WO2018221584A1 - 粉体の分級装置及び分級システム - Google Patents

粉体の分級装置及び分級システム Download PDF

Info

Publication number
WO2018221584A1
WO2018221584A1 PCT/JP2018/020758 JP2018020758W WO2018221584A1 WO 2018221584 A1 WO2018221584 A1 WO 2018221584A1 JP 2018020758 W JP2018020758 W JP 2018020758W WO 2018221584 A1 WO2018221584 A1 WO 2018221584A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw powder
powder
raw
classification
powder discharge
Prior art date
Application number
PCT/JP2018/020758
Other languages
English (en)
French (fr)
Inventor
一成 謝花
好雄 岸田
三島 剛
Original Assignee
株式会社リュウクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リュウクス filed Critical 株式会社リュウクス
Priority to CN201880034777.6A priority Critical patent/CN110662610B/zh
Priority to KR1020197036431A priority patent/KR102395420B1/ko
Publication of WO2018221584A1 publication Critical patent/WO2018221584A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/06Feeding or discharging arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets

Definitions

  • This invention relates to a powder classification apparatus and classification system.
  • a classification device for classifying powder into particles having a size according to the application has been proposed.
  • a classifier that classifies by using centrifugal force generated by rotation of a classifying rotor has been proposed (see Patent Document 1).
  • the direction in which the classifying air is introduced is opposite to the direction in which the classifying rotor rotates in the opposite direction. Accordingly, it is described that a large separation force can be obtained by applying a sudden change in the flow direction at the rotary blade inlet of the classification rotor, and more accurate classification can be performed with a small number of rotations.
  • each rotating blade of the classifying rotor is disposed in a state in which one support member side is inclined with respect to the support member so as to be closer to the rotation direction than the other support member side. It is what. Accordingly, it is described that the separation performance can be improved without increasing the rotational speed of the classification rotor.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a classification device and a classification system that classify powders with high accuracy with a simple structure.
  • This invention is a raw powder supply pipe for processing to transport raw powder in an air stream, and a raw powder discharge part for discharging the raw powder together with gas from the upper surface connected to and opened above the raw powder supply pipe for processing,
  • An inhalation part that is disposed opposite to the upper surface of the raw powder discharge part at a position spaced apart from the raw powder discharge part and sucks the raw powder and a part of the gas from the lower surface that opens; and the raw powder discharge And a suction portion that encloses the suction portion and surrounds the outer periphery to deposit the raw powder that has been classified or has been subjected to the classification treatment, and the raw powder discharge portion has fixed blades that are inclined in the circumferential direction.
  • the inhalation unit has a swirl part inside, and is configured to discharge the raw powder supplied from the raw powder supply pipe during processing together with the gas by the swirl part and discharge radially while swirling from the opening upper surface.
  • Part of the raw powder discharge part Characterized in that the upper surface of the mouth is the original powder classifying device which is configured to inhale the traveling while swirling emitted radially.
  • Explanatory drawing which shows the structure of a classification system.
  • Explanatory drawing which shows the structure of a classification apparatus typically.
  • Explanatory drawing which shows typically the mode of the classification
  • FIG. 1 is an explanatory diagram showing the configuration of the classification system 100.
  • the classification system 100 includes a raw powder silo 11 for storing fly ash raw powder, a classification device 1 for classifying the raw powder, and a bag filter 12 for filtering and collecting the fine powder classified from the raw powder.
  • 11 is a raw powder transport mechanism 14 for transporting the raw powder in the airflow to the classifier 1, a fine powder transport pipe 5 a connecting the classifier 1 and the bag filter 12, and the fine powder collected by the bag filter 12.
  • a fine powder transport mechanism 15 for transporting to a product silo (not shown).
  • the raw powder transport mechanism 14 includes a rotary feeder 14a whose IN side is connected to the bottom 11a of the raw powder silo 11, an acceleration pipe 14b connected to the OUT side of the rotary feeder 14a, and a roots blower 13.
  • the accelerating pipe 14b is connected to the roots blower 13 through a pipe 13a provided with an air valve 14c in the middle of the acceleration pipe 14b, and connected to the classifier 1 through a raw powder supply pipe 14d.
  • the raw powder transport mechanism 14 operates as follows during operation. First, the rotary feeder 14a is activated, and the raw powder is quantitatively supplied from the raw powder silo 11 to the acceleration tube 14b. Next, the air valve 14c is switched to the open state, and compressed air is blown from the roots blower 13 to the IN side of the acceleration pipe 14b via the pipe 13a. In addition, what blows is not restricted to compressed air, What is necessary is just the compressed gas which compressed suitable gas, such as nitrogen. In the acceleration tube 14b, the compressed air accelerates the flow velocity and disperses and floats the raw powder in the acceleration tube 14b. Then, the raw powder rides on the air flow, is discharged from the OUT side of the acceleration tube 14b, and is transported to the classification device 1 through the raw powder supply pipe 14d.
  • the classification device 1 classifies the raw powder. Details of the operation will be described later. Moreover, as shown in the figure, the classifying device 1 may be installed with two or a plurality of units in series, thereby realizing higher performance classification.
  • the fine powder classified by the classification device 1 is transported through the fine powder transport pipe 5 a on the air flow and sent to the bag filter 12.
  • the bag filter 12 includes a filter cloth 12b for filtering and collecting fine powder from an air flow accompanied by fine powder, and a hopper 12c for collecting the fine powder removed from the filter cloth 12b.
  • the fine powder transport mechanism 15 includes a rotary feeder 15a whose IN side is connected to the bottom 12a of the hopper 12c, an acceleration pipe 15b connected to the OUT side of the rotary feeder 15a, and a roots blower 13.
  • the accelerating pipe 15b is connected to the roots blower 13 via a pipe 13c provided with an air valve 15c on the way, and to the product silo (not shown) via the fine powder collection pipe 15d.
  • the fine powder transport mechanism 15 operates in the same manner as the above-described raw powder transport mechanism 14 during operation. That is, the rotary feeder 15a is activated, and fine powder is quantitatively supplied from the hopper 12c to the acceleration tube 15b. Next, the air valve 15c is switched to the open state, and compressed air is blown from the roots blower 13 to the IN side of the acceleration pipe 15b via the pipe 13c. In the acceleration tube 15b, the compressed air accelerates the flow velocity and disperses and floats the fine powder in the acceleration tube 15b. Then, the fine powder rides on the air flow, is discharged from the OUT side of the acceleration pipe 15b, and is transported to the product silo (not shown) through the fine powder collection pipe 15d.
  • FIG. 2 is an explanatory view schematically showing the structure of the classifying device 1.
  • FIG. 3 (A) is a cross-sectional view taken along the line AA of the classifying device.
  • FIG. 4C is a longitudinal sectional view of the powder discharger 6, and
  • FIG. 3C is a perspective view of a BB transverse section of the classifier 1.
  • the classifier 1 is disposed to face the raw powder discharge unit 6 at a position separated from the raw powder discharge unit 6 and the raw powder discharge unit 6 that discharges the raw powder together with air.
  • the suction portion 4 for sucking part of the powder and air
  • the suction portion 4 for storing the raw powder discharge portion 6 and the suction portion 4 and surrounding the outer periphery, and the bottom portion 22 of the storage portion 2
  • a treated raw material transport mechanism 7 for transporting the classified raw powder.
  • the raw powder discharge part 6 has a substantially cylindrical shape with a center line facing the vertical direction, an upper surface is substantially horizontal and has a substantially circular opening 62, and has a turning part 61 for turning the raw powder and air inside. ing. With this structure, raw powder and air supplied from below are swirled clockwise in plan view by the swivel unit 61 and discharged radially from the upper opening 62.
  • the raw powder discharge part 6 is provided above the center of the internal space of the storage part 2, and in this embodiment, it is provided slightly above the center. As a result, a large amount of raw powder can be deposited in the area below the raw powder discharge section 6 in the internal space of the storage section 2 and the raw material sucked by the suction section 4 in the area above the raw powder discharge section 6. The powder can be classified.
  • the swivel unit 61 has a center on a straight line passing through the center of the raw powder discharge unit 6 and the center of the suction unit 4 and extends radially from the center in the circumferential direction. It is formed by a plurality of inclined fixed blades 61a.
  • the swivel unit 61 is formed by three fixed blades 61a, but there may be a plurality of fixed blades 61a, and may be four, six, or eight.
  • the swivel unit 61 is formed in one set by three fixed blades 61a in this case, but a multiple series (multistage type) in which a plurality of sets of three fixed blades 61a are arranged at intervals on the center line. ).
  • a cylindrical in-process raw powder supply pipe 73 that passes through the central axis of the container 2 in the vertical direction is connected to the lower side of the raw powder discharge part 6.
  • the raw powder supply pipe 73 during processing is formed to have a constant thickness with a smaller radius (that is, thinner) than the raw powder discharge portion 6, and the direction of the storage portion 2 is changed by 90 degrees near the lower portion in the storage portion 2. After projecting outside and changing the direction further downward, it is connected to the acceleration tube 72.
  • a switching valve 73 a is provided in the middle of the raw powder supply pipe 73 that is out of the housing unit 2.
  • the suction part 4 has a substantially cylindrical shape with the center line facing the vertical direction, and a substantially horizontal and substantially circular opening 42 is provided on the lower surface thereof, and is disposed above the raw powder discharge part 6 so as to face the raw powder discharge part 6. Has been.
  • the suction part 4 is connected to the opposite side (that is, the upper side) not facing the raw powder discharge part 6 with a fine powder discharge pipe 5 that discharges a part of the raw powder sucked by the suction part 4 and air.
  • the size of the opening 42 of the suction part 4 is the same size as the size of the opening 62 of the raw powder discharge part 6. Note that the size of the opening 42 of the suction part 4 can be appropriately configured such that it is larger than the opening 62 of the raw powder discharge part 6 or smaller than the opening 62 of the raw powder discharge part 6.
  • the suction part 4 is vertically upward from the raw powder discharge part 6 so that the central axis of the cylindrical shape (circular opening 42) coincides with the central axis of the cylindrical form (circular opening 62) of the raw powder discharge part 6.
  • the opening 42 of the suction part 4 and the opening 62 of the raw powder discharge part 6 are arranged to be spaced apart from each other. Thereby, the particle
  • the lower part of the fine powder discharge pipe 5 is connected to the suction part 4 in the suction part 4, and the upper part is arranged outside the suction part 4, and is classified from the raw powder and air in the suction part 4. It functions as a discharge pipe that conveys the supplemented part to the outside.
  • the fine powder discharge pipe 5 is composed of a slidable double pipe (an inner pipe and an outer pipe).
  • the outer pipe is fixed to the housing part 2 and the inner pipe is connected to the suction part 4.
  • the fine powder discharge pipe 5 is a screw screwed into the outer pipe from the outside.
  • the tip of the screw presses the outer peripheral surface of the inner pipe to stop the sliding of the inner pipe, and the relative position between the inner pipe and the outer pipe is set.
  • a position variable screw 4a that can be changed and fixed is provided. Thereby, it is possible to change and fix the relative positions of the suction part 4 connected to the inner pipe, the storage part 2 fixed to the outer pipe, and the raw powder discharge part 6 stored in the storage part 4. . That is, the distance D between the suction part 4 and the raw powder discharge part 6 can be changed.
  • the structure for changing the distance D between the suction part 4 and the raw powder discharge part 6 is not limited to this and can be an appropriate structure.
  • the accommodating part 2 is a substantially cylindrical container whose center line is directed in the vertical direction, and is formed in a vertically long shape larger than the radius of the raw powder discharging part 6.
  • the radius of the accommodating portion 2 is preferably at least twice as large as the radius of the raw powder discharging portion 6, and is formed to be about three times in this embodiment.
  • the accommodating portion 2 functions as a swirl flow guide wall 21 in which the cylindrical portion flows along the swirl flow along the inner surface of the wall.
  • the swirling flow guide wall 21 is provided with a supply nozzle 3 (see FIG. 3A) that goes straight along the tangential direction of the wall surface near the suction portion 4.
  • the raw powder is supplied from the supply nozzle 3 into the accommodating portion 2 together with air.
  • the supply nozzle 3 is arranged such that the raw powder and air that have flowed into the swirl flow guide wall 21 rotate (turn) in the swirl flow guide wall 21 clockwise in plan view.
  • the rotation directions (turning directions) of the two are the same.
  • the processing raw powder transport mechanism 7 includes a rotary feeder 71 whose IN side is connected to the bottom 22 of the storage unit 2, an acceleration pipe 72 connected to the OUT side of the rotary feeder 71, and a roots blower 13 (see FIG. 1). ing.
  • the accelerating pipe 72 is connected to the Roots blower 13 (see FIG. 1) on the IN side via a pipe 13b provided with an air valve 74a on the way, and the OUT side is connected to the raw powder supply pipe 73 being processed and the processed raw powder collection pipe 75. It is connected.
  • the raw powder supply pipe 73 during processing is provided with a switching valve 73 a in the middle and connected to the raw powder discharge unit 6.
  • the processed raw powder collection pipe 75 is provided with a switching valve 75a in the middle and connected to a product silo (not shown).
  • FIG. 4 (A) is an explanatory view schematically showing a state of classification at the time of supplying raw powder.
  • the raw powder transport mechanism 14 (see FIG. 1) transports the raw powder together with air to the supply nozzle 3 of the classifier 1 through the raw powder supply pipe 14d. Thereafter, the raw powder is discharged together with air from the supply nozzle 3 into the housing portion 2, flows along the swirl flow guide wall 21, and falls while generating swirl flow (see FIG. 3A). Centrifugal force is applied to the raw powder by this swirling flow. At this time, the fine powder FA1 (see FIG.
  • the raw powder transport mechanism 14 (see FIG. 1) is stopped, and supply of the raw powder to the classifier 1 is stopped.
  • FIG. 4B is an explanatory view schematically showing the state of pulverization classification of the raw powder being processed.
  • the processing raw powder transport mechanism 7 is operated as follows, Begins circulating transportation of the processed raw powder classified at the time of supply. Note that the stopping of the raw powder transport mechanism 14 and the operation of the processing raw powder transport mechanism 7 are not limited to being performed at the same time. Here, even if there is a moment when both are operating as the order in which the raw powder transport mechanism 14 is stopped after the processing raw powder transport mechanism 7 is operated, the supply and classification of the raw powder are performed appropriately. .
  • the supply nozzle 3 is provided at a position shifted from the discharge direction of the raw powder and air of the supply nozzle 3, most of the raw powder supplied from the supply nozzle 3 is sucked into the suction part 4. Fall without. Since only fine particles classified and sucked into the suction part 4 are sucked into the suction part 4, the classification performance is not affected.
  • the rotary feeder 71 is activated, and the raw powder being processed deposited on the bottom 22 of the container 2 is quantitatively supplied to the acceleration tube 72.
  • the air valve 74a is switched to the open state (see FIG. 2), and compressed air is blown from the roots blower 13 (see FIG. 1) to the IN side of the acceleration pipe 72 via the pipe 13b.
  • what blows is not restricted to compressed air, What is necessary is just the compressed gas which compressed gas, such as nitrogen.
  • the compressed air accelerates the flow velocity and disperses and floats the raw powder in the accelerating tube 72.
  • the raw powder is released from the OUT side of the accelerating tube 72 along the air flow.
  • the switching valve 73a provided in the raw powder supply pipe 73 during processing is opened, and the switching valve 75a provided in the processed raw powder collection pipe 75 is closed.
  • the raw powder is transported to the raw powder discharge section 6 through the raw powder supply pipe 73 during processing in the air flow.
  • the raw powder transported to the raw powder discharge unit 6 includes fine powder and coarse powder that remain without being sucked into the suction unit 4 by the classification operation when the raw powder is supplied.
  • the fine powder is a particle having a small particle size.
  • coarse powder in addition to large particles (true coarse particles), a plurality of small particles (fine particles) joined together with a weak binding force to form a lump like a bunch of grapes, Around the true coarse powder, a plurality of fine particles are combined with a weak binding force to form a cluster.
  • the raw powder transported from the raw powder supply pipe 73 during processing to the raw powder discharge unit 6 rides on the air flow and goes straight upward (vertically upward) in the center line direction of the raw powder discharge unit 6 to form the swivel unit 61. It collides with the fixed blade 61a to be operated (see FIG. 3B). By this collision, many of the clusters are crushed and a plurality of single fine powders are separated. Thereby, in addition to the above-mentioned remaining fine powder, the raw powder that has been transported to the raw powder discharge unit 6 includes fine powder newly generated by crushing, clusters remaining without being crushed, and genuine coarse powder. become.
  • the airflow on which these fine powder, clusters, and intrinsic coarse powder ride is swirled around the center line of the raw powder discharge section 6 by a plurality of fixed blades 61a that spread radially from the center and incline in the circumferential direction. However, it becomes a swirl flow that goes straight in the direction of the center line, and is discharged to the upper space radially while swirling from the opening 62. Since the fine powder has a small mass, the fine powder is not affected by the centrifugal force of the swirling flow. Therefore, the fine powder FB1 travels while turning in the center line direction or a direction slightly inclined from the center line direction, and is sucked by the suction portion 4 (see FIG. 4B).
  • clusters and genuine coarse powder that remain without being crushed have a large mass and thus are greatly affected by centrifugal force. Therefore, the cluster FB2 and the intrinsic coarse powder FB3 travel while turning in a direction close to the radial direction greatly deviating from the center line direction, and then gradually turn by gravity due to turning along the swirling flow guide wall 21. It descends and deposits again on the bottom 22 of the housing part 2.
  • Clusters and genuine coarse powder deposited on the bottom 22 of the container 2 can be circulated through the classification device 1 by continuing to operate the processing raw powder transport mechanism 7 and transported to the raw powder discharge section 6 any number of times. .
  • the clusters transported to the raw powder discharge unit 6 are crushed to newly separate fine powder, and become smaller clusters.
  • newly separated fine powder or fine powder remaining without being inhaled is inhaled by the inhalation unit 4.
  • the crushing can be repeated any number of times until the cluster is no longer a cluster, and can be repeated until the fine powder contained in the raw powder is almost inhaled. it can. Thereby, most of the fine powders that existed as clusters are finally separated and are sucked and collected by the suction part 4. For this reason, the collection rate of fine powder can be improved.
  • FIG. 5 is an explanatory view schematically showing the classification at the time of crushing classification when the position of the suction part is changed.
  • the distance between the suction part 4 and the raw powder discharge part 6 can be changed by changing the position of the suction part 4 using the position variable screw 4a provided in the fine powder discharge pipe 5.
  • the position of the suction part 4 is set to P2 and the distance between the suction part 4 and the raw powder discharge part 6 is set to a short D2
  • not only the fine powder FB1 but also some of the small clusters are used in the suction part. 4 may be inhaled.
  • D1 wider interval
  • the accuracy which classifies fine powder and other than fine powder improves.
  • the distance D between the suction part 4 and the raw powder discharge part 6 only finer fine powder can be sucked by the suction part 4, and conversely, the suction part 4 and the raw powder discharge part 6
  • the distance D it is possible to inhale in the inhalation part 4 including coarser particles. Therefore, by adjusting the distance (interval) between the suction part 4 and the raw powder discharge part 6, it becomes possible to adjust the maximum particle size of the fine powder sucked by the suction part 4, and the classification accuracy is improved.
  • the classifying device 1 can classify the powder with high accuracy with a simple structure. More specifically, the classifier 1 is disposed so as to face the raw powder discharge unit 6 at a position spaced from the raw powder discharge unit 6 and a raw powder discharge unit 6 that discharges the raw powder while swirling the gas. An inhalation part 4 for inhaling a part of the powder and gas is provided, and the raw powder discharge part 6 has a turning part 61 for revolving the raw powder with the gas. For this reason, the raw powder swirls at the raw powder discharge section 6. Thereby, except the fine powder and fine powder which perform a turning motion, the effect
  • the fine powder having a small centrifugal force action is absorbed by the suction part 4 disposed opposite to the raw powder discharge part 6 at a position separated from the raw powder discharge part 6.
  • the raw powder can be classified into fine powder and other than fine powder by using the classification device 1 having a simple structure.
  • the main power required is power for operating the Roots blower 13, which is power saving. That is, the fixed blade 61a is fixed to the turning portion 61, and it is not necessary to rotate the fixed blade 61a with a motor or the like, so that such electric power can be made unnecessary.
  • the classifier 1 has a container 2 that houses the raw powder discharge part 6 and the suction part 4 and surrounds the outer periphery thereof, and an intake port for the bottom 22 that takes in the raw powder below the container 2 together with gas.
  • a discharge transport pipe (processed raw powder transport mechanism 7) that feeds the raw powder and gas taken in from the intake to the raw powder discharge section 6 is provided. For this reason, the raw powder containing the fine powder deposited on the bottom portion 22 of the storage unit 2 due to the inhalation of the suction unit 4 can be discharged again from the raw powder discharge unit 6. Thereby, since the opportunity for the inhalation part 4 to inhale fine powder is newly provided, the collection rate of fine powder improves.
  • the classifier 1 is provided with a discharge port in the discharge transport pipe (the raw powder supply pipe 73 being processed by the processing raw powder transport mechanism 7), and the vicinity of the discharge port is used as the raw powder discharge unit 6, and the swivel unit 61 is a discharge transport. It is provided in the pipe. For this reason, the raw powder deposited on the bottom portion 22 in the storage unit 2 can be swung from the raw powder discharge unit 6 having the swivel unit 61 and discharged again. Thereby, since classification using the action of centrifugal force by turning is repeated, it is possible to improve the collection rate of fine powder while maintaining the accuracy of classifying fine powder and other than fine powder.
  • the classifying apparatus 1 has a plurality of fixed portions in which the swivel unit 61 has a center on a straight line passing through the center of the raw powder discharge unit 6 and the center of the suction unit 4 and extends radially from the center and is inclined in the circumferential direction. It is formed by the blade 61a. For this reason, the raw powder transported to the raw powder discharge part 6 collides with the fixed blade 61 a of the swivel part 61. At that time, the clusters contained in the raw powder are crushed to separate at least a plurality of simple powders. Then, the separated fine powder is sucked by the suction part 4. Thereby, since the fine powder is newly generated and collected from the cluster that should be processed as the coarse powder, the collection rate of the fine powder is dramatically improved.
  • the classification device 1 is provided with distance changing means (position variable screw 4a provided in the fine powder discharge pipe 5) for changing the distance between the suction part 4 and the raw powder discharge part 6. For this reason, as described above, the accuracy of classifying fine powder and other than fine powder is improved, and the accuracy of classification is also improved.
  • the container 2 has a substantially cylindrical shape with the center line facing the vertical direction, and is disposed along the tangential direction on the inner wall (swirl flow guide wall 21) of the container 2 near the suction part 4.
  • a supply nozzle 3 for allowing powder to flow in with gas is provided. For this reason, classification is performed also when supplying raw powder to the classification apparatus 1, and the efficiency of classification is good.
  • inhalation part 4 are arrange
  • the raw powder thus obtained can be stably sucked into the suction part 4 without unevenness. Therefore, particles (fine powder) of a desired size can be obtained by inhaling appropriately.
  • “classification operation at the time of raw powder supply”, “cracking classification operation of raw powder during processing”, and “collection operation of processed raw powder (coarse powder)” are batch processing, but all are performed simultaneously. It can be a process.
  • “classification operation at the time of raw material supply” and “cracking classification operation of raw powder being processed” are first executed, and after the predetermined time has elapsed, “collection operation of processed raw powder (coarse powder)” is started, When a sufficient amount of raw powder is supplied to the container 2, the “classification operation when supplying raw powder” is temporarily stopped, and when the raw powder in the container 2 is reduced to a predetermined amount, “classification when supplying raw powder” The movement / stop of each part may be flexibly changed so that the “operation” is resumed.
  • the raw powder (powder) classified by the classifier 1 is not limited to fly ash, and various powders (a plurality of particles having a difference in particle size or / and particle mass) such as wheat flour and cement. can do. Also in this case, it is possible to suitably crush and classify various raw powders.
  • the present invention can be used in industries related to powder classification.

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

フライアッシュのような粉体を簡易に分級する分級装置及び分級システムを提供する。原粉を気体と共に放出する原粉放出部6と、前記原粉放出部6から離間した位置に前記原粉放出部6に対向して配置され前記原粉と前記気体の一部を吸入する吸入部4とを備え、前記原粉放出部6は、前記原粉および前記気体を旋回させる旋回部61を有し、前記原粉放出部6と前記吸入部4を内部に収容して外周を取り囲む収容部2と、前記収容部2の下方の前記原粉を前記気体と共に取り込む取込口を有して該取込口から前記原粉放出部6まで取り込んだ前記原粉および前記気体を送り出す放出用搬送管とを備えた。

Description

粉体の分級装置及び分級システム
 この発明は、粉体の分級装置及び分級システムに関する。
 従来、粉体を用途に応じた大きさの粒子に分級する分級装置が提案されている。 
 このような分級装置の一つとして、分級ロータの回転による遠心力を利用することで分級を行う分級機が提案されている(特許文献1参照)。この分級機は、分級エアの導入方向を分級ロータの回転方向に対して、対向する従来と逆方向としている。これにより、分級ロータの回転羽根入口で急な流れ方向の変化を付与して大きな分離力を得ることができ、より高精度な分級を少ない回転数でできると記載されている。
 また、分級ロータの外側に供給された粉体を、遠心力と求心力との関係に基づいて該粉体が該分級ロータの内側に導かれることで分級する分級機が提案されている(特許文献2参照)。この分級機は、分級ロータの各回転羽根が、一方の支持部材側を他方の支持部材側よりも回転方向寄りとなるように支持部材に対して傾けた状態に配設されていることを特徴とするものである。これにより、分級ロータの回転数を上げることなく分離性能の向上を図ることができると記載されている。
特開2001-353473号公報 特開2005-342556号公報
 しかしながら、分級ロータを用いた分級機において、分級性能を確保するためには、分級ローラに一定程度の回転数で回転させるための機械的強度や駆動電力が必要となる。
 本願発明は、上述の問題に鑑みてなされたものであり、簡易な構造で粉体を高精度に分級する分級装置及び分級システムを提供することを目的とする。
 この発明は、原粉を空気流に乗せて輸送する処理中原粉供給配管と、前記処理中原粉供給配管の上方に接続されて開口する上面から原粉を気体と共に放出する原粉放出部と、前記原粉放出部から離間した位置に前記原粉放出部の前記開口する上面に対向して配置され前記原粉と前記気体の一部を開口する下面から吸入する吸入部と、前記原粉放出部と前記吸入部を内部に収容して外周を取り囲み分級中または分級処理済みの前記原粉を堆積する収容部とを備え、前記原粉放出部は、円周方向に傾斜する固定羽根を有する旋回部を内部に有し、前記処理中原粉供給配管から供給される前記原粉を前記気体と共に前記旋回部により旋回させて前記開口する上面から旋回しつつ放射状に放出する構成であり、前記吸入部は、前記原粉放出部の前記開口する上面から放射状に放出されて旋回しながら進行する前記原粉を吸入する構成である分級装置であることを特徴とする。
 本願発明により、簡易な構造で粉体を高精度に分級する分級装置及び分級システムを提供できる。
分級システムの構成を示す説明図。 分級装置の構造を模式的に示す説明図。 分級装置の原粉放出部付近の構造を説明する説明図。 原粉供給時および解砕分級時の動作を説明する説明図。 吸入部の位置を変更した場合における解砕分級時の分級の様子を模式的に示す説明図。
 以下、本願発明の一実施形態を図面と共に説明する。
   <分級システム>
 図1は、分級システム100の構成を示す説明図である。 
 分級システム100は、フライアッシュの原粉を貯蔵する原粉サイロ11と、原粉を分級する分級装置1と、原粉から分級された微粉をろ過捕集するバグフィルタ12を備え、原粉サイロ11内の原粉を空気流に乗せて分級装置1に輸送する原粉輸送機構14と、分級装置1とバグフィルタ12とを接続する微粉輸送配管5aと、バグフィルタ12で収集された微粉を製品サイロ(図示せず)に輸送する微粉輸送機構15とを有している。
 原粉輸送機構14は、原粉サイロ11の底部11aにIN側が接続されたロータリーフィーダ14aと、ロータリーフィーダ14aのOUT側に接続された加速管14bと、ルーツブロワ13とを備えている。加速管14bは、IN側が、途中にエアバルブ14cが設けられた配管13aを介してルーツブロワ13に接続され、OUT側が原粉供給配管14dを介して分級装置1に接続されている。
 原粉輸送機構14は、稼働時に、以下のような動作をする。まず、ロータリーフィーダ14aが起動し、加速管14bに、原粉サイロ11から定量的に原粉を供給する。次に、エアバルブ14cが開状態に切り替えられ、加速管14bのIN側に、配管13aを介してルーツブロワ13から圧縮空気が送風される。尚、送風するのは、圧縮空気に限るものではなく、窒素等の適宜の気体を圧縮した圧縮気体であればよい。加速管14b内で、圧縮空気は流速を加速させ、加速管14b内の原粉を分散,浮遊させる。そして、原粉は、空気流に乗って、加速管14bのOUT側から放出され、原粉供給配管14d内を通って分級装置1に輸送される。
 分級装置1は、原粉を分級する。尚、動作の詳細は後述する。また、図中のように、分級装置1は、2基または複数基を直列に設置してもよく、これにより、より高性能な分級を実現することができる。
 分級装置1で分級された微粉は、空気流に乗って微粉輸送配管5aを通って輸送され、バグフィルタ12に送られる。 
 バグフィルタ12は、微粉を伴った空気流から微粉をろ過捕集するろ布12bと、ろ布12bから払い落とした微粉を収集するためのホッパ12cを備えている。
 微粉輸送機構15は、ホッパ12cの底部12aにIN側が接続されたロータリーフィーダ15aと、ロータリーフィーダ15aのOUT側に接続された加速管15bと、ルーツブロワ13とを備えている。加速管15bは、IN側が、途中にエアバルブ15cが設けられた配管13cを介してルーツブロワ13に接続され、OUT側が微粉回収配管15dを介して製品サイロ(図示せず)に接続されている。
 微粉輸送機構15は、稼働時には、上述の原粉輸送機構14と同様の動作をする。すなわち、ロータリーフィーダ15aが起動し、加速管15bに、ホッパ12cから定量的に微粉を供給する。次に、エアバルブ15cが開状態に切り替えられ、加速管15bのIN側に、配管13cを介してルーツブロワ13から圧縮空気が送風される。加速管15b内で、圧縮空気は流速を加速させ、加速管15b内の微粉を分散,浮遊させる。そして、微粉は、空気流に乗って、加速管15bのOUT側から放出され、微粉回収配管15d内を通って製品サイロ(図示せず)に輸送される。
   <分級装置>
 図2は、分級装置1の構造を模式的に示す説明図であり、図3(A)は、分級装置のA-A横断面図であり、図3(B)は、分級装置1の原粉放出部6の縦断面図であり、図(C)は、分級装置1のB-B横断面の斜視図である。
 分級装置1は、原粉を空気と共に放出する原粉放出部6と、原粉放出部6から離間した位置に原粉放出部6に対向して配置され、原粉放出部6が放出する原粉と空気の一部を吸入する吸入部4と、原粉放出部6と吸入部4を内部に収容して外周を取り囲む収容部2と、収容部2の底部22に堆積した分級処理中または分級処理済みの原粉を輸送する処理原粉輸送機構7とを備えている。
 原粉放出部6は、中心線が鉛直方向を向いた略円筒状で、上面が略水平で略え円形の開口62を有し、内部に原粉および空気を旋回させる旋回部61を有している。この構造により、下方から供給される原粉および空気を旋回部61で平面視時計回りに旋回させて上方の開口62から放射状に放出する。
 原粉放出部6は、収容部2の内部空間の中央より上方に設けられており、この実施例では中央より少し上に設けられている。これにより、収容部2の内部空間における原粉放出部6より下方部分の領域に原粉を大量に堆積可能とし、かつ、原粉放出部6より上方の領域にて吸入部4により吸入する原粉を分級することができる。
 旋回部61は、図3(C)に示すように、原粉放出部6の中心と吸入部4の中心を通る一直線上に中心を有して当該中心から半径方向へ広がりかつ円周方向に傾斜する複数の固定羽根61aにより形成されている。尚、旋回部61は、ここでは3枚の固定羽根61aにより形成されているが、固定羽根61aは複数枚あればよく、4枚、6枚あるいは8枚でもよい。また、旋回部61は、ここでは3枚の固定羽根61aにより1式に形成されているが、3枚の固定羽根61aのセットを中心線上に間隔を開けて複数配置した複数連式(多段式)に形成してもよい。
 原粉放出部6の下方には、収容部2の中心軸を上下方向に通る円筒形の処理中原粉供給配管73が接続されている。この処理中原粉供給配管73は、原粉放出部6より小さい半径(すなわち細い)の一定の太さに形成されており、収容部2内の下方付近で90度方向を変えて収容部2の外へ突出し、さらに下方に方向を変えた後に加速管72に接続されている。収容部2の外へ出た処理中原粉供給配管73の途中には、切替バルブ73aが設けられている。
 吸入部4は、中心線が鉛直方向を向いた略円筒状で、下面に略水平で略円形の開口42が設けられ、原粉放出部6の上方に原粉放出部6に対向して配置されている。吸入部4は、原粉放出部6に対向しない反対側(すなわち上方)に、吸入部4が吸入した原粉と空気の一部を排出する微粉排出管5が接続されている。
 この吸入部4の開口42の大きさは、原粉放出部6の開口62の大きさと同じ大きさに形成されている。なお、吸入部4の開口42の開口の大きさは、原粉放出部6の開口62より大きくする、あるいは原粉放出部6の開口62より小さくするなど、適宜の構成とすることができる。
 また、吸入部4は、円筒形(円形の開口42)の中心軸が原粉放出部6の円筒形(円形の開口62)の中心軸と一致するように原粉放出部6から鉛直上方に離間して配置され、かつ、吸入部4の開口42と原粉放出部6の開口62が対向するように配置されている。これにより、原粉放出部6から放出される原粉のうち、吸入部4で吸入する粒子サイズを適切に調整できる。
 微粉排出管5は、下方部分が吸入部4内の吸入部4に接続されており、上方部分が吸入部4の外に配置されて、吸入部4内の原粉および空気のうち分級されて補足された一部を外部へ搬送する排出管として機能する。
 この微粉排出管5は、摺動自在の2重管(内管と外管)で構成されており、外管が収容部2に固定され、内管が吸入部4に接続されている。微粉排出管5は、外管に外側からねじ込まれたネジであって、ネジの先端が内管の外周面を押圧することにより内管の摺動を止め、内管と外管の相対位置を変えて固定することのできる位置可変ネジ4aを備えている。これにより、内管に接続された吸入部4と、外管に固定された収容部2、及び収容部4内部に収容された原粉放出部6との相対位置を変えて固定することができる。すなわち、吸入部4と原粉放出部6との距離Dは変更することが可能である。なお、吸入部4と原粉放出部6との距離Dを変更する構造は、これに限らず適宜の構造とすることができる。
 収容部2は、中心線が鉛直方向を向いた略円筒状の容器で、原粉放出部6の半径より大きい縦長の形状に形成されている。この収容部2の半径は、原粉放出部6の半径の2倍以上が好ましく、この実施例では3倍程度に形成されている。
 収容部2は、円筒形部分が壁内面に旋回流を沿わせて流動させる旋回流案内壁21として機能する。この旋回流案内壁21には、吸入部4近傍の壁面の接線方向に沿って直進する供給ノズル3(図3(A)参照)が設けられている。この供給ノズル3から収容部2内に原粉が空気と共に供給される。この実施例では、供給ノズル3は、旋回流案内壁21内に流入した原粉と空気が旋回流案内壁21内で平面視時計周りに回転(旋回)するように配置されている。これにより、旋回流案内壁21内において、供給ノズル3から供給された原粉および空気の平面視の回転方向(旋回方向)と、原粉放出部6から放出された原粉および空気の平面視の回転方向(旋回方向)が一致するように構成されている。
 処理原粉輸送機構7は、収容部2の底部22にIN側が接続されたロータリーフィーダ71と、ロータリーフィーダ71のOUT側に接続された加速管72と、ルーツブロワ13(図1参照)とを備えている。加速管72は、IN側が、途中にエアバルブ74aが設けられた配管13bを介してルーツブロワ13(図1参照)に接続され、OUT側が処理中原粉供給配管73と処理済み原粉回収配管75とに接続されている。処理中原粉供給配管73は、途中に切替バルブ73aが設けられ、原粉放出部6に接続されている。他方、処理済み原粉回収配管75は、途中に切替バルブ75aが設けられ、製品サイロ(図示せず)に接続されている。
    ≪原粉供給時の分級動作≫
 図4(A)は、原粉供給時の分級の様子を模式的に示す説明図である。 
 原粉輸送機構14(図1参照)は、稼働すると、原粉供給配管14dを通じて原粉を空気と共に分級装置1の供給ノズル3に輸送する。原粉は、その後、空気と共に供給ノズル3から収容部2内部に放出され、旋回流案内壁21に沿って流動し、旋回流を生成しつつ落下する(図3(A)参照)。この旋回流によって、原粉には遠心力がかかる。この時、原粉中の微粉FA1(図4(A)参照)は、質量が小さいため遠心力の作用が弱く、一部が旋回流案内壁21から空気と共に吸入部4に吸入される。他方、残りの原粉FA2は、旋回流案内壁21に沿って旋回しながら、重力の作用により徐々に降下し、収容部2の底部22(図4(B)参照)に堆積する。一定量の原粉が収容部2内に供給されたところで、原粉輸送機構14(図1参照)を停止し、分級装置1への原粉の供給を停止する。
    ≪処理中原粉の解砕分級動作≫
 図4(B)は、処理中原粉の解砕分級の様子を模式的に示す説明図である。 
 原粉輸送機構14(図1参照)を停止して、分級装置1への原粉供給を停止すると同時に、以下のようにして、処理原粉輸送機構7を稼働させ、分級装置1内において、供給時に分級処理された処理原粉の循環輸送を開始する。なお、原粉輸送機構14の停止と処理原粉輸送機構7の稼働は、同時にすることに限らず、一方を先に、他方を後にしてもよい。ここで、処理原粉輸送機構7を稼働してから原粉輸送機構14を停止する順として両方が稼働している瞬間が存在しても、原粉の供給と分級はそれぞれ適切に実施される。すなわち、供給ノズル3の原粉および空気の放出方向からずらした位置に供給ノズル3が設けられているため、供給ノズル3から供給された原粉は、大部分が吸入部4に吸入されることなく落下する。吸入部4に吸入されるのは、分級して吸入部4に吸入されるサイズの細かい粒子だけであるため、分級性能に影響を与えない。
 まず、ロータリーフィーダ71を起動し、収容部2の底部22に堆積した処理中の原粉を加速管72に定量的に供給する。次に、エアバルブ74aが開状態に切り替えられ(図2参照)、加速管72のIN側に、配管13bを介してルーツブロワ13(図1参照)から圧縮空気が送風される。尚、送風するのは、圧縮空気に限るものではなく、窒素等の気体を圧縮した圧縮気体であればよい。加速管72内で、圧縮空気は流速を加速させ、加速管72内の原粉を分散,浮遊させる。原粉は、空気流に乗って、加速管72のOUT側から放出される。その際、処理中原粉供給配管73に設けられた切替バルブ73aを開状態にし、処理済み原粉回収配管75に設けられた切替バルブ75aを閉状態にする。これにより、原粉は、空気流に乗って、処理中原粉供給配管73内を通って原粉放出部6に輸送される。
 原粉放出部6に輸送された原粉は、原粉供給時の分級動作で吸入部4に吸入されずに残存した微粉と粗粉を含んでいる。微粉は、粒径の小さな粒子である。粗粉には、粒径の大きな粒子(真性粗粉)の他に、複数の粒径の小さな粒子(微粉)同士が弱い結合力で結合しブドウの房のような塊となったものや、真性粗粉の周りに複数の微粉が弱い結合力で結合して塊となったもの等のクラスタが含まれている。
 処理中原粉供給配管73から原粉放出部6に輸送された原粉は、空気流に乗って、原粉放出部6の中心線方向の上方(鉛直上方)へ直進し、旋回部61を形成する固定羽根61aに衝突する(図3(B)参照)。この衝突により、クラスタの多くは解砕され、複数の単独の微粉が分離される。これにより、原粉放出部6に輸送された原粉は、上述の残存した微粉に加えて、解砕により新たに生成された微粉と、解砕しきれずに残存するクラスタと、真性粗粉とになる。
 これらの微粉とクラスタと真性粗粉とが乗った空気流は、中心から半径方向へ広がりかつ円周方向に傾斜する複数の固定羽根61aにより、原粉放出部6の中心線の回りを旋回しながら中心線方向に直進する旋回流となり、開口62から旋回しつつ放射状に上方空間へ放出される。微粉は、質量が小さいため、旋回流の遠心力の作用をあまり受けない。そのため、微粉FB1は、中心線方向もしくは中心線方向から僅かに傾いた方向に旋回しながら進行し、吸入部4により吸入される(図4(B)参照)。一方、解砕しきれずに残存したクラスタや真性粗粉は、質量が大きいため、遠心力の作用を大きく受ける。そのため、クラスタFB2や真性粗粉FB3は、中心線方向から大きく外れた半径方向に近い方向に旋回しながら進行し、その後、旋回流案内壁21に沿って旋回しながら、重力の作用により徐々に降下し、収容部2の底部22に再度堆積する。
 上述のように、残存した微粉や、クラスタの解砕により分離された微粉は、吸入部4により吸入され、他方、クラスタや真性粗粉は、再度収容部2の底部22に堆積することで、原粉の分級は実施される。
 収容部2の底部22に堆積したクラスタや真性粗粉は、処理原粉輸送機構7を稼働し続けることにより分級装置1内を循環し、原粉放出部6に何度でも輸送することができる。上述のように、原粉放出部6に輸送されたクラスタは、解砕されて新たに微粉を分離すると共に、より小さなクラスタとなる。そして、新たに分離された微粉や吸入されずに残存した微粉は、吸入部4により吸入される。このように処理原粉輸送機構7を稼働し続けることで、クラスタがクラスタでなくなるまで何度でも解砕を繰り返すことができ、原粉に含まれている微粉がほぼ吸入されるまで繰り返すことができる。これにより、クラスタとなって存在していた微粉も、最終的にはほとんどが分離され吸入部4により吸入され回収される。このため、微粉の回収率を向上させることができる。
 図5は、吸入部の位置を変更した場合における解砕分級時の分級の様子を模式的に示す説明図である。
 上述のように、吸入部4と原粉放出部6との距離の変更は、微粉排出管5に設けられた位置可変ネジ4aを用いて吸入部4の位置を変更することで可能になる。例えば、吸入部4の位置をP2にし、吸入部4と原粉放出部6との距離を短いD2に設定した場合には、微粉FB1だけでなく、一部の小規模のクラスタも、吸入部4に吸入されてしまう恐れがある。しかし、吸入部4の位置をP1にし、吸入部4と原粉放出部6との距離をD1にまで伸ばす(間隔を広く)ことにより、微粉FB1だけを吸入部4で吸入することが可能になる。これにより、微粉と微粉以外とを分級する確度が向上する。このように、吸入部4と原粉放出部6の間隔Dを広くすることで、より細かい微粉のみを吸入部4で吸入することができ、逆に、吸入部4と原粉放出部6の間隔Dを狭くすることで、より荒い粒子も含めて吸入部4で吸入することができる。従って、吸入部4と原粉放出部6との距離(間隔)を調節することにより、吸入部4により吸入する微粉の最大粒径を調節することが可能になり、分級の精度が向上する。
    ≪処理済み原粉(粗粉)の回収動作≫
 処理済み原粉(粗粉)を回収する際には、処理原粉輸送機構7を一旦停止して、分級装置1内での処理原粉の循環供給を停止する(図2参照)。そして、処理中原粉供給配管73に設けられた切替バルブ73aを閉状態に切り替え、処理済み原粉回収配管75に設けられた切替バルブ75aを開状態に切り替える。そして、処理原粉輸送機構7を再稼働させることにより、処理済み原粉(粗粉)は、空気流に乗って、処理済み原粉回収配管75内を通って製品サイロ(図示せず)に輸送される。
 以上の構成と動作により、分級装置1は、簡易な構造で粉体を高精度に分級することができる。 
 詳述すると、分級装置1は、原粉を気体とを旋回させながら共に放出する原粉放出部6と、原粉放出部6から離間した位置に原粉放出部6に対向して配置され原粉と気体の一部を吸入する吸入部4とを備え、原粉放出部6は、原粉を気体とを旋回させる旋回部61を有している。このため、原粉は、原粉放出部6で旋回運動をする。これにより、旋回運動をする微粉と微粉以外は、異なる大きさの遠心力の作用を受ける。そして、遠心力の作用の小さい微粉は、原粉放出部6から離間した位置に原粉放出部6に対向して配置された吸入部4により吸収される。このように、簡易な構造の分級装置1を用いて、原粉を、微粉と微粉以外とに分級できる。
 また、必要とされる電力の主なものは、ルーツブロワ13を稼働せるための電力であり、省電力である。すなわち、固定羽根61aは、旋回部61に固定されており、固定羽根61aをモータ等で回転させる必要がないために、そのような電力を不要とすることができる。
 分級装置1は、原粉放出部6と吸入部4を内部に収容して外周を取り囲む収容部2と、収容部2の下方の原粉を気体と共に取り込む底部22の取込口を有して該取込口から原粉放出部6まで取り込んだ原粉および気体を送り出す放出用搬送管(処理原粉輸送機構7)とを備えている。このため、吸入部4が吸入し損なって収容部2の底部22に堆積した微粉を含んだ原粉を、原粉放出部6から再度放出することができる。これにより、吸入部4が微粉を吸入する機会が改めて設けられるため、微粉の回収率が向上する。特に、「原粉供給時の分級動作」、「処理中原粉の解砕分級動作」、および「処理済み原粉(粗粉)の回収動作」を、それぞれ個別に行うバッチ処理で実行することにより、微粉の回収率が所望の回収率となるまで「処理中原粉の解砕分級動作」を実行でき、安定した回収率を実現できる。
 分級装置1は、放出用搬送管(処理原粉輸送機構7の処理中原粉供給配管73)に放出口を設けて当該放出口付近を原粉放出部6とし、旋回部61は、放出用搬送管内に設けられている。このため、収容部2に底部22に堆積した原粉を、旋回部61を有する原粉放出部6から旋回して再度放出することができる。これにより、旋回による遠心力の作用を利用した分級が繰り返されるため、微粉と微粉以外とを分級する確度を保ちつつ、微粉の回収率を向上することができる。
 分級装置1は、旋回部61が、原粉放出部6の中心と吸入部4の中心を通る一直線上に中心を有して当該中心から半径方向へ広がりかつ円周方向に傾斜する複数の固定羽根61aにより形成されている。このため、原粉放出部6に輸送された原粉は、旋回部61の固定羽根61aと衝突する。その際、原粉に含まれるクラスタは、解砕され、少なくとも複数の単体の微粉を分離する。そして、分離された微粉は、吸入部4により吸入される。これにより、本来なら粗粉として処理されるはずのクラスタから新たに微粉が生成され回収されるため、微粉の回収率が飛躍的に向上する。
 分級装置1は、吸入部4と原粉放出部6との距離を変更する距離変更手段(微粉排出管5に設けられた位置可変ネジ4a)が設けられている。このため、上述のように、微粉と微粉以外とを分級する確度が向上し、分級の精度も向上する。
 分級装置1は、収容部2は、中心線が鉛直方向を向いた略円筒状で、吸入部4近傍の収容部2の内壁(旋回流案内壁21)に接線方向に沿って配置され、原粉を気体と共に流入させる供給ノズル3を備えている。このため、分級装置1に原粉を供給する時にも分級が行われ、分級の効率が良い。
 また、原粉放出部6の開口62と、吸入部4の開口42が、相似形(この実施例では円形)で中心軸が一致するように配置されているため、原粉放出部6から放出した原粉を偏りなく安定して吸入部4に吸入できる。従って、所望のサイズの粒子(微粉)を適切に吸入して得ることができる。
 尚、本願発明は本実施形態に限られず他の様々な実施形態とすることができる。 
 例えば、「原粉供給時の分級動作」、「処理中原粉の解砕分級動作」、および「処理済み原粉(粗粉)の回収動作」をバッチ処理としたが、全てを同時に実行する連続処理とすることができる。あるいは、「原粉供給時の分級動作」および「処理中原粉の解砕分級動作」をまず実行し、所定時間経過後に「処理済み原粉(粗粉)の回収動作」を開始し、その一方で収容部2に十分な量の原粉が供給されると「原粉供給時の分級動作」を一旦停止して、収容部2の原粉が所定量まで減少すると「原粉供給時の分級動作」を再開するといったように各部の可動/停止を柔軟に変更してもよい。
 また、分級装置1により分級する原粉(粉体)は、フライアッシュに限らず、小麦粉やセメント等、様々な粉体(粒子のサイズ又は/及び粒子の質量に差異のある複数の粒子)とすることができる。この場合も、様々な原粉に対して、好適に解砕及び分級することができる。
 本願発明は、粉体の分級に関する産業に利用することができる。
1…分級装置
2…収容部
3…供給ノズル
4…吸入部
5…微粉排出管
6…原粉放出部
7…処理原粉輸送機構
11…原粉サイロ
12…バグフィルタ
100…分級システム

Claims (4)

  1.  原粉を空気流に乗せて輸送する処理中原粉供給配管と、
    前記処理中原粉供給配管の上方に接続されて開口する上面から原粉を気体と共に放出する原粉放出部と、
    前記原粉放出部から離間した位置に前記原粉放出部の前記開口する上面に対向して配置され前記原粉と前記気体の一部を開口する下面から吸入する吸入部と、
    前記原粉放出部と前記吸入部を内部に収容して外周を取り囲み分級中または分級処理済みの前記原粉を堆積する収容部とを備え、
    前記原粉放出部は、円周方向に傾斜する固定羽根を有する旋回部を内部に有し、前記処理中原粉供給配管から供給される前記原粉を前記気体と共に前記旋回部により旋回させて前記開口する上面から旋回しつつ放射状に放出する構成であり、
    前記吸入部は、前記原粉放出部の前記開口する上面から放射状に放出されて旋回しながら進行する前記原粉を吸入する構成である
    分級装置。
  2.  前記原粉放出部の中心軸と前記吸入部の中心軸とが一致するように配置された
    請求項1記載の分級装置。
  3.  前記吸入部を、前記原粉放出部との相対位置を変えて固定し距離を変更する距離変更手段を設けた
    請求項1または2記載の分級装置。
  4.  原粉を貯蔵する原粉サイロと、
    請求項1、2、または3記載の分級装置と、
    前記原粉サイロから原粉供給配管を介して前記分級装置に前記原粉を気体と共に輸送する原粉輸送機構と、
    前記分級装置の前記吸入部に連結された微粉排出管と、
    前記微粉排出管を介して前記分級装置が排出する微粉を含んだ気体から微粉をろ過捕集するバグフィルタと、
    を備えた
    分級システム。
PCT/JP2018/020758 2017-06-01 2018-05-30 粉体の分級装置及び分級システム WO2018221584A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880034777.6A CN110662610B (zh) 2017-06-01 2018-05-30 粉体的分级装置和分级系统
KR1020197036431A KR102395420B1 (ko) 2017-06-01 2018-05-30 분체의 분급 장치 및 분급 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-109090 2017-06-01
JP2017109090A JP6262907B1 (ja) 2017-06-01 2017-06-01 粉体の分級装置及び分級システム

Publications (1)

Publication Number Publication Date
WO2018221584A1 true WO2018221584A1 (ja) 2018-12-06

Family

ID=60989292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020758 WO2018221584A1 (ja) 2017-06-01 2018-05-30 粉体の分級装置及び分級システム

Country Status (5)

Country Link
JP (1) JP6262907B1 (ja)
KR (1) KR102395420B1 (ja)
CN (1) CN110662610B (ja)
TW (1) TWI681823B (ja)
WO (1) WO2018221584A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101977056B1 (ko) * 2019-03-04 2019-05-10 (주)일아그린 플라이애쉬 정제 설비
KR102020206B1 (ko) * 2019-04-11 2019-09-10 (주)일아그린 먼지의 비산이 방지된 플라이애쉬 처리시설

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481171U (ja) * 1977-11-18 1979-06-08
JPH02293584A (ja) * 1989-05-02 1990-12-04 Ube Ind Ltd 湿潤原料の乾燥粉砕装置
JPH08126848A (ja) * 1994-10-31 1996-05-21 Masuko Sangyo Co Ltd 微粉砕粉の製造方法と装置
US20070095728A1 (en) * 2005-11-02 2007-05-03 Manfred Ottow Classification of splinters and wood chips
JP2007111639A (ja) * 2005-10-20 2007-05-10 Matsumoto Tekkosho:Kk 風力選別機
JP2008279436A (ja) * 2007-04-10 2008-11-20 Kaneka Corp 風力分離方法
JP2009160507A (ja) * 2007-12-28 2009-07-23 Miike Iron Works Co Ltd 廃石膏リサイクルプラント及び廃石膏リサイクル方法
JP2010094574A (ja) * 2008-10-14 2010-04-30 Earth Technica:Kk ジェットミル
JP2014155901A (ja) * 2013-02-15 2014-08-28 Hiroshima Univ サイクロン式分級装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1024169C (zh) * 1990-01-15 1994-04-13 合肥工业大学 微粉粒度分级装置
JPH06126252A (ja) * 1992-10-16 1994-05-10 Ube Ind Ltd フライアッシュの品質改善方法
JP2001353473A (ja) 2000-06-13 2001-12-25 Ishikawajima Harima Heavy Ind Co Ltd 分級機
CN1256188C (zh) * 2003-08-18 2006-05-17 郑州大学 干状粉煤灰高附加值矿物分离提取设备
JP2005342556A (ja) 2004-05-31 2005-12-15 Kansai Coke & Chem Co Ltd 分級機
JP6074895B2 (ja) * 2012-02-28 2017-02-08 株式会社リコー 粉体充填システム及び粉体充填方法
JP5996651B2 (ja) * 2012-08-01 2016-09-21 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
CN103357483B (zh) * 2013-07-22 2015-06-10 周波 砖瓦粉料封闭制备系统
JP2015227400A (ja) * 2014-05-30 2015-12-17 帝人株式会社 粉体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481171U (ja) * 1977-11-18 1979-06-08
JPH02293584A (ja) * 1989-05-02 1990-12-04 Ube Ind Ltd 湿潤原料の乾燥粉砕装置
JPH08126848A (ja) * 1994-10-31 1996-05-21 Masuko Sangyo Co Ltd 微粉砕粉の製造方法と装置
JP2007111639A (ja) * 2005-10-20 2007-05-10 Matsumoto Tekkosho:Kk 風力選別機
US20070095728A1 (en) * 2005-11-02 2007-05-03 Manfred Ottow Classification of splinters and wood chips
JP2008279436A (ja) * 2007-04-10 2008-11-20 Kaneka Corp 風力分離方法
JP2009160507A (ja) * 2007-12-28 2009-07-23 Miike Iron Works Co Ltd 廃石膏リサイクルプラント及び廃石膏リサイクル方法
JP2010094574A (ja) * 2008-10-14 2010-04-30 Earth Technica:Kk ジェットミル
JP2014155901A (ja) * 2013-02-15 2014-08-28 Hiroshima Univ サイクロン式分級装置

Also Published As

Publication number Publication date
KR20200014781A (ko) 2020-02-11
TWI681823B (zh) 2020-01-11
JP6262907B1 (ja) 2018-01-17
JP2018202303A (ja) 2018-12-27
CN110662610A (zh) 2020-01-07
KR102395420B1 (ko) 2022-05-06
TW201906669A (zh) 2019-02-16
CN110662610B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
TWI490050B (zh) 粉體分級裝置
CN109641217A (zh) 操作多体旋风分离机构来分离细粒和超细粒的方法以及多体旋风分离机构
US6902126B2 (en) Hybrid turbine classifier
JPH07163895A (ja) 異なる粒度の材料を破砕するための方法および装置
JPH05504296A (ja) 連結される砕料分級機を有する鉛直型衝撃粉砕機
WO2018221584A1 (ja) 粉体の分級装置及び分級システム
JP4288651B2 (ja) 骨材製造用粉砕システム
JPH0218904B2 (ja)
MXPA97002608A (en) Efficient production of gypsum calcinated by collection and classification of fine and
KR20060131947A (ko) 파쇄 분급 장치
JP3748557B2 (ja) 粒体から粉体等を分離する方法および装置
JP2002361179A (ja) ガラス粉体品分級装置
CN115193706A (zh) 风选装置、磨筛装置、方法和喷吹式处理二次铝灰的方法
JP3089243B1 (ja) セメントクリンカの粉砕装置
JP2013215704A (ja) 篩分け装置
US7854406B2 (en) Air separator for comminuted materials
EP2125229B2 (en) Air separator for comminuted materials
JPH01317555A (ja) 気流式粉砕分級装置
JP2003010787A (ja) 粉粒体等の分級装置
SU1717267A1 (ru) Устройство дл классификации порошкообразных материалов
JPH06226207A (ja) 乾式分級機
JP3091289B2 (ja) 衝突式気流粉砕装置
JPH11216426A (ja) 気流式分級機
JPH11267592A (ja) 分級装置
JPH08294675A (ja) 箱型流動層式分級機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197036431

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18808946

Country of ref document: EP

Kind code of ref document: A1