WO2018225514A1 - エンジンの排気ガス処理装置及びその製造方法 - Google Patents

エンジンの排気ガス処理装置及びその製造方法 Download PDF

Info

Publication number
WO2018225514A1
WO2018225514A1 PCT/JP2018/019879 JP2018019879W WO2018225514A1 WO 2018225514 A1 WO2018225514 A1 WO 2018225514A1 JP 2018019879 W JP2018019879 W JP 2018019879W WO 2018225514 A1 WO2018225514 A1 WO 2018225514A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
filter
exhaust gas
supported
engine
Prior art date
Application number
PCT/JP2018/019879
Other languages
English (en)
French (fr)
Inventor
栄治郎 田中
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US16/619,078 priority Critical patent/US10870082B2/en
Priority to EP18814241.8A priority patent/EP3617465B1/en
Priority to CN201880036612.2A priority patent/CN110709588B/zh
Publication of WO2018225514A1 publication Critical patent/WO2018225514A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2842Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration specially adapted for monolithic supports, e.g. of honeycomb type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/18Composite material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine exhaust gas treatment device and a method for manufacturing the same.
  • the exhaust gas discharged from the engine includes particulate matter (Particulate Matter, hereinafter referred to as “PM”). Is included.) Since this PM also causes air pollution, its emission regulations have been strengthened together with harmful gas components such as HC, CO, and NOx.
  • Patent Document 1 describes that in order to avoid an increase in the size of an exhaust gas treatment device, a catalyst is supported on a filter that collects PM, thereby collecting PM and purifying exhaust gas.
  • the filter is a honeycomb structure having open cells penetrating in the axial direction and closed cells whose upstream ends are closed, and is formed of porous ceramics.
  • the catalyst is supported on the cell wall in the downstream portion of the honeycomb structure in the exhaust gas flow direction, and the catalyst is not supported on the cell wall in the upstream portion of the honeycomb structure.
  • the exhaust gas flows from the open cell to the closed cell through the pores of the cell wall, whereby PM is collected in the pores, and the downstream side of the honeycomb structure.
  • the purification of the exhaust gas is promoted by the catalyst supported on the cell wall in the portion.
  • Patent Document 1 a catalyst is not supported on the cell wall on the upstream side of the honeycomb structure in order to avoid an increase in ventilation resistance. Therefore, the exhaust gas cannot be purified by the catalyst on the upstream side. If the amount of catalyst supported on the downstream side of the honeycomb structure is increased in order to improve the exhaust gas purification performance, the pores in the cell walls on the downstream side are blocked by the catalyst. Scavenging performance decreases.
  • an object of the present invention is to improve the exhaust gas purification performance while suppressing a decrease in scavenging performance of the engine.
  • the catalyst is supported on the surface of the porous filter that collects PM in the exhaust gas and is supported on the inner surface of the pore of the filter.
  • the engine exhaust gas treatment device disclosed herein is provided with a porous filter for collecting PM in the exhaust gas in the exhaust gas passage of the engine, An exhaust gas treatment device in which the exhaust gas is discharged from the surface of the filter through the pores of the filter, A catalyst for exhaust gas purification is supported on the filter surface and the inner surface of the pores, The catalyst is supported on the filter surface thicker than the inner surface of the pore.
  • this exhaust gas treatment device by carrying the catalyst thickly on the filter surface, the catalyst carrying thickness on the inner surface of the pore is reduced, so that the pore permeability is avoided by avoiding clogging of the pore by the catalyst. Easy to do. That is, it is avoided that the exhaust pressure loss due to the filter increases due to the catalyst being carried on the filter, in other words, that the scavenging efficiency in the exhaust stroke of the engine decreases.
  • the catalyst is thickly supported on the filter surface, exhaust gas purification is easy to proceed. Then, the exhaust gas whose temperature is increased by the heat of catalytic reaction on the filter surface passes through the pores. Therefore, although the catalyst is thinly supported on the inner surface of the pore, the exhaust gas purification through the catalyst efficiently proceeds due to the high exhaust gas temperature passing through the pore.
  • the supported amount of the catalyst per unit area of the filter surface is 50 times or more and 500 times or less of the supported amount of the catalyst per unit area of the pore inner surface. This is further advantageous in improving exhaust gas purification performance while suppressing a decrease in scavenging performance of the engine.
  • a catalytic converter for purifying the exhaust gas is provided upstream of the filter in the exhaust gas passage.
  • the exhaust gas is also purified by the upstream catalytic converter, the amount of catalyst supported by the filter can be reduced, which is advantageous for suppressing an increase in exhaust pressure loss. Further, since the exhaust gas is purified by the upstream catalytic converter and the catalyst of the filter, the capacity of the catalytic converter can be kept low. That is, according to the embodiment, it is easy to ensure the desired exhaust gas purification performance while suppressing the increase in size and the increase in exhaust resistance as the entire exhaust gas processing apparatus.
  • the catalytic converter includes a catalyst that is active in an oxidation reaction of an unsaturated hydrocarbon having 6 to 9 carbon atoms (hereinafter referred to as “unsaturated high HC”),
  • the catalyst of the filter is active in the oxidation reaction of saturated hydrocarbons having 5 or less carbon atoms (hereinafter referred to as “saturated low HC”).
  • the unsaturated high HC in the exhaust gas is oxidized and purified by the catalyst of the upstream catalytic converter, and the exhaust gas temperature is raised by the catalytic reaction heat. Along with this, the temperature of the downstream filter rises. Therefore, although the saturated low HC in the exhaust gas is relatively incombustible, the temperature of the filter rises as described above, so that the catalyst supported on the filter is likely to work efficiently for the purification of the saturated low HC. Therefore, even when the exhaust gas temperature is relatively low, the unsaturated high HC and saturated low HC are efficiently purified.
  • the saturation low HC is generated by the cracking of the unsaturated high HC by the catalyst of the catalytic converter, and the saturation low HC flows to the filter on the downstream side of the catalytic converter. Since the catalyst supported on the filter is active in the purification of unsaturated low HC, the saturated low HC generated by the cracking is also efficiently purified by the catalyst of the filter.
  • the manufacturing method of the exhaust gas treatment device for an engine disclosed herein is A first step of immersing a porous filter having pores through which exhaust gas of an engine passes in a first catalyst slurry in which a catalyst for purifying exhaust gas is dispersed, and supporting the catalyst on the inner surface of the pores of the filter; The filter after the first step is immersed in a second catalyst slurry in which the catalyst is dispersed, and the catalyst is supported on the surface of the filter to be thicker than the thickness of the catalyst supported on the inner surface of the pore. A second step; And a third step of providing the filter having undergone the second step in an exhaust gas passage of the engine.
  • the catalyst is supported on the inner surface of the pore of the filter and the catalyst is supported on the surface of the filter in separate steps, and the catalyst is supported on the inner surface of the pore of the filter first. It becomes easy to carry a thicker on the filter surface than on the inner surface of the pores.
  • the components of the catalyst of the first catalyst slurry and the catalyst of the second catalyst slurry are the same.
  • the step of drying the catalyst supported on the pore inner surface of the filter Between the second step and the third step, there is provided a step of firing the catalyst supported on the surface of the filter and the catalyst supported on the inner surface of the pore.
  • the exhaust gas purifying catalyst is supported on the surface of the filter thicker than the inner surface of the filter pores.
  • the catalyst is supported thinner on the inner surface of the filter pores.
  • the top view which shows the principal part of the apparatus.
  • the front view which shows typically the filter with a catalyst of a GPF apparatus.
  • the longitudinal cross-sectional view which shows the same filter typically.
  • the cross-sectional view which shows a part of the filter.
  • the figure which shows the manufacturing process of the filter. The graph which shows the difference in the temperature which flows in into the pore of the filter with a catalyst of an Example and each comparative example.
  • 1 is a direct injection gasoline engine of an automobile
  • 2 is an exhaust manifold of the engine 1.
  • a catalytic converter 3 is coupled to a collective portion 2 a of the exhaust manifold 2 via a connecting pipe 4, and a GPF (gasoline particulate filter) device 5 is directly connected to the downstream side of the catalytic converter 3 in the exhaust flow direction.
  • An exhaust pipe 6 extends from the GPF device 5 toward the rear of the automobile.
  • the catalytic converter 3 is a two-bed type in which two honeycomb catalysts 7 and 8 at the front and rear stages are accommodated in a catalyst container in series.
  • the front stage honeycomb catalyst 7 is formed by supporting a first catalyst on a honeycomb carrier.
  • the latter honeycomb catalyst 8 is formed by supporting a second catalyst on a honeycomb carrier.
  • a honeycomb carrier having a capacity of about 0.5 to 1.5 L is preferably used.
  • the first catalyst exhibits activity in the oxidation reaction of unsaturated high HC such as toluene at a temperature lower than that of the second catalyst.
  • the second catalyst exhibits activity in the oxidation reaction of saturated low HC such as isopentane at a temperature lower than that of the first catalyst.
  • the GPF device 5 is configured by housing the filter with catalyst 10 in a filter container.
  • the filter with catalyst 10 is formed by supporting the second catalyst on a ceramic filter body made of an inorganic porous material such as cordierite, SiC, Si 3 N 4 , sialon, and AlTiO 3 .
  • the filter with catalyst 10 has a honeycomb structure and includes a large number of cells 12 and 13 extending in parallel to each other. Inflow side cells 12 whose downstream ends are closed by plugs 14 and outflow side cells 13 whose upstream ends are closed by plugs 14 are alternately provided.
  • the cell 12 and the cell 13 are separated by a thin partition wall (exhaust gas passage wall) 15.
  • reference numeral 11 denotes an exhaust gas passage.
  • the hatched portion in FIG. 4 shows the plug 14 at the upstream end of the exhaust gas outflow passage 13.
  • the filter body has a capacity of 1.0 to 2.0 L, a cell density of 200 to 300 cpsi, a partition wall thickness of 150 to 250 ⁇ m, a partition wall porosity of 40 to 60%, and a partition wall 15 pore volume. It is preferable to employ a material of about 70 to 400 cm 3 .
  • the exhaust gas flows into the inflow side cell 12 of the filter with catalyst 10, and flows out to the adjacent outflow side cell 13 through the partition wall 15 around the cell 12 as indicated by an arrow.
  • the partition wall 15 has minute pores 16 communicating with the cells 12 and 13, and exhaust gas passes through the pores 16. PM in the exhaust gas is deposited mainly on the walls of the cells 12 and the pores 16.
  • the second catalyst 17 is supported on the surface (filter surface) of the partition wall 15 constituting the inflow side cell 12 and the inner surface of the pore 16.
  • the second catalyst 17 is supported on the surface of the partition wall 15 constituting the cell 12 thicker than the inner surface of the pore 16. It is preferable that the supported amount of the second catalyst per unit area of the surface of the partition wall 15 be 50 times or more and 500 times or less the supported amount of the second catalyst per unit area of the inner surface of the pore 16.
  • a majority of the total supported amount of the catalyst with respect to the filter body may be supported on the surface of the partition wall 15 constituting the inflow side cell 12. It is preferable that 65% or more and 85% or less of the total catalyst loading is supported on the surface of the partition wall 15 constituting the inflow side cell 12.
  • the amount of the second catalyst supported per 1 L of the filter body is preferably about 20 to 100 g / L in total including the surface of the partition wall 15 and the inner surface of the pores 16.
  • the amount of the second catalyst supported on the surface of the partition wall 15 constituting the inflow side cell 12 is, for example, 15 to 75 g per 1 L of the filter body, and the amount of the second catalyst supported on the inner surface of the pore 16 is, for example, a fine unit.
  • the amount may be 0.08 to 0.37 g per pore volume.
  • Second catalyst and second catalyst> As the first catalytic purification activity of unsaturated high HC is high, and containing Pd supported content of La 2 O 3 alumina made by supporting Pd on activated alumina containing La 2 O 3 4% by weight as essential components, further An OSC material (oxygen storage / release material) such as a CeZr-based composite oxide and an Rh catalyst obtained by supporting Rh on the OSC material are preferable.
  • the low HC purifying activity is higher second catalyst contains a Pt-supported content of La 2 O 3 alumina made by carrying Pt on activated alumina containing La 2 O 3 4% by weight as essential components, further, What contains the said OSC material is preferable.
  • the pre-honeycomb catalyst 7 of the catalytic converter 3 contains the first catalyst excellent in the purification of unsaturated high HC, so the unsaturated high HC in the exhaust gas is oxidized and purified by the first catalyst.
  • the exhaust gas temperature increases due to the heat of catalytic reaction that is sometimes generated.
  • the temperature of the latter-stage honeycomb catalyst 8 containing the second catalyst excellent in purification of saturated low HC rises. Therefore, the saturated low HC in the exhaust gas is efficiently purified by the second catalyst of the rear-stage honeycomb catalyst 8.
  • the exhaust gas rises in temperature due to the catalytic reaction heat accompanying the purification of HC in the honeycomb catalysts 7 and 8 and flows to the filter 10 with the catalyst on the downstream side. Therefore, purification of saturated low HC by the second catalyst of the filter with catalyst 10 proceeds efficiently.
  • saturated low HC is generated by cracking of unsaturated high HC by the upstream honeycomb catalyst 7 of the catalytic converter 3, and the saturated low HC flows to the downstream honeycomb catalyst 8 and the filter with catalyst 10. Since the second catalyst of the rear honeycomb catalyst 8 and the filter with catalyst 10 is excellent in the purification of unsaturated low HC, the saturated low HC generated by the cracking is also caused by the second catalyst of the latter honeycomb catalyst 8 and the filter with catalyst 10. It will be purified efficiently.
  • the second catalyst is supported thick on the surface of the partition wall 15 constituting the inflow side cell 12 and thin on the inner surface of the pore 16. Accordingly, since the exhaust gas purification becomes active on the surface of the partition wall 15, the exhaust gas whose temperature rises accordingly passes through the pores 16. Therefore, although the second catalyst is thinly supported on the inner surface of the pore 16, the exhaust gas purification through the second catalyst efficiently proceeds due to the high exhaust gas temperature passing through the pore 16.
  • ⁇ Manufacturing method of exhaust gas treatment device> Catalyst loading on the inner surface of the pores of the filter (first step)- As shown in FIG. 7, one end of the filter main body (catalyst unsupported) 21 is dipped in the catalyst slurry 23 related to the second catalyst stored in the first container 22 and pulled up.
  • This filter main body 21 is provided with the inflow side cells 12 and the outflow side cells 13 described above alternately.
  • the upstream end side of the filter main body 21 is immersed in the catalyst slurry 23 and pulled up. As a result, the catalyst slurry 23 adheres to the inner surface of the filter body 21 on the upstream end side of the inflow side cell 12.
  • a vacuum pump 24 is connected to the downstream end of the filter body 21, and the pump 24 is operated to make the outflow side 13 of the filter body 21 negative pressure. Due to the negative pressure in the outflow side cell 13, the catalyst slurry 23 attached to the upstream end side of the inflow side cell 12 is attracted to the downstream side of the cell 12 and soaks into the pores 16 of the partition wall 15. Go. As a result, the catalyst is supported on the inner surface of the pore 16 of the filter 21.
  • the catalyst slurry 23 stored in the first container 22 is adjusted to a viscosity that is easy to penetrate into the pores 16 of the partition walls 15.
  • the catalyst adhering to the inner surface of the pore 16 of the partition wall 15 is dried. This drying is performed, for example, by holding the filter body 21 at a temperature of 150 ° C. for 2 hours.
  • a vacuum pump 24 is connected to the downstream end of the filter body 21, and the pump 24 is operated to make the outflow side cell 13 of the filter body 21 have a negative pressure.
  • the outflow side cell 13 becomes negative pressure
  • the catalyst slurry 23 attached to the upstream end side of the inflow side cell 12 is drawn to the downstream side of the cell 12.
  • the catalyst is supported on the inner surface of the inflow side cell 12 of the filter 21, that is, on the surface of the partition wall 15.
  • the catalyst slurry 26 stored in the second container 25 is less than the catalyst slurry 23 in the first container 22 so as to be prevented from entering the pores 16 of the partition wall 15 during suction by the vacuum pump 24. Increase viscosity.
  • the catalyst slurry 26 when the catalyst slurry 26 is supported on the surface of the partition wall 15, some of the pores 16 are blocked. However, the catalyst slurry 26 supported on the surface of the partition wall 15 becomes a porous catalyst layer by subsequent firing. Therefore, the exhaust gas can pass through the catalyst layer and flow into the pores 16.
  • the catalyst adhering to the surface of the partition wall 15 of the filter main body 21 and the catalyst adhering to the inner surface of the pores 16 are baked. This firing is performed, for example, by holding the filter body 21 at a temperature of 500 ° C. for 2 hours. If necessary, a drying step (the filter main body 21 is maintained at a temperature of 150 ° C. for 2 hours) is added before the baking.
  • the catalyst-equipped filter 10 in which the second catalyst is supported on the surface of the partition wall 15 and the inner surface of the pore 16 in the inflow side cell 12 of the filter body 21 is obtained.
  • a cordierite filter having a capacity of 1.3 L was prepared as the filter body 21.
  • the cell density is 250 cpsi
  • the partition wall thickness is 200 ⁇ m
  • the partition wall porosity is 50%
  • the partition wall pore volume is about 100 cm 3 .
  • the second catalyst is 15 g / L (supported amount in the first step) on the pore inner surface of the filter body 21, and the second catalyst is 45 g / L (above) on the partition wall surface constituting the inflow side cell 12. (Supported amount in the second step) A filter with catalyst was obtained by supporting.
  • the total area of the partition walls constituting the inflow side cell 12 of the filter body 21 is 1.82 m 2 , and the total area of the pore inner surfaces of the filter body 21 calculated from the concept of hydraulic diameter is 258.009 m 2 .
  • catalyst loading per unit area of the catalyst loading is 24.73g / m 2
  • pore inner surface per unit area of the partition wall surface constituting the inlet cells 12 (filter surface) in 0.058 g / m 2 is there. Therefore, the catalyst carrying amount per unit area of the partition wall constituting the inflow side cell 12 is about 426 times the catalyst carrying amount per unit area of the pore inner surface.
  • a filter with catalyst was obtained by supporting 60 g / L of the second catalyst on the inner surface of the pores of the filter main body 21.
  • the amount of catalyst supported on the partition walls constituting the inflow side cell 12 was set to zero.
  • the amount of catalyst supported per unit area on the inner surface of the pore is 0.23 g / m 2 .
  • the total amount of CH 4 (0.06 mol) flowing into the filter was determined from the CH 4 concentration, the gas flow rate of 10 g / second, and the gas flow time of 60 seconds.
  • the embodiment filter it is assumed that 75% of the total amount of CH 4 is purified by the second catalyst supported on the partition wall surface of the inflow side cell 12, and the rising temperature of the gas at that time is set to the heat capacity of the filter 736 J / kg ⁇ It was determined from the following heat of combustion of K and weight 0.45kg and CH 4.
  • the CH 4 purification rate in the inflow side cell is zero. The results are shown in Table 1 and FIG.
  • the catalyst loading in each of the examples and comparative examples is also 60 g / L.
  • the entire amount of the catalyst is supported on the inner surface of the pores, whereas in the example, 3/4 of the total amount of the catalyst is supported on the partition walls constituting the inflow side cell 12 to the inner surface of the pores.
  • the amount of catalyst supported is 15 g / L. Therefore, in the example filter, the porosity of the partition wall is about 5.4% larger than that in the comparative example filter.
  • the exhaust pressure loss is about 93% compared to the comparative example. From this, it can be seen that when a part of the catalyst is carried on the partition wall constituting the inflow side cell as in the embodiment, the exhaust pressure loss is reduced, which is advantageous for improving the scavenging performance of the engine and hence improving the fuel consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

エンジンの排気ガス通路に排気ガス中のPMを捕集するハニカム状の多孔質フィルタが設けられている。排気ガスは、フィルタの流入側セル12から該フィルタの隔壁15の細孔16を通過して流出側セル13に流れる。フィルタの流入側セル12を構成する隔壁15の表面及び細孔16の内面に触媒17が担持されている。触媒17は、細孔16の内面よりも隔壁15の表面に厚く担持されている。

Description

エンジンの排気ガス処理装置及びその製造方法
 本発明はエンジンの排気ガス処理装置及びその製造方法に関する。
 エンジンから排出される排気ガスには、HC(炭化水素)、CO(一酸化炭素)及びNOx(窒素酸化物)の他に、炭素を主成分とする粒子状物質(Particulate Matter、以下、「PM」という。)が含まれている。このPMも、大気汚染の原因となることから、HC、CO、NOx等の有害ガス成分とともに、その排出規制が強化されてきている。
 特許文献1には、排気ガス処理装置の大型化を避けるべく、PMを捕集するフィルタに触媒を担持することにより、PMを捕集するとともに、排気ガスの浄化を図ることが記載されている。そのフィルタは、軸方向に貫通した開放セルと上流端が閉塞された閉塞セルとを有するハニカム構造体であり、多孔質のセラミックスによって形成されている。そのハニカム構造体の排気ガス流れ方向の下流側部分では、触媒がセル壁に担持され、ハニカム構造体の上流側部分では、触媒がセル壁に担持されていない。
 上記フィルタの場合、ハニカム構造体の上流側部分において、排気ガスが開放セルからセル壁の細孔を通って閉塞セルに流れることにより、PMが細孔に捕集され、ハニカム構造体の下流側部分においてセル壁に担持された触媒により排気ガスの浄化が促進される。
特開2017-20442号公報
 特許文献1の場合、通気抵抗の増大を避けるべく、ハニカム構造体の上流側のセル壁には触媒が担持されていない。そのため、この上流側では触媒による排気ガスの浄化が図れない。排気ガスの浄化性能を高めるべく、ハニカム構造体の下流側の触媒担持量を多くすると、下流側のセル壁の細孔が触媒によって塞がれるため、排気ガスの通気抵抗が増大し、エンジンの掃気性が低下する。
 そこで、本発明は、エンジンの掃気性の低下を抑えながら、排気ガスの浄化性能を向上させることを課題とする。
 本発明は、上記課題を解決するために、触媒を、排気ガス中のPMを捕集する多孔質フィルタの表面に厚く、該フィルタの細孔内面に薄く担持するようにした。
 ここに開示するエンジンの排気ガス処理装置は、エンジンの排気ガス通路に排気ガス中のPMを捕集する多孔質フィルタが設けられてなり、
 上記排気ガスが上記フィルタの表面から該フィルタの細孔を通過して排出される排気ガス処理装置であって、
 上記フィルタ表面及び上記細孔内面に排気ガス浄化用の触媒が担持されており、
 上記触媒は、上記細孔内面よりも上記フィルタ表面に厚く担持されていることを特徴とする。
 この排気ガス処理装置によれば、触媒をフィルタ表面に厚く担持することによって、細孔内面の触媒の担持厚さを薄くするから、触媒による細孔の閉塞を避けて細孔の通気性を確保することが容易になる。すなわち、フィルタへの触媒の担持によってフィルタによる排気圧損が大きくなること、換言すれば、エンジンの排気行程における掃気効率が低下することが避けられる。
 また、フィルタ表面では、触媒が厚く担持されているから、排気ガスの浄化が進み易い。そして、フィルタ表面での触媒反応熱によって温度が高くなった排気ガスが細孔を通過していく。よって、細孔内面には触媒が薄く担持されているものの、細孔を通る排気ガス温度が高いことによって、触媒による排気ガスの浄化が効率良く進む。
 一実施形態では、上記フィルタ表面の単位面積当たりの上記触媒の担持量は、上記細孔内面の単位面積当たりの上記触媒の担持量の50倍以上500倍以下である。これにより、エンジンの掃気性の低下を抑えながら、排気ガスの浄化性能を向上させる上でさらに有利になる。
 一実施形態では、上記排気ガス通路における上記フィルタよりも上流側に上記排気ガスを浄化する触媒コンバータが設けられている。
 これによれば、上流側の触媒コンバータによっても排気ガスが浄化されるから、上記フィルタの触媒担持量を少なめにすることができ、排気圧損の増大抑制に有利になる。また、上流側の触媒コンバータと上記フィルタの触媒によって排気ガスを浄化するから、触媒コンバータの容量も低く抑えることができる。すなわち、当該実施形態によれば、排気ガス処理装置全体として、大型化及び排気抵抗の増大を抑制しつつ、所期の排気ガス浄化性能を確保することが容易になる。
 一実施形態では、上記触媒コンバータは、炭素数が6~9である不飽和炭化水素(以下、「不飽和高HC」という。)の酸化反応に活性を示す触媒を備え、
 上記フィルタの上記触媒が炭素数が5以下である飽和炭化水素(以下、「飽和低HC」という。)の酸化反応に活性を示す。
 ここに、飽和炭化水素は不飽和炭化水素は比べて燃えにくい(酸化分解されにくい)ことが知られている。
 上記実施形態では、排気ガス中の不飽和高HCが上流側の触媒コンバータの触媒によって酸化浄化され、その触媒反応熱によって排気ガス温度が高くなる。これに伴い、下流側のフィルタの温度が上昇する。そのため、排気ガス中の飽和低HCは、比較的燃えにくいものの、フィルタの温度が上述の如く上昇するから、このフィルタに担持されている触媒が当該飽和低HCの浄化に効率良く働きやすくなる。よって、排気ガス温度が比較的低い場合でも、上記不飽和高HC及び飽和低HCが効率良く浄化される。
 また、触媒コンバータの触媒による不飽和高HCのクラッキングによって飽和低HCが生成し、該飽和低HCが触媒コンバータよりも下流側のフィルタに流れる。このフィルタに担持されている触媒は不飽和低HCの浄化に活性を示すから、上記クラッキングによって生成する飽和低HCも当該フィルタの触媒によって効率良く浄化されることになる。
 ここに開示するエンジンの排気ガス処理装置の製造方法は、
 エンジンの排気ガスを通す細孔を有する多孔質フィルタを、排気ガス浄化用の触媒を分散させた第1触媒スラリーに浸漬し、該触媒を上記フィルタの細孔内面に担持する第1工程と、
 上記第1工程を経た上記フィルタを、上記触媒を分散させた第2触媒スラリーに浸漬し、該触媒を上記フィルタの表面に、上記細孔内面に担持された上記触媒の厚さよりも厚く担持する第2工程と、
 上記第2工程を経た上記フィルタを上記エンジンの排気ガス通路に設ける第3工程とを備えていることを特徴とする。
 この方法によれば、フィルタの細孔内面への触媒の担持とフィルタ表面への触媒の担持とを別工程で行ない、且つ先にフィルタの細孔内面に触媒を担持するようにしたから、触媒を細孔内面よりもフィルタ表面に厚く担持することが容易になる。
 一実施形態では、上記第1触媒スラリーの触媒と上記第2触媒スラリーの触媒とは、その成分が同じである。
 一実施形態では、上記第1工程と第2工程の間に、上記フィルタの細孔内面に担持した上記触媒を乾燥させる工程を備え、
 上記第2工程と上記第3工程の間に、上記フィルタの表面に担持された上記触媒及び上記細孔内面に担持された上記触媒を焼成する工程を備えている。
 フィルタの細孔内面に担持した触媒を乾燥させるから、第2工程において、フィルタの表面に触媒を担持するときに、細孔内面の触媒が流失することが避けられる。
 本発明によれば、排気ガス浄化用触媒がフィルタの細孔内面よりもフィルタの表面に厚く担持されているから、換言すれば、フィルタの細孔内面に触媒が薄く担持されているから、エンジンの掃気性の低下を抑えながら(エンジンの燃費を向上させながら)、排気ガスの浄化性能を向上させることができる。
エンジンの排気ガス処理装置を示す斜視図。 同装置の要部を示す平面図。 GPF装置の模式的に示す図。 GPF装置の触媒付フィルタを模式的に示す正面図。 同フィルタを模式的に示す縦断面図。 同フィルタの一部を示す横断面図。 同フィルタの製造工程を示す図。 実施例と比較例各々の触媒付フィルタの細孔に流入する温度の違いを示すグラフ図。 実施例の排気圧損の低下率を示すグラフ図。
 以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
 <排気ガス処理装置>
 図1において、1は自動車の直噴ガソリンエンジン、2はエンジン1の排気マニホールドである。排気マニホールド2の集合部2aに触媒コンバータ3が連結管4を介して結合され、触媒コンバータ3における排気流れ方向の下流側にGPF(ガソリンパティキュレートフィルタ)装置5が直結されている。GPF装置5から排気管6が自動車の後方へ向かって延びている。
 図2に示すように、触媒コンバータ3は、前段及び後段2つのハニカム触媒7,8を直列にして触媒容器に収容した2ベッド型である。前段のハニカム触媒7は、ハニカム担体に第1触媒を担持してなる。後段のハニカム触媒8は、ハニカム担体に第2触媒を担持してなる。ハニカム担体としては、容量0.5~1.5L程度のものを用いることが好ましい。
 第1触媒は、第2触媒よりも低い温度でトルエン等の不飽和高HCの酸化反に活性を示す。一方、第2触媒は、第1触媒よりも低い温度でイソペンタン等の飽和低HCの酸化反応に活性を示す。
 GPF装置5は、触媒付フィルタ10をフィルタ容器に収容してなる。触媒付フィルタ10は、コージェライト、SiC、Si、サイアロン、AlTiO3等の無機多孔質材料よりなるセラミックス製フィルタ本体に上記第2触媒を担持させてなる。図3乃至図5に模式的に示すように、触媒付フィルタ10は、ハニカム構造をなしており、互いに平行に延びる多数のセル12、13を備えている。下流端が栓14により閉塞された流入側セル12と、上流端が栓14により閉塞された流出側セル13とが交互に設けられている。セル12とセル13とは薄肉の隔壁(排気ガス通路壁)15を介して隔てられている。図3において、符号11は排気ガス通路を示す。図4おいてハッチングを付した部分は排気ガス流出路13の上流端の栓14を示している。
 フィルタ本体としては、容量が1.0~2.0L、セル密度が200~300cpsi、隔壁15の厚さが150~250μm、隔壁15の気孔率が40~60%、隔壁15の細孔容積が70~400cm程度のものを採用することが好ましい。
  図5に示すように、排気ガスは、触媒付フィルタ10の流入側セル12に流入し、矢印で示すように、セル12の周囲の隔壁15を通って隣接する流出側セル13に流出する。
 図6に示すように、隔壁15はセル12とセル13とを連通する微小な細孔16を有し、この細孔16を排気ガスが通る。排気ガス中のPMは、主にセル12及び細孔16の壁部に付着して堆積する。
 第2触媒17は、流入側セル12を構成する隔壁15の表面(フィルタ表面)と、細孔16の内面に担持されている。第2触媒17は、細孔16の内面よりもセル12を構成する隔壁15の表面に厚く担持されている。上記隔壁15の表面の単位面積当たりの第2触媒の担持量が、細孔16の内面の単位面積当たりの第2触媒の担持量の50倍以上500倍以下になるようにすることが好ましい。
 そのためには、フィルタ本体に対する触媒総担持量の過半量を、流入側セル12を構成する隔壁15の表面に担持するようにすればよい。触媒総担持量の65%以上85%以下を、流入側セル12を構成する隔壁15の表面に担持することが好ましい。
 上記フィルタ本体1L当たりの第2触媒の担持量は隔壁15の表面及び細孔16の内面合わせて20~100g/L程度とすることが好ましい。流入側セル12を構成する隔壁15の表面への第2触媒の担持量は、例えば、フィルタ本体1L当たり15~75g、細孔16の内面への第2触媒の担持量は、例えば、単位細孔容積当たり0.08~0.37gとすればよい。
 <第1触媒及び第2触媒>
 不飽和高HCの浄化活性が高い第1触媒としては、Laを4質量%含有する活性アルミナにPdを担持させてなるPd担持La含有アルミナを必須成分として含有し、さらに、CeZr系複合酸化物等のOSC材(酸素吸蔵放出材)、及び該OSC材にRhを担持させてなるRh触媒を含有するものが好ましい。
 飽和低HCの浄化活性が高い第2触媒としては、Laを4質量%含有する活性アルミナにPtを担持させてなるPt担持La含有アルミナを必須成分として含有し、さらに、上記OSC材を含有するものが好ましい。
 上述の如く、触媒コンバータ3の前段ハニカム触媒7は、不飽和高HCの浄化に優れた第1触媒を含有するから、排気ガス中の不飽和高HCが当該第1触媒によって酸化浄化され、そのときに発生する触媒反応熱によって排気ガス温度が高くなる。これに伴い、飽和低HCの浄化に優れた第2触媒を含有する後段ハニカム触媒8の温度が上昇する。従って、排気ガス中の飽和低HCが、後段ハニカム触媒8の第2触媒によって効率良く浄化されることになる。
 さらに、排気ガスは、ハニカム触媒7,8でのHCの浄化に伴う触媒反応熱によって温度が上昇して下流側の触媒付フィルタ10に流れる。そのため、触媒付フィルタ10の第2触媒による飽和低HCの浄化が効率良く進むことになる。
 また、触媒コンバータ3の前段ハニカム触媒7による不飽和高HCのクラッキングによって飽和低HCが生成し、該飽和低HCが後段ハニカム触媒8及び触媒付きフィルタ10に流れる。後段ハニカム触媒8及び触媒付きフィルタ10の第2触媒は不飽和低HCの浄化に優れているから、上記クラッキングによって生成する飽和低HCも当該後段ハニカム触媒8及び触媒付きフィルタ10の第2触媒によって効率良く浄化されることになる。
 触媒付フィルタ10では、第2触媒が、流入側セル12を構成する隔壁15の表面において厚く、細孔16の内面において薄く担持されている。従って、当該隔壁15の表面において排気ガスの浄化が活発になるから、それに伴って温度が上昇した排気ガスが細孔16を通過していく。そのため、細孔16の内面には第2触媒が薄く担持されているものの、細孔16を通る排気ガス温度が高いことによって、当該第2触媒による排気ガスの浄化が効率良く進む。
 <排気ガス処理装置の製造方法>
 -フィルタの細孔内面への触媒の担持(第1工程)-
 図7に示すように、フィルタ本体(触媒未担持)21の一端部を、第1容器22に貯留した上記第2触媒に係る触媒スラリー23に浸漬して引き上げる。このフィルタ本体21は、上述の流入側セル12と流出側セル13とが交互に設けられものである。
 触媒スラリー23に対してはフィルタ本体21の上流端側を浸漬して引き上げる。これにより、フィルタ本体21の流入側セル12の上流端側の内面に触媒スラリー23が付着する。
 次いで、フィルタ本体21の下流端に真空引きポンプ24を接続し、該ポンプ24を作動させてフィルタ本体21の流出側13を負圧にする。この流出側セル13が負圧になることにより、流入側セル12の上流端側に付着した触媒スラリー23が、当該セル12の下流側に引き寄せられるとともに、隔壁15の細孔16に浸み込んでいく。これにより、フィルタ21の細孔16の内面に触媒が担持される。
 ここに、第1容器22に貯留する触媒スラリー23は、隔壁15の細孔16に浸み込みやすい粘度に調整する。
 -乾燥-
 フィルタ本体21を加熱することにより、隔壁15の細孔16の内面に付着した触媒を乾燥させる。この乾燥は、例えば、フィルタ本体21を150℃の温度に2時間保持することにより行なう。
 -フィルタ隔壁表面への触媒の担持(第2工程)-
 上記乾燥後のフィルタ本体21の上流端側の端部を第2容器25に貯留した上記第2触媒に係る触媒スラリー26に浸漬して引き上げる。これにより、フィルタ本体21の流入側セル12の上流端側の内面に触媒スラリー26が付着する。
 次いで、フィルタ本体21の下流端に真空引きポンプ24を接続し、該ポンプ24を作動させてフィルタ本体21の流出側セル13を負圧にする。この流出側セル13が負圧になることにより、流入側セル12の上流端側に付着した触媒スラリー23が、当該セル12の下流側に引き寄せられる。これにより、フィルタ21の流入側セル12の内面に、すなわち、隔壁15の表面に触媒が担持される。
 ここに、第2容器25に貯留する触媒スラリー26は、真空引きポンプ24による吸引時に隔壁15の細孔16に浸入することを抑制されるように、第1容器22の触媒スラリー23よりも、粘度を高くする。
 なお、触媒スラリー26を隔壁15の表面に担持したとき、一部の細孔16が塞がれるが、隔壁15の表面に担持された触媒スラリー26は、その後の焼成によって多孔質の触媒層になるから、排気ガスはその触媒層を通過して細孔16に流入することができる。
 -焼成-
 上記第2工程を経たフィルタ本体21加熱することにより、フィルタ本体21の隔壁15の表面に付着した触媒及び細孔16の内面に付着した触媒を焼成する。この焼成は、例えば、フィルタ本体21を500℃の温度に2時間保持することにより行なう。必要に応じて、当該焼成前に、乾燥工程(フィルタ本体21を150℃の温度に2時間保持)を入れる。
 以上により、フィルタ本体21の流入側セル12における隔壁15の表面と細孔16の内面に第2触媒が担持された触媒付フィルタ10が得られる。
 -アセンブリー(第3工程)-
 触媒付フィルタ10をフィルタ容器に収容したGPF装置5を、ハニカム触媒7,8を触媒容器に収容した触媒コンバータ3と結合し、触媒コンバータ3を排気マニホールド2に連結管4を介して接続し、GPF装置5と排気管6を接合する。これにより、エンジンの排気ガス処理装置が得られる。
 <実施例及び比較例>
 フィルタ本体21として、容量1.3Lのコージェライト製フィルタを準備した。そのセル密度は250cpsi、隔壁厚は200μm、隔壁の気孔率は50%、隔壁の細孔容積は約100cmである。
 実施例では、当該フィルタ本体21の細孔内面に第2触媒を15g/L(上記第1工程での担持量)、流入側セル12を構成する隔壁面に第2触媒を45g/L(上記第2工程での担持量)担持させることによって触媒付フィルタを得た。
 フィルタ本体21の流入側セル12を構成する隔壁面の総面積は1.82m、水力直径の概念から計算したフィルタ本体21の細孔内面の総面積は258.09mである。従って、流入側セル12を構成する隔壁面(フィルタ表面)の単位面積当たりの触媒担持量は24.73g/m、細孔内面の単位面積当たりの触媒担持量は0.058g/mである。よって、流入側セル12を構成する隔壁面の単位面積当たりの触媒担持量は、細孔内面の単位面積当たりの触媒担持量の約426倍である。
 比較例では、当該フィルタ本体21の細孔内面に第2触媒を60g/L担持させることによって触媒付フィルタを得た。流入側セル12を構成する隔壁面への触媒担持量は零とした。細孔内面の単位面積当たりの触媒担持量は0.23g/mである。
 [昇温特性]
 実施例及び比較例各々の触媒付フィルタに模擬排気ガスとしてのメタンガス(フィルタ入口でのガス温度300℃,CH濃度160ppmC)を流したときの、細孔に流入するガス温度を試算した。
 CH濃度、ガス流量10g/秒及びガス流通時間60秒からフィルタに流入するCH総量(0.06mol)を求めた。実施例フィルタでは、CH総量の75%が流入側セル12の隔壁面に担持されている第2触媒で浄化されると仮定し、そのときのガスの上昇温度をフィルタの熱容量736J/kg・K及び重量0.45kgとCHの下記燃焼熱から求めた。比較例フィルタでは流入側セルでのCH浄化率は零である。結果を表1及び図8に示す。
  CH + 2O → CO + 2HO + 891kJ/mol
Figure JPOXMLDOC01-appb-T000001
 実施例のように、流入側セル12を構成する隔壁面に触媒を担持すると、触媒反応熱によって細孔に流入する排気ガス温度が上昇し、細孔内面に担持されている触媒による排気ガスの浄化に有利になることがわかる。
 [排気圧損]
 実施例及び比較例各々の触媒担持量は同じく60g/Lである。比較例ではその触媒全量を細孔内面に担持しているのに対して、実施例では、触媒全量の3/4を流入側セル12を構成する隔壁面に担持することにより、細孔内面への触媒担持量を15g/Lとしている。そのため、実施例フィルタでは、比較例フィルタに比べて、隔壁の気孔率が5.4%程度大きくなっている。
 触媒付フィルタによるエンジンの排気圧損は気孔率のみに依存すると仮定して、比較例を基準(100%)とする実施例の排気圧損の低下率を算出した。その算出において、排気ガス流量は0.15g/sとし、排気ガス温度は550℃とした。結果を図9に示す。
 実施例では、排気圧損が比較例比で93%程度になっている。これから、実施例のように、触媒の一部を流入側セルを構成する隔壁面に担持すると、排気圧損が小さくなり、エンジンの掃気性の向上、ひいては燃費の向上に有利になることがわかる。
  1  ガソリンエンジン
  2  排気マニホールド
  3  触媒コンバータ
  5  GPF装置
  7  前段ハニカム触媒
  8  後段ハニカム触媒
 10  触媒付フィルタ
 12  流入側セル
 13  流出側セル
 14  栓
 15  隔壁
 16  細孔
 17  第2触媒

Claims (6)

  1.  エンジンの排気ガス通路に排気ガス中の粒子状物質を捕集する多孔質フィルタが設けられてなり、
     上記排気ガスが上記フィルタの表面から該フィルタの細孔を通過して排出される排気ガス処理装置であって、
     上記フィルタ表面及び上記細孔内面に排気ガス浄化用の触媒が担持されており、
     上記触媒は、上記細孔内面よりも上記フィルタ表面に厚く担持されていることを特徴とするエンジンの排気ガス処理装置。
  2.  請求項1において、
     上記フィルタ表面の単位面積当たりの上記触媒の担持量は、上記細孔内面の単位面積当たりの上記触媒の担持量の50倍以上500倍以下であることを特徴とするエンジンの排気ガス処理装置。
  3.  請求項1又は請求項2において、
     上記排気ガス通路における上記フィルタよりも上流側に上記排気ガスを浄化する触媒コンバータが設けられていて、
     上記触媒コンバータは、炭素数が6~9である不飽和炭化水素の酸化反応に活性を示す触媒を備え、
     上記フィルタの上記触媒が炭素数が5以下である飽和炭化水素の酸化反応に活性を示すことを特徴とするエンジンの排気ガス処理装置。
  4.  エンジンの排気ガスを通す細孔を有する多孔質フィルタを、排気ガス浄化用の触媒を分散させた第1触媒スラリーに浸漬し、該触媒を上記フィルタの細孔内面に担持する第1工程と、
     上記第1工程を経た上記フィルタを、上記触媒を分散させた第2触媒スラリーに浸漬し、該触媒を上記フィルタの表面に、上記細孔内面に担持された上記触媒の厚さよりも厚く担持する第2工程と、
     上記第2工程を経た上記フィルタを上記エンジンの排気ガス通路に設ける第3工程とを備えていることを特徴とするエンジンの排気ガス処理装置の製造方法。
  5.  請求項4において、
     上記第1触媒スラリーの触媒と上記第2触媒スラリーの触媒とは、その成分が同じであることを特徴とするに分散させたエンジンの排気ガス処理装置の製造方法。
  6.  請求項4又は請求項5において、
     上記第1工程と上記第2工程の間に、上記フィルタの細孔内面に担持した上記触媒を乾燥させる工程を備え、
     上記第2工程と上記第3工程の間に、上記フィルタの表面に担持された上記触媒及び上記細孔内面に担持された上記触媒を焼成する工程を備えていることを特徴とするエンジンの排気ガス処理装置の製造方法。
PCT/JP2018/019879 2017-06-05 2018-05-23 エンジンの排気ガス処理装置及びその製造方法 WO2018225514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/619,078 US10870082B2 (en) 2017-06-05 2018-05-23 Device for treating exhaust gas from engine and method for manufacturing said device
EP18814241.8A EP3617465B1 (en) 2017-06-05 2018-05-23 Device for treating exhaust gas from engine and method for manufacturing said device
CN201880036612.2A CN110709588B (zh) 2017-06-05 2018-05-23 发动机的尾气处理装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017110551A JP6458827B2 (ja) 2017-06-05 2017-06-05 エンジンの排気ガス処理装置
JP2017-110551 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018225514A1 true WO2018225514A1 (ja) 2018-12-13

Family

ID=64566269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019879 WO2018225514A1 (ja) 2017-06-05 2018-05-23 エンジンの排気ガス処理装置及びその製造方法

Country Status (5)

Country Link
US (1) US10870082B2 (ja)
EP (1) EP3617465B1 (ja)
JP (1) JP6458827B2 (ja)
CN (1) CN110709588B (ja)
WO (1) WO2018225514A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211001A (ja) * 2002-01-28 2003-07-29 Toyota Motor Corp 内燃機関の排気浄化装置、および、該排気浄化装置のパティキュレートフィルタに触媒を担持させる触媒担持方法
JP2006136784A (ja) * 2004-11-11 2006-06-01 Cataler Corp フィルタ触媒
WO2009130869A1 (ja) * 2008-04-22 2009-10-29 本田技研工業株式会社 酸化触媒及び排ガス浄化用酸化触媒装置
JP2010221162A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd 排ガス浄化装置の製造方法及び排ガス浄化装置
JP2013220402A (ja) * 2012-04-18 2013-10-28 Mazda Motor Corp 排気ガス浄化用触媒装置
JP2016179451A (ja) * 2015-03-24 2016-10-13 マツダ株式会社 排気ガス浄化触媒装置及び排気ガス浄化方法
JP2017020442A (ja) 2015-07-13 2017-01-26 株式会社日本自動車部品総合研究所 排ガス浄化フィルタ
JP2017072033A (ja) * 2015-10-05 2017-04-13 株式会社キャタラー 排ガス浄化装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936238B2 (ja) * 2002-05-20 2007-06-27 株式会社デンソー 触媒体および触媒体の製造方法
US20040176246A1 (en) * 2003-03-05 2004-09-09 3M Innovative Properties Company Catalyzing filters and methods of making
JP5330831B2 (ja) * 2006-10-11 2013-10-30 日揮ユニバーサル株式会社 リフロー炉内ガスの浄化用触媒、リフロー炉の汚れ防止方法、およびリフロー炉
CN102380412B (zh) * 2011-09-06 2014-04-30 太原理工大学 负载过渡元素mfi催化剂的制备方法及其mfi催化剂应用
GB201200783D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Substrate monolith comprising SCR catalyst
GB201219600D0 (en) * 2012-10-31 2012-12-12 Johnson Matthey Plc Catalysed soot filter
JP6007864B2 (ja) * 2013-06-10 2016-10-12 トヨタ自動車株式会社 排気浄化フィルタ
WO2015059904A1 (ja) * 2013-10-23 2015-04-30 マツダ株式会社 排気ガス浄化触媒装置及び排気ガス浄化方法
DE112014004876T5 (de) 2013-10-23 2016-07-07 Mazda Motor Corporation Katalysatorvorrichtung für Abgasreinigung und Verfahren für Abgasreinigung
US10864502B2 (en) * 2013-12-16 2020-12-15 Basf Corporation Manganese-containing diesel oxidation catalyst
CN105658309B (zh) * 2014-08-29 2018-04-13 马自达汽车株式会社 尾气净化催化装置及尾气净化方法
CN104234793A (zh) * 2014-09-03 2014-12-24 江阴华音陶瓷机电科技有限公司 柴油机尾气过滤器
JP2016055282A (ja) 2014-09-11 2016-04-21 日本碍子株式会社 ハニカム構造体
US10232299B2 (en) 2014-09-11 2019-03-19 Ngk Insulators, Ltd. Honeycomb structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211001A (ja) * 2002-01-28 2003-07-29 Toyota Motor Corp 内燃機関の排気浄化装置、および、該排気浄化装置のパティキュレートフィルタに触媒を担持させる触媒担持方法
JP2006136784A (ja) * 2004-11-11 2006-06-01 Cataler Corp フィルタ触媒
WO2009130869A1 (ja) * 2008-04-22 2009-10-29 本田技研工業株式会社 酸化触媒及び排ガス浄化用酸化触媒装置
JP2010221162A (ja) * 2009-03-24 2010-10-07 Ngk Insulators Ltd 排ガス浄化装置の製造方法及び排ガス浄化装置
JP2013220402A (ja) * 2012-04-18 2013-10-28 Mazda Motor Corp 排気ガス浄化用触媒装置
JP2016179451A (ja) * 2015-03-24 2016-10-13 マツダ株式会社 排気ガス浄化触媒装置及び排気ガス浄化方法
JP2017020442A (ja) 2015-07-13 2017-01-26 株式会社日本自動車部品総合研究所 排ガス浄化フィルタ
JP2017072033A (ja) * 2015-10-05 2017-04-13 株式会社キャタラー 排ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617465A4

Also Published As

Publication number Publication date
US20200094188A1 (en) 2020-03-26
EP3617465A4 (en) 2020-04-08
JP2018204537A (ja) 2018-12-27
EP3617465B1 (en) 2023-04-19
CN110709588B (zh) 2021-10-22
EP3617465A1 (en) 2020-03-04
US10870082B2 (en) 2020-12-22
CN110709588A (zh) 2020-01-17
JP6458827B2 (ja) 2019-01-30

Similar Documents

Publication Publication Date Title
US8844274B2 (en) Compact diesel engine exhaust treatment system
JP6297767B2 (ja) 排ガス浄化装置
JPWO2016060049A1 (ja) 排ガス浄化用触媒
KR102605894B1 (ko) 막을 가진 촉매 벽 유동형 필터
JP2010269205A (ja) 排ガス浄化用触媒
JP6635819B2 (ja) ハニカム構造体
WO2009087998A1 (ja) 排ガス浄化用触媒
JP2009057922A (ja) 排ガス浄化装置
US20220184591A1 (en) Particulate filter
JP2006007117A (ja) 排気ガス浄化構造体および該構造体を用いた排気ガス浄化方法
JP2012036821A (ja) 内燃機関の排気ガス浄化装置
JP2005291071A (ja) 排気ガス浄化システムおよび排気ガス浄化方法
CN113661311A (zh) 排气净化过滤器
JP2008151100A (ja) 排ガス浄化装置
US20220316372A1 (en) Particulate Filter
JP2017185467A (ja) 排ガス浄化用触媒
JP7381372B2 (ja) 排ガス浄化装置
JP6458827B2 (ja) エンジンの排気ガス処理装置
JP2020056381A (ja) 排ガス浄化装置
JP2003190793A (ja) ディーゼル排ガス浄化用フィルタ型触媒
US10335736B2 (en) Exhaust gas purification material
JP2008115717A (ja) 排ガス浄化装置
JP2005288362A (ja) ディーゼルエンジン排気ガス浄化装置
JP2021126636A (ja) 排ガス浄化触媒装置
JP2008178766A (ja) パティキュレートフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018814241

Country of ref document: EP

Effective date: 20191128

NENP Non-entry into the national phase

Ref country code: DE