WO2018230195A1 - 液晶性ポリエステル樹脂組成物およびそれからなる成形品 - Google Patents

液晶性ポリエステル樹脂組成物およびそれからなる成形品 Download PDF

Info

Publication number
WO2018230195A1
WO2018230195A1 PCT/JP2018/017809 JP2018017809W WO2018230195A1 WO 2018230195 A1 WO2018230195 A1 WO 2018230195A1 JP 2018017809 W JP2018017809 W JP 2018017809W WO 2018230195 A1 WO2018230195 A1 WO 2018230195A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
crystalline polyester
polyester resin
structural unit
parts
Prior art date
Application number
PCT/JP2018/017809
Other languages
English (en)
French (fr)
Inventor
立川浩司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/613,173 priority Critical patent/US20200165444A1/en
Priority to JP2018530634A priority patent/JPWO2018230195A1/ja
Priority to CN201880031330.3A priority patent/CN110662803A/zh
Priority to KR1020197035379A priority patent/KR20200019129A/ko
Publication of WO2018230195A1 publication Critical patent/WO2018230195A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2250/00Compositions for preparing crystalline polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/12Polymer mixtures characterised by other features containing additives being liquid crystalline or anisotropic in the melt

Definitions

  • the present invention relates to a liquid crystalline polyester resin composition having excellent sliding properties and improved adhesive strength and impact durability, and a molded product comprising the same.
  • liquid crystalline polyester resins having optical anisotropy characterized by parallel arrangement of molecular chains are attracting attention because they have excellent fluidity, heat resistance, mechanical properties, and dimensional stability. Used for precision molded products.
  • Patent Document 1 improvement of the surface raised area (for example, Patent Document 1) and reduction of detached products by adding fine silica to the liquid crystalline resin have been studied (for example, Patent Document 1). 2, 7).
  • Patent Documents 3 to 6 It is also known to improve heat resistance and impact strength by blending such fine silica into a liquid crystalline resin (for example, Patent Documents 3 to 6).
  • Patent Document 3 a film having improved heat resistance and dimensional stability is obtained by using fine silica having a functional group on the surface.
  • Patent Document 4 a composition having improved heat resistance, dimensional stability, and chemical resistance is obtained by using silica having a bimodal particle size distribution.
  • Patent Document 5 a composition having improved impact strength and heat resistance is obtained by using a fine powder of 0.1 to 1 ⁇ m and a filler of 20 to 300 ⁇ m in combination.
  • Patent Document 6 surface impact is improved by the combined use of a powdery filler having an average particle size of 0.2 to 2 ⁇ m, a copolymer composed of ⁇ -olefin or styrene and ⁇ , ⁇ -unsaturated glycidyl ester. A composition has been obtained.
  • compositions obtained by the inventions disclosed in these patent documents are not sufficient for the sliding characteristics required for recent fine sliding parts.
  • the present invention has been achieved as a result of investigations to solve the above-mentioned problems of the prior art, and is a liquid crystalline polyester resin composition having excellent sliding properties and improved adhesion and impact durability, and the same It aims at providing the molded article which consists of.
  • the present inventors have found that the above object can be achieved for the first time by blending a specific amount of surface hydrophobized spherical silica with respect to the liquid crystalline polyester resin.
  • the present invention has been reached.
  • the present invention relates to a liquid crystalline resin composition
  • a liquid crystalline resin composition comprising 10 to 45 parts by weight of surface-hydrophobized spherical silica (B) with respect to 100 parts by weight of the liquid crystalline polyester resin (A).
  • liquid crystalline polyester resin composition having excellent sliding characteristics and improved adhesion and impact durability, and a molded product comprising them.
  • the liquid crystalline polyester resin (A) used in the present invention includes, for example, a structural unit selected from an aromatic oxycarbonyl unit, an aromatic and / or aliphatic dioxy unit, an aromatic and / or aliphatic dicarbonyl unit, and the like. And a liquid crystalline polyester resin that forms an anisotropic melt phase.
  • aromatic oxycarbonyl unit examples include a structural unit generated from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid and the like, and a structural unit generated from p-hydroxybenzoic acid is preferable.
  • aromatic and / or aliphatic dioxy units include 4,4′-dihydroxybiphenyl, hydroquinone, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, t-butylhydroquinone, Phenylhydroquinone, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,2-bis (4-hydroxyphenyl) propane, 4,4′-dihydroxydiphenyl ether, ethylene glycol, 1,3-propylene glycol, 1, Examples thereof include structural units generated from 4-butanediol, and structural units generated from 4,4′-dihydroxybiphenyl and hydroquinone are preferred.
  • aromatic and / or aliphatic dicarbonyl units include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-4, Examples include structural units formed from 4′-dicarboxylic acid, 1,2-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, adipic acid, sebacic acid, and the like. Structural units formed from terephthalic acid and isophthalic acid are preferred.
  • liquid crystalline polyester resin examples include a liquid crystalline polyester resin composed of a structural unit formed from p-hydroxybenzoic acid and a structural unit formed from 6-hydroxy-2-naphthoic acid, and a structure formed from p-hydroxybenzoic acid.
  • a liquid crystalline polyester resin comprising a unit, a structural unit produced from 6-hydroxy-2-naphthoic acid, a structural unit produced from an aromatic dihydroxy compound, and a structural unit produced from an aromatic dicarboxylic acid and / or an aliphatic dicarboxylic acid, From structural units generated from p-hydroxybenzoic acid, structural units generated from 4,4′-dihydroxybiphenyl, aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid and / or aliphatic dicarboxylic acids such as adipic acid and sebacic acid Liquid crystalline polymer composed of the generated structural units Tellurium resin, structural unit generated from p-hydroxybenzoic acid, structural unit generated from 4,4′-dihydroxybiphenyl, structural unit generated from hydroquinone, aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid and / or adipic acid , Liquid crystalline polyester resin composed of structural units generated from
  • liquid crystalline polyester resins composed of the following structural units (I), (II), (III), (IV) and (V) are preferable from the viewpoint of low dust generation. This is because such a liquid crystalline polyester resin has a large number of copolymerized units and thus has low liquid crystallinity, and is less likely to cause fibrillation, which is a characteristic of the liquid crystalline polyester resin.
  • the structural unit (I) is a structural unit generated from p-hydroxybenzoic acid
  • the structural unit (II) is a structural unit generated from 4,4′-dihydroxybiphenyl
  • the structural unit (III) is a structure generated from hydroquinone.
  • the structural unit (IV) represents a structural unit generated from terephthalic acid
  • the structural unit (V) represents a structural unit generated from isophthalic acid.
  • the structural unit (I) is preferably 65 to 80 mol% with respect to the total of the structural units (I), (II) and (III). Since the amount of generated gas decreases, the lower limit is more preferably 68 mol% or more, and the upper limit is more preferably 78 mol% or less from the viewpoint of toughness.
  • the structural unit (II) is preferably 55 to 85 mol% with respect to the total of the structural units (II) and (III).
  • the lower limit is more preferably 60 mol% or more, most preferably 70 mol% or more
  • the upper limit is more preferably 82 mol% or less, most preferably from the viewpoint of toughness. 80 mol% or less.
  • the structural unit (IV) is preferably 50 to 95 mol% with respect to the total of the structural units (IV) and (V).
  • the lower limit is more preferably 55 mol% or more, most preferably 60 mol% or more, and the upper limit is more preferably 85 mol% or less from the viewpoint of toughness. Preferably it is 75 mol% or less.
  • the total of the structural units (II) and (III) and the total of (IV) and (V) are preferably substantially equimolar.
  • substantially equimolar means that the structural unit constituting the polymer main chain excluding the terminal is equimolar, and when including up to the structural unit constituting the terminal, it is not necessarily equivalent. Not exclusively. An excess of dicarboxylic acid component or dihydroxy component may be added to adjust the end groups of the polymer.
  • the content of each structural unit in the liquid crystalline polyester resin (A) can be calculated by the following treatment. That, and weighed a liquid crystalline polyester resin in NMR (nuclear magnetic resonance) tube, liquid crystalline polyester resin is soluble solvents (e.g., pentafluorophenol / heavy tetrachloroethane -d 2 mixed solvent) was dissolved in 1 The H-NMR spectrum is measured. The content of each structural unit can be calculated from the peak area ratio derived from each structural unit.
  • the melting point of the liquid crystalline polyester resin (A) is preferably 300 to 350 ° C. from the viewpoint of processability and fluidity, and its lower limit is more preferably 310 ° C. or more, and particularly preferably 320 ° C. or more from the viewpoint of processability. Further, from the viewpoint of fluidity, the upper limit is more preferably 340 ° C. or less, and particularly preferably 330 ° C. or less. Such a melting point is preferable because generation of decomposition gas during processing can be suppressed and fluidity can be sufficiently exhibited.
  • the melting point (Tm) of the liquid crystalline polyester resin (A) can be measured by the following method. In differential calorimetry, after observing the endothermic peak temperature (Tm 1 ) observed when the liquid crystalline polyester resin was measured at room temperature to 40 ° C./min, it was held at a temperature of Tm 1 + 20 ° C. for 5 minutes. Then, it was once cooled to room temperature under a temperature drop condition of 20 ° C./min, and the endothermic peak temperature (Tm 2 ) observed when measured again under a temperature rise condition of 20 ° C./min was defined as the melting point (Tm).
  • the melt viscosity of the liquid crystalline polyester resin (A) is preferably 1 to 100 Pa ⁇ s, and the lower limit thereof is more preferably 3 Pa ⁇ s or more, particularly preferably 5 Pa ⁇ s or more, from the viewpoint of workability.
  • the upper limit is more preferably 50 Pa ⁇ s or less, and particularly preferably 30 Pa ⁇ s or less.
  • the melt viscosity is a value measured by a Koka flow tester under the condition of the melting point of the liquid crystalline polyester resin + 10 ° C. and the shear rate of 1,000 / s.
  • the liquid crystalline polyester resin (A) can be obtained by a known polyester polycondensation method.
  • a liquid crystalline polyester resin composed of the above-mentioned structural units (I), (II), (III), (IV) and (V) the following production method is preferable.
  • a predetermined amount of diphenyl carbonate is reacted with p-hydroxybenzoic acid and aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid to form diphenyl esters, respectively, and then aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
  • a method for producing a liquid crystalline polyester by adding a group dihydroxy compound and dephenol polycondensation reaction.
  • liquid crystalline polyester resin is produced by a deacetic acid polycondensation reaction
  • a melt polymerization method in which the polycondensation reaction is completed by reacting under reduced pressure at a temperature at which the liquid crystalline polyester resin melts is preferable.
  • a predetermined amount of p-hydroxybenzoic acid, 4,4 ′ -Dihydroxybiphenyl, hydroquinone, terephthalic acid, isophthalic acid, and acetic anhydride are charged into a reaction vessel equipped with a stirring blade and a distillation pipe and provided with a discharge port at the bottom, and heated under stirring in a nitrogen gas atmosphere. After acetylating a hydroxyl group, the temperature is raised to the melting temperature of the liquid crystalline polyester resin, and the reaction is completed by polycondensation under reduced pressure.
  • the obtained polymer is pressurized to, for example, approximately 1.0 kg / cm 2 (0.1 MPa) inside the reaction vessel at a temperature at which it melts, and discharged in a strand form from the discharge port provided at the lower part of the reaction vessel.
  • the melt polymerization method is an advantageous method for producing a uniform polymer, and an excellent polymer with less gas generation can be obtained, which is preferable.
  • the polycondensation reaction of the liquid crystalline polyester resin proceeds even without catalyst, but metal compounds such as stannous acetate, tetrabutyl titanate, potassium acetate, sodium acetate, antimony trioxide, and metal magnesium can also be used.
  • the liquid crystalline polyester (A) can be used by mixing two or more kinds of liquid crystalline polyester.
  • Surface hydrophobized spherical silica (B) is spherical silica having a contact angle with water of 60 ° or more, preferably a contact angle of 70 ° or more, and more preferably 90 ° or more. In such a case, the affinity between the silica surface and the liquid crystalline polyester resin is increased, the interface is stabilized, and interfacial peeling is less likely to occur during sliding.
  • the contact angle is preferably 150 ° or less, more preferably 130 ° or less. If the contact angle is larger than 150 °, the familiarity with the resin becomes worse, which is not preferable.
  • the contact angle is less than 60 °.
  • the contact angle is determined by using a plate made by compressing and solidifying the surface-hydrophobized spherical silica (B) according to JIS R3257 1999.
  • B surface-hydrophobized spherical silica
  • the surface hydrophobized spherical silica (B) can be obtained, for example, by subjecting the surface of the spherical silica to a surface treatment with a compound having a hydrophobic group such as a phenyl group, a substituted phenyl group or an alkyl fluoride.
  • the hydrophobic group is preferably a phenyl group or a substituted phenyl group, more preferably an alkoxyphenyl group, still more preferably a methoxyphenyl group or an ethoxyphenyl group.
  • the interface with the liquid crystalline polyester of the spherical silica is stabilized by the affinity with the liquid crystalline polyester, and favorable sliding characteristics can be stably obtained, which is preferable.
  • Examples of such a compound having a hydrophobic group include a coupling agent such as a silane coupling agent and a titanium coupling agent.
  • a silane coupling agent can be preferably used from the viewpoint of ease of use and cost. .
  • the silane coupling agent is a silane compound having an affinity or reactivity with an inorganic material and usually having a structure in which a hydrolyzable group is chemically bonded to a silicon atom.
  • silane coupling agent examples include t-butyldiphenylchlorosilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methoxyphenylsilane, and ethoxyphenylsilane, and methoxyphenylsilane is preferable.
  • the coupling agents listed above may be used alone or in combination of two or more.
  • the coupling agent can be surface-treated by dissolving in a solvent and bringing it into contact with silica.
  • the organic solvent to be used can be selected according to the type of coupling agent, and two or more kinds of organic solvents can be used in combination.
  • the organic solvent used for washing the inorganic fine particles after the surface treatment can also be selected according to the type of the coupling agent. Further, after the treatment with the coupling agent, it is possible to perform a heat treatment for fixing.
  • the surface of the true spherical silica after the surface treatment has a phenyl group or a substituted phenyl group, and when using the surface-treated spherical silica having such a functional group on the surface, the resin This is preferable because the interface with is stabilized and the sliding characteristics are improved.
  • Surface hydrophobized spherical silica refers to silica particles whose primary particles are spherical and have a sphericity of 0.60 or more. From the viewpoint of high filling into the resin and dispersibility, the sphericity is It is preferably 0.85 or more, more preferably 0.90 or more, and still more preferably 0.92 or more.
  • Such sphericity is preferable because the flow resistance is reduced during injection molding, and a molded product with high surface smoothness can be obtained.
  • the molded product has a small friction coefficient.
  • the sphericity is closer to 1 as it approaches 1.
  • 100 mg of silica was weighed, dispersed in water, and measured from a two-dimensional image of 1,000 particles randomly extracted using an image processing apparatus (Sysmex Corporation: FPIA-3000). The average value of the area and the perimeter can be obtained by the above formula.
  • the surface-hydrophobized spherical silica preferably has a unimodal particle size distribution, and the number average particle size is preferably 0.1 to 1.0 ⁇ m, more preferably 0.3 to 0.7 ⁇ m. . Such a particle size distribution is preferable because the sliding characteristics are particularly good.
  • the average particle size can be measured with a laser diffraction particle size distribution meter.
  • a laser diffraction particle size distribution meter contains fine particles having a particle size of several nanometers that are not detected by a laser diffraction particle size distribution meter in order to prepare by firing under specific conditions. Particles that are not detected by the particle size distribution meter are not particularly limited because they do not have a significant effect on the characteristics even if they are included and are extremely small.
  • the unimodal particle size distribution is a unimodal (single peak) distribution measured with a laser diffraction particle size distribution meter when the particle diameter is plotted on the horizontal axis and the frequency is plotted on the vertical axis. Is meant to indicate
  • the coarse particles of 5 ⁇ m or more are preferably 100 ppm or less, and more preferably less than 50 ppm.
  • Examples of the operation for removing such coarse particles include a method of filtration as a slurry in a solvent, and a method of cutting coarse particles that settle early by a gas phase sedimentation method, but are not particularly limited.
  • the coarse particles are 100 ppm or less, the sliding properties are particularly good, which is preferable.
  • the spherical silica having a specific average particle diameter having a hydrophobic surface as described above when used as a liquid crystalline resin composition, it is well compatible with the liquid crystalline resin and has a high primary cohesive force to some extent.
  • the present inventors have found that sliding properties and impact durability are specifically improved by forming the aggregates and arranging them in the skin layer of the molded product. By arranging the aggregates in the skin layer of the molded product, it contributed to the improvement of the adhesive strength, and it was possible to achieve both contradictory properties from the viewpoint of surface roughness of sliding and adhesion.
  • Aggregates are 10 ⁇ m or more in the longitudinal direction, more preferably 15 ⁇ m or more, and more preferably, the aggregates are close to each other, and it is preferable that there are 8 or more of these aggregates in 100 ⁇ m 2. More preferably, it is 10 or more.
  • the measurement of the aggregate can be performed, for example, by cutting an arbitrary cross section of the composition with a microtome and measuring the size and number of aggregates at 100 ⁇ m 2 with a scanning electron microscope.
  • the aggregate here is a group of particles that are not monodispersed.
  • the blend amount of the above-mentioned spherical silica is 10 to 45 parts by weight, more preferably 20 to 45 parts by weight with respect to 100 parts by weight of the liquid crystalline polyester. Within this range, it is preferable because both sliding characteristics and adhesive characteristics can be achieved. In particular, the amount of 25 to 44 parts by weight is preferable because a strong arrangement aggregation structure of spherical silica is formed in the skin layer of the molded product, and the impact durability is particularly improved. If the blending amount is less than 10 parts by weight, the effect of improving the sliding characteristics cannot be obtained, and if it exceeds 45 parts by weight, the effect of improving the adhesive strength may not be obtained.
  • ethylene / glycidyl methacrylate copolymer (C) is further added to 100 parts by weight of the resin composition comprising the liquid crystalline polyester resin (A) and the surface-hydrophobized spherical silica (B). Then, since a sliding characteristic improves, it is preferable.
  • the blending amount of the ethylene / glycidyl methacrylate copolymer (C) is more preferably 1.5 to 100 parts by weight with respect to 100 parts by weight of the resin composition comprising the liquid crystalline polyester resin (A) and the surface-hydrophobized spherical silica (B).
  • the amount is 2.5 parts by weight, more preferably 2.0 to 2.5 parts by weight. Such a range of blending amounts is preferable because the effect of improving the slidability is increased.
  • the ethylene / glycidyl methacrylate copolymer (C) is a copolymer obtained by copolymerizing 1 to 50% by weight of glycidyl methacrylate with ethylene, and the amount of the glycidyl methacrylate copolymer is preferably 1 to 12% by weight, more preferably. Is 2 to 6% by weight.
  • the copolymer amount of glycidyl methacrylate is in such a range, the sliding characteristics are particularly improved, which is preferable.
  • the ethylene / glycidyl methacrylate copolymer (C) may be an unsaturated monomer that can be copolymerized up to 40% by weight, that is, vinyl esters such as vinyl ethers, vinyl acetate, and vinyl propionate, methyl, ethyl, and propyl.
  • vinyl esters such as vinyl ethers, vinyl acetate, and vinyl propionate, methyl, ethyl, and propyl.
  • Acrylic acid and methacrylic acid esters such as acrylonitrile, styrene and the like may be copolymerized, and methyl acrylate is particularly preferred from the viewpoint of heat resistance.
  • the copolymerization amount of methyl acrylate is more preferably 30% by weight or less, and in such a range, the effect of improving sliding properties and adhesive properties is particularly obtained, which is preferable.
  • antioxidants and heat stabilizers for example, hindered phenols, hydroquinones, phosphites, and substituted products thereof
  • ultraviolet absorbers for example, resorcinol, salicylate, benzotriazole
  • mold release agents such as montanic acid and its salts, its esters, their half esters, stearyl alcohol, stearamide and polyethylene wax
  • dyes such as nigrosine
  • pigments such as cadmium sulfide, phthalocyanine, carbon black
  • -Containing colorants plasticizers, flame retardants, flame retardant aids, and other thermoplastic additives (such as fluororesins) can be added to impart predetermined characteristics.
  • the liquid crystalline polyester resin composition is preferably produced by melt kneading, and a known method can be used for melt kneading.
  • a Banbury mixer, a rubber roll machine, a kneader, a single screw or twin screw extruder can be used.
  • the liquid crystalline polyester resin composition preferably uses an extruder, more preferably a twin screw extruder, because it is necessary to control the number average length of the fibrous filler.
  • the higher fatty acid metal salt is preferably blended into the pellets after melt-kneading extrusion. By doing so, the moldability can be dramatically improved.
  • the higher aliphatic metal salt for blending the higher aliphatic metal salt and the pellet, for example, a tumbler mixer, a ribbon blender or the like is used.
  • the higher fatty acid metal salt may be melt-kneaded in a twin screw extruder together with a liquid crystalline resin and other additives.
  • the liquid crystalline polyester resin composition is molded into various molded products by a known molding method, and injection molding is preferable.
  • injection molding a skin layer in which spherical silica is arranged in a state where the spherical silica is embedded in the liquid crystalline polyester resin is formed on the surface of the molded product, and a specific effect on the slidability can be obtained.
  • the molded product thus obtained is excellent in sliding characteristics and adhesive properties, it can be suitably used for precision parts having a sliding part and an adhesive part, and further suitable for parts having a lens holding part. It is suitably used for a lens barrel and a lens holder constituting a lens unit of a camera module, a sleeve, a pedestal and a housing constituting an actuator unit.
  • Average particle diameter and particle size distribution (peak) of spherical silica The average particle size was measured with a laser diffraction particle size distribution meter. When the particle diameter is plotted on the horizontal axis and the frequency is plotted on the vertical axis, the number of peaks (peaks) at least 60% of the maximum frequency is counted. Peaked. Moreover, the density
  • Abrasion amount The weight loss of the cylindrical molded product at 20,000 revolutions was evaluated under the above conditions. The smaller the weight loss, the better.
  • the obtained molded product was divided into three equal parts in the longitudinal direction, and both ends were overlapped on the central part, and each overlapped area of 10 mm ⁇ 12.7 mm was coated with a one-part curable epoxy resin, 120
  • the epoxy resin was cured in a state of being clamped and fixed at 1 ° C. for 1 hour. After curing, the peel strength was measured by pressing the center part with a compression tester at two points supported at 23 ° C. and 50 RH% with a center load.
  • the polymerization temperature was maintained at 320 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued for 90 minutes, and the polymerization was completed when the torque required for stirring reached 15 kg ⁇ cm. .
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged to a strand through a base having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a liquid crystalline polyester resin (A-1) was obtained.
  • composition analysis of the liquid crystalline polyester resin (A-1) was conducted.
  • a structural unit derived from p-hydroxybenzoic acid (structural unit (I)) and a structural unit derived from 4,4′-dihydroxybiphenyl structural unit (structural unit (I))
  • the ratio of the structural unit derived from p-hydroxybenzoic acid (structural unit (I)) to the total of the structural unit derived from II)) and the hydroquinone (structural unit (III)) was 70 mol%.
  • the sum of the structural unit derived from 4,4′-dihydroxybiphenyl (structural unit (II)) and the structural unit derived from hydroquinone (structural unit (III)) is 23 mol% with respect to the total structural units, and is derived from terephthalic acid.
  • the total amount of the structural unit (structural unit (IV)) and isophthalic acid-derived structural unit (structural unit (V)) was 23 mol%.
  • the melting point (Tm) of the liquid crystalline polyester resin (A-2) was 314 ° C. Using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm), the melt viscosity measured at a temperature of 324 ° C. and a shear rate of 1,000 / s was 20 Pa ⁇ s.
  • composition analysis of the liquid crystalline polyester resin (A-2) was conducted.
  • a structural unit derived from p-hydroxybenzoic acid (structural unit (I)) and a structural unit derived from 4,4′-dihydroxybiphenyl (structural unit ( The ratio of the structural unit derived from p-hydroxybenzoic acid (structural unit (I)) to the total of the structural unit derived from II)) and hydroquinone (structural unit (III)) was 75 mol%.
  • the total of the structural units derived from 4,4′-dihydroxybiphenyl (structural unit (II)) and the structural units derived from hydroquinone (structural unit (III)) is 20 mol% with respect to the total structural units.
  • the total amount of the structural unit (structural unit (IV)) and isophthalic acid-derived structural unit (structural unit (V)) was 20 mol%.
  • the melting point (Tm) of the liquid crystalline polyester resin (A-2) was 325 ° C.
  • the melt viscosity measured using a Koka flow tester (orifice 0.5 ⁇ ⁇ 10 mm) at a temperature of 335 ° C. and a shear rate of 1,000 / s was 8 Pa ⁇ s.
  • B-2 Surface trimethoxyphenylsilane coupling-treated spherical silica “FEB75A-SPJ” (manufactured by Admatechs Co., Ltd.) (number average particle diameter 15 ⁇ m (unimodal), sphericity 0.94, contact angle 112 °, (96% coarse particles over 5 ⁇ m) (B′-1) Spherical silica “SO-C2” (manufactured by Admatechs Co., Ltd.) (number average particle size 0.5 ⁇ m (no surface hydrophobization treatment, unimodal), sphericity 0.90, contact angle 19 ° (Coarse grains of 5 ⁇ m or more 120ppm)
  • Table 1 shows the liquid crystalline polyester resin (A) and the ethylene / glycidyl methacrylate copolymer (C) using a twin-screw extruder having a screw diameter of 44 mm and a coaxially rotating vent (Nippon Steel Works, TEX-44).
  • the compounding amount was charged from the hopper, and the surface-hydrophobized spherical silica (B) was charged from the intermediate supply port at the compounding amount shown in Table 1.
  • the cylinder temperature is set to the melting point of the liquid crystalline polyester resin (A) + 10 ° C.
  • the liquid crystalline polyester resin compositions of the examples are excellent in sliding properties, adhesive properties, and impact durability. Further, it can be seen that when the particle size of the spherical silica is within a predetermined range, the sliding characteristics are particularly excellent (Examples 1 and 11). It can also be seen that the advantageous effect is further improved by using the ethylene / glycidyl methacrylate copolymer together (Examples 6 to 10, 15, and 16).
  • the liquid crystalline polyester resin composition of the present invention includes various gears, various cases, sensors, LED parts, liquid crystal backlight bobbins, connectors, sockets, resistors, relay cases, relay spools and bases, switches, coil bobbins, capacitors, Variable capacitor case, optical pickup, oscillator, various terminal boards, transformer, plug, printed wiring board, tuner, speaker, microphone, headphones, small motor, magnetic head base, power module, housing, semiconductor, liquid crystal display component, FDD carriage , FDD chassis, HDD parts, motor brush holder, parabolic antenna, electric and electronic parts represented by computer-related parts; VTR parts, TV parts (plasma, organic EL, liquid crystal), iron, f -Dryer, rice cooker parts, microwave oven parts, acoustic parts, audio equipment parts such as audio / laser discs (registered trademark) / compact discs, lighting parts, refrigerator parts, air conditioner parts, household electrical appliance parts, Office computer-related parts, telephone-related parts, facsimile-related parts, copier-related parts
  • Films for magnetic recording media when used as films, and seat applications such as door trims, bumper and side frame cushioning materials, seating materials, pillars, fuel tanks, brake hoses, nozzles for window washer fluid, air conditioner refrigerant tubes, etc. Can do. It can also be suitably used for slidable parts such as camera module parts, optical pickup lens holders, and autofocus camera lens modules.
  • liquid crystalline polyester resin composition and molded product of the present invention are excellent in sliding characteristics and adhesive properties, they can be suitably used for precision molded parts having sliding parts, and further have lens holding parts. It is suitable for parts, and in particular, it is suitably used for a lens barrel and a lens holder that constitute a lens unit of a camera module, a sleeve, a pedestal, and a housing that constitute an actuator unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

液晶性ポリエステル樹脂(A)100重量部に対して、表面疎水化球状シリカ(B)を10~45重量部含むことを特徴とする液晶性ポリエステル樹脂組成物およびそれからなる成形品。液晶性ポリエステル樹脂組成物は、さらに液晶性ポリエステル樹脂(A)と表面疎水化球状シリカ(B)からなる樹脂組成物100重量部に対して、エチレン/グリシジルメタクリレート共重合体(C)を1~2.5重量部配合してもよい。摺動特性と接着特性、衝撃耐久性に優れる液晶性ポリエステル樹脂組成物およびそれらからなる成形品を提供する。

Description

液晶性ポリエステル樹脂組成物およびそれからなる成形品
 本発明は摺動特性に優れ、かつ接着強度および衝撃耐久性が改良された液晶性ポリエステル樹脂組成物およびそれからなる成形品に関する。
 近年、プラスチックの高性能化に対する要求がますます高まり、種々の新規性能を有する樹脂が数多く開発され、市場に供されている。中でも、分子鎖の平行な配列を特徴とする光学異方性を有する液晶性ポリエステル樹脂が、優れた流動性、耐熱性、機械的性質、寸法安定性を有する点で注目され、微細コネクターなどの精密成形品に使用されるようになっている。
 精密成形品では、成形品、端子、クリアランスなどが全て小さくなることで、摺動などにより微細なゴミが成形品表面から発生するとクリアランスに入り込み駆動の妨げになったり、端子間接点不良を引き起こしたりすることが問題になってきている。
 このような問題に対し、液晶性樹脂に微細なシリカを配合することで表面の起毛面積の改良(例えば、特許文献1)や、離脱物を低減することが検討されている(例えば、特許文献2、7)。
 また、このような微細なシリカを液晶性樹脂に配合することで、耐熱性や衝撃強度を改良することが知られている(例えば、特許文献3~6)。特許文献3では、表面に官能基をもつ微細シリカを用いることで、耐熱性や寸法安定性が向上したフィルムが得られている。特許文献4では、2峰性の粒子径分布を有するシリカを用いることで、耐熱性、寸法安定性、耐薬品性が向上した組成物が得られている。特許文献5では、0.1~1μmの微細な粉体と20~300μmの充填材の併用により、衝撃強度、耐熱性が改良された組成物が得られている。特許文献6では、平均粒子径0.2~2μmの粉状充填材とα-オレフィンもしくはスチレン類とα、β-不飽和のグリシジルエステルよりなる共重合体の併用により、面衝撃性が向上した組成物が得られている。
特開2010-106165号公報 特開2011-68831号公報 特開2006-299254号公報 特開2003-253097号公報 特開2011-63699号公報 国際公開第2007/043701号 特許第6190089号公報
 しかしながら、これらの特許文献に開示された発明で得られる組成物では、昨今の微細摺動部品に求められる摺動特性に対して充分ではなかった。
 また、微細な摺動部品は、金属やガラスなどと接合する際に、機械的な勘合構造をもうけることが困難であり、金属やガラスなどと接着する必要があるが、接着強度を得るのに表面粗度を大きくすると、摺動特性が悪くなるというトレードオフから、摺動特性と接着性を両立することができなかった。
 また、これらの特許文献に開示された発明で得られる組成物では、摺動した部品が他の部品と当たって停止するような機構において、繰り返しの衝撃に対して充分な耐久性が得られなかった。
 本発明は、上記従来技術の問題点を解決するために検討した結果達成されたものであり、摺動特性に優れ、かつ接着性、衝撃耐久性が改良された液晶性ポリエステル樹脂組成物およびそれらからなる成形品を提供することを目的とするものである。
 本発明者らは、上記の目的を達成するために誠意検討した結果、液晶性ポリエステル樹脂に対し、表面疎水化球状シリカを特定量配合することにより、上記の目的が初めて達成されることを見出し、本発明に到達した。
 すなわち本発明は、液晶性ポリエステル樹脂(A)100重量部に対して、表面疎水化球状シリカ(B)を10~45重量部含む液晶性樹脂組成物に関するものである。
 本発明によれば、摺動特性に優れ、かつ接着性、衝撃耐久性が改良された液晶性ポリエステル樹脂組成物、およびそれらからなる成形品を得ることが出来る。
 以下、本発明を詳細に説明する。
 本発明で用いられる、液晶性ポリエステル樹脂(A)は、例えば芳香族オキシカルボニル単位、芳香族および/または脂肪族ジオキシ単位、芳香族および/または脂肪族ジカルボニル単位などから選ばれた構造単位からなり、かつ異方性溶融相を形成する液晶性ポリエステル樹脂である。
 芳香族オキシカルボニル単位としては、例えば、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸などから生成した構造単位が挙げられ、p-ヒドロキシ安息香酸から生成した構造単位が好ましい。芳香族および/または脂肪族ジオキシ単位としては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、t-ブチルハイドロキノン、フェニルハイドロキノン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,2-ビス(4-ヒドロキシフェニル)プロパン、4,4’-ジヒドロキシジフェニルエーテル、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオールなどから生成した構造単位が挙げられ、4,4’-ジヒドロキシビフェニル、ハイドロキノンから生成した構造単位が好ましい。芳香族および/または脂肪族ジカルボニル単位としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、アジピン酸、セバシン酸などから生成した構造単位が挙げられ、テレフタル酸、イソフタル酸から生成した構造単位が好ましい。
 液晶性ポリエステル樹脂の具体例としては、p-ヒドロキシ安息香酸から生成した構造単位および6-ヒドロキシ-2-ナフトエ酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、6-ヒドロキシ-2-ナフトエ酸から生成した構造単位、芳香族ジヒドロキシ化合物から生成した構造単位、および芳香族ジカルボン酸および/または脂肪族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸および/またはアジピン酸、セバシン酸等の脂肪族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、ハイドロキノンから生成した構造単位、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸および/またはアジピン酸、セバシン酸等の脂肪族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、テレフタル酸および/またはイソフタル酸から生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、テレフタル酸から生成した構造単位および/またはアジピン酸、セバシン酸等の脂肪族ジカルボンから生成した構造単位からなる液晶性ポリエステル樹脂、p-ヒドロキシ安息香酸から生成した構造単位、エチレングリコールから生成した構造単位、芳香族ジヒドロキシ化合物から生成した構造単位、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂、6-ヒドロキシ-2-ナフトエ酸から生成した構造単位、4,4’-ジヒドロキシビフェニルから生成した構造単位、2,6-ナフタレンジカルボン酸から生成した構造単位からなる液晶性ポリエステル樹脂などが挙げられる。
 これら液晶性ポリエステル樹脂の中でも、下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂は、低発塵性の観点から好ましい。このような液晶性ポリエステル樹脂は、共重合単位が多いため液晶性が低くなり、液晶性ポリエステル樹脂の特性であるフィブリル化を起こしにくいためである。
 上記構造単位(I)はp-ヒドロキシ安息香酸から生成した構造単位を、構造単位(II)は4,4’-ジヒドロキシビフェニルから生成した構造単位を、構造単位(III)はハイドロキノンから生成した構造単位を、構造単位(IV)はテレフタル酸から生成した構造単位を、構造単位(V)はイソフタル酸から生成した構造単位を各々示す。
 構造単位(I)は、構造単位(I)、(II)および(III)の合計に対して65~80モル%が好ましい。発生ガス量が低下することから、その下限値は68モル%以上がより好ましく、靭性の観点から上限値は78モル%以下がより好ましい。
 また、構造単位(II)は、構造単位(II)および(III)の合計に対して55~85モル%が好ましい。特に発生ガス量が低下することから、その下限値は60モル%以上がより好ましく、最も好ましくは70モル%以上であり、靭性の観点から上限値は82モル%以下がより好ましく、最も好ましくは80モル%以下である。
 また、構造単位(IV)は、構造単位(IV)および(V)の合計に対して50~95モル%が好ましい。特に発生ガス量が低下することから、その下限値はより好ましくは55モル%以上であり、最も好ましくは60モル%以上であり、上限値は靭性の観点から85モル%以下がより好ましく、最も好ましくは75モル%以下である。
 構造単位(II)および(III)の合計と(IV)および(V)の合計は実質的に等モルであることが好ましい。ここで、「実質的に等モル」とは、末端を除くポリマー主鎖を構成する構造単位が等モルであることを示し、末端を構成する構造単位まで含めた場合には必ずしも等モルとは限らない。ポリマーの末端基を調節するために、ジカルボン酸成分またはジヒドロキシ成分を過剰に加えてもよい。
 液晶性ポリエステル樹脂(A)における各構造単位の含有量は、以下の処理によって算出することができる。すなわち、液晶性ポリエステル樹脂をNMR(核磁気共鳴)試験管に量りとり、液晶性ポリエステル樹脂が可溶な溶媒(例えば、ペンタフルオロフェノール/重テトラクロロエタン-d混合溶媒)に溶解して、H-NMRスペクトル測定を行う。各構造単位の含有量は、各構造単位由来のピーク面積比から算出することができる。
 液晶性ポリエステル樹脂(A)の融点は、加工性および流動性の点から300~350℃が好ましく、加工性の観点からその下限値は310℃以上がより好ましく、特に320℃以上が好ましい。また、流動性の観点からその上限値は340℃以下がより好ましく、330℃以下が特に好ましい。このような融点である場合には、加工時の分解ガス発生が抑制でき、かつ流動性が充分に発揮されるため好ましい。
 液晶性ポリエステル樹脂(A)の融点(Tm)は次の方法で測定することができる。示差熱量測定において、液晶性ポリエステル樹脂を室温から40℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)の観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)を融点(Tm)とした。
 また、液晶性ポリエステル樹脂(A)の溶融粘度は1~100Pa・sが好ましく、加工性の観点からその下限値は3Pa・s以上がより好ましく、特に好ましくは5Pa・s以上であり、流動性の観点から上限値は50Pa・s以下がより好ましく、30Pa・s以下が特に好ましい。なお、溶融粘度は液晶性ポリエステル樹脂の融点+10℃の条件で、せん断速度1,000/sの条件下で高化式フローテスターによって測定した値である。
 液晶性ポリエステル樹脂(A)は、公知のポリエステルの重縮合法により得ることができる。例えば、前述の構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂の場合は、次の製造方法が好ましく挙げられる。
(1)p-アセトキシ安息香酸、4,4’-ジアセトキシビフェニル、およびジアセトキシベンゼンとテレフタル酸およびイソフタル酸とから脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。
(2)p-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸およびイソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。
(3)p-ヒドロキシ安息香酸のフェニルエステル、4,4’-ジヒドロキシビフェニル、ハイドロキノン、ならびにテレフタル酸およびイソフタル酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
(4)p-ヒドロキシ安息香酸ならびにテレフタル酸およびイソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれジフェニルエステルとした後、4,4’-ジヒドロキシビフェニルおよびハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。
 液晶性ポリエステル樹脂を脱酢酸重縮合反応により製造する際には、液晶性ポリエステル樹脂が溶融する温度で減圧下反応させ、重縮合反応を完了させる溶融重合法が好ましい。例えば、前述の構造単位(I)、(II)、(III)、(IV)および(V)から構成される液晶性ポリエステル樹脂の場合は、所定量のp-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸、および無水酢酸を、撹拌翼および留出管を備え、下部に吐出口を備えた反応容器中に仕込み、窒素ガス雰囲気下で撹拌しながら加熱して水酸基をアセチル化させた後、液晶性ポリエステル樹脂の溶融温度まで昇温し、減圧により重縮合して反応を完了させる方法が挙げられる。
 得られたポリマーは、それが溶融する温度で反応容器内を、例えば、およそ1.0kg/cm(0.1MPa)に加圧し、反応容器下部に設けられた吐出口よりストランド状に吐出することができる。溶融重合法は均一なポリマーを製造するために有利な方法であり、ガス発生量がより少ない優れたポリマーを得ることができ、好ましい。
 液晶性ポリエステル樹脂の重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウム、酢酸ナトリウム、三酸化アンチモン、および金属マグネシウムなどの金属化合物を使用することもできる。
 液晶性ポリエステル(A)は、2種類以上の液晶性ポリエステルを混合して用いることができる。
 表面疎水化球状シリカ(B)とは、水との接触角が60°以上であるような球状シリカであり、好ましくは接触角が70°以上であり、更に好ましくは90°以上である。このような場合にはシリカ表面と液晶性ポリエステル樹脂の親和性が高くなり界面が安定化し摺動時に界面剥離が起こりにくくなり好ましい。
 接触角は150°以下であることが好ましく、より好ましくは130°以下である。接触角が150°より大きくなると、樹脂とのなじみが逆に悪くなるため好ましくない。
 一般的なシリカやアミノシランやエポキシシランなどの一般的なカップリング剤で処理されたシリカは親水性であるため、接触角は60°未満になる。
 接触角は、表面疎水化球状シリカ(B)を圧縮して固めたプレートを用いて、JIS R3257 1999に従い、水滴を落として、側面から観察した際に、水滴の下部外面の接線とシリカプレート面が作る角度である。
 表面疎水化球状シリカ(B)は、例えば、球状シリカの表面を、フェニル基もしくは置換フェニル基、フッ化アルキルなどの疎水基を有する化合物で表面処理を行うことで得られる。
 疎水基としては、フェニル基もしくは置換フェニル基が好ましく、より好ましくはアルコキシフェニル基、更に好ましくはメトキシフェニル基、エトキシフェニル基である。このような疎水基を有する場合に、液晶性ポリエステルとの親和性により、球状シリカの液晶性ポリエステルとの界面が安定化し、良好な摺動特性が安定的に得られ好ましい。
 このような疎水基を有する化合物の例としては、シランカップリング剤、チタンカップリング剤等のカップリング剤を挙げることができ、なかでも使い易さとコストの面からシランカップリング剤が好ましく使用できる。
 ここでいうシランカップリング剤とは、無機材料に対して親和性あるいは反応性を有し、通常はケイ素原子に加水分解性基を化学的に結合させた構造を持つシラン化合物である。
 具体的なシランカップリング剤としては、t-ブチルジフェニルクロロシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メトキシフェニルシラン及びエトキシフェニルシラン等が挙げられ、メトキシフェニルシランが好ましい。
 上記に挙げたカップリング剤は、1種類のみで使用してもよく、また2種類以上を併用するようにしてもよい。カップリング剤は、例えば、溶媒に溶解してシリカに接触させ、表面処理を行うことができる。
 用いる有機溶媒としては、カップリング剤の種類に応じて選択することができ、2種類以上の有機溶媒を併用することもできる。また、球状シリカを表面処理した後、表面処理後の無機微粒子を洗浄するために用いる有機溶媒についても、カップリング剤の種類に応じて選択することができる。また、カップリング剤で処理した後に、定着のために熱処理をすることが可能である。
 このように表面処理を行った後の真球状シリカの表面には、フェニル基や置換フェニル基などが存在しており、このような官能基が表面に存在する表面処理球状シリカを用いると、樹脂との界面が安定化し摺動特性が向上するため好ましい。
 表面疎水化球状シリカ(B)は、一次粒子が球形で、真球度0.60以上であるシリカ粒子のことを指し、樹脂への高充填化および分散性の点から、その真球度が0.85以上のものが好ましく、より好ましくは0.90以上であり、更に好ましくは、0.92以上である。
 このような真球度であることにより、射出成形する際に流動抵抗が低減し、表面平滑性の高い成形品が得られ、その成形品は摩擦係数が小さくなるため好ましい。
 真球度は、粒子の二次元画像から求めた面積と周囲長から以下の式により算出する。
 (真球度)={4π×(面積)÷(周囲長)
 真球度は、1に近づくほど真球に近い。真球度の測定は、シリカを100mg秤量し、水中に分散させ、画像処理装置(シスメックス株式会社:FPIA-3000)を用い、無作為に抽出した1,000個の粒子の二次元画像から測定した面積および周囲長の平均値を用いて、上記式により求めることができる。
 表面疎水化球状シリカは、1峰性の粒子径分布であることが好ましく、数平均粒子径が0.1~1.0μmであることが好ましく、より好ましくは0.3~0.7μmである。このような粒子径分布の場合に、摺動特性が特に良好になるので好ましい。
 ここで言う平均粒子径とは、レーザー回折式粒度分布計において測定できる。このような真球状シリカは、特定条件で焼成して作成するために、レーザー回折式粒度分布計では検出されない数nmの粒径を有する細微粒子が含まれているが、このようなレーザー回折式粒度分布計では検出されない粒子については含まれていても特性に大きな影響を与えず、極少量であるため特に限定されるものではない。また、1峰性の粒子径分布とは、レーザー回折式粒度分布計において測定される、粒子径を横軸に、頻度を縦軸としてプロットしたときに、1峰性(単一ピーク)の分布を示すことを意味する。
 5μm以上の粗粒は100ppm以下であることが好ましく、より好ましくは、50ppm未満である。このような粗粒を除く操作として、溶媒にスラリーとしてフィルトレーションする方法や、気層沈降法によって、早期に沈降する粗大粒子をカットする方法が挙げられるが、特に限定されるものではない。粗粒が100ppm以下である場合、摺動特性が特に良好になるため好ましい。
 本発明は、上記したような疎水化した表面を持つ特定の平均粒子径を有する球状シリカが、液晶性樹脂組成物とした際に、液晶性樹脂と良くなじみつつ、高い1次凝集力である程度の凝集体を形成して成形品のスキン層に配列することで、摺動特性や衝撃耐久性が特異的に向上することを見出したものである。この凝集体が成形品のスキン層に配列することで、接着強度の向上にも寄与し、摺動と接着という表面粗度の観点からは相反する特性を両立することができた。
 凝集体は長手方向に10μm以上であり、より好ましくは15μm以上であり、更に好ましくは、凝集体同士が近接していることであり、これらの凝集体が100μmに8個以上あることが好ましく、より好ましくは10個以上である。
 凝集体の測定は、例えば、組成物の任意断面をミクロトームで切削し、走査型電子顕微鏡で100μmにおける凝集体の大きさ、個数を計測することでできる。ここでいう凝集体とは単分散していない粒子の集まりである。
 上述の球状シリカの配合量は、液晶性ポリエステル100重量部に対して、10~45重量部であるが、より好ましくは20~45重量部である。この範囲においては、摺動特性と接着特性の両立が可能であり好ましい。また特に、25~44重量部においては、成形品のスキン層に球状シリカの強固な配列凝集構造を作り、衝撃耐久性が特に向上するので好ましい。配合量が10重量部未満では、摺動特性の向上効果が得られず、45重量部超では接着強度の向上効果が得られない恐れがある。
 また、液晶性ポリエステル樹脂(A)と表面疎水化球状シリカ(B)からなる樹脂組成物100重量部に対して、更にエチレン/グリシジルメタクリレート共重合体(C)を1~2.5重量部配合すると、摺動特性が向上するので好ましい。
 エチレン/グリシジルメタクリレート共重合体(C)の配合量はより好ましくは、液晶性ポリエステル樹脂(A)と表面疎水化球状シリカ(B)からなる樹脂組成物100重量部に対して、1.5~2.5重量部であり、更に好ましくは2.0~2.5重量部である。このような配合量の範囲においては、摺動性の向上効果が大きくなるので好ましい。
 エチレン/グリシジルメタクリレート共重合体(C)とは、エチレンにグリシジルメタクリレートを1~50重量%共重合した共重合体であり、グリシジルメタクリレートの共重合体量は好ましくは1~12重量%、より好ましくは2~6重量%である。グリシジルメタクリレートの共重合体量がこのような範囲においては、摺動特性が特に向上するので好ましい。
 エチレン/グリシジルメタクリレート共重合体(C)には、40重量%以下であれば、共重合可能である不飽和モノマすなわちビニルエーテル類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、メチル、エチル、プロピル等のアクリル酸およびメタクリル酸のエステル類、アクリロニトリル、スチレン等を共重合せしめてもよく、特にアクリル酸メチルが耐熱性の点から好ましい。
 アクリル酸メチルの共重合量としては、より好ましくは30重量%以下であり、このような範囲においては、摺動特性や接着特性の向上効果が特に得られるので好ましい。
 さらには、本発明の目的を損なわない範囲で、酸化防止剤および熱安定剤(たとえばヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、紫外線吸収剤(たとえばレゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、離型剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(たとえばニグロシンなど)および顔料(たとえば硫化カドミウム、フタロシアニン、カーボンブラックなど)を含む着色剤、可塑剤、難燃剤、難燃助剤、などの通常の添加剤や他の熱可塑性樹脂(フッ素樹脂など)を添加して、所定の特性を付与することができる。
 液晶性ポリエステル樹脂組成物は溶融混練により製造することが好ましく、溶融混練には公知の方法を用いることができる。例えば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用いることができる。これらのうち、液晶性ポリエステル樹脂組成物は、繊維状充填材の数平均長さを制御する必要があることから、押出機を用いることが好ましく、二軸押出機を用いることがより好ましく、なかでも中間添加口を有する二軸押出機を用いることが特に好ましい。ただし、高級脂肪酸金属塩は、溶融混練押出後のペレットにブレンドするのが好ましい。こうすることで、成形加工性を飛躍的に向上させることができる。高級脂肪族金属塩とペレットのブレンドには、例えばタンブラーミキサー、リボンブレンダーなどが用いられる。また、高級脂肪酸金属塩は、液晶性樹脂やその他の添加剤とともに二軸押出機中で溶融混練してもよい。
 液晶性ポリエステル樹脂組成物は、公知の成形法により各種成形品に成形されるが、射出成形が好ましい。射出成形することによって、成形品表面に球状シリカが液晶性ポリエステル樹脂に埋包された状態で配列したスキン層を形成し、摺動性に特異的な効果が得られる。
 かくして得られる成形品は、摺動特性および接着特性に優れることから、摺動部や接着部を有する精密部品に好適に用いることができ、更にはレンズ保持部を有する部品に好適であり、特にカメラモジュールのレンズユニットを構成するレンズバレルやレンズホルダー、アクチュエーターユニットを構成するスリーブや台座、ハウジング等に好適に用いられる。
 以下に実施例によって本発明の効果を説明する。なお、実施例中の%及び部とは、特に指定のない場合、すべて重量基準である。また、例中に示される各特性の評価方法は以下の通りである。
[球状シリカの接触角]
 シリカをタブレット製造器で圧縮してタブレットに成形し、JIS R3257 1999に従った方法で、タブレットの平面の水に対する接触角を測定した。
[真球状シリカの真球度]
 真球度は、シリカを100mg秤量し、水中に分散させ、画像処理装置(シスメックス株式会社:FPIA-3000)を用い、無作為に抽出した1000個の粒子の二次元画像から測定した面積と周囲長から以下の式により算出した。
 (真球度)={4π×(面積)÷(周囲長)
[真球状シリカの平均粒子径、粒度分布(峰性)]
 平均粒子径は、レーザー回折式粒度分布計で測定した。粒子径を横軸に、頻度を縦軸としてプロットしたときに、少なくとも頻度最大値の60%以上の峰(ピーク)の数を数え、峰が1つのものを1峰性、2つのものを2峰性とした。また、粒子径で5μm以上の粗粒の全体に対する濃度を算出した。
[摺動特性]
 摩擦係数:液晶性ポリエステル樹脂組成物からなる円筒状成形品(端円部の面積1cm)を鈴木式磨耗試験機(ORIENTEC社製FRICTION AND WEAR TESTER MODEL EFM-III-EN)にて、動摩擦係数を測定した(測定条件は、P=4.0kg,V=50cm/分で摩擦係数は測定開始後1分~5分で安定したところを読み取った)。相手側は、金属板(材質は、S45Cで、縦30mm,横30mm,厚み3mm)を用いた。動摩擦係数は小さい程良好である。
 磨耗量:上記条件で20,000回転での円筒状成形品の重量減を評価した。重量減が小さい程良好である。
[接着特性]
 各実施例および比較例で得られた液晶性ポリエステル樹脂組成物を、ファナックロボショットα-30C(ファナック(株)製)を用いて、シリンダ温度を液晶性ポリエステル樹脂の融点+10℃に設定し、金型温度90℃、射出速度100mm/sの条件で射出成形を行い、127mm×12.7mm×3.2mm厚の短冊状試験片を作成した。得られた成形品を長手方向に3等分し、両端部を中央部の上に重ねるようにして、重なり合った10mm×12.7mmの面積をそれぞれ1液硬化型のエポキシ樹脂を塗布し、120℃1時間クリップで挟んで固定した状態でエポキシ樹脂を硬化した。硬化後、23℃、50RH%にて、2点両端支持、中央荷重で圧縮試験機で中央部を押して剥離強度を測定した。
[衝撃耐久性]
 接着特性評価で作成したのと同じ成形品に平板状の圧子を乗せ、同様に平板状の20gの錘を20cm高さから落下を繰り返した。試験後の成形品の表面を光学顕微鏡で200倍で観察し、ヒビの発生する落下回数を評価した。落下回数が多いほうが耐久性が高く良好と評価できる。
[真球状シリカの分散状態]
 接着特性評価で作成したのと同じ成形品の任意断面をミクロトームで切削し、断面を走査型電子顕微鏡で観察した。100μm四方の範囲の写真10枚を取得し、凝集体の長径と個数をカウントした。長径はカウントされた凝集体の数平均値として算出した。
 各実施例において用いた成分(A)~(C)を次に示す。
(A)液晶性ポリエステル樹脂
[参考例1]液晶性ポリエステル樹脂(A-1)の合成
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1367重量部(フェノール性水酸基合計の1.03当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で2時間反応させた後、320℃まで4時間で。昇温した。その後、重合温度を320℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に90分間反応を続け、撹拌に要するトルクが15kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1個有する口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶性ポリエステル樹脂(A-1)を得た。
 この液晶性ポリエステル樹脂(A-1)について組成分析を行なったところ、p-ヒドロキシ安息香酸由来の構造単位(構造単位(I))と4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対するp-ヒドロキシ安息香酸由来の構造単位(構造単位(I))の割合は、70モル%であった。4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対する4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))の割合は、70モル%であった。テレフタル酸由来の構造単位(構造単位(IV))とイソフタル酸由来の構造単位(構造単位(V))の合計に対するテレフタル酸由来の構造単位(構造単位(IV))の割合は、65モル%であった。4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))およびハイドロキノン由来の構造単位(構造単位(III))の合計は全構造単位に対して23モル%であり、テレフタル酸由来の構造単位(構造単位(IV))およびイソフタル酸由来の構造単位(構造単位(V))の合計全構造単位に対して23モル%であった。液晶性ポリエステル樹脂(A-2)の融点(Tm)は314℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度324℃、せん断速度1,000/sで測定した溶融粘度は20Pa・sであった。
[参考例2]液晶性ポリエステル樹脂(A-2)の合成
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル251重量部、ハイドロキノン99重量部、テレフタル酸284重量部、イソフタル酸90重量部および無水酢酸1252重量部(フェノール性水酸基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、ジャケット温度を145℃から270℃までを平均昇温速度0.68℃/分で昇温させ、270℃から350℃までを平均昇温速度1.4℃/分で昇温させた。昇温時間は4時間であった。その後、重合温度を350℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1個有する口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして液晶性ポリエステル樹脂(A-2)を得た。
 この液晶性ポリエステル樹脂(A-2)について組成分析を行なったところ、p-ヒドロキシ安息香酸由来の構造単位(構造単位(I))と4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対するp-ヒドロキシ安息香酸由来の構造単位(構造単位(I))の割合は、75モル%であった。4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対する4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))の割合は、60モル%であった。テレフタル酸由来の構造単位(構造単位(IV))とイソフタル酸由来の構造単位(構造単位(V))の合計に対するテレフタル酸由来の構造単位(構造単位(IV))の割合は、76モル%であった。4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))およびハイドロキノン由来の構造単位(構造単位(III))の合計は全構造単位に対して20モル%であり、テレフタル酸由来の構造単位(構造単位(IV))およびイソフタル酸由来の構造単位(構造単位(V))の合計全構造単位に対して20モル%であった。液晶性ポリエステル樹脂(A-2)の融点(Tm)は325℃であった。高化式フローテスター(オリフィス0.5φ×10mm)を用い、温度335℃、せん断速度1,000/sで測定した溶融粘度は8Pa・sであった。
(B)球状シリカ
(B-1)(株)アドマテックス社製 表面トリメトキシフェニルシランカップリング処理球状シリカ“SC2500-SPJ”(数平均粒子径0.5μm(一峰性)、真球度0.90、接触角113°、5μm以上の粗粒5ppm)
(B-2)(株)アドマテックス社製 表面トリメトキシフェニルシランカップリング処理球状シリカ“FEB75A-SPJ”(数平均粒子径15μm(一峰性)、真球度0.94、接触角112°、5μm以上の粗粒96%)
(B’-1)(株)アドマテックス 社製 球状シリカ“SO-C2” (数平均粒子径0.5μm(表面疎水化処理なし、一峰性)、真球度0.90、接触角19°、5μm以上の粗粒120ppm)
(C)エチレン/グリシジルメタクリレート共重合体
(C-1)エチレン/グリシジルメタクリレート=88/12(重量%)共重合体、住友化学工業(株)製:BF-E
(C-2)エチレン/グリシジルメタクリレート/メチルアクリレート=67/6/27(重量%)共重合体、住友化学工業(株)製:BF-7M
(C-3)エチレン/グリシジルメタクリレート/メチルアクリレート=70/3/27(重量%)共重合体、住友化学工業(株)製:BF-7L
[実施例1~14、比較例1~5]
 スクリュー径44mmの同軸方向回転ベント付き2軸押出機(日本製鋼所製、TEX-44)を用いて、液晶性ポリエステル樹脂(A)およびエチレン/グリシジルメタクリレート共重合体(C)を表1に示す配合量でホッパーから投入し、および表面疎水化球状シリカ(B)を表1に示す配合量で中間供給口から投入した。シリンダ温度は、液晶性ポリエステル樹脂(A)の融点+10℃に設定し(2種類の液晶性ポリエステルを使用した場合には、融点が高い方の液晶性ポリエステルの融点+10℃)、溶融混練して液晶性ポリエステル樹脂組成物のペレットを得た。得られたペレットを用いて各種特性値を評価した。試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1の結果から明らかなように、実施例の液晶性ポリエステル樹脂組成物は摺動特性および接着特性、衝撃耐久性に優れていることが分かる。また、球状シリカの粒子径が所定範囲内であると、特に摺動特性が優れることが分かる(実施例1,11)。また、エチレン/グリシジルメタクリレート共重合体を併用することで、有利な効果が更に向上することが分かる(実施例6~10、15、16)。
 一方、表面疎水化をしていない球状シリカでは、これらの特性が得られなかった(比較例1、4,5)。また、その配合量が所定範囲より多すぎても、少なすぎても、有利な効果が得られなかった(比較例2、3)。
 本発明の液晶性ポリエステル樹脂組成物は、各種ギヤー、各種ケース、センサー、LED用部品、液晶バックライトボビン、コネクター、ソケット、抵抗器、リレーケース、リレー用スプールおよびベース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、ハウジング、半導体、液晶ディスプレー部品、FDDキャリッジ、FDDシャーシ、HDD部品、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品;VTR部品、テレビ部品(プラズマ、有機EL、液晶)、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品などに代表される家庭、事務電気製品部品、オフィスコンピューター関連部品、電話機関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、オイルレス軸受、船尾軸受、水中軸受などの各種軸受、モーター部品、ライター、タイプライターなどに代表される機械関連部品、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディマー用ポテンショメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、エアコン用モーターインシュレーター、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、デュストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ECUコネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケースなどの自動車・車両関連部品などに用いることができる。フィルムとして用いる場合は磁気記録媒体用フィルム、シート用途としてはドアトリム、バンパーやサイドフレームの緩衝材、座席用材、ピラー、燃料タンク、ブレーキホース、ウインドウォッシャー液用ノズル、エアコン冷媒用チューブなどを挙げることができる。また、カメラモジュール部品、光ピックアップレンズホルダ、オートフォーカスカメラレンズモジュールなどの摺動性部品にも好適に用いることができる。
 特に、本発明の液晶性ポリエステル樹脂組成物及び成形品は、摺動特性および接着特性に優れることから、摺動部を有する精密成形部品に好適に用いることができ、更にはレンズ保持部を有する部品に好適であり、特にカメラモジュールのレンズユニットを構成するレンズバレルやレンズホルダー、アクチュエーターユニットを構成するスリーブや台座、ハウジング等に好適に用いられる。

Claims (6)

  1.  液晶性ポリエステル樹脂(A)100重量部に対して、表面疎水化球状シリカ(B)を10~45重量部含むことを特徴とする液晶性ポリエステル樹脂組成物。
  2.  表面疎水化球状シリカ(B)が、1峰性の粒子径分布と0.1~1.0μmの数平均粒子径を有する、請求項1に記載の液晶性ポリエステル樹脂組成物。
  3.  表面疎水化球状シリカ(B)が、アルコキシフェニルシランカップリング処理された球状シリカである、請求項1または2に記載の液晶性ポリエステル樹脂組成物。
  4.  液晶性ポリエステル樹脂(A)と表面疎水化球状シリカ(B)からなる樹脂組成物100重量部に対して、エチレン/グリシジルメタクリレート共重合体(C)を1~2.5重量部配合してなる、請求項1~3のいずれかに記載の液晶性ポリエステル樹脂組成物。
  5.  エチレン/グリシジルメタクリレート共重合体(C)のグリシジルメタクリレート共重合量が2~6重量%である、請求項4に記載の液晶性ポリエステル樹脂組成物。
  6.  請求項1~5のいずれかに記載の液晶性ポリエステル樹脂組成物からなる成形品。
PCT/JP2018/017809 2017-06-14 2018-05-08 液晶性ポリエステル樹脂組成物およびそれからなる成形品 WO2018230195A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/613,173 US20200165444A1 (en) 2017-06-14 2018-05-08 Liquid crystalline polyester resin composition and molded product produced therefrom
JP2018530634A JPWO2018230195A1 (ja) 2017-06-14 2018-05-08 液晶性ポリエステル樹脂組成物およびそれからなる成形品
CN201880031330.3A CN110662803A (zh) 2017-06-14 2018-05-08 液晶性聚酯树脂组合物及由该液晶性聚酯树脂组合物形成的成型品
KR1020197035379A KR20200019129A (ko) 2017-06-14 2018-05-08 액정성 폴리에스테르 수지 조성물, 및 그것으로 이루어지는 성형품

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017116778 2017-06-14
JP2017-116778 2017-06-14
JP2017201082 2017-10-17
JP2017-201082 2017-10-17

Publications (1)

Publication Number Publication Date
WO2018230195A1 true WO2018230195A1 (ja) 2018-12-20

Family

ID=64659749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017809 WO2018230195A1 (ja) 2017-06-14 2018-05-08 液晶性ポリエステル樹脂組成物およびそれからなる成形品

Country Status (5)

Country Link
US (1) US20200165444A1 (ja)
JP (1) JPWO2018230195A1 (ja)
KR (1) KR20200019129A (ja)
CN (1) CN110662803A (ja)
WO (1) WO2018230195A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023560A1 (en) * 2019-08-05 2021-02-11 Qinetiq Limited Materials and methods
WO2021149723A1 (ja) * 2020-01-22 2021-07-29 Eneos株式会社 樹脂組成物および該樹脂組成物からなる樹脂成形品
WO2022070695A1 (ja) * 2020-09-29 2022-04-07 ポリプラスチックス株式会社 耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11086200B2 (en) 2019-03-20 2021-08-10 Ticona Llc Polymer composition for use in a camera module
JP7461959B2 (ja) 2019-03-20 2024-04-04 ティコナ・エルエルシー カメラモジュールのためのアクチュエータアセンブリ
US20220363814A1 (en) * 2021-05-06 2022-11-17 Ticona Llc Polymer Composition for Use in a Camera Module
CN114031900B (zh) * 2021-12-15 2023-04-07 广东格瑞新材料股份有限公司 一种用于通信的低介电强度复合材料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203164A (ja) * 1985-03-06 1986-09-09 Toray Ind Inc 難燃性芳香族ポリエステル組成物
JPH11216721A (ja) * 1998-02-03 1999-08-10 Teijin Ltd 熱可塑性樹脂組成物の製造方法
JP2000001625A (ja) * 1998-04-17 2000-01-07 Polyplastics Co 液晶性ポリマ―組成物及びその製造方法
JP2003192878A (ja) * 2001-10-15 2003-07-09 Polyplastics Co サーモトロピック液晶性ポリマー組成物
JP2003253097A (ja) 2002-03-01 2003-09-10 Ngk Insulators Ltd 複合材料
JP2006299254A (ja) 2005-03-24 2006-11-02 Toray Ind Inc 液晶性樹脂組成物からなるフィルムおよびその製造方法
WO2007043701A1 (ja) 2005-10-13 2007-04-19 Polyplastics Co., Ltd. 射出成形用液晶性樹脂組成物
JP2010106165A (ja) 2008-10-30 2010-05-13 Polyplastics Co 射出成形用液晶性樹脂組成物、当該樹脂組成物を成形してなる成形体、および当該成形体からなるカメラモジュール
JP2011063699A (ja) 2009-09-16 2011-03-31 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物の成形方法および成形体
JP2011068831A (ja) 2009-09-28 2011-04-07 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物
JP2011089047A (ja) * 2009-10-23 2011-05-06 Shin-Etsu Chemical Co Ltd 熱可塑性樹脂組成物
JP2012092214A (ja) * 2010-10-27 2012-05-17 Sumitomo Chemical Co Ltd 液晶ポリエステル液状組成物
JP6190089B1 (ja) 2015-12-24 2017-08-30 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物、その製造方法、及び上記組成物を用いたカメラモジュール

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253098A (ja) * 2002-03-01 2003-09-10 Du Pont Kk 液晶性ポリマー組成物及びそれを用いた成形品

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203164A (ja) * 1985-03-06 1986-09-09 Toray Ind Inc 難燃性芳香族ポリエステル組成物
JPH11216721A (ja) * 1998-02-03 1999-08-10 Teijin Ltd 熱可塑性樹脂組成物の製造方法
JP2000001625A (ja) * 1998-04-17 2000-01-07 Polyplastics Co 液晶性ポリマ―組成物及びその製造方法
JP2003192878A (ja) * 2001-10-15 2003-07-09 Polyplastics Co サーモトロピック液晶性ポリマー組成物
JP2003253097A (ja) 2002-03-01 2003-09-10 Ngk Insulators Ltd 複合材料
JP2006299254A (ja) 2005-03-24 2006-11-02 Toray Ind Inc 液晶性樹脂組成物からなるフィルムおよびその製造方法
WO2007043701A1 (ja) 2005-10-13 2007-04-19 Polyplastics Co., Ltd. 射出成形用液晶性樹脂組成物
JP2010106165A (ja) 2008-10-30 2010-05-13 Polyplastics Co 射出成形用液晶性樹脂組成物、当該樹脂組成物を成形してなる成形体、および当該成形体からなるカメラモジュール
JP2011063699A (ja) 2009-09-16 2011-03-31 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物の成形方法および成形体
JP2011068831A (ja) 2009-09-28 2011-04-07 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物
JP2011089047A (ja) * 2009-10-23 2011-05-06 Shin-Etsu Chemical Co Ltd 熱可塑性樹脂組成物
JP2012092214A (ja) * 2010-10-27 2012-05-17 Sumitomo Chemical Co Ltd 液晶ポリエステル液状組成物
JP6190089B1 (ja) 2015-12-24 2017-08-30 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物、その製造方法、及び上記組成物を用いたカメラモジュール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023560A1 (en) * 2019-08-05 2021-02-11 Qinetiq Limited Materials and methods
WO2021149723A1 (ja) * 2020-01-22 2021-07-29 Eneos株式会社 樹脂組成物および該樹脂組成物からなる樹脂成形品
WO2022070695A1 (ja) * 2020-09-29 2022-04-07 ポリプラスチックス株式会社 耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材
JP7101323B1 (ja) * 2020-09-29 2022-07-14 ポリプラスチックス株式会社 耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材
CN116490572A (zh) * 2020-09-29 2023-07-25 宝理塑料株式会社 耐球轴承滑动磨损构件用液晶性树脂组合物和使用其的耐球轴承滑动磨损构件
CN116490572B (zh) * 2020-09-29 2023-11-10 宝理塑料株式会社 耐球轴承滑动磨损构件用液晶性树脂组合物和使用其的耐球轴承滑动磨损构件

Also Published As

Publication number Publication date
JPWO2018230195A1 (ja) 2020-04-16
US20200165444A1 (en) 2020-05-28
CN110662803A (zh) 2020-01-07
KR20200019129A (ko) 2020-02-21

Similar Documents

Publication Publication Date Title
JP5136719B2 (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
WO2018230195A1 (ja) 液晶性ポリエステル樹脂組成物およびそれからなる成形品
TWI425038B (zh) 液晶性聚酯樹脂組成物及使用其之金屬複合成形品
JP5241955B2 (ja) 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
JP5088160B2 (ja) 液晶性樹脂組成物および成形品
WO2012090411A1 (ja) 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
JP5206903B2 (ja) 熱可塑性樹脂組成物およびそれを用いた成形品
JP2007138143A (ja) 液晶性樹脂組成物およびその製造方法
JP2017082158A (ja) 液晶性ポリエステル樹脂組成物およびそれからなる成形品
JP2015021063A (ja) 液晶ポリエステル樹脂組成物
JP2018168207A (ja) 液晶性ポリエステル樹脂組成物およびそれからなる成形品
JP2015063641A (ja) 液晶性ポリエステル樹脂組成物およびそれからなる成形品
JP3562122B2 (ja) ガラスビーズ強化液晶性樹脂組成物
JP6255978B2 (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
WO2022191099A1 (ja) 液晶性樹脂組成物およびそれからなる成形品
JP2016089154A (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530634

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197035379

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018816716

Country of ref document: EP

Effective date: 20200114

122 Ep: pct application non-entry in european phase

Ref document number: 18816716

Country of ref document: EP

Kind code of ref document: A1