WO2023179007A1 - 静电纺丝薄膜、其制造方法和该静电纺丝薄膜的用途 - Google Patents

静电纺丝薄膜、其制造方法和该静电纺丝薄膜的用途 Download PDF

Info

Publication number
WO2023179007A1
WO2023179007A1 PCT/CN2022/126507 CN2022126507W WO2023179007A1 WO 2023179007 A1 WO2023179007 A1 WO 2023179007A1 CN 2022126507 W CN2022126507 W CN 2022126507W WO 2023179007 A1 WO2023179007 A1 WO 2023179007A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrospinning
film
melting point
polyvinylidene fluoride
electrospun
Prior art date
Application number
PCT/CN2022/126507
Other languages
English (en)
French (fr)
Inventor
胡金莲
石朔
司一帆
黄少华
袁牧锋
Original Assignee
纳诺多克斯科技有限公司
香港城市大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳诺多克斯科技有限公司, 香港城市大学 filed Critical 纳诺多克斯科技有限公司
Publication of WO2023179007A1 publication Critical patent/WO2023179007A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/042Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals

Definitions

  • the invention relates to an enhanced electrospinning film and a manufacturing method thereof and the use of the electrospun film in manufacturing waterproof and moisture-permeable products.
  • the enhanced electrospun film has excellent mechanical properties and higher permeability. Moisture and hydrostatic pressure resistance.
  • Waterproof and breathable film materials are widely used in waterproof and breathable clothing, building structural membranes and smart wearables.
  • the market prospect of this material is good and the demand is increasing day by day.
  • the waterproof and breathable fabrics currently on the market are represented by expanded polytetrafluoroethylene and its homologues microporous films.
  • traditional products have the following shortcomings in the production and use process: 1 Companies represented by Gore-Tex have many layouts in the field of expanded polyethylene films; and 2 The processing process of expanded polyethylene films is complex, resulting in excessively high costs.
  • PVDF Polyvinylidene fluoride
  • electrospinning technology Polyvinylidene fluoride
  • PVDF membranes prepared by electrospinning have the advantages of waterproof, windproof, breathable (moisture permeable), high porosity, light weight and softness. In recent years, they have been widely used in various fields, especially in the field of waterproofing and moisture permeability.
  • Chinese Patent Application No. 201410669025.0 (publication number CN104480560A) published on April 1, 2015 discloses an electrospinning solution of polyvinylidene fluoride and its preparation method.
  • the electrospinning solution can produce dendritic structures. polyvinylidene fluoride fiber membrane.
  • the electrospinning liquid is composed of polyvinylidene fluoride, organic branched salt, plasticizer and solvent.
  • the concentration of polyvinylidene fluoride in the prepared electrospinning liquid is preferably 10%-20%.
  • the electrospinning solution disclosed in this patent application is characterized by the addition of organic branched salts and plasticizers.
  • the organic branched salts are used to control their dispersion to form dendritic fibers, and the plasticizers are used to promote the stretching of the fibers. Refinement to produce nano-scale fibers.
  • Chinese Patent Application No. 201310412339.8 (publication number: CN103437071A) published on December 11, 2013 discloses an electrospun nanofiber membrane and its preparation method.
  • the preparation method includes: 1) separately preparing a mass fraction of 3- 50% high melting point polymer spinning solution and a mass fraction of 3-50% low melting point polymer spinning solution, 2) separate the high melting point polymer spinning solution and the low melting point polymer spinning solution Perform electrospinning to obtain high-melting-point polymer fiber membranes and low-melting-point polymer fiber membranes; 3) hot-press the high-melting-point fiber membranes and low-melting-point fiber membranes to obtain high-strength electrospun nanofiber membranes.
  • An object of the present invention is to provide an electrospun film that has excellent mechanical properties, higher moisture vapor permeability and resistance to hydrostatic pressure.
  • Another object of the present invention is to provide a method for manufacturing the above-mentioned electrospun film and the use of the electrospun film in manufacturing waterproof and moisture-permeable products.
  • the present invention provides an electrospinning film, which is made of polyvinylidene fluoride and at least one low-melting point polymer with a lower melting point than the polyvinylidene fluoride,
  • the softening point of the low melting point polymer is in the range of 110 to 140°C.
  • the low melting point polymer is selected from polyvinyl acetal, low molecular weight polyvinylidene fluoride or any combination thereof, wherein the polyvinyl acetal can be selected from polyvinyl butyral (PVB) Or polyvinyl formal (PVF).
  • the weight ratio of polyvinylidene fluoride to the low melting point polymer is 99.9:0.1 ⁇ 90:10.
  • the electrospinning film is obtained in the following manner: after polyvinylidene fluoride and the low melting point polymer form are formulated into an electrospinning stock solution according to a certain ratio, the electrospinning stock solution is electrospun. Silk is formed into a thin film, which is then heat treated to form.
  • the electrospinning film of the present invention has one or more of the following parameters:
  • the invention also provides a method for manufacturing an electrospinning film, which includes the following steps:
  • the weight ratio of polyvinylidene fluoride to the low melting point polymer is 99.9:0.1 to 90:10.
  • the solvent used to prepare the electrospinning stock solution can be selected from N,N-dimethylformamide (DMF), acetone, methanol, ethanol, isopropyl alcohol (IPA), tetrahydrofuran, dichloromethane, chloroform, dimethyl sulfide Sulfone (DMSO), ethylene glycol, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), cyclohexane, water or any combination thereof.
  • DMF N,N-dimethylformamide
  • IPA isopropyl alcohol
  • DMSO dimethyl sulfide Sulfone
  • DMAc N,N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • cyclohexane water or any combination thereof.
  • step 2) of the above method the electrospinning is performed at a voltage of 15 to 35 kV and a propulsion speed of 0.1 to 3 ml/h.
  • a temperature of 110 to 150°C is used for 0.5 to 4 hours.
  • the electrospinning film of the present invention is suitable for application in the field of waterproofing and moisture permeability. Its main parameters, such as mechanical properties, moisture permeability, hydrostatic pressure resistance, etc., have been significantly improved compared with existing technology products, and are better Prevents the passage or penetration of liquid water while allowing gas or water vapor to pass through. Therefore, the present invention further provides the use of the electrospun film of the present invention for preparing waterproof and moisture-permeable products.
  • the present invention uses PVDF as the base material, and prepares electrospinning films with high mechanical properties by controlling PVDF and low-melting point polymers in different proportions and characteristics.
  • the film prepared by the electrospinning process gives the film porous properties to achieve the moisture permeability function of the film; through the mixing of low melting point polymer and heat treatment process, the prepared PVDF film has better mechanical properties, Moisture permeability and hydrostatic pressure resistance.
  • the design process of this technical solution is streamlined, the process is simple, and it is easy to realize industrialization.
  • Figure 1 is a flow chart of a method for preparing an electrospun film according to the present invention.
  • the invention mainly relates to an electrospinning film prepared by formulating a mixture of PVDF and low-melting point polymer into an electrospinning stock solution and undergoing specific heat treatment. It has excellent mechanical strength and shows good waterproof and moisture-permeable functions.
  • step (1) in Figure 1 first weigh a certain mass of solvent into a beaker.
  • the solvent can be DMF, acetone or a mixture of DMF and acetone; then weigh PVDF and the corresponding low melting point polymer according to the predetermined ratio.
  • the above-mentioned PVDF electrospinning stock solution is sent to the electrospinning equipment for electrospinning to form a porous film, as shown in step (2) of Figure 1.
  • the spinning voltage of the electrospinning equipment is in the range of 15-35kV, and the propulsion speed of the electrospinning stock solution is 0.1-3ml/h.
  • the substrate for receiving the electrospun film can be aluminum foil, non-woven fabric, woven fabric, baking paper, paper, mesh cloth, etc.
  • Step (3) involves post-processing the PVDF electrospun film, including: heat treating the PVDF electrospun film at a temperature of 110 to 150°C for 0.5 to 4 hours to reduce at least part of the low melting point The polymer melts. After heat treatment, at least part of the low-melting point polymer will melt and entangle PVDF, but PVDF will not melt, so that PVDF and the low-melting point polymer form an entangled structure in the film. The heat-treated PVDF electrospun film is then cooled to solidify the melted low-melting point polymer, thereby obtaining the enhanced PVDF electrospun film of the present invention.
  • the low melting point polymer is formed by solidifying after melting, and it plays a role of support and reinforcement; while PVDF will not be melted during the processing of the electrospun film. , still retains the basic characteristics of PVDF, such as its waterproof, windproof, moisture permeability, and porosity will not change.
  • the breaking strength of the PVDF electrospinning film was measured using the ASTM D 882 standard and the Instron 5566 tensile machine (conditions: temperature 23°C, relative humidity 50%) tester;
  • the moisture vapor permeability of the PVDF electrospinning film was measured using the Haida HD-100T constant temperature and humidity chamber (conditions: temperature 23°C, relative humidity 50%) tester;
  • the JIS L1092 A standard is adopted, and a layer of Tricket knitted fabric is covered on the high-performance collagen electrospun film waterproof and breathable film, and the hydrostatic pressure resistance of the PVDF electrospun film is measured using the FX3000 hydrostatic pressure resistance tester. .
  • the data shown in the above table show that the PVDF electrospun film prepared according to the method of the present invention has a significant increase in breaking strength, moisture permeability and hydrostatic pressure resistance. This shows that the PVDF electrospun film of the present invention has much better waterproof and moisture-permeable properties than the comparative example, and can replace traditional waterproof and moisture-permeable products. Furthermore, the preparation method of the present invention has a simple process, low process requirements and low production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种增强型PVDF静电纺丝薄膜,其由聚偏二氟乙烯和至少一种熔点比聚偏二氟乙烯低的低熔点聚合物以重量比99.9:0.1~90:10制成,其中低熔点聚合物的软化点在110~140℃范围内。增强型静电纺丝薄膜具有优异的机械性能、更高的透湿量和耐静水压。还提供了增强型PVDF静电纺丝薄膜的制造方法,以及增强型PVDF静电纺丝薄膜用于制备防水透湿产品中的用途。

Description

静电纺丝薄膜、其制造方法和该静电纺丝薄膜的用途 技术领域
本发明涉及一种增强型静电纺丝薄膜及其制造方法和由该静电纺丝薄膜作为制造防水透湿产品中的用途,所述增强型静电纺丝薄膜具有优异的机械性能、更高的透湿量和耐静水压。
背景技术
防水透湿薄膜材料在防水透湿衣物、建筑结构布膜和智能可穿戴领域应用广泛,该材料市场前景良好,需求日益增加。当前市场上的防水透湿面料以膨胀聚四氟乙烯及其同系物微孔薄膜为代表。但是,在生产和使用过程传统产品有以下不足:①以Gore-Tex为代表的公司在膨胀聚乙烯薄膜领域布局很多;以及②膨胀聚乙烯薄膜加工过程复杂,导致其成本过高。
所以,目前的研究主要关注于用其他一些加工方法,例如静电纺丝技术制备新一代防水透湿薄膜。聚偏氟乙烯(PVDF)是一种热塑性含氟聚合物,具有优良的力学性能、化学稳定性、生物相容性、疏水性、高介电强度和抗紫外辐射降解性能。通过静电纺丝法制备的PVDF膜具有防水、防风、透气(透湿)、孔隙率高、质轻柔软等优点,近年来在各领域,尤其防水透湿领域,得到广泛应用。
2015年4月1日公开的第201410669025.0号中国专利申请(公开号为CN104480560A)公开了一种聚偏氟乙烯的静电纺丝液及其配制方法,采用该静电纺丝液能够生产出树枝状结构的聚偏氟乙烯纤维膜。所述静电纺丝液由聚偏氟乙烯、有机支化盐、增塑剂和溶剂组成,在所配制的静电纺丝液中聚偏氟乙烯浓度优选为10%-20%。该专利申请公开的静电纺丝液的特点在于添加了有机支化盐和增塑剂,使用有机支化盐是为了控制其分散二形成树枝状纤维,使用增塑剂是为了促进纤维的拉伸细化而制成纳米级纤维。
2013年12月11日公开的第201310412339.8号中国专利申请(公开号为CN103437071A)公开了了一种静电纺纳米纤维膜及其制备方法,所述制备方法包括:1)分别配制质量分数为3-50%的高熔点聚合物纺丝溶液和质量分数为3-50%的低熔点聚合物纺丝溶液,2)分别将所述高熔点聚合物纺丝溶液和所述低熔点聚合物 纺丝溶液进行静电纺丝,得到高熔点聚合物纤维膜和低熔点聚合物纤维膜;3)将所述高熔点纤维膜和低熔点纤维膜热压,得到高强度静电纺纳米纤维膜。
虽然现有技术已有了通过静电纺丝技术制造薄膜的方法,但由于现有技术制造的静电纺丝薄膜的机械强度较弱,难以适用于机械强度要求较高的场合。因此,有需要开发一种高机械强度的静电纺丝薄膜及其制备方法。
发明内容
本发明的一个目的是提供一种静电纺丝薄膜,它具有优异的机械性能、更高的透湿量和耐静水压。
本发明的另一个目的是提供上述静电纺丝薄膜的制造方法和该静电纺丝薄膜用于制造防水透湿产品中的用途。
为了实现上述目的,本发明提供了一种静电纺丝薄膜,所述静电纺丝薄膜由聚偏二氟乙烯和至少一种熔点比所述聚偏二氟乙烯低的低熔点聚合物制成,所述低熔点聚合物的软化点在110~140℃范围内。
较佳地,所述低熔点聚合物选自聚乙烯醇缩醛、低分子量聚偏二氟乙烯或其任意组合,其中所述聚乙烯醇缩醛可以选自聚乙烯醇缩丁醛(PVB)或聚乙烯醇缩甲醛(PVF)。在一些具体实施例中,聚偏二氟乙烯与所述低熔点聚合物以重量计的比例是99.9:0.1~90:10。
优选地,所述静电纺丝薄膜按照以下方式得到:在聚偏二氟乙烯与所述低熔点聚合物形按照一定配比被配制成静电纺丝原液后,所述电纺丝原液经静电纺丝制成薄膜,然后经过加热处理而形成。
本发明的静电纺丝薄膜具有以下一或多项参数:
1)断裂强度:≥20MPa;
2)透湿量:≥5000g/m 2·d;和/或
3)耐静水压:≥3000mmH 2O。
本发明还提供了一种制造静电纺丝薄膜的方法,包括下列步骤:
1)将聚偏二氟乙烯和至少一种熔点比所述聚偏二氟乙烯低的低熔点聚合物溶解在溶剂中,配制成为质量分数为10~35%的静电纺丝原液,其中所述低熔点聚合物选自聚乙烯醇缩醛、低分子量聚偏二氟乙烯或其任意组合,所述低熔点聚合物的软化点在110~140℃范围内;
2)将步骤1)配制的静电纺丝原液进行静电纺丝,获得静电纺丝薄膜;
3)在预定的温度下对步骤2)的静电纺丝薄膜进行热处理预定的时间;
4)冷却所述热处理后的静电纺丝薄膜。
其中在静电纺丝原液的配制过程中,聚偏二氟乙烯与所述低熔点聚合物以重量计的比例是99.9:0.1~90:10。
用于配制静电纺丝原液的溶剂可以选自N,N-二甲基甲酰胺(DMF)、丙酮、甲醇、乙醇、异丙醇(IPA)、四氢呋喃、二氯甲烷、氯仿、二甲基亚砜(DMSO)、乙二醇、N,N-二甲基乙酰胺(DMAc)、N-甲基-2-吡咯烷酮(NMP)、环己烷、水或其任意组合。
在上述方法的步骤2)中,所述静电纺丝在电压15~35kV,推进速度为0.1~3ml/h条件下进行。
在所述热处理过程中,采用温度110~150℃进行0.5~4小时。
本发明的静电纺丝薄膜适合应用在防水透湿领域,其主要的参数,例如力学性能、透湿量、耐静水压等,与现有技术产品相比有了明显的提高,更好地阻止液态水通过或渗透,同时又可以透过气体或水蒸气。因此,本发明进一步提供了本发明的静电纺丝薄膜在用于制备防水透湿产品中的用途。
与现有技术相比,本发明使用PVDF为基底材料,通过控制不同比例和不同特性的PVDF和低熔点聚合物制备得到具有高机械性能的静电纺丝薄膜。其中,由静电纺丝工艺制备得到的薄膜赋予了薄膜的多孔性能,以实现薄膜的透湿功能;通过低熔点聚合物的混入以及热处理工艺,使得制备得到的PVDF薄膜具有更好的机械性能、透湿量和耐静水压。同时,本技术方案设计流程精简、工艺简单,易于实现产业化。
附图说明
图1是根据本发明制备静电纺丝薄膜的方法的流程图。
具体实施方式
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
本发明主要涉及将PVDF和低熔点聚合物组成的混合物配制成静电纺丝原液,经过特定的热处理后制成的静电纺丝薄膜,它具有优异的机械强度并表现出良好的防水透湿功能。
以下详细说明本发明制备静电纺丝薄膜的具体工艺过程。
参见图1的步骤(1),首先称取一定质量的溶剂于烧杯中,溶剂可以采用DMF、丙酮或DMF和丙酮的混合物;再按照预定的配比称取PVDF和相应的低熔点聚合物,在60℃加入盛于烧杯的溶剂中;搅拌,使PVDF和相应的低熔点聚合物溶解在溶剂中,即可得到一定质量浓度的PVDF静电纺丝原液,较佳为质量分数为10~35%的静电纺丝原液。
然后,将上述PVDF静电纺丝原液送入静电纺丝设备进行静电纺丝,形成多孔薄膜,如图1的步骤(2)。根据本发明,静电纺丝设备的纺丝电压在15~35kV范围内,静电纺丝原液的推进速度为0.1~3ml/h。在本发明中,接收静电纺丝薄膜的基材可以是铝箔纸、无纺布、有纺布、烘培纸、纸、筛网布等。
步骤(3)涉及对PVDF静电纺丝薄膜进行后处理,包括:将PVDF静电纺丝薄膜以110~150℃的温度对所述PVDF静电纺丝薄膜进行热处理0.5~4小时,使至少部分低熔点聚合物熔化。在热处理后,至少有一部分低熔点聚合物会熔化而缠结着PVDF,而PVDF不会熔化,这样PVDF与低熔点聚合物在薄膜在形成缠结结构。之后将热处理后的PVDF静电纺丝薄膜进行冷却处理,将所述熔化的低熔点聚合物固化,从而得到本发明的增强型PVDF静电纺丝薄膜。
在本实施例的PVDF静电纺丝薄膜中,低熔点聚合物由于是在熔化后被固化而形成的,它起到支撑加固的作用;而PVDF在静电纺丝薄膜的加工过程中不会被熔化,仍然保留PVDF的基本特性,例如其防水、防风、透湿、孔隙率不会有改变。
实施例1
按照下述步骤制备PVDF静电纺丝薄膜,以下份数均为重量份:
1)在烧杯中加入99.9份的PVDF和0.1份的PVB,在60℃下搅拌溶解,配制得到质量分数为20%的纺丝原液;
2)在电压30kV,推进速度为0.3ml/h条件下制备得到原始PVDF静电纺丝薄膜;
3)将制备得到的原始PVDF静电纺丝薄膜在120℃条件下热处理2h,然后在室温条件下冷却,得到热处理后的高强度PVDF静电纺丝薄膜。
实施例2
按照下述步骤制备PVDF静电纺丝薄膜,以下份数均为重量份:
1)在烧杯中加入98份的PVDF和2份的PVB,在60℃下搅拌溶解,配制得 到质量分数为20%的纺丝原液;
2)在电压30kV,推进速度为0.3ml/h条件下制备得到原始PVDF静电纺丝薄膜;
3)将制备得到的原始PVDF静电纺丝薄膜在120℃条件下热处理2h,然后在室温条件下冷却,得到热处理后的高强度PVDF静电纺丝薄膜。
实施例3
按照下述步骤制备PVDF静电纺丝薄膜,以下份数均为重量份:
1)在烧杯中加入95份的PVDF和5份的PVB,在60℃下搅拌溶解,配制得到质量分数为20%的纺丝原液;
2)在电压30kV,推进速度为0.3ml/h条件下制备得到原始PVDF静电纺丝薄膜;
3)将制备得到的原始PVDF静电纺丝薄膜在120℃条件下热处理2h,然后在室温条件下冷却,得到热处理后的高强度PVDF静电纺丝薄膜。
实施例4
按照下述步骤制备PVDF静电纺丝薄膜,以下份数均为重量份:
1)在烧杯中加入90份的PVDF和10份的PVB,在60℃下搅拌溶解,配制得到质量分数为20%的纺丝原液;
2)在电压30kV,推进速度为0.3ml/h条件下制备得到原始PVDF静电纺丝薄膜;
3)将制备得到的原始PVDF静电纺丝薄膜在120℃条件下热处理2h,然后在室温条件下冷却,得到热处理后的高强度PVDF静电纺丝薄膜。
实施例5
按照下述步骤制备PVDF静电纺丝薄膜,以下份数均为重量份:
1)在烧杯中加入99.9份的PVDF和0.1份的PVF,在60℃下搅拌溶解,配制得到质量分数为20%的纺丝原液;
2)在电压30kV,推进速度为0.3ml/h条件下制备得到原始PVDF静电纺丝薄膜;
3)将制备得到的原始PVDF静电纺丝薄膜在120℃条件下热处理2h,然后在 室温条件下冷却,得到热处理后的高强度PVDF静电纺丝薄膜。
实施例6
按照下述步骤制备PVDF静电纺丝薄膜,以下份数均为重量份:
1)在烧杯中加入98份的PVDF和2份的PVF,在60℃下搅拌溶解,配制得到质量分数为20%的纺丝原液;
2)在电压30kV,推进速度为0.3ml/h条件下制备得到原始PVDF静电纺丝薄膜;
3)将制备得到的原始PVDF静电纺丝薄膜在120℃条件下热处理2h,然后在室温条件下冷却,得到热处理后的高强度PVDF静电纺丝薄膜。
实施例7
按照下述步骤制备PVDF静电纺丝薄膜,以下份数均为重量份:
1)在烧杯中加入95份的PVDF和5份的PVF,在60℃下搅拌溶解,配制得到质量分数为20%的纺丝原液;
2)在电压30kV,推进速度为0.3ml/h条件下制备得到原始PVDF静电纺丝薄膜;
3)将制备得到的原始PVDF静电纺丝薄膜在120℃条件下热处理2h,然后在室温条件下冷却,得到热处理后的高强度PVDF静电纺丝薄膜。
实施例8
按照下述步骤制备PVDF静电纺丝薄膜,以下份数均为重量份:
1)在烧杯中加入90份的PVDF和10份的PVF,在60℃下搅拌溶解,配制得到质量分数为20%的纺丝原液;
2)在电压30kV,推进速度为0.3ml/h条件下制备得到原始PVDF静电纺丝薄膜;
3)将制备得到的原始PVDF静电纺丝薄膜在120℃条件下热处理2h,然后在室温条件下冷却,得到热处理后的高强度PVDF静电纺丝薄膜。
对照实施例1
按照下述步骤制备PVDF静电纺丝薄膜,以下份数均为重量份:
1)在烧杯中加入100份的PVDF,在60℃下搅拌溶解,配制得到质量分数为20%的纺丝原液;
2)在电压30kV,推进速度为0.3ml/h条件下制备得到原始PVDF静电纺丝薄膜;
3)将制备得到的原始PVDF静电纺丝薄膜在120℃条件下热处理2h,然后在室温条件下冷却,得到热处理后PVDF静电纺丝薄膜。
测定实验
进行测定实验以验证根据本发明的方法制备的PVDF静电纺丝薄膜以及根据对照实施例1制备的PVDF静电纺丝薄膜的主要参数,包括断裂强度、WVP(透湿量)、耐静水压。具体地,
采用ASTM D 882标准,通过Instron 5566拉力机(条件:温度为23℃,相对湿度为50%)测试仪测定PVDF静电纺丝薄膜的断裂强度;
采用ASTM E96 BW标准,通过海达HD-100T恒温恒湿箱(条件:温度为23℃,相对湿度为50%)测试仪测定PVDF静电纺丝薄膜的透湿量;以及
采用JIS L1092 A标准,并在高性能胶原静电纺丝薄膜防水透湿薄膜上覆上一层特里克特针织物,通过FX3000耐静水压测试仪测定PVDF静电纺丝薄膜的耐静水压。
下表1示出了上述各项测试结果。
表1.实施例1~8及对照实施例测试结果
Figure PCTCN2022126507-appb-000001
结果分析:
(一)由上表1可知,本发明实施例1至实施例8的薄膜的断裂强度均在15MPa以上,并且随着低熔点聚合物的增加呈现出先增加后减小趋势;
(二)由上表1可知,本发明实施例1至实施例8的薄膜的透湿量均在500g/m 2·d以上;
(三)由上表1可知,本发明实施例1至实施例8的薄膜的耐静水压均在3000以上。
上表中所示的数据表明,根据本发明的方法制备的PVDF静电纺丝薄膜在断裂强度、透湿量和耐静水压方面都有了显著的增加。这表明本发明的PVDF静电纺丝薄膜相对于对照实施例的防水透湿性能要好得多,可以代替传统防水透湿产品。再者,本发明的制备方法过程简单,工艺要求和生产成本低。
以上以优选实施例介绍了本发明的具有较高机械强度的PVDF静电纺丝薄膜及其制造方法。本领域技术人员可以按照说明书中的教导对本发明进行各种改进和/修改,这些改进和/或修改都应当被包括在本发明权利要求书的范围中。

Claims (14)

  1. 一种静电纺丝薄膜,所述静电纺丝薄膜由聚偏二氟乙烯和至少一种熔点比所述聚偏二氟乙烯低的低熔点聚合物制成,其特征在于,所述低熔点聚合物的软化点在110~140℃范围内。
  2. 根据权利要求1的静电纺丝薄膜,特征在于,所述低熔点聚合物选自聚乙烯醇缩醛、低分子量聚偏二氟乙烯或其任意组合。
  3. 根据权利要求1的静电纺丝薄膜,特征在于,聚偏二氟乙烯与所述低熔点聚合物以重量计的比例是99.9:0.1~90:10。
  4. 根据权利要求1至3中任一项的静电纺丝薄膜,特征在于,所述聚乙烯醇缩醛选自聚乙烯醇缩丁醛(PVB)或聚乙烯醇缩甲醛(PVF)。
  5. 根据权利要求1至3中任一项的静电纺丝薄膜,特征在于,所述无纺布按照以下方式得到:在聚偏二氟乙烯与所述低熔点聚合物形被配制成电纺丝原液后,所述电纺丝原液经静电纺丝制成薄膜,然后经过加热处理所形成的。
  6. 根据权利要求1至3中任一项的静电纺丝薄膜,特征在于,所述静电纺丝薄膜具有以下一或多项参数:
    1)断裂强度:≥20MPa;
    2)透湿量:≥5000g/m 2·d;和/或
    3)耐静水压:≥3000mmH 2O。
  7. 一种制造根据权利要求1-6之一的静电纺丝薄膜的方法,包括下列步骤:
    1)将聚偏二氟乙烯和至少一种熔点比所述聚偏二氟乙烯低的低熔点聚合物溶解在溶剂中,配制成为质量分数为10~35%的静电纺丝原液;
    2)将步骤1)配制的静电纺丝原液进行静电纺丝,获得静电纺丝薄膜;
    3)在预定的温度下对步骤2)的静电纺丝薄膜进行热处理预定的时间;
    4)冷却所述热处理后的静电纺丝薄膜。
  8. 根据权利要求7的制造方法,特征在于,所述低熔点聚合物选自聚乙烯醇缩醛、低分子量聚偏二氟乙烯或其任意组合。
  9. 根据权利要求7的制造方法,特征在于,所述低熔点聚合物的软化点在110~140℃范围内。
  10. 根据权利要求7的制造方法,特征在于,聚偏二氟乙烯与所述低熔点聚合物以重量计的比例是99.9:0.1~90:10。
  11. 根据权利要求7至10中任一项的制造方法,特征在于,静电纺丝是在电压15~35kV,推进速度为0.1~3ml/h条件下进行的。
  12. 根据权利要求7至10中任一项的制造方法,特征在于,所述热处理在110~150℃进行0.5~4小时。
  13. 根据权利要求7至10中任一项的制造方法,特征在于,所述溶剂选自以下组内:N,N-二甲基甲酰胺、丙酮、甲醇、乙醇、异丙醇、四氢呋喃、二氯甲烷、氯仿、二甲基亚砜、乙二醇、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮、环己烷、水或其任意组合。
  14. 根据权利要求1-6之一的静电纺丝薄膜在用于制备防水透湿产品中的用途。
PCT/CN2022/126507 2022-03-22 2022-10-20 静电纺丝薄膜、其制造方法和该静电纺丝薄膜的用途 WO2023179007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210287164.1 2022-03-22
CN202210287164.1A CN116815420A (zh) 2022-03-22 2022-03-22 静电纺丝薄膜、其制造方法和该静电纺丝薄膜的用途

Publications (1)

Publication Number Publication Date
WO2023179007A1 true WO2023179007A1 (zh) 2023-09-28

Family

ID=88095340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126507 WO2023179007A1 (zh) 2022-03-22 2022-10-20 静电纺丝薄膜、其制造方法和该静电纺丝薄膜的用途

Country Status (3)

Country Link
US (1) US20230304191A1 (zh)
CN (1) CN116815420A (zh)
WO (1) WO2023179007A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245639A (ja) * 2008-03-28 2009-10-22 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
CN103437071A (zh) * 2013-09-11 2013-12-11 浙江伟星实业发展股份有限公司 一种静电纺纳米纤维膜及其制备方法
CN103469488A (zh) * 2013-09-29 2013-12-25 天津工业大学 一种增强型静电纺纳米纤维锂离子电池隔膜的制备方法
CN112160072A (zh) * 2020-08-25 2021-01-01 浙江理工大学 一种防水透湿可调温的智能纳米纤维膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245639A (ja) * 2008-03-28 2009-10-22 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
CN103437071A (zh) * 2013-09-11 2013-12-11 浙江伟星实业发展股份有限公司 一种静电纺纳米纤维膜及其制备方法
CN103469488A (zh) * 2013-09-29 2013-12-25 天津工业大学 一种增强型静电纺纳米纤维锂离子电池隔膜的制备方法
CN112160072A (zh) * 2020-08-25 2021-01-01 浙江理工大学 一种防水透湿可调温的智能纳米纤维膜的制备方法

Also Published As

Publication number Publication date
CN116815420A (zh) 2023-09-29
US20230304191A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
Tafreshi et al. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications
CN102218871B (zh) 锂离子二次电池用改性隔膜的制备方法及其产品、制备装置
JP5855093B2 (ja) ポリイミド多孔性ウェブ、その製造方法、及びそれを含む電解質膜
EP3040462B1 (en) Producing method for enhancing electrostatic spinning nanofiber membrane
CN112531285B (zh) 一种耐高温对位芳纶涂覆锂离子电池隔膜及其制备方法
CN110258021B (zh) 一种高防水高透气纳米纤维膜及其制备方法
CN105970485B (zh) 一种聚酰亚胺/二氧化锆复合纳米纤维膜及其制备方法
CN105040276B (zh) 一种具有交联形貌的聚酰亚胺纤维膜及其制备方法
Sheng et al. Thermally induced chemical cross-linking reinforced fluorinated polyurethane/polyacrylonitrile/polyvinyl butyral nanofibers for waterproof-breathable application
CN103437071A (zh) 一种静电纺纳米纤维膜及其制备方法
KR20110095753A (ko) 자가융착형 나노섬유 및 그 제조방법, 그리고 이를 이용한 나노섬유 복합재 및 그 제조방법
KR20110021217A (ko) 연료전지용 고분자 전해질막 및 그 제조방법
CN111394892B (zh) 一种同轴包覆纳米二氧化锆无机层的聚酰亚胺纳米纤维膜及其制备方法
KR20130114187A (ko) Pem 적용을 위한 양자 전도성 멤브레인을 보강하기 위한 다공성 나노-섬유 매트
CN104213333A (zh) 一种具有交联结构的聚酰亚胺/聚烯烃复合纤维膜及制备方法
CN113123128B (zh) 防水透湿膜及其制备方法和应用
CN108285643A (zh) 一种纤维素纳米纤维/磺化聚醚砜质子交换膜及制备方法
CN111979609A (zh) 一种大直径石墨烯纤维的制备方法
CN108049026A (zh) 一种热塑性聚氨酯纳米纤维膜的制备方法
CN107275546A (zh) 一种电池隔膜及其制备方法
CN114351358A (zh) ePTFE-TPU复合膜及其制备方法
WO2023179007A1 (zh) 静电纺丝薄膜、其制造方法和该静电纺丝薄膜的用途
CN105835383A (zh) 一种双向拉伸的尼龙纤维多孔膜的制备方法
CN105714411B (zh) 一种聚吡咙/聚醚砜/碳纳米管三元复合材料的制备方法
CN109680552A (zh) 聚酰亚胺/纳米纤维复合纸及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933058

Country of ref document: EP

Kind code of ref document: A1