WO2018227941A1 - 一种结构均匀、高透气性过滤用微孔膜及其制备方法、扁平过滤元件和气体过滤用品 - Google Patents

一种结构均匀、高透气性过滤用微孔膜及其制备方法、扁平过滤元件和气体过滤用品 Download PDF

Info

Publication number
WO2018227941A1
WO2018227941A1 PCT/CN2017/120055 CN2017120055W WO2018227941A1 WO 2018227941 A1 WO2018227941 A1 WO 2018227941A1 CN 2017120055 W CN2017120055 W CN 2017120055W WO 2018227941 A1 WO2018227941 A1 WO 2018227941A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
parts
filtration
minutes
ratio
Prior art date
Application number
PCT/CN2017/120055
Other languages
English (en)
French (fr)
Inventor
杨雪梅
肖武华
高东波
陈秀峰
Original Assignee
深圳市星源材质科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星源材质科技股份有限公司 filed Critical 深圳市星源材质科技股份有限公司
Priority to US16/080,497 priority Critical patent/US11413564B2/en
Priority to JP2018541701A priority patent/JP6717958B2/ja
Priority to EP17894671.1A priority patent/EP3441134A4/en
Publication of WO2018227941A1 publication Critical patent/WO2018227941A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • B01D46/543Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties

Definitions

  • the present application relates to the field of filter membrane materials, and in particular to a microporous membrane for uniform structure, high gas permeability filtration, a preparation method thereof, a flat filter element and a gas filtration product.
  • the air purification and replenishment system uses air filter membrane to filter PM2.5 dust and other toxic substances such as bacteria and microorganisms in the outdoor air and then add it to the indoors. At the same time, the indoor turbid air is taken out of the room to achieve continuous purification and replenishment, and indoor air is maintained.
  • the air filter membranes applied to the "Perriyou" canopy system mainly include the products of ENTEC and PPG in the United States.
  • Air filtration products such as masks, air filters, gas masks, etc. gradually occupy an important position in maintaining human green life and physical health.
  • the air filter membrane must have the function of trapping or reacting with the harmful substances in the air to purify the air and ensure the health of human beings.
  • most of the daily commercial and medical air filtration membranes on the market such as masks, air filters, gas masks, etc., are prepared by an electrospinning method.
  • CN103480285A discloses an enhanced polysulfone nanofiber air filter membrane and an electrospinning preparation method thereof
  • CN104368245A also discloses an electrospinning air filter membrane and a preparation method thereof.
  • the air filter membrane prepared by electrospinning has low mechanical strength, is easily damaged during use, and has poor resistance to deformation and heat resistance for long-term use, and low efficiency in preparing an air filter membrane by using an electrospinning process. .
  • One of the objects of the present application is to provide a microporous membrane for gas filtration for uniform structure and high gas permeability filtration, a preparation method thereof, a flat filter element and a gas filtration product.
  • the microporous membrane has a high mechanical strength and a uniform micropore distribution, and the filtration efficiency of the PM2.5 is as high as 90% or more.
  • a microporous membrane for uniform structure and high gas permeability filtration which is composed of the following raw materials by weight:
  • the antioxidant is selected from one or more of the group consisting of phenols, amines, phosphorus-containing compounds, sulfur-containing compounds, and organometallic salts.
  • the heat stabilizer is selected from the group consisting of tribasic lead carbonate, lead dibasic phosphite, stearic acid, cadmium, barium, calcium, zinc, magnesium salts and isodecyl acetate of decanoic acid. One or more.
  • a method for preparing a microporous membrane for uniform structure and high gas permeability filtration comprising the following steps:
  • the intermediate membrane I is annealed under micro tension, the annealing temperature is 90-160 ° C, the speed of the film in the annealing equipment is 1-20 m / min, the longitudinal tension is 0.1-3.0 N, and the longitudinal stretching ratio is 1.0-2.0, annealing time 5-60min, to obtain an intermediate membrane II;
  • the intermediate membrane II is longitudinally expanded and opened at a temperature of 100 to 150 ° C at a speed ratio of 0.5 to 3.0 to obtain an intermediate membrane III.
  • the intermediate membrane III is subjected to re-shrinking, the retraction ratio is 1.0-1.5, the setting temperature is 100-160 ° C, and the intermediate membrane IV is obtained;
  • the intermediate film IV is subjected to longitudinal secondary stretching, the temperature is 100-140 ° C, and the speed ratio is 0.5-2.0, and the microporous membrane for uniform filtration and high gas permeability filtration is obtained.
  • the application also provides a preparation method of a microporous membrane for filtration, comprising:
  • the melt is extruded from a temperature of 185-240 ° C to obtain a cast piece
  • the cast piece is cast at a temperature of 50-110 ° C and an intermediate film I of 8-40 ⁇ m is obtained;
  • the intermediate film I is annealed; wherein the annealing temperature is 90-160 ° C, the speed of the intermediate film I in the annealing apparatus is 1-20 m/min, the longitudinal tension is 0.1-3.0 N, and the stretching is longitudinal.
  • the ratio is 1.0-2.0, the annealing time is 5-60 min, and the intermediate film II is obtained;
  • the intermediate film II is longitudinally extended, wherein the extended opening temperature is 100-150 ° C, and the extended opening ratio is 0.5-3.0, to obtain an intermediate film III;
  • the intermediate membrane III is subjected to reductive setting; wherein the retraction ratio is 1.0-1.5, the setting temperature is 100-160 ° C, and the intermediate membrane IV is obtained;
  • the intermediate film IV is subjected to longitudinal secondary stretching, wherein the secondary stretching opening temperature is 100-140 ° C, and the secondary stretching opening ratio is 0.5-2.0.
  • the present application also provides a flat filter element comprising the microporous membrane produced by any of the above preparation methods.
  • the application also provides a gas filtration article comprising the above described flat filter element.
  • the present invention adopts a microporous membrane for a polyolefin gas filtration membrane prepared by a melt extrusion drawing method, and can precisely control the thickness of the microporous membrane by adjusting the viscosity of the melt, the stretching ratio, the heat treatment annealing temperature, etc. during the production process. Pore size distribution and pore permeability.
  • the gas filtration membrane prepared by the membrane has a particularly remarkable effect on PM2.5 filtration, and the filtration efficiency of PM2.5 is as high as 90% or more.
  • the filtration efficiency of the preferred technical solution of the present application is as high as 95%, which is much higher than about 80% of the prior art. Filtration efficiency;
  • the microporous membrane for gas filtration membrane prepared by the application has mechanical strength, such as tensile strength and puncture strength, which is far greater than that of the nanofiber membrane prepared by melt spinning, electrospinning and the like;
  • the process technology of the present application is simple in process, high in output, suitable for large-scale continuous production, and high-efficiency production efficiency reduces production cost; and the present application uses polyolefin, the raw material price is cheap, and the final gas filtration Membrane costs will be greatly reduced;
  • the process is not applicable or produces a small molecule liquid solvent, especially a component that has a pollution impact on the environment, and is environmentally friendly;
  • the present application uses octylisothiazolinone and calcium propionate as a bacteriostatic auxiliary to obtain a bacteriostatic emulsion, and then acrylonitrile is used as a monomer, and the bacteriostatic emulsion is used as a reaction solvent, and the stimulating effect of dicumyl peroxide is obtained.
  • the polymerization is carried out, and the obtained polymer has good antibacterial property, and can effectively improve the antibacterial property of the finished microporous membrane;
  • the application uses sodium myristate soap to disperse in the esterification solution, and then modified and treated the antibacterial polyacrylonitrile, which can effectively improve the viscosity of the polymer and improve the stability strength of the finished microporous membrane.
  • Figure 1 is an electron micrograph of a microporous membrane prepared in Example 1 of the present application.
  • the expression “or” or “at least one of A or / and B” includes any or all combinations of the simultaneously listed characters.
  • the expression “A or B” or “at least one of A or / and B” may include A, may include B, or may include both A and B.
  • the present embodiment provides a microporous membrane for uniform structure and high gas permeability filtration, which is composed of the following raw materials by weight:
  • the antioxidant is selected from one or more of the group consisting of phenols, amines, phosphorus-containing compounds, sulfur-containing compounds, and organometallic salts.
  • the heat stabilizer is selected from the group consisting of tribasic lead carbonate, lead dibasic phosphite, stearic acid, cadmium, barium, calcium, zinc, magnesium salts and isodecyl acetate of decanoic acid. One or more.
  • Phthalate esters can be used as plasticizers, and other existing plasticizers can be used.
  • a method for preparing a microporous membrane for uniform structure and high gas permeability filtration comprising the following steps:
  • the intermediate membrane I is annealed under micro tension, the annealing temperature is 90-160 ° C, the speed of the film in the annealing equipment is 1-20 m / min, the longitudinal tension is 0.1-3.0 N, and the longitudinal stretching ratio is 1.0-2.0, annealing time 5-60min, to obtain an intermediate membrane II;
  • the intermediate membrane II is longitudinally expanded and opened at a temperature of 100 to 150 ° C at a rate ratio of 0.5 to 3.0 to obtain an intermediate membrane III.
  • the intermediate membrane III is subjected to re-shrinking, the retraction ratio is 1.0-1.5, the setting temperature is 100-160 ° C, and the intermediate membrane IV is obtained;
  • the intermediate film IV is subjected to longitudinal secondary stretching, the temperature is 100-140 ° C, and the speed ratio is 0.5-2.0, and the microporous membrane for uniform filtration and high gas permeability filtration is obtained.
  • the filter membrane prepared by the above method has high mechanical strength, such as tensile strength and puncture strength, and has good bacteriostatic performance and high PM2.5 filtration efficiency.
  • the embodiment provides a method for preparing a microporous membrane for filtration, comprising:
  • the melt is extruded from a temperature of 185-240 ° C to obtain a cast piece
  • the cast piece is cast at a temperature of 50-110 ° C and an intermediate film I of 8-40 ⁇ m is obtained;
  • the intermediate film I is annealed; wherein the annealing temperature is 90-160 ° C, the speed of the intermediate film I in the annealing apparatus is 1-20 m/min, the longitudinal tension is 0.1-3.0 N, and the stretching is longitudinal.
  • the ratio is 1.0-2.0, the annealing time is 5-60 min, and the intermediate film II is obtained;
  • the intermediate film II is longitudinally extended, wherein the extended opening temperature is 100-150 ° C, and the extended opening ratio is 0.5-3.0, to obtain an intermediate film III;
  • the intermediate membrane III is subjected to reductive setting; wherein the retraction ratio is 1.0-1.5, the setting temperature is 100-160 ° C, and the intermediate membrane IV is obtained;
  • the intermediate film IV is subjected to longitudinal secondary stretching, wherein the secondary stretching opening temperature is 100-140 ° C, and the secondary stretching opening ratio is 0.5-2.0.
  • the thickness, pore size distribution and pore permeability of the microporous membrane are precisely controlled by adjusting the viscosity of the melt, the stretching ratio, the heat treatment annealing temperature, and the like.
  • the longitudinal direction includes the direction of movement along the intermediate film I or the intermediate film II.
  • the direction opposite to the moving direction of the intermediate film I or the intermediate film II is also included.
  • the longitudinal tension is applied to the intermediate film I
  • the rapid rotation of the front roller group exerts a force in the moving direction on the intermediate film I
  • the slow rotation speed of the rear roller group hinders the intermediate film I from moving forward, which is equivalent to The intermediate film I exerts a force that moves in the opposite direction.
  • the ratio of the extended opening ratio and the secondary extending opening ratio is the total speed ratio.
  • the total speed ratio is not 1.
  • the total speed ratio can be simply understood as the ratio of the linear velocity of the first pair of rolls to the last pair of rolls of the intermediate film I or the intermediate film II in the direction of movement.
  • the annealing temperature is 100-150 ° C
  • the speed of the intermediate film I in the annealing device is 5-15 m / min
  • the longitudinal tension is 0.5-3.0 N
  • the stretching ratio is 1.0-2.0
  • extended opening temperature is 120-150°C
  • extended opening ratio is 0.8-3.0
  • retraction ratio is 1.0-1.5
  • setting temperature is 120-160°C
  • second extension The pore temperature is 100-140 ° C
  • the secondary extension opening ratio is 0.5-2.0.
  • the annealing temperature is 110-160 ° C
  • the speed of the intermediate film I in the annealing apparatus is 10-20 m/min along the moving direction of the intermediate film I.
  • the secondary extension opening temperature is lower than the extended opening temperature.
  • the parameters of the extended opening and the secondary extending opening cooperate with each other to make the film forming hole uniform, the size is moderate, the gas permeability and the filter core reach equilibrium, and the tensile strength is high.
  • the melt mainly comprises a thermoplastic polymer having a melting point of 200-240 ° C; preferably, the raw material for preparing the melt comprises polyethylene 100-110 by weight. And acrylonitrile 27-30 parts; the melt further comprises 0.1-0.2 parts of dicumyl peroxide, 2-4 parts of plasticizer, 1-2 parts of antimony trioxide, 0.8-1 part of zinc borate, 1-2 parts of antioxidant, 0.8-2 part of heat stabilizer, 1-2 parts of octylisothiazolinone, 1-3 parts of calcium propionate, 0.7-2 parts of triglycidyl isocyanurate, diacetone alcohol 4 -6 parts, 0.7-1 parts of oleic acid diethanolamide, 0.5-1 part of sodium myristate soap, and 1-2 parts of glycolic acid.
  • the melt further comprises 0.1-0.2 parts of dicumyl peroxide, 2-4 parts of plasticizer, 1-2 parts of antimony trioxide, 0.8-1 part of zinc borate, 1-2 parts of antioxidant,
  • the step of preparing the melt comprises:
  • the heat stabilizer is first mixed with the flame retardant amide dispersion, and then mixed with the high viscosity polyacrylonitrile at 60-70 ° C for 30-40 minutes to obtain a flame retardant polyacrylonitrile amide dispersion;
  • the flame-retardant polyacrylonitrile amide dispersion is mixed with polyethylene, a plasticizer and an antioxidant, dehydrated, sent to an extruder, and melted and melted uniformly at a temperature of 200-240 ° C. body.
  • the preparing step of the bacteriostatic emulsion comprises:
  • the mixing method referred to in the present application may be mechanical stirring, magnetic stirring or the like.
  • the preparation step of the saponified ester solution comprises: taking sodium myristate soap, adding it to a weight of 6-9 times of absolute ethanol, mixing uniformly, and then reacting with glycolic acid The mixture is mixed at 70-90 ° C for 20-30 minutes, then mixed with triglycidyl isocyanurate, and cooled to room temperature to obtain a saponified ester solution.
  • the antimony trioxide is mixed with zinc borate to form a mixture, and then added to the deionized water of 26-30 times the weight of the mixture, and uniformly mixed with oleic acid diethanolamide.
  • the mixture is kept at 40-50 ° C for 10-20 minutes to obtain a flame retardant amide dispersion;
  • This embodiment also provides a flat filter element comprising the microporous membrane produced by any of the above preparation methods.
  • the main component of the flat filter element is the microporous membrane prepared by the above preparation method, and may further include other components such as other existing reinforcing layers, preliminary filtration layers or sterilization layers. Since the microporous membrane obtained by some embodiments of the present application has high strength, thorough filtration and sterilization function, the microporous membrane can replace the existing various membranes. Therefore, in certain embodiments, a microporous membrane can be used directly as a flat filter element.
  • a PET nonwoven layer or a glass fiber needle felt layer composited to the surface of the microporous film is further included.
  • the PET nonwoven fabric layer or the glass fiber needle felt layer may be joined to the microporous film by an existing connection method such as bonding or sewing.
  • the present application has found through research that a microporous membrane for polyolefin gas filtration prepared by a melt extrusion stretching method, a composite PET nonwoven fabric layer or a glass fiber needle felt on both sides of the microporous membrane, has a more filtering effect on PM2.5. It is remarkable, it is not easy to be damaged during use, and it has strong anti-deformation ability and heat resistance for long-term use.
  • a gas filtration article comprising the microporous membrane produced by any of the above preparation methods. Further, in an alternative embodiment of the present application, the gas filtration article is selected from any one of a mask, a gas filter, and a gas mask.
  • a PET nonwoven layer or a glass fiber needle felt layer composited to the surface of the microporous film is further included.
  • microporous membrane, flat filter element and gas filtration product of the present application can be used for gas filtration in daily life as well as gas filtration in industrial production processes.
  • a microporous membrane for uniform structure and high gas permeability filtration which is composed of the following raw materials by weight:
  • a method for preparing a microporous membrane for uniform structure and high gas permeability filtration comprising the following steps:
  • the intermediate film I was annealed under micro tension, the annealing temperature was 160 ° C, the speed of the film in the annealing equipment was 20 m / min, the longitudinal tension was 3.0 N, the longitudinal stretching ratio was 2.0, and the annealing time was 60 min.
  • the annealing temperature was 160 ° C
  • the speed of the film in the annealing equipment was 20 m / min
  • the longitudinal tension was 3.0 N
  • the longitudinal stretching ratio was 2.0
  • the annealing time was 60 min.
  • the intermediate membrane II was longitudinally expanded and opened at a temperature of 150 ° C at a rate ratio of 3.0 to obtain an intermediate membrane III.
  • the intermediate film IV was subjected to longitudinal secondary stretching, the temperature was 140 ° C, and the speed ratio was 2.0, and the microporous film for uniform filtration and high gas permeability filtration was obtained.
  • a microporous membrane for uniform structure and high gas permeability filtration which is composed of the following raw materials by weight:
  • a method for preparing a microporous membrane for uniform structure and high gas permeability filtration comprising the following steps:
  • the intermediate membrane I was annealed under micro tension, the annealing temperature was 90 ° C, the speed of the film in the annealing equipment was 10 m / min, the longitudinal tension was 0.1 N, the longitudinal stretching ratio was 1.0, and the annealing time was 5 min. Obtaining an intermediate membrane II;
  • the intermediate membrane II was longitudinally expanded and opened at a temperature of 100 ° C at a speed ratio of 0.5 to obtain an intermediate membrane III.
  • the intermediate film IV was subjected to longitudinal secondary stretching and opening at a temperature of 100 ° C and a speed ratio of 0.5 to obtain a microporous film for uniform filtration and high gas permeability filtration.
  • a microporous membrane for uniform structure and high gas permeability filtration which is composed of the following raw materials by weight:
  • the antioxidant is zinc ricinoleate.
  • the heat stabilizer is a tribasic lead carbonate.
  • a method for preparing a microporous membrane for uniform structure and high gas permeability filtration comprising the following steps:
  • the intermediate film I was annealed under micro tension, the annealing temperature was 100 ° C, the speed of the film in the annealing equipment was 10 m/min, the longitudinal tension was 0.6 N, the longitudinal stretching ratio was 1.0, and the annealing time was 30 min. Obtaining an intermediate membrane II;
  • the intermediate membrane II was longitudinally expanded and opened at a temperature of 130 ° C at a rate ratio of 1.5 to obtain an intermediate membrane III.
  • the intermediate film IV was subjected to longitudinal secondary stretching and opening at a temperature of 140 ° C and a speed ratio of 0.5 to obtain a microporous membrane for uniform filtration and high gas permeability filtration.
  • a microporous membrane for uniform structure and high gas permeability filtration which is composed of the following raw materials by weight:
  • a method for preparing a microporous membrane for uniform structure and high gas permeability filtration comprising the following steps:
  • the intermediate film I was annealed under micro tension, the annealing temperature was 90 ° C, the speed of the film in the annealing equipment was 15 m / min, the longitudinal tension was 0.8 N, the longitudinal stretching ratio was 1.1, and the annealing time was 10 min.
  • the annealing temperature was 90 ° C
  • the speed of the film in the annealing equipment was 15 m / min
  • the longitudinal tension was 0.8 N
  • the longitudinal stretching ratio was 1.1
  • the annealing time was 10 min.
  • the intermediate membrane II was longitudinally expanded and opened at a temperature of 120 ° C at a rate ratio of 0.8 to obtain an intermediate membrane III.
  • the intermediate film IV was subjected to longitudinal secondary stretching and opening at a temperature of 100 ° C and a speed ratio of 0.5 to obtain a microporous film for uniform filtration and high gas permeability filtration.
  • a microporous membrane for uniform structure and high gas permeability filtration which is composed of the following raw materials by weight:
  • a method for preparing a microporous membrane for uniform structure and high gas permeability filtration comprising the following steps:
  • the intermediate membrane I was annealed under micro tension, the annealing temperature was 90 ° C, the speed of the film in the annealing equipment was 10 m / min, the longitudinal tension was 1.1 N, the longitudinal stretching ratio was 2.0, and the annealing time was 20 min. Obtaining an intermediate membrane II;
  • the intermediate membrane II was longitudinally expanded and opened at a temperature of 130 ° C at a rate ratio of 1.5 to obtain an intermediate membrane III.
  • the intermediate film IV was subjected to longitudinal secondary stretching and opening at a temperature of 110 ° C and a speed ratio of 0.6 to obtain a microporous membrane for uniform filtration and high gas permeability filtration.
  • test was carried out in accordance with JIS P 8117-1988 paper and paperboard.
  • sample size was not less than 5 cm * 5 cm.
  • the sample was fixed on the sample stage and measured using an electronic puncture strength tester. After the test is completed, the average value of the measured values of the three samples is taken.
  • Measurements were made using a CMT series microcomputer controlled electronic universal (tension) tester. After the test is completed, the average value of the measured values of the five samples is taken.
  • the microporous membrane for high gas permeability filtration prepared by the method of the present invention has high mechanical strength, uniform pore distribution, is not easily damaged during use, and has excellent resistance to deformation and heat resistance. Its PM2.5 filtration efficiency is as high as 90% or more.
  • the present invention adopts a microporous membrane for a polyolefin gas filtration membrane prepared by a melt extrusion drawing method, and can precisely control the thickness of the microporous membrane by adjusting the viscosity of the melt, the stretching ratio, the heat treatment annealing temperature, etc. during the production process. Pore size distribution and pore permeability.
  • the filtration effect of PM2.5 is particularly remarkable, and the filtration efficiency of PM2.5 is as high as 90% or more.
  • the filtration efficiency of the preferred technical solution of the present application is as high as 95% or more, which is much higher than the filtration efficiency of about 80% of the prior art.
  • the microporous membrane has high mechanical strength and good bacteriostatic properties. Compared with other existing methods, the preparation method of the present application is simple in process, high in yield, and suitable for large-scale continuous production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Filtering Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种过滤用微孔膜及其制备方法、扁平过滤元件和气体过滤用品,微孔膜是由下述重量份的原料制成的:聚乙烯100-110、丙烯腈27-30、过氧化二异丙苯0.1-0.2、增塑剂2-4、三氧化二锑1-2、硼酸锌0.8-1、抗氧化剂1-2、热稳定剂0.8-2、辛基异噻唑啉酮1-2、丙酸钙1-3、异氰尿酸三缩水甘油酯0.7-2、二丙酮醇4-6、油酸二乙醇酰胺0.7-1、肉豆蔻酸钠皂0.5-1、羟基乙酸1-2。

Description

一种结构均匀、高透气性过滤用微孔膜及其制备方法、扁平过滤元件和气体过滤用品
本申请要求于2017年06月13日提交中国专利局的申请号为CN201710443461.X、名称为“一种结构均匀、高透气性过滤用微孔膜及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及过滤膜材料领域,特别是涉及一种结构均匀、高透气性过滤用微孔膜及其制备方法、扁平过滤元件和气体过滤用品。
背景技术
近年来随着雾霾、沙尘暴等环境恶化,无论身在家庭还是公众场所,人们的身体健康都受到严重危害。另外,由于生活水平提高,空调的普及使用,进入千家万户,夏天长时间使用空调的封闭空间里空气浑浊,质量及其恶劣,导致人们出现越来越多的空调综合征,如睡眠质量不好、免疫力下降等诸多严重影响身体健康的情形。冬天即使不使用空调,家庭里长期封闭门窗也有同样的问题。因此,针对此现象,美国能源部所属佛罗里达研发中心率先开发了“珀丽优”天幕系统,即空气净化补充系统,在封闭的环境中实现新鲜空气的持续净化和氧气补充,解决了因环境空气质量下降带来的诸多亚健康问题。
空气净化补充系统采用空气过滤膜对室外空气中PM2.5微尘和细菌、微生物等有毒物质进行过滤后补充到室内,同时将室内的浑浊空气抽出室外,实现持续的净化和补充,保持室内空气的质量和氧气的充足。目前应用于“珀丽优”天幕系统的空气过滤膜主要有美国ENTEC、PPG公司产品。
空气过滤用品例如口罩、空气过滤器、防毒面具等在维护人类的绿色生活和身体健康中逐步占领重要地位。空气过滤膜必须具有将空气中的固体有害物质截留或是与之发生吸附反应等作用,才能达到净化空气,保证人类健康之目的。目前,市场上的日用、医用空气过滤膜,例如口罩、空气过滤器、防毒面具等,多数采用静电纺丝方法制备。比如,CN103480285A公开了一种增强聚砜纳米纤维空气过滤膜及其静电纺丝制备方法,CN104368245A同样公开了一种静电纺丝空气过滤膜及其制备方法。但是,静电纺丝制备得到的空气过滤膜,机械强度低,使用过程中很容易损伤,且长期使用的抗形变能力及耐热性较差,同时使用静电纺丝工艺制备空气过滤膜效率较低。
发明内容
本申请的目的之一在于提供一种结构均匀、高透气性过滤用气体过滤用微孔膜及其制备方法、扁平过滤元件和气体过滤用品。该微孔膜厚度在机械强度高,微孔分布均匀,对其PM2.5过滤效率高达90%以上。
为实现上述至少一个目的,本申请采用以下技术方案:
一种结构均匀、高透气性过滤用微孔膜,它是由下述重量份的原料组成的:
聚乙烯100-110、丙烯腈27-30、过氧化二异丙苯0.1-0.2、增塑剂2-4、三氧化二锑1-2、硼酸锌0.8-1、抗氧化剂1-2、热稳定剂0.8-2、辛基异噻唑啉酮1-2、丙酸钙1-3、异氰尿酸三缩水甘油酯0.7-2、二丙酮醇4-6、油酸二乙醇酰胺0.7-1、肉豆蔻酸钠皂0.5-1和羟基乙酸1-2。
所述的抗氧化剂选自由酚类、胺类、含磷化合物、含硫化合物和有机金属盐组成的组中的一种或多种。
所述的热稳定剂选自由三盐基碳酸铅、二盐基亚磷酸铅,硬脂酸、月桂酸的镉、钡、钙、锌、镁盐和二巯基醋酸异辛酯组成的组中的一种或多种。
一种结构均匀、高透气性过滤用微孔膜的制备方法,包括以下步骤:
(1)取辛基异噻唑啉酮,加入到其重量17-20倍的去离子水中,搅拌均匀,加入丙酸钙,升高温度为40-50℃,保温搅拌4-9分钟,加入二丙酮醇,继续保温搅拌10-20分钟,得抑菌乳液;
(2)取肉豆蔻酸钠皂,加入到其重量6-9倍的无水乙醇中,搅拌均匀,加入羟基乙酸,在70-90℃下保温搅拌20-30分钟,加入异氰尿酸三缩水甘油酯,搅拌至常温,得皂化酯溶液;
(3)取三氧化二锑、硼酸锌混合,加入到混合料重量26-30倍的去离子水中,搅拌均匀,加入油酸二乙醇酰胺,在40-50℃下保温搅拌10-20分钟,得阻燃酰胺分散液;
(4)取丙烯腈,加入到上述抑菌乳液中,搅拌均匀,送入到反应釜中,调节反应釜温度为76-80℃,通入氮气,加入过氧化二异丙苯,保温搅拌1-2小时,出料,与上述皂化酯溶液混合,搅拌均匀,蒸馏除去乙醇,送入到烘箱中,在86-90℃下干燥40-50分钟,出料冷却,得高粘度聚丙烯腈;
(5)取热稳定剂,加入到上述阻燃酰胺分散液中,搅拌均匀,加入上述高粘度聚丙烯腈,在60-70℃下保温搅拌30-40分钟,得阻燃聚丙烯腈酰胺分散液;
(6)取上述阻燃聚丙烯腈酰胺分散液,与聚乙烯、增塑剂、抗氧化剂混合,搅拌均匀,脱水,送入到挤出机中,在温度为200-240℃的条件下熔融塑化均匀成熔体;
(7)将所得熔体从模头挤出的铸片,随后进入流延工序,模头温度为185-240℃,流延温度为50-110℃,制备出厚度在8-40μm的中间体膜Ⅰ;
(8)将中间体膜Ⅰ进行微张力下退火处理,退火温度为90-160℃,膜在退火设备中的速度为1-20m/min,纵向张力0.1-3.0N,纵向的拉伸比为1.0-2.0,退火时间5-60min,得到中间体膜Ⅱ;
(9)将中间体膜Ⅱ进行纵向延伸开孔,温度为100-150℃,速比为0.5-3.0,得到中间体膜Ⅲ。
(10)将中间体膜Ⅲ进行回缩定型,回缩比为1.0-1.5,定型温度为100-160℃,得到中间体膜Ⅳ;
(11)将中间体膜Ⅳ进行纵向二次延伸开孔,温度为100-140℃,速比为0.5-2.0,得到所述结构均匀、高透气性过滤用微孔膜。
本申请还提供一种过滤用微孔膜的制备方法,包括:
将熔体从温度为185-240℃的摸头挤出制得铸片;
将所述铸片在温度为50-110℃条件下流延并制得8-40μm的中间体膜Ⅰ;
将所述中间体膜Ⅰ进行退火处理;其中退火温度为90-160℃,所述中间体膜Ⅰ在退火设备中的速度为1-20m/min,纵向张力0.1-3.0N,纵向的拉伸比为1.0-2.0,退火时间5-60min,得到中间体膜Ⅱ;
将所述中间体膜Ⅱ进行纵向延伸开孔;其中延伸开孔温度为100-150℃,延伸开孔速比为0.5-3.0,得到中间体膜Ⅲ;
将中间体膜Ⅲ进行回缩定型;其中回缩比为1.0-1.5,定型温度为100-160℃,得到中间体膜Ⅳ;
将中间体膜Ⅳ进行纵向二次延伸开孔,其中二次延伸开孔温度为100-140℃,二次延伸开孔速比为0.5-2.0。
本申请还提供一种扁平过滤元件,包括上述任一种制备方法制得的微孔膜。
本申请还提供一种气体过滤用品,包括上述扁平过滤元件。
本申请的优点包括:
本申请采用熔融挤出拉伸法制备得到的聚烯烃气体过滤膜用微孔膜,生产过程中能够通过调节熔体的粘度、拉伸倍率、热处理退火温度等来精确控制微孔膜的厚度、孔径分布及孔径通透性。
其制备的气体过滤膜对于PM2.5过滤效果尤其显著,其PM2.5过滤效率高达90%以上,尤其本申请优选的技术方案过滤效率高达95%,远远高于现有技术80%左右的过滤效率;
采用本申请制备的气体过滤膜用微孔膜,机械强度,如拉伸强度,抗穿刺强度等远远大于通过熔纺、静电纺丝等方法制备的纳米纤维膜;
本申请的工艺技术与其它现有工艺相比,工艺简单,产量高,适合大规模连续生产, 高效的生产效率降低了生产成本;并且本申请采用的是聚烯烃,原料价格便宜,最终气体过滤膜成本将大大降低;
采用本申请的工艺技术,过程中不适用或者产生小分子液体溶剂,尤其是对环境造成污染影响的成分,具有环境友好性;
本申请采用辛基异噻唑啉酮、丙酸钙混合作为抑菌助剂,得到抑菌乳液,然后以丙烯腈为单体,抑菌乳液为反应溶剂,在过氧化二异丙苯的引发作用下进行聚合,得到的聚合物具有很好的抑菌性能,可以有效的提高成品微孔膜的抑菌性;
本申请采用肉豆蔻酸钠皂在酯化溶液中分散,然后改性处理抑菌聚丙烯腈,可以有效的提高聚合物的黏度,提高成品微孔膜的稳定性强度。
附图说明
图1:为本申请实施例1制备的微孔隔膜的电镜图片。
具体实施方式
在下文中,将结合实施例更全面地描述本申请。本公开可具有各种实施例,并且可在其中做出调整和改变。然而,应理解:不存在将本公开的各种实施例限于在此公开的特定实施例的意图,而是应将本公开理解为涵盖落入本公开的各种实施例的精神和范围内的所有调整、等同物和/或可选方案。
在下文中,可在本公开的各种实施例中使用的术语“包括”或“可包括”指示所公开的功能、操作或元件的存在,并且不限制一个或更多个功能、操作或元件的增加。
在本公开的各种实施例中,表述“或”或“A或/和B中的至少一个”包括同时列出的文字的任何组合或所有组合。例如,表述“A或B”或“A或/和B中的至少一个”可包括A、可包括B或可包括A和B二者。
在本公开的各种实施例中使用的术语仅用于描述特定实施例的目的并且并非意在限制本公开的各种实施例。如在此所使用,单数形式意在也包括复数形式,除非上下文清楚地另有指示。除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本公开的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本公开的各种实施例中被清楚地限定。
本实施方式提供一种结构均匀、高透气性过滤用微孔膜,它是由下述重量份的原料组成的:
聚乙烯100-110、丙烯腈27-30、过氧化二异丙苯0.1-0.2、增塑剂2-4、三氧化二锑1-2、硼酸锌0.8-1、抗氧化剂1-2、热稳定剂0.8-2、辛基异噻唑啉酮1-2、丙酸钙1-3、异氰尿酸三缩水甘油酯0.7-2、二丙酮醇4-6、油酸二乙醇酰胺0.7-1、肉豆蔻酸钠皂0.5-1和羟基乙酸1-2。
所述的抗氧化剂选自由酚类、胺类、含磷化合物、含硫化合物和有机金属盐组成的组中的一种或多种。
所述的热稳定剂选自由三盐基碳酸铅、二盐基亚磷酸铅,硬脂酸、月桂酸的镉、钡、钙、锌、镁盐和二巯基醋酸异辛酯组成的组中的一种或多种。
增塑剂可以选用邻苯二甲酸酯,还可以选用现有的其他增塑剂。
一种结构均匀、高透气性过滤用微孔膜的制备方法,包括以下步骤:
(1)取辛基异噻唑啉酮,加入到其重量17-20倍的去离子水中,搅拌均匀,加入丙酸钙,升高温度为40-50℃,保温搅拌4-9分钟,加入二丙酮醇,继续保温搅拌10-20分钟,得抑菌乳液;
(2)取肉豆蔻酸钠皂,加入到其重量6-9倍的无水乙醇中,搅拌均匀,加入羟基乙酸,在70-90℃下保温搅拌20-30分钟,加入异氰尿酸三缩水甘油酯,搅拌至常温,得皂化酯溶液;
(3)取三氧化二锑、硼酸锌混合,加入到混合料重量26-30倍的去离子水中,搅拌均匀,加入油酸二乙醇酰胺,在40-50℃下保温搅拌10-20分钟,得阻燃酰胺分散液;
(4)取丙烯腈,加入到上述抑菌乳液中,搅拌均匀,送入到反应釜中,调节反应釜温度为76-80℃,通入氮气,加入过氧化二异丙苯,保温搅拌1-2小时,出料,与上述皂化酯溶液混合,搅拌均匀,蒸馏除去乙醇,送入到烘箱中,在86-90℃下干燥40-50分钟,出料冷却,得高粘度聚丙烯腈;
(5)取热稳定剂,加入到上述阻燃酰胺分散液中,搅拌均匀,加入上述高粘度聚丙烯腈,在60-70℃下保温搅拌30-40分钟,得阻燃聚丙烯腈酰胺分散液;
(6)取上述阻燃聚丙烯腈酰胺分散液,与聚乙烯、增塑剂、抗氧化剂混合,搅拌均匀,脱水,送入到挤出机中,在温度为200-240℃的条件下熔融塑化均匀成熔体;
(7)将所得熔体从模头挤出的铸片,随后进入流延工序,模头温度为185-240℃,流延温度为50-110℃,制备出厚度在8-40μm的中间体膜Ⅰ;
(8)将中间体膜Ⅰ进行微张力下退火处理,退火温度为90-160℃,膜在退火设备中的速度为1-20m/min,纵向张力0.1-3.0N,纵向的拉伸比为1.0-2.0,退火时间5-60min,得到中间体膜Ⅱ;
(9)将中间体膜Ⅱ进行纵向延伸开孔,温度为100-150℃,速比为0.5-3.0,得到中间体 膜Ⅲ。
(10)将中间体膜Ⅲ进行回缩定型,回缩比为1.0-1.5,定型温度为100-160℃,得到中间体膜Ⅳ;
(11)将中间体膜Ⅳ进行纵向二次延伸开孔,温度为100-140℃,速比为0.5-2.0,得到所述结构均匀、高透气性过滤用微孔膜。
上述方法制备的过滤膜,机械强度,如拉伸强度,抗穿刺强度等较高,而且具有很好的抑菌性能和较高的PM2.5过滤效率。
本实施方式提供一种过滤用微孔膜的制备方法,包括:
将熔体从温度为185-240℃的摸头挤出制得铸片;
将所述铸片在温度为50-110℃条件下流延并制得8-40μm的中间体膜Ⅰ;
将所述中间体膜Ⅰ进行退火处理;其中退火温度为90-160℃,所述中间体膜Ⅰ在退火设备中的速度为1-20m/min,纵向张力0.1-3.0N,纵向的拉伸比为1.0-2.0,退火时间5-60min,得到中间体膜Ⅱ;
将所述中间体膜Ⅱ进行纵向延伸开孔;其中延伸开孔温度为100-150℃,延伸开孔速比为0.5-3.0,得到中间体膜Ⅲ;
将中间体膜Ⅲ进行回缩定型;其中回缩比为1.0-1.5,定型温度为100-160℃,得到中间体膜Ⅳ;
将中间体膜Ⅳ进行纵向二次延伸开孔,其中二次延伸开孔温度为100-140℃,二次延伸开孔速比为0.5-2.0。
该制备方法,通过调节熔体的粘度、拉伸倍率、热处理退火温度等来精确控制微孔膜的厚度、孔径分布及孔径通透性。
其中纵向包括沿着中间体膜Ⅰ或者中间体膜Ⅱ的运动方向。根据作用力与反作用力,严格来说还包括与中间体膜Ⅰ或者中间体膜Ⅱ的运动方向相反的方向。例如,对中间体膜Ⅰ施加纵向张力时,前方的辊组快速转动对中间体膜Ⅰ施加运动方向的力,同时后方的辊组转速较慢会阻碍中间体膜Ⅰ向前运动,相当于是对中间体膜Ⅰ施加了运动方向相反的力。
延伸开孔速比及二次延伸开孔速比的速比,均是总速比。作为本领域的常识,总速比不为1。总速比可以简单理解为,沿运动方向,作用于与中间体膜Ⅰ或者中间体膜Ⅱ的第一对辊组与最后一对辊组的线速度之比。
进一步地,本申请的可选实施例中,退火温度为100-150℃,所述中间体膜Ⅰ在退火设备中的速度为5-15m/min,纵向张力0.5-3.0N,拉伸比为1.0-2.0,退火时间10-50min;延伸开孔温度为120-150℃,延伸开孔速比为0.8-3.0;回缩比为1.0-1.5,定型温度为120-160℃;二次延伸开孔温度为100-140℃,二次延伸开孔速比为0.5-2.0。
进一步地,本申请的可选实施例中,退火温度为110-160℃,所述中间体膜Ⅰ在退火设备中的速度为10-20m/min,沿所述中间体膜Ⅰ运动方向上的张力1-3.0N,拉伸比为1.2-2.0,退火时间20-60min;延伸开孔温度为130-150℃,延伸开孔速比为1.5-3.0;回缩比为1.0-1.5,定型温度为130-160℃;二次延伸开孔温度为100-120℃,二次延伸开孔速比为0.5-2.0。
进一步地,本申请的可选实施例中,所述二次延伸开孔温度低于所述延伸开孔温度。
延伸开孔与二次延伸开孔的各项参数,相互配合,使得成膜孔型均匀,大小适中,透气性和过滤芯达到平衡,而且拉伸强度高。
进一步地,本申请的可选实施例中,所述熔体主要包括熔点为200-240℃的热塑性聚合物;优选地,按重量份计,制备所述熔体的原料包括聚乙烯100-110份、丙烯腈27-30份;所述熔体还包括过氧化二异丙苯0.1-0.2份、增塑剂2-4份、三氧化二锑1-2份、硼酸锌0.8-1份、抗氧化剂1-2份、热稳定剂0.8-2份、辛基异噻唑啉酮1-2份、丙酸钙1-3份、异氰尿酸三缩水甘油酯0.7-2份、二丙酮醇4-6份、油酸二乙醇酰胺0.7-1份、肉豆蔻酸钠皂0.5-1份和羟基乙酸1-2份。
进一步地,本申请的可选实施例中,所述熔体的制备步骤包括:
采用辛基异噻唑啉酮、丙酸钙、二丙酮醇及去离子水混合制备抑菌乳液;
采用肉豆蔻酸钠皂、无水乙醇、羟基乙酸及异氰尿酸三缩水甘油酯混合制备皂化酯溶液;
采用三氧化二锑、硼酸锌、去离子水及油酸二乙醇酰胺混合制备阻燃酰胺分散液;
将丙烯腈与所述抑菌乳液混合,在氮气气氛下于76-80℃温度条件,加入过氧化二异丙苯,保温混合1-2小时出料,然后与所述皂化酯溶液混合,蒸馏除去乙醇,在86-90℃下干燥40-50分钟,出料冷却,得高粘度聚丙烯腈;
将热稳定剂先与所述阻燃酰胺分散液混合,再与所述高粘度聚丙烯腈在60-70℃下混合30-40分钟,得阻燃聚丙烯腈酰胺分散液;
将所述阻燃聚丙烯腈酰胺分散液与聚乙烯、增塑剂及抗氧化剂混匀,脱水,送入到挤出机中,在温度为200-240℃的条件下熔融塑化均匀成熔体。
进一步地,本申请的可选实施例中,所述抑菌乳液的制备步骤包括:
取辛基异噻唑啉酮,加入到其重量17-20倍的去离子水中混匀,然后与丙酸钙混合,升高温度为40-50℃,保温混合4-9分钟,接着与二丙酮醇混合,继续保温混合10-20分钟,制得所述抑菌乳液。
本申请中涉及的混合方式可选机械搅拌、磁力搅拌等。
进一步地,本申请的可选实施例中,所述皂化酯溶液的制备步骤包括:取肉豆蔻酸钠皂,加入到其重量6-9倍的无水乙醇中,混合均匀,然后与羟基乙酸混合,在70-90℃下保 温混合20-30分钟,然后与异氰尿酸三缩水甘油酯混合,冷却至常温,得皂化酯溶液。
进一步地,本申请的可选实施例中,将三氧化二锑与硼酸锌混合形成混合料,然后加入到混合料重量26-30倍的去离子水中,混合均匀,与油酸二乙醇酰胺在40-50℃下保温混合10-20分钟,得阻燃酰胺分散液;
本实施方式还提了一种扁平过滤元件,包括上述任一种制备方法制得的微孔膜。扁平过滤元件的主要元件是上述制备方法制备得到的微孔膜,可以进一步包括其他部件,例如现有的其他加强层、初滤层或者除菌层等。由于本申请的某些实施方式得到的微孔膜集强度高、过滤彻底及除菌功能于一体,微孔膜可替代现有的多种膜。所以在某些实施方式中,可以直接用微孔膜作为扁平过滤元件使用。
进一步地,本申请的可选实施例中,还包括复合于所述微孔膜的表面的PET无纺布层或玻璃纤维针刺毡层。PET无纺布层或玻璃纤维针刺毡层可以采用粘接、缝合等现有连接方式与微孔膜连接。
本申请通过研究发现,采用熔融挤出拉伸法制备的聚烯烃气体过滤用微孔膜,该微孔膜两侧复合PET无纺布层或玻璃纤维针刺毡,对于PM2.5过滤效果更为显著,同时使用过程中不易损伤,且长期使用的抗形变能力及耐热性较强。
一种气体过滤用品,包括上述任一种制备方法制得的微孔膜。进一步地,本申请的可选实施例中,所述气体过滤用品选自口罩、气体过滤器和防毒面具中的任一种。
进一步地,本申请的可选实施例中,还包括复合于所述微孔膜的表面的PET无纺布层或玻璃纤维针刺毡层。
本申请的微孔膜、扁平过滤元件及气体过滤用品既可以用于日常生活中的气体过滤,也可以用于工业生产过程中的气体过滤。
实施例1
一种结构均匀、高透气性过滤用微孔膜,它是由下述重量份的原料组成的:
聚乙烯110份、丙烯腈30份、过氧化二异丙苯0.2份、邻苯二甲酸酯份、三氧化二锑2份、硼酸锌1、三乙醇胺2份、二盐基亚磷酸铅2份、辛基异噻唑啉酮2份、丙酸钙3份、异氰尿酸三缩水甘油酯2份、二丙酮醇6份、油酸二乙醇酰胺1份、肉豆蔻酸钠皂1份和羟基乙酸2份。
一种结构均匀、高透气性过滤用微孔膜的制备方法,包括以下步骤:
(1)取辛基异噻唑啉酮,加入到其重量20倍的去离子水中,搅拌均匀,加入丙酸钙,升高温度为50℃,保温搅拌9分钟,加入二丙酮醇,继续保温搅拌20分钟,得抑菌乳液;
(2)取肉豆蔻酸钠皂,加入到其重量9倍的无水乙醇中,搅拌均匀,加入羟基乙酸,在 90℃下保温搅拌30分钟,加入异氰尿酸三缩水甘油酯,搅拌至常温,得皂化酯溶液;
(3)取三氧化二锑、硼酸锌混合,加入到混合料重量30倍的去离子水中,搅拌均匀,加入油酸二乙醇酰胺,在50℃下保温搅拌20分钟,得阻燃酰胺分散液;
(4)取丙烯腈,加入到上述抑菌乳液中,搅拌均匀,送入到反应釜中,调节反应釜温度为80℃,通入氮气,加入过氧化二异丙苯,保温搅拌2小时,出料,与上述皂化酯溶液混合,搅拌均匀,蒸馏除去乙醇,送入到烘箱中,在90℃下干燥50分钟,出料冷却,得高粘度聚丙烯腈;
(5)取热稳定剂,加入到上述阻燃酰胺分散液中,搅拌均匀,加入上述高粘度聚丙烯腈,在70℃下保温搅拌40分钟,得阻燃聚丙烯腈酰胺分散液;
(6)取上述阻燃聚丙烯腈酰胺分散液,与聚乙烯、邻苯二甲酸酯、抗氧化剂混合,搅拌均匀,脱水,送入到挤出机中,在温度为240℃的条件下熔融塑化均匀成熔体;
(7)将所得熔体从模头挤出的铸片,随后进入流延工序,模头温度为240℃,流延温度为110℃,制备出厚度在8-40μm的中间体膜Ⅰ;
(8)将中间体膜Ⅰ进行微张力下退火处理,退火温度为160℃,膜在退火设备中的速度为20m/min,纵向张力3.0N,纵向的拉伸比为2.0,退火时间60min,得到中间体膜Ⅱ;
(9)将中间体膜Ⅱ进行纵向延伸开孔,温度为150℃,速比为3.0,得到中间体膜Ⅲ。
(10)将中间体膜Ⅲ进行回缩定型,回缩比为1.5,定型温度为160℃,得到中间体膜Ⅳ;
(11)将中间体膜Ⅳ进行纵向二次延伸开孔,温度为140℃,速比为2.0,得到所述结构均匀、高透气性过滤用微孔膜。
实施例2
一种结构均匀、高透气性过滤用微孔膜,它是由下述重量份的原料组成的:
聚乙烯100份、丙烯腈27份、过氧化二异丙苯0.1份、邻苯二甲酸酯2份、三氧化二锑1份、硼酸锌0.8份、硫化亚锡1份、二巯基醋酸异辛酯0.8份、辛基异噻唑啉酮1份、丙酸钙1份、异氰尿酸三缩水甘油酯0.7份、二丙酮醇4份、油酸二乙醇酰胺0.7份和肉豆蔻酸钠皂0.5份、羟基乙酸1份。
一种结构均匀、高透气性过滤用微孔膜的制备方法,包括以下步骤:
(1)取辛基异噻唑啉酮,加入到其重量17倍的去离子水中,搅拌均匀,加入丙酸钙,升高温度为40℃,保温搅拌4分钟,加入二丙酮醇,继续保温搅拌10分钟,得抑菌乳液;
(2)取肉豆蔻酸钠皂,加入到其重量6倍的无水乙醇中,搅拌均匀,加入羟基乙酸,在70℃下保温搅拌20分钟,加入异氰尿酸三缩水甘油酯,搅拌至常温,得皂化酯溶液;
(3)取三氧化二锑、硼酸锌混合,加入到混合料重量26倍的去离子水中,搅拌均匀,加入油酸二乙醇酰胺,在40℃下保温搅拌10分钟,得阻燃酰胺分散液;
(4)取丙烯腈,加入到上述抑菌乳液中,搅拌均匀,送入到反应釜中,调节反应釜温度为76℃,通入氮气,加入过氧化二异丙苯,保温搅拌1小时,出料,与上述皂化酯溶液混合,搅拌均匀,蒸馏除去乙醇,送入到烘箱中,在86℃下干燥40分钟,出料冷却,得高粘度聚丙烯腈;
(5)取热稳定剂,加入到上述阻燃酰胺分散液中,搅拌均匀,加入上述高粘度聚丙烯腈,在60℃下保温搅拌30分钟,得阻燃聚丙烯腈酰胺分散液;
(6)取上述阻燃聚丙烯腈酰胺分散液,与聚乙烯、邻苯二甲酸酯、抗氧化剂混合,搅拌均匀,脱水,送入到挤出机中,在温度为200℃的条件下熔融塑化均匀成熔体;
(7)将所得熔体从模头挤出的铸片,随后进入流延工序,模头温度为185℃,流延温度为50℃,制备出厚度在8-40μm的中间体膜Ⅰ;
(8)将中间体膜Ⅰ进行微张力下退火处理,退火温度为90℃,膜在退火设备中的速度为10m/min,纵向张力0.1N,纵向的拉伸比为1.0,退火时间5min,得到中间体膜Ⅱ;
(9)将中间体膜Ⅱ进行纵向延伸开孔,温度为100℃,速比为0.5,得到中间体膜Ⅲ。
(10)将中间体膜Ⅲ进行回缩定型,回缩比为1.0,定型温度为100℃,得到中间体膜Ⅳ;
(11)将中间体膜Ⅳ进行纵向二次延伸开孔,温度为100℃,速比为0.5,得到所述结构均匀、高透气性过滤用微孔膜。
实施例3
一种结构均匀、高透气性过滤用微孔膜,它是由下述重量份的原料组成的:
聚乙烯110份、丙烯腈27份、过氧化二异丙苯0.1份、邻苯二甲酸酯2份、三氧化二锑1份、硼酸锌0.8份、抗氧化剂1份、热稳定剂0.9份、辛基异噻唑啉酮1份、丙酸钙2份、异氰尿酸三缩水甘油酯0.9份、二丙酮醇4份、油酸二乙醇酰胺0.8份、肉豆蔻酸钠皂0.7份和羟基乙酸1份。
所述的抗氧化剂为蓖麻油酸锌。
所述的热稳定剂为三盐基碳酸铅。
一种结构均匀、高透气性过滤用微孔膜的制备方法,包括以下步骤:
(1)取辛基异噻唑啉酮,加入到其重量17倍的去离子水中,搅拌均匀,加入丙酸钙,升高温度为48℃,保温搅拌7分钟,加入二丙酮醇,继续保温搅拌17分钟,得抑菌乳液;
(2)取肉豆蔻酸钠皂,加入到其重量7倍的无水乙醇中,搅拌均匀,加入羟基乙酸,在70℃下保温搅拌26分钟,加入异氰尿酸三缩水甘油酯,搅拌至常温,得皂化酯溶液;
(3)取三氧化二锑、硼酸锌混合,加入到混合料重量26倍的去离子水中,搅拌均匀,加入油酸二乙醇酰胺,在48℃下保温搅拌16分钟,得阻燃酰胺分散液;
(4)取丙烯腈,加入到上述抑菌乳液中,搅拌均匀,送入到反应釜中,调节反应釜温度 为76℃,通入氮气,加入过氧化二异丙苯,保温搅拌1小时,出料,与上述皂化酯溶液混合,搅拌均匀,蒸馏除去乙醇,送入到烘箱中,在86℃下干燥48分钟,出料冷却,得高粘度聚丙烯腈;
(5)取热稳定剂,加入到上述阻燃酰胺分散液中,搅拌均匀,加入上述高粘度聚丙烯腈,在70℃下保温搅拌40分钟,得阻燃聚丙烯腈酰胺分散液;
(6)取上述阻燃聚丙烯腈酰胺分散液,与聚乙烯、邻苯二甲酸酯、抗氧化剂混合,搅拌均匀,脱水,送入到挤出机中,在温度为240℃的条件下熔融塑化均匀成熔体;
(7)将所得熔体从模头挤出的铸片,随后进入流延工序,模头温度为240℃,流延温度为90℃,制备出厚度在8-40μm的中间体膜Ⅰ;
(8)将中间体膜Ⅰ进行微张力下退火处理,退火温度为100℃,膜在退火设备中的速度为10m/min,纵向张力0.6N,纵向的拉伸比为1.0,退火时间30min,得到中间体膜Ⅱ;
(9)将中间体膜Ⅱ进行纵向延伸开孔,温度为130℃,速比为1.5,得到中间体膜Ⅲ。
(10)将中间体膜Ⅲ进行回缩定型,回缩比为1.0,定型温度为130℃,得到中间体膜Ⅳ;
(11)将中间体膜Ⅳ进行纵向二次延伸开孔,温度为140℃,速比为0.5,得到所述结构均匀、高透气性过滤用微孔膜。
实施例4
一种结构均匀、高透气性过滤用微孔膜,它是由下述重量份的原料组成的:
聚乙烯100份、丙烯腈27份、过氧化二异丙苯0.1份、邻苯二甲酸酯2份、三氧化二锑1份、硼酸锌0.8份、硫化亚锡1份、二巯基醋酸异辛酯0.8份、辛基异噻唑啉酮1份、丙酸钙1份、异氰尿酸三缩水甘油酯0.7份、二丙酮醇4份、油酸二乙醇酰胺0.7份、肉豆蔻酸钠皂0.5份和羟基乙酸1份。
一种结构均匀、高透气性过滤用微孔膜的制备方法,包括以下步骤:
(1)取辛基异噻唑啉酮,加入到其重量17倍的去离子水中,搅拌均匀,加入丙酸钙,升高温度为40℃,保温搅拌4分钟,加入二丙酮醇,继续保温搅拌10分钟,得抑菌乳液;
(2)取肉豆蔻酸钠皂,加入到其重量6倍的无水乙醇中,搅拌均匀,加入羟基乙酸,在70℃下保温搅拌20分钟,加入异氰尿酸三缩水甘油酯,搅拌至常温,得皂化酯溶液;
(3)取三氧化二锑、硼酸锌混合,加入到混合料重量26倍的去离子水中,搅拌均匀,加入油酸二乙醇酰胺,在40℃下保温搅拌10分钟,得阻燃酰胺分散液;
(4)取丙烯腈,加入到上述抑菌乳液中,搅拌均匀,送入到反应釜中,调节反应釜温度为76℃,通入氮气,加入过氧化二异丙苯,保温搅拌1小时,出料,与上述皂化酯溶液混合,搅拌均匀,蒸馏除去乙醇,送入到烘箱中,在86℃下干燥40分钟,出料冷却,得高粘度聚丙烯腈;
(5)取热稳定剂,加入到上述阻燃酰胺分散液中,搅拌均匀,加入上述高粘度聚丙烯腈,在60℃下保温搅拌30分钟,得阻燃聚丙烯腈酰胺分散液;
(6)取上述阻燃聚丙烯腈酰胺分散液,与聚乙烯、邻苯二甲酸酯、抗氧化剂混合,搅拌均匀,脱水,送入到挤出机中,在温度为200℃的条件下熔融塑化均匀成熔体;
(7)将所得熔体从模头挤出的铸片,随后进入流延工序,模头温度为185℃,流延温度为50℃,制备出厚度在20μm的中间体膜Ⅰ;
(8)将中间体膜Ⅰ进行微张力下退火处理,退火温度为90℃,膜在退火设备中的速度为15m/min,纵向张力0.8N,纵向的拉伸比为1.1,退火时间10min,得到中间体膜Ⅱ;
(9)将中间体膜Ⅱ进行纵向延伸开孔,温度为120℃,速比为0.8,得到中间体膜Ⅲ。
(10)将中间体膜Ⅲ进行回缩定型,回缩比为1.0,定型温度为130℃,得到中间体膜Ⅳ;
(11)将中间体膜Ⅳ进行纵向二次延伸开孔,温度为100℃,速比为0.5,得到所述结构均匀、高透气性过滤用微孔膜。
实施例5
一种结构均匀、高透气性过滤用微孔膜,它是由下述重量份的原料组成的:
聚乙烯100份、丙烯腈27份、过氧化二异丙苯0.1份、邻苯二甲酸酯2份、三氧化二锑1份、硼酸锌0.8份、硫化亚锡1份、二巯基醋酸异辛酯0.8份、辛基异噻唑啉酮1份、丙酸钙1份、异氰尿酸三缩水甘油酯0.7份、二丙酮醇4份、油酸二乙醇酰胺0.7份、肉豆蔻酸钠皂0.5份和羟基乙酸1份。
一种结构均匀、高透气性过滤用微孔膜的制备方法,包括以下步骤:
(1)取辛基异噻唑啉酮,加入到其重量17倍的去离子水中,搅拌均匀,加入丙酸钙,升高温度为40℃,保温搅拌4分钟,加入二丙酮醇,继续保温搅拌10分钟,得抑菌乳液;
(2)取肉豆蔻酸钠皂,加入到其重量6倍的无水乙醇中,搅拌均匀,加入羟基乙酸,在70℃下保温搅拌20分钟,加入异氰尿酸三缩水甘油酯,搅拌至常温,得皂化酯溶液;
(3)取三氧化二锑、硼酸锌混合,加入到混合料重量26倍的去离子水中,搅拌均匀,加入油酸二乙醇酰胺,在40℃下保温搅拌10分钟,得阻燃酰胺分散液;
(4)取丙烯腈,加入到上述抑菌乳液中,搅拌均匀,送入到反应釜中,调节反应釜温度为76℃,通入氮气,加入过氧化二异丙苯,保温搅拌1小时,出料,与上述皂化酯溶液混合,搅拌均匀,蒸馏除去乙醇,送入到烘箱中,在86℃下干燥40分钟,出料冷却,得高粘度聚丙烯腈;
(5)取热稳定剂,加入到上述阻燃酰胺分散液中,搅拌均匀,加入上述高粘度聚丙烯腈,在60℃下保温搅拌30分钟,得阻燃聚丙烯腈酰胺分散液;
(6)取上述阻燃聚丙烯腈酰胺分散液,与聚乙烯、邻苯二甲酸酯、抗氧化剂混合,搅拌均匀,脱水,送入到挤出机中,在温度为200℃的条件下熔融塑化均匀成熔体;
(7)将所得熔体从模头挤出的铸片,随后进入流延工序,模头温度为185℃,流延温度为50℃,制备出厚度在40μm的中间体膜Ⅰ;
(8)将中间体膜Ⅰ进行微张力下退火处理,退火温度为90℃,膜在退火设备中的速度为10m/min,纵向张力1.1N,纵向的拉伸比为2.0,退火时间20min,得到中间体膜Ⅱ;
(9)将中间体膜Ⅱ进行纵向延伸开孔,温度为130℃,速比为1.5,得到中间体膜Ⅲ。
(10)将中间体膜Ⅲ进行回缩定型,回缩比为1.0,定型温度为140℃,得到中间体膜Ⅳ;
(11)将中间体膜Ⅳ进行纵向二次延伸开孔,温度为110℃,速比为0.6,得到所述结构均匀、高透气性过滤用微孔膜。
试验例
一、透气度的测试
1.仪器
Asahi透气仪
2.测试方法
按JIS P 8117-1988纸张和纸板.透气度的测定方法进行测试。
透气性的标准试验方法。选取三个样品测量透过100ml气体所需的平均时间t。
透气度表示为隔膜透过每100ml气体所需的时间(T):T=t。
二、穿刺强度的测定
1.测试仪器
电子穿刺强度试验机;穿刺针直径φ1.65mm,针尖SR=0.5mm。
2.测试方法
按照ASTM D4833-00规定进行。
在产品上取3个试样,裁取的试样规格不小于5cm*5cm,将样品固定在样品台上,使用电子穿刺强度试验机进行测量。试验完成后取3个试样测值的平均值。
三、拉伸强度的测定
1.测试仪器
电子万能拉力试验机。
2.测试方法
按GB/T 1040[1].3-2006的规定进行。
在产品上取5个试样,裁取宽度为15mm,长度150mm(样品测试标距为100mm)。
使用CMT系列微机控制电子万能(拉力)试验机进行测量。试验完成后取5个试样测值的平均值。
四、PM2.5过滤效率测定
1.测试仪器
PM2.5过滤效率(%)测试仪器;PM2.5颗粒检测仪。
2.测试方法
将仪器拿到进风口处测量单位体积内尘埃粒子个数20秒后自动显示设置为后,随后拿仪器到出风口处测量20秒,测量完后根据当前测量的进出气风口尘埃粒子个数自动计算出净化效率。
上述所有测试结果列于表1中:
表1.实施例1-5的测试结果
Figure PCTCN2017120055-appb-000001
表1可知,采用本申请方法制备的高透气性过滤用微孔膜的机械强度高,微孔分布均匀,使用过程中不易损伤,具有优良抗形变能力及耐热性较强。对其PM2.5过滤效率高达90%以上。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请采用熔融挤出拉伸法制备得到的聚烯烃气体过滤膜用微孔膜,生产过程中能够通过调节熔体的粘度、拉伸倍率、热处理退火温度等来精确控制微孔膜的厚度、孔径分布及孔径通透性。对于PM2.5过滤效果尤其显著,其PM2.5过滤效率高达90%以上,尤其本申请优选的技术方案过滤效率高达95%及以上,远远高于现有技术80%左右的过滤效率。而且微孔膜具有较高的机械强度和很好的抑菌性能。本申请的制备方法与其它现有方法相 比,工艺简单,产量高,适合大规模连续生产。

Claims (18)

  1. 一种结构均匀、高透气性过滤用微孔膜,其特征在于,它是由下述重量份的原料组成的:
    聚乙烯100-110、丙烯腈27-30、过氧化二异丙苯0.1-0.2、增塑剂2-4、三氧化二锑1-2、硼酸锌0.8-1、抗氧化剂1-2、热稳定剂0.8-2、辛基异噻唑啉酮1-2、丙酸钙1-3、异氰尿酸三缩水甘油酯0.7-2、二丙酮醇4-6、油酸二乙醇酰胺0.7-1、肉豆蔻酸钠皂0.5-1和羟基乙酸1-2。
  2. 根据权利要求1所述的一种结构均匀、高透气性过滤用微孔膜,其特征在于,所述的抗氧化剂选自由酚类、胺类、含磷化合物、含硫化合物和有机金属盐组成的组中的一种或多种。
  3. 根据权利要求1所述的一种结构均匀、高透气性过滤用微孔膜,其特征在于,所述的热稳定剂选自由三盐基碳酸铅、二盐基亚磷酸铅,硬脂酸、月桂酸的镉、钡、钙、锌、镁盐和二巯基醋酸异辛酯组成的组中的一种或多种。
  4. 一种如权利要求1或2或3所述的结构均匀、高透气性过滤用微孔膜的制备方法,其特征在于,包括以下步骤:
    (1)取辛基异噻唑啉酮,加入到其重量17-20倍的去离子水中,搅拌均匀,加入丙酸钙,升高温度为40-50℃,保温搅拌4-9分钟,加入二丙酮醇,继续保温搅拌10-20分钟,得抑菌乳液;
    (2)取肉豆蔻酸钠皂,加入到其重量6-9倍的无水乙醇中,搅拌均匀,加入羟基乙酸,在70-90℃下保温搅拌20-30分钟,加入异氰尿酸三缩水甘油酯,搅拌至常温,得皂化酯溶液;
    (3)取三氧化二锑、硼酸锌混合,加入到混合料重量26-30倍的去离子水中,搅拌均匀,加入油酸二乙醇酰胺,在40-50℃下保温搅拌10-20分钟,得阻燃酰胺分散液;
    (4)取丙烯腈,加入到上述抑菌乳液中,搅拌均匀,送入到反应釜中,调节反应釜温度为76-80℃,通入氮气,加入过氧化二异丙苯,保温搅拌1-2小时,出料,与上述皂化酯溶液混合,搅拌均匀,蒸馏除去乙醇,送入到烘箱中,在86-90℃下干燥40-50分钟,出料冷却,得高粘度聚丙烯腈;
    (5)取热稳定剂,加入到上述阻燃酰胺分散液中,搅拌均匀,加入上述高粘度聚丙烯腈,在60-70℃下保温搅拌30-40分钟,得阻燃聚丙烯腈酰胺分散液;
    (6)取上述阻燃聚丙烯腈酰胺分散液,与聚乙烯、增塑剂、抗氧化剂混合,搅拌均匀,脱水,送入到挤出机中,在温度为200-240℃的条件下熔融塑化均匀成熔体;
    (7)将所得熔体从模头挤出的铸片,随后进入流延工序,模头温度为185-240℃,流延温度为50-110℃,制备出厚度在8-40μm的中间体膜Ⅰ;
    (8)将中间体膜Ⅰ进行微张力下退火处理,退火温度为90-160℃,膜在退火设备中的速度为1-20m/min,纵向张力0.1-3.0N,纵向的拉伸比为1.0-2.0,退火时间5-60min,得到中间体膜Ⅱ;
    (9)将中间体膜Ⅱ进行纵向延伸开孔,温度为100-150℃,速比为0.5-3.0,得到中间体膜Ⅲ;
    (10)将中间体膜Ⅲ进行回缩定型,回缩比为1.0-1.5,定型温度为100-160℃,得到中间体膜Ⅳ;
    (11)将中间体膜Ⅳ进行纵向二次延伸开孔,温度为100-140℃,速比为0.5-2.0,得到所述结构均匀、高透气性过滤用微孔膜。
  5. 一种过滤用微孔膜的制备方法,其特征在于,包括:
    将熔体从温度为185-240℃的摸头挤出制得铸片;
    将所述铸片在温度为50-110℃条件下流延并制得8-40μm的中间体膜Ⅰ;
    将所述中间体膜Ⅰ进行退火处理;其中退火温度为90-160℃,所述中间体膜Ⅰ在退火设备中的速度为1-20m/min,纵向张力0.1-3.0N,纵向的拉伸比为1.0-2.0,退火时间5-60min,得到中间体膜Ⅱ;
    将所述中间体膜Ⅱ进行纵向延伸开孔;其中延伸开孔温度为100-150℃,延伸开孔速比为0.5-3.0,得到中间体膜Ⅲ;
    将中间体膜Ⅲ进行回缩定型;其中回缩比为1.0-1.5,定型温度为100-160℃,得到中间体膜Ⅳ;
    将中间体膜Ⅳ进行纵向二次延伸开孔,其中二次延伸开孔温度为100-140℃,二次延伸开孔速比为0.5-2.0。
  6. 根据权利要求5所述的制备方法,其特征在于,退火温度为100-150℃,所述中间体膜Ⅰ在退火设备中的速度为5-15m/min,纵向张力0.5-3.0N,拉伸比为1.0-2.0,退火时间10-50min;延伸开孔温度为120-150℃,延伸开孔速比为0.8-3.0;回缩比为1.0-1.5,定型温度为120-160℃;二次延伸开孔温度为100-140℃,二次延伸开孔速比为0.5-2.0。
  7. 根据权利要求5所述的制备方法,其特征在于,退火温度为110-160℃,所述中间体膜Ⅰ在退火设备中的速度为10-20m/min,沿所述中间体膜Ⅰ运动方向上的张力1-3.0N,拉伸比为1.2-2.0,退火时间20-60min;延伸开孔温度为130-150℃,延伸开孔速比为1.5-3.0;回缩比为1.0-1.5,定型温度为130-160℃;二次延伸开孔温度为100-120℃,二次延伸开孔速比为0.5-2.0。
  8. 根据权利要求5至7任一项所述的制备方法,其特征在于,所述二次延伸开孔温度低于所述延伸开孔温度。
  9. 根据权利要求5至8任一项所述的制备方法,其特征在于,所述熔体主要包括熔点为200-240℃的热塑性聚合物;优选地,按重量份计,制备所述熔体的原料包括聚乙烯100-110份、丙烯腈27-30份;所述熔体还包括过氧化二异丙苯0.1-0.2份、增塑剂2-4份、三氧化二锑1-2份、硼酸锌0.8-1份、抗氧化剂1-2份、热稳定剂0.8-2份、辛基异噻唑啉酮1-2份、丙酸钙1-3份、异氰尿酸三缩水甘油酯0.7-2份、二丙酮醇4-6份、油酸二乙醇酰胺0.7-1份、肉豆蔻酸钠皂0.5-1份和羟基乙酸1-2份。
  10. 根据权利要求9所述的制备方法,其特征在于,所述熔体的制备步骤包括:
    采用辛基异噻唑啉酮、丙酸钙、二丙酮醇及去离子水混合制备抑菌乳液;
    采用肉豆蔻酸钠皂、无水乙醇、羟基乙酸及异氰尿酸三缩水甘油酯混合制备皂化酯溶液;
    采用三氧化二锑、硼酸锌、去离子水及油酸二乙醇酰胺混合制备阻燃酰胺分散液;
    将丙烯腈与所述抑菌乳液混合,在氮气气氛下于76-80℃温度条件,加入过氧化二异丙苯,保温混合1-2小时出料,然后与所述皂化酯溶液混合,蒸馏除去乙醇,在86-90℃下干燥40-50分钟,出料冷却,得高粘度聚丙烯腈;
    将热稳定剂先与所述阻燃酰胺分散液混合,再与所述高粘度聚丙烯腈在60-70℃下混合30-40分钟,得阻燃聚丙烯腈酰胺分散液;
    将所述阻燃聚丙烯腈酰胺分散液与聚乙烯、增塑剂及抗氧化剂混匀,脱水,送入到挤出机中,在温度为200-240℃的条件下熔融塑化均匀成熔体。
  11. 根据权利要求10所述的制备方法,其特征在于,所述抑菌乳液的制备步骤包括:
    取辛基异噻唑啉酮,加入到其重量17-20倍的去离子水中混匀,然后与丙酸钙混合,升高温度为40-50℃,保温混合4-9分钟,接着与二丙酮醇混合,继续保温混合10-20分钟,制得所述抑菌乳液。
  12. 根据权利要求10或11所述的制备方法,其特征在于,所述皂化酯溶液的制备步骤包括:取肉豆蔻酸钠皂,加入到其重量6-9倍的无水乙醇中,混合均匀,然后与羟基乙酸混合,在70-90℃下保温混合20-30分钟,然后与异氰尿酸三缩水甘油酯混合,冷却至常温,得皂化酯溶液。
  13. 根据权利要求10至12任一项所述的制备方法,其特征在于,将三氧化二锑与硼酸锌混合形成混合料,然后加入到混合料重量26-30倍的去离子水中,混合均匀,与油酸二乙醇酰胺在40-50℃下保温混合10-20分钟,得阻燃酰胺分散液;
  14. 一种扁平过滤元件,其特征在于,包括根据权利要求4至13任一项所述的制备方 法制得的微孔膜。
  15. 根据权利要求14所述的扁平过滤元件,其特征在于,还包括复合于所述微孔膜的表面的PET无纺布层或玻璃纤维针刺毡层。
  16. 一种气体过滤用品,其特征在于,包括根据权利要求14或15所述的扁平过滤元件。
  17. 根据权利要求16所述的气体过滤用品,其特征在于,还包括复合于所述微孔膜的表面的PET无纺布层或玻璃纤维针刺毡层。
  18. 根据权利要求16或17所述的气体过滤用品,其特征在于,所述气体过滤用品选自口罩、气体过滤器和防毒面具中的任一种。
PCT/CN2017/120055 2017-06-13 2017-12-29 一种结构均匀、高透气性过滤用微孔膜及其制备方法、扁平过滤元件和气体过滤用品 WO2018227941A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/080,497 US11413564B2 (en) 2017-06-13 2017-12-29 Uniformly structured high-permeability microporous membrane for filtering and method for preparing the same, flat filtering element and gas filtering article
JP2018541701A JP6717958B2 (ja) 2017-06-13 2017-12-29 ろ過用微多孔膜、その製造方法、扁平なろ過材、及びガスろ過用品
EP17894671.1A EP3441134A4 (en) 2017-06-13 2017-12-29 STRUCTURAL UNIFORM, HIGHLY GAS-PERMANENT MICROPOROUS MEMBRANE FOR FILTRATION AND MANUFACTURING METHOD, FLAT FILTER ELEMENT AND GAS FILTRATION ITEMS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710443461.XA CN107088368B (zh) 2017-06-13 2017-06-13 一种结构均匀、高透气性过滤用微孔膜及其制备方法
CN201710443461.X 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018227941A1 true WO2018227941A1 (zh) 2018-12-20

Family

ID=59639413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120055 WO2018227941A1 (zh) 2017-06-13 2017-12-29 一种结构均匀、高透气性过滤用微孔膜及其制备方法、扁平过滤元件和气体过滤用品

Country Status (5)

Country Link
US (1) US11413564B2 (zh)
EP (1) EP3441134A4 (zh)
JP (1) JP6717958B2 (zh)
CN (1) CN107088368B (zh)
WO (1) WO2018227941A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107088368B (zh) * 2017-06-13 2019-09-13 深圳市星源材质科技股份有限公司 一种结构均匀、高透气性过滤用微孔膜及其制备方法
CN109233171A (zh) * 2018-08-02 2019-01-18 旌德县源远新材料有限公司 一种磷化抑菌玻璃纤维及其制备方法
CN109537098A (zh) * 2018-10-26 2019-03-29 董荣志 一种聚噻吩导电纤维及其制备方法
CN112191051B (zh) * 2020-11-19 2022-12-16 河南科高新材料有限公司 一种无静电口罩过滤膜及其制备方法
CN112646368B (zh) * 2020-12-01 2022-12-20 聚石化学(苏州)有限公司 一种阻燃增强聚酰胺复合材料及其制备方法和应用
CN112675719B (zh) * 2020-12-02 2022-06-17 东莞市逸轩环保科技有限公司 一种耐高温改性滤膜及其制备工艺
US11673007B2 (en) 2020-12-24 2023-06-13 Saied Tousi Personal protective equipment that employs nanoparticles of two different metals that generate an electric field for inactivating microorganisms
CN114934355B (zh) * 2022-05-09 2023-04-07 东营俊富净化科技有限公司 一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221401A (ja) * 1986-03-25 1987-09-29 Asahi Medical Co Ltd ポリエチレン製多孔質中空糸
KR20040077322A (ko) * 2003-02-28 2004-09-04 주식회사 케이엠에스 고강도를 가진 비대칭성 폴리에틸렌 중공사막의 제조방법
CN101292378A (zh) * 2005-10-18 2008-10-22 东丽株式会社 蓄电装置隔离物用微多孔膜以及使用该膜的蓄电装置隔离物
EP2111912A1 (en) * 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous polyolefin membrane and manufacturing method
CN102275317A (zh) * 2011-08-12 2011-12-14 重庆和泰塑胶有限公司 流延膜三级拉伸工艺
CN103480285A (zh) 2013-09-06 2014-01-01 东华大学 一种增强聚砜纳米纤维空气过滤膜及其静电纺丝制备方法
CN103633273A (zh) * 2013-12-10 2014-03-12 深圳市星源材质科技有限公司 一种高穿刺强度锂离子电池隔膜及其制备方法
CN103633272A (zh) * 2013-12-10 2014-03-12 深圳市星源材质科技有限公司 一种微孔隔膜的制备方法及微孔隔膜
CN104368245A (zh) 2014-08-18 2015-02-25 贵州捷欣合金技术开发有限公司 一种空气过滤膜的制备方法
CN105140448A (zh) * 2015-08-12 2015-12-09 埃力生亚太有限公司 锂离子电池隔膜及其制备方法
CN105591056A (zh) * 2015-12-28 2016-05-18 深圳市星源材质科技股份有限公司 一种成孔均匀的干法单向拉伸隔膜及其制备方法
CN106565977A (zh) * 2016-11-03 2017-04-19 深圳市星源材质科技股份有限公司 一种多孔聚乙烯膜的制备方法
CN107088368A (zh) * 2017-06-13 2017-08-25 深圳市星源材质科技股份有限公司 一种结构均匀、高透气性过滤用微孔膜及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839516A (en) * 1971-06-25 1974-10-01 Res Triangle Inst Process for the preparation of opencelled microporous films
US4230463A (en) * 1977-09-13 1980-10-28 Monsanto Company Multicomponent membranes for gas separations
US5011762A (en) * 1990-08-14 1991-04-30 Industrial Technology Research Institute Photosensitive compositions having enhanced photopolymerization rate
EP0926189B1 (en) * 1997-10-28 2004-04-14 Hitachi Chemical Co., Ltd. A macromolecular material composition and a modifier for macromolecular material
WO1999044824A1 (en) * 1998-03-04 1999-09-10 Cryovac, Inc. Stack-sealable, heat-shrinkable multilayer packaging film
EP1148096B1 (en) * 1998-06-12 2005-03-16 NIPPON A&L INC. Formed resin article
US6579584B1 (en) * 1998-12-10 2003-06-17 Cryovac, Inc. High strength flexible film package utilizing thin film
KR100488424B1 (ko) 2003-02-28 2005-05-11 주식회사 팬택앤큐리텔 배터리 충전 표시 회로
US20060210908A1 (en) * 2005-03-17 2006-09-21 Kazuhiko Umemura Image forming method, image forming apparatus, and process cartridge
US8334349B2 (en) * 2008-07-08 2012-12-18 Toray Industries, Inc. Method for producing thermoplastic copolymer
KR100928898B1 (ko) * 2009-04-17 2009-11-30 (주)씨에스텍 미세다공성 고분자 분리막의 제조방법 및 상기 방법으로 제조된 미세다공성 고분자 분리막
JP2012119290A (ja) * 2010-11-12 2012-06-21 Sony Corp 電池パック、電池パックの製造方法および電池パック製造用の金型
US8936668B2 (en) * 2011-06-07 2015-01-20 Dpoint Technologies Inc. Selective water vapour transport membranes comprising a nanofibrous layer and methods for making the same
KR101525492B1 (ko) * 2014-05-23 2015-06-03 주식회사 애솔 에너지 회수 전열교환소자용 다공성 필름형 부직포 전열막의 제조방법
CN104494157A (zh) * 2014-12-01 2015-04-08 深圳市星源材质科技股份有限公司 一种聚烯烃微孔膜熔融拉伸制备方法及锂电池隔膜
JP7074679B2 (ja) * 2016-03-16 2022-05-24 ダウ グローバル テクノロジーズ エルエルシー 炭化塩化ビニリデンコポリマーガス分離膜を介するガスの分離及び膜の調製のためのプロセス
US11241660B2 (en) * 2016-08-08 2022-02-08 Versitech Limited Preparation of hand-carry gravity-driven water filter with high throughput and water disinfection performance
CN106543545A (zh) * 2016-10-16 2017-03-29 宁波大名包装材料科技有限公司 一种纤维增韧聚乙烯缠绕膜及其制备方法
US20180244918A1 (en) * 2017-02-24 2018-08-30 Advansix Resins & Chemicals Llc Enhanced polyamide base resin for engineering plastics formulations

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221401A (ja) * 1986-03-25 1987-09-29 Asahi Medical Co Ltd ポリエチレン製多孔質中空糸
KR20040077322A (ko) * 2003-02-28 2004-09-04 주식회사 케이엠에스 고강도를 가진 비대칭성 폴리에틸렌 중공사막의 제조방법
CN101292378A (zh) * 2005-10-18 2008-10-22 东丽株式会社 蓄电装置隔离物用微多孔膜以及使用该膜的蓄电装置隔离物
EP2111912A1 (en) * 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous polyolefin membrane and manufacturing method
CN102275317A (zh) * 2011-08-12 2011-12-14 重庆和泰塑胶有限公司 流延膜三级拉伸工艺
CN103480285A (zh) 2013-09-06 2014-01-01 东华大学 一种增强聚砜纳米纤维空气过滤膜及其静电纺丝制备方法
CN103633273A (zh) * 2013-12-10 2014-03-12 深圳市星源材质科技有限公司 一种高穿刺强度锂离子电池隔膜及其制备方法
CN103633272A (zh) * 2013-12-10 2014-03-12 深圳市星源材质科技有限公司 一种微孔隔膜的制备方法及微孔隔膜
CN104368245A (zh) 2014-08-18 2015-02-25 贵州捷欣合金技术开发有限公司 一种空气过滤膜的制备方法
CN105140448A (zh) * 2015-08-12 2015-12-09 埃力生亚太有限公司 锂离子电池隔膜及其制备方法
CN105591056A (zh) * 2015-12-28 2016-05-18 深圳市星源材质科技股份有限公司 一种成孔均匀的干法单向拉伸隔膜及其制备方法
CN106565977A (zh) * 2016-11-03 2017-04-19 深圳市星源材质科技股份有限公司 一种多孔聚乙烯膜的制备方法
CN107088368A (zh) * 2017-06-13 2017-08-25 深圳市星源材质科技股份有限公司 一种结构均匀、高透气性过滤用微孔膜及其制备方法

Also Published As

Publication number Publication date
JP6717958B2 (ja) 2020-07-08
US20210187428A1 (en) 2021-06-24
US11413564B2 (en) 2022-08-16
CN107088368B (zh) 2019-09-13
JP2019523785A (ja) 2019-08-29
CN107088368A (zh) 2017-08-25
EP3441134A4 (en) 2019-05-15
EP3441134A1 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
WO2018227941A1 (zh) 一种结构均匀、高透气性过滤用微孔膜及其制备方法、扁平过滤元件和气体过滤用品
CN109572082B (zh) 一种可用于高效低阻防雾霾口罩的复合纤维膜
EP3010630B1 (de) Verfahren zur herstellung von polyimidmembranen
CN103394293B (zh) 一种亲水性聚偏氟乙烯中空纤维膜的制备方法
CN108722068A (zh) 一种可降解的过滤除菌膜及制备方法
CN108385278A (zh) 一种抗水解的电纺pva/paa交联纳米纤维膜及其制备方法
KR101665918B1 (ko) 세포 배양용 폴리비닐 알코올 나노섬유 구조체의 제조 방법
WO2014101670A1 (zh) 一种透气母粒及利用该母粒制造透气膜的方法
CN108456934A (zh) 一种抗水解的电纺pva/戊二醛交联纳米纤维膜及其制备方法
CN103551046A (zh) 一种疏水性氨氮脱除膜的制备方法
CN106000126B (zh) 基于纳米氧化锌的抑菌膜及其制备方法和用途
CN105088465B (zh) 一种耐降解相容性好可吸收医用缝合线及其制备方法
CN106317582A (zh) 以浮石粉为开口剂的聚乙烯母料及其制备方法
CN107141640A (zh) 一种隔热型pvc片材及其制备方法
CN102825805B (zh) 聚丙烯微孔膜制备方法
CN108774351A (zh) 一种高强度纳米缠绕膜及其生产工艺
CN108179548A (zh) 一种抗水解的电纺pva/甘油交联纳米纤维膜及其制备方法
CN110903470B (zh) Pet材料及其制备方法、粒料和纤维制品
CN209292530U (zh) 基于纺织生产的化学纤维抽丝设备
CN110317386A (zh) 一种双向拉伸透气膜制备工艺
DE2428126A1 (de) Extrudierformkoerper sowie verfahren zu deren herstellung
WO2023179007A1 (zh) 静电纺丝薄膜、其制造方法和该静电纺丝薄膜的用途
CN106731900A (zh) 原位‑溶胶凝胶法高强度聚偏氟乙烯超滤膜及制备方法
CN102861518A (zh) 高聚合度聚氯乙烯中空纤维超滤膜的制备方法
CN108638545A (zh) 一种环保lldpe缠绕膜的制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541701

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017894671

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017894671

Country of ref document: EP

Effective date: 20180820

ENP Entry into the national phase

Ref document number: 2017894671

Country of ref document: EP

Effective date: 20180810

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE