WO2018221886A1 - 수직형 프로브핀 및 이를 구비한 프로브핀 조립체 - Google Patents

수직형 프로브핀 및 이를 구비한 프로브핀 조립체 Download PDF

Info

Publication number
WO2018221886A1
WO2018221886A1 PCT/KR2018/005867 KR2018005867W WO2018221886A1 WO 2018221886 A1 WO2018221886 A1 WO 2018221886A1 KR 2018005867 W KR2018005867 W KR 2018005867W WO 2018221886 A1 WO2018221886 A1 WO 2018221886A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
probe pin
tip portion
tip
head portion
Prior art date
Application number
PCT/KR2018/005867
Other languages
English (en)
French (fr)
Inventor
김경남
백병선
김학준
Original Assignee
주식회사 새한마이크로텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 새한마이크로텍 filed Critical 주식회사 새한마이크로텍
Publication of WO2018221886A1 publication Critical patent/WO2018221886A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07357Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with flexible bodies, e.g. buckling beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07371Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate card or back card with apertures through which the probes pass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere

Definitions

  • the present invention relates to a probe pin and a probe pin assembly having the same, and more particularly, to a vertical probe pin and a probe pin assembly having the same.
  • Probe pin assemblies having a plurality of probe pins are widely used for the performance inspection of flat panel displays including liquid crystal displays (LCDs) and organic light emitting diodes and semiconductor devices formed on wafers. .
  • LCDs liquid crystal displays
  • organic light emitting diodes and semiconductor devices formed on wafers.
  • the probe pin assembly is largely classified into a cantilever type and a vertical type according to the structure, and the double vertical probe pin assembly includes a first support and a second support in the form of a plate supporting both ends of the vertical probe pin. Both ends of the vertical probe pin are inserted into through holes formed in the first support and the second support. When the terminal of the object under test is pressed against the tip of the vertical probe pin, the vertical probe pin slides in the through hole, and the elastic deformation portion of the vertical probe pin is bent.
  • a cobra pin which compresses the center of a metal wire and forms a spring part, is mainly used. Since the cobra pin has a circular cross section of the head portion and the tip portion respectively fitted to the first and second supports, the cobra pin is fitted to the first and second supports so that the head portion and the tip portion are offset to prevent rotation.
  • the cobra pin has a problem in that it is very difficult to manufacture because the cobra pin is fixed to the support by inserting the head portion into the alignment film in which the guide hole is formed after inserting the tip portion into the second support and inserting the head portion into the first support again.
  • the offset of the head part and the tip part causes a lateral force that causes the tip part to slide on the terminal of the object under compression when the spring part is compressed, which may damage the terminal of the object under test.
  • This problem is further accentuated as the terminal of the object under test is changed from a ball bump to a copper pillar as the semiconductor device is miniaturized.
  • a straight probe pin having a rectangular cross section is used. Since the probe pins have the same axis between the head part and the tip part, the assembly can be easily assembled by inserting the probe pin through the through hole of the first support body after assembling the first support body and the second support body. have.
  • Japanese Patent Application Laid-Open No. 2014-21064 has a head portion, a tip portion, a bow-shaped elastic deformation portion between the head portion and the tip portion, the axis of the head portion and the tip portion coincides, and the elastic deformation portion is the tip portion to be inspected.
  • the contact inspection apparatus which deforms by receiving the compressive force applied to the axial direction of a tip part in the pressed state is disclosed.
  • Patent Document 1 Japanese Laid-Open Patent No. 2014-21064
  • Patent Document 2 Korean Patent Publication No. 10-2015-0088262
  • An object of the present invention is to provide a vertical probe pin of a novel structure that can minimize damage to the test pad, and can cope with narrow pitch of the test pad.
  • the present invention provides a probe pin for use in a probe pin assembly including a first support having a first through hole, a second support having a second through hole, and a plurality of probe pins. It is provided between the tip portion and the head portion and the tip portion in contact with the test object, and provides a probe pin including a body portion which is elastically deformed when pressure is applied to the tip portion.
  • the tip portion has a first side surface and a second side surface opposite to the first side surface, and on the first side surface of the tip portion, the second side surface is closer to the inner surface of the second through hole than the first side surface.
  • a tip portion bump is formed which protrudes from the first side toward the inner surface of the second through hole so that a portion of the tip portion is aligned inside the second through hole.
  • the body portion is thinner and wider than the head portion and the tip portion, and the widthwise center line of the body portion is biased in the second lateral direction from the widthwise centerline of the tip portion.
  • the end of the head portion is provided with a vertical probe pin, characterized in that a stopper protruding to one side of the head portion is formed to be caught by the first through hole.
  • the head portion has a third side surface and a fourth side surface opposite to the third side surface, and the third side surface of the head portion has a fourth side surface at an inner surface of the first through hole compared to the third side surface.
  • a vertical probe pin is provided, wherein a head alignment bump protruding from the third side toward the inner surface of the first through hole is formed so that a portion of the head portion is aligned within the first through hole in a closer state. do.
  • a vertical probe pin is provided, wherein the third side and the first side are the same side.
  • a stopper protruding toward one side of the head portion is formed at the end of the head portion to be caught by the first through hole, and the stopper and the head alignment bumps protrude in opposite directions to each other. This is provided.
  • the axis of the head portion and the tip portion coincides with each other, and the body portion is provided with a vertical probe pin, which is bent to protrude in a direction intersecting with the axis.
  • a first support having a plurality of first through holes
  • a second support disposed in parallel with the first support at regular intervals, and having a plurality of second through holes
  • the first through A probe pin assembly includes a plurality of probe pins inserted into the holes and the second through holes.
  • the probe pin may be the probe pin described above.
  • Probe pin according to the present invention has the advantage that it is easy to cope with the narrow pitch because the tip is aligned to one side inside the second through hole by the tip alignment bump.
  • the body portion adjacent to the tip portion is also aligned to one side, the body portion biased to one side so as to have the width direction center line and the width direction center line offset by the tip part can perform the role as a stopper more reliably.
  • FIG. 1 is a side cross-sectional view of one embodiment of a probe assembly in accordance with the present invention.
  • FIG. 2 is a view showing the probe pin shown in FIG.
  • FIG. 4 is a view showing a portion of another embodiment of the probe pin shown in FIG.
  • FIG. 1 is a side cross-sectional view of one embodiment of a probe assembly in accordance with the present invention.
  • one embodiment of a probe assembly according to the present invention includes a first support 10, a second support 20, and a plurality of probe pins 100.
  • the first support 10 and the second support 20 are substantially parallel and spaced apart from each other at regular intervals.
  • a plurality of first through holes 11 are formed in the first support 10, and a plurality of second through holes 21 are formed in the second support 20.
  • the first through hole 11 and the corresponding second through hole 21 are aligned with each other in a straight line.
  • the first support 10 is disposed on the circuit board (not shown) side of the probe card, and the second support 20 is disposed on the test subject 30 such as a semiconductor device.
  • the first through hole 11 and the second through hole 21 are formed substantially perpendicular to the surface of each support.
  • the first through hole 11 and the second through hole 21 can be formed by laser processing.
  • the probe pin 100 includes a head portion 110 in contact with a circuit board of a probe card, a tip portion 130 and a head portion 110 in contact with a test object. Located between and the tip portion 130, and includes a body portion 120 which is elastically deformed when pressure is applied to the tip portion 130. The tip part 130 is fitted into the second through hole 21, and the head part 110 is fitted into the first through hole 11.
  • the head 110, the body 120, and the tip 130 extend in the Z direction, and the body 120 is slightly bent in the Y direction.
  • the Z direction means a direction parallel to the Z axis
  • the Y direction means a direction parallel to the Y axis.
  • the width and thickness of the tip portion 130 are smaller than the width and thickness of the second through hole 21, so that the tip portion 130 may move in the Z direction in the second through hole 21. Since the tip 135 of the tip 130 must be exposed to the outside of the second support 20, the length of the tip 130 is longer than the length of the second through hole 21.
  • the width and thickness of the head portion 110 is smaller than the width and thickness of the first through hole 11, so that the head portion 110 can move in the Z direction within the first through hole 11. Since the end 115 of the head portion 110 should be exposed to the outside of the first support 10, the length of the hub portion 110 is longer than the length of the first through hole 11.
  • the head portion 110 and the tip portion 130 have a rectangular cross section
  • the body portion 120 has a flat rectangular cross section compared to the head portion 110 and the tip portion 130.
  • Have The head part 110 and the body part 120 are connected by the first transition part 125 whose shape of the cross section is continuously changed.
  • the body portion 120 and the tip portion 130 are also connected by the second transition portion 126 whose shape of the cross section is continuously changed.
  • the probe pin 100 may be made of a conductive material such as iron, copper, nickel, nickel cobalt, nickel copper, beryllium copper, beryllium nickel, or the like.
  • the multi-layer structure may include a plurality of layers made of different conductive materials.
  • Tip portion 130 has a first side 131 and a second side 132 opposite the first side 131.
  • the first side 131 and the second side 132 are sides perpendicular to the X direction.
  • a tip alignment bump 133 protruding outward is formed at the first side surface 131.
  • the tip portion bump 133 may have a substantial portion of the tip portion 130 having the second side surface 132 closer to the inner surface of the second through hole 21 than the first side surface 131. It serves to align internally. Since the second side surface 132 of the tip portion 130 of all the probe pins 100 is aligned close to the inner surface of the second through hole 21, the interference between the probe pins 100 is minimized even at a narrow pitch. If the different sides of the adjacent probe pins are aligned to approach the inner surface of the second through hole 21, the spacing between the tip portions of some probe pins becomes too narrow, which may cause interference.
  • the body portion 120 is thinner and wider than the head portion 110 and the tip portion 130. Thickness represents the length in the Y direction, and width represents the length in the X direction.
  • the width direction center line 129 of the body part 120 is biased in the direction (X direction) of the second side surface 132 from the width direction center line 139 of the tip part 130.
  • the body portion 120 Since the width of the body portion 120 is wider than the tip portion 130, the body portion 120 protrudes more toward the second side surface 132 than the tip portion 130.
  • the first side 131 of the tip 130 and the same side 121 of the body 120 form a substantially straight line.
  • the width of the second through hole 21 is larger than that of the tip portion 130 and smaller than the width of the body portion 120. If so, the second transition part 126 connecting the body part 120 and the tip part 130 serves as a stopper for preventing the probe pin 100 from passing through the second through hole 21.
  • the second side surface 132 of the tip portion 130 of the probe pin 100 is aligned with the inner surface of the second through hole 21 by the tip portion alignment bump 133, and the body portion 120 is disposed.
  • the second transition portion 126 connecting the body portion 120 and the tip portion 130 may serve as a stopper.
  • Body portion 120 is slightly bent in the Y direction. Therefore, when the tip portion 130 is pressed by the pad 31 of the test subject 30 and further deformation occurs, the body portion 120 is further bent in the Y direction. Therefore, when the probe pins 100 are mounted in the same direction, all the probe pins 100 may be bent in the same direction to prevent the probe pins 100 from contacting each other.
  • the body portion 120 is processed to be thinner than the head portion 110 and the tip portion 130 to enable elastic deformation. Therefore, in order to reduce the electrical resistance of the body portion 120, it is preferable to form the width of the body portion 120 as large as possible.
  • the probe pin 100 since the probe pin 100 is aligned to one side by using the tip alignment bump 133, the probe pin 100 moves freely in the width direction (X direction) inside the second through hole 21. Compared with this, there is an advantage in that the width of the body portion 120 can be increased.
  • the operation of the probe pin 100 will be briefly described when the tip portion 130 of the probe pin 100 described above is pressed against the pad 31 of the subject 30.
  • a compressive force in the Z direction acts on the probe pin 100.
  • the tip portion 130 of the probe pin 100 slides along the inner surface of the second through hole 21, the body portion 120 is deformed in the Y direction. In this case, the tip 130 moves in a state in which the second side surface 132 is aligned closer to the inner surface of the second through hole 21 than the first side surface 131.
  • the tip portion of the probe pin may include various types of tip alignment bumps, and may include a plurality of tip alignment bumps.
  • FIG. 4 is a view showing a portion of another embodiment of the probe pin shown in FIG.
  • a stopper 216 protruding to one side to be caught by the first through hole 11 may be formed at the end 215 of the head 210 in the present embodiment.
  • the second transition part 125 or the body part 120 connecting the body part 120 and the tip part 110 of FIG. 2 may be pulled out of the probe pin 100 in the downward direction (-Z direction).
  • it serves as a stopper for preventing the secondary stopper 216 may be formed at the end 215 of the head portion 210.
  • pressure for measurement is applied, a substantial portion of the stopper 216 slides inside the first through hole 11 and moves.
  • FIG. 5 shows other examples of stoppers. As shown in FIG. 5, various types of stoppers may be formed in the head part.
  • the head portion 210 also has a third side 211 and a fourth side 212 opposite the third side 211.
  • the third side surface 211 and the fourth side surface 212 are perpendicular to the X direction.
  • a head portion bump 213 protruding from the third side surface 211 toward the inner surface of the first through hole 11 is formed.
  • the head alignment bump 213 has the first through hole (Most of the head portion 210 with the fourth side 212 is closer to the inner surface of the first through hole 11 than the third side 211. 11) Align it internally.
  • the head alignment bump 213 may protrude in the same direction as the tip alignment bump 133.
  • the stopper 216 of the head 210 preferably protrudes in a direction opposite to the protruding direction of the head alignment bump 113.
  • the head alignment bumps may be in various forms as illustrated in FIG. 3, like the tip alignment bumps.

Abstract

본 발명은 수직형 프로브핀 및 이를 구비한 프로브핀 조립체에 관한 것이다.본 발명은 제1 관통구멍이 형성된 제1 지지체와 제2 관통구멍이 형성된 제2 지지체 및 복수의 프로브핀을 포함하는 프로브핀 조립체에 사용되는 프로브핀으로서, 헤드부, 피검사체에 접촉하는 팁부 및 헤드부와 팁부 사이에 위치하며, 상기 팁부에 압력이 가해지면 탄성 변형되는 몸체부를 포함하는 프로브핀을 제공한다. 상기 팁부는 제1 측면 및 상기 제1 측면에 대향하는 제2 측면을 구비하며, 상기 팁부의 제1 측면에는, 상기 제2 측면이 상기 제1 측면에 비해서 상기 제2 관통구멍의 내면에 더 가까운 상태로 상기 팁부의 일부가 상기 제2 관통구멍 내부에서 정렬되도록, 상기 제1 측면에서 제2 관통구멍의 내면을 향해서 돌출된 팁부 정렬 범프가 형성된다. 그리고 상기 몸체부는 상기 헤드부 및 팁부에 비해서 두께가 얇고, 폭이 넓으며, 상기 몸체부의 폭 방향 중심선은 상기 팁부의 폭 방향 중심선으로부터 제2 측면 방향으로 치우친다.

Description

수직형 프로브핀 및 이를 구비한 프로브핀 조립체
본 발명은 프로브핀 및 이를 구비한 프로브핀 조립체에 관한 것으로서, 더욱 상세하게는 수직형 프로브핀 및 이를 구비한 프로브핀 조립체에 관한 것이다.
액정표시장치(Liquid Crystal Display, LCD), 유기 발광다이오드(Organic Light Emitting Diode)를 포함한 평판표시장치와 웨이퍼 상에 형성된 반도체 소자의 성능 검사에는 복수의 프로브핀을 구비한 프로브핀 조립체가 널리 사용되고 있다.
프로브핀 조립체는 구조에 따라 크게 캔틸레버형과 수직형으로 분류되며 이중 수직형 프로브핀 조립체는 수직형 프로브핀의 양단부를 지지하는 플레이트 형태의 제1 지지체와 제2 지지체를 포함한다. 수직형 프로브핀의 양단부는 제1 지지체와 제2 지지체에 형성된 관통구멍에 삽입된다. 피검사체의 단자를 수직형 프로브핀의 팁부에 대하여 누르면, 수직형 프로브핀은 관통구멍 내에서 미끄러지고, 수직형 프로브핀의 탄성변형부가 구부려진다.
종래의 수직형 프로브핀 조립체에는 금속 와이어의 중심부를 압착하여, 스프링부를 형성한 코브라 핀이 주로 사용되었다. 코브라 핀은 제1 지지체 및 제2 지지체에 각각 끼워진 헤드부와 팁부가 원형 단면을 가지므로, 회전을 방지하기 위해서, 헤드부와 팁부가 오프셋되도록 제1 지지체 및 제2 지지체에 끼워진다.
이러한 구조로 인해서 코브라 핀은 제2 지지체에 팁부를 끼운 후 안내구멍이 형성된 정렬 필름에 헤브부를 끼우고, 다시 헤드부를 제1 지지체에 끼우는 방식으로 지지체에 고정하여야 하므로, 제작이 매우 어렵다는 문제가 있었다.
또한, 피검사체 패드의 손상을 방지하기 위해서, 접촉 압력을 감소시키려고 스프링부의 두께를 얇게 하면, 스프링부의 폭이 증가해서, 인접하는 코브라 핀과의 간섭이 생겨서 협 피치에 대응하기 어렵다는 문제가 있었다.
또한, 헤드부와 팁부의 오프셋에 의해서, 스프링부의 압축시에 팁부가 피검사체의 단자 위에서 슬라이딩하도록 하는 횡 방향 힘이 발생하여, 피검사체의 단자를 손상할 수 있다는 문제도 있었다. 이러한 문제는 반도체 소자의 미세화가 진행됨에 따라서 피검사체의 단자가 볼 범프(Ball Bump)에서 구리 기둥(Cu Pillar)으로 변경되면서, 더욱 부각된다.
이러한 문제를 개선하기 위해서, 사각형 단면을 가지는 직선형 프로브핀이 사용되고 있다. 이러한 프로브핀은 헤드부와 팁부의 축선이 일치하기 때문에, 제1 지지체와 제2 지지체를 조립한 후 제1 지지체의 관통구멍을 통해서, 프로브핀을 삽입하는 방식으로 간단하게 조립이 가능하다는 장점이 있다.
예를 들어, 일본공개특허 제2014-21064호에는 헤드부, 팁부, 헤드부와 팁부 사이에 활 모양의 탄성변형부를 구비하며, 헤드부와 팁부의 축선이 일치하며, 탄성변형부는 팁부가 피검사체에 눌린 상태에서 팁부의 축선 방향으로 가해지는 압축력을 받아서 변형되는 접촉 검사 장치가 개시되어 있다.
[선행기술문헌]
(특허문헌 1) 일본공개특허 제2014-21064호
(특허문헌 2) 한국공개특허 제10-2015-0088262호
본 발명은 피검사체 패드의 손상을 최소화할 수 있으며, 피검사체 패드의 협 피치화에도 대응할 수 있는 새로운 구조의 수직형 프로브핀을 제공하는 것을 목적으로 한다.
또한, 이러한 직형 프로브핀들을 구비한 프로브 구조체를 제공하는 것을 목적으로 한다.
상술한 목적을 달성하기 위해서, 본 발명은 제1 관통구멍이 형성된 제1 지지체와 제2 관통구멍이 형성된 제2 지지체 및 복수의 프로브핀을 포함하는 프로브핀 조립체에 사용되는 프로브핀으로서, 헤드부, 피검사체에 접촉하는 팁부 및 헤드부와 팁부 사이에 위치하며, 상기 팁부에 압력이 가해지면 탄성 변형되는 몸체부를 포함하는 프로브핀을 제공한다.
상기 팁부는 제1 측면 및 상기 제1 측면에 대향하는 제2 측면을 구비하며, 상기 팁부의 제1 측면에는, 상기 제2 측면이 상기 제1 측면에 비해서 상기 제2 관통구멍의 내면에 더 가까운 상태로 상기 팁부의 일부가 상기 제2 관통구멍 내부에서 정렬되도록, 상기 제1 측면에서 제2 관통구멍의 내면을 향해서 돌출된 팁부 정렬 범프가 형성된다.
그리고 상기 몸체부는 상기 헤드부 및 팁부에 비해서 두께가 얇고, 폭이 넓으며, 상기 몸체부의 폭 방향 중심선은 상기 팁부의 폭 방향 중심선으로부터 제2 측면 방향으로 치우친다.
또한, 상기 헤드부의 끝단에는 상기 제1 관통구멍에 걸리도록 상기 헤드부의 일 측으로 돌출된 스토퍼가 형성된 것을 특징으로 하는 수직형 프로브핀이 제공된다.
또한, 상기 헤드부는 제3 측면 및 상기 제3 측면에 대향하는 제4 측면을 구비하며, 상기 헤드부의 제3 측면에는, 상기 제4 측면이 상기 제3 측면에 비해서 상기 제1 관통구멍의 내면에 더 가까운 상태로 상기 헤드부의 일부가 상기 제1 관통구멍 내부에서 정렬되도록, 상기 제3 측면에서 제1 관통구멍의 내면을 향해서 돌출된 헤드부 정렬 범프가 형성된 것을 특징으로 하는 수직형 프로브핀이 제공된다.
또한, 상기 제3 측면과 상기 제1 측면은 같은 쪽 측면인 것을 특징으로 하는 수직형 프로브핀이 제공된다.
또한, 상기 헤드부의 끝단에는 상기 제1 관통구멍에 걸리도록 상기 헤드부의 일 측으로 돌출된 스토퍼가 형성되며, 상기 스토퍼와 상기 헤드부 정렬 범프는 서로 반대 방향으로 돌출된 것을 특징으로 하는 수직형 프로브핀이 제공된다.
또한, 상기 헤드부와 상기 팁부의 축선은 일치하며, 상기 몸체부는 상기 축선과 교차하는 방향으로 돌출되도록 굽은 것을 특징으로 하는 수직형 프로브핀이 제공된다.
또한, 본 발명에 따르면, 복수의 제1 관통구멍이 형성된 제1 지지체와, 상기 제1 지지체와 일정한 간격으로 나란하게 배치되며, 복수의 제2 관통구멍이 형성된 제2 지지체와, 상기 제1 관통구멍 및 제2 관통구멍에 삽입되는 복수의 프로브핀을 포함하는 프로브핀 조립체가 제공된다. 여기서 프로브핀은 상술한 프로브핀일 수 있다.
본 발명에 따른 프로브핀은 팁부 정렬 범프에 의해서 팁부가 제2 관통구멍 내부에서 한쪽으로 정렬되기 때문에 협 피치에 대응하기 용이하다는 장점이 있다.
또한, 팁부와 인접하는 몸체부도 한쪽으로 정렬되므로, 팁부의 폭 방향 중심선과 오프셋(offset)된 폭 방향 중심선을 가지도록 한쪽으로 치우친 몸체부가 스토퍼로서의 역할을 더욱 확실하게 수행할 수 있다.
도 1은 본 발명에 따른 프로브 조립체의 일실시예의 측단면도이다.
도 2는 도 1에 도시된 프로브핀을 나타낸 도면이다.
도 3은 팁부 정렬 범프의 다른 예들을 나타낸 도면이다.
도 4는 도 1의 도시된 프로브핀의 다른 실시예의 일부를 나타낸 도면이다.
도 5는 스토퍼의 다른 예들을 나타낸 도면이다.
이하에서 본 발명의 바람직한 실시예를 도면을 참조하여 상세히 설명하기로 한다. 다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명에 따른 프로브 조립체의 일실시예의 측단면도이다. 도 1에 도시된 바와 같이, 본 발명에 따른 프로브 조립체의 일실시예는 제1 지지체(10), 제2 지지체(20) 및 복수의 프로브핀(100)을 구비한다. 제1 지지체(10)와 제2 지지체(20)는 실질적으로 평행하며, 서로 일정한 간격으로 떨어져 있다. 제1 지지체(10)에는 복수의 제1 관통구멍(11)이 형성되며, 제2 지지체(20)에는 복수의 제2 관통구멍(21)이 형성된다. 프로브 조립체에서, 제1 관통구멍(11) 및 이에 대응하는 제2 관통구멍(21)은 서로 일직선으로 정렬되어 있다. 제1 지지체(10)는 프로브 카드의 회로기판(미도시) 쪽에 배치되며, 제2 지지체(20)는 반도체 디바이스와 같은 피검사체(30) 쪽으로 배치된다. 제1 관통구멍(11)과 제2 관통구멍(21)은 각각의 지지체의 면에 대체로 수직으로 형성된다. 제1 관통구멍(11)과 제2 관통구멍(21)은 레이저 가공에 의해서 형성할 수 있다.
도 2는 도 1에 도시된 프로브핀을 나타낸 도면이다. 도 2의 (a)는 프로브핀의 정면도이며, (b)는 측면도이며, (c)는 위치별 단면의 형상을 나타내는 도면이다. 도 2의 (a)와 (b)에 도시된 바와 같이, 프로브핀(100)은 프로브 카드의 회로기판에 접하는 헤드부(110), 피검사체에 접촉하는 팁부(130) 및 헤드부(110)와 팁부(130) 사이에 위치하며, 팁부(130)에 압력이 가해지면 탄성 변형되는 몸체부(120)를 포함한다. 팁부(130)는 제2 관통구멍(21)에 끼워지며, 헤드부(110)는 제1 관통구멍(11)에 끼워진다.
도 1과 2를 참고하면, 헤드부(110), 몸체부(120) 및 팁부(130)는 Z 방향으로 연장되어 있으며, 몸체부(120)는 Y 방향으로 살짝 굽어 있다. 본 발명에서 Z 방향이란 Z축과 나란한 방향을 의미하며, Y 방향이란 Y축과 나란한 방향을 의미한다.
팁부(130)의 폭과 두께는 제2 관통구멍(21)의 폭과 두께에 비해서 작아서, 팁부(130)는 제2 관통구멍(21) 내에서 Z 방향으로 이동할 수 있다. 팁부(130)의 끝단(135)이 제2 지지체(20)의 외부로 노출되어야 하므로, 팁부(130)의 길이는 제2 관통구멍(21)의 길이에 비해서 길다. 또한, 헤드부(110)의 폭과 두께는 제1 관통구멍(11)의 폭과 두께에 비해서 작아서, 헤드부(110)는 제1 관통구멍(11) 내에서 Z 방향으로 이동할 수 있다. 헤드부(110)의 끝단(115)이 제1 지지체(10)의 외부로 노출되어야 하므로, 헤브부(110)의 길이는 제1 관통구멍(11)의 길이에 비해서 길다.
도 2의 (c)에 도시된 바와 같이, 헤드부(110)와 팁부(130)는 사각형 단면을 가지며, 몸체부(120)는 헤드부(110)와 팁부(130)에 비해서 납작한 사각형 단면을 가진다. 헤드부(110)와 몸체부(120)는 단면의 형상이 연속적으로 변화하는 제1 전이부(125)에 의해서 연결된다. 몸체부(120)와 팁부(130)도 단면의 형상이 연속적으로 변화하는 제2 전이부(126)에 의해서 연결된다.
프로브핀(100)은 철, 구리, 니켈, 니켈 코발트, 니켈 구리, 베릴륨 구리, 베릴륨 니켈 등의 전도성 물질로 이루어질 수 있다. 또한, 서로 다른 전도성 물질로 이루어 복수의 층을 포함하는 다층 구조일 수 있다.
팁부(130)는 제1 측면(131) 및 제1 측면(131)에 대향하는 제2 측면(132)을 구비한다. 제1 측면(131)과 제2 측면(132)은 X 방향과 직교하는 측면들이다. 제1 측면(131)에는 바깥쪽으로 돌출된 팁부 정렬 범프(133)가 형성된다.
팁부 정렬 범프(133)는 제2 측면(132)이 제1 측면(131)에 비해서 제2 관통구멍(21)의 내면에 더 가까운 상태로 팁부(130)의 상당부가 제2 관통구멍(21) 내부에서 정렬되도록 하는 역할을 한다. 모든 프로브핀(100)의 팁부(130)의 제2 측면(132)이 제2 관통구멍(21)의 내면에 가깝게 정렬됨으로써, 협 피치에서도 프로브핀(100) 간의 간섭이 최소화된다는 장점이 있다. 만약, 인접하는 프로브핀의 서로 다른 측면이 제2 관통구멍(21)의 내면에 가까워지도록 정렬된다면, 일부 프로브핀의 팁부 사이의 간격이 너무 좁아져서, 간섭이 생길 수 있다.
도 2의 (c)에 가장 잘 도시된 바와 같이, 몸체부(120)는 헤드부(110) 및 팁부(130)에 비해서 두께가 얇고, 폭이 넓다. 두께는 Y 방향의 길이를 나타내며, 폭은 X 방향의 길이를 나타낸다. 몸체부(120)의 폭 방향 중심선(129)은 팁부(130)의 폭 방향 중심선(139)으로부터 제2 측면(132) 방향(X 방향)으로 치우친다.
몸체부(120)의 폭이 팁부(130)에 비해서 넓으므로, 몸체부(120)가 팁부(130)에 비해서 제2 측면(132) 쪽으로 더 돌출된다. 그리고 팁부(130)의 제1 측면(131)과 몸체부(120)의 같은 쪽 측면(121)은 대체로 일직선을 이룬다. 이와 같이, 몸체부(120)가 팁부(130)에 비해서 폭이 넓으므로, 제2 관통구멍(21)의 폭이 팁부(130)의 폭에 비해서 크고, 몸체부(120)의 폭에 비해서 작다면, 몸체부(120)와 팁부(130)를 연결한 제2 전이부(126)가 프로브핀(100)이 제2 관통구멍(21)을 통과하지 못하도록 하는 스토퍼 역할을 한다.
상술한 바와 같이, 팁부 정렬 범프(133)에 의해서 프로브핀(100)의 팁부(130)의 제2 측면(132)이 제2 관통구멍(21)의 내면에 가깝게 정렬되어 있으며, 몸체부(120)가 제2 측면(132) 쪽으로 돌출되므로, 몸체부(120)와 팁부(130)를 연결하는 제2 전이부(126)가 스토퍼 역할을 충실하게 수행할 수 있다.
몸체부(120)는 Y 방향으로 살짝 굽어 있다. 따라서 팁부(130)가 피검사체(30)의 패드(31)에 눌리면서 추가 변형이 일어날 때, 몸체부(120)는 Y 방향으로 더 굽는다. 따라서 동일한 방향으로 프로브핀(100)을 실장한 경우에는 모든 프로브핀(100)이 동일한 방향으로 굽어서, 프로브핀(100) 끼리 접촉되는 것을 방지할 수 있다.
몸체부(120)는 탄성 변형이 가능하도록, 헤드부(110) 및 팁부(130)에 비해서 두께가 얇게 가공되어 있다. 따라서 몸체부(120)의 전기저항을 떨어뜨리기 위해서는 몸체부(120)의 폭을 가능하면 크게 형성하는 것이 바람직하다. 본 발명에서는 팁부 정렬 범프(133)를 이용하여 프로브핀(100)을 한쪽으로 정렬하므로, 프로브핀(100)이 제2 관통구멍(21)의 내부에서 폭 방향(X 방향)으로 자유롭게 이동하는 경우에 비해서 몸체부(120)의 폭을 크게 할 수 있다는 장점이 있다.
이어서, 상술한 프로브핀(100)의 팁부(130)가 피검사체(30)의 패드(31)에 대해서 눌렸을 때, 프로브핀(100)의 동작에 대해서 간단히 설명한다. 프로브핀(100)의 팁부(130)가 피검사체(30)의 패드(31)에 대해서 눌리면, Z 방향의 압축력이 프로브핀(100)에 작용한다. 프로브핀(100)의 팁부(130)가 제2 관통구멍(21)의 내면을 따라서 슬라이딩하면서, 몸체부(120)가 Y 방향으로 변형된다. 이때, 팁부(130)는 제2 측면(132)이 제1 측면(131)에 비해서 제2 관통구멍(21)의 내면에 더 가까운 상태로 정렬된 상태로 움직인다.
도 3은 팁부 정렬 범프의 다른 예들을 나타낸 도면이다. 도 3에 도시된 바와 같이, 프로브핀의 팁부는 다양한 형태의 팁부 정렬 범프를 구비할 수 있으며, 복수 개의 팁부 정렬 범프를 구비할 수도 있다.
도 4는 도 1의 도시된 프로브핀의 다른 실시예의 일부를 나타낸 도면이다.
도 4에 도시된 바와 같이 본 실시예에서 헤드부(210)의 끝단(215)에는 제1 관통구멍(11)에 걸리도록 일 측으로 돌출된 스토퍼(216)가 형성될 수 있다. 상술한 바와 같이, 도 2의 몸체부(120)와 팁부(110)를 연결한 제2 전이부(125) 또는 몸체부(120)가 프로브핀(100)이 아래 방향(-Z 방향)으로 빠지는 것을 방지하는 스토퍼 역할을 하지만, 헤드부(210)의 끝단(215)에도 보조적인 스토퍼(216)를 형성할 수 있다. 단, 측정을 위한 압력이 가해지면, 스토퍼(216)의 상당부분이 제1 관통구멍(11)의 내부로 미끄러져 이동한다.
도 5는 스토퍼의 다른 예들을 나타낸 도면이다. 도 5에 도시된 바와 같이, 헤드부에는 다양한 형태의 스토퍼가 형성될 수 있다.
또한, 헤드부(210)는 제3 측면(211) 및 상기 제3 측면(211)에 대향하는 제4 측면(212)을 구비한다. 제3 측면(211)과 제4 측면(212)은 X 방향과 직교한다. 헤드부(210)의 제3 측면(211)에는, 제3 측면(211)에서 제1 관통구멍(11)의 내면을 향해서 돌출된 헤드부 정렬 범프(213)가 형성된다. 헤드부 정렬 범프(213)는 제4 측면(212)이 제3 측면(211)에 비해서 제1 관통구멍(11)의 내면에 더 가까운 상태로 헤드부(210)의 대부분이 제1 관통구멍(11) 내부에서 정렬되도록 한다.
헤드부 정렬 범프(213)는 팁부 정렬 범프(133)와 동일한 방향으로 돌출될 수 있다.
헤드부(210)의 스토퍼(216)는 헤드부 정렬 범프(113)의 돌출방향과 반대방향으로 돌출되는 것이 바람직하다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.
예를 들어, 헤드부 정렬 범프도 팁부 정렬 범프와 마찬가지로, 도 3에 예시된 바와 같은 다양한 형태일 수 있다.

Claims (7)

  1. 제1 관통구멍이 형성된 제1 지지체와 제2 관통구멍이 형성된 제2 지지체 및 복수의 프로브핀을 포함하는 프로브핀 조립체에 사용되는 프로브핀으로서,
    헤드부, 피검사체에 접촉하는 팁부 및 헤드부와 팁부 사이에 위치하며, 상기 팁부에 압력이 가해지면 탄성 변형되는 몸체부를 포함하며,
    상기 팁부는 제1 측면 및 상기 제1 측면에 대향하는 제2 측면을 구비하며, 상기 팁부의 제1 측면에는, 상기 제2 측면이 상기 제1 측면에 비해서 상기 제2 관통구멍의 내면에 더 가까운 상태로 상기 팁부의 일부가 상기 제2 관통구멍 내부에서 정렬되도록, 상기 제1 측면에서 제2 관통구멍의 내면을 향해서 돌출된 팁부 정렬 범프가 형성되고,
    상기 몸체부는 상기 헤드부 및 팁부에 비해서 두께가 얇고, 폭이 넓으며, 상기 몸체부의 폭 방향 중심선은 상기 팁부의 폭 방향 중심선으로부터 제2 측면 방향으로 치우친 것을 특징으로 하는 수직형 프로브핀.
  2. 제1항에 있어서,
    상기 헤드부의 끝단에는 상기 제1 관통구멍에 걸리도록 상기 헤드부의 일 측으로 돌출된 스토퍼가 형성된 것을 특징으로 하는 수직형 프로브핀.
  3. 제1항에 있어서,
    상기 헤드부는 제3 측면 및 상기 제3 측면에 대향하는 제4 측면을 구비하며, 상기 헤드부의 제3 측면에는, 상기 제4 측면이 상기 제3 측면에 비해서 상기 제1 관통구멍의 내면에 더 가까운 상태로 상기 헤드부의 일부가 상기 제1 관통구멍 내부에서 정렬되도록, 상기 제3 측면에서 제1 관통구멍의 내면을 향해서 돌출된 헤드부 정렬 범프가 형성된 것을 특징으로 하는 수직형 프로브핀.
  4. 제3항에 있어서,
    상기 제3 측면과 상기 제1 측면은 같은 쪽 측면인 것을 특징으로 하는 수직형 프로브핀.
  5. 제3항에 있어서,
    상기 헤드부의 끝단에는 상기 제1 관통구멍에 걸리도록 상기 헤드부의 일 측으로 돌출된 스토퍼가 형성되며,
    상기 스토퍼와 상기 헤드부 정렬 범프는 서로 반대 방향으로 돌출된 것을 특징으로 하는 수직형 프로브핀.
  6. 제1항에 있어서,
    상기 헤드부와 상기 팁부의 축선은 일치하며,
    상기 몸체부는 상기 축선과 교차하는 방향으로 돌출되도록 굽은 것을 특징으로 하는 수직형 프로브핀.
  7. 복수의 제1 관통구멍이 형성된 제1 지지체와,
    상기 제1 지지체와 일정한 간격으로 나란하게 배치되며, 복수의 제2 관통구멍이 형성된 제2 지지체와,
    상기 제1 관통구멍 및 제2 관통구멍에 삽입되는 복수의 프로브핀을 포함하며,
    상기 프로브핀은 제1항 내지 제6항 중 어느 한 항의 프로브핀인 프로브핀 조립체.
PCT/KR2018/005867 2017-05-31 2018-05-24 수직형 프로브핀 및 이를 구비한 프로브핀 조립체 WO2018221886A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170067578A KR101769355B1 (ko) 2017-05-31 2017-05-31 수직형 프로브핀 및 이를 구비한 프로브핀 조립체
KR10-2017-0067578 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221886A1 true WO2018221886A1 (ko) 2018-12-06

Family

ID=59753284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005867 WO2018221886A1 (ko) 2017-05-31 2018-05-24 수직형 프로브핀 및 이를 구비한 프로브핀 조립체

Country Status (3)

Country Link
KR (1) KR101769355B1 (ko)
TW (1) TWI668449B (ko)
WO (1) WO2018221886A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102114210B1 (ko) 2018-12-17 2020-05-25 주식회사 코리아 인스트루먼트 프로브 빔 및 프로브 모듈
JP2022036615A (ja) * 2020-08-24 2022-03-08 株式会社日本マイクロニクス 電気的接触子の電気的接触構造及び電気的接続装置
TWI751940B (zh) * 2021-04-14 2022-01-01 中華精測科技股份有限公司 探針卡裝置及類彈簧探針
KR102538834B1 (ko) 2021-04-15 2023-06-02 (주)위드멤스 프로브 핀
KR102321083B1 (ko) 2021-07-21 2021-11-03 (주)새한마이크로텍 접촉 프로브
KR102321081B1 (ko) 2021-07-21 2021-11-03 (주)새한마이크로텍 접촉 프로브 조립체
KR102644534B1 (ko) 2023-10-30 2024-03-07 (주)새한마이크로텍 접촉 프로브

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806379B1 (ko) * 2006-12-22 2008-02-27 세크론 주식회사 프로브 및 이를 포함하는 프로브 카드
JP2011232313A (ja) * 2010-04-30 2011-11-17 Nhk Spring Co Ltd コンタクトプローブおよびプローブユニット
JP5436122B2 (ja) * 2009-09-28 2014-03-05 株式会社エンプラス 電気部品用ソケット
JP5530312B2 (ja) * 2010-09-03 2014-06-25 株式会社エンプラス 電気部品用ソケット
KR101716803B1 (ko) * 2014-12-18 2017-03-15 이채갑 프로브 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333394B (zh) * 2012-12-04 2020-06-09 日本电子材料株式会社 接触探针
WO2016024346A1 (ja) * 2014-08-13 2016-02-18 株式会社東京精密 プローバ及びプローブ検査方法
TWI603096B (zh) * 2015-06-19 2017-10-21 Seiko Epson Corp Electronic parts conveying apparatus and electronic parts inspection apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806379B1 (ko) * 2006-12-22 2008-02-27 세크론 주식회사 프로브 및 이를 포함하는 프로브 카드
JP5436122B2 (ja) * 2009-09-28 2014-03-05 株式会社エンプラス 電気部品用ソケット
JP2011232313A (ja) * 2010-04-30 2011-11-17 Nhk Spring Co Ltd コンタクトプローブおよびプローブユニット
JP5530312B2 (ja) * 2010-09-03 2014-06-25 株式会社エンプラス 電気部品用ソケット
KR101716803B1 (ko) * 2014-12-18 2017-03-15 이채갑 프로브 장치

Also Published As

Publication number Publication date
TW201903415A (zh) 2019-01-16
KR101769355B1 (ko) 2017-08-18
TWI668449B (zh) 2019-08-11

Similar Documents

Publication Publication Date Title
WO2018221886A1 (ko) 수직형 프로브핀 및 이를 구비한 프로브핀 조립체
KR102103370B1 (ko) 프로브 핀, 검사 지그, 검사 유닛 및 검사 장치
KR102007611B1 (ko) 프로브 핀, 검사 지그, 검사 유닛 및 검사 장치
WO2017164631A1 (en) Test socket assembly
WO2011149203A2 (ko) 스프링 콘택트 구조
WO2015012498A1 (ko) 도전성 커넥터 및 그 제조방법
WO2019235874A1 (ko) 일체형 하우징이 가능한 일체형 포고 핀
WO2019168251A1 (ko) 이동 가능한 커넥터를 포함한 테스트 소켓 및 그 테스트 소켓을 포함한 테스트 장치
KR101532393B1 (ko) 전기적 검사소켓
WO2023003251A1 (ko) 접촉 프로브 조립체
WO2023003255A1 (ko) 접촉 프로브
WO2017119676A1 (en) Semiconductor test contactor
JP2017096787A (ja) 電気的接触子及び電気的接続装置
KR20180131312A (ko) 수직형 프로브핀 및 이를 구비한 프로브핀 조립체
WO2013042907A2 (ko) 반도체 검사 소켓
KR20010083033A (ko) 검사용 탐침 및 그 검사용 탐침을 구비한 검사장치
WO2020096238A1 (ko) 도전성 입자 및 이를 갖는 신호 전송 커넥터
KR101175067B1 (ko) 필름 타입 핀 보드
TW201303308A (zh) 探針卡
KR101920855B1 (ko) 검사용 소켓
WO2020241990A1 (ko) 스프링을 이용한 도전성 핀과, 이를 이용한 테스트 소켓 및 인터포저
KR102094618B1 (ko) 마이크로 접촉 핀
CN111579837B (zh) 一种适用于大电流高速信号测试的探针及连接器
WO2010087668A2 (ko) 프로브 구조물 및 이를 갖는 프로브 카드
WO2016190601A1 (ko) 필름 컨택터 및 이를 포함하는 테스트 소켓

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810665

Country of ref document: EP

Kind code of ref document: A1