WO2012008276A1 - ガスバリア性フィルム、及びそれを用いた有機電子デバイス - Google Patents

ガスバリア性フィルム、及びそれを用いた有機電子デバイス Download PDF

Info

Publication number
WO2012008276A1
WO2012008276A1 PCT/JP2011/064375 JP2011064375W WO2012008276A1 WO 2012008276 A1 WO2012008276 A1 WO 2012008276A1 JP 2011064375 W JP2011064375 W JP 2011064375W WO 2012008276 A1 WO2012008276 A1 WO 2012008276A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
layer
resin
mass
Prior art date
Application number
PCT/JP2011/064375
Other languages
English (en)
French (fr)
Inventor
一仁 伊原
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2012008276A1 publication Critical patent/WO2012008276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention mainly relates to a gas barrier property used for a display material such as a package of an electronic device or the like, or a plastic substrate such as an organic photoelectric conversion element (organic solar cell), an organic electroluminescence element (hereinafter also referred to as an organic EL element), or a liquid crystal.
  • a film hereinafter also referred to as a gas barrier film
  • an organic electronic device such as an organic photoelectric conversion element or an organic EL element having the gas barrier film.
  • a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, silicon oxide or the like is formed on the surface of a plastic substrate or film is used for packaging of goods and foods that require blocking of various gases such as water vapor and oxygen. It is widely used in packaging applications to prevent alteration of products such as industrial products and pharmaceuticals.
  • liquid crystal display elements In addition to packaging applications, it is used in liquid crystal display elements, photoelectric conversion elements (solar cells), organic electroluminescence (organic EL) substrates, and the like.
  • Aluminum foil is widely used as a packaging material in such fields, but disposal after use has become a problem, and it is basically opaque and the contents can be confirmed from the outside. In addition, the solar cell material requires transparency and cannot be applied.
  • transparent substrates that have been applied to liquid crystal display elements, organic EL elements, photoelectric conversion elements, etc. can be produced in roll-to-roll in addition to the demands for weight reduction and size increase in recent years.
  • film substrates such as transparent plastics are used instead of glass substrates that are heavy, fragile and difficult to increase in area. Has begun to be adopted.
  • a film substrate such as a transparent plastic has a problem that the gas barrier property is inferior to glass.
  • the gas barrier property is inferior to glass.
  • a substrate having inferior gas barrier properties when used as a material for an organic photoelectric conversion element, if a substrate having inferior gas barrier properties is used, water vapor or air penetrates and the organic film deteriorates, which becomes a factor that impairs photoelectric conversion efficiency or durability.
  • the UV cut function to prevent light deterioration due to the ultraviolet rays of sunlight, and exposure to wind and rain, especially film deterioration due to moisture
  • weather resistance that also has water resistance to prevent water.
  • a weather-resistant resin film in which a light-resistant layer containing metal oxide particles is provided as a first layer and a weather-resistant layer containing an organic ultraviolet absorbing layer as a second layer.
  • Patent Document 1 there is no description of the gas barrier layer, and only a limited amount of the inorganic ultraviolet absorber is used, and the ultraviolet ray blocking effect is not sufficient.
  • the water vapor that has permeated water vapor and passed through the film substrate also causes deterioration of the photoelectric conversion element, which causes a problem.
  • the film of the transparent vapor deposition layer which vapor-deposited the vapor depositionable compound on the ultraviolet cut layer is proposed (for example, patent document 2).
  • ultraviolet rays can be cut, but the water vapor transmission rate of the transparent vapor-deposited layer is required as a gas barrier film of an organic substance that is weak against moisture, such as for organic photoelectric conversion elements and organic EL elements, 1 ⁇ 10 ⁇ 3 g / m Gas barrier performance less than 2 ⁇ day is not obtained.
  • the present invention has been made in view of the above problems, and has as its object to provide a weather-resistant barrier film having extremely high gas barrier performance, ultraviolet cut-off property and water resistance, and an organic photoelectric film using the same.
  • the object is to provide an organic electronic device such as a conversion element or an organic EL element.
  • the metal oxide fine particles are metal A gas barrier film, which is 50% by mass or more and 80% by mass or less based on the mass of oxide fine particles and the resin binder, and wherein the resin binder contains an actinic ray curable resin.
  • the weathering layer contains a light stabilizer (HALS agent) in an amount of 1% by mass to 20% by mass based on the mass of the metal oxide fine particles and the resin binder.
  • HALS agent light stabilizer
  • the present invention it is possible to provide a gas barrier film having weather resistance and extremely high gas barrier performance, UV cut performance and water resistance, and an organic electronic device such as an organic photoelectric conversion element and an organic EL element using the film. We were able to.
  • the present invention has a film configuration in which a gas barrier layer is provided on at least one side of a resin substrate, and a weathering layer having an ultraviolet cut layer and a water-resistant layer is provided on the opposite side.
  • inorganic UV absorbers such as zinc oxide and titanium oxide have high UV-cutting efficiency, but only have a limited amount due to their photocatalytic activity. When used in large amounts, they generate radicals. It has been known that the resin deteriorates (see Patent Document 1). In the present invention, it has been found that even when the filling rate of the metal oxide fine particles in the weathering layer is increased by curing the weathering layer using an actinic ray curable resin, the deterioration of the resin is small. Increasing the content of metal oxides that should absorb water further should degrade the water resistance, but surprisingly not only the UV-cutting efficiency is increased, but also metal oxide fine particles than the binder resin. It has been found that the water resistance is greatly improved by increasing the ratio, and the present invention has been achieved.
  • the photocatalytic activity on the surface of the metal oxide fine particles after the production is improved by irradiating with ultraviolet rays or electron beams during the production. It is presumed that a weather-resistant layer having both high UV-cutting properties and water resistance could be realized by reducing the compatibility of the interface between the binder resin and the metal oxide fine particles even after long-term storage.
  • the gas barrier film of the present invention is a gas barrier film having a gas barrier layer on at least one surface of a resin substrate, and a weathering layer containing metal oxide fine particles and a resin binder on the surface opposite to the surface on which the gas barrier layer is provided.
  • the metal oxide fine particles are 50% by mass or more and 80% by mass or less based on the mass of the metal oxide fine particles and the resin binder, and the resin binder contains an actinic ray curable resin. .
  • the water vapor transmission rate (water vapor transmission rate: 25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured according to JIS K 7129B method is 10 ⁇ 3 g. / M 2 ⁇ day or less is preferred, more preferably 10 ⁇ 4 g / m 2 ⁇ day or less, and particularly preferably 10 ⁇ 5 g / m 2 ⁇ day or less.
  • oxygen permeability (oxygen permeability) measured by a method according to JIS K 7126-1987 is preferably 0.01 ml / (m 2 ⁇ 0.1 MPa / day) or less, more preferably 0.8. 001 ml / (m 2 ⁇ 0.1 MPa / day) or less.
  • the single-sided gas barrier layer on the resin substrate may be a single layer, or two or three layers.
  • a stress relaxation layer may be sandwiched between the gas barrier layers.
  • the thickness of one gas barrier layer is preferably 5 nm to 1000 nm, more preferably 10 nm to 500 nm, particularly 30 nm to 500 nm.
  • the thickness is 5 nm or more, the film thickness uniformity is good and the gas barrier performance is excellent.
  • the thickness is 1000 nm or less, cracks due to bending are extremely less likely to occur, and generation of defects can be prevented.
  • the solar cell used outdoors is a functional layer for preventing deterioration caused by exposure to ultraviolet rays and wind and rain of sunlight.
  • There are two functions required for the weather-resistant layer which are classified into an ultraviolet cut function for cutting ultraviolet rays of sunlight, and a water resistant function for preventing hydrolysis of organic substances by wind and rain, particularly water.
  • an ultraviolet ray cut evaluation for an accelerated evaluation test of actual exposure an ultraviolet irradiation test is performed using an I-super UV tester manufactured by Iwasaki Electric Co., Ltd.
  • the ultraviolet ray blocking function required for the weather resistant layer of the present invention is a layer having a performance that hardly deteriorates the base resin in the ultraviolet ray irradiation test (metal halide forced deterioration test) using the eye super UV tester.
  • a pressure cooker test is generally used. The pressure cooker test is said to be equivalent to 20 years of actual exposure if it is introduced at a temperature of 121 ° C., a humidity of 100%, and 2 atmospheres for 50 hours.
  • the water resistance function required for the weather resistant layer of the present invention is a layer that enables prevention of deterioration in the pressure cooker test.
  • the layer having both UV-cutting properties and water resistance is used as the weather resistant layer of the present invention.
  • the weather-resistant layer has metal oxide fine particles and a resin binder for fixing the metal oxide fine particles, and further contains an organic compound-based ultraviolet absorber and a light stabilizer (hereinafter also referred to as a HALS agent) for performing ultraviolet cut. Also good.
  • a HALS agent organic compound-based ultraviolet absorber and a light stabilizer
  • the weather resistant layer contains 50 mass% or more and 80 mass% or less of metal oxide fine particles based on the mass of the metal oxide fine particles and the resin binder. If it is contained in an amount of more than 80% by mass, it becomes cloudy and is not preferable.
  • the method of forming the weathering layer is to prepare a coating liquid in which metal oxide fine particles are dispersed in a resin binder.
  • the resin binder is not a solution
  • the resin binder is dissolved in a liquid in which metal oxide fine particles are dispersed in a solvent, and the coating liquid is used.
  • the actinic ray curable resin is irradiated with actinic rays to form a film.
  • the coating method is not particularly limited, and examples thereof include a bar coater method, a curtain coating method, a dipping method, an air knife method, a slide coating method, a hopper coating method, a reverse roll coating method, a gravure coating method, and an extrusion coating method.
  • a known method can be used. Of these, the slide coating method and the extrusion coating method are more preferable.
  • the thickness of the coating film of the weather resistant layer is preferably selected according to the purpose, but the film thickness after drying is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 0.5 ⁇ m or more. 50 ⁇ m or less is preferable.
  • content of the said solvent can be adjusted with conditions changes, such as temperature conditions in the drying process etc. after an application
  • the weatherproof layer is preferably fixed by being cured with ultraviolet rays or electron beams as actinic rays. If necessary, a photopolymerization initiator and a thermal polymerization initiator are added to the UV-cutting layer coating solution, and after coating on the resin substrate, the UV-cutting layer is irradiated with ultraviolet rays or an electron beam to be immobilized on the resin substrate. Just do it.
  • photopolymerization initiator examples include acetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine.
  • thermal polymerization initiator examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4- Azo compounds such as methoxy-2,4-dimethylvaleronitrile), organic peroxides such as benzoyl peroxide, lauroyl peroxide, t-butylperoxypivalate, 1,1'-bis (t-butylperoxy) cyclohexane, etc. It is done.
  • the acceleration voltage can be appropriately selected according to the resin used and the thickness of the layer, but the uncured resin layer is usually cured at an acceleration voltage of about 70 to 300 kV. preferable.
  • the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam as the base material, the transmission depth of the electron beam and the thickness of the resin layer are substantially equal.
  • the accelerating voltage so as to be equal to each other, it is possible to suppress the irradiation of the electron beam to the base material, and to minimize the deterioration of the base material due to the excessive electron beam.
  • the irradiation dose is preferably such that the crosslinking density of the resin layer is saturated, and is usually selected in the range of 5 to 300 kGy, preferably 10 to 100 kGy, and further 30 to 70 kGy.
  • the electron beam source is not particularly limited, and for example, various electron beam accelerators such as a Cockloft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type are used. be able to.
  • various electron beam accelerators such as a Cockloft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type are used. be able to.
  • the wavelength of the ultraviolet rays is not particularly limited, but the wavelength of the ultraviolet light is preferably from 100 nm to 450 nm, and more preferably from 100 nm to 300 nm. .
  • a low-pressure mercury lamp a deuterium lamp, a Xe excimer lamp, a metal halide lamp, an excimer laser, or the like can be used.
  • the intensity at the time of ultraviolet irradiation is preferably 1 mW / cm 2 to 10 W / cm 2 .
  • the weather resistant layer used in the present invention contains metal oxide fine particles.
  • the metal oxide fine particles refer to those having a number average primary particle diameter in the range of 1 to 100 nm and also having an ultraviolet protection effect, and examples thereof include fine particle titanium oxide, fine particle zinc oxide, fine particle cerium oxide, and fine particle iron oxide. One or more, preferably two or more of these metal oxide fine particles may be combined.
  • the shape of the metal oxide fine particles is not particularly limited such as spherical, needle-like, rod-like, spindle-like, indefinite shape, plate-like, and the crystal form is not particularly limited such as amorphous, rutile type, anatase type.
  • the number average primary particle size of the metal oxide particles is a photographic image (excluding aggregated particles) taken with a scanning electron microscope (manufactured by JEOL Ltd.) with a magnification of 10000 times, and 300 particles randomly taken by a scanner.
  • these metal oxide fine particles are treated with conventionally known surface treatments such as fluorine compound treatment, silicone treatment, silicone resin treatment, pendant treatment, silane coupling agent treatment, titanium coupling agent treatment, oil agent treatment, and N-acylation. It is preferably surface-treated in advance by lysine treatment, polyacrylic acid treatment, metal soap treatment, amino acid treatment, inorganic compound treatment, plasma treatment, mechanochemical treatment, etc., particularly silicone, silane, fluorine compound, amino acid compound, It is preferable that the water-repellent treatment is performed with one or more surface treatment agents selected from metal soaps.
  • silicone treatment examples include coating and heat treatment of methyl hydrogen polysiloxane
  • examples of silane include alkylsilane treatment
  • examples of fluorine compounds include perfluoroalkyl phosphate ester, perfluoropolyether, perfluoroalkyl silicone, perfluoro Alkyl / polyether co-modified silicones, perfluoroalkylsilanes, and the like.
  • examples of amino acid compounds include N-lauroyl-L-lysine, and examples of metal soaps include aluminum stearate.
  • oxide fine particles include, for example, “FINEX-25”, “FINEX-50”, “FINEX-75” ⁇ above, Sakai Chemical Industry Co., Ltd. ⁇ ; “MZ500” series, “MZ700” series ⁇ above, Teika Co., Ltd. ⁇ “ZnO-350”, “Sumifine” series ⁇ above, Sumitomo Osaka Cement Co., Ltd. ⁇ , "TYN” series ⁇ above, Toyo Ink Co., Ltd. ⁇ It is done.
  • Fine titanium dioxide includes “TTO-55, 51, S, M, D” series ⁇ above, Ishihara Sangyo Co., Ltd. ⁇ ; “JR” series, “JA” series ⁇ above, Teika Co., Ltd. ⁇ , “TYT” "Series ⁇ above, Toyo Ink Co., Ltd. ⁇ ” and the like.
  • the fine cerium oxide includes high-purity cerium oxide sold by Nikki Co., Ltd. or Seimi Chemical Co., Ltd. Of these, titanium oxide and zinc oxide are particularly preferable.
  • the weathering layer used in the present invention can further prevent deterioration due to ultraviolet rays rather than just the metal oxide fine particles by adding an organic compound type ultraviolet absorber that absorbs light in the region of 200 to 400 nm.
  • the organic compound-based ultraviolet absorber preferably has a high transmittance in the visible light region.
  • Examples of the organic compound UV absorber that can be preferably included in the weather resistant layer of the present invention include benzotriazole and triazine.
  • Examples of the benzotriazole series include 2,2-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6 [(2H-benzotriazol-2-yl) phenol]], 2- (2H— Benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2- [5-chloro (2H) -benzotriazol-2-yl] -4-methyl-6- ( tert-butyl) phenol and the like.
  • Examples of the triazine series include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol.
  • the content of the organic compound-based ultraviolet absorber in the weather resistant layer is preferably 1% by mass or more and 20% by mass or less based on the mass of the metal oxide fine particles and the resin binder.
  • HALS agent Light stabilizer (HALS agent), metal deactivator
  • a light stabilizer or a metal deactivator for preventing deterioration by a metal catalytic action in the weather resistant layer.
  • HALS is to prevent deterioration of the surrounding resin by capturing radicals that are deteriorated by ultraviolet rays or heat.
  • a hindered amine system etc. can be used as a HALS agent.
  • hindered amines include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate and poly [[6- (1,1,3,3-tetramethylbutyl) amino-1,3,5.
  • the content of the light stabilizer (HALS agent) in the weather resistant layer is preferably 1% by mass or more and 20% by mass or less based on the mass of the metal oxide fine particles and the resin binder.
  • the resin binder of the present invention contains an actinic ray curable resin that is cured by being irradiated with an actinic ray such as an ultraviolet ray or an electron beam.
  • an actinic ray such as an ultraviolet ray or an electron beam.
  • the curable resin for example, the types of resins listed below can be preferably used.
  • Silicone Resin A silicone resin having a siloxane bond with Si—O—Si as the main chain can be used.
  • the silicone resin a silicone resin made of a predetermined amount of polyorganosiloxane resin can be used (for example, see JP-A-6-9937).
  • Such a polyorganosiloxane resin includes the following general formula (A) as a structural unit, and the shape thereof may be any of a chain, a ring, and a network.
  • R 1 and R 2 represent the same or different substituted or unsubstituted monovalent hydrocarbon groups.
  • R 1 and R 2 an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, an alkenyl group such as a vinyl group or an allyl group, an aryl group such as a phenyl group or a tolyl group Group, a cycloalkyl group such as a cyclohexyl group or a cyclooctyl group, or a group in which a hydrogen atom bonded to a carbon atom of these groups is substituted with a halogen atom, a cyano group, an amino group, or the like, such as a chloromethyl group, 3, 3, Examples include 3-trifluoropropyl group
  • the polyorganosiloxane resin is usually used after being dissolved in a hydrocarbon solvent such as toluene, xylene or petroleum solvent, or a mixture of these with a polar solvent. Moreover, you may mix
  • a hydrocarbon solvent such as toluene, xylene or petroleum solvent
  • the method for producing the polyorganosiloxane resin is not particularly limited, and any known method can be used.
  • it can be obtained by hydrolysis or alcoholysis of one or a mixture of two or more organohalogenosilanes, and polyorganosiloxane resins generally contain hydrolyzable groups such as silanol groups or alkoxy groups.
  • the group is contained in an amount of 1 to 10% by mass in terms of a silanol group.
  • These reactions are generally performed in the presence of a solvent capable of melting organohalogenosilane. It can also be obtained by a method of synthesizing a block copolymer by cohydrolyzing a linear polyorganosiloxane having a hydroxyl group, an alkoxy group or a halogen atom at the molecular chain terminal with an organotrichlorosilane.
  • the polyorganosiloxane resin thus obtained generally contains the remaining HCl, but in the composition of the present embodiment, the storage stability is good, so that the one having 10 ppm or less, preferably 1 ppm or less is used. Is good.
  • Epoxy resin An alicyclic epoxy resin such as 3,4-epoxycyclohexylmethyl 3′-4′-cyclohexylcarboxylate (see International Publication No. 2004/031257) can be used. An epoxy resin containing a spiro ring or a chain aliphatic epoxy resin can also be used.
  • the acrylate resin used in the present invention may be an acrylate resin that is a polycyclic hydrocarbon compound comprising an alicyclic hydrocarbon skeleton, and examples thereof include acrylic acid, methacrylic acid, and methyl methacrylate. It is done.
  • epoxy resin curing agent is not particularly limited, and examples thereof include acid anhydride curing agents and phenol curing agents.
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride.
  • the polymerization initiator is a polymerization of an acrylic monomer, and is preferably an initiator that generates radicals, and an azo initiator or a peroxide initiator can be used.
  • Oil-soluble peroxide-based or azo-based initiators are preferred.
  • benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, benzoyl peroxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl Peroxide initiators such as peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, 2,2′-azobisisobutyronitrile, 2,2 '-Azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,3-dimethylbutyronitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2' -Azobis (2,3,3-trime Rubutyronitrile), 2,2'-azobis (2-isopropylbuty
  • organic peroxides such as tertiary isobutyl hydroperoxide, cumene hydroperoxide, paramentane hydroperoxide, hydrogen peroxide, etc. are preferable.
  • polymerization initiators are preferably used in an amount of 0.01 to 20% by weight, particularly 0.1 to 10% by weight, based on the polymerizable monomer.
  • a curing accelerator is contained as necessary.
  • the curing accelerator is not particularly limited as long as it has good curability and is not colored.
  • imidazole such as 2-ethyl-4-methylimidazole (2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.) is used.
  • Bicyclic amidines such as tertiary amines, quaternary ammonium salts, diazabicycloundecene and derivatives thereof, phosphines, phosphonium salts, etc., which can be used alone or in combination of two or more. May be used.
  • the metal oxide fine particles used in the present invention are mixed with a resin binder by a known technique.
  • a resin binder is used as a solution, and the metal oxide fine particles are mixed while stirring the solution using a stirrer.
  • the dispersant and other additives that may be added at the time of stirring are added and stirred before or after the addition of the metal oxide fine particles as necessary.
  • a solvent may be added as appropriate. If the dispersion is not easy, the metal oxide fine particles, the resin binder, and the solvent are added and mixed uniformly using a high shear mixer such as a Henschel mixer or a super mixer.
  • the solvent is not particularly limited, and ketones such as methyl ethyl ketone, acetone and methyl isobutyl ketone, esters such as methyl acetate, ethyl acetate and butyl acetate, aromatic compounds such as toluene and xylene, diethyl ether, tetrahydrofuran and the like And ethers such as methanol, ethanol, isopropanol and the like.
  • ketones such as methyl ethyl ketone, acetone and methyl isobutyl ketone
  • esters such as methyl acetate, ethyl acetate and butyl acetate
  • aromatic compounds such as toluene and xylene
  • diethyl ether diethyl ether
  • ethers such as methanol, ethanol, isopropanol and the like.
  • Dissolve resin binders such as aromatic solvents such as toluene and xylene, chlorine solvents such as dichloromethane and carbon tetrachloride, hydrocarbon solvents such as n-hexane and cyclohexane, and ketone solvents such as cyclohexanone and methyl isobutyl ketone. Use a solvent that swells.
  • the gas barrier film of the present invention has a gas barrier layer on the surface opposite to the weather resistant layer formed on the resin substrate.
  • a method of forming the gas barrier layer in addition to a method of forming a thin film layer of a metal oxide such as a silicon compound or aluminum oxide, a metal nitride, or a metal oxynitride by physical vapor deposition or chemical vapor deposition under vacuum or normal pressure.
  • a method of forming a gas barrier layer by coating and drying a coating liquid containing a polysilazane compound and then performing a modification treatment by ultraviolet irradiation in a nitrogen atmosphere containing oxygen and water vapor. It is done.
  • Arbitrary appropriate methods can be employ
  • Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, N—H, etc., SiO 2 , Si 3 N 4 and both intermediate solid solutions SiO x N y.
  • a ceramic precursor polymer Such as a ceramic precursor polymer.
  • a compound having a partial structure represented by the following general formula (1) can be preferably used.
  • each of R 1 , R 2 , and R 3 independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, an alkoxy group, or the like.
  • perhydropolysilazane in which all of R 1 , R 2, and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness as a gas barrier film to be obtained.
  • organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the ceramic made of polysilazane which is hard and brittle
  • the film can be toughened, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased.
  • perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
  • silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide with polysilazane of the above general formula (1) (Japanese Patent Laid-Open No. 5-238827), obtained by reacting glycidol.
  • Japanese Patent Laid-Open No. 5-238827 Japanese Patent Laid-Open No. 5-238827
  • glycidol-added polysilazane Japanese Patent Laid-Open No. 6-122852
  • alcohol-added polysilazane obtained by reacting alcohol
  • organic solvent for preparing a liquid containing polysilazane it is not preferable to use an alcohol or water-containing one that easily reacts with polysilazane.
  • hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers and alicyclic ethers can be used.
  • hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of solvents may be mixed.
  • the polysilazane concentration in the polysilazane-containing coating solution is about 0.2 to 35% by mass, although it varies depending on the target silica film thickness and the pot life of the coating solution.
  • the organic polysilazane may be a derivative in which a hydrogen part bonded to Si is partially substituted with an alkyl group or the like. Adhesion with the base substrate is improved by having an alkyl group, particularly the methyl group with the lowest molecular weight, and it is possible to impart toughness to a hard and brittle silica film, and even when the film thickness is increased, cracks are generated. Is suppressed.
  • an amine or metal catalyst may be added.
  • Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.
  • the coated film is preferably annealed to obtain a uniform dry film from which the solvent has been removed.
  • the annealing temperature is preferably 60 ° C. to 200 ° C., more preferably 70 ° C. to 160 ° C.
  • the annealing time is preferably about 5 seconds to 24 hours, more preferably about 10 seconds to 2 hours.
  • the annealing may be performed at a constant temperature, the temperature may be changed stepwise, or the temperature may be continuously changed (temperature increase and / or temperature decrease).
  • it is preferable to adjust the humidity in order to stabilize the reaction and is usually 30% RH to 90% RH, more preferably 40% RH to 80% RH.
  • the modification treatment refers to a silicon oxide or silicon oxynitride compound such as silicon dioxide by irradiating a coating film containing polysilazane, which is an inorganic polymer of the ceramic precursor, with ultraviolet rays, steam oxidation or heat treatment (including drying treatment). Refers to the process of conversion to
  • the modification treatment preferably used in the present invention is an ultraviolet irradiation treatment. Irradiation with ultraviolet light in the presence of oxygen generates active oxygen and ozone, and the conversion reaction can be further advanced.
  • the polysilazane coating film which is the precursor of silicon oxide, is directly oxidized without passing through silanol, resulting in higher density and fewer defects. A silicon oxide film is formed.
  • ozone may be generated from oxygen by a known method such as a discharge method at a portion different from the light irradiation portion for the shortage of reactive ozone, and introduced into the ultraviolet irradiation portion.
  • the wavelength of the ultraviolet light irradiated at this time is not particularly limited, but the wavelength of the ultraviolet light is preferably 100 nm to 450 nm, more preferably about 100 nm to 300 nm.
  • a low-pressure mercury lamp a deuterium lamp, a Xe excimer lamp, a metal halide lamp, an excimer laser, or the like can be used.
  • the intensity at the time of ultraviolet irradiation is preferably 1 mW / cm 2 to 10 W / cm 2 .
  • the polysilazane coating film By irradiating the polysilazane coating film with ultraviolet rays in an oxidizing gas atmosphere, the polysilazane is converted into a high-density silicon oxide film, that is, a high-density silica film. Control is possible by irradiation time and wavelength (energy density of light), and it is possible to select appropriately such as properly using different types of lamps in order to obtain a desired film structure. In addition to continuous irradiation, multiple irradiations may be performed, and multiple irradiations may be so-called pulse irradiation in a short time.
  • heating the coating film simultaneously with ultraviolet irradiation is preferably used to accelerate the reaction (also referred to as oxidation reaction or conversion treatment).
  • the heating method is such that the substrate is brought into contact with a heating element such as a heat block, the coating film is heated by heat conduction, the atmosphere is heated by an external heater such as a resistance wire, and infrared light such as an IR heater is applied.
  • a heating element such as a heat block
  • the coating film is heated by heat conduction
  • the atmosphere is heated by an external heater such as a resistance wire
  • infrared light such as an IR heater
  • the heating temperature is preferably in the range of 50 ° C. to 200 ° C., more preferably in the range of 80 ° C. to 150 ° C., and the heating time is preferably in the range of 1 second to 10 hours, more preferably in the range of 10 seconds to 1 °. Heating for a range of time.
  • vacuum ultraviolet irradiation having a wavelength component of 200 nm or less, which has a higher photon energy among ultraviolet irradiation. This is because when the energy is small, the effect of polysilazane is insufficient and the gas barrier property is lowered.
  • a preferable method includes a modification treatment by irradiation with vacuum ultraviolet rays.
  • the treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, which is larger than the interatomic bonding force in the compound, and the oxidation reaction by active oxygen or ozone while directly cutting the bonds of atoms by the action of photons called photon processes.
  • a rare gas excimer lamp is preferably used.
  • noble gas atoms such as Xe, Kr, Ar, Ne and the like are chemically bonded and do not form molecules, they are called inert gases.
  • a rare gas atom excited atom
  • the rare gas is xenon, e + Xe ⁇ e + Xe * Xe * + Xe + Xe ⁇ Xe 2 * + Xe
  • excimer light of 172 nm is emitted.
  • a feature of the excimer lamp is that the radiation is concentrated on one wavelength, and since only the necessary light is not emitted, the efficiency is high.
  • the luminous efficiency is higher than that of other rare gases and a lamp for irradiating a large area can be made of quartz glass, a Xe excimer lamp can be preferably used.
  • Ar excimer light (wavelength 126 nm) is the highest, and a high polysilazane layer reforming effect is expected.
  • Ar excimer light becomes so large that absorption by quartz glass cannot be ignored, it is necessary to use calcium carbonate glass instead of silicon dioxide glass.
  • calcium carbonate glass is very fragile and difficult to manufacture as a lamp that irradiates a large area.
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane film can be modified in a short time.
  • each layer is measured from this image because each layer can be detected as a difference in image density by cross-sectional observation with a transmission electron microscope.
  • the ratio of oxygen atoms and nitrogen atoms in each layer can be calculated from the composition ratio profile data in the depth direction by X-ray photoelectron spectroscopy (XPS) while scraping the gas barrier film from the film surface to the depth direction by Ar sputtering. Is possible.
  • XPS X-ray photoelectron spectroscopy
  • the irradiation time in the high illuminance process is preferably 0.1 second to 3 minutes from the viewpoint of substrate damage and film defect generation and from the viewpoint of reducing variation in gas barrier performance. More preferably, it is 0.5 second to 1 minute.
  • the oxygen concentration at the time of vacuum ultraviolet light irradiation is preferably 10 ppm to 50000 ppm (5%). More preferably, it is 100 ppm to 30000 ppm (3%).
  • concentration range a gas barrier film with excessive oxygen is not obtained, and a necessary and sufficient gas barrier property can be obtained. Moreover, it takes no long time to replace with the atmosphere in order to set a lower oxygen concentration.
  • the 172 nm vacuum ultraviolet light is absorbed by oxygen and the amount of light at 172 nm reaching the film surface is reduced, thereby reducing the efficiency of the light treatment. That is, at the time of vacuum ultraviolet light irradiation, it is preferable to perform the modification treatment in a state where the vacuum ultraviolet light efficiently reaches the coating film in a state where the oxygen concentration is as low as possible.
  • a dry inert gas is preferable, and dry nitrogen gas is particularly preferable from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the resin substrate is not particularly limited as long as it is formed of an organic material that can hold the gas barrier layer and the weathering layer.
  • PVC polyvinyl chloride
  • PE polyethylene
  • polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), and the like are preferably used.
  • optical transparency, heat resistance, inorganic layer and in terms of adhesion a heat-resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure can be preferably used.
  • the thickness of the substrate is preferably about 5 to 500 ⁇ m, more preferably 25 to 250 ⁇ m.
  • the glass transition temperature (Tg) is preferably 100 ° C. or higher.
  • a heat shrinkage rate is also low.
  • the resin substrate according to the present invention is preferably transparent. Since the substrate is transparent and the layer formed on the substrate is also transparent, a transparent gas barrier film can be obtained. Therefore, a transparent substrate such as a solar cell or an organic EL element can be obtained. Because.
  • the resin substrate using the above-described plastic or the like may be an unstretched film or a stretched film.
  • the resin substrate used in the present invention can be manufactured by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a plastic material using an extruder, extruding it with an annular die or a T-die, and rapidly cooling it.
  • an unstretched substrate is uniaxially stretched, a tenter-type sequential biaxial stretch, a tenter-type simultaneous biaxial stretch, a tubular-type simultaneous biaxial stretch, or the like, by a known method such as a substrate flow (vertical axis) direction or a substrate
  • a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the substrate, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the gas barrier film of the present invention can be used as various sealing materials and films.
  • the gas barrier film of the present invention can be particularly useful as a photoelectric conversion element and an organic EL element as an organic electronic device.
  • the gas barrier film of the present invention is transparent, when this gas barrier film is used for a photoelectric conversion element as a support, it can be configured to receive sunlight from this side, and when used for an organic EL element, Light emission efficiency is not deteriorated because light emission from the element is not hindered.
  • the organic electronic device 1 has a second electrode 5 on a substrate 6, an organic functional layer 4 on the second electrode 5, a first electrode 3 on the organic functional layer 4,
  • the gas barrier film 2 of the present invention is provided on one electrode 3. At this time, the deterioration of the resin substrate used for the gas barrier film of the present invention can be further suppressed when the outermost surface of the organic electronic device is a weather resistant layer and the gas barrier layer is laminated on the first electrode side. .
  • Examples of the organic functional layer 4 include an organic light emitting layer, an organic photoelectric conversion layer, a liquid crystal polymer layer, and the like without any particular limitation. This is particularly effective when the layer includes an organic photoelectric conversion layer.
  • the gas barrier film of the present invention is preferably applied to an organic EL element or an organic photoelectric conversion element that requires the most gas barrier property among organic electronic devices.
  • the gas barrier film of the present invention can be used for an organic photoelectric conversion element, for example.
  • the gas barrier film can be used as a substrate to receive sunlight from this side. That is, on this gas barrier film, for example, a transparent conductive thin film such as ITO can be provided as a transparent electrode to constitute a resin substrate for organic photoelectric conversion elements. Then, an ITO transparent conductive film provided on the substrate is used as an anode, a porous semiconductor layer is provided thereon, a cathode made of a metal film is further formed to form an organic photoelectric conversion element, and another seal is formed thereon.
  • the organic photoelectric conversion element can be sealed by stacking a stopper material (although it may be the same) and adhering the gas barrier film substrate to the surroundings and encapsulating the element, thereby allowing moisture such as outside air or oxygen The influence on the element can be sealed.
  • thermosetting adhesive having a reactive vinyl group of an acrylic acid oligomer or a methacrylic acid oligomer, an epoxy photocurable adhesive, or the like is used.
  • an adhesive for adhering the sealing material
  • a thermosetting adhesive having a reactive vinyl group of an acrylic acid oligomer or a methacrylic acid oligomer, an epoxy photocurable adhesive, or the like is used.
  • Commercial products ThreeBond 1152, 1153 and the like can be used.
  • TEM transmission electron microscope
  • HTO method US General Atomics
  • Vapor deposition device JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd.
  • Constant temperature and humidity oven Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular)
  • Water vapor impermeable metal Aluminum ( ⁇ 3-5mm, granular)
  • Preparation of cell for evaluating water vapor barrier property The part of the gas barrier film sample to be vapor-deposited on the gas barrier layer surface using a vacuum vapor deposition device (JEOL vacuum vapor deposition device JEE-400) before attaching a transparent conductive film Other than (12 mm ⁇ 12 mm at 9 locations) was masked, and metallic calcium was deposited.
  • the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet.
  • the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • the cell for evaluation was produced by irradiating with ultraviolet rays.
  • a water vapor barrier evaluation cell was similarly prepared for the gas barrier film that was not subjected to the bending treatment.
  • the obtained sample with both sides sealed is stored at 60 ° C. and 90% RH under high temperature and high humidity for 3000 hours. Based on the method described in Japanese Patent Application Laid-Open No. 2005-283561, the corrosion amount of metallic calcium is introduced into the cell. The amount of moisture permeated was calculated.
  • a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample was stored under the same high temperature and high humidity conditions of 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 3000 hours.
  • a pressure cooker test PCT which is a substitute test for water resistance, was performed using an AutoClave SN310 manufactured by Yamato Scientific Co., Ltd. Each gas barrier film specimen was subjected to exposure at a temperature of 121 ° C., a humidity of 100%, and 2 atmospheres for 50 hours.
  • variable temperature tensile tester Shimadzu Autograph AGS-100D
  • gas barrier film specimens cut to a width of 10 mm were subjected to conditions of 23 ° C., a distance between chucks of 50 mm, and a tensile speed of 50 mm / min.
  • the elongation rate until breaking was obtained by the following formula.
  • Elongation rate (%) [(length at break ⁇ original length) / original length] ⁇ 100 ⁇ Evaluation of yellowing color>
  • the yellow discoloration was evaluated by subjecting a gas barrier film test piece to a metal halide forced deterioration test (temperature: 63 ° C., humidity: 50%, irradiation intensity: 100 mW / cm) using an I-super UV tester (SUV-W151) manufactured by Iwasaki Electric Co., Ltd. (2 ) 200 hours after continuous introduction) The deterioration due to ultraviolet rays was visually confirmed.
  • Example 1 Comparison with gas barrier film> ⁇ Preparation of Sample 1> (Resin substrate) As the resin substrate, a 50 ⁇ m thick polyester film (A4300, manufactured by Toyobo Co., Ltd.) that was easily bonded on both sides was used.
  • stage movement was performed while controlling the atmosphere in the irradiation chamber using nitrogen and oxygen as follows using a stage movable type xenon excimer irradiation device MODEL: MECL-M-1-200 manufactured by MD Excimer.
  • the sample was reciprocated at a speed of 5 mm / second and irradiated a total of 5 reciprocations, and then the sample was taken out.
  • This apparatus is equipped with one Xe excimer lamp with an effective irradiation width of 10 mm, and corresponds to 1 second processing / pass when transported at a stage transport speed of 10 mm / sec.
  • the film thickness of the gas barrier layer 1 after the modification treatment was 60 nm.
  • the (average) film thickness after drying is After coating with a wire bar so as to be 4 ⁇ m, drying conditions: 80 ° C., drying at 1 minute, and then using a high-pressure mercury lamp in an air atmosphere, curing conditions: 400 mJ / cm 2 curing was performed to form a weather resistant layer.
  • Sample 1 was produced as described above.
  • Samples 34 to 38 were produced by changing only the gas barrier layers of Samples 21 to 25 from the gas barrier layer 1 to the gas barrier layer 2 by the following method.
  • Fine particle type type of metal oxide fine particle Content: mass% of metal oxide fine particle based on the mass of metal oxide fine particle and resin binder
  • UVA type kind of organic compound type ultraviolet absorber
  • UVA content mass% of organic compound type ultraviolet absorber based on the mass of metal oxide fine particles and resin binder
  • HALS agent content mass% of HALS agent based on the mass of metal oxide fine particles and resin binder
  • TYT55 Toyo Ink Manufacturing Co., Ltd. Rio Duras TYT55-01 (with TiO 2 and acrylic resin binder)
  • TYT65 Toyo Ink Manufacturing Co., Ltd.
  • Rio Duras TYT65-01 with TiO 2 and acrylic resin binder
  • TYT80 Toyo Ink Manufacturing Co., Ltd.
  • Rio Duras TYT80-01 (with TiO 2 and acrylic resin binder)
  • TYN64 Toyo Ink Manufacturing Co., Ltd.
  • Rio Duras TYN64-01 (ZnO, including acrylic resin binder)
  • Zr133 Sumitomo Osaka Cement Co., Ltd.
  • Tinuvin 292 T400 BASF Japan Ltd.
  • Tinuvin400 T477 BASF Japan Ltd.
  • Tinuvin477 B1 Gas barrier layer 1 (gas barrier layer of silicon oxynitride obtained by modifying polysilazane)
  • B2 Gas barrier layer 2 (gas barrier layer of a deposited film obtained by vacuum deposition of a mixture of silicon, silicon dioxide, and magnesium fluoride)
  • T400U The second layer of the weathering layer surface of Sample 2 was abbreviated as T400U.
  • UV cut property was abbreviated as UV cut property.
  • Table 1 shows the main structures of the produced gas barrier films, Sample 1 to Sample 38.
  • the gas barrier film of the present invention has good gas barrier properties, a high UV cut rate, a breaking elongation (water resistance, UV cut property) after a deterioration test, and a result of yellowing, It can be seen that there is little deterioration due to ultraviolet rays and moisture. Moreover, it turns out that the sample using the gas barrier layer 1 which modified polysilazane is excellent.
  • Example 2 Evaluation of organic thin film device>
  • Each of the gas barrier films of Samples 1 to 38 prepared in Example 1 was prepared, an organic photoelectric conversion element was prepared, and the performance of the organic thin film element was evaluated.
  • ITO indium tin oxide
  • the patterned first electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
  • Baytron P4083 manufactured by Starck Vitec, which is a conductive polymer, was applied and dried to a film thickness of 30 nm, and then heat treated at 150 ° C. for 30 minutes to form a hole transport layer. .
  • the substrate was brought into a nitrogen chamber and manufactured in a nitrogen atmosphere.
  • the substrate was heat-treated at 150 ° C. for 10 minutes in a nitrogen atmosphere.
  • 3.0% by mass of P3HT (manufactured by Prectronics: regioregular poly-3-hexylthiophene) and PCBM (manufactured by Frontier Carbon Co., Ltd .: 6,6-phenyl-C 61 -butyric acid methyl ester) on chlorobenzene Then, a liquid mixed at 1: 0.8 was prepared so that the film thickness was 100 nm while being filtered through a filter, and the film was allowed to stand at room temperature and dried. Subsequently, a heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer.
  • the substrate on which the series of functional layers is formed is moved into the vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 ⁇ 10 ⁇ 4 Pa or less, and then the substrate is fed at a deposition rate of 0.01 nm / second.
  • 0.6 nm of lithium fluoride is stacked, and then 100 nm of Al metal is stacked at a deposition rate of 0.2 nm / sec through a shadow mask having a width of 2 mm (vapor deposition is performed so that the light-receiving portion is orthogonal to 2 ⁇ 2 mm).
  • the second electrode was formed.
  • Each obtained organic photoelectric conversion element was moved to a nitrogen chamber, and sealed using a sealing cap and a UV curable resin to produce an organic photoelectric conversion element having a light receiving portion of 2 ⁇ 2 mm size.
  • gas barrier film sample for sealing and sealing of organic photoelectric conversion element
  • nitrogen gas in an environment purged with nitrogen gas (inert gas)
  • two gas barrier films were used, and an epoxy photocurable adhesive was applied as a sealing material to the surface provided with the gas barrier layer. It was produced as a film.
  • the organic photoelectric conversion element is sandwiched and adhered between the adhesive-coated surfaces of the two gas barrier film samples coated with the adhesive, and then cured by irradiating UV light from one substrate side.
  • the organic photoelectric conversion element was sealed.
  • a solar simulator (AM1.5G filter) is irradiated with light of 100 mW / cm 2 , a mask with an effective area of 4.0 mm 2 is superimposed on the light receiving part, and IV characteristics are evaluated, whereby the short circuit current density Jsc ( mA / cm 2 ), open-circuit voltage Voc (V), and fill factor FF (%) were measured for each of four light receiving portions formed on the element, and energy conversion efficiency PCE (%) determined according to the following formula 1 The four-point average value was estimated.
  • PCE (%) [Jsc (mA / cm 2 ) ⁇ Voc (V) ⁇ FF (%)] / 100 mW / cm 2
  • PCE (%) [Jsc (mA / cm 2 ) ⁇ Voc (V) ⁇ FF (%)] / 100 mW / cm 2
  • I-super UV tester (SUV-W151) manufactured by Iwasaki Electric Co., Ltd.
  • the conversion efficiency maintenance ratio after deterioration with respect to was calculated and ranked as follows.
  • Conversion efficiency maintenance ratio conversion efficiency of element using a film subjected to bending treatment / conversion efficiency of element using a film without bending treatment ⁇ 100 (%) A: 90% or more B: 60% or more, less than 90% B: 20% or more, less than 60% X: less than 20%
  • the conversion efficiency maintenance rate of the organic photoelectric conversion element produced in Example 2 was evaluated.
  • the organic photoelectric conversion elements corresponding to the gas barrier film samples 7 to 30 and the samples 34 to 38 of the present invention were all 60% or more and less than 90%, but the gas barrier film samples 1 to 6 and the sample 31 of the comparative example were used.
  • the organic photoelectric conversion elements corresponding to ⁇ 33 were all less than 20%.
  • the performance of the organic thin film device hardly changes. That is, it can be seen that both high gas barrier properties and weather resistance are achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の目的は、極めて高いガスバリア性能、紫外線カット性と耐水性に優れる耐候性のあるバリア性フィルムを提供すること、およびそれを用いた有機光電変換素子や有機EL素子の様な有機電子デバイスを提供することである。このガスバリア性フィルムは樹脂基板の少なくとも片面にガスバリア層と、前記ガスバリア層を設けた面とは反対側の面に金属酸化物微粒子と樹脂バインダーとを含む耐候層を有するガスバリア性フィルムにおいて、前記金属酸化物微粒子が金属酸化物微粒子と前記樹脂バインダーとの質量を基準として50質量%以上80質量%以下であり、かつ前記樹脂バインダーが活性光線硬化性樹脂を含んでいることを特徴とする。

Description

ガスバリア性フィルム、及びそれを用いた有機電子デバイス
 本発明は、主に電子デバイス等のパッケージ、または有機光電変換素子(有機太陽電池)や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)、液晶等のプラスチック基板といったディスプレイ材料に用いられるガスバリア性フィルム(以下、ガスバリアフィルムともいう)、ガスバリアフィルムの製造方法および該ガスバリアフィルムを有する有機光電変換素子、有機EL素子等の有機電子デバイスに関するものである。
 従来から、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を形成したガスバリアフィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品および医薬品等の変質を防止するための包装用途に広く用いられている。
 また、包装用途以外にも液晶表示素子、光電変換素子(太陽電池)、有機エレクトロルミネッセンス(有機EL)基板等で使用されている。
 この様な分野での包装材料としてアルミ箔等が広く用いられているが、使用後の廃棄処理が問題となっているほか、基本的には不透明であり、外から内容物を確認することができないという課題を抱えており、更に、太陽電池用材料では透明性が求められており、適用することができない。
 特に、液晶表示素子、有機EL素子、光電変換素子などへの応用が進んでいる透明基板には、近年、軽量化、大型化という要求に加え、ロール・トゥ・ロールでの生産が可能であること、長期信頼性や形状の自由度が高いこと、曲面表示が可能であること等の高度な要求が加わり、重くて割れやすく大面積化が困難なガラス基板に代わって透明プラスチック等のフィルム基板が採用され始めている。
 しかしながら、透明プラスチック等のフィルム基板はガラスに対しガスバリア性が劣るという問題がある。例えば、有機光電変換素子用の材料として用いた場合、ガスバリア性が劣る基板を用いると、水蒸気や空気が浸透して有機膜が劣化し、光電変換効率あるいは耐久性等を損なう要因となる。
 また、電子デバイス用基板として高分子基板を用いた場合には、酸素や水分子が高分子基板を透過して電子デバイス内に浸透、拡散し、デバイスを劣化させてしまうことや、電子デバイス内で求められる真空度を維持できないといった問題を引き起こす。
 この様な問題を解決するためにフィルム基板上に金属酸化物薄膜を形成してガスバリアフィルム基板とすることが知られている。最近では有機太陽電池、有機EL素子等の水分に弱い有機物のガスバリア性フィルムとしては、水蒸気透過率が1×10-3g/m・dayを下回るようなガスバリア性能が求められている。
 特に有機太陽電池用の材料として用いた場合は、屋外で使用されるため、太陽光の紫外線による光劣化を防止するための紫外線カット機能、また風雨にさらされることにより、特に水分によるフィルムの劣化を防止するための耐水性を兼ね備えた耐候性の付与も求められている。
 このような問題を解決するために、1層目に金属酸化物粒子を含む耐光層、2層目に有機系紫外線吸収層を含む耐候層を設けてなる耐候性樹脂フィルムが提案されているが(例えば、特許文献1)、ガスバリア層の記載はなく、無機系紫外線吸収剤は限定的な量しか使用しておらず、紫外線カット効果は十分ではない。また、水蒸気を透過させてしまい、フィルム基板を通過した水蒸気は、光電変換素子の劣化をも引き起こし、問題となる。さらに屋外で風雨にさらされるような耐水性にも問題がある。
 また、紫外線カット層の上に蒸着性化合物を蒸着した透明蒸着層のフィルムが提案されている(例えば、特許文献2)。この方法によれば、紫外線をカットできるが、透明蒸着層の水蒸気透過率が有機光電変換素子用や有機EL素子等の水分に弱い有機物のガスバリア性フィルムとして求められる1×10-3g/m・dayを下回るようなガスバリア性能が得られていない。さらに屋外で風雨にさらされる際の代用試験である耐水性試験においては、透明蒸着層の反対側より水が浸入しフィルムの加水分解によりフィルム物性が劣化して、太陽電池用のフィルムとして大きな問題となる。
 このように紫外線カット機能と耐水性を同時に兼ね備えた耐候性のある機能層を満足させるガスバリア性フィルムはない。
特開2006-326971号公報 特開2005-153166号公報
 本発明は、上記課題に鑑みなされたものであり、その目的は、極めて高いガスバリア性能、紫外線カット性と耐水性に優れる耐候性のあるバリア性フィルムを提供すること、およびそれを用いた有機光電変換素子や有機EL素子の様な有機電子デバイスを提供することにある。
 本発明の上記目的は、以下の構成により達成される。
 1.樹脂基板の少なくとも片面にガスバリア層と、前記ガスバリア層を設けた面とは反対側の面に金属酸化物微粒子と樹脂バインダーとを含む耐候層を有するガスバリア性フィルムにおいて、前記金属酸化物微粒子が金属酸化物微粒子と前記樹脂バインダーとの質量を基準として50質量%以上80質量%以下であり、かつ前記樹脂バインダーが活性光線硬化性樹脂を含んでいることを特徴とするガスバリア性フィルム。
 2.前記耐候層は光安定化剤(HALS剤)を該金属酸化物微粒子と樹脂バインダーの質量を基準として1質量%以上20質量%以下含有することを特徴とする前記1に記載のガスバリア性フィルム。
 3.前記耐候層は有機化合物系の紫外線吸収剤を該金属酸化物微粒子と樹脂バインダーの質量を基準として1質量%以上20質量%以下含有することを特徴とする前記1または2に記載のガスバリア性フィルム。
 4.前記ガスバリア層が、ポリシラザン骨格を有する珪素化合物の溶液を塗布し、波長200nm以下の真空紫外光を照射して得られたことを特徴とする前記1から3のいずれか1項に記載のガスバリア性フィルム。
 5.前記1から4のいずれか1項に記載のガスバリア性フィルムを用いたことを特徴とする有機電子デバイス。
 本発明により、極めて高いガスバリア性能、紫外線カット性と耐水性に優れる耐候性のあるガスバリア性フィルムを提供すること、およびそれを用いた有機光電変換素子や有機EL素子の様な有機電子デバイスを提供することができた。
有機電子デバイスの基本的構成の例である。
 以下、本発明とその構成要素、および本発明を実施するための形態について詳細に説明する。
 本発明は、樹脂基板のすくなくとも片面にガスバリア層、反対側の面に紫外線カット層と耐水性層を兼ね備えた耐候層を設けてなるフィルム構成となる。
 通常、酸化亜鉛や酸化チタンのような、無機系の紫外線吸収剤は紫外線カット効率は高いが、光触媒活性をもつことから限定的な量しか使用されず、多量に用いた場合、むしろラジカルを発生して、樹脂を劣化させてしまうことが知られていた(特許文献1参照)。本発明では、耐候層を活性光線硬化性樹脂を用いて硬化することにより、耐候層における金属酸化物微粒子の充填率を高くしても、樹脂の劣化が少ないことを見出した。さらに水を吸収しやすいはずの金属酸化物の含有率を増やすことは、耐水性を劣化させるはずであるが、驚くべきことに紫外線カット効率が高くなるだけでなく、バインダー樹脂より金属酸化物微粒子の比率を増やしていくことで耐水性も大幅に向上することを見出し、本発明に至った次第である。
 金属酸化物微粒子の比率を増やして、むしろ耐候性が良好になる理由は明らかではないが、紫外線、あるいは電子線を製造時に照射することにより、製造後の金属酸化物微粒子表面の光触媒活性度を軽減させ、長期間保存でもバインダー樹脂と金属酸化物微粒子の界面の親和性が保たれ、高いUVカット性と耐水性を兼ね備えた耐候層が実現できたものと推定している。
 これにより紫外線カット層と耐水性を同時に兼ね備えた耐候層を1層で達成できた。
 <ガスバリア性フィルム>
 本発明のガスバリア性フィルムは、樹脂基板の少なくとも片面にガスバリア層と、前記ガスバリア層を設けた面とは反対側の面に金属酸化物微粒子と樹脂バインダーとを含む耐候層を有するガスバリア性フィルムにおいて、前記金属酸化物微粒子が金属酸化物微粒子と前記樹脂バインダーとの質量を基準として50質量%以上80質量%以下であり、かつ前記樹脂バインダーが活性光線硬化性樹脂を含んでいることにより得られる。
 本発明のガスバリア性フィルムのガスバリア性としては、JIS K 7129B法に従って測定した水蒸気透過率(水蒸気透過度:25±0.5℃、相対湿度(90±2)%RH)が、10-3g/m・day以下であることが好ましく、更に好ましくは10-4g/m・day以下であり、特に好ましくは10-5g/m・day以下である。
 また、JIS K 7126-1987に準拠した方法で測定された酸素透過率(酸素透過度)が0.01ml/(m・0.1MPa/day)以下であることが好ましく、より好ましくは0.001ml/(m・0.1MPa/day)以下である。
 (ガスバリア性フィルムの層構成)
 本発明は、樹脂基板上の片面のガスバリア層としては1層でもよく2層、3層積層してもよい。またガスバリア層の間に応力緩和層を挟んでもよい。
 単層の場合でも積層した場合でも1つのガスバリア層の膜厚は、5nm~1000nmが好ましく、更に好ましくは10nm~500nm、特には30nm~500nmである。5nm以上とすると膜厚均一性が良好となり、ガスバリア性能に優れる。1000nm以下にすると、屈曲によるクラックが急激に入ることが極めて少なくなり、欠陥の生成を防止可能とする。
 <耐候層>
 屋外で使用される太陽電池が、太陽光の紫外線、風雨にさらされることによる劣化を防止するための機能性層である。耐候層に求められる機能としては2つあり、太陽光の紫外線をカットする紫外線カット機能、風雨、特に水による有機物の加水分解を防止するための耐水性機能に分けられる。太陽光による紫外線、風雨にさらされる実暴露試験を行った場合、耐久年数10年~20年を求められる太陽電池の場合、実暴露で劣化性を評価することは不可能である。そこで実暴露の加速評価試験のため、紫外線カット評価としては、岩崎電気株式会社製アイスーパーUVテスターを用いて、紫外線照射試験を行い劣化を評価する。本発明の耐候層に求められる紫外線カット機能としては、上記アイスーパーUVテスターを用いた紫外線照射試験(メタルハライド強制劣化テスト)において基材樹脂を劣化させ難い性能をもった層のことである。また耐水性評価としては、一般にプレッシャークッカーテストが用いられる。プレッシャークッカーテストは、温度121℃、湿度100%、2気圧で50時間投入すると実暴露20年相当といわれている。本発明の耐候層に求められる耐水性機能は、上記プレッシャークッカーテストでの劣化防止を可能にする層である。
 このように紫外線カット性と耐水性を兼ね備えた層を本発明の耐候層とする。
 耐候層は、金属酸化物微粒子とそれを固定する樹脂バインダーを有し、さらには紫外線カットを行うための有機化合物系の紫外線吸収剤、光安定化剤(以下HALS剤ともいう)を含有してもよい。金属酸化物微粒子の含有率が多い方が紫外線カット、耐水性が向上する。本発明では耐候層に金属酸化物微粒子が該金属酸化物微粒子と樹脂バインダーとの質量を基準として50質量%以上80質量%以下含まれる。80質量%より多く含ませると白濁し好ましくない。
 (耐候層の製造方法)
 耐候層の形成方法は、金属酸化物微粒子を樹脂バインダーに分散させた塗布液を作成、また樹脂バインダーが溶液でない場合、金属酸化物微粒子を溶媒に分散させた液に樹脂バインダーを溶解させ塗布液を作成し、それら塗布液を、樹脂基材に、塗布した後、活性光線硬化性樹脂に活性光線を照射し膜が形成される。塗布する方法には特に制限はなく、例えばバーコーター法、カーテンコート法、浸漬法、エアーナイフ法、スライド塗布法、ホッパー塗布法、リバースロール塗布法、グラビア塗布法、エクストリュージョン塗布法等の公知の方法を用いることができる。これらのうちより好ましくはスライド塗布法、エクストリュージョン塗布法である。
 尚、本発明において、耐候層の塗布膜の厚さは、目的に応じ適量を選ぶことが好ましいが、乾燥後の膜厚で0.1μm以上100μm以下が好ましく、さらに好ましくは、0.5μm以上50μm以下が好ましい。
 なお、上記溶剤の含有量は塗布工程後の乾燥工程等における温度条件等の条件変化によって調整できる。
 前記耐候層は活性光線として紫外線または電子線により硬化され、固定化されることが好ましい。前記、紫外線カット層塗布液に、必要に応じて、光重合開始剤、熱重合開始剤を添加し、樹脂基板上に塗布した後、紫外線または電子線を照射して樹脂基材へ固定化させればよい。
 ここで用いられる光重合開始剤としては、例えば、アセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4′-ジメトキシベンゾフェノン、4,4′-ジアミノベンゾフェノン、ミヒラーケトン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の光ラジカル開始剤等が挙げられる。一方、樹脂基材へ熱硬化方法で固定化する場合は、必要に応じて前記、耐候層塗布液に熱ラジカル発生剤等の熱重合開始剤を添加すればよい。ここで用いられる熱重合開始剤としては、例えば、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(2,4-ジメチルバレロニトリル)、2,2′-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物、ベンゾイルペルオキシド、ラウロイルペルオキシド、t-ブチルペルオキシピバレート、1,1′-ビス(t-ブチルペルオキシ)シクロヘキサン等の有機過酸化物等が挙げられる。
 電子線を照射して耐候層を硬化させる場合、加速電圧については、用いる樹脂や層の厚みに応じて適宜選定し得るが、通常加速電圧70~300kV程度で未硬化樹脂層を硬化させることが好ましい。
 なお、電子線の照射においては、加速電圧が高いほど透過能力が増加するため、基材として電子線により劣化する基材を使用する場合には、電子線の透過深さと樹脂層の厚みが実質的に等しくなるように、加速電圧を選定することにより、基材への余分の電子線の照射を抑制することができ、過剰電子線による基材の劣化を最小限にとどめることができる。
 また、照射線量は、樹脂層の架橋密度が飽和する量が好ましく、通常5~300kGy、好ましくは10~100kGy、さらには30~70kGyの範囲で選定される。
 電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型などの各種電子線加速器を用いることができる。
 紫外線を照射して耐候層を硬化させる場合、紫外線の波長は特に限定されるところではないが、紫外光の波長は100nm~450nmが好ましく、100nm~300nm程度の紫外光を照射することがより好ましい。
 光源は、低圧水銀灯、重水素ランプ、Xeエキシマーランプ、メタルハライドランプ、エキシマーレーザーなどを用いることができる。ランプの出力としては400W~30kW、強度としては100mW/cm~100kW/cm、照射エネルギーとしては10mJ/cm~5000mJ/cmが好ましく、100mJ/cm~2000mJ/cmがより好ましい。また、紫外線照射の際の強度は1mW/cm~10W/cmが好ましい。
 紫外線照射の中でもよりフォトンエネルギーが大きい200nm以下の波長成分を有する真空紫外線照射によって処理することがさらに好ましい。基材の劣化を最小限にとどめることができるからである。また、波長が短いほど光路長に存在する気体による強度の減衰が生じやすいため、それを考慮して波長が140nm以上であることが好ましい。
 (金属酸化物微粒子)
 本発明で用いる耐候層には金属酸化物微粒子を含有する。金属酸化物微粒子とは、数平均一次粒子径が1~100nmの範囲にあり紫外線防御効果も有するものを指し、例えば微粒子酸化チタン、微粒子酸化亜鉛、微粒子酸化セリウム、微粒子酸化鉄が挙げられる。これらの金属酸化物微粒子の1種以上、好ましくは2種以上を組み合わせてもよい。また、金属酸化物微粒子の形状としては、球状、針状、棒状、紡錘状、不定形状、板状など特に限定されず、さらに結晶形についてもアモルファス、ルチル型、アナターゼ型など特に限定されない。
 上記金属酸化物粒子の数平均一次粒径は、走査型電子顕微鏡(日本電子製)により10000倍の拡大写真を撮影し、ランダムに300個の粒子をスキャナーにより取り込んだ写真画像(凝集粒子は除いた)を自動画像処理解析装置LUZEX AP((株)ニレコ)ソフトウエアバージョン Ver.1.32を使用して算出した。
 さらに、これらの金属酸化物微粒子は、従来公知の表面処理、例えばフッ素化合物処理、シリコーン処理、シリコーン樹脂処理、ペンダント処理、シランカップリング剤処理、チタンカップリング剤処理、油剤処理、N-アシル化リジン処理、ポリアクリル酸処理、金属石鹸処理、アミノ酸処理、無機化合物処理、プラズマ処理、メカノケミカル処理などによって事前に表面処理されていることが好ましく、特にシリコーン、シラン、フッ素化合物、アミノ酸系化合物、金属石鹸から選ばれる一種以上の表面処理剤により撥水化処理されていることが好ましい。
 シリコーン処理の例としては、メチルヒドロゲンポリシロキサンの被覆・加熱処理が挙げられ、シランとしてはアルキルシラン処理が挙げられ、フッ素化合物としてはペルフルオロアルキルリン酸エステル、ペルフルオロポリエーテル、ペルフルオロアルキルシリコーン、ペルフルオロアルキル・ポリエーテル共変性シリコーン、ペルフルオロアルキルシランなどが挙げられ、アミノ酸系化合物としては、N-ラウロイル-L-リジンなどが挙げられ、さらに金属石鹸としてはステアリン酸アルミニウムなどが挙げられる。
 酸化物微粒子の市販品としては、例えば、微粒子酸化亜鉛としては、“FINEX-25”、“FINEX-50”、“FINEX-75”{以上、堺化学工業(株)};“MZ500”シリーズ、“MZ700”シリーズ{以上、テイカ(株)}“ZnO-350”、“スミファイン”シリーズ{以上、住友大阪セメント(株)}、“TYN”シリーズ{以上、東洋インキ(株)}等が挙げられる。微粒子酸化チタンとしては、“TTO-55、51、S、M、D”シリーズ{以上、石原産業(株)};“JR”シリーズ、“JA”シリーズ{以上、テイカ(株)}、“TYT”シリーズ{以上、東洋インキ(株)}等が挙げられる。また、微粒子酸化セリウムとしては、(株)ニッキ又はセイミケミカル(株)から販売されている高純度酸化セリウムが含まれる。このうち特に酸化チタン、酸化亜鉛であることが好ましい。
 (有機化合物系の紫外線吸収剤)
 本発明に用いる耐候層は、200~400nmの領域で光を吸収する有機化合物系の紫外線吸収剤を入れることで金属酸化物微粒子だけより紫外線による劣化をさらに防止することができる。またこの有機化合物系の紫外線吸収剤の可視光領域の透過率は高いことが好ましい。
 本発明の耐候層に好ましく含ませることのできる有機化合物系の紫外線吸収剤としては、ベンゾトリアゾール系、トリアジン系等が挙げられる。ベンゾトリアゾール系としては、例えば2,2-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6[(2H-ベンゾトリアゾール-2-イル)フェノール]]、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール等を挙げることができる。トリアジン系としては、例えば2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール等を挙げることができる。
 市販品としては、BASFジャパン社製のTINUVINシリーズ、ADEKA社製のアデカスタブシリーズなどの中から選ぶことができる。
 耐候層中における有機化合物系の紫外線吸収剤の含有量は、金属酸化物微粒子と樹脂バインダーとの質量を基準として1質量%以上20質量%以下であることが好ましい。
 (光安定化剤(HALS剤)、金属不活性化剤)
 耐候層中に光安定化剤、または金属の触媒作用により劣化を防止する金属不活性化剤を使用することもできる。HALSとは、紫外線や熱により劣化し生成したラジカルを捕捉することで周りの樹脂の劣化を防止するものである。HALS剤としては、ヒンダードアミン系等が使用できる。ヒンダードアミン系としては、例えばビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ポリ[[6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]]、ジブチルアミン・1,3,5-トリアジン・N,N-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物等を挙げることができる。金属不活性化剤としては、例えば2,3-ビス[[3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオニル]]プロピオノヒドラジド等を挙げることができる。
 市販品としては、BASFジャパン社製のTINUVINシリーズ、ADEKA社製のアデカスタブシリーズなどの中から選ぶことができる。
 耐候層中における光安定化剤(HALS剤)の含有量は、金属酸化物微粒子と樹脂バインダーの質量を基準として1質量%以上20質量%以下であることが好ましい。
 (樹脂バインダー)
 本発明の樹脂バインダーは、紫外線や電子線等の活性光線の照射を受けて硬化する活性光線硬化性樹脂を含んでいる。当該硬化性樹脂としては例えば下記に列記したような種類の樹脂を好ましく使用することができる。
 (1.1)シリコーン樹脂
 Si-O-Siを主鎖としたシロキサン結合を有するシリコーン樹脂を使用することができる。当該シリコーン樹脂として、所定量のポリオルガノシロキサン樹脂よりなるシリコーン系樹脂が使用可能である(例えば特開平6-9937号公報参照)。
 このようなポリオルガノシロキサン樹脂は、下記一般式(A)が構成単位として含まれ、その形状は鎖状、環状、網状形状のいずれであってもよい。
 一般式(A)   ((R)(R)SiO)
 上記一般式(A)中、「R」及び「R」は同種又は異種の置換もしくは非置換の一価炭化水素基を示す。具体的には、「R」及び「R」として、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、シクロヘキシル基、シクロオクチル基等のシクロアルキル基、またはこれらの基の炭素原子に結合した水素原子をハロゲン原子、シアノ基、アミノ基などで置換した基、例えばクロロメチル基、3,3,3-トリフルオロプロピル基、シアノメチル基、γ-アミノプロピル基、N-(β-アミノエチル)-γ-アミノプロピル基などが例示される。「R」及び「R」は水酸基およびアルコキシ基から選択される基であってもよい。また、上記一般式(A)中、「n」は50以上の整数を示す。
 ポリオルガノシロキサン樹脂は、通常、トルエン、キシレン、石油系溶剤のような炭化水素系溶剤、またはこれらと極性溶剤との混合物に溶解して用いられる。また、相互に溶解しあう範囲で、組成の異なるものを配合して用いても良い。
 ポリオルガノシロキサン樹脂の製造方法は、特に限定されるものではなく、公知のいずれの方法も用いることができる。例えば、オルガノハロゲノシランの一種または二種以上の混合物を加水分解ないしアルコリシスすることによって得ることができ、ポリオルガノシロキサン樹脂は、一般にシラノール基またはアルコキシ基等の加水分解性基を含有し、これらの基をシラノール基に換算して1~10質量%含有する。
 これらの反応は、オルガノハロゲノシランを溶融しうる溶媒の存在下に行うのが一般的である。また、分子鎖末端に水酸基、アルコキシ基またはハロゲン原子を有する直鎖状のポリオルガノシロキサンを、オルガノトリクロロシランと共加水分解して、ブロック共重合体を合成する方法によっても得ることができる。このようにして得られるポリオルガノシロキサン樹脂は一般に残存するHClを含むが、本実施形態の組成物においては、保存安定性が良好なことから、10ppm以下、好ましくは1ppm以下のものを使用するのが良い。
 (1.2)エポキシ樹脂
 3,4-エポキシシクロヘキシルメチル3′-4′-シクロヘキシルカルボキシレート等の脂環式エポキシ樹脂(国際公開第2004/031257号パンフレット参照)を使用することができ、その他、スピロ環を含有したエポキシ樹脂や鎖状脂肪族エポキシ樹脂等も使用することができる。
 (1.3)アリルエステル化合物を含有する樹脂
 芳香環を含まない臭素含有(メタ)アリルエステル(特開2003-66201号公報参照)、アリル(メタ)アクリレート(特開平5-286896号公報参照)、アリルエステル樹脂(特開平5-286896号公報、特開2003-66201号公報参照)等を好ましく用いることができる。
 (1.4)アクリレート系樹脂
 本発明において用いられるアクリレート樹脂として、脂環式炭化水素骨格からなる多環式炭化水素系化合物であるアクリレート樹脂でもよく、アクリル酸、メタクリル酸、メチルメタクリレート等があげられる。
 また、エポキシ樹脂の硬化剤としては、特に限定されるものではないが、酸無水物硬化剤やフェノール硬化剤等を例示することができる。
 酸無水物硬化剤の具体例としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、あるいは3-メチル-ヘキサヒドロ無水フタル酸と4-メチル-ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸等を挙げることができる。
 また、重合開始剤は、アクリル系モノマーの重合であり、ラジカルを発生する開始剤であることが好ましく、アゾ系開始剤、過酸化物系開始剤を用いることができる。
 油溶性の過酸化物系あるいはアゾ系開始剤が好ましく、一例を挙げると、例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等の過酸化物系開始剤、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(2,4-ジメチルバレロニトリル)、2,2′-アゾビス(2,3-ジメチルブチロニトリル)、2,2′-アゾビス(2-メメチルブチロニトリル)、2,2′-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2′-アゾビス(2-イソプロピルブチロニトリル)、1,1′-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2′-アゾビス(4-メチキシ-2,4-ジメチルバレロニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、4,4′-アゾビス(4-シアノバレリン酸)、ジメチル-2,2′-アゾビスイソブチレート等がある。
 特に、ターシャリイソブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイドなどの有機過酸化物類、過酸化水素等がこのましい。
 これら重合開始剤は、重合性単量体に対して、0.01~20質量%、特に、0.1~10質量%使用されるのが好ましい。
 また、必要に応じて硬化促進剤が含有される。硬化促進剤としては、硬化性が良好で、着色がないものであれば、特に限定されるものではないが、例えば、2-エチル-4-メチルイミダゾール(四国化成工業社製2E4MZ)等のイミダゾール類、3級アミン、4級アンモニウム塩、ジアザビシクロウンデセン等の双環式アミジン類とその誘導体、ホスフィン、ホスホニウム塩等を用いることができ、これらを1種、あるいは2種以上を混合して用いてもよい。
 なお、本発明の樹脂バインダー中、本発明の効果が損なわれない範囲で、活性光線硬化性樹脂以外の他の樹脂バインダーが含まれても良い。
 (金属酸化物微粒子と樹脂バインダーの混合方法)
 本発明で用いられる金属酸化物微粒子は、樹脂バインダーに公知の技術で混合される。通常は、樹脂バインダーを溶液とし、この溶液に攪拌機を用いて攪拌しながら、金属酸化物微粒子は混合される。攪拌時に添加されてもよい分散剤、その他の添加剤は、必要に応じて、金属酸化物微粒子の投入の前後または同時に添加されて攪拌される。樹脂バインダーが粘度が高い場合や固体状の場合などは、適宜、溶媒を添加してもよい。また分散が容易でない場合は、金属酸化物微粒子と樹脂バインダーと溶媒を加え、ヘンシェルミキサー、スーパーミキサーなどの高剪断力混合機を用いて均一に混合する。
 溶媒としては特に限定されるものではなく、メチルエチルケトン、アセトン、メチルイソブチルケトン等のケトン類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレンなどの芳香族化合物、ジエチルエーテル、テトラヒドロフランなどのエーテル類、メタノール、エタノール、イソプロパノール等のアルコール類などを例示することができる。特にトルエン、キシレンなどの芳香族系溶媒、ジクロロメタン、四塩化炭素などの塩素系溶媒、n-ヘキサン、シクロヘキサンなどの炭化水素系溶媒、シクロヘキサノン、メチルイソブチルケトンなどのケトン系溶媒等の樹脂バインダーを溶解、膨潤する溶媒を用いる。
 (ガスバリア層の形成)
 本発明のガスバリア性フィルムは、樹脂基板に形成された耐候層の反対側の面に、ガスバリア層を有する。ガスバリア層の形成方法としては、真空または常圧下での物理蒸着、化学蒸着により、珪素化合物や酸化アルミ等の金属酸化物、金属窒化物、金属酸窒化物の薄膜層を形成する方法の他に、ガスバリア層の形成の好ましい態様の例としては、ポリシラザン化合物を含有する塗布液を塗布乾燥後、酸素及び水蒸気を含む窒素雰囲気下で紫外線照射により改質処理し、ガスバリア層を形成する方法が挙げられる。
 ポリシラザン化合物の塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 本発明で用いられる「ポリシラザン」とは、珪素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Siおよび両方の中間固溶体SiO等のセラミック前駆体ポリマーである。下記一般式(1)で表される部分構造を有する化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000001
 式中、R、R、およびRのそれぞれは、独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基などを表す。
 本発明では、得られるガスバリア膜としての緻密性の観点からは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。
 一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基板との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
 パーヒドロポリシラザンは直鎖構造と6および8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体または固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。
 低温でセラミック化するポリシラザンの別の例としては、上記一般式(1)のポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等が挙げられる。
 ポリシラザンを含有する液体を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは好ましくない。具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリコロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度、等目的にあわせて選択し、複数の溶剤を混合しても良い。
 ポリシラザン含有塗布液中のポリシラザン濃度は目的とするシリカ膜厚や塗布液のポットライフによっても異なるが、0.2~35質量%程度である。
 有機ポリシラザンは、そのSiと結合する水素部分が一部アルキル基等で置換された誘導体であってもよい。アルキル基、特にもっとも分子量の少ないメチル基を有することにより下地基板との接着性が改善され、かつ硬くてもろいシリカ膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる。
 酸化珪素化合物への転化を促進するために、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製アクアミカNAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140などが挙げられる。なかでも、触媒を含有しないパーヒドロポリシラザンからなる、NN120、NN110を用いることが、さらに緻密でガスバリア性の高いガスバリア層を形成する上で最も好ましい。
 また、塗布された膜は溶媒が除去された均一な乾燥膜を得る上で、アニールする態様が好ましい。アニール温度は、好ましくは60℃~200℃、更に好ましくは70℃~160℃である。アニール時間は、好ましくは5秒~24時間程度、更に好ましくは10秒~2時間程度である。
 このように、次工程に続く転化処理前に、前述した範囲でアニールを行うことにより、均一な塗布膜を安定に得ることができる。
 尚、アニールは、一定温度で行ってもよく、段階的に温度を変化させてもよく、連続的に温度を変化(昇温および/または降温)させてもよい。アニールの際には、反応を安定化するために湿度を調節することが好ましく、通常30%RHから90%RH、より好ましくは40%RHから80%RHである。
 <改質処理>
 改質処理とは、セラミック前駆体無機ポリマーであるポリシラザン含有の塗布膜に紫外線などの照射、水蒸気酸化あるいは加熱処理(乾燥処理を含む)などにより、二酸化珪素等の珪素酸化物または酸化窒化珪素化合物に転化する処理をいう。
 本発明で好ましく用いられる改質処理は紫外線照射処理である。酸素の存在下で紫外光を照射することで活性酸素やオゾンが発生し、転化反応をより進行させることができる。
 この活性酸素やオゾンは非常に反応性が高く、ポリシラザンの場合、珪素酸化物の前駆体であるポリシラザン塗布膜は、シラノールを経由することなく直接酸化されることで、より高密度で欠陥の少ない珪素酸化物膜が形成される。
 更に反応性オゾンの不足分を光照射部とは異なる部分で、放電法などの公知の方法により酸素からオゾンを生成し、紫外線照射部に導入しても良い。
 このときに照射する紫外線の波長は特に限定されるところではないが、紫外光の波長は100nm~450nmが好ましく、100nm~300nm程度の紫外光を照射することがより好ましい。
 光源は、低圧水銀灯、重水素ランプ、Xeエキシマーランプ、メタルハライドランプ、エキシマーレーザーなどを用いることができる。ランプの出力としては400W~30kW、強度としては100mW/cm~100kW/cm、照射エネルギーとしては10mJ/cm~5000mJ/cmが好ましく、100mJ/cm~2000mJ/cmがより好ましい。また、紫外線照射の際の強度は1mW/cm~10W/cmが好ましい。ポリシラザン塗布膜に酸化性ガス雰囲気下で紫外線を照射することにより、ポリシラザンが高密度の珪素酸化物膜、すなわち高密度シリカ膜に転化するが、該シリカ膜の膜厚や密度は紫外線の強度、照射時間、波長(光のエネルギー密度)により制御が可能であり、所望の膜構造を得るためにランプの種類を使い分ける等、適宜選択することが可能である。また、連続的に照射するだけでなく複数回の照射を行ってもよく、複数回の照射が短時間ないわゆるパルス照射で有っても良い。
 また、紫外線照射と同時に該塗膜を加熱することも、反応(酸化反応、転化処理ともいう)を促進するために好ましく用いられる。加熱の方法は、ヒートブロック等の発熱体に基板を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターの様な赤外領域の光を用いた方法等が挙げられるが、特に限定はされない。塗膜の平滑性を維持できる方法を適宜選択してよい。
 加熱する温度としては、50℃~200℃の範囲が好ましく、更に好ましくは80℃~150℃の範囲であり、加熱時間としては1秒~10時間の範囲が好ましく、更に好ましくは10秒~1時間の範囲で加熱することである。
 紫外線照射の中でもよりフォトンエネルギーが大きい200nm以下の波長成分を有する真空紫外線照射によって処理することがさらに好ましい。エネルギーが小さいとポリシラザンの効果が不十分となりガスバリア性が低くなる為である。
 <200nm以下の波長成分を有する真空紫外線照射による改質処理>
 本発明において、好ましい方法として、真空紫外線照射による改質処理が挙げられる。真空紫外線照射による処理は、化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、膜の形成を行う方法である。なかでもエキシマ光が特に好ましい。
 特に、本発明の好ましい方法であるポリシラザン膜の処理において、単層を塗布してから、雰囲気を一定に保ってエキシマ照射処理を行うとポリシラザン層の膜厚方向に組成の異なる2層の改質膜が形成される。機構は明確にはなっていないが、表面に近い改質層の密度が高いこと、処理時間によって表面に近い改質層の膜厚が変化する等のことから、本発明者らは光エネルギーによるシラザン化合物の直接切断と、気相で生成する活性酸素やオゾンによる表面酸化反応が同時に進行し、改質処理の表面側と内側で改質速度差が生じ、その結果連続する2層の改質層が形成されるものと推定している。
 これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。
 Xe、Kr、Ar、Neなどの希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には
  e+Xe→e+Xe
  Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。加えて発光効率が他の希ガスよりも高いことや大面積へ照射するためのランプを石英ガラスで作製できることからXeエキシマランプを好ましく使用することが出来る。
 エネルギーの観点だけからだとArエキシマ光(波長126nm)が最も高く、高いポリシラザン層の改質効果が期待される。しかし、Arエキシマ光は石英ガラスでの吸収が無視できないほど大きくなるため、二酸化珪素ガラスではなく炭酸カルシウムガラスを用いる必要がある。しかし、炭酸カルシウムガラスは非常に割れやすく大面積を照射するランプとしては製造が困難であるのが実情である。
 Xeエキシマランプは波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン膜の改質を実現できる。したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。
 各層の膜厚は透過型電子顕微鏡による断面観察により、各層が画像濃度の違いとして検出することが可能であるため、この画像から計測する。また、各層内の酸素原子と窒素原子の比率は、Arスパッタにより膜面から深さ方向へガスバリア膜を削りながらX線光電子分光法(XPS)により深さ方向の組成比プロファイルのデータから算出が可能である。
 <真空紫外線の照射時間>
 照射時間は、任意に設定可能であるが、基板ダメージや膜欠陥生成の観点およびガスバリア性能のバラつき低減の観点から高照度工程での照射時間は0.1秒~3分間が好ましい。より好ましくは0.5秒~1分である。
 <真空紫外光照射時の酸素濃度>
 本発明における、真空紫外光照射時の酸素濃度は10ppm~50000ppm(5%)とすることが好ましい。より好ましくは、100ppm~30000ppm(3%)である。前記の濃度範囲では、酸素過多のガスバリア膜となることがなく、必要十分なガスバリア性が得られる。またより低い酸素濃度に設定するために大気との置換に長時間を要することもない。
 発明者らの検討によると、ポリシラザン含有塗膜中には、塗布時に酸素および微量の水分が混入し、更には塗膜以外の支持体にも吸着酸素や吸着水があり、照射庫内に敢えて酸素を導入しなくとも改質反応に要する酸素を供給する酸素源は十分にあることが分かった。むしろ、酸素ガスが多く(5~10%レベル)含まれる雰囲気で真空紫外光を照射した場合、改質後のガスバリア膜が酸素過多の構造となり、ガスバリア性が劣化する。また、前述した様に172nmの真空紫外光が酸素により吸収され膜面に到達する172nmの光量が減少してしまい、光による処理の効率を低下することになる。すなわち、真空紫外光照射時には、できるだけ酸素濃度の低い状態で、真空紫外光が効率良く塗膜まで到達する状態で改質処理することが好ましい。
 真空紫外光照射時にこれら酸素以外のガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
 (樹脂基板)
 樹脂基板は、ガスバリア層、耐候層を保持することができる有機材料で形成されたものであれば特に限定されるものではない。
 例えばアクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、トリアセチルセルロース(TAC)、ジアセチルセルロース(DAC)、セロースアセテートプロピオネート(CAP)等の各樹脂基板、またはフッ素系樹脂、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、更には前記プラスチックを2層以上積層して成る樹脂基板等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などが好ましく用いられ、また、光学的透明性、耐熱性、無機層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムが好ましく用いることができる。基板の厚みは5~500μm程度が好ましく、更に好ましくは25~250μmである。本発明のガスバリア性フィルムは発光素子として使用する場合も鑑みて、ガラス転移温度(Tg)が100℃以上であることが好ましい。また、熱収縮率も低いことが好ましい。
 さらに、本発明に係る樹脂基板は透明であることが好ましい。基板が透明であり、基板上に形成する層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、太陽電池や有機EL素子等の透明基板とすることも可能となるからである。
 また、上記に挙げたプラスチック等を用いた樹脂基板は、未延伸フィルムでもよく、延伸フィルムでもよい。
 本発明に用いられる樹脂基板は、従来公知の一般的な方法により製造することが可能である。例えば、材料となるプラスチックを押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基板を製造することができる。また、未延伸の基板を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基板の流れ(縦軸)方向、または基板の流れ方向と直角(横軸)方向に延伸することにより延伸基板を製造することができる。この場合の延伸倍率は、基板の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。
 <ガスバリア性フィルムの用途>
 本発明のガスバリア性フィルムは、種々の封止用材料、フィルムとして用いることができる。
 本発明のガスバリア性フィルムは、有機電子デバイスとして光電変換素子、有機EL素子に特に有用に用いることができる。本発明のガスバリア性フィルムが透明であると、このガスバリア性フィルムを支持体として光電変換素子に用いた場合、この側から太陽光の受光を行うように構成でき、有機EL素子に用いた場合、素子からの発光を妨げないため発光効率を劣化させない。
 (有機電子デバイスの構成)
 本発明の有機電子デバイスの基本的構成の例を図1に示す。
 有機電子デバイス1は、基材6の上に第二電極5を有し第二電極5の上に有機機能層4を有し、有機機能層4の上に第一電極3を有し、第一電極3の上に本発明のガスバリア性フィルム2を有する。この際、有機電子デバイスの最表面が耐候層となり、ガスバリア層が第一電極側となるように積層されるほうが、本発明のガスバリア性フィルムに用いられる樹脂基板の劣化をより抑制することができる。
 有機機能層4としては、有機発光層、有機光電変換層、液晶ポリマー層など特に限定無く挙げることができるが、本発明は、機能層が薄膜でかつ電流駆動系のデバイスである有機発光層、有機光電変換層を含む層である場合において、特に有効である。
 即ち、本発明のガスバリア性フィルムは、有機電子デバイスの中でも最もガスバリア性が必要である有機EL素子、または、有機光電変換素子に適用することが好ましい。
 (封止)
 本発明のガスバリア性フィルムは、例えば有機光電変換素子に用いることができる。有機光電変換素子に用いる際に、このガスバリア性フィルムを基材として用いてこの側から太陽光の受光を行うように構成できる。即ち、このガスバリア性フィルム上に、例えば、ITO等の透明導電性薄膜を透明電極として設け、有機光電変換素子用樹脂基材を構成することができる。そして、基材上に設けられたITO透明導電膜を陽極としてこの上に多孔質半導体層を設け、更に金属膜からなる陰極を形成して有機光電変換素子を形成し、この上に別の封止材料を(同じでもよいが)重ねて前記ガスバリア性フィルム基材と周囲を接着、素子を封じ込めることで有機光電変換素子を封止することができ、これにより外気の湿気や酸素等のガスによる素子への影響を封じることが出来る。
 封止材を接着するための接着剤(シール材)としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する熱硬化型接着剤や、エポキシ系の光硬化型接着剤等を挙げることができる。市販品としては、スリーボンド1152、1153等を使用することができる。
 上記の各測定方法および下述の実施例で用いた測定方法などを以下に記す。
 <測定方法>
 <各層の膜厚>
 透過型電子顕微鏡(TEM)による断面観察により、画像の濃淡および電子線ダメージの度合いから各層の膜厚を測定した。
 (膜厚方向の断面のTEM画像)
 断面TEM観察
 観察試料を以下のFIB加工装置により薄片作成後、TEM観察を行う。このとき試料に電子線を照射し続けると電子線ダメージを受ける部分とそうでない部分にコントラスト差が現れるため、その領域を測定することで算出できる。改質処理側で密度が高い領域は電子線ダメージを受けにくいが、そうでない部分は電子線ダメージを受け変質が確認される。
 (FIB加工)
 装置:SII製SMI2050
 加工イオン:(Ga 30kV)
 試料厚み:100nm~200nm
 (TEM観察)
 装置:日本電子製JEM2000FX(加速電圧:200kV)
 電子線照射時間:5秒から60秒
 <水蒸気透過率(WVTR)の測定>
 前述のJIS K 7129B法に従って水蒸気透過率を測定するには種々の方法が提案されている。例えば、カップ法、乾湿センサー法(Lassy法)、赤外線センサー法(mocon法)が代表として上げられるが、ガスバリア性が向上するに伴って、これらの方法では測定限界に達してしまう場合があり、以下に示方法も提案されている。水蒸気透過率の測定方法は特に限定するところではないが、本発明に於いてはCa法による評価を行った。
 (前記以外の水蒸気透過率測定法)
 HTO法(米General Atomics社)
 三重水素を用いて水蒸気透過率を算出する方法。
 A-Star(シンガポール)の提案する方法(WO05/95924)
 水蒸気または酸素により電気抵抗が変化する材料(例えばCa、Mg)をセンサーに用いて電気抵抗変化とそれに内在する1/f揺らぎ成分から水蒸気透過率を算出する方法。
 <本発明評価に用いたCa法>
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 水蒸気バリア性評価用セルの作製
 ガスバリア性フィルム試料のガスバリア層面に、真空蒸着装置(日本電子製真空蒸着装置JEE-400)を用い、透明導電膜を付ける前のガスバリア性フィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、屈曲前後のガスバリア性の変化を確認するために、上記屈曲の処理を行わなかったガスバリア性フィルムについても同様に、水蒸気バリア性評価用セルを作製した。
 得られた両面を封止した試料を60℃、90%RHの高温高湿下で3000時間保存し、特開2005-283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。
 なお、ガスバリア性フィルム面から以外の水蒸気の透過が無いことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い3000時間経過後でも金属カルシウム腐食が発生しないことを確認した。
 (フィルムの透過率測定)
 分光光度計UV-2500PC:島津製作所製を用いて入射光量に対する全透過光量を測定した。その550nm、380nm、360nmの測定結果を下記表1に示す。
 <耐候性の評価>
 耐水性と紫外線カット性を下記の劣化テストを行い、破断伸度を測定することで評価した。
 ヤマト科学株式会社製AutoClave SN310を用いて耐水性の代用試験であるプレッシャークッカーテストPCTを行った。各ガスバリア性フィルム試験片を、温度121℃、湿度100%、2気圧で50時間さらす事により行った。
 同様に紫外線カット性の評価として岩崎電気株式会社製アイスーパーUVテスター(SUV-W151)を用いて、各ガスバリア性フィルム試験片のメタルハライド強制劣化テスト(温度:63℃、湿度:50%、照射強度:100mW/cm、連続200時間投入)を行った。
 耐水性の代用試験後の各試料、メタルハライド強制劣化テスト後の各試験片、及びテスト前の各試験片を用いて、以下のようにして、破断伸度を測定した。
 温度可変式引張試験機(「島津オートグラフAGS-100D」;島津製作所製)を用い、幅10mmに切り取ったガスバリア性フィルム試験片を、23℃、チャック間距離50mm、引張速度50mm/分の条件で引っ張って、破断に至るまでの伸び率を以下の式により求めた。
 伸び率(%)=〔(破断時の長さ-元の長さ)/元の長さ〕×100
 <黄変色の評価>
 黄変色の評価は、ガスバリア性フィルム試験片を岩崎電気株式会社製アイスーパーUVテスター(SUV-W151)を用いてメタルハライド強制劣化テスト(温度:63℃、湿度:50%、照射強度:100mW/cm、連続200時間投入)後紫外線による劣化を目視で確認して行った。
 下記の基準で評価した。
    ◎:劣化前同等の透明性がある
    ○:ほとんど透明である
    △:やや黄色みを帯びている
    ×:黄色である
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 <実施例1:ガスバリア性フィルムでの比較>
 <試料1の作製>
 (樹脂基板)
 樹脂基板として、両面に易接着加工された50μmの厚さのポリエステルフィルム(東洋紡績株式会社製、A4300)の基板を用いた。
 (ガスバリア層1の形成)
 SAMCO社製UVオゾンクリーナー Model UV-1を用いて照射時の雰囲気を窒素置換しながら、オゾン濃度を300ppmとなるように調整して、80℃5分間の表面処理を行った。
 前記、樹脂基板の片面に、ケイ素化合物含有液としてパーヒドロポリシラザンの10質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカNN120-10、無触媒タイプ)を用い、スピンコート(5000rpm、60秒)にて塗布後、80℃にて10分間乾燥し、ケイ素化合物を含有する膜を形成した。
 その後、MDエキシマ社製のステージ可動型キセノンエキシマ照射装置MODEL:MECL-M-1-200を用いて、照射庫内の雰囲気を窒素と酸素を用いて下記の様に制御しながら、ステージの移動速度を5mm/秒の速さで試料を往復搬送させて、合計5往復照射したのち、試料を取り出した。本装置は有効照射幅10mmのXeエキシマランプが1本装着されており、ステージ搬送速度10mm/secで搬送した場合、1秒処理/パスに相当する。尚、改質処理後のガスバリア層1の膜厚は60nmであった。
 (条件)
 エキシマ光強度:60mW/cm(中心波長172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:100℃
 (照射雰囲気の条件)
 1~3往復目:酸素濃度0.05%
 4~5往復目:酸素濃度1.5%
 (耐候層の形成)
 上記樹脂基板のガスバリア層1を形成した反対面上に、東洋インキ株式会社製 UV硬化型ハードコート剤 リオジュラスTYT55-01(TiO、アクリル樹脂込み)を塗布、乾燥後の(平均)膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、1分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;400mJ/cm硬化を行い、耐候層を形成した。
 以上のようにして試料1を作製した。
 <試料2の作製>
 試料1の耐候層の上に、BASFジャパン株式会社製Tinuvin400(有機系の紫外線吸収剤)を含有率10質量%になるようにJSR株式会社製オプスターZ7501(アクリル樹脂)と混合し、乾燥後の(平均)膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、1分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;400mJ/cm硬化を行い、2層目を形成した。
 <試料3の作製>
 試料1の耐候層の上に、試料1同様の方法でガスバリア層1を作製した。
 <試料4~33の作製>
 試料1の作成と同様にして、但し試料1の耐候層の塗布液を作製する際に、表1記載の粒子種類、含有率、有機化合物系の紫外線吸収剤(以下UVAともいう)種、UVAの含有率、HALS剤種、HALS剤の含有率になるよう調整して乾燥後の(平均)膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、1分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;400mJ/cm硬化を行い、耐候層を形成して試料4~33を作製した。
 <試料34~38の作製>
 試料21~25のガスバリア層のみを以下の方法でガスバリア層1からガスバリア層2に変えて試料34~38を作製した。
 (ガスバリア層2の形成)
 耐候層の反対側の基材表面に、電子線加熱方式の連続巻き取り式真空蒸着機を用い、珪素と二酸化珪素とフッ化マグネシウムの混合物(混合比46モル%:46モル%:8モル%)を原料として加熱真空蒸着し透明蒸着層を得た。(透明蒸着層の厚みは約10nm)
 なお、表1で使用した金属酸化物微粒子、有機化合物系の紫外線吸収剤及び略記した記号は以下のとおりである。
微粒子種:金属酸化物微粒子の種類
微粒子含有量:金属酸化物微粒子と樹脂バインダーとの質量を基準とした金属酸化物微粒子の質量%
UVA種:有機化合物系の紫外線吸収剤の種類
UVA含有量:金属酸化物微粒子と樹脂バインダーとの質量を基準とした有機化合物系の紫外線吸収剤の質量%
HALS剤含有量:金属酸化物微粒子と樹脂バインダーとの質量を基準としたHALS剤の質量%
TYT55:東洋インキ製造株式会社リオデュラスTYT55-01(TiO、アクリル樹脂バインダー込み)
TYT65:東洋インキ製造株式会社リオデュラスTYT65-01(TiO、アクリル樹脂バインダー込み)
TYT80:東洋インキ製造株式会社リオデュラスTYT80-01(TiO、アクリル樹脂バインダー込み)
TYN64:東洋インキ製造株式会社リオデュラスTYN64-01(ZnO、アクリル樹脂バインダー込み)
Zr133:住友大阪セメント株式会社スミセファインZr-133(ZnO、アクリル樹脂バインダー込み)
T292:BASFジャパン株式会社Tinuvin292
T400:BASFジャパン株式会社Tinuvin400
T477:BASFジャパン株式会社Tinuvin477
B1:ガスバリア層1(ポリシラザンを改質処理した酸化窒化珪素のガスバリア層)
B2:ガスバリア層2(珪素と二酸化珪素とフッ化マグネシウムの混合物を真空蒸着した蒸着膜のガスバリア層)
 なお、前記試料2の耐候層面2層目はT400Uと略記した。また、紫外線カット性はUVカット性と略記した。
 作製したガスバリア性フィルム、試料1~試料38の主な構成を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 (評価)
 前記した測定方法で、水蒸気透過率、フィルムの光線透過率、破断伸度、黄変色を評価した。試料1~38の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなように本発明のガスバリア性フィルムはガスバリア性が良好で、紫外線のカット率が高く、劣化テスト後の破断伸度(耐水性、紫外線カット性)、及び黄変色の結果から、紫外線や水分による劣化が少ないことがわかる。またポリシラザンを改質処理したガスバリア層1を用いた試料がすぐれていることがわかる。
 <実施例2:有機薄膜デバイスの評価>
 実施例1で作製した試料1~38のガスバリア性フィルムそれぞれを準備し、有機光電変換素子を作製して、有機薄膜素子の性能を評価した。
 <有機光電変換素子の作製方法>
 ガスバリア性フィルムに、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗10Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて2mm幅にパターニングし第1の電極を作製した。
 パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を膜厚が30nmになるように塗布乾燥した後、150℃で30分間熱処理させ正孔輸送層を製膜した。
 これ以降は、基板を窒素チャンバー中に持ち込み、窒素雰囲気下で作製した。
 まず、窒素雰囲気下で上記基板を150℃で10分間加熱処理した。次に、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ-3-ヘキシルチオフェン)とPCBM(フロンティアカーボン社製:6,6-フェニル-C61-ブチリックアシッドメチルエステル)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタでろ過しながら膜厚が100nmになるように塗布を行い、室温で放置して乾燥させた。続けて、150℃で15分間加熱処理を行い、光電変換層を製膜した。
 次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10-4Pa以下にまで真空蒸着装置内を減圧した後、蒸着速度0.01nm/秒でフッ化リチウムを0.6nm積層し、更に続けて、2mm幅のシャドウマスクを通して(受光部が2×2mmに成るように直交させて蒸着)、蒸着速度0.2nm/秒でAlメタルを100nm積層することで第2の電極を形成した。
 得られた各々の有機光電変換素子を窒素チャンバーに移動し、封止用キャップとUV硬化樹脂を用いて封止を行って、受光部が2×2mmサイズの有機光電変換素子を作製した。
 (封止用のガスバリア性フィルム試料の作製および有機光電変換素子の封止)
 窒素ガス(不活性ガス)によりパージされた環境下で、ガスバリア性フィルム二枚を用い、ガスバリア層を設けた面に、シール材としてエポキシ系光硬化型接着剤を塗布したものを、封止用フィルムとして作製した。
 次いで、上記の有機光電変換素子を、上記接着剤を塗布した二枚のガスバリア性フィルム試料の接着剤塗布面の間に挟み込んで密着させた後、片側の基板側からUV光を照射して硬化させ、有機光電変換素子の封止処理を行った。
 <有機光電変換素子の評価>
 評価は以下の基準で各素子をランク付けした。実用可能範囲は○以上である。
 (有機光電変換素子のランク)
 ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、IV特性を評価することで、短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)およびフィルファクターFF(%)を、同素子上に形成した4箇所の受光部をそれぞれ測定し、下記式1に従って求めたエネルギー変換効率PCE(%)の4点平均値を見積もった。
(式1) PCE(%)=〔Jsc(mA/cm)×Voc(V)×FF(%)〕/100mW/cm
 岩崎電気株式会社製アイスーパーUVテスター(SUV-W151)を用いてメタルハライド強制劣化テスト(温度:63℃、湿度:50%、照射強度:100mW/cm、連続200時間投入)を行い、劣化前に対する劣化後の変換効率維持率を算出し以下の様にランク付けを行った。
 変換効率維持率=屈曲処理済みフィルムを用いた素子の変換効率/屈曲処理無しのフィルムを用いた素子の変換効率×100(%)
 ◎:90%以上
 ○:60%以上、90%未満
 △:20%以上、60%未満
 ×:20%未満
 実施例2で作製した有機光電変換素子の変換効率維持率を評価した。本発明のガスバリア性フィルム試料7~30、及び試料34~38に対応する有機光電変換素子すべてが60%以上、90%未満であったが、比較例のガスバリア性フィルム試料1~6及び試料31~33に対応する有機光電変換素子は全て20%未満であった。本発明のガスバリア性フィルムを用いた素子は有機薄膜デバイスの性能が殆ど変化しない。すなわち、高いガスバリア性と耐候性を両立していることが分かる。
 1 有機電子デバイス
 2 ガスバリア性フィルム
 3 第一電極
 4 有機機能層
 5 第二電極
 6 基材

Claims (5)

  1.  樹脂基板の少なくとも片面にガスバリア層と、前記ガスバリア層を設けた面とは反対側の面に金属酸化物微粒子と樹脂バインダーとを含む耐候層を有するガスバリア性フィルムにおいて、前記金属酸化物微粒子が金属酸化物微粒子と前記樹脂バインダーとの質量を基準として50質量%以上80質量%以下であり、かつ前記樹脂バインダーが活性光線硬化性樹脂を含んでいることを特徴とするガスバリア性フィルム。
  2.  前記耐候層は光安定化剤(HALS剤)を該金属酸化物微粒子と樹脂バインダーの質量を基準として1質量%以上20質量%以下含有することを特徴とする請求項1に記載のガスバリア性フィルム。
  3.  前記耐候層は有機化合物系の紫外線吸収剤を該金属酸化物微粒子と樹脂バインダーの質量を基準として1質量%以上20質量%以下含有することを特徴とする請求項1または2に記載のガスバリア性フィルム。
  4.  前記ガスバリア層が、ポリシラザン骨格を有する珪素化合物の溶液を塗布し、波長200nm以下の真空紫外光を照射して得られたことを特徴とする請求項1から3のいずれか1項に記載のガスバリア性フィルム。
  5.  請求項1から4のいずれか1項に記載のガスバリア性フィルムを用いたことを特徴とする有機電子デバイス。
PCT/JP2011/064375 2010-07-13 2011-06-23 ガスバリア性フィルム、及びそれを用いた有機電子デバイス WO2012008276A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-158559 2010-07-13
JP2010158559 2010-07-13

Publications (1)

Publication Number Publication Date
WO2012008276A1 true WO2012008276A1 (ja) 2012-01-19

Family

ID=45469286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064375 WO2012008276A1 (ja) 2010-07-13 2011-06-23 ガスバリア性フィルム、及びそれを用いた有機電子デバイス

Country Status (1)

Country Link
WO (1) WO2012008276A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234809A (ja) * 2011-04-22 2012-11-29 Toray Ind Inc 面発光体
WO2017208770A1 (ja) * 2016-05-31 2017-12-07 リンテック株式会社 積層体、電子デバイス用部材、及び電子デバイス

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768714A (ja) * 1993-08-31 1995-03-14 Mitsubishi Rayon Co Ltd 表面硬化被膜およびその形成方法
WO1997011129A1 (fr) * 1995-09-20 1997-03-27 Mitsubishi Rayon Co., Ltd. Composition de revetement resistant a l'usure et article ainsi revetu de cette composition
JP2005153166A (ja) * 2003-11-20 2005-06-16 Toyo Ink Mfg Co Ltd 紫外線カット性を有する積層体
JP2006154837A (ja) * 2005-12-13 2006-06-15 Dainippon Printing Co Ltd 反射防止フィルム
JP2006326971A (ja) * 2005-05-25 2006-12-07 Toray Ind Inc 耐候性樹脂フィルム
JP2008020525A (ja) * 2006-07-11 2008-01-31 Japan Carlit Co Ltd:The 熱線遮蔽フィルム
JP2009202588A (ja) * 2008-01-31 2009-09-10 Mitsubishi Plastics Inc 耐候性に優れたガスバリア性フィルム
JP2009255040A (ja) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd フレキシブルガスバリアフィルムおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768714A (ja) * 1993-08-31 1995-03-14 Mitsubishi Rayon Co Ltd 表面硬化被膜およびその形成方法
WO1997011129A1 (fr) * 1995-09-20 1997-03-27 Mitsubishi Rayon Co., Ltd. Composition de revetement resistant a l'usure et article ainsi revetu de cette composition
JP2005153166A (ja) * 2003-11-20 2005-06-16 Toyo Ink Mfg Co Ltd 紫外線カット性を有する積層体
JP2006326971A (ja) * 2005-05-25 2006-12-07 Toray Ind Inc 耐候性樹脂フィルム
JP2006154837A (ja) * 2005-12-13 2006-06-15 Dainippon Printing Co Ltd 反射防止フィルム
JP2008020525A (ja) * 2006-07-11 2008-01-31 Japan Carlit Co Ltd:The 熱線遮蔽フィルム
JP2009202588A (ja) * 2008-01-31 2009-09-10 Mitsubishi Plastics Inc 耐候性に優れたガスバリア性フィルム
JP2009255040A (ja) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd フレキシブルガスバリアフィルムおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234809A (ja) * 2011-04-22 2012-11-29 Toray Ind Inc 面発光体
WO2017208770A1 (ja) * 2016-05-31 2017-12-07 リンテック株式会社 積層体、電子デバイス用部材、及び電子デバイス
CN109195797A (zh) * 2016-05-31 2019-01-11 琳得科株式会社 层合体、电子设备用部件和电子设备

Similar Documents

Publication Publication Date Title
JP5540803B2 (ja) ガスバリア性フィルムの製造方法
KR101430892B1 (ko) 가스 배리어성 필름 및 전자 디바이스
KR101530792B1 (ko) 가스 배리어성 필름, 가스 배리어성 필름의 제조 방법 및 전자 디바이스
JP5716752B2 (ja) ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
JP5888329B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法、および電子デバイス
JP5402818B2 (ja) ガスバリア性フィルム、及びガスバリア性フィルムの製造方法
KR101526083B1 (ko) 가스 배리어성 필름, 가스 배리어성 필름의 제조 방법 및 전자 디바이스
JP5835324B2 (ja) 水蒸気バリアフィルム、及びその製造方法、並びにこれを用いた電子機器
JP5445179B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法、有機電子デバイス
EP2815880A1 (en) Functional film, method for producing same, and electronic device comprising functional film
JP5540949B2 (ja) ガスバリア性フィルム、及び有機光電変換素子、有機エレクトロルミネッセンス素子
JP2012076386A (ja) 紫外線遮蔽性フィルム及びそれを用いた有機電子デバイス
WO2013077255A1 (ja) ガスバリアーフィルム及び電子機器
WO2011074363A1 (ja) バリアフィルム、その製造方法および有機光電変換素子
JP2012183823A (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
JPWO2019245054A1 (ja) ゼオライト含有ポリイミド樹脂複合材、ゼオライト含有ポリイミド樹脂前駆体組成物、フィルム、及び電子デバイス
WO2012008276A1 (ja) ガスバリア性フィルム、及びそれを用いた有機電子デバイス
JP2013022799A (ja) ガスバリア性フィルム及びガスバリア性フィルムの製造方法
JP5849726B2 (ja) 水蒸気バリアフィルムの製造方法
JP5273074B2 (ja) バリアフィルムの製造方法
JPWO2013168647A1 (ja) ガスバリア性フィルムの製造方法
KR102287519B1 (ko) 전자 디바이스 및 유기 일렉트로루미네센스 소자
JP5594099B2 (ja) ガスバリア性フィルムの製造方法
JP2015030245A (ja) ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイス
JP2015047790A (ja) ガスバリア性フィルムおよびこれを含む電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP