to spontaneously degrade in nature. Moreover, at the same time of spontaneous degradation, the degrading of the dyeing dye attached to the used clothing will also pollute the ecological environment and seriously affect the sustainable use of natural resources such as land and water.
  • the relatively mature process route for the recycling of waste polyester materials in China is the recycling process of waste polyester bottles.
  • the process is mainly based on physical means and supplemented by chemical methods.
  • the required raw material waste beverage bottles are high in cost and not easy. get.
  • Recycling routes using waste textiles as raw materials have also been tried by other domestic companies.
  • the main processes are pre-sorting, re-melting and extruding, and then re-condensing and granulating after simple filtration. From the operation process, the pre-sorting of this method
  • the labor cost is increased, and the subsequent process can not completely remove the impurities, and there is a problem that the reduction step is not completely in place, resulting in poor purity of the recycled PET.
  • the recycled polyester chips produced by such a process have a poor color hue and many impurities, and it is difficult to satisfy the downstream.
  • the customer's processing requirements, the existing process routes can not achieve high-level recycling of waste textiles.
  • the present invention re-prepares fiber-grade polyester chips for textile processing by reducing waste textiles into high-purity ethylene terephthalate (hereinafter referred to as BHET) to achieve efficient recovery.
  • BHET high-purity ethylene terephthalate
  • the preheated BHET melt is sent to a pre-polycondensation kettle for dealcoholization, an inorganic additive and a dispersing agent are added, and ethylene glycol in BHET is distilled off by a low vacuum to obtain a BHET oligomer.
  • the PET melt After the PET melt is filtered, it enters the spinneret, and the cast strip is extruded through the spinneret hole, and then the cast strip is cooled by an underwater pelletizer, and then cut into particles to obtain a recycled fiber grade polyester chip.
  • step 2) initiator is a composite formulation of sodium hydroxide and cobalt acetate.
  • step 3 adopts multi-stage filtration, and adopts a discharge mode in which the liquid liquid overflows at a high level.
  • step 3) filter uses a backflushing self-cleaning filter.
  • step 4) cooling crystallization temperature is controlled at 0 ° C to 80 ° C.
  • the decolorizing agent adopts a composite formula mainly composed of activated alumina, and the filter has a filtration precision of 100 to 800 ⁇ m.
  • the distillation temperature is controlled at 100 ° C to 260 ° C, and the degree of vacuum is 20 MPa to 12000 Pa.
  • the step 9) employs a ruthenium-based catalyst and a phosphorus-based stabilizer, a phthalimide-type brightener, and a food-grade toner.
  • the intrinsic viscosity is increased by staying 2 to 4H under a high vacuum of 20 to 100 Pa.
  • the final prepared fiber-grade regenerated slice has an intrinsic viscosity of 0.62 to 0.72, a terminal carboxyl group of ⁇ 28 mmol/kg, a diethylene glycol content of ⁇ 1.2%, a melting point of ⁇ 258° C., and an additive content of 0.3 to 3%.
  • waste textile is selected from the group consisting of waste garments or chemical fiber cloth scraps, and the waste textiles contain more than 65% of polyethylene terephthalate.
  • the invention patent adopts the green innovation as the design concept, and the chemical process is the main process, and the physical mode is the auxiliary process. Finally, the waste textile is completely reduced to high-purity ethylene terephthalate, and then re-prepared by dealcoholization and polycondensation. Fiber-grade polyester chips that can be applied to textile processing, truly realize efficient industrial chain cycle.
  • This invention patent will enhance the efficient and re-resource utilization level of waste textiles, and it is expected to fill the gaps within the province and the country, and provide a good demonstration and promotion conditions for high-level re-recycling applications of up to tens of millions of tons of waste textiles in China every year.
  • the filter and the discharge device are used to dissolve the polyester plastic with triethylene glycol as a solvent, thereby initially separating the textile impurities.
  • the textile can be depolymerized under high temperature melting conditions.
  • the invention adopts a suitable distillation temperature and a reasonably designed vacuum degree, and is favorable for separating impurities remaining in the BHET, ensuring material purity and suppressing by-product generation to the utmost extent.
  • the additive is formulated into a suspension, and the time at which the suspension is added to the reaction system is controlled so as to be sufficiently wetted and dispersed, so that the subsequent polycondensation reaction proceeds more efficiently.
  • FIG. 1 is a flowchart of a method according to the present invention
  • a method of preparing a waste textile to prepare a fiber-grade polyester chip that can be applied to textile processing comprising the steps of:
  • the preheated BHET melt is sent to a pre-polycondensation kettle for dealcoholization, an inorganic additive and a dispersing agent are added, and ethylene glycol in BHET is distilled off by a low vacuum to obtain a BHET oligomer.
  • the BHET oligomer is filtered and sent to a final polycondensation reactor for polycondensation reaction, the reaction temperature is controlled at 270 ° C, and the intrinsic viscosity is raised under high vacuum conditions to prepare a PET melt;
  • the PET melt After the PET melt is filtered, it enters the spinneret, and the cast strip is extruded through the spinneret hole, and then the cast strip is cooled by an underwater pelletizer, and then cut into particles to obtain a recycled fiber grade polyester chip.
  • the use of triethylene glycol as a solvent is the difference that the textile can be alcoholized into a liquid state, and other inorganic impurities and non-polyester plastics cannot be dissolved.
  • the filter and the discharge device are used to initially filter and separate the crude BHET, including sand, Buttons, zippers and other non-polyester plastics and other impurities.
  • the solvent of triethylene glycol is chosen because the boiling point of triethylene glycol is as high as 285 ° C, which is very suitable for the decomposition of waste textiles under high temperature conditions.
  • the filter used to separate the inorganic decolorizer should use the appropriate filtration precision and can quickly change the filter.
  • the invention adopts a suitable distillation temperature and a reasonably designed vacuum degree, and is favorable for separating impurities remaining in the BHET, ensuring material purity and suppressing by-product generation to the utmost extent.
  • step 6 the mixture is sufficiently stirred by adding an adsorption decolorizing agent to obtain a color-modified BHET mixed solution, and the decolorizing agent is separated by filtration.
  • the added additive is firstly mixed into a suspension by slurrying and grinding, and the time when the suspension is added to the reaction system is controlled, that is, the addition and stirring are completed when the degree of polymerization of the material is relatively low, and stirring is performed.
  • the addition of a dispersant at the same time is beneficial to the inorganic additive to be sufficiently wetted and dispersed in the regenerated BHET system.
  • step 2) initiator is prepared by a composite formula of sodium hydroxide and cobalt acetate.
  • the selected initiator of sodium hydroxide and cobalt acetate can meet the needs of the process, accelerate the degradation rate of waste textiles, and achieve efficient decomposition.
  • step 3 adopts multi-stage filtration, and adopts a discharge mode in which the liquid liquid overflows at a high level.
  • step 3) filter uses a backflushing self-cleaning filter.
  • a multi-stage filter with self-cleaning and backwashing ensures effective separation of solid waste impurities entrained in the crude BHET solution, including sand, cotton yarn, buttons, zippers and other non-polyester plastics.
  • step 4) cooling crystallization temperature is controlled at 0 °C.
  • the decolorizing agent is a composite decolorizing agent mainly composed of activated alumina, and the filter has a filtration precision of 100 to 800 ⁇ m.
  • the decolorization formula uses a composite formula to ensure the decolorization effect.
  • the filter used to separate the inorganic decolorizer should use the appropriate filtration precision and can quickly change the filter.
  • step 8) is controlled at a distillation temperature of 100 ° C and a vacuum of 20 MPa.
  • the step 9) employs a ruthenium-based catalyst and a phosphorus-based stabilizer, a phthalimide-type brightener, and a food-grade toner.
  • the added whitening agent and toner can effectively improve the appearance hue of the regenerated fiber-grade chips, so that the b-value of the finally prepared regenerated fiber-grade slice is ⁇ 6.
  • the selected stabilizers and catalysts are suitable for regenerating BHET for efficient polycondensation reaction and effectively inhibiting side reactions.
  • the intrinsic viscosity is increased by staying 2 to 4H under a high vacuum condition of 20 Pa.
  • the intrinsic viscosity of the product can be effectively improved.
  • the fiber-stage regenerated slice finally prepared has an intrinsic viscosity of 0.62, a terminal carboxyl group of ⁇ 28 mmol/kg, a diethylene glycol content of ⁇ 1.2%, a melting point of ⁇ 258° C., and an additive content of 0.3 to 3%.
  • waste textile is selected from the group consisting of waste garments or chemical fiber cloth scraps, and the waste textiles contain more than 65% of polyethylene terephthalate.
  • the waste textile contains polyethylene terephthalate having a mass ratio of 65% or more, and other impurities are separated and removed.
  • the ratio of other impurity components is: 3 to 6% of clothing accessories such as button zippers, 11 to 25% of non-polyethylene terephthalate impurities such as cotton yarn, and 1 to 4% of sediment and moisture attached to discarded textiles. .
  • a method of preparing a waste textile to prepare a fiber-grade polyester chip that can be applied to textile processing comprising the steps of:
  • the preheated BHET melt is sent to a pre-polycondensation kettle for dealcoholization, an inorganic additive and a dispersing agent are added, and ethylene glycol in BHET is distilled off by a low vacuum to obtain a BHET oligomer.
  • the BHET oligomer is filtered and sent to a final polycondensation reactor for polycondensation reaction, the reaction temperature is controlled at 295 ° C, and the intrinsic viscosity is raised under high vacuum conditions to prepare a PET melt;
  • the PET melt After the PET melt is filtered, it enters the spinneret, and the cast strip is extruded through the spinneret hole, and then the cast strip is cooled by an underwater pelletizer, and then cut into particles to obtain a recycled fiber grade polyester chip.
  • step 2) initiator is prepared by a composite formula of sodium hydroxide and cobalt acetate.
  • step 3 adopts multi-stage filtration, and adopts a discharge mode in which the liquid liquid overflows at a high level.
  • step 3) filter uses a backflushing self-cleaning filter.
  • step 4) cooling crystallization temperature is controlled at 80 °C.
  • the decolorizing agent is a composite decolorizing agent mainly composed of activated alumina, and the filter has a filtration precision of 800 ⁇ m.
  • step 8) is controlled at a temperature of 260 ° C and a vacuum of 12,000 Pa.
  • the step 9) employs a ruthenium-based catalyst and a phosphorus-based stabilizer, a phthalimide-type brightener, and a food-grade toner.
  • the intrinsic viscosity is increased by staying at 4H under a high vacuum of 100 Pa.
  • the fiber-stage regenerated slice finally prepared has an intrinsic viscosity of 0.72, a terminal carboxyl group of ⁇ 28 mmol/kg, a diethylene glycol content of ⁇ 1.2%, a melting point of ⁇ 258° C., and an additive content of 3%.
  • waste textile is selected from the group consisting of waste garments or chemical fiber cloth scraps, and the waste textiles contain more than 65% of polyethylene terephthalate.
  • a method of preparing a waste textile to prepare a fiber-grade polyester chip that can be applied to textile processing comprising the steps of:
  • the preheated BHET melt is sent to a pre-polycondensation kettle for dealcoholization, an inorganic additive and a dispersing agent are added, and ethylene glycol in BHET is distilled off by a low vacuum to obtain a BHET oligomer.
  • the BHET oligomer is filtered and sent to a final polycondensation reactor for polycondensation reaction, the reaction temperature is controlled at 280 ° C, and the intrinsic viscosity is raised under high vacuum conditions to prepare a PET melt;
  • the PET melt After the PET melt is filtered, it enters the spinneret, and the cast strip is extruded through the spinneret hole, and then the cast strip is cooled by an underwater pelletizer, and then cut into particles to obtain a recycled fiber grade polyester chip.
  • step 2) initiator is prepared by a composite formula of sodium hydroxide and cobalt acetate.
  • step 3 adopts multi-stage filtration, and adopts a discharge mode in which the liquid liquid overflows at a high level.
  • step 3) filter uses a backflushing self-cleaning filter.
  • step 4) cooling crystallization temperature is controlled at 40 °C.
  • the decolorizing agent is a composite decolorizing agent mainly composed of activated alumina, and the filter has a filtration precision of 100 to 800 ⁇ m.
  • step 8) is controlled at a distillation temperature of 200 ° C and a vacuum of 100,000 Pa.
  • the step 9) employs a ruthenium-based catalyst and a phosphorus-based stabilizer, a phthalimide-type brightener, and a food-grade toner.
  • step 11) is carried out under a high vacuum of 80 Pa, and the intrinsic viscosity is increased by staying 3H.
  • the final prepared fiber-grade regenerated slice has an intrinsic viscosity of 0.7, a terminal carboxyl group of ⁇ 28 mmol/kg, a diethylene glycol content of ⁇ 1.2%, a melting point of ⁇ 258° C., and an additive content of 0.3 to 3%.
  • waste textile is selected from the group consisting of waste garments or chemical fiber cloth scraps, and the waste textiles contain more than 65% of polyethylene terephthalate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明提供一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法,废旧纺织品粉粹、醇解、过滤并分离、冷却结晶、压榨、脱色、精馏提纯、预热、预缩聚、缩聚、冷却铸带后切成粒子;通过将废旧纺织品还原成高纯度对苯二甲酸乙二酯(以下简称为BHET),重新制备出应用于纺织品加工的纤维级聚酯切片,实现高效回收。

Description

一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法 技术领域
本发明涉及一种废旧聚酯材料的回收方法,通过化学方式实现高等级再资源化,尤其涉及将废弃纺织物重新制备成可应用于纺织品加工的纤维级聚酯切片的方法。
背景技术
在废弃纺织物主要以废旧服装、服装厂的化纤布边角料等表征形态存在,废弃衣服和化纤布边角料的主要成分是聚对苯二甲酸乙二醇酯,聚酯的化学简称是PET(以下简称聚酯),是一种高分子有机化学物。由于缺乏高等级的再资源化应用手段,以废旧衣服为主要形态的废旧纺织品随生活垃圾填埋,由于聚酯本身存在惰性,在自然界中,靠自发降解需要200~600年。而且在自发降解的同时,附着在废旧服装上着色染料分解后也会对生态环境造成污染,严重影响土地、水域等自然资源的可持续利用。
商务部发布的《中国再生资源回收行业发展报告2017》之废旧纺织品回收情况分析指出:2016年,我国纺织行业纤维加工总量为5380万吨,同比增长1.5%,同年废旧纺织品回收量约为270万吨,同比增长3.8%。
根据上述数据,2016年国内废旧纺织品回收和综合利用产业链建设尽管取得一定进展,但废旧纺织品的回收循环利用总量仅为270万吨,占当年纺织行业纤维加工总量加工总量的5.02%,回收循环应用比例还是偏低,废弃纺织品造成的资源浪费和环境污染依然严重,再资源化利用空间巨大。
当前国内废旧聚酯材料回收再生相对较为成熟的工艺路线是废旧聚酯瓶的回收再生工艺,该工艺通过以物理方式为主,化学方式为辅,所需的原料废饮料瓶成本高且不容易得到。
以废旧纺织品为原料的再生工艺路线国内其他企业也做过尝试,主要流程为预先分拣,再熔解挤出,经过简单过滤后再重新缩聚造粒,从作业流程看,此方法的预先分拣就增加了人力成本,后面的工艺处理也无法彻底去除杂质,存在还原步骤不彻底不到位导致再生PET纯度差的问题,这样的流程生产出来的再生聚酯切片色相差,杂质多,难以满足下游客户的加工要求,已有工艺路线无法实现废旧纺织品的高等级再资源化。
发明内容
本发明通过将废旧纺织品还原成高纯度对苯二甲酸乙二酯(以下简称为BHET),重 新制备出应用于纺织品加工的纤维级聚酯切片,实现高效回收。
本发明通过以下方式实现:
1)将废旧纺织品预先的粉粹成片状物;
2)将预先粉碎的片状物加入到醇解装置中,按质量比为1∶2~1∶1.25的比例同时加入三甘醇,加入引发剂,在190℃~260℃、压力为0.1MPa~0.4MPa条件下保持搅拌1~4h,得到粗BHET溶液;
3)过滤并分离出粗BHET溶液中的固废杂质;得到初步纯化的粗BHET溶液;
4)将得到的初步纯化的粗BHET溶液进行冷却结晶,得到粗BHET悬浮液;
5)通过压榨粗BHET悬浮液得到粗BHET料饼,分离掉含有杂质的三甘醇溶液;
6)再向粗BHET料饼中加入其体积的25%~85%的乙二醇,加热至60~150℃,同时加入吸附脱色剂进行充分搅拌得到BHET混合液,经过滤后分离掉脱色剂,得到BHET混合液;
7)将BHET混合液通过压榨,分离游离的乙二醇,得到二次BHET料饼;
8)将二次BHET料饼加热成熔体,送入蒸馏装置进行精馏提纯,分离出乙二醇和残留的高沸物,得到纯度>99.6%的精制BHET熔体;
9)将精制BHET熔体加入到预热罐进行加热到200℃~240℃,同时加入催化剂、稳定剂、增白剂和调色剂;
10)将预热好的BHET熔体送入预缩聚釜进行脱醇,加无机添加剂和分散剂,同时通过低真空蒸出BHET中的乙二醇,得到BHET低聚物。
11)将BHET低聚物过滤后送入终缩聚反应器进行缩聚反应,反应温度控制在270~295℃,在高真空条件下提升特性粘度,制备PET熔体;
12)PET熔体经过滤后进入喷丝板,通过喷丝孔挤出铸带,再通过水下切粒机冷却铸带后切成粒子,得到再生纤维级聚酯切片。
进一步的,所述步骤2)引发剂采用氢氧化钠和醋酸钴的复合配方。
进一步的,所述步骤3)采用多级过滤,并且采用了料液高位溢流的出料方式。
进一步的,所述步骤3)过滤器采用反冲式自清洗过滤器。
进一步的,所述步骤4)冷却结晶温度控制在0℃~80℃。
进一步的,所述步骤6)脱色剂采用活性氧化铝为主的复合配方,所述过滤器过滤精度100~800微米。
进一步的,所述步骤8)蒸馏温度控制在100℃~260℃,真空度20MPa~12000Pa。
进一步的,所述步骤9)采用锑系催化剂和磷系稳定剂、苯二甲酰亚胺型增白剂和食品级调色剂。
进一步的,所述步骤11)在20~100Pa高真空条件下,停留2~4H完成特性粘度提升。
进一步的,步骤12)所述最终制备的纤维级再生切片特性粘度为0.62~0.72,端羧基≤28mmol/kg,二甘醇含量≤1.2%、熔点≥258℃,添加剂含量在0.3~3%。
进一步的,所述废弃纺织品选自废弃服装或化纤布边角料,所述废弃纺织品含有65%以上的聚对苯二甲酸乙二醇酯。
本发明的有益效果是:
本发明专利以绿色创新为设计理念,通过化学方式为主,物理方式为辅的工艺流程,最终将废旧纺织品彻底还原成高纯度对苯二甲酸乙二酯,再经过脱醇和缩聚,重新制备出可应用于纺织品加工的纤维级聚酯切片,真正意义实现高效的产业链循环。
此发明专利将提升废旧纺织品的高效再资源化利用水平,有望填补省内和国内空白,为国内每年高达几千万吨废旧纺织品的高等级再资源化应用提供良好的示范作用和推广条件。
本发明具备以下优点:
1.解决了纺织物杂质难以分离的难题:
利用其他无机杂质和非聚酯塑料无法溶解的差异性,采用过滤器和出料装置,以三甘醇为溶剂,溶解聚酯塑料,从而初步分离纺织物杂质。
2.利用三甘醇溶剂高沸点的特性,使纺织品可以在高温熔融条件下解聚。
3.抑制蒸馏过程副反应的产生:
本发明采用合适的蒸馏温度和合理设计的真空度,有利于分离出残留在BHET里面的杂质,确保物料纯度,最大程度抑制副产物产生。
4.设置预缩聚的步骤,提高缩聚效果:
将添加剂配成悬浮液,掌控好悬浮液加入到反应体系的时点,使得到充分湿润和分散,从而使后续的缩聚反应更高效进行。
[根据细则91更正 19.06.2018]
5.经过脱色和调色,使再生聚酯具有良好色相。
附图说明
图1为本发明所述方法流程图
具体实施方式
实施例1
一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法,包括如下步骤:
1)将废旧纺织品预先的粉粹成片状物;
2)将预先粉碎的片状物加入到醇解装置中,按质量比为1∶2的比例同时加入三甘醇,加入引发剂,在190℃、压力为0.1MPa条件下保持搅拌1h,得到粗BHET溶液;
3)过滤并分离出粗BHET溶液中的固废杂质;得到初步纯化的粗BHET溶液;
4)将得到的初步纯化的粗BHET溶液进行冷却结晶,得到粗BHET悬浮液;
5)通过压榨粗BHET悬浮液得到粗BHET料饼和分离掉含有杂质的三甘醇溶液;
6)再向粗BHET料饼中加入其体积的25%的乙二醇,加热至60℃,同时加入吸附脱色剂进行充分搅拌得到BHET混合液,经过滤后分离掉脱色剂,得到BHET混合液;
7)将BHET混合液通过压榨,分离游离的乙二醇,得到二次BHET料饼;
8)将二次BHET料饼加热成熔体,送入蒸馏装置进行精馏提纯,分离出乙二醇和残留的高沸物,得到纯度>99.6%的精制BHET熔体;
9)将精制BHET熔体加入到预热罐进行加热到200℃,同时加入催化剂、稳定剂、增白剂和调色剂;
10)将预热好的BHET熔体送入预缩聚釜进行脱醇,加无机添加剂和分散剂,同时通过低真空蒸出BHET中的乙二醇,得到BHET低聚物。
11)将BHET低聚物过滤后送入终缩聚反应器进行缩聚反应,反应温度控制在270℃,在高真空条件下提升特性粘度,制备PET熔体;
12)PET熔体经过滤后进入喷丝板,通过喷丝孔挤出铸带,再通过水下切粒机冷却铸带后切成粒子,得到再生纤维级聚酯切片。
采用三甘醇作为溶剂,是利用纺织品能够醇解成液态,其他无机杂质和非聚酯塑料无法溶解的差异性,采用过滤器和出料装置,初步过滤并分离出粗BHET,去除包括沙土、纽扣、拉链和其他非聚酯塑料等杂质。
选用的三甘醇溶剂,是因为三甘醇沸点高达285℃,非常适合废弃纺织品在高温条件下实现熔融分解。
用来分离无机脱色剂的过滤器要选用合适的过滤精度,且能实现快速更换滤网。
本发明采用合适的蒸馏温度和合理设计的真空度,有利于分离出残留在BHET里面的杂质,确保物料纯度,最大程度抑制副产物产生。
步骤6)中,通过加入吸附脱色剂进行充分搅拌得到得到色相改良的BHET混合液,经过滤后分离掉脱色剂
步骤10)中,对所加入的添加剂先通过调浆和研磨配成悬浮液,掌控好悬浮液加入到反应体系的时点,即选择在物料的聚合度相对较低时完成添加并搅拌,搅拌的同时添加分散剂, 有利于无机添加剂在再生BHET体系里,得到充分湿润和分散。
进一步的,所述步骤2)引发剂采用氢氧化钠和醋酸钴复合配方而成。
选用的氢氧化钠和醋酸钴复合的引发剂,能够很好满足工艺所需,能加快废弃纺织品降解速度,做到高效分解。
进一步的,所述步骤3)采用多级过滤,并且采用了料液高位溢流的出料方式。
利用纺织品能够醇解成液态,其他无机杂质和非聚酯塑料无法溶解的差异性,采用多级过滤器和料液高位出料,可以分离出固废杂质,包括棉纱、沙土、纽扣、拉链和其他非聚酯塑料。
进一步的,所述步骤3)过滤器采用反冲自清洗过滤器。
采用带自清洁和反冲洗功能的多级过滤器,确保粗BHET溶液中夹带的固废杂质,包括沙土、棉纱、纽扣、拉链和其他非聚酯塑料得到有效分离。
进一步的,所述步骤4)冷却结晶温度控制在0℃。
进一步的,所述步骤6)脱色剂为活性氧化铝为主的复合脱色剂,所述过滤器过滤精度100~800微米。
脱色配方选用复合配方以确保脱色效果,用来分离无机脱色剂的过滤器要选用合适的过滤精度,且能实现快速更换滤网。
进一步的,所述步骤8)蒸馏温度控制在100℃,真空度20MPa。
进一步的,所述步骤9)采用锑系催化剂和磷系稳定剂、苯二甲酰亚胺型增白剂和食品级调色剂。
添加的增白剂和调色剂能有效改善再生纤维级切片的外观色相,使最终制备的再生纤维级切片b值≤6。
选用的稳定剂和催化剂适用于再生BHET进行高效的缩聚反应,有效抑制副反应产生。
进一步的,所述步骤11)在20Pa高真空条件下,停留2~4H完成特性粘度提升。
选择适当的真空度和停留时间,能使产品特性粘度有效提升。
进一步的,步骤12)所述最终制备的纤维级再生切片特性粘度为0.62,端羧基≤28mmol/kg,二甘醇含量≤1.2%、熔点≥258℃,添加剂含量在0.3~3%。
进一步的,所述废弃纺织品选自废弃服装或化纤布边角料,所述废弃纺织品含有65%以上的聚对苯二甲酸乙二醇酯。
优选的,所述废弃纺织品含有质量比65%以上的聚对苯二甲酸乙二醇酯,其他杂质 分离剔除。
通常其他杂质成分比例为:纽扣拉链等服装饰品占3~6%,棉纱等非聚对苯二甲酸乙二醇酯杂质11~25%,废弃纺织品附带的泥沙和水份等1~4%。
实施例2
一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法,包括如下步骤:
1)将废旧纺织品预先的粉粹成片状物;
2)将预先粉碎的片状物加入到醇解装置中,按质量比为1.25的比例同时加入三甘醇,加入引发剂,在260℃、压力为0.4MPa条件下保持搅拌4h,得到粗BHET溶液;
3)过滤并分离出粗BHET溶液中的固废杂质;得到初步纯化的粗BHET;
4)将得到的初步纯化的粗BHET溶液进行冷却结晶,得到粗BHET悬浮液;
5)通过压榨粗BHET悬浮液得到粗BHET料饼和分离掉含有杂质的三甘醇溶液;
6)再向粗BHET料饼中加入其体积的85%的乙二醇,加热至150℃,同时加入吸附脱色剂进行充分搅拌得到BHET混合液,经过滤后分离掉脱色剂,得到BHET混合液;
7)将BHET混合液通过压榨,分离游离的乙二醇,得到二次BHET料饼;
8)将二次BHET料饼加热成熔体,送入蒸馏装置进行精馏提纯,分离出乙二醇和残留的高沸物,得到纯度>99.6%的精制BHET熔体;
9)将精制BHET熔体加入到预热罐进行加热到240℃,同时加入催化剂、稳定剂、增白剂和调色剂;
10)将预热好的BHET熔体送入预缩聚釜进行脱醇,加无机添加剂和分散剂,同时通过低真空蒸出BHET中的乙二醇,得到BHET低聚物。
11)将BHET低聚物过滤后送入终缩聚反应器进行缩聚反应,反应温度控制在295℃,在高真空条件下提升特性粘度,制备PET熔体;
12)PET熔体经过滤后进入喷丝板,通过喷丝孔挤出铸带,再通过水下切粒机冷却铸带后切成粒子,得到再生纤维级聚酯切片。
进一步的,所述步骤2)引发剂采用氢氧化钠和醋酸钴复合配方而成。
进一步的,所述步骤3)采用多级过滤,并且采用了料液高位溢流的出料方式。
进一步的,所述步骤3)过滤器采用反冲自清洗过滤器。
进一步的,所述步骤4)冷却结晶温度控制在80℃。
进一步的,所述步骤6)脱色剂为活性氧化铝为主的复合脱色剂,所述过滤器过滤精度800微米。
进一步的,所述步骤8)蒸馏温度控制在260℃,真空度12000Pa。
进一步的,所述步骤9)采用锑系催化剂和磷系稳定剂、苯二甲酰亚胺型增白剂和食品级调色剂。
进一步的,所述步骤11)在100Pa高真空条件下,停留4H完成特性粘度提升。
进一步的,步骤12)所述最终制备的纤维级再生切片特性粘度为0.72,端羧基≤28mmol/kg,二甘醇含量≤1.2%、熔点≥258℃,添加剂含量在3%。
进一步的,所述废弃纺织品选自废弃服装或化纤布边角料,所述废弃纺织品含有65%以上的聚对苯二甲酸乙二醇酯。
实施例3
一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法,包括如下步骤:
6)将废旧纺织品预先的粉粹成片状物;
7)将预先粉碎的片状物加入到醇解装置中,按质量比为1∶1.5的比例同时加入三甘醇,加入引发剂,在200℃、压力为0.25MPa条件下保持搅拌3h,得到粗BHET溶液;
8)过滤并分离出粗BHET溶液中的固废杂质;得到初步纯化的粗BHET;
9)将得到的初步纯化的粗BHET溶液进行冷却结晶,得到粗BHET悬浮液;
10)通过压榨粗BHET悬浮液得到粗BHET料饼和分离掉含有杂质的三甘醇溶液;
6)再向粗BHET料饼中加入其体积的60%的乙二醇,加热至100℃,同时加入吸附脱色剂进行充分搅拌得到BHET混合液,经过滤后分离掉脱色剂,得到BHET混合液;
7)将BHET混合液通过压榨,分离游离的乙二醇,得到二次BHET料饼;
8)将二次BHET料饼加热成熔体,送入蒸馏装置进行精馏提纯,分离出乙二醇和残留的高沸物,得到纯度>99.6%的精制BHET熔体;
9)将精制BHET熔体加入到预热罐进行加热到220℃,同时加入催化剂、稳定剂、增白剂和调色剂;
10)将预热好的BHET熔体送入预缩聚釜进行脱醇,加无机添加剂和分散剂,同时通过低真空蒸出BHET中的乙二醇,得到BHET低聚物。
11)将BHET低聚物过滤后送入终缩聚反应器进行缩聚反应,反应温度控制在280℃,在高真空条件下提升特性粘度,制备PET熔体;
12)PET熔体经过滤后进入喷丝板,通过喷丝孔挤出铸带,再通过水下切粒机冷却铸带后切成粒子,得到再生纤维级聚酯切片。
进一步的,所述步骤2)引发剂采用氢氧化钠和醋酸钴复合配方而成。
进一步的,所述步骤3)采用多级过滤,并且采用了料液高位溢流的出料方式。
进一步的,所述步骤3)过滤器采用反冲自清洗过滤器。
进一步的,所述步骤4)冷却结晶温度控制在40℃。
进一步的,所述步骤6)脱色剂为活性氧化铝为主的复合脱色剂,所述过滤器过滤精度100~800微米。
进一步的,所述步骤8)蒸馏温度控制在200℃,真空度100000Pa。
进一步的,所述步骤9)采用锑系催化剂和磷系稳定剂、苯二甲酰亚胺型增白剂和食品级调色剂。
进一步的,所述步骤11)在80Pa高真空条件下,停留3H完成特性粘度提升。
进一步的,步骤12)所述最终制备的纤维级再生切片特性粘度为0.7,端羧基≤28mmol/kg,二甘醇含量≤1.2%、熔点≥258℃,添加剂含量在0.3~3%。
进一步的,所述废弃纺织品选自废弃服装或化纤布边角料,所述废弃纺织品含有65%以上的聚对苯二甲酸乙二醇酯。

Claims (11)

  1. 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法,其特征在于,包括如下步骤:
    将废旧纺织品预先的粉粹成片状物;
    将预先粉碎的片状物加入到醇解装置中,按质量比为1∶2~1∶1.25的比例同时加入三甘醇,加入引发剂,在190℃~260℃、压力为0.1MPa~0.4MPa条件下保持搅拌1~4h,得到粗BHET溶液;
    过滤并分离出粗BHET溶液中的固废杂质;得到初步纯化的粗BHET溶液;
    将得到的初步纯化的粗BHET溶液进行冷却结晶,得到粗BHET悬浮液;
    通过压榨粗BHET悬浮液得到粗BHET料饼,分离掉含有杂质的三甘醇溶液;
    6)再向粗BHET料饼中加入其体积的25%~85%的乙二醇,加热至60~150℃,同时加入吸附脱色剂进行充分搅拌得到BHET混合液,经过滤后分离掉脱色剂,得到BHET混合液;
    7)将BHET混合液通过压榨,分离游离的乙二醇,得到二次BHET料饼;
    8)将二次BHET料饼加热成熔体,送入蒸馏装置进行精馏提纯,分离出乙二醇和残留的高沸物,得到纯度>99.6%的精制BHET熔体;
    9)将精制BHET熔体加入到预热罐进行加热到200℃~240℃,同时加入催化剂、稳定剂、增白剂和调色剂;
    10)将预热好的BHET熔体送入预缩聚釜进行脱醇,加无机添加剂和分散剂,同时通过低真空蒸出BHET中的乙二醇,得到BHET低聚物;
    11)将BHET低聚物过滤后送入终缩聚反应器进行缩聚反应,反应温度控制在270~295℃,在高真空条件下提升特性粘度,制备PET熔体;
    12)PET熔体经过滤后进入喷丝板,通过喷丝孔挤出铸带,再通过水下切粒机冷却铸带后切成粒子,得到再生纤维级聚酯切片。
  2. 根据权利要求1所述方法,其特征在于,所述步骤2)引发剂采用氢氧化钠和醋酸钴复合配方。
  3. 根据权利要求1所述方法,其特征在于,所述步骤3)采用多级过滤,并且采用了料液高位溢流的出料方式。
  4. 根据权利要求1所述方法,其特征在于,所述步骤3)过滤器采用反冲式自清洗过滤器。
  5. 根据权利要求1所述方法,其特征在于,所述步骤4)冷却结晶温度控制在0℃~80℃。
  6. 根据权利要求1所述方法,其特征在于,所述步骤6)脱色剂为活性氧化铝为主的复合脱 色剂配方,所述过滤器过滤精度100~800微米。
  7. 根据权利要求1所述方法,其特征在于,所述步骤8)蒸馏温度控制在100℃~260℃,真空度20MPa~12000Pa。
  8. 根据权利要求1所述方法,其特征在于,所述步骤9)采用锑系催化剂和磷系稳定剂、苯二甲酰亚胺型增白剂和食品级调色剂。
  9. 根据权利要求1所述方法,其特征在于,所述步骤11)在20~100Pa高真空条件下,停留2~4H完成特性粘度提升。
  10. 根据权利要求1所述方法,其特征在于,步骤12)所述最终制备的纤维级再生切片特性粘度为0.62~0.72,端羧基≤28mmol/kg,二甘醇含量≤1.2%、熔点≥258℃,添加剂含量在0.3~3%。
  11. 根据上述任一权利要求所述方法,其特征在于,所述废弃纺织品选自废弃服装或化纤布边角料,所述废弃纺织品含有65%以上的聚对苯二甲酸乙二醇酯。
PCT/CN2018/085523 2017-06-28 2018-05-04 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法 WO2019001137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/621,705 US20200190280A1 (en) 2017-06-28 2018-05-04 Method for manufacturing textile waste into fiber grade polyester chips applicable to textile processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710508674.6 2017-06-28
CN201710508674.6A CN107189044B (zh) 2017-06-28 2017-06-28 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法

Publications (1)

Publication Number Publication Date
WO2019001137A1 true WO2019001137A1 (zh) 2019-01-03

Family

ID=59881593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085523 WO2019001137A1 (zh) 2017-06-28 2018-05-04 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法

Country Status (3)

Country Link
US (1) US20200190280A1 (zh)
CN (1) CN107189044B (zh)
WO (1) WO2019001137A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021028695A1 (en) * 2019-08-13 2021-02-18 Poseidon Plastics Limited Polymer recycling
CN113980288A (zh) * 2021-12-23 2022-01-28 山东海科创新研究院有限公司 一种聚合物的净化工艺与净化系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107189044B (zh) * 2017-06-28 2019-03-15 树业环保科技股份有限公司 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法
CN108754674A (zh) * 2018-05-27 2018-11-06 上海锦湾实业有限公司 一种再生丝加工处理方法
CN108588855A (zh) * 2018-06-06 2018-09-28 姹や匠 一种无纺布生产用再回收熔融装置
CN108641120A (zh) * 2018-08-14 2018-10-12 上海聚友化工有限公司 一种废旧聚酯纺织品回收再利用的方法及其回收系统
CN109503818A (zh) * 2018-10-19 2019-03-22 浙江佳人新材料有限公司 一种无锑再生聚酯切片的生产工艺
EP3747614A1 (de) * 2019-06-04 2020-12-09 Lenzing Aktiengesellschaft Verfahren zum bereitstellen eines aufbereiteten cellulose-aufweisenden ausgangsstoffes mit vorbestimmter faserlängenverteilung
CN110128635A (zh) * 2019-06-10 2019-08-16 中塑联新材料科技湖北有限公司 一种废pet薄膜化学还原制备pbt原料的方法
CN110333315A (zh) * 2019-06-11 2019-10-15 中塑联新材料科技湖北有限公司 低能耗无污染全利用涤纶废纺化学还原pbt试验生产线
WO2021038512A1 (en) * 2019-08-28 2021-03-04 Sanjay Tammaji Kulkarni A process for manufacturing specialty polyesters & co-polyesters from recycled bis 2-hydroxyethyl terephthalate (rbhet) and product thereof
CN110616474B (zh) * 2019-10-22 2021-02-12 宁波大发化纤有限公司 废聚酯纺织品制备皮芯复合低熔点再生聚酯纤维的方法
CN111040144A (zh) * 2019-12-31 2020-04-21 树业环保科技股份有限公司 一种基于清洁生产的pbt制备方法
CN111187445A (zh) * 2019-12-31 2020-05-22 树业环保科技股份有限公司 废旧聚酯整瓶回收方法和应用
MX2022012387A (es) 2020-04-13 2022-10-18 Eastman Chem Co Reciclaje quimico de plasticos de desecho de varias fuentes, que incluyen finos humedos.
CN112646135B (zh) * 2020-12-10 2023-01-13 北京服装学院 有色废旧聚酯纺织品连续制备可纺级无色再生聚酯的方法
CN112646134B (zh) * 2020-12-10 2023-01-20 北京服装学院 有色废旧聚酯纺织品连续制备可纺级无色再生聚酯的方法
CN112625221A (zh) * 2020-12-26 2021-04-09 扬州普立特科技发展有限公司 一种回收聚酯再生为bhet生产pbt的生产设备
US20240110033A1 (en) * 2021-02-24 2024-04-04 Garbo S.R. L. Process for producing bas(2-hydroxyethyl) terephthalate in liquid form by depolymerization of polyethylene terephthalate (pet)
CN115232298A (zh) * 2021-04-22 2022-10-25 浙江安吉华逸化纤有限公司 废旧聚酯材料制备再生阳离子可染聚酯切片的方法及制品
WO2022235051A1 (ko) * 2021-05-03 2022-11-10 한국화학연구원 에스테르 작용기를 포함하는 유색 고분자로부터 색을 발현하는 이물질을 제거하기 위한 추출제, 추출 방법 및 유색 고분자 혼합물로부터 에스테르 작용기를 포함하는 고분자를 화학적으로 선별하는 방법
KR102622494B1 (ko) * 2022-04-22 2024-01-09 한국화학연구원 고분자 혼합물로부터 에스테르계 고분자의 화학적 선별 방법
CN113584641B (zh) * 2021-07-15 2022-11-11 江苏志成新材料科技有限公司 一种废旧涤纶纺织品完全醇解纺制再生纤维的工艺
CN113549200B (zh) * 2021-07-15 2023-05-16 江苏志成新材料科技有限公司 一种利用pbt聚酯化学再生为可降解聚酯的工艺方法
CN113529415A (zh) * 2021-08-12 2021-10-22 杭州锴越新材料有限公司 一种抗菌防霉缝编布
KR102418787B1 (ko) * 2022-04-06 2022-07-11 한국화학연구원 에스테르 작용기를 포함하는 고분자와 이와 다른 종류의 고분자가 혼합된 고분자 혼합물로부터 에스테르 작용기를 포함하는 고분자의 선별 방법
DE102022003870A1 (de) * 2022-10-18 2024-04-18 Bb Engineering Gmbh Vorrichtung zur Herstellung von synthetischen Fäden aus wiederaufbereiteten Kunststoffabfällen
CN116284710B (zh) * 2023-05-22 2023-11-24 广东绿王新材料有限公司 一种废旧聚酯涤纶纤维化学循环利用制备聚酯切片的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239233A (ja) * 1999-02-16 2000-09-05 Is:Kk 合成樹脂製品用原料
CN102505175A (zh) * 2011-10-20 2012-06-20 江苏盛虹科技股份有限公司 一种再生基涤纶长丝及其制备方法
CN102911396A (zh) * 2012-10-22 2013-02-06 广东树业环保科技股份有限公司 一种废旧pet材料的回收工艺
CN104710601A (zh) * 2015-01-23 2015-06-17 广东树业环保科技股份有限公司 废旧pet材料脱色回收制备高纯pet切片的方法及制品
CN105061735A (zh) * 2015-08-19 2015-11-18 树业环保科技股份有限公司 一种废旧pet材料循环再利用制造pet薄膜的方法
CN107189044A (zh) * 2017-06-28 2017-09-22 树业环保科技股份有限公司 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203037C (zh) * 1999-10-22 2005-05-25 帝人株式会社 从聚酯废料中分离和回收对苯二甲酸二甲酯和乙二醇的方法
EP1344765B1 (en) * 2000-11-27 2014-07-30 Teijin Limited Process for producing a dimethyl terephthalate composition
CN100344604C (zh) * 2002-06-04 2007-10-24 Pet再生股份有限公司 对苯二甲酸二(2-羟乙基)酯的精制方法
CN103122497B (zh) * 2013-01-09 2016-02-17 江苏盛虹科技股份有限公司 常压易染再生基涤纶长丝及其制备方法
CN105367415B (zh) * 2015-11-13 2018-02-13 航天资源循环科技有限公司 一种废旧pet材料化学法回收循环再利用系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239233A (ja) * 1999-02-16 2000-09-05 Is:Kk 合成樹脂製品用原料
CN102505175A (zh) * 2011-10-20 2012-06-20 江苏盛虹科技股份有限公司 一种再生基涤纶长丝及其制备方法
CN102911396A (zh) * 2012-10-22 2013-02-06 广东树业环保科技股份有限公司 一种废旧pet材料的回收工艺
CN104710601A (zh) * 2015-01-23 2015-06-17 广东树业环保科技股份有限公司 废旧pet材料脱色回收制备高纯pet切片的方法及制品
CN105061735A (zh) * 2015-08-19 2015-11-18 树业环保科技股份有限公司 一种废旧pet材料循环再利用制造pet薄膜的方法
CN107189044A (zh) * 2017-06-28 2017-09-22 树业环保科技股份有限公司 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021028695A1 (en) * 2019-08-13 2021-02-18 Poseidon Plastics Limited Polymer recycling
CN113980288A (zh) * 2021-12-23 2022-01-28 山东海科创新研究院有限公司 一种聚合物的净化工艺与净化系统
CN113980288B (zh) * 2021-12-23 2022-05-13 山东海科创新研究院有限公司 一种聚合物的净化工艺与净化系统

Also Published As

Publication number Publication date
CN107189044A (zh) 2017-09-22
CN107189044B (zh) 2019-03-15
US20200190280A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2019001137A1 (zh) 一种将废弃纺织物制备可应用于纺织品加工的纤维级聚酯切片的方法
CN111138641B (zh) 一种废聚酯瓶回用制备瓶级切片的方法
JP4908415B2 (ja) 染着ポリエステル繊維からの有用成分製造方法
JP4647625B2 (ja) 廃棄ポリエチレンテレフタレート(pet)の化学的リサイクル手法
JP4537288B2 (ja) 染着ポリエステル繊維からの有効成分回収方法
KR101561528B1 (ko) Pet 폐기물의 화학적 재활용 방법
CN112646135B (zh) 有色废旧聚酯纺织品连续制备可纺级无色再生聚酯的方法
GB2586249A (en) Polymer recycling
JP2006232701A (ja) ポリエステル繊維屑からエステルモノマーを回収する方法
CN112646134B (zh) 有色废旧聚酯纺织品连续制备可纺级无色再生聚酯的方法
TW202204500A (zh) 高純度雙-(2-羥乙基)對苯二甲酸酯的製造方法、再生聚對苯二甲酸乙二酯、脫色溶劑及雙-(2-羥乙基)對苯二甲酸酯的精製方法
JP6986813B1 (ja) ビス−(2−ヒドロキシエチル)テレフタレートの製造方法および再生ポリエチレンテレフタレートの製造方法
JP2007145885A (ja) 染着ポリエステル繊維の染料抽出解重合方法
CN111187445A (zh) 废旧聚酯整瓶回收方法和应用
KR101552868B1 (ko) Pet 폐기물의 화학적 재활용 방법
JP6960709B1 (ja) 高純度ビス−(2−ヒドロキシエチル)テレフタレートの製造方法、再生ポリエチレンテレフタレート、脱色溶媒およびビス−(2−ヒドロキシエチル)テレフタレートの精製方法
CN116769231A (zh) 一种基于聚酯的废旧高分子材料温和高效选择性水解的回收方法
KR20230116001A (ko) 재활용 공정을 위한 폴리에스터 폐기물의 공급 원료 정제
CN100503700C (zh) 聚对苯二甲酸乙二酯的去污染方法
JP2009120766A (ja) テレフタル酸ジメチル及びエチレングリコールの回収方法
GB2598077A (en) Polymer recycling
CN205856363U (zh) 一种聚芳酯树脂乳液洗涤机构
CN103224646A (zh) 废旧聚苯乙烯泡沫塑料回收新工艺方法
CN103382148B (zh) 工业芴的生产工艺
TW202400549A (zh) 雙-(2-羥乙基)對苯二甲酸酯的製造方法及再生聚對苯二甲酸乙二酯的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822670

Country of ref document: EP

Kind code of ref document: A1