WO2018235911A1 - 含フッ素重合体、官能基含有含フッ素重合体および電解質膜の製造方法 - Google Patents

含フッ素重合体、官能基含有含フッ素重合体および電解質膜の製造方法 Download PDF

Info

Publication number
WO2018235911A1
WO2018235911A1 PCT/JP2018/023664 JP2018023664W WO2018235911A1 WO 2018235911 A1 WO2018235911 A1 WO 2018235911A1 JP 2018023664 W JP2018023664 W JP 2018023664W WO 2018235911 A1 WO2018235911 A1 WO 2018235911A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorine
producing
monomer
fluoropolymer
Prior art date
Application number
PCT/JP2018/023664
Other languages
English (en)
French (fr)
Inventor
貢 齋藤
淳 渡壁
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to EP18819742.0A priority Critical patent/EP3643728B1/en
Priority to JP2019525690A priority patent/JP6984658B2/ja
Priority to CN201880041034.1A priority patent/CN110785443B/zh
Publication of WO2018235911A1 publication Critical patent/WO2018235911A1/ja
Priority to US16/716,968 priority patent/US10975209B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/012Ion-exchange processes in general; Apparatus therefor using portable ion-exchange apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/14Monomers containing only one unsaturated aliphatic radical
    • C08F16/30Monomers containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1466Monomers containing sulfur
    • C08F216/1475Monomers containing sulfur and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/10Homopolymers or copolymers of unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides

Definitions

  • the present invention relates to a fluorine-containing polymer, a functional group-containing fluorine-containing polymer, and a method of producing an electrolyte membrane.
  • the functional group-containing fluoropolymer can be used as an ion exchange membrane when it is formed into a membrane, for example, a membrane comprising a fluoropolymer having a carboxylic acid type functional group or a fluoropolymer comprising a sulfonic acid type functional group It is used for the alkali chloride electrolysis method which electrolyzes alkali chloride aqueous solution, such as salt water, and manufactures alkali hydroxide and chlorine. Further, as an ion exchange membrane used as an electrolyte membrane for a fuel cell, a membrane made of a fluoropolymer having a sulfonic acid type functional group is known.
  • the fluorine-containing polymer is a fluorine-containing polymer obtained by copolymerizing a fluorine-containing monomer such as perfluorovinyl ether having a carboxylic acid type functional group or a sulfonic acid type functional group with a fluorine-containing olefin such as tetrafluoroethylene. Coalescence is known (Patent Document 1).
  • the fluorine-containing polymer can be produced by using a chain hydrofluorocarbon having 4 to 10 carbon atoms as a polymerization medium, a fluorine-containing monomer having a group convertible to a sulfonic acid group, tetrafluoroethylene, A method of polymerizing is proposed.
  • the present invention provides a method for producing a fluorine-containing polymer which has a high polymerization rate and excellent productivity, can stably obtain a high molecular weight fluoropolymer, and can reduce the environmental load, and contains a functional group using the production method
  • An object of the present invention is to provide a method of producing a fluoropolymer and a method of producing an electrolyte membrane.
  • Hydrofluorocarbons with low GWP are susceptible to decomposition in the atmosphere. Therefore, in general, hydrofluorocarbons having low GWP have low OH radical resistance, and when used as a polymerization medium for radical polymerization, chain transfer reaction is likely to occur during polymerization, and it is considered that sufficient molecular weight is difficult to be obtained.
  • a cyclic hydrofluorocarbon having 4 to 10 carbon atoms is used as the polymerization medium, a fluorine-containing unit having a group that can be converted to a carboxylic acid group or a sulfonic acid group even with a low GWP.
  • a method for producing a fluorine-containing polymer comprising polymerizing a monomer mixture containing tetrafluoroethylene and a fluorine-containing monomer having a group that can be converted to a sulfonic acid group or a carboxylic acid group in a polymerization medium.
  • X 1 and X 2 are each independently a fluorine atom or a trifluoromethyl group
  • a 1 is a group that can be converted to a sulfonic acid group or a carboxylic acid group
  • p Is 0 or 1 q is 0 or 1
  • r is an integer of 0 to 3
  • s is 0 or 1
  • t is an integer of 0 to 12
  • u is And an integer of 0 to 3, 1 ⁇ r + u
  • Q 11 is a perfluoroalkylene group which may have an etheric oxygen atom
  • Q 12 is a single integer Or a perfluoroalkylene group which may have a bond or an etheric oxygen atom
  • Z 1 is a fluorine atom, or a monovalent perfluoroorganic group
  • v is 0 or 1.
  • the fluorine-containing monomer is the following monomer (m2-1), monomer (m2-2) or monomer (m2-3) The manufacturing method of any fluorine-containing polymer.
  • a fluorine-containing polymer is produced by the method according to any one of the above [1] to [10], and a group convertible to a sulfonic acid group of the fluorine-containing polymer is converted to a sulfonic acid group, A method for producing a functional group-containing fluoropolymer, which converts a group convertible to a carboxylic acid group to a carboxylic acid group.
  • a fluoropolymer is produced by the production method of any of the above-mentioned [1] to [10], and after forming a film using the above-mentioned fluoropolymer, a group which can be converted to a sulfonic acid group is a sulfone
  • a method for producing an electrolyte membrane comprising converting a group that can be converted to an acid group or a carboxylic acid group to a carboxylic acid group.
  • a method for producing an electrolyte membrane comprising producing a functional group-containing fluoropolymer according to the method of the above-mentioned [11], and forming a film using the functional group-containing fluoropolymer.
  • the present invention it is possible to stably manufacture a high molecular weight fluoropolymer and a functional group-containing fluoropolymer with high polymerization rate and excellent productivity, and to reduce the environmental load.
  • the productivity of the electrolyte membrane is also excellent.
  • the “unit” is a generic name of an atomic group formed by direct polymerization of one monomer molecule and an atomic group obtained by chemical conversion of part of the atomic group.
  • An "etheric oxygen atom” is an oxygen atom (--C--O--C--) which exists one between carbon and carbon atoms.
  • the “sulfonic acid group” is —SO 3 H and —SO 3 M 1 (wherein M 1 is a monovalent metal ion or an ammonium ion in which one or more hydrogen atoms may be substituted with a hydrocarbon group)
  • M 1 is a monovalent metal ion or an ammonium ion in which one or more hydrogen atoms may be substituted with a hydrocarbon group
  • carboxylic acid group is a generic term for —COOH and —COOM 2 (wherein M 2 is a monovalent metal ion or an ammonium ion in which one or more hydrogen atoms may be substituted with a hydrocarbon group).
  • the "precursor group” is a generic term for a group that can be converted to a sulfonic acid group and a group that can be converted to a carboxylic acid group.
  • the "ion exchange group” is a generic term for a sulfonic acid group and a carboxylic acid group.
  • TQ value is a measure of the molecular weight and softening temperature of the polymer. The larger the TQ value, the larger the molecular weight. The temperature is such that the extrusion amount of the polymer when melt extrusion is performed using a nozzle having a length of 1 mm and an inner diameter of 1 mm under an extrusion pressure of 2.94 MPa is 100 mm 3 / sec.
  • the monomer represented by the formula (m1) is referred to as “monomer (m1)”.
  • the monomers represented by other formulas are also described in the same manner.
  • Tetrafluoroethylene is referred to as "TFE”.
  • the hydrofluorocarbon is referred to as "HFC”.
  • the fluorine-containing monomer having a precursor group is referred to as "monomer (m)”.
  • the unit based on the monomer (m) is referred to as "unit (m)”. Units based on other monomers are also described accordingly.
  • the ion exchange capacity is referred to as "AR”.
  • the method for producing a fluorine-containing polymer of the present invention is a method for producing a fluorine-containing polymer in which a monomer mixture containing TFE and a monomer (m) is polymerized in a polymerization medium, and the polymerization medium is This method is based on cyclic HFC having 4 to 10 carbon atoms.
  • the monomer mixture is a mixture of monomers which form units of a fluoropolymer by polymerization.
  • the monomer mixture contains TFE and monomer (m) as essential components.
  • TFE monomer
  • monomer (m) as essential components.
  • a group which can be converted to a sulfonic acid group for example, -SO 2 X (wherein X is a fluorine atom, a chlorine atom or a bromine atom), -SO 2 R 1 (wherein R 1 is an etheric oxygen atom) Or a perfluoroalkyl group which may have 1).
  • -SO 2 X is preferable
  • -SO 2 F is particularly preferable.
  • the perfluoroalkyl group of R 1 may be linear, branched or linear.
  • the carbon number of the perfluoroalkyl group is preferably 1 to 6, and more preferably 1 to 4.
  • a perfluoroalkyl group a perfluoromethyl group or a perfluoroethyl group is preferable.
  • the perfluoroalkyl group of R 1 has an etheric oxygen atom, the number of etheric oxygen atoms may be one, or two or more. Also, an etheric oxygen atom may be inserted between carbon atom-carbon atom bonds of the perfluoroalkyl group, but not at the carbon atom bond end.
  • -COOR 2 As a group which can be converted to a carboxylic acid group, for example, -COOR 2 (wherein R 2 is an alkyl group having 1 to 4 carbon atoms), -CN, -COZ (wherein Z is a halogen atom). Can be mentioned. Among them, -COOR 2 is preferable as a group that can be converted to a carboxylic acid group, and -COOCH 3 is particularly preferable.
  • either one of a fluorine-containing monomer having a group that can be converted to a sulfonic acid group and a fluorine-containing monomer having a group that can be converted to a carboxylic acid group may be used. You may use both of them.
  • the present invention is particularly preferable when a fluorine-containing monomer having a group that can be converted to a sulfonic acid group is used as the monomer (m).
  • the monomer (m) As a monomer (m), a monomer (m1) and a monomer (m2) are mentioned, for example. From the viewpoint of easy production, the monomer (m) preferably contains at least one selected from the group consisting of the monomer (m1) and the monomer (m2), and the monomer (m1) And at least one selected from the group consisting of monomers (m2) is more preferred. Moreover, since the reactivity at the time of polymerization is good, the monomer (m) is preferably a vinyl ether, more preferably a perfluorovinyl ether. As the monomer (m), only one of the monomer (m1) and the monomer (m2) may be used, and both the monomer (m1) and the monomer (m2) are used. May be
  • the monomer (m1) is a monomer represented by the following formula (m1).
  • X 1 and X 2 are each independently a fluorine atom or a trifluoromethyl group
  • a 1 is a group that can be converted to a sulfonic acid group or a carboxylic acid group
  • p is 0 or 1
  • q is 0 or 1
  • r is an integer of 0 to 3
  • s is 0 or 1
  • t is an integer of 0 to 12
  • u is 0 It is an integer of ⁇ 3 and 1 ⁇ r + u.
  • -SO 2 X or -COOR 2 is preferable, -SO 2 F or -COOCH 3 is more preferable, and -SO 2 F is particularly preferable.
  • q is preferably 1. If t and u are both 0, s is 0.
  • t is preferably an integer of 1 to 8, and more preferably an integer of 1 to 4.
  • the following may be mentioned as specific examples of the monomer (m1).
  • CF 2 CF-O-CF 2 CF 2 -COOCH 3
  • CF 2 CF-O-CF 2 CF 2 -CF 2 -COOCH 3
  • CF 2 CF-O-CF 2 CF 2 -CF 2 CF 2- COOCH 3
  • CF 2 CF-O-CF 2 CF 2 -O-CF 2 CF 2 -CF 2 -COOCH 3
  • CF 2 CF-O-CF 2 CF 2 -O-CF 2 CF 2 -CF 2 -COOCH 3
  • CF 2 CF-O-CF 2 CF 2 -O-CF 2 CF 2 -COOCH 3
  • CF 2 CF-O-CF 2 CF 2 -O-CF 2 CF 2
  • CF 2 CFOCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF 2 CF 2 CF 2 SO 2 F
  • CF 2 CFCF 2 OCF 2 CF 2 SO 2 F
  • CF 2 CF-O-CF 2 CF 2 -CF 2 -COOCH 3
  • CF 2 CF -O-CF 2 CF 2 -O-CF 2 CF 2 -CF 2 -COOCH 3
  • CF 2 CF-O-CF 2 CF (CF 3), -O-CF 2 CF 2 -COOCH 3 is preferred.
  • the monomer (m1) one type may be used alone, or two or more types may be used in combination.
  • the monomer (m1) for example, D.I. J. Vaugham, "Du Pont Innovation", Vol. 43, No. 3, 1973, p. It can manufacture by synthetic methods, such as the method as described in 10, and the method as described in the Example of US Patent No. 4,358,412.
  • the monomer (m2) is a monomer represented by the following formula (m2).
  • Q 11 is a perfluoroalkylene group which may have an etheric oxygen atom
  • Q 12 is a single bond or a perfluoroalkylene which may have an etheric oxygen atom
  • Z 1 is a fluorine atom or a monovalent perfluoroorganic group
  • v is 0 or 1.
  • the single bond means that the carbon atom of CZ 1 and the sulfur atom of SO 2 F are directly bonded.
  • the number of the etheric oxygen atoms may be one, or two or more.
  • the etheric oxygen atom may be inserted between carbon atom-carbon atom bonds of the perfluoroalkylene group, or may be inserted at the carbon atom bond end, but at the end directly bonded to the sulfur atom Not inserted
  • the perfluoroalkylene group may be linear or branched, and is preferably linear.
  • the carbon number of the perfluoroalkylene group is preferably 1 to 6, and more preferably 1 to 4. When the number of carbon atoms is 6 or less, the boiling point of the monomer is lowered, and distillation purification becomes easy. Moreover, if carbon number is six or less, the fall of the ion exchange capacity of a fluoropolymer is suppressed, and the fall of conductivity is suppressed.
  • Q 12 is preferably a C 1-6 perfluoroalkylene group which may have an etheric oxygen atom.
  • the stability of the power generation performance is excellent when the polymer electrolyte fuel cell is operated over a long period of time, as compared to the case where Q 12 is a single bond.
  • At least one of Q 11 and Q 12 is preferably a C 1-6 perfluoroalkylene group having an etheric oxygen atom.
  • the monomer having such a group can be synthesized without undergoing a fluorination reaction with fluorine gas, so that the yield is good and the production is easy.
  • Z 1 a fluorine atom or a C 1-6 linear perfluoroalkyl group which may have an etheric oxygen atom is preferable, and a fluorine atom is more preferable.
  • the monomer (m2) a monomer (m2-1), a monomer (m2-2) or a unit amount is preferable because the production of the fluoropolymer is easy and industrial implementation is easy.
  • Body (m2-3) is preferred.
  • the monomer (m2) one type may be used alone, or two or more types may be used in combination.
  • the monomer (m2) can be produced by a known synthesis method.
  • the monomer mixture may contain TFE and another monomer other than the monomer (m1) or the monomer (m2).
  • Such other monomers include at least one monomer selected from the following monomers (m3): CF 2 CFCF—O—R f (m3)
  • R f represents a C 1-12 perfluoroalkyl group, a group having an etheric oxygen atom between carbon-carbon bonds of a C 2-10 perfluoroalkyl group, or a C 2-12 perfluoro group It is an alkenyl group.
  • Examples of the monomer (m3) include the following monomers (m3-1) to (m3-4).
  • CF 2 CF-O-CF 3 (m3-1)
  • CF 2 CF-O-CF 2 CF 2 CF 3 (m3-2)
  • CF 2 CF-O-CF 2 CF (CF 3 ) -O-CF 2 CF 2 CF 3 (m3-3)
  • R 11 is a group having a fluorine atom, a perfluoroalkyl group having 1 to 10 carbon atoms, or an etheric oxygen atom between carbon-carbon bonds of a perfluoroalkyl group having 2 to 10 carbon atoms.
  • R 11 a perfluoroalkyl group having 1 to 5 carbon atoms is preferable, and a trifluoromethyl group is more preferable.
  • the perfluoroalkyl group may be linear or branched, and is preferably linear.
  • R 12 and R 14 each represent a fluorine atom, a perfluoroalkyl group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon bonds of a perfluoroalkyl group having 2 to 10 carbon atoms.
  • R 12 and R 14 each independently, a trifluoromethyl group is preferable.
  • the perfluoroalkyl group may be linear or branched, and is preferably linear.
  • R 13 is a single bond, a perfluoroalkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon-carbon bonds of a perfluoroalkylene group having 2 to 10 carbon atoms.
  • a C 2 to C 4 perfluoroalkylene group or a group having an etheric oxygen atom between carbon-carbon bonds of a C 3 to C 4 perfluoroalkylene group is preferable.
  • the perfluoroalkylene group may be linear or branched, and is preferably linear.
  • R 15 is a group having a fluorine atom, a perfluoroalkyl group having 1 to 10 carbon atoms, or an etheric oxygen atom between carbon-carbon bonds of a perfluoroalkyl group having 2 to 10 carbon atoms.
  • R 15 is preferably a perfluoroalkyl group having 1 to 4 carbon atoms or a group having an ethereal oxygen atom between carbon-carbon bonds of a perfluoroalkyl group having 2 to 4 carbon atoms, and the perfluoroalkyl group having 1 to 4 carbon atoms
  • the group is more preferred, and the trifluoromethyl group is more preferred.
  • the perfluoroalkyl group may be linear or branched, and is preferably linear.
  • Q is a group having a single bond, a perfluoroalkylene group having 1 to 10 carbon atoms, or an etheric oxygen atom between carbon-carbon bonds of a perfluoroalkylene group having 2 to 10 carbon
  • Examples of the monomer (m4) include the following monomers (m4-1) to (m4-6).
  • the monomer (m5) for example, the following monomer (m5-1) or monomer (m5-2) can be copolymerized.
  • the monomer (m6) for example, the following monomer (m6-1) or monomer (m6-2) can be copolymerized.
  • the monomer (m7) for example, the following monomers (m7-1) to (m7-3) can be copolymerized.
  • Other monomers include, for example, chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride, ⁇ -olefins (such as ethylene and propylene), perfluoro ⁇ -olefins (such as hexafluoropropylene), and (perfluoroalkyl) ethylenes.
  • Perfluorobutyl) ethylene and the like (perfluoroalkyl) propene (3-perfluorooctyl-1-propene and the like), perfluorovinylether and the like.
  • perfluorovinyl ethers include perfluoro (alkyl vinyl ethers) and perfluoro (ether oxygen atom-containing alkyl vinyl ethers).
  • the proportion of TFE is preferably 5 to 70 mol%, and the proportion of the monomer (m) is preferably 30 to 95 mol%, based on the total amount of the monomer mixture.
  • a monomer consists of TFE and a monomer (m)
  • it selects from the said numerical range so that the sum total of the ratio of TFE and the ratio of a monomer (m) may be 100 mol%.
  • the proportion of TFE and the proportion of monomer (m) are in the above ranges, a fluoropolymer having excellent mechanical strength and chemical durability and high ion exchange capacity can be easily obtained.
  • the ratio of TFE to the total amount of the monomer mixture is more preferably 5 to 65 mol%, further preferably 5 to 60 mol%, and particularly preferably 5 to 55 mol%. If the proportion of TFE is at least the lower limit value of the above range, the mechanical strength and the chemical durability of the fluoropolymer are excellent. If the proportion of TFE is equal to or less than the upper limit value of the above range, the content of the monomer (m) in the fluoropolymer can be increased, so the ion exchange capacity of the fluoropolymer can be increased.
  • the ratio of the monomer (m) to the total amount of the monomer mixture is particularly preferably 35 to 95% by mole.
  • the proportion of the monomer (m) is at least the lower limit value of the above range, a fluoropolymer having a high ion exchange capacity can be easily obtained. If the proportion of the monomer (m) is not more than the upper limit value of the above range, the content of TFE in the fluoropolymer can be increased, so the mechanical strength and chemical durability of the fluoropolymer are excellent.
  • the ratio of the above-mentioned other monomer to the total amount of the monomer mixture is preferably 0 to 75 mol%, more preferably 0 to 70 mol%. 0 to 65 mol% is more preferable, and 0 to 60 mol% is particularly preferable. If the proportion of the other monomer is within the above range, the effects obtained by TFE and the monomer (m) are unlikely to be impaired. Although some monomers may be present in the gas phase portion of the reaction vessel without being dissolved in the polymerization medium, the monomers present in these gas phase portions may also be present as part of the monomer mixture. I reckon.
  • the polymerization medium is mainly composed of cyclic HFC having 4 to 10 carbon atoms.
  • C4-10 cyclic HFC as main component means that the cyclic HFC has 4 to 10 carbon atoms based on the total mass of the polymerization medium (not including a monomer such as monomer (m)).
  • the proportion means 70% by mass or more.
  • the proportion of cyclic HFC is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and most preferably 100% by mass (that is, the polymerization medium is only cyclic HFC).
  • the carbon number of cyclic HFC is 4 to 10, preferably 4 to 8, and more preferably 4 to 6. If the carbon number of cyclic HFC is equal to or more than the lower limit value in the above range, the boiling point can be suppressed from being too low. If the carbon number of cyclic HFC is equal to or less than the upper limit value in the above range, the boiling point can be prevented from becoming too high.
  • the cyclic HFC preferably has the same number or more of fluorine atoms as the number of hydrogen atoms. That is, the ratio (N F / N H ) of the number of fluorine atoms (N F ) to the number of hydrogen atoms (N H ) of cyclic HFC is preferably 1 or more. This maintains the chemical stability of the cyclic HFC during polymerization.
  • N F / N H is preferably 1 or more, more preferably 1 to 17, and particularly preferably 1 to 11.
  • cyclic HFC include, for example, 1,1,2,2,3,3, 4-heptafluorocyclopentane, 1,1,2,2,3,3-hexafluorocyclopentane, 1H, 2H- Octafluorocyclopentane, 1,2,3,4,5-pentafluorocyclopentane, 1,1,2,2,3,4,5-heptafluorocyclopentane, 1H-nonafluorocyclopentane, 1,1, 2,2,3-pentafluorocyclobutane, 1,1,2,3,3-pentafluorocyclobutane, 1,1,2,2,3,3-hexafluorocyclobutane, 1,1,2,3,3, 4-hexafluorocyclobutane, cis-1,1,2,2,3,4-hexafluorocyclobutane, trans-1,1,2,2,3,4-hexafluorocyclobutane, 1,2,3 4,5,6-hexafluorocyclohexan
  • 1,1,2,2,3,3,4-heptafluorocyclopentane or 1H, 2H-octafluorocyclopentane is preferable in terms of availability.
  • the cyclic HFC may be used alone or in combination of two or more.
  • the polymerization medium may contain another polymerization medium other than cyclic HFC having 4 to 10 carbon atoms.
  • Other polymerization media include, for example, linear HFC.
  • the chain HFC is, for example, C 2 F 5 C 2 H 5 , CHF 2 CF 2 CF 2 CHF 2 , CH 3 CF 2 CFHCF 3 , CF 3 CH 2 CF 2 CH 3 , CF 3 CFHCFHCF 2 CF 3 (CF 3 ) 2 CFC 2 H 5 , CH 3 CHFC 2 F 5 C 2 H 5 , CH 3 CF 2 CF 2 CF 2 CF 2 H, C 4 F 9 C 2 H 5 , C 2 F 5 C 2 H 4 C 2 F 5 , (CF 3 ) 2 CFCHFCHFCF 3 , CH 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 H, C 6 F 13 H, C 6 F 13 C 2 H 5 , C 2 H 5 C 2 F 4 C 2 H 5, C
  • the proportion of cyclic HFC having 4 to 10 carbon atoms in the polymerization medium is 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 100% by mass.
  • the higher the ratio the faster the polymerization rate and the higher the molecular weight of the fluoropolymer.
  • the monomer mixture is polymerized by polymerization using a polymerization medium containing cyclic HFC as a main component.
  • a polymerization medium containing cyclic HFC as a main component.
  • known polymerization methods such as solution polymerization, suspension polymerization and emulsion polymerization can be adopted, but solution polymerization and suspension polymerization are preferable, and solution polymerization is more preferable.
  • radical initiator used for polymerization for example, bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkyl peroxy dicarbonates, diacyl peroxides, peroxy esters, dialkyl peroxides, Bis (fluoroalkyl) peroxides, azo compounds, and persulfates can be mentioned.
  • the molar ratio of the monomer (m) to the polymerization medium in polymerization is preferably 0.1 to 100, more preferably 0.3 to 90, still more preferably 0.5 to 80, and particularly preferably 0.7 to 70. . If the molar ratio is equal to or more than the lower limit value in the above range, a monomer mixture having a relatively small ion exchange capacity can be synthesized at an appropriate reaction rate. If the said molar ratio is below the upper limit in the said range, it is suitable for high molecular weight formation of the monomer mixture with a comparatively large ion exchange capacity.
  • the polymerization temperature is preferably 10 to 150 ° C., and more preferably 15 to 130 ° C.
  • the pressure during polymerization is preferably 0.0 to 2.0 MPaG, and more preferably 0.05 to 1.5 MPaG.
  • the polymerization time is preferably 2 to 30 hours, more preferably 3 to 25 hours.
  • TQ value 150 to 340 ° C. is preferable, and 170 to 300 ° C. is more preferable for the TQ value of the fluorine-containing polymer produced in the present invention.
  • the TQ value is at least the lower limit value of the above range, the strength of the molded article becomes good when the fluoropolymer is molded.
  • the TQ value is not more than the upper limit value of the above range, the formability at the time of forming the fluoropolymer becomes good.
  • the proportion of units (TFE) in all units is preferably 5 to 90 mol%, and the proportion of units (m) is preferably 5 to 35 mol%.
  • the ratio of units (TFE) and the ratio of units (m) are respectively selected from the above numerical ranges such that the total is 100 mol%.
  • the proportion of units (TFE) in all units in the fluorine-containing polymer is more preferably 5 to 85 mol%, still more preferably 6 to 85 mol%, and particularly preferably 7 to 84 mol%.
  • the proportion of units (TFE) is at least the lower limit value of the above range, the mechanical strength and chemical durability of the fluoropolymer are excellent. If the proportion of units (TFE) is equal to or less than the upper limit of the above range, the content of units (m) in the fluoropolymer can be increased, so the ion exchange capacity of the fluoropolymer can be increased.
  • the proportion of the unit (m) in all units in the fluoropolymer is more preferably 10 to 33 mol%, still more preferably 13 to 31 mol%, and particularly preferably 15 to 31 mol%.
  • the proportion of the unit (m) is at least the lower limit value of the above range, a fluoropolymer having a high ion exchange capacity can be easily obtained. If the proportion of the unit (m) is equal to or less than the upper limit value of the above range, the content of TFE in the fluoropolymer can be increased, so that the mechanical strength and chemical durability of the fluoropolymer are excellent.
  • the ratio of the unit based on the above-mentioned other monomer to the total amount of the monomer mixture is preferably 0 to 75 mol%, 0 to 74 mol% Is more preferable, 0 to 73 mol% is further preferable, and 0 to 72 mol% is particularly preferable. If the proportion of units based on other monomers is within the above range, the effect obtained by the unit (TFE) and the unit (m) is unlikely to be impaired.
  • a polymerization medium for polymerizing TFE and the monomer (m) a polymerization medium mainly composed of cyclic HFC having 4 to 10 carbon atoms is used.
  • the rate of polymerization of TFE with the monomer (m) is faster than when chained HFC is used as the polymerization medium, and the productivity of the fluoropolymer is excellent.
  • cyclic HFCs having 4 to 10 carbon atoms have lower GWP than chain HFCs and can reduce environmental impact.
  • the process for producing a functional group-containing fluoropolymer according to the present invention produces a fluoropolymer by the method for producing a fluoropolymer according to the present invention, and a sulfone group which can be converted to the sulfonic acid group of the fluoropolymer
  • a publicly known method can be adopted as a method of converting a group which can be converted to a sulfonic acid group in the fluorine-containing polymer into a sulfonic acid group, and, for example, a method described in WO 2011/013778 can be mentioned.
  • hydrolysis is carried out by bringing a -SO 2 F group of a fluoropolymer into contact with a base
  • Examples of the method for converting a group that can be converted to a carboxylic acid group in the fluorine-containing polymer to a carboxylic acid group include the same methods as those for converting a group that can be converted to a sulfonic acid group to a sulfonic acid group.
  • the AR of the functional group-containing fluoropolymer produced in the present invention is preferably 0.5 to 2.5 meq / g dry resin, more preferably 0.7 to 2.3 meq / g dry resin. If AR is at least the lower limit value of the above range, the ion exchange properties of the fluoropolymer can be sufficiently secured. If AR is below the upper limit value of the said range, the molecular weight of a fluoropolymer can be made high, and when it is set as forms, such as a film
  • the method for producing an electrolyte membrane of the present invention is roughly classified into the following two methods (x-1) and (x-2).
  • (X-1) A method of converting a precursor group into an ion exchange group after forming a film using the fluorine-containing polymer produced in the present invention.
  • (X-2) A method of forming a film using the functional group-containing fluorinated polymer produced in the present invention.
  • Method (x-1) As a method for forming the fluoropolymer in a film form, an extrusion molding method, a pressure press molding method, or a stretching method is preferable because the fluoropolymer is excellent in melt flowability.
  • a method of converting the precursor group of the fluorine-containing polymer into an ion exchange group after film formation the method described in the method for producing a functional group-containing fluorine-containing polymer can be employed.
  • heat treatment is preferably performed to stabilize the electrolyte membrane.
  • the heat treatment temperature is preferably 130 to 220 ° C., although it depends on the type of fluoropolymer. If the temperature of the heat treatment is 130 ° C. or more, the fluoropolymer becomes difficult to absorb water excessively. When the temperature of the heat treatment is 220 ° C. or lower, the thermal decomposition of the ion exchange group is suppressed, and the decrease in proton conductivity of the electrolyte membrane is suppressed.
  • Method (x-2) As a method for forming the functional group-containing fluoropolymer in a film form, a method (cast method) in which a liquid composition of the functional group-containing fluoropolymer is coated on a substrate and dried is preferable.
  • the liquid composition is a dispersion in which a functional group-containing fluoropolymer is dispersed in a dispersion medium containing an organic solvent having a hydroxyl group and water.
  • Examples of the organic solvent having a hydroxyl group include methanol, ethanol, 1-propanol, 2-propanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2 2,3,3-Tetrafluoro-1-propanol, 4,4,5,5,5-pentafluoro-1-pentanol, 1,1,1,3,3,3-hexafluoro-2-propanol 3,3,3-trifluoro-1-propanol, 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexanol, 3,3,4,4,5,5, 6,6,7,7,8,8,8-tridecafluoro-1-octanol can be mentioned.
  • the organic solvent having a hydroxyl group one type may be used alone, or two or more types may be used in combination. After the film formation, in the same manner as in the method (x-1), heat treatment is preferably performed to stabilize the electrolyte film.
  • the electrolyte membrane obtained by the production method of the present invention can be suitably used for an ion exchange membrane used for sodium chloride electrolysis and a membrane electrode assembly of a polymer electrolyte fuel cell.
  • Example 1 is an example
  • examples 2 and 3 are comparative examples.
  • TQ value Using a flow tester CFT-500A (manufactured by Shimadzu Corporation), the extrusion amount of the fluoropolymer was measured while changing the temperature, and the TQ value at which the extrusion amount was 100 mm 3 / sec was determined.
  • Example 1 131.71 g of PSVE, and HFC-c-447ef as a polymerization medium in a stainless steel autoclave having an inner volume of 230 mL. And 14 g, 22.2 mg of AIBN was charged, and the inside of the autoclave was sufficiently degassed under cooling by liquid nitrogen. After the temperature was raised to 75 ° C., TFE was introduced, and the pressure was adjusted to 1.305 MPaG. TFE was continuously fed while keeping the temperature and pressure constant. Four hours after the initiation of polymerization, the autoclave was cooled to terminate the polymerization reaction. The amount of TFE introduced continuously was 10.60 g.
  • the reaction solution withdrawn from the autoclave was diluted with 100 g of AC2000, to which 400 g of AE3000 was added, and the fluoropolymer was coagulated and filtered. After adding 250 g of AE3000 to the fluoropolymer, stirring, washing and filtering twice, drying under reduced pressure at 80 ° C. for 16 hours gave 22.94 g of a fluoropolymer.
  • Example 2 A fluorine-containing polymer was obtained in the same manner as Example 1, except that the amount of monomers used, the type and amount of polymerization medium used, the amount of catalysts used, and the polymerization reaction conditions were changed as shown in Table 1.
  • Example 1 in which a cyclic HFC having 4 to 10 carbon atoms was used as the polymerization medium, a fluoropolymer having a high TQ and a sufficient molecular weight was obtained, and the polymerization rate was also fast.
  • Example 2 using C 8 F 17 C 2 H 5 which is a chain HFC, the polymerization rate was slower, the TQ value was lower, and the molecular weight of the fluoropolymer was lower than in Example 1.
  • Example 3 in which AC2000 which is a chain HFC was used, the polymerization rate was slower than in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)

Abstract

重合速度が速く生産性に優れ、高分子量の含フッ素重合体が安定して得られ、環境負荷を低減できる含フッ素重合体の製造方法、官能基含有含フッ素重合体の製造方法、および電解質膜の製造方法を提供する。 テトラフルオロエチレンと、スルホン酸基またはカルボン酸基に変換し得る基を有する含フッ素単量体とを含む単量体混合物を重合媒体中で重合する含フッ素重合体の製造方法であって、前記重合媒体が、炭素数4~10の環状ハイドロフルオロカーボンを主成分とする、含フッ素重合体の製造方法。また、該製造方法を利用した官能基含有含フッ素重合体の製造方法および電解質膜の製造方法。

Description

含フッ素重合体、官能基含有含フッ素重合体および電解質膜の製造方法
 本発明は、含フッ素重合体、官能基含有含フッ素重合体および電解質膜の製造方法に関する。
 官能基含有含フッ素重合体は、膜とした際にイオン交換膜として使用でき、例えば、カルボン酸型官能基を有する含フッ素重合体やスルホン酸型官能基を有する含フッ素重合体からなる膜は、塩水等の塩化アルカリ水溶液を電解し、水酸化アルカリと塩素とを製造する塩化アルカリ電解法に用いられている。また、燃料電池用の電解質膜として用いられるイオン交換膜として、スルホン酸型官能基を有する含フッ素重合体からなる膜が知られている。
 含フッ素重合体としては、カルボン酸型官能基またはスルホン酸型官能基を有するペルフルオロビニルエーテル等の含フッ素単量体と、テトラフルオロエチレン等の含フッ素オレフィンとを共重合させて得られる含フッ素重合体が知られている(特許文献1)。前記含フッ素重合体の製造方法としては、重合媒体として炭素数4~10の鎖状のハイドロフルオロカーボンを用いて、スルホン酸基に変換し得る基を有する含フッ素単量体と、テトラフルオロエチレンとを重合させる方法が提案されている。
日本特許第3356474号公報
 従来、カルボン酸基やスルホン酸基に変換し得る基を有する含フッ素単量体と、テトラフルオロエチレンとを重合させる場合、特許文献1のような製造方法では、高分子量の含フッ素重合体が得られにくいことがある。また、含フッ素重合体の生産性の点では、重合速度をより速くすることが重要である。また、例えば鎖状ハイドロフルオロカーボンの1種であるCF(CF)CHFの地球温暖化係数(GWP)は2000であり、環境負荷低減の点ではよりGWPの低い重合媒体を用いることが重要である。
 本発明は、重合速度が速く生産性に優れ、高分子量の含フッ素重合体が安定して得られ、環境負荷を低減できる含フッ素重合体の製造方法、ならびに該製造方法を使用した官能基含有含フッ素重合体の製造方法、および電解質膜の製造方法の提供を目的とする。
 GWPが低いハイドロフルオロカーボンは、大気中で分解しやすい。そのため、一般に、GWPが低いハイドロフルオロカーボンはOHラジカル耐性が低く、ラジカル重合の重合媒体として用いると、重合中に連鎖移動反応が起こりやすくなり、充分な分子量が得られにくいと考えられる。しかし、本発明者等が検討したところ、重合媒体として炭素数4~10の環状ハイドロフルオロカーボンを用いれば、GWPが低くても、カルボン酸基やスルホン酸基に変換し得る基を有する含フッ素単量体とテトラフルオロエチレンとの重合において連鎖移動反応が充分に抑制され、高分子量の含フッ素重合体が安定して得られることがわかった。さらに、鎖状ハイドロフルオロカーボンを用いる場合に比べて重合速度が速くなることも見出し、本発明に至った。
 本発明は、以下の態様を有する。
 [1]テトラフルオロエチレンと、スルホン酸基またはカルボン酸基に変換し得る基を有する含フッ素単量体とを含む単量体混合物を重合媒体中で重合する含フッ素重合体の製造方法であって、前記重合媒体が、炭素数4~10の環状ハイドロフルオロカーボンを主成分とすることを特徴とする含フッ素重合体の製造方法。
 [2]前記含フッ素単量体が、スルホン酸基またはカルボン酸基に変換し得る基を有するビニルエーテルである前記[1]の製造方法。
 [3]前記単量体混合物の総量に対して、前記テトラフルオロエチレンの割合が5~70モル%であり、前記含フッ素単量体の割合が30~95モル%である前記[1]または[2]の製造方法。
 [4]前記含フッ素重合体のTQ値は、150~340℃である前記[1]~[3]のいずれかの製造方法。
 [5]前記含フッ素単量体が、下式(m1)で表される単量体および下式(m2)で表される単量体からなる群から選ばれる少なくとも1種を含む前記[1]~[4]のいずれかの製造方法。
Figure JPOXMLDOC01-appb-C000003
(ただし、前記式(m1)中、XおよびXは、それぞれ独立にフッ素原子またはトリフルオロメチル基であり、Aは、スルホン酸基またはカルボン酸基に変換し得る基であり、pは、0または1であり、qは、0または1であり、rは、0~3の整数であり、sは、0または1であり、tは、0~12の整数であり、uは、0~3の整数であり、1≦r+uである。また、前記式(m2)中、Q11は、エーテル性酸素原子を有していてもよいペルフルオロアルキレン基であり、Q12は、単結合、またはエーテル性酸素原子を有していてもよいペルフルオロアルキレン基であり、Zは、フッ素原子、または1価のペルフルオロ有機基であり、vは、0または1である。)
 [6]前記含フッ素単量体が、CF=CFOCFCF(CF)OCFCFSOF、CF=CFOCFCFSOF、CF=CFOCFCFCFCFSOF、またはCF=CFCFOCFCFCFSOFである前記[1]~[5]のいずれかの製造方法。
 [7]前記含フッ素単量体が、下記の単量体(m2-1)、単量体(m2-2)または単量体(m2-3)である前記[1]~[5]のいずれかの含フッ素重合体の製造方法。
Figure JPOXMLDOC01-appb-C000004
 [8]前記環状ハイドロフルオロカーボンが、水素原子の数と同数以上のフッ素原子を有する前記[1]~[7]のいずれかの製造方法。
 [9]前記環状ハイドロフルオロカーボンが、前記環状ハイドロフルオロカーボンが、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、または1H,2H-オクタフルオロシクロペンタンである前記[1]~[8]のいずれかの製造方法。
 [10]前記環状ハイドロフルオロカーボンの含有量が、全重合媒体中50質量%以上である[1]~[9]のいずれかの製造方法。
 [11]前記[1]~[10]のいずれかの製造方法により含フッ素重合体を製造し、前記含フッ素重合体のスルホン酸基に変換し得る基をスルホン酸基に変換するか、またはカルボン酸基に変換し得る基をカルボン酸基に変換する、官能基含有含フッ素重合体の製造方法。
 [12]前記[1]~[10]のいずれかの製造方法により含フッ素重合体を製造し、前記含フッ素重合体を用いて膜を形成した後、スルホン酸基に変換し得る基をスルホン酸基に変換するか、またはカルボン酸基に変換し得る基をカルボン酸基に変換する、電解質膜の製造方法。
 [13]前記[11]の製造方法により官能基含有含フッ素重合体を製造し、前記官能基含有含フッ素重合体を用いて膜を形成する、電解質膜の製造方法。
 [14]前記官能基含有含フッ素重合体のイオン交換容量が、0.5~2.5ミリ当量/g乾燥樹脂である前記[12]または[13]の製造方法
 本発明によれば、重合速度が速く優れた生産性で高分子量の含フッ素重合体および官能基含有含フッ素重合体を安定して製造でき、環境負荷も低減できる。また、電解質膜の生産性にも優れる。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「単位」とは、単量体1分子が重合して直接形成される原子団と、該原子団の一部を化学変換して得られる原子団の総称である。
 「エーテル性酸素原子」とは、炭素-炭素原子間に1個存在する酸素原子(-C-O-C-)である。
 「スルホン酸基」は、-SOHおよび-SO(ただし、Mは、一価の金属イオン、または1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。)を総称である。
 「カルボン酸基」は、-COOHおよび-COOM(ただし、Mは一価の金属イオンまたは1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。)を総称である。
 「前駆体基」とは、スルホン酸基に変換し得る基と、カルボン酸基に変換し得る基の総称である。
 「イオン交換基」とは、スルホン酸基とカルボン酸基の総称である。
 「TQ値」は、ポリマーの分子量および軟化温度の指標である。TQ値が大きいほど分子量が大きいことを示す。長さ1mm、内径1mmのノズルを用い、2.94MPaの押出し圧力の条件で、溶融押出しを行った際の重合体の押出し量が100mm/秒となる温度である。
 本明細書においては、式(m1)で表される単量体を「単量体(m1)」と記す。他の式で表される単量体もこれに準じて記す。
 テトラフルオロエチレンを「TFE」と記す。
 ハイドロフルオロカーボンを「HFC」と記す。
 前駆体基を有する含フッ素単量体を「単量体(m)」と記す。
 単量体(m)に基づく単位を「単位(m)」と記す。他の単量体に基づく単位もこれに準じて記す。
 イオン交換容量を「AR」と記す。
[含フッ素重合体の製造方法]
 本発明の含フッ素重合体の製造方法は、TFEと単量体(m)とを含む単量体混合物を重合媒体中で重合する含フッ素重合体の製造方法であって、前記重合媒体が、炭素数4~10の環状HFCを主成分とする方法である。
 単量体混合物は、重合により含フッ素重合体の単位を形成する単量体の混合物である。単量体混合物は、TFEと単量体(m)とを必須成分として含む。
 スルホン酸基に変換し得る基としては、例えば、-SOX(ただし、Xはフッ素原子、塩素原子または臭素原子である。)、-SO(ただし、Rはエーテル性酸素原子を有していてもよいペルフルオロアルキル基である。)が挙げられる。なかでも、-SOXが好ましく、-SOFが特に好ましい。
 Rのペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状が好ましい。ペルフルオロアルキル基の炭素数は、1~6が好ましく、1~4がより好ましい。ペルフルオロアルキル基としては、ペルフルオロメチル基、またはペルフルオロエチル基が好ましい。
 Rのペルフルオロアルキル基がエーテル性酸素原子を有する場合、エーテル性酸素原子は、1個であってもよく、2個以上であってもよい。また、エーテル性酸素原子は、ペルフルオロアルキル基の炭素原子-炭素原子結合間に挿入されていてもよいが、炭素原子結合末端には挿入されない。
 カルボン酸基に変換し得る基としては、例えば、-COOR(ただし、Rは炭素数1~4のアルキル基である。)、-CN、-COZ(ただし、Zはハロゲン原子である。)が挙げられる。なかでも、カルボン酸基に変換し得る基としては、-COORが好ましく、-COOCHが特に好ましい。
 単量体(m)としては、スルホン酸基に変換し得る基を有する含フッ素単量体とカルボン酸基に変換し得る基を有する含フッ素単量体のいずれか一方のみを用いてもよく、それらを両方用いてもよい。本発明は、特に、単量体(m)として、スルホン酸基に変換し得る基を有する含フッ素単量体を用いる場合により好ましい。
 単量体(m)としては、例えば、単量体(m1)および単量体(m2)が挙げられる。製造が容易である点から、単量体(m)は、単量体(m1)および単量体(m2)からなる群から選ばれる少なくとも1種を含むことが好ましく、単量体(m1)および単量体(m2)からなる群から選ばれる少なくとも1種がより好ましい。
 また、重合時の反応性が良好であることから、単量体(m)はビニルエーテルが好ましいく、パーフルオロビニルエーテルがより好ましい。
 単量体(m)としては、単量体(m1)または単量体(m2)のいずれか一方のみを用いてもよく、単量体(m1)と単量体(m2)の両方を用いてもよい。
 単量体(m1)は、下式(m1)で表される単量体である。
Figure JPOXMLDOC01-appb-C000005
 ただし、式(m1)中、XおよびXは、それぞれ独立にフッ素原子またはトリフルオロメチル基であり、Aは、スルホン酸基またはカルボン酸基に変換し得る基であり、pは、0または1であり、qは、0または1であり、rは、0~3の整数であり、sは、0または1であり、tは、0~12の整数であり、uは、0~3の整数であり、1≦r+uである。
 Aとしては、-SOX、または-COORが好ましく、-SOF、または-COOCHがより好ましく、-SOFが特に好ましい。qは、1が好ましい。tおよびuがいずれも0である場合、sは0である。tは1~8の整数が好ましく、1~4の整数がより好ましい。
 単量体(m1)の具体例としては、CF=CFOCFCF(CF)OCFCFSOF、CF=CFOCFCFSOF、CF=CFOCFCFCFCFSOF、CF=CFCFOCFCFCFSOF、CF=CFCFOCFCFSOFが挙げられる。
 単量体(m1)の具体例としては、下記が挙げられる。
 CF=CF-O-CFCF-COOCH、CF=CF-O-CFCF-CF-COOCH、CF=CF-O-CFCF-CFCF-COOCH、CF=CF-O-CFCF-CFCF-CF-COOCH、CF=CF-O-CFCF-O-CFCF-COOCH、CF=CF-O-CFCF-O-CFCF-CF-COOCH、CF=CF-O-CFCF-O-CFCF-CFCF-COOCH3、CF=CF-O-CF-CFCF-O-CFCF-COOCH
CF=CF-O-CFCF(CF)-O-CFCF-COOCH、CF=CF-O-CFCF(CF)-O-CF-CFCF-COOCH
 単量体(m1)としては、含フッ素重合体の製造が容易であり、工業的実施が容易である点から、CF=CFOCFCF(CF)OCFCFSOF、CF=CFOCFCFSOF、CF=CFOCFCFCFCFSOF、CF=CFCFOCFCFSOF、CF=CF-O-CFCF-CF-COOCH、CF=CF-O-CFCF-O-CFCF-CF-COOCH、またはCF=CF-O-CFCF(CF)-O-CFCF-COOCHが好ましい。
 単量体(m1)は、1種を単独でも、2種以上を組み合わせて用いてもよい。
 単量体(m1)は、例えば、D.J.Vaugham著,”Du Pont Inovation”,第43巻、第3号,1973年、p.10に記載の方法、米国特許第4358412号明細書の実施例に記載の方法等の合成方法によって製造できる。
 単量体(m2)は、下式(m2)で表される単量体である。
Figure JPOXMLDOC01-appb-C000006
 ただし、式(m2)中、Q11は、エーテル性酸素原子を有していてもよいペルフルオロアルキレン基であり、Q12は、単結合、またはエーテル性酸素原子を有していてもよいペルフルオロアルキレン基であり、Zは、フッ素原子、または1価のペルフルオロ有機基であり、vは、0または1である。単結合は、CZの炭素原子とSOFの硫黄原子とが直接結合していることを意味する。
 Q11、Q12のペルフルオロアルキレン基がエーテル性酸素原子を有する場合、該エーテル性酸素原子は、1個であってもよく、2個以上であってもよい。また、該エーテル性酸素原子は、ペルフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよいが、硫黄原子と直接結合する末端には挿入されない。ペルフルオロアルキレン基は、直鎖状でも、分岐状であってもよく、直鎖状が好ましい。
 ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。炭素数が6以下であれば、単量体の沸点が低くなり、蒸留精製が容易となる。また、炭素数が6以下であれば、含フッ素重合体のイオン交換容量の低下が抑えられ、伝導性の低下が抑えられる。
 Q12は、エーテル性酸素原子を有していてもよい炭素数1~6のペルフルオロアルキレン基が好ましい。かかる基である場合、Q12が単結合である場合に比べ、長期にわたって固体高分子形燃料電池を運転した際に、発電性能の安定性に優れる。
 Q11、Q12の少なくとも一方は、エーテル性酸素原子を有する炭素数1~6のペルフルオロアルキレン基が好ましい。かかる基を有する単量体は、フッ素ガスによるフッ素化反応を経ずに合成できるため、収率が良好で、製造が容易である。
 Zとしては、フッ素原子、またはエーテル性酸素原子を有していてもよい炭素数1~6の直鎖のペルフルオロアルキル基が好ましく、フッ素原子がより好ましい。
 単量体(m2)としては、含フッ素重合体の製造が容易であり、工業的実施が容易である点から、単量体(m2-1)、単量体(m2-2)または単量体(m2-3)が好ましい。
Figure JPOXMLDOC01-appb-C000007
 単量体(m2)としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。単量体(m2)は、公知の合成方法によって製造できる。
 単量体混合物には、TFEおよび単量体(m1)若しくは単量体(m2)以外の他の単量体が含まれていてもよい。
 かかる他の単量体としては、下記単量体(m3)から選ばれる少なくとも一つの単量体が挙げられる
 CF=CF-O-R    (m3)
 ここで、Rは、炭素数1~12のペルフルオロアルキル基、炭素数2~10のペルフルオロアルキル基の炭素-炭素結合間にエーテル性の酸素原子を有する基、または炭素数2~12のペルフルオロアルケニル基である。
 単量体(m3)としては、たとえば、下記単量体(m3-1)~単量体(m3-4)が挙げられる。
 CF=CF-O-CF                (m3-1)
 CF=CF-O-CFCFCF           (m3-2)
 CF=CF-O-CFCF(CF)-O-CFCFCF  (m3-3)
 CF=CF-O-CFCFCF=CF        (m3-4)
 また、上記他の単量体としては、下記単量体(m4)~(単量体m7)から選ばれる少なくとも一つの単量体もあげられる。
 ここで、R11は、フッ素原子、炭素数1~10のペルフルオロアルキル基または炭素数2~10のペルフルオロアルキル基の炭素-炭素結合間にエーテル性の酸素原子を有する基である。R11としては、炭素数1~5のペルフルオロアルキル基が好ましく、トリフルオロメチル基がより好ましい。ペルフルオロアルキル基は、直鎖状であっても、分岐状であってもよく、直鎖状であることが好ましい。
 R12およびR14は、フッ素原子、炭素数1~10のペルフルオロアルキル基または炭素数2~10のペルフルオロアルキル基の炭素-炭素結合間にエーテル性の酸素原子を有する基である。R12およびR14としては、それぞれ独立に、トリフルオロメチル基が好ましい。ペルフルオロアルキル基は、直鎖状であっても、分岐状であってもよく、直鎖状であることが好ましい。
 R13は、単結合、炭素数1~10のペルフルオロアルキレン基または炭素数2~10のペルフルオロアルキレン基の炭素-炭素結合間にエーテル性の酸素原子を有する基である。R13としては、炭素数2~4のペルフルオロアルキレン基または炭素数3~4のペルフルオロアルキレン基の炭素-炭素結合間にエーテル性の酸素原子を有する基が好ましい。ペルフルオロアルキレン基は、直鎖状であっても、分岐状であってもよく、直鎖状であることが好ましい。
 R15は、フッ素原子、炭素数1~10のペルフルオロアルキル基または炭素数2~10のペルフルオロアルキル基の炭素-炭素結合間にエーテル性の酸素原子を有する基である。R15としては、炭素数1~4のペルフルオロアルキル基または炭素数2~4のペルフルオロアルキル基の炭素-炭素結合間にエーテル性の酸素原子を有する基が好ましく、炭素数1~4のペルフルオロアルキル基がより好ましく、トリフルオロメチル基がさらに好ましい。ペルフルオロアルキル基は、直鎖状であっても、分岐状であってもよく、直鎖状であることが好ましい。
 Qは、単結合、炭素数1~10のペルフルオロアルキレン基または炭素数2~10のペルフルオロアルキレン基の炭素-炭素結合間にエーテル性の酸素原子を有する基である。
Figure JPOXMLDOC01-appb-C000008
 単量体(m4)としては、たとえば、下記単量体(m4-1)~単量体(m4-6)が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 単量体(m5)としては、たとえば、下記単量体(m5-1)または単量体(m5-2)を共重合することができる。
Figure JPOXMLDOC01-appb-C000010
 単量体(m6)としては、たとえば、下記単量体(m6-1)または単量体(m6-2)を共重合することができる。
Figure JPOXMLDOC01-appb-C000011
 単量体(m7)としては、たとえば、下記単量体(m7-1)~単量体(m7-3)を共重合することができる。
Figure JPOXMLDOC01-appb-C000012
 他の単量体としては、例えば、クロロトリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、α-オレフィン(エチレン、プロピレン等)、ペルフルオロα-オレフィン(ヘキサフルオロプロピレン等)、(ペルフルオロアルキル)エチレン(ペルフルオロブチル)エチレン等)、(ペルフルオロアルキル)プロペン(3-ペルフルオロオクチル-1-プロペン等)、ペルフルオロビニルエーテルが挙げられる。
 ペルフルオロビニルエーテルとしては、例えば、ペルフルオロ(アルキルビニルエーテル)、ペルフルオロ(エーテル性酸素原子含有アルキルビニルエーテル)が挙げられる。
 本発明では、単量体混合物の総量に対して、TFEの割合が5~70モル%が好ましく、単量体(m)の割合が30~95モル%が好ましい。単量体がTFEおよび単量体(m)からなる場合には、TFEの割合および単量体(m)の割合の合計が100モル%になるように、それぞれ上記数値範囲から選ばれる。
 TFEの割合および単量体(m)の割合が上記範囲にある場合、機械的強度および化学的耐久性に優れ、かつイオン交換容量の高い含フッ素重合体が得られやすい。
 単量体混合物の総量に対するTFEの割合は、なかでも、5~65モル%がより好ましく、5~60モル%がさらに好ましく、5~55モル%が特に好ましい。TFEの割合が前記範囲の下限値以上であれば、含フッ素重合体の機械的強度および化学的耐久性に優れる。TFEの割合が前記範囲の上限値以下であれば、含フッ素重合体中の単量体(m)の含有量を多くできるため、含フッ素重合体のイオン交換容量を高くできる。
 単量体混合物の総量に対する単量体(m)の割合は、なかでも、35~95モル%が特に好ましい。単量体(m)の割合が前記範囲の下限値以上であれば、イオン交換容量が高い含フッ素重合体が得られやすい。単量体(m)の割合が前記範囲の上限値以下であれば、含フッ素重合体中のTFEの含有量を多くできるため、含フッ素重合体の機械的強度および化学的耐久性に優れる。
 単量体混合物に上記他の単量体が含有される場合、単量体混合物の総量に対する上記他の単量体の割合は、0~75モル%が好ましく、0~70モル%がより好ましく、0~65モル%がさらに好ましく、0~60モル%が特に好ましい。他の単量体の割合が前記範囲内であれば、TFEおよび単量体(m)により得られる効果を損ないにくい。
 なお、一部の単量体は重合媒体に溶解せずに反応容器の気相部分に存在する場合もあるが、これらの気相部分に存在する単量体も単量体混合物の一部とみなす。
 重合媒体は、炭素数4~10の環状HFCを主成分とする。「炭素数4~10の環状HFCを主成分とする」とは、重合媒体(単量体(m)のような単量体を含まない)の総質量に対する炭素数4~10の環状HFCの割合が70質量%以上を意味する。環状HFCの割合は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、100質量%(すなわち、重合媒体が環状HFCのみ)が最も好ましい。
 環状HFCの炭素数は、4~10であり、4~8が好ましく、4~6がより好ましい。環状HFCの炭素数が前記範囲内の下限値以上であれば、沸点が低くなり過ぎることを抑制できる。環状HFCの炭素数が前記範囲内の上限値以下であれば、沸点が高くなり過ぎることを抑制できる。
 環状HFCは、水素原子の数と同数以上のフッ素原子を有することが好ましい。すなわち、環状HFCが有する水素原子の数(N)に対するフッ素原子の数(N)の比(N/N)は、1以上が好ましい。これにより、重合中の環状HFCの化学的安定性が保たれる。N/Nは、1以上が好ましく、1~17がより好ましく、1~11が特に好ましい。
 環状HFCの具体例としては、例えば、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、1,1,2,2,3,3-ヘキサフルオロシクロペンタン、1H,2H-オクタフルオロシクロペンタン、1,2,3,4,5-ペンタフルオロシクロペンタン、1,1,2,2,3,4,5-ヘプタフルオロシクロペンタン、1H-ノナフルオロシクロペンタン、1,1,2,2,3-ペンタフルオロシクロブタン、1,1,2,3,3-ペンタフルオロシクロブタン、1,1,2,2,3,3-ヘキサフルオロシクロブタン、1,1,2,3,3,4-ヘキサフルオロシクロブタン、cis-1,1,2,2,3,4-ヘキサフルオロシクロブタン、trans-1,1,2,2,3,4-ヘキサフルオロシクロブタン、1,2,3,4,5,6-ヘキサフルオロシクロヘキサン、1,1,2,3,4,4,5,6-オクタフルオロシクロヘキサン、1,1,2,2,3,3,4,4-オクタフルオロシクロヘキサンが挙げられる。なかでも、入手安定性の点から、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、または1H,2H-オクタフルオロシクロペンタンが好ましい。
 環状HFCは、1種を単独でも2種以上を組み合わせて用いてもよい。
 重合媒体は、炭素数4~10の環状HFC以外の他の重合媒体を含んでいてもよい。他の重合媒体は、例えば、鎖状HFCが挙げられる。
 鎖状HFCは、例えば、C、CHFCFCFCHF、CHCFCFHCF、CFCHCFCH、CFCFHCFHCFCF、(CFCFC、CHCHFC、CHCFCFCFCFH、C、C、(CFCFCHFCHFCF、CHCFCFCFCFCFCFH、C13H、C13、C、C17が挙げられる。鎖状HFCは、1種を単独でも2種以上を組み合わせて用いてもよい。
 重合媒体中の炭素数4~10の環状HFCの割合は、50質量%以上であり、60質量%以上が好ましく、70質量%以上がより好ましく、100質量%が特に好ましい。該割合が多いほど、重合速度が速くなり、また含フッ素重合体を高分子量化できる。
 本発明では、環状HFCを主成分とする重合媒体を用いる重合により単量体混合物を重合する。
 重合方法は、溶液重合、懸濁重合、乳化重合など公知の重合方法を採用できるが、溶液重合、懸濁重合が好ましく、溶液重合がより好ましい。
 重合に用いるラジカル開始剤としては、例えば、ビス(フルオロアシル)パーオキシド類、ビス(クロロフルオロアシル)パーオキシド類、ジアルキルパーオキシジカーボネート類、ジアシルパーオキシド類、パーオキシエステル類、ジアルキルパーオキシド類、ビス(フルオロアルキル)パーオキシド類、アゾ化合物類、過硫酸塩類が挙げられる。
 重合における重合媒体に対する単量体(m)のモル比は、0.1~100が好ましく、0.3~90がより好ましく、0.5~80がさらに好ましく、0.7~70が特に好ましい。前記モル比が前記範囲内の下限値以上であれば、比較的イオン交換容量の小さい単量体混合物を適度な反応速度で合成できる。前記モル比が前記範囲内の上限値以下であれば、比較的イオン交換容量の大きい単量体混合物の高分子量化に適する。
 重合温度は、10~150℃が好ましく、15~130℃がより好ましい。重合時の圧力は、0.0~2.0MPaGが好ましく、0.05~1.5MPaGがより好ましい。
 重合時間は、2~30時間が好ましく、3~25時間がより好ましい。
 本発明で製造する含フッ素重合体のTQ値は、150~340℃が好ましく、170~300℃がより好ましい。TQ値が前記範囲の下限値以上であれば、含フッ素重合体を成形した際に、成形体の強度が良好となる。TQ値が前記範囲の上限値以下であれば、含フッ素重合体を成形する際の成形性が良好となる。
 本発明で製造する含フッ素重合体は、全単位における単位(TFE)の割合が5~90モル%が好ましく、単位(m)の割合が5~35モル%が好ましい。含フッ素重合体が単位(TFE)および単位(m)からなる場合には、単位(TFE)の割合および単位(m)の割合の合計が100モル%になるように、それぞれ上記数値範囲から選ばれる。
 単位(TFE)の割合および単位(m)の割合が上記範囲にある場合、機械的強度および化学的耐久性に優れ、かつイオン交換容量の高い含フッ素重合体が得られやすい。
 含フッ素重合体中の全単位における単位(TFE)の割合は、なかでも、5~85モル%がより好ましく、6~85モル%がさらに好ましく、7~84モル%が特に好ましい。単位(TFE)の割合が前記範囲の下限値以上であれば、含フッ素重合体の機械的強度および化学的耐久性に優れる。単位(TFE)の割合が前記範囲の上限値以下であれば、含フッ素重合体中の単位(m)の含有量を多くできるため、含フッ素重合体のイオン交換容量を高くできる。
 含フッ素重合体中の全単位における単位(m)の割合は、なかでも、10~33モル%がより好ましく、13~31モル%がさらに好ましく、15~31モル%が特に好ましい。単位(m)の割合が前記範囲の下限値以上であれば、イオン交換容量が高い含フッ素重合体が得られやすい。単位(m)の割合が前記範囲の上限値以下であれば、含フッ素重合体中のTFEの含有量を多くできるため、含フッ素重合体の機械的強度および化学的耐久性に優れる。
 含フッ素重合体に上記他の単量体が含有される場合、単量体混合物の総量に対する上記他の単量体に基づく単位の割合は、0~75モル%が好ましく、0~74モル%がより好ましく、0~73モル%がさらに好ましく、0~72モル%が特に好ましい。他の単量体に基づく単位の割合が前記範囲内であれば、単位(TFE)および単位(m)により得られる効果を損ないにくい。
 以上説明したように、本発明においては、TFEと単量体(m)とを重合する際の重合媒体として、炭素数4~10の環状HFCを主成分とする重合媒体を用いる。これにより、重合媒体として鎖状HFCを用いる場合に比べてTFEと単量体(m)との重合速度が速くなるため、含フッ素重合体の生産性に優れる。また、重合中に連鎖移動反応が過度に進行することが抑制されるため、高分子量の含フッ素重合体を安定して得ることができる。また、炭素数4~10の環状HFCは鎖状HFCに比べてGWPが低く、環境負荷も低減できる。
[官能基含有含フッ素重合体の製造方法]
 本発明の官能基含有含フッ素重合体の製造方法は、本発明の含フッ素重合体の製造方法により含フッ素重合体を製造し、前記含フッ素重合体のスルホン酸基に変換し得る基をスルホン酸基に変換するか、またはカルボン酸基に変換し得る基をカルボン酸基に変換する方法である。
 含フッ素重合体におけるスルホン酸基に変換し得る基をスルホン酸基に変換する方法としては、公知の方法を採用でき、例えば、国際公開第2011/013578号に記載の方法が挙げられる。具体的には、例えば、-SOF基を酸型のスルホン酸基(-SOH基)に変換する方法としては、含フッ素重合体の-SOF基を塩基と接触させて加水分解して塩型のスルホン酸基とし、塩型のスルホン酸基を酸と接触させて酸型化して酸型のスルホン酸基に変換する方法が挙げられる。
 含フッ素重合体におけるカルボン酸基に変換し得る基をカルボン酸基に変換する方法としては、スルホン酸基に変換し得る基をスルホン酸基に変換する方法と同様の方法が挙げられる。
 本発明で製造する官能基含有含フッ素重合体のARは、0.5~2.5ミリ当量/g乾燥樹脂が好ましく、0.7~2.3ミリ当量/g乾燥樹脂がより好ましい。ARが前記範囲の下限値以上であれば、含フッ素重合体のイオン交換性を充分に確保できる。ARが前記範囲の上限値以下であれば、含フッ素重合体の分子量を高くでき、膜などの形体とした際に充分な強度の成形体が得られる。
[電解質膜の製造方法]
 本発明の電解質膜の製造方法は、下記の方法(x-1)または方法(x-2)の2種類に大別される。
 (x-1)本発明で製造した含フッ素重合体を用いて膜を形成した後、前駆体基をイオン交換基に変換する方法。
 (x-2)本発明で製造した官能基含有含フッ素重合体を用いて膜を形成する方法。
 方法(x-1):
 含フッ素重合体を膜状に成形する方法としては、含フッ素重合体が溶融流動性に優れる点から、押出成形法、加圧プレス成形法、または延伸法が好ましい。
 膜形成後に含フッ素重合体の前駆体基をイオン交換基に変換する方法としては、官能基含有含フッ素重合体の製造方法で説明した方法を採用できる。
 前駆体基をイオン交換基に変換した後、電解質膜を安定化させるために、熱処理を行うことが好ましい。熱処理の温度は、含フッ素重合体の種類にもよるが、130~220℃が好ましい。熱処理の温度が130℃以上であれば、含フッ素重合体が過度に含水しにくくなる。熱処理の温度が220℃以下であれば、イオン交換基の熱分解が抑えられ、電解質膜のプロトン伝導性の低下が抑制される。
 方法(x-2):
 官能基含有含フッ素重合体を膜状に成形する方法としては、官能基含有含フッ素重合体の液状組成物を基材に塗工し、乾燥する方法(キャスト法)が好ましい。液状組成物は、水酸基を有する有機溶媒および水を含む分散媒に、官能基含有含フッ素重合体を分散させた分散液である。
 水酸基を有する有機溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、2,2,3,3-テトラフルオロ-1-プロパノール、4,4,5,5,5-ペンタフルオロ-1-ペンタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、3,3,3-トリフルオロ-1-プロパノール、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノールが挙げられる。水酸基を有する有機溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 膜形成後には、方法(x-1)と同様に、電解質膜を安定化させるために熱処理を行うことが好ましい。
 本発明の製造方法で得られる電解質膜は、食塩電解に用いるイオン交換膜や固体高分子形燃料電池の膜電極接合体に好適に使用できる。
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。例1は実施例であり、例2、3は比較例である。
(重合反応性)
 各例の含フッ素重合体の製造において、下式から重合速度Rp(g/h・L)を算出して重合反応性を評価した。Rpの値が大きいほど、重合反応性が良好であることを意味する。
 Rp=W1/(T1×V1)
 ただし、前記式中、W1は含フッ素重合体の収量(g)であり、T1は重合時間(h)であり、V1は重合に用いた単量体と重合媒体との合計体積(L)である。
(AR)
 ポリカーボネート製の容器に、官能基含有含フッ素重合体の0.7g、および0.35Nの水酸化ナトリウム水溶液の10mLを加え、60℃で40時間静置することによって、官能基含有含フッ素重合体のスルホン酸基を完全にNa型に転換した。該溶液を0.1Nの塩酸で逆滴定し、溶液中の水酸化ナトリウムの量を求めることによって、含フッ素重合体のAR(ミリ当量/g乾燥樹脂)を算出した。
(TQ値)
 フローテスタCFT-500A(島津製作所社製)を用い、温度を変えて含フッ素重合体の押出し量を測定し、押出し量が100mm/秒となるTQ値を求めた。
(略号)
 TFE:テトラフルオロエチレン(CF=CF)、
 PSVE:CF=CFOCFCF(CF)OCFCFSOF、
 HFC-c-447ef:1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(ゼオローラH、日本ゼオン社商品名製、GWP=250)、
 AC2000:C13H(アサヒクリン(旭硝子社登録商標)AC-2000、GWP=2000)、
 AE3000:CFCHOCFCFH(アサヒクリン(旭硝子社登録商標)AE-3000)、
 AIBN:2,2’-アゾビス(イソブチロニトリル)。
(例1)
 内容積230mLのステンレス製オートクレーブに、PSVEの131.71g、重合媒体としてHFC-c-447efの36.および14g、AIBNの22.2mgを仕込み、液体窒素による冷却下、オートクレーブ内を充分に脱気した。75℃に昇温した後、TFEを導入し、圧力を1.305MPaGとした。温度と圧力を一定に保持しながら、TFEを連続的に供給した。重合開始から4時間後にオートクレーブを冷却して重合反応を停止した。連続的に導入したTFEの量は10.60gであった。
 オートクレーブから抜き出した反応液をAC2000の100gで希釈し、これにAE3000の400gを添加し、含フッ素重合体を凝集させた後にろ過した。含フッ素重合体にAE3000の250gを加えて撹拌して洗浄し、ろ過する操作を2回実施した後、80℃で16時間減圧乾燥して22.94gの含フッ素重合体を得た。
[例2、3]
 単量体の使用量、重合媒体の種類および使用量、触媒の使用量、重合反応条件を表1に示すとおりに変更した以外は、実施例1と同様にして含フッ素重合体を得た。
 各例について、得られた含フッ素重合体の収量、収量と反応時間から算出した重合速度、AR、およびTQを表1に示す。
Figure JPOXMLDOC01-appb-T000013
 表1に示すように、重合媒体として炭素数4~10の環状HFCを用いた例1では、TQが高く充分な分子量を有する含フッ素重合体が得られたうえ、重合速度も速かった。
 一方、鎖状HFCであるC17を用いた例2では、例1に比べて重合速度が遅く、またTQ値が低く含フッ素重合体の分子量が低かった。また、鎖状HFCであるAC2000を用いた例3では、例1に比べて重合速度が遅かった。
 なお、2017年6月21日に出願された日本特許出願2017-121534号および2017年10月17日に出願された日本特許出願2017-201067号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  テトラフルオロエチレンと、スルホン酸基またはカルボン酸基に変換し得る基を有する含フッ素単量体とを含む単量体混合物を重合媒体中で重合する含フッ素重合体の製造方法であって、前記重合媒体が、炭素数4~10の環状ハイドロフルオロカーボンを主成分とすることを特徴とする含フッ素重合体の製造方法。
  2.  前記含フッ素単量体が、スルホン酸基またはカルボン酸基に変換し得る基を有するビニルエーテルである、請求項1に記載の含フッ素重合体の製造方法。
  3.  前記単量体混合物の総量に対して、前記テトラフルオロエチレンの割合が5~70モル%であり、前記含フッ素単量体の割合が30~95モル%である、請求項1または2に記載の含フッ素重合体の製造方法。
  4.  前記含フッ素重合体のTQ値は、150~340℃である、請求項1~3のいずれか一項に記載の含フッ素重合体の製造方法。
  5.  前記含フッ素単量体が、下式(m1)で表される単量体および下式(m2)で表される単量体からなる群から選ばれる少なくとも1種を含む、請求項1~4のいずれか一項に記載の含フッ素重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、前記式(m1)中、XおよびXは、それぞれ独立にフッ素原子またはトリフルオロメチル基であり、Aは、スルホン酸基またはカルボン酸基に変換し得る基であり、pは、0または1であり、qは、0または1であり、rは、0~3の整数であり、sは、0または1であり、tは、0~12の整数であり、uは、0~3の整数であり、1≦r+uである。また、前記式(m2)中、Q11は、エーテル性酸素原子を有していてもよいペルフルオロアルキレン基であり、Q12は、単結合、またはエーテル性酸素原子を有していてもよいペルフルオロアルキレン基であり、Zは、フッ素原子、または1価のペルフルオロ有機基であり、vは、0または1である。)
  6.  前記含フッ素単量体が、CF=CFOCFCF(CF)OCFCFSOF、CF=CFOCFCFSOF、CF=CFOCFCFCFCFSOF、またはCF=CFCFOCFCFCFSOFである、請求項1~5のいずれか一項に記載の含フッ素重合体の製造方法。
  7.  前記含フッ素単量体が、下記の単量体(m2-1)、単量体(m2-2)または単量体(m2-3)である、請求項1~5のいずれか一項に記載の含フッ素重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
  8.  前記環状ハイドロフルオロカーボンが、水素原子の数と同数以上のフッ素原子を有する、請求項1~7のいずれか一項に記載の含フッ素重合体の製造方法。
  9.  前記環状ハイドロフルオロカーボンが、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、または1H,2H-オクタフルオロシクロペンタンである、請求項1~8のいずれか一項に記載の含フッ素重合体の製造方法。
  10.  前記環状ハイドロフルオロカーボンの含有量が、全重合媒体中50質量%以上である、請求項1~9のいずれか一項に記載の含フッ素重合体の製造方法。
  11.  請求項1~10のいずれか一項に記載の含フッ素重合体の製造方法により含フッ素重合体を製造し、前記含フッ素重合体のスルホン酸基に変換し得る基をスルホン酸基に変換するか、またはカルボン酸基に変換し得る基をカルボン酸基に変換する、官能基含有含フッ素重合体の製造方法。
  12.  請求項1~10のいずれか一項に記載の含フッ素重合体の製造方法により含フッ素重合体を製造し、前記含フッ素重合体を用いて膜を形成した後、スルホン酸基に変換し得る基をスルホン酸基に変換するか、またはカルボン酸基に変換し得る基をカルボン酸基に変換する、電解質膜の製造方法。
  13.  請求項11に記載の官能基含有含フッ素重合体の製造方法により官能基含有含フッ素重合体を製造し、該官能基含有含フッ素重合体を用いて膜を形成する、電解質膜の製造方法。
  14.  前記官能基含有含フッ素重合体のイオン交換容量が、0.5~2.5ミリ当量/g乾燥樹脂である、請求項12または13に記載の電解質膜の製造方法。
PCT/JP2018/023664 2017-06-21 2018-06-21 含フッ素重合体、官能基含有含フッ素重合体および電解質膜の製造方法 WO2018235911A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18819742.0A EP3643728B1 (en) 2017-06-21 2018-06-21 Methods for producing fluorinated polymer, fluorinated polymer having functional group and electrolyte membrane
JP2019525690A JP6984658B2 (ja) 2017-06-21 2018-06-21 含フッ素重合体、官能基含有含フッ素重合体および電解質膜の製造方法
CN201880041034.1A CN110785443B (zh) 2017-06-21 2018-06-21 含氟聚合物、含官能团的含氟聚合物及电解质膜的制造方法
US16/716,968 US10975209B2 (en) 2017-06-21 2019-12-17 Methods for producing fluorinated polymer, fluorinated polymer having functional group and electrolyte membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-121534 2017-06-21
JP2017121534 2017-06-21
JP2017-201067 2017-10-17
JP2017201067 2017-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/716,968 Continuation US10975209B2 (en) 2017-06-21 2019-12-17 Methods for producing fluorinated polymer, fluorinated polymer having functional group and electrolyte membrane

Publications (1)

Publication Number Publication Date
WO2018235911A1 true WO2018235911A1 (ja) 2018-12-27

Family

ID=64736020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023664 WO2018235911A1 (ja) 2017-06-21 2018-06-21 含フッ素重合体、官能基含有含フッ素重合体および電解質膜の製造方法

Country Status (5)

Country Link
US (1) US10975209B2 (ja)
EP (1) EP3643728B1 (ja)
JP (1) JP6984658B2 (ja)
CN (1) CN110785443B (ja)
WO (1) WO2018235911A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020175674A1 (ja) * 2019-02-28 2020-09-03
WO2022107889A1 (ja) * 2020-11-19 2022-05-27 ダイキン工業株式会社 フルオロポリマーおよびその製造方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358412A (en) 1980-06-11 1982-11-09 The Dow Chemical Company Preparation of vinyl ethers
JPH07118332A (ja) * 1993-10-25 1995-05-09 Asahi Glass Co Ltd フッ素化モノマーの回収方法
JPH07504224A (ja) * 1992-02-28 1995-05-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フルオロモノマーの重合用ヒドロフルオロカーボン溶媒
JPH10316760A (ja) * 1997-05-20 1998-12-02 Nippon Zeon Co Ltd 重合体含有液及びこれを用いる重合体膜の形成方法
WO1999005179A1 (fr) * 1997-07-24 1999-02-04 Asahi Glass Company Ltd. Procede de production d'un polymere fluore
JPH11501685A (ja) * 1995-02-06 1999-02-09 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー テトラフルオロエチレン−ヘキサフルオロプロピレンの非晶質コポリマー類
JP3356474B2 (ja) 1992-12-28 2002-12-16 旭硝子株式会社 スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法
WO2004007576A1 (ja) * 2002-06-14 2004-01-22 Daikin Industries, Ltd. 含フッ素共重合体製造方法、含フッ素共重合体及び成形体
WO2004052954A1 (fr) * 2002-12-10 2004-06-24 'petro Mir' Private Company Procede de production de copolymeres perfluores comprenant des groupes de fluorure de sulfonyle fonctionnels
WO2005054363A1 (ja) * 2003-12-01 2005-06-16 Daikin Industries, Ltd. 含フッ素ポリマー液状組成物及びフッ素系架橋体製造方法
WO2008050692A1 (en) * 2006-10-23 2008-05-02 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell
JP2010018674A (ja) * 2008-07-09 2010-01-28 Asahi Glass Co Ltd ポリマー、その製造方法、固体高分子形燃料電池用電解質膜および膜電極接合体
WO2011013578A1 (ja) 2009-07-31 2011-02-03 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP2013181128A (ja) * 2012-03-02 2013-09-12 Asahi Glass Co Ltd ポリマーの製造方法、固体高分子形燃料電池用電解質膜および膜電極接合体
JP2014135144A (ja) * 2013-01-08 2014-07-24 Asahi Kasei E-Materials Corp レドックスフロー二次電池
WO2017033686A1 (ja) * 2015-08-24 2017-03-02 旭硝子株式会社 液状組成物、触媒層形成用塗工液および膜電極接合体の製造方法
WO2017033685A1 (ja) * 2015-08-21 2017-03-02 旭硝子株式会社 液状組成物の製造方法、触媒層形成用塗工液の製造方法および膜電極接合体の製造方法
JP2017121534A (ja) 2017-04-04 2017-07-13 株式会社大一商会 遊技機
JP2017201067A (ja) 2016-05-02 2017-11-09 志能夫 池田 簡易ベルト機構及び折り返し爪具。

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184204A (ja) * 1992-12-16 1994-07-05 Asahi Glass Co Ltd 含弗素重合体の製造法
EP1927601B1 (en) * 2006-11-28 2010-01-13 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
TWI447151B (zh) * 2008-04-28 2014-08-01 Asahi Glass Co Ltd Production method of fluorine-containing polymer and fluorine-containing ion exchange membrane

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358412A (en) 1980-06-11 1982-11-09 The Dow Chemical Company Preparation of vinyl ethers
JPH07504224A (ja) * 1992-02-28 1995-05-11 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー フルオロモノマーの重合用ヒドロフルオロカーボン溶媒
JP3356474B2 (ja) 1992-12-28 2002-12-16 旭硝子株式会社 スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法
JPH07118332A (ja) * 1993-10-25 1995-05-09 Asahi Glass Co Ltd フッ素化モノマーの回収方法
JPH11501685A (ja) * 1995-02-06 1999-02-09 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー テトラフルオロエチレン−ヘキサフルオロプロピレンの非晶質コポリマー類
JPH10316760A (ja) * 1997-05-20 1998-12-02 Nippon Zeon Co Ltd 重合体含有液及びこれを用いる重合体膜の形成方法
WO1999005179A1 (fr) * 1997-07-24 1999-02-04 Asahi Glass Company Ltd. Procede de production d'un polymere fluore
WO2004007576A1 (ja) * 2002-06-14 2004-01-22 Daikin Industries, Ltd. 含フッ素共重合体製造方法、含フッ素共重合体及び成形体
WO2004052954A1 (fr) * 2002-12-10 2004-06-24 'petro Mir' Private Company Procede de production de copolymeres perfluores comprenant des groupes de fluorure de sulfonyle fonctionnels
WO2005054363A1 (ja) * 2003-12-01 2005-06-16 Daikin Industries, Ltd. 含フッ素ポリマー液状組成物及びフッ素系架橋体製造方法
WO2008050692A1 (en) * 2006-10-23 2008-05-02 Asahi Glass Company, Limited Membrane electrode assembly for solid polymer fuel cell
JP2010018674A (ja) * 2008-07-09 2010-01-28 Asahi Glass Co Ltd ポリマー、その製造方法、固体高分子形燃料電池用電解質膜および膜電極接合体
WO2011013578A1 (ja) 2009-07-31 2011-02-03 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP2013181128A (ja) * 2012-03-02 2013-09-12 Asahi Glass Co Ltd ポリマーの製造方法、固体高分子形燃料電池用電解質膜および膜電極接合体
JP2014135144A (ja) * 2013-01-08 2014-07-24 Asahi Kasei E-Materials Corp レドックスフロー二次電池
WO2017033685A1 (ja) * 2015-08-21 2017-03-02 旭硝子株式会社 液状組成物の製造方法、触媒層形成用塗工液の製造方法および膜電極接合体の製造方法
WO2017033686A1 (ja) * 2015-08-24 2017-03-02 旭硝子株式会社 液状組成物、触媒層形成用塗工液および膜電極接合体の製造方法
JP2017201067A (ja) 2016-05-02 2017-11-09 志能夫 池田 簡易ベルト機構及び折り返し爪具。
JP2017121534A (ja) 2017-04-04 2017-07-13 株式会社大一商会 遊技機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.J. VAUGHAM, DU PONT INOVATION, vol. 43, no. 3, 1973, pages 10
See also references of EP3643728A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020175674A1 (ja) * 2019-02-28 2020-09-03
EP3932961A4 (en) * 2019-02-28 2022-11-23 Agc Inc. POLYMER CONTAINING A SULFONIC ACID GROUP, POLYMER CONTAINING A FLUOROSULFONYL GROUP AND LIQUID COMPOSITION
JP7392709B2 (ja) 2019-02-28 2023-12-06 Agc株式会社 スルホン酸基含有ポリマー、フルオロスルホニル基含有ポリマーおよび液状組成物
WO2022107889A1 (ja) * 2020-11-19 2022-05-27 ダイキン工業株式会社 フルオロポリマーおよびその製造方法

Also Published As

Publication number Publication date
EP3643728A4 (en) 2021-03-10
CN110785443B (zh) 2022-06-07
EP3643728A1 (en) 2020-04-29
US20200123337A1 (en) 2020-04-23
CN110785443A (zh) 2020-02-11
US10975209B2 (en) 2021-04-13
JP6984658B2 (ja) 2021-12-22
EP3643728B1 (en) 2022-08-17
JPWO2018235911A1 (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
JP6098643B2 (ja) 含フッ素共重合体の製造方法
JP5924338B2 (ja) 含フッ素共重合体の製造方法
JP2013545877A (ja) マイクロエマルジョン及びマイクロエマルジョンを用いて作製されたフルオロポリマー
CN105358592B (zh) 含氟聚合物的制造方法
US10975209B2 (en) Methods for producing fluorinated polymer, fluorinated polymer having functional group and electrolyte membrane
WO2010073940A1 (ja) 含フッ素ポリマー粒子の製造方法
US10604461B2 (en) Method for producing fluorine-containing compound having iodine atom content reduced
JP5799926B2 (ja) 含フッ素共重合体の製造方法
US8933264B2 (en) Method for producing organic compound having sulfo group, method for producing liquid composition, and method for hydrolyzing organic compound having fluorosulfonyl group
JP6763389B2 (ja) 含フッ素ポリマーの製造方法
JP7276330B2 (ja) 含フッ素ポリマーの製造方法および含フッ素イオン交換ポリマーの製造方法
WO2005037879A1 (ja) パーフルオロカーボン重合体の製造方法
JPH1135638A (ja) スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法
JP2011052186A (ja) 含フッ素重合体の凝集分離方法
JPH06199958A (ja) スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法
JP2006083342A (ja) スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法、およびイオン交換膜の製造方法
JPH06199959A (ja) スルホン酸型官能基を有するパーフルオロカーボン重合体の製造法
JPH08325335A (ja) スルホン酸型官能基を有するパーフルオロカーボン共重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525690

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018819742

Country of ref document: EP

Effective date: 20200121