WO2019000816A1 - 用于led封装的氟树脂界面剂、制备及使用方法 - Google Patents

用于led封装的氟树脂界面剂、制备及使用方法 Download PDF

Info

Publication number
WO2019000816A1
WO2019000816A1 PCT/CN2017/112290 CN2017112290W WO2019000816A1 WO 2019000816 A1 WO2019000816 A1 WO 2019000816A1 CN 2017112290 W CN2017112290 W CN 2017112290W WO 2019000816 A1 WO2019000816 A1 WO 2019000816A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
graphene oxide
led package
silane coupling
coupling agent
Prior art date
Application number
PCT/CN2017/112290
Other languages
English (en)
French (fr)
Inventor
梁仁瓅
许琳琳
陈景文
王帅
张骏
杜士达
Original Assignee
华中科技大学鄂州工业技术研究院
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学鄂州工业技术研究院, 华中科技大学 filed Critical 华中科技大学鄂州工业技术研究院
Priority to US16/338,629 priority Critical patent/US10930827B2/en
Publication of WO2019000816A1 publication Critical patent/WO2019000816A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present disclosure relates to the field of interface agents for LED packages, and more particularly to fluororesin interface agents for LED packages, methods of making and using them.
  • Deep ultraviolet LEDs based on AlGaN materials have broad application prospects in the fields of sterilization, confidential communication, biochemical detection and special lighting, and have received more and more attention and attention in recent years.
  • thermosetting epoxy resins and organosiloxane resins are widely used as sealant materials for LED devices. These sealant resins are spotted directly on the chip and cured to form a solid sealant.
  • the organic phase in such a conventional Si-O-based packaging material easily absorbs ultraviolet rays, resulting in poor transmittance and easy photolysis failure, making them unsuitable for use in the field of packaging materials for ultraviolet LEDs, especially deep ultraviolet LEDs. Therefore, C-F based fluoropolymers have attracted widespread attention. Yamada Hiwa et al.
  • the purpose of the present disclosure is to solve one of the technical defects existing in the prior art, and to provide a fluororesin interface agent for an LED package, comprising a graphene oxide fluororesin sealant and a KH550 silane coupling agent solution.
  • the graphene oxide powder in the graphene oxide fluororesin sealant chemically reacts with the KH550 silane coupling agent to form molecular crosslinks, and the bonding interface and the fluororesin matrix are tightly fixed like a myriad of molecular anchors. From the beginning, the bonding ability of the fluororesin sealant is greatly improved, and the reliability of the LED package is ensured.
  • a fluororesin interface agent for an LED package comprising a graphene oxide fluororesin sealant and a KH550 silane coupling agent solution, wherein the graphene oxide fluororesin sealant is composed of a graphene oxide dispersion liquid and a fluororesin matrix;
  • the KH550 silane coupling agent solution consists of a deionized aqueous solution and a KH550 silane coupling agent.
  • the graphene oxide dispersion is composed of graphene oxide powder and anhydrous ethanol.
  • the deionized aqueous solution is composed of deionized water and absolute ethanol.
  • the present disclosure also provides a method for preparing a fluororesin interface agent for LED packaging, and the specific steps are as follows:
  • (1) preparing a graphene oxide fluororesin sealant first adding a graphene oxide dispersion to a centrifuge tube containing a fluororesin matrix, stirring to obtain a graphene oxide dispersion-fluororesin matrix mixture A, and then oxidizing The graphene dispersion-fluororesin matrix mixture A is placed in a centrifuge to carry out centrifugal layering to obtain a graphene oxide-fluororesin matrix mixture B, and the graphene oxide-fluororesin matrix mixture B is further stirred to obtain graphite oxide.
  • a fluororesin sealant ;
  • a silane coupling agent solution was prepared, and a KH550 silane coupling agent was added to a deionized aqueous solution, and ultrasonically shaken to prepare a KH550 silane coupling agent solution.
  • the method for preparing the graphene oxide dispersion is as follows: firstly, the graphene oxide powder is ball-milled and finely ground using a ball mill, and then the graphene oxide powder is added to absolute ethanol, and ultrasonically oscillated to prepare oxidation. Graphene dispersion.
  • the graphene-fluorine resin matrix mixture B is obtained by centrifugation and layering, and the anhydrous ethanol therein is naturally dried before being stirred.
  • the deionized water solution is prepared by adding deionized water to absolute ethanol and ultrasonically shaking to prepare a deionized aqueous solution.
  • the present disclosure further provides a method for using a fluororesin interface agent for an LED package, the specific steps are:
  • KH550 silane coupling agent in the fluororesin interface agent of the LED package of any of the above is coated on the surface of the LED chip and the bottom of the quartz lens, and the LED chip and the quartz lens are baked after being uniformly applied;
  • FIG. 1 is a schematic diagram showing an anchor structure structure formed by reacting a graphene oxide powder in a graphene oxide fluororesin sealant with a KH550 silane coupling agent in a fluororesin interface agent for an LED package provided by the present disclosure
  • FIG. 2 is a schematic diagram showing the comparison of C1s photoelectron spectroscopy of graphene oxide powder and graphene oxide powder modified by KH550 silane coupling agent, wherein 1 is a C1s photoelectron spectroscopy diagram of graphene oxide powder, and 2 is a KH550 silane coupling agent modification.
  • 1 is a C1s photoelectron spectroscopy diagram of graphene oxide powder
  • 2 is a KH550 silane coupling agent modification.
  • 3 is a schematic diagram of infrared spectrum comparison of graphene oxide powder and graphene oxide powder modified by KH550 silane coupling agent, wherein 1 is an infrared spectrum of graphene oxide powder, and 2 is a graphene oxide modified by KH550 silane coupling agent. Infrared spectrum of powder;
  • FIG. 4 is a schematic diagram of a process flow of an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural view of a fluororesin interface treated OLED package for an LED package provided by the present disclosure
  • 6 is a comparative light decay accelerated aging test chart of a conventional fluororesin base LED package and an interface package treated LED package provided by the present disclosure, wherein 1 is a fluororesin matrix LED package of undoped graphene oxide.
  • Light decay accelerated aging test curve, 2 is the concentration of 0.05 wt% provided by the present disclosure
  • Light decay accelerated aging test curve of an interface package treated LED package of graphene oxide fluororesin sealant 3 light of interface agent treated LED package containing 0.1 wt% concentration of graphene oxide fluororesin sealant provided by the present disclosure
  • the aging accelerated aging test curve, 4 is a light decay accelerated aging test curve of the interface agent-treated LED package containing 0.2 wt% of graphene oxide fluororesin sealant provided by the present disclosure.
  • the embodiment provides a fluororesin interface agent for an LED package, comprising a 0.05 wt% concentration of a graphene oxide fluororesin sealant, a 1 wt% KH550 silane coupling agent solution, and the 0.05 wt% concentration of graphene oxide.
  • the fluororesin sealant is composed of a 2 mg/mL graphene oxide dispersion and a fluororesin matrix composed of graphene oxide powder and anhydrous ethanol; the 1 wt% KH550 silane couple
  • the co-solvent solution consisted of a 5 wt% deionized water solution and a KH550 silane coupling agent consisting of deionized water and absolute ethanol.
  • the fluororesin matrix is a polymerized perfluoro-4-vinyloxy-1-butene having a -CF 3 terminal, which is polymerized from inorganic molecules of a fluorine element and has a high ultraviolet transmittance. Excellent UV radiation stability, good water and oxygen resistance and poor adhesion.
  • the graphene oxide powder is prepared by the Hummers method, has a typical quasi-two-dimensional structure, and has a plurality of oxygen-containing groups on the sheet layer, and has high specific surface energy and good hydrophilicity. High thermal conductivity, mechanical properties and barriers are ideal composite doping materials.
  • the KH550 silane coupling agent used contains two different reactive groups, an amino group and an oxy group, for coupling an organic polymer and an inorganic filler.
  • Figure 1 shows the principle of the reaction of graphene oxide powder with KH550 silane coupling agent.
  • the chemical reaction forms molecular crosslinks.
  • the bonding interface and the fluororesin matrix are tightly fixed together, which greatly improves the bonding ability of the fluororesin sealant and ensures the reliability of the LED package.
  • Figure 2 is a schematic diagram of the comparison of C1s photoelectron spectroscopy
  • Fig. 3 is a schematic diagram of the contrast of infrared spectroscopy.
  • Figures 2 and 3 show that the graphene oxide powder and the KH550 silane coupling agent can react chemically.
  • Figures 2 and 3 are the theory of Fig. 1. Provides factual basis.
  • the embodiment further provides a preparation method of a fluororesin interface agent for LED packaging, and the specific steps are as follows:
  • the graphene oxide dispersion-fluororesin matrix mixture A is placed in a centrifuge, and the number of revolutions is set to 10,000 rpm for centrifugation and delamination to obtain a graphene oxide-fluororesin matrix mixture B to form graphite oxide.
  • the anhydrous ethanol in the olefin-fluororesin matrix mixture B is naturally dried, and the remaining liquid is further stirred for 1 hour to obtain a graphene oxide fluororesin sealant having a concentration of 0.05 wt%;
  • the present disclosure further provides a method for using a fluororesin interface agent for an LED package, and the specific steps are as follows:
  • the LED package product comprises a substrate 1, a chip 2, a package interface agent 3, and a quartz glass 4.
  • the package interface agent 3 is a fluororesin interface agent for an LED package provided by the present disclosure, including 0.05.
  • the embodiment provides a fluororesin interface agent for an LED package, comprising a 0.1 wt% concentration of a graphene oxide fluororesin sealant, a 1 wt% KH550 silane coupling agent solution, and the 0.1 wt% concentration of graphene oxide.
  • the fluororesin sealant is composed of a 2 mg/mL graphene oxide dispersion and a fluororesin matrix composed of graphene oxide powder and anhydrous ethanol; the 1 wt% KH550 silane couple
  • the co-solvent solution consisted of a 5 wt% deionized water solution and a KH550 silane coupling agent consisting of deionized water and absolute ethanol.
  • the fluororesin matrix is a polymerized perfluoro-4-vinyloxy-1-butene having a -CF 3 terminal, which is polymerized from inorganic molecules of a fluorine element and has a high ultraviolet transmittance. Excellent UV radiation stability, good water and oxygen resistance and poor adhesion.
  • the graphene oxide powder is prepared by the Hummers method, has a typical quasi-two-dimensional structure, and has a plurality of oxygen-containing groups on the sheet layer, and has high specific surface energy and good hydrophilicity. High thermal conductivity, mechanical properties and barriers are ideal composite doping materials.
  • the KH550 silane coupling agent used contains two different reactive groups, an amino group and an oxy group, for coupling an organic polymer and an inorganic filler.
  • the embodiment further provides a preparation method of a fluororesin interface agent for LED packaging, and the specific steps are as follows:
  • the number of revolutions is set to 10,000 rpm, and the layered graphene is mixed to obtain the graphene oxide-fluororesin matrix mixture B, and the anhydrous ethanol in the graphene oxide-fluororesin matrix mixture B is naturally dried, and the remaining liquid is dried. Stirring for another hour to obtain a 0.1 wt% concentration of graphene oxide fluororesin sealant;
  • the present disclosure further provides a method for using a fluororesin interface agent for an LED package, and the specific steps are as follows:
  • the LED package product comprises a substrate 1, a chip 2, a package interface agent 3, and a quartz glass 4.
  • the package interface agent 3 is a fluororesin interface agent for an LED package provided by the present disclosure, including 0.1.
  • the embodiment provides a fluororesin interface agent for an LED package, comprising a 0.2 wt% concentration of a graphene oxide fluororesin sealant, a 1 wt% KH550 silane coupling agent solution, and the 0.2 wt% concentration of oxygen.
  • the graphene fluororesin sealant is composed of a 2 mg/mL graphene oxide dispersion and a fluororesin matrix, and the 2 mg/mL graphene oxide dispersion is composed of graphene oxide powder and absolute ethanol; the 1 wt%
  • the KH550 silane coupling agent solution consisted of a 5 wt% deionized water solution and a KH550 silane coupling agent consisting of deionized water and absolute ethanol.
  • the fluororesin matrix is a polymerized perfluoro-4-vinyloxy-1-butene having a -CF 3 terminal, which is polymerized from inorganic molecules of a fluorine element and has a high ultraviolet transmittance. Excellent UV radiation stability, good water and oxygen resistance and poor adhesion.
  • the graphene oxide powder is prepared by the Hummers method, has a typical quasi-two-dimensional structure, and has a plurality of oxygen-containing groups on the sheet layer, and has high specific surface energy and good hydrophilicity. High thermal conductivity, mechanical properties and barriers are ideal composite doping materials.
  • the KH550 silane coupling agent used contains two different reactive groups, an amino group and an oxy group, for coupling an organic polymer and an inorganic filler.
  • the embodiment further provides a preparation method of a fluororesin interface agent for LED packaging, and the specific steps are as follows:
  • the graphene oxide dispersion-fluororesin matrix mixture A is placed in a centrifuge, and the number of revolutions is set to 10,000 rpm for centrifugation and delamination to obtain a graphene oxide-fluororesin matrix mixture B to form graphite oxide.
  • the anhydrous ethanol in the olefin-fluororesin matrix mixture B is naturally dried, and the remaining liquid is further stirred for 1 hour to obtain a 0.2 wt% concentration of graphene oxide fluororesin sealant;
  • the present disclosure further provides a method for using a fluororesin interface agent for an LED package, and the specific steps are as follows:
  • the LED package product comprises a substrate 1, a chip 2, a package interface agent 3, and a quartz glass 4.
  • the package interface agent 3 is a fluororesin interface agent for an LED package provided by the present disclosure, including 0.1.
  • FIG. 6 The results of the light aging accelerated aging test of the LED package of the first, second, and third embodiments and the existing fluororesin base LED package are shown in FIG. 6.
  • 1 is fluorine of undoped graphene oxide.
  • the light decay accelerated aging test curve of the LED package of the resin matrix 2 is the light decay accelerated aging test curve of the LED package treated by the interface agent containing the 0.05% by weight concentration of the graphene oxide fluororesin sealant provided by the present disclosure
  • 3 is The light decay accelerated aging test curve of the interface agent-treated LED package comprising the 0.1 wt% concentration of graphene oxide fluororesin sealant provided by the present disclosure
  • 4 is a 0.2 wt% graphene oxide fluororesin sealant provided by the present disclosure
  • the interface agent treated LED package has a light decay accelerated aging test curve 4. It can be seen that the anti-aging ability of the LED package treated by the interface agent provided by the present disclosure is obviously enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Led Device Packages (AREA)
  • Inorganic Chemistry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Devices (AREA)

Abstract

本公开提供一种用于LED封装的氟树脂界面剂、制备及使用方法。用于LED封装的氟树脂界面剂包括氧化石墨烯氟树脂密封剂,KH550硅烷偶联剂溶液。氧化石墨烯氟树脂密封剂中的氧化石墨烯粉与KH550硅烷偶联剂发生化学反应,形成分子交联,如同无数个分子锚一样将黏结界面及氟树脂基体紧紧固定在一起,大大提高了氟树脂密封剂的黏结能力,保证了LED封装的可靠性。

Description

用于LED封装的氟树脂界面剂、制备及使用方法 技术领域
本公开涉及LED封装的界面剂领域,特别是涉及用于LED封装的氟树脂界面剂、制备及使用方法。
背景技术
基于AlGaN材料的深紫外LED在杀菌消毒、保密通讯、生化探测及特种照明等领域有着广阔的应用前景,近年来受到越来越多的关注和重视。目前,热固性环氧树脂和有机硅氧烷树脂被广泛用作LED器件的密封剂材料。这些密封剂树脂直接点在芯片上并固化形成固体密封剂。然而,这种常规的Si-O基封装材料中的有机相容易吸收紫外线,导致其透过率差,容易光解失效,使得它们不适用于紫外LED尤其是深紫外LED的封装材料领域。因此,基于C-F的含氟聚合物已经引起了广泛的关注。山田喜和等人制造了具有稳定端(-CF 3)的S型聚合全氟-4-乙烯基氧基-1-丁烯,证明了S型含氟聚合物有优秀的紫外透过率,强韧的紫外线稳定性,在提高深紫外LED性能方面发挥了重要作用。然而,粘合能力较差的含氟聚合物在深紫外LED三明治结构(芯片-密封剂-石英透镜)中的应用具有很大的困难,形成的空气壁垒大大影响深紫外LED的光输出功率和热量传递,引起外界环境中氧气和水蒸汽侵蚀芯片,导致深紫外LED失效。
为了推动和促进深紫外LED光源的广泛应用,需要一种黏结能力较强的界面剂。
发明内容
本公开的目的在于解决现有技术存在的技术缺陷之一,提供一种用于LED封装的氟树脂界面剂,包括氧化石墨烯氟树脂密封剂、KH550硅烷偶联剂溶液。氧化石墨烯氟树脂密封剂中的氧化石墨烯粉与KH550硅烷偶联剂发生化学反应,形成分子交联,如同无数个分子锚一样将黏结界面及氟树脂基体紧紧固定在一 起,大大提高了氟树脂密封剂的黏结能力,保证了LED封装的可靠性。
为了实现上述目的,采用如下技术方案:
一种用于LED封装的氟树脂界面剂,包括氧化石墨烯氟树脂密封剂、KH550硅烷偶联剂溶液,所述氧化石墨烯氟树脂密封剂由氧化石墨烯分散液及氟树脂基体组成;所述KH550硅烷偶联剂溶液由去离子水溶液和KH550硅烷偶联剂组成。
作为上述方案的优选,所述氧化石墨烯分散液由氧化石墨烯粉末和无水乙醇组成。
作为上述方案的优选,所述去离子水溶液由去离子水和无水乙醇组成。
本公开还提供一种用于LED封装的氟树脂界面剂的制备方法,具体步骤如下:
(1)制备氧化石墨烯氟树脂密封剂,首先将氧化石墨烯分散液加入到装有氟树脂基体的离心管中,进行搅拌得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B再进行搅拌得到氧化石墨烯氟树脂密封剂;
(2)制备硅烷偶联剂溶液,将KH550硅烷偶联剂加入到去离子水溶液中,超声震荡,制成KH550硅烷偶联剂溶液。
作为上述方案的优选,制备所述氧化石墨烯分散液的方法为:首先使用球磨机将氧化石墨烯粉进行球磨研细,然后将氧化石墨烯粉末加入无水乙醇中,经过超声震荡,配制成氧化石墨烯分散液。
作为上述方案的优选,所述离心分层后得到氧化石墨烯-氟树脂基体混合液B进行搅拌之前先将其中的无水乙醇自然晾干。
作为上述方案的优选,制备所述去离子水溶液的方法为:将去离子水加入到无水乙醇中,超声震荡,制成去离子水溶液。
本公开再提供一种用于LED封装的氟树脂界面剂的使用方法,具体步骤为:
(1)将上述任一项的LED封装的氟树脂界面剂中的KH550硅烷偶联剂溶涂覆在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜进行烘烤;
(2)在LED芯片表面涂覆上述任一项的LED封装的氟树脂界面剂中的氧化石墨烯氟树脂密封剂,真空脱泡;
(3)加装石英透镜,并调整石英透镜位置到LED芯片中心形成LED封装;
(4)将上述LED封装放入烤箱中烘烤。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开提供的用于LED封装的氟树脂界面剂中氧化石墨烯氟树脂密封剂中的氧化石墨烯粉与KH550硅烷偶联剂反应形成的锚固结构原理示意图;
图2为氧化石墨烯粉及通过KH550硅烷偶联剂修饰的氧化石墨烯粉的C1s光电子能谱对比示意图,其中1为氧化石墨烯粉的C1s光电子能谱图,2为KH550硅烷偶联剂修饰的氧化石墨烯粉的C1s光电子能谱图;
图3为氧化石墨烯粉及通过KH550硅烷偶联剂修饰的氧化石墨烯粉的红外光谱对比示意图,其中1为氧化石墨烯粉的红外光谱图,2为KH550硅烷偶联剂修饰的氧化石墨烯粉的红外光谱图;
图4为本公开实施例的工艺流程示意图;
图5为经过本公开提供的用于LED封装的氟树脂界面剂处理过的OLED封装的结构示意图;
图6为现有的氟树脂基体的LED封装及采用本公开提供的界面剂处理的LED封装的对比光衰加速老化测试图,其中1为未掺杂氧化石墨烯的氟树脂基体的LED封装的光衰加速老化测试曲线,2为采用本公开提供的包含0.05wt%浓度的 氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线,3为本公开提供的包含0.1wt%浓度的氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线,4为本公开提供的包含0.2wt%的氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线。
具体实施方式
下面将结合本公开的附图,对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
实施例1
本实施例提供一种用于LED封装的氟树脂界面剂,包括0.05wt%浓度的氧化石墨烯氟树脂密封剂、1wt%的KH550硅烷偶联剂溶液,所述0.05wt%浓度的氧化石墨烯氟树脂密封剂由2mg/mL的氧化石墨烯分散液及氟树脂基体组成,所述2mg/mL的氧化石墨烯分散液由氧化石墨烯粉末和无水乙醇组成;所述1wt%的KH550硅烷偶联剂溶液由5wt%去离子水溶液和KH550硅烷偶联剂组成,所述5wt%去离子水溶液由去离子水和无水乙醇组成。
进一步地,所述氟树脂基体是一种具有-CF3末端的聚合全氟-4-乙烯基氧基-1-丁烯,由含氟元素的无机分子聚合而成,具有高紫外透过率,优秀的紫外照射稳定性,良好的防水防氧功能及粘结性差等特征。
进一步地,所述氧化石墨烯粉是使用Hummers法制备而成,具有典型的准二维空间结构,其片层上含有很多含氧基团,具有较高的比表面能、良好的亲水性、高导热系数、机械性能及壁垒作用,是理想的复合掺杂材料。
进一步地,所使用的KH550硅烷偶联剂,分子中含有两种不同的活性基团——氨基和氧基,用来偶联有机高分子和无机填料。
图1显示了氧化石墨烯粉与KH550硅烷偶联剂发生反应的原理,二者发生 化学反应,形成分子交联,如同无数个分子锚一样将黏结界面及氟树脂基体紧紧固定在一起,大大提高了氟树脂密封剂的黏结能力,保证了LED封装的可靠性。图2为C1s光电子能谱对比示意图,图3的红外光谱对比示意图,图2、3从事实上证明氧化石墨烯粉与KH550硅烷偶联剂能够发生化学反应,图2、3为图1的理论提供了事实依据。
如图4所示,本实施例还提供一种用于LED封装的氟树脂界面剂的制备方法,具体步骤如下:
(1)制备氧化石墨烯氟树脂密封剂,首先使用球磨机,将氧化石墨烯粉进行球磨研细,将一定重量的氧化石墨烯粉末加入无水乙醇中,经过1小时的超声震荡,配比成2mg/mL的氧化石墨烯分散液;再将2mg/mL的氧化石墨烯分散液加入到装有氟树脂基体的离心管中,用玻璃棒搅拌15分钟得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中,设定转数为10000转进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B中的无水乙醇自然晾干,剩余的液体再搅拌1小时,得到0.05wt%浓度的氧化石墨烯氟树脂密封剂;
(2)制备硅烷偶联剂溶液,首先将去离子水加入到无水乙醇中,超声震荡,制成5wt%去离子水的溶液,再将KH550硅烷偶联剂加入到5wt%去离子水溶液中,超声震荡,制成1wt%的KH550硅烷偶联剂溶液。
如图4所示,本公开再提供一种用于LED封装的氟树脂界面剂的使用方法,具体步骤为:
(1)将未装石英透镜的LED芯片及石英透镜进行超声波清洗;
(2)将上述LED封装的氟树脂界面剂中的1wt%的KH550硅烷偶联剂溶液滴在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜置于80℃烘烤5分钟;
(3)使用点胶机在LED芯片表面点涂上述LED封装的氟树脂界面剂中的0.05wt%浓度的氧化石墨烯氟树脂密封剂,真空脱泡10分钟;
(4)加装石英透镜,并调整石英透镜位置到LED芯片中心形成LED封装;
(5)将上述LED封装放入烤箱中烘烤,设定烘烤温度为80℃,反应时间为12小时,然后制得图5所示的LED封装成品。
如图5所示,LED封装成品包括基板1、芯片2、封装界面剂3、石英玻璃4,所述封装界面剂3为本公开提供的一种用于LED封装的氟树脂界面剂,包括0.05wt%浓度的氧化石墨烯氟树脂密封剂302、1wt%的KH550硅烷偶联剂溶液301。
实施例2
本实施例提供一种用于LED封装的氟树脂界面剂,包括0.1wt%浓度的氧化石墨烯氟树脂密封剂、1wt%的KH550硅烷偶联剂溶液,所述0.1wt%浓度的氧化石墨烯氟树脂密封剂由2mg/mL的氧化石墨烯分散液及氟树脂基体组成,所述2mg/mL的氧化石墨烯分散液由氧化石墨烯粉末和无水乙醇组成;所述1wt%的KH550硅烷偶联剂溶液由5wt%去离子水溶液和KH550硅烷偶联剂组成,所述5wt%去离子水溶液由去离子水和无水乙醇组成。
进一步地,所述氟树脂基体是一种具有-CF3末端的聚合全氟-4-乙烯基氧基-1-丁烯,由含氟元素的无机分子聚合而成,具有高紫外透过率,优秀的紫外照射稳定性,良好的防水防氧功能及粘结性差等特征。
进一步地,所述氧化石墨烯粉是使用Hummers法制备而成,具有典型的准二维空间结构,其片层上含有很多含氧基团,具有较高的比表面能、良好的亲水性、高导热系数、机械性能及壁垒作用,是理想的复合掺杂材料。
进一步地,所使用的KH550硅烷偶联剂,分子中含有两种不同的活性基团——氨基和氧基,用来偶联有机高分子和无机填料。
如图4所示,本实施例还提供一种用于LED封装的氟树脂界面剂的制备方法,具体步骤如下:
(1)制备氧化石墨烯氟树脂密封剂,首先使用球磨机,将氧化石墨烯粉进行球磨研细,将一定重量的氧化石墨烯粉末加入无水乙醇中,经过1小时的超声震荡,配比成2mg/mL的氧化石墨烯分散液;再将2mg/mL的氧化石墨烯分散 液加入到装有氟树脂基体的离心管中,用玻璃棒搅拌15分钟得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中,设定转数为10000转进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B中的无水乙醇自然晾干,剩余的液体再搅拌1小时,得到0.1wt%浓度的氧化石墨烯氟树脂密封剂;
(2)制备硅烷偶联剂溶液,首先将去离子水加入到无水乙醇中,超声震荡,制成5wt%去离子水的溶液,再将KH550硅烷偶联剂加入到5wt%去离子水溶液中,超声震荡,制成1wt%的KH550硅烷偶联剂溶液。
如图4所示,本公开再提供一种用于LED封装的氟树脂界面剂的使用方法,具体步骤为:
(1)将未装石英透镜的LED芯片及石英透镜进行超声波清洗;
(2)将上述LED封装的氟树脂界面剂中的1wt%的KH550硅烷偶联剂溶液滴在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜置于80℃烘烤5分钟;
(3)使用点胶机在LED芯片表面点涂上述LED封装的氟树脂界面剂中的0.1wt%浓度的氧化石墨烯氟树脂密封剂,真空脱泡10分钟;
(4)加装石英透镜,并调整石英透镜位置到LED芯片中心形成LED封装;
(5)将上述LED封装放入烤箱中烘烤,设定烘烤温度为80℃,反应时间为12小时,然后制得图5所示的LED封装成品。
如图5所示,LED封装成品包括基板1、芯片2、封装界面剂3、石英玻璃4,所述封装界面剂3为本公开提供的一种用于LED封装的氟树脂界面剂,包括0.1wt%浓度的氧化石墨烯氟树脂密封剂302、1wt%的KH550硅烷偶联剂溶液301。
实施例3
本实施例提供一种用于LED封装的氟树脂界面剂,包括0.2wt%浓度的氧化石墨烯氟树脂密封剂、1wt%的KH550硅烷偶联剂溶液,所述0.2wt%浓度的氧 化石墨烯氟树脂密封剂由2mg/mL的氧化石墨烯分散液及氟树脂基体组成,所述2mg/mL的氧化石墨烯分散液由氧化石墨烯粉末和无水乙醇组成;所述1wt%的KH550硅烷偶联剂溶液由5wt%去离子水溶液和KH550硅烷偶联剂组成,所述5wt%去离子水溶液由去离子水和无水乙醇组成。
进一步地,所述氟树脂基体是一种具有-CF3末端的聚合全氟-4-乙烯基氧基-1-丁烯,由含氟元素的无机分子聚合而成,具有高紫外透过率,优秀的紫外照射稳定性,良好的防水防氧功能及粘结性差等特征。
进一步地,所述氧化石墨烯粉是使用Hummers法制备而成,具有典型的准二维空间结构,其片层上含有很多含氧基团,具有较高的比表面能、良好的亲水性、高导热系数、机械性能及壁垒作用,是理想的复合掺杂材料。
进一步地,所使用的KH550硅烷偶联剂,分子中含有两种不同的活性基团——氨基和氧基,用来偶联有机高分子和无机填料。
如图4所示,本实施例还提供一种用于LED封装的氟树脂界面剂的制备方法,具体步骤如下:
(1)制备氧化石墨烯氟树脂密封剂,首先使用球磨机,将氧化石墨烯粉进行球磨研细,将一定重量的氧化石墨烯粉末加入无水乙醇中,经过1小时的超声震荡,配比成2mg/mL的氧化石墨烯分散液;再将2mg/mL的氧化石墨烯分散液加入到装有氟树脂基体的离心管中,用玻璃棒搅拌15分钟得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中,设定转数为10000转进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B中的无水乙醇自然晾干,剩余的液体再搅拌1小时,得到0.2wt%浓度的氧化石墨烯氟树脂密封剂;
(2)制备硅烷偶联剂溶液,首先将去离子水加入到无水乙醇中,超声震荡,制成5wt%去离子水的溶液,再将KH550硅烷偶联剂加入到5wt%去离子水溶液中,超声震荡,制成1wt%的KH550硅烷偶联剂溶液。
如图4所示,本公开再提供一种用于LED封装的氟树脂界面剂的使用方法,具体步骤为:
(1)将未装石英透镜的LED芯片及石英透镜进行超声波清洗;
(2)将上述LED封装的氟树脂界面剂中的1wt%的KH550硅烷偶联剂溶液滴在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜置于80℃烘烤5分钟;
(3)使用点胶机在LED芯片表面点涂上述LED封装的氟树脂界面剂中的0.1wt%浓度的氧化石墨烯氟树脂密封剂,真空脱泡10分钟;
(4)加装石英透镜,并调整石英透镜位置到LED芯片中心形成LED封装;
(5)将上述LED封装放入烤箱中烘烤,设定烘烤温度为80℃,反应时间为12小时,然后制得图5所示的LED封装成品。
如图5所示,LED封装成品包括基板1、芯片2、封装界面剂3、石英玻璃4,所述封装界面剂3为本公开提供的一种用于LED封装的氟树脂界面剂,包括0.1wt%浓度的氧化石墨烯氟树脂密封剂302、1wt%的KH550硅烷偶联剂溶液301。
将实施例1、2、3中的LED封装与现有的氟树脂基体的LED封装进行光衰加速老化测试后结果如图6所示,图6中,1为未掺杂氧化石墨烯的氟树脂基体的LED封装的光衰加速老化测试曲线,2为采用本公开提供的包含0.05wt%浓度的氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线,3为本公开提供的包含0.1wt%浓度的氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线,4为本公开提供的包含0.2wt%的氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线4。可见,经过本公开提供的界面剂处理后的LED封装的抗老化能力明显增强。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种用于LED封装的氟树脂界面剂,其特征在于,包括氧化石墨烯氟树脂密封剂,KH550硅烷偶联剂溶液,所述氧化石墨烯氟树脂密封剂包括氧化石墨烯分散液及氟树脂基体;所述KH550硅烷偶联剂溶液包括去离子水溶液和KH550硅烷偶联剂。
  2. 根据权利要求1所述的用于LED封装的氟树脂界面剂,其特征在于,所述氧化石墨烯分散液包括氧化石墨烯粉末,无水乙醇。
  3. 根据权利要求1或2所述的用于LED封装的氟树脂界面剂,其特征在于,所述去离子水溶液包括去离子水,无水乙醇。
  4. 一种用于LED封装的氟树脂界面剂的制备方法,其特征在于,具体步骤如下:
    (1)制备氧化石墨烯氟树脂密封剂,首先将氧化石墨烯分散液加入到装有氟树脂基体的离心管中,进行搅拌得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B再进行搅拌得到氧化石墨烯氟树脂密封剂;
    (2)制备硅烷偶联剂溶液,将KH550硅烷偶联剂加入到去离子水溶液中,超声震荡,制成硅烷偶联剂溶液。
  5. 根据权利要求4所述的用于LED封装的氟树脂界面剂的制备方法,其特征在于,制备所述氧化石墨烯分散液的方法为:首先使用球磨机将氧化石墨烯粉进行球磨研细,然后将氧化石墨烯粉末加入无水乙醇中,经过超声震荡,配制成氧化石墨烯分散液。
  6. 根据权利要求5所述的用于LED封装的氟树脂界面剂的制备方法,其特征在于,所述离心分层后得到氧化石墨烯-氟树脂基体混合液B进行搅拌之前先将其中的无水乙醇自然晾干。
  7. 根据权利要求4所述的用于LED封装的氟树脂界面剂的制备方法,其特征在于,制备所述去离子水溶液的方法为:将去离子水加入到无水乙醇中, 超声震荡,制成去离子水溶液。
  8. 一种用于LED封装的氟树脂界面剂的使用方法,其特征在于,具体步骤为:
    (1)将权利要求1-3中任一所述的LED封装的氟树脂界面剂中的KH550硅烷偶联剂溶涂覆在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜进行烘烤;
    (2)在LED芯片表面涂覆权利要求1-3中任一所述的LED封装的氟树脂界面剂中的氧化石墨烯氟树脂密封剂,真空脱泡;
    (3)加装石英透镜,并调整石英透镜位置到LED芯片中心形成LED封装;
    (4)将上述LED封装放入烤箱中烘烤。
PCT/CN2017/112290 2017-06-29 2017-11-22 用于led封装的氟树脂界面剂、制备及使用方法 WO2019000816A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/338,629 US10930827B2 (en) 2017-06-29 2017-11-22 Fluororesin interfacial agent for LED packaging, and methods for preparing and using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710515884.8A CN107337881B (zh) 2017-06-29 2017-06-29 用于led封装的氟树脂界面剂、制备及使用方法
CN201710515884.8 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019000816A1 true WO2019000816A1 (zh) 2019-01-03

Family

ID=60218181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112290 WO2019000816A1 (zh) 2017-06-29 2017-11-22 用于led封装的氟树脂界面剂、制备及使用方法

Country Status (3)

Country Link
US (1) US10930827B2 (zh)
CN (1) CN107337881B (zh)
WO (1) WO2019000816A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337881B (zh) * 2017-06-29 2020-05-08 华中科技大学鄂州工业技术研究院 用于led封装的氟树脂界面剂、制备及使用方法
CN107275465B (zh) * 2017-06-29 2019-01-04 华中科技大学鄂州工业技术研究院 Led封装及其制作方法
US11102822B2 (en) * 2018-11-20 2021-08-24 Qualcomm Incorporated Cross carrier random access procedure for wireless communication
CN109851823A (zh) * 2018-12-21 2019-06-07 华中科技大学鄂州工业技术研究院 一种石墨烯导热硅胶及其制备方法
CN111029452B (zh) * 2019-12-10 2022-04-19 宁波安芯美半导体有限公司 一种紫外发光二极管封装结构及其封装方法、和紫外灯
CN113659059A (zh) * 2021-07-09 2021-11-16 深圳市佑明光电有限公司 Led灯珠、照明灯及led灯珠的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096370A1 (ja) * 2010-02-05 2011-08-11 旭硝子株式会社 含フッ素硬化性樹脂組成物
WO2012133557A1 (ja) * 2011-03-30 2012-10-04 ダイキン工業株式会社 光学素子封止用含フッ素樹脂組成物、及び、硬化物
WO2014057858A1 (ja) * 2012-10-12 2014-04-17 シーシーエス株式会社 電気・電子部品用封止剤組成物、電気・電子部品用コーティング剤及びledデバイス
CN107337881A (zh) * 2017-06-29 2017-11-10 华中科技大学鄂州工业技术研究院 用于led封装的氟树脂界面剂、制备及使用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633821B2 (ja) * 2009-12-18 2014-12-03 国立大学法人北海道大学 酸化グラフェンシート及びこれを還元して得られるグラフェン含有物質を含有する物品、並びに、その製造方法
CN103756325B (zh) * 2014-01-16 2016-06-22 广东工业大学 一种低填充量高导热石墨烯/硅脂复合材料及其制备方法
CN104119627B (zh) * 2014-07-15 2017-01-25 西南科技大学 一种高体积分数导热复合材料及其制备方法
US9935247B2 (en) * 2014-07-23 2018-04-03 Crystal Is, Inc. Photon extraction from ultraviolet light-emitting devices
CN104829988A (zh) * 2015-04-11 2015-08-12 安徽中威光电材料有限公司 一种led光源用聚四氟乙烯基耐辐照老化的散热材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096370A1 (ja) * 2010-02-05 2011-08-11 旭硝子株式会社 含フッ素硬化性樹脂組成物
WO2012133557A1 (ja) * 2011-03-30 2012-10-04 ダイキン工業株式会社 光学素子封止用含フッ素樹脂組成物、及び、硬化物
WO2014057858A1 (ja) * 2012-10-12 2014-04-17 シーシーエス株式会社 電気・電子部品用封止剤組成物、電気・電子部品用コーティング剤及びledデバイス
CN107337881A (zh) * 2017-06-29 2017-11-10 华中科技大学鄂州工业技术研究院 用于led封装的氟树脂界面剂、制备及使用方法

Also Published As

Publication number Publication date
US20200109322A1 (en) 2020-04-09
CN107337881B (zh) 2020-05-08
CN107337881A (zh) 2017-11-10
US10930827B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2019000816A1 (zh) 用于led封装的氟树脂界面剂、制备及使用方法
US10636949B2 (en) LED package and method for manufacturing the same
JP6028974B2 (ja) ナノコンポジット、ナノコンポジットの製造方法、及び面発光素子
Chen et al. Highly transparent and colorless nanocellulose/polyimide substrates with enhanced thermal and mechanical properties for flexible OLED displays
CN101230224A (zh) 氟硅橡胶纳米复合合金三防涂料及其生产方法
WO2011152500A1 (ja) 水蒸気バリア性フィルム及びその製造方法
JP2009071236A (ja) 太陽電池用バックシート
JP2013505851A (ja) フルオロポリマー/微粒子充填保護シート
JP2011001237A (ja) 電子デバイス用防湿フィルム
TW201305234A (zh) 環氧聚合性組成物及有機電激發光裝置
JP2004168057A (ja) フッ素系複合樹脂フィルム及び太陽電池
CN106634133A (zh) 一种耐水性有机钙钛矿薄膜及其制备方法和应用
JP2020109166A (ja) ポリイミド前駆体組成物及びそれから生じるポリイミドフィルム及びフレキシブルデバイス、ポリイミドフィルムの製造方法
JPWO2019245054A1 (ja) ゼオライト含有ポリイミド樹脂複合材、ゼオライト含有ポリイミド樹脂前駆体組成物、フィルム、及び電子デバイス
WO2013105626A1 (ja) 発光素子および発光素子形成用樹脂組成物
KR102035909B1 (ko) 양친성 고분자 사슬을 가지는 다리걸친 유기실리카 전구체를 이용한 가스 배리어 필름 제조용 조성물 및 이로부터 제조되는 가스 배리어 필름
KR102073457B1 (ko) 포수제 및 그의 제조 방법, 건조제 조성물, 밀봉 구조 및 유기 el 소자
CN108299682A (zh) 一种用于电缆绝缘层自修复的填充物及制备方法
TWI784598B (zh) 可自我修復之共聚合高分子材料及其製造方法以及包含其之發光材料、白光led背光顯示器、導電電極材料、有機發光二極體及柔性發光電子元件
JP2013049834A (ja) Led用封止材料
WO2012008276A1 (ja) ガスバリア性フィルム、及びそれを用いた有機電子デバイス
CN113005424B (zh) 一种优化原子层沉积的方法
JP6331828B2 (ja) 複合シリカ膜、複合シリカ膜形成用塗布液およびそれを用いた複合シリカ膜の形成方法
JP2013058744A (ja) 発光ダイオード用リフレクターおよびハウジング
CN114736634B (zh) 一种用于wdm封装的粘结剂及制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916143

Country of ref document: EP

Kind code of ref document: A1