WO2018214971A1 - 一种含有醚类化合物的可凝胶化体系及其制备方法和应用 - Google Patents

一种含有醚类化合物的可凝胶化体系及其制备方法和应用 Download PDF

Info

Publication number
WO2018214971A1
WO2018214971A1 PCT/CN2018/088494 CN2018088494W WO2018214971A1 WO 2018214971 A1 WO2018214971 A1 WO 2018214971A1 CN 2018088494 W CN2018088494 W CN 2018088494W WO 2018214971 A1 WO2018214971 A1 WO 2018214971A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
mass percentage
less
lithium
equal
Prior art date
Application number
PCT/CN2018/088494
Other languages
English (en)
French (fr)
Inventor
李林
刘凤泉
周建军
王璐
Original Assignee
北京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710386733.7A external-priority patent/CN108933275B/zh
Priority claimed from CN201710385201.1A external-priority patent/CN108933285B/zh
Priority claimed from CN201710386734.1A external-priority patent/CN108963330B/zh
Priority claimed from CN201710386736.0A external-priority patent/CN108933286B/zh
Priority claimed from CN201710385203.0A external-priority patent/CN108963333B/zh
Priority claimed from CN201710386738.XA external-priority patent/CN108933287B/zh
Application filed by 北京师范大学 filed Critical 北京师范大学
Priority to JP2020515814A priority Critical patent/JP7173616B2/ja
Priority to KR1020197035813A priority patent/KR102662511B1/ko
Priority to EP18805783.0A priority patent/EP3637523A4/en
Publication of WO2018214971A1 publication Critical patent/WO2018214971A1/zh
Priority to US16/696,510 priority patent/US11777142B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of gels, and relates to a gellable system containing an ether compound, a preparation method and application thereof.
  • Lithium-ion batteries can be used not only in portable electronic devices such as digital cameras and portable computers, but also in power tools and electric vehicles.
  • safety issues such as combustion and explosion also restrict its further development.
  • the safety of lithium-ion batteries mainly involves the dissolution of positive and negative materials, the piercing of the diaphragm and the volatilization and leakage of the liquid electrolyte.
  • the liquid electrolytes are all prepared from a volatile liquid and participate in all processes of the electrochemical reaction. Therefore, the leakage of volatile electrolytes, battery flammability and overpotential decomposition seriously restrict the safety of lithium-ion batteries.
  • inorganic solid electrolytes In order to overcome the problems of liquid electrolyte leakage and flammability, inorganic solid electrolytes, polymer solid electrolytes, and polymer gel electrolytes have been extensively studied, wherein the inorganic solid electrolyte is a lithium salt containing inorganic superionic conductivity;
  • the polymer solid electrolyte is a conductive solid composed of a polymer and a lithium salt.
  • the current reported solid electrolyte has poor electrical conductivity, which seriously affects the cycle performance of the prepared battery.
  • a lithium-sulfur battery is mainly a lithium battery in which a sulfur element is used as a positive electrode of a battery and a metal lithium is used as a negative electrode. Because elemental sulfur is abundant in the earth, it is characterized by low price and environmental friendliness. Lithium-sulfur batteries using sulfur as a positive electrode material have higher theoretical theoretical specific capacity and battery theoretical energy, reaching 1672 mAh/g and 2600 Wh/kg, respectively. However, lithium-sulfur batteries have many disadvantages and limit their commercialization. For example, the utilization rate of active materials is low, and the discharge intermediates are dissolved in the electrolyte to form a "flying effect".
  • cathode materials for the disadvantages of lithium-sulfur batteries, such as porous carbon-supported sulfur, N-doped sulfur-carbon composites, etc.
  • the design of these cathode materials inhibits polysulfide to some extent.
  • the "flying effect" of the object but the synthesis process of the positive electrode is cumbersome and tedious, the yield is low, and the repeatability is poor.
  • Gel electrolytes and solid electrolytes can slow down or even eliminate the "spinning effect" of polysulfides, thereby increasing the utilization of active materials.
  • gel electrolytes and solid electrolytes can avoid leakage of liquid electrolytes, thus eliminating safety hazards.
  • Gel is a semi-solid system between liquid and solid. It combines the advantages and characteristics of both liquid and solid, which makes it one of the hot spots in research and production life. There are also many researches.
  • the electrolyte of a lithium battery can be designed as a gel electrolyte or a solid electrolyte, thereby improving the leakage problem of the liquid electrolyte and reducing its safety hazard;
  • the system is introduced into the human body to build artificial organs; or the gel system can be applied to fields such as building materials.
  • one is to introduce one or more polymers directly into a solvent to form a network structure or an interpenetrating network structure.
  • High the other is to introduce a small molecule of organic gelling factor into a solvent, dissolve it in the solvent at a high temperature, and form a gel at room temperature or low temperature, and the strength of the gel is generally low.
  • the gel system formed by the above two methods whether it is used as an electrolyte of a lithium ion secondary battery or a construction of an artificial organ, it is inevitable to introduce a polymer from a raw material or a synthetic step.
  • one of the objects of the present invention is to provide a gellable system comprising a lithium salt and an ether compound selected from the group consisting of cyclic ether compounds and/or Linear ether compound.
  • ether compound selected from the group consisting of cyclic ether compounds and/or Linear ether compound.
  • Other solvents and/or electrolytes, inorganic nanoparticles, additives, and the like are further included in the system.
  • Another object of the present invention is to provide a gel or solid electrolyte prepared by gelation of the above gellable system, and a preparation method and application of the gel or solid electrolyte.
  • a gellable system comprising the following components: a lithium salt and an ether compound, the ether compound being selected from at least one of a cyclic ether compound or a linear ether compound;
  • the gelled polymer and/or gellable prepolymer has a mass percentage of less than or equal to 1% by weight.
  • the mass percentage of the lithium salt is greater than or equal to 2 wt% and less than 20 wt%;
  • the cyclic ether compound has a mass percentage of more than 80% by weight and less than or equal to 98% by weight; or, the lithium salt has a mass percentage of 2% by weight or more and less than 20% by weight; the quality of the linear ether compound The percentage is 80% by weight or more and 98% by weight or less.
  • the mass percentage of the cyclic ether compound is 50% by weight or more and 80% by weight or less; or the mass percentage of the lithium salt is 20% by weight or more and 75% by weight or less; the linear ethers
  • the mass percentage of the compound is 25 wt% or more and 80 wt% or less.
  • a gel electrolyte comprising the gel described above.
  • a lithium-based battery comprising the above-described gel electrolyte and/or the above-described solid electrolyte.
  • the above-mentioned gel, the above-mentioned solid electrolyte or the above-mentioned gel electrolyte is used in the field of lithium-based batteries; preferably, it is used in the field of lithium ion batteries, lithium sulfur batteries, and lithium air batteries.
  • the present invention provides a gellable system and a gel and/or solid electrolyte prepared therefrom, and a process and application thereof.
  • lithium salts and small molecular ether compounds such as cyclic ether compounds or linear ether compounds
  • a ring-opening polymerization or polycondensation of a small molecule cyclic ether compound or a chain-segment polymerization of a small molecule linear ether compound to form a gel system or a solid system
  • the gel system or the solid system not only It has better safety than ordinary gel system or solid system, and it also has good strength adjustability. It can improve the strength of gel formation from the source by changing the content and type of raw materials. The change can extend the gel system into the solid state system, thereby further expanding the range of application of the gel system.
  • the strength of the gel and solid electrolyte prepared by the gellable system of the present invention is adjustable, and the formation time (ie, from a free-flowing liquid state to a non-flowable gel state and/or a solid electrolyte state) Adjustable, transition temperature (ie, the lowest temperature from a non-flowable gel state and/or a solid electrolyte state to a free-flowing liquid state) is adjustable, ie different strength gels and solid electrolytes can be prepared according to specific needs To meet different needs.
  • the gel and the solid electrolyte have strong impact resistance, and when applied to the field of lithium batteries, not only can effectively solve the problem of leakage of the liquid electrolyte solution, but also enable the lithium battery to have higher charge and discharge efficiency. Better impact resistance, slowing down or even eliminating the "flying effect" and better preventing the battery from being short-circuited due to the growth of lithium dendrites, causing the battery to have a higher use. safety.
  • the gel and solid electrolyte prepared by the gellable system of the present invention have a high transition temperature and are also reversible. If an additive is added to the system, the strength of the gel or the solid electrolyte in the original system can be lowered, the transition temperature of the gel or the solid electrolyte can be lowered, the plasticity of the gel or the solid electrolyte can be increased, and the electrical conductivity of the gel or the solid electrolyte can be improved. A gel or solid electrolyte having superior properties is obtained.
  • the addition of the additive can broaden the formation time of the gel and the solid electrolyte, broaden the transition temperature range of the gel and the solid electrolyte, and increase the electrical conductivity of the gel and the solid electrolyte, thereby expanding the application fields of the gel and the solid electrolyte.
  • the mechanical strength of the gel system and the solid system is further enhanced, and the porosity of the electrolyte membrane can be increased, so that the electrolyte membrane can adsorb more liquid electrolyte, thereby increasing lithium ions in the gel or Mobility and conductivity in a solid electrolyte; when the gel or solid electrolyte is used at a temperature higher than its transition temperature, the gel or solid electrolyte may become flowable, but after cooling it below the transition temperature, It is reversible and can be re-used by re-forming a gel or solid electrolyte; due to its high transition temperature and reversibility, it can delay the service life and save costs, making it a green and new gel material. .
  • the gel and solid electrolyte of the present invention are simple in preparation, mild in reaction conditions, short in reaction cycle, high in product yield, low in preparation cost, and easy to realize industrial production.
  • the gel and solid electrolyte prepared by the gellable system of the present invention can exhibit a better gel state or a solid electrolyte state at a low temperature, that is, below the transition temperature of the gel or solid electrolyte.
  • the gel state or the solid electrolyte state is maintained well, and the strength of the gel and the solid electrolyte is better at a low temperature.
  • the gel or solid electrolyte prepared by the gellable system of the present invention can be applied to a lithium battery (such as a lithium ion battery, a lithium sulfur battery, a lithium air battery, etc.), and can still be used at high and low temperatures. .
  • a lithium battery such as a lithium ion battery, a lithium sulfur battery, a lithium air battery, etc.
  • Figure 1 is an optical photograph of the gel of Example 1-2.
  • Figure 3 is an optical photograph of the stretchable gel of Examples 1-5.
  • Example 4 is a first charge and discharge diagram of the gel electrolyte obtained in Example 1-4 assembled into a battery as an electrolyte of a lithium sulfur battery.
  • Fig. 5 is a graph showing the cycle performance of the gel electrolyte obtained in Example 1-4 as a battery of a lithium sulfur battery assembled into a battery.
  • Fig. 6 is a first charge and discharge diagram of the gel electrolyte obtained in Example 2-1 assembled into a battery as a lithium ion battery electrolyte.
  • Fig. 7 is a graph showing the cycle performance of a gel electrolyte obtained in Example 2-1 as a lithium ion battery electrolyte assembled into a battery.
  • Fig. 8 is a first charge and discharge diagram of the solid electrolyte obtained in Example 2-4 assembled into a battery as a lithium ion battery electrolyte.
  • Fig. 9 is a graph showing the cycle performance of a solid electrolyte obtained in Example 2-4 as a lithium ion battery electrolyte assembled into a battery.
  • Fig. 10 is a first charge and discharge diagram of the gel electrolyte obtained in Example 3-1 assembled into a battery as a lithium sulfur battery electrolyte.
  • Fig. 11 is a graph showing the cycle performance of a gel electrolyte obtained in Example 3-1 as a lithium sulfur battery electrolyte assembled into a battery.
  • Fig. 12 is a view showing the first charge and discharge of the gel electrolyte obtained in Example 4-1 as a battery of a lithium ion battery assembled into a battery.
  • Fig. 13 is a graph showing the cycle performance of a gel electrolyte obtained in Example 4-1 as a battery of a lithium ion battery assembled into a battery.
  • Fig. 14 is a view showing the first charge and discharge of the gel electrolyte obtained in Example 4-5 as a battery of a lithium sulfur battery assembled into a battery.
  • Fig. 15 is a graph showing the cycle performance of a gel electrolyte obtained in Example 4-5 as a battery of a lithium sulfur battery assembled into a battery.
  • Figure 16 is a photo of a solid electrolyte obtained in Example 5-8.
  • Fig. 17 is a view showing the first charge and discharge of the gel electrolyte obtained in Example 5-1 as a battery of a lithium ion battery assembled into a battery.
  • Fig. 18 is a graph showing the cycle performance of a gel electrolyte obtained in Example 5-1 as a battery of a lithium ion battery assembled into a battery.
  • Example 19 is a first charge and discharge diagram of the solid electrolyte obtained in Example 5-8 assembled into a battery as an electrolyte of a lithium sulfur battery.
  • Fig. 20 is a graph showing the cycle performance of the solid electrolyte obtained in Example 5-8 as a battery of a lithium sulfur battery assembled into a battery.
  • Figure 21 is an optical photograph of the solid electrolyte obtained in Example 6-2.
  • Fig. 22 is a view showing the first charge and discharge of the gel electrolyte obtained in Example 6-3 as a battery of a lithium ion battery assembled into a battery.
  • Fig. 23 is a graph showing the cycle performance of the gel electrolyte obtained in Example 6-3 as a battery of a lithium ion battery assembled into a battery.
  • Fig. 24 is a view showing the first charge and discharge of the solid electrolyte obtained in Example 6-6 as a battery of a lithium sulfur battery assembled into a battery.
  • Fig. 25 is a graph showing the cycle performance of the solid electrolyte obtained in Example 6-6 as a battery of a lithium sulfur battery assembled into a battery.
  • Figure 26 is a nuclear magnetic resonance spectrum of the solid electrolyte purification product obtained in Example 1-0.
  • Fig. 27 is an infrared spectrum chart of the solid electrolyte purification product obtained in Example 1-0.
  • Fig. 28 is a graph showing the cycle performance of the gel electrolyte obtained in Example 1-9 as a battery of the lithium manganate soft pack battery (1Ah) assembled into a battery and its corresponding coulombic efficiency.
  • Fig. 29 is a graph showing the cycle performance of a solid electrolyte obtained in Example 2-8 assembled into a battery as a lithium iron phosphate electrolyte.
  • Fig. 30 is a graph showing the cycle performance of the gel electrolyte obtained in Example 3-8 as a battery of a lithium sulfur battery assembled into a battery.
  • Figure 31 is a nuclear magnetic resonance spectrum of the gel electrolyte purified product obtained in Example 1-5.
  • Figure 32 is a nuclear magnetic resonance spectrum of the solid electrolyte purification product obtained in Example 2-5.
  • a first aspect of the present invention provides a gellable system comprising the following components: a lithium salt and an ether compound, the ether compound being selected from the group consisting of cyclic ether compounds;
  • the mass percentage of the polymer and/or gellable prepolymer is less than or equal to 1% by weight.
  • the sum of the weight percentages of the components is 100% by weight.
  • the lithium salt has a mass percentage of 2% by weight or more and 50% by weight or less; and the cyclic ether compound has a mass percentage of 50% by weight or more and 98% by weight or less.
  • the mass percentage of the lithium salt is greater than or equal to 5 wt% and less than 20 wt%; the mass percentage of the cyclic ether compound is greater than 80 wt% and less than or equal to 95 wt%; or, the mass of the lithium salt is The content of the fraction is 20% by weight or more and 30% by weight or less; the mass percentage of the cyclic ether compound is 70% by weight or more and 80% by weight or less.
  • the cyclic ether compound is selected from cyclic ether compounds containing one oxygen, two oxygen, three oxygen or more.
  • the cyclic ether compound may be a monocyclic ring, a spiro ring, a fused ring (such as a bicyclic ring) or a bridged ring.
  • a second aspect of the present invention provides a gel obtained by gelation of the above gellable system; the lithium salt has a mass percentage of 2% by weight or more and less than 20% by weight; The mass percentage of the ether compound is more than 80% by weight and less than or equal to 98% by weight.
  • the lithium salt has a mass percentage of 5% by weight or more and less than 20% by weight; and the cyclic ether compound has a mass percentage of more than 80% by weight and less than or equal to 95% by weight.
  • the gel has a transition temperature of 30 to 100 ° C, preferably 45 to 90 ° C.
  • the gel has a conductivity of 10 -5 to 10 -2 S/cm, preferably 10 -5 to 5 ⁇ 10 -3 S/cm.
  • a third aspect of the present invention provides a method for producing the above gel, which comprises the steps of: mixing a cyclic ether compound and a lithium salt, and obtaining a solution of a cyclic ether compound of a lithium salt by stirring, that is, The system can be gelled, the solution is continuously stirred, and the gel is obtained by gelation.
  • the method for preparing the gel specifically comprises the steps of: adding a cyclic ether compound to a lithium salt, and obtaining a solution of a cyclic ether compound of a lithium salt by stirring, that is, the gellable system, and continuing to stir.
  • the solution is gelled to obtain the gel.
  • the lithium salt and the cyclic ether compound are subjected to a pre-water removal treatment; preferably, the lithium salt and the cyclic ether compound are subjected to a pre-water removal treatment by molecular sieve and/or vacuum drying.
  • the gelation process needs to be completed under standing conditions.
  • the gel is formed at a temperature lower than the transition temperature of the gel, and the gel is formed for a time of 30 seconds to 200 hours.
  • a fourth aspect of the present invention provides a solid electrolyte obtained by gelation of the above gellable system; the lithium salt has a mass percentage of 20% by weight or more and 50% by weight or less; The cyclic ether compound has a mass percentage of 50% by weight or more and 80% by weight or less.
  • the mass percentage of the lithium salt is 20% by weight or more and 30% by weight or less; and the mass percentage of the cyclic ether compound is 70% by weight or more and 80% by weight or less.
  • the solid electrolyte has a transition temperature of 60 to 150 ° C, preferably 70 to 110 ° C.
  • the solid electrolyte has a conductivity of 10 -7 to 10 -3 S/cm, preferably 10 -7 to 10 -5 S/cm.
  • a fifth aspect of the present invention provides a method of producing the above solid electrolyte, comprising the steps of:
  • the cyclic ether compound and the lithium salt are mixed, and a solution of a cyclic ether compound of a lithium salt, that is, the gellable system, is stirred, and the solution is continuously stirred to obtain the solid electrolyte by gelation.
  • the method for preparing the solid electrolyte specifically includes the steps of: adding a cyclic ether compound to a lithium salt, and obtaining a solution of a cyclic ether compound of a lithium salt by stirring, that is, the gellable system, and continuing to stir.
  • the solution is gelled to obtain the solid electrolyte.
  • the lithium salt and the cyclic ether compound are subjected to a pre-water removal treatment; preferably, the lithium salt and the cyclic ether compound are subjected to a pre-water removal treatment by molecular sieve and/or vacuum drying.
  • the gelation process needs to be completed under standing conditions.
  • the solid electrolyte is formed at a temperature lower than a transition temperature of the solid electrolyte, and the solid electrolyte is formed for a time of 30 minutes to 100 hours.
  • a sixth aspect of the invention provides a gel electrolyte comprising the gel described above.
  • a seventh aspect of the invention provides a lithium-based battery comprising the above-described gel electrolyte and/or solid electrolyte.
  • An eighth aspect of the present invention provides the use of the above gel, the above solid electrolyte, and the above gel electrolyte, which can be used in the field of lithium-based batteries, such as lithium ion batteries, lithium sulfur batteries, lithium air batteries, and the like.
  • lithium-based batteries such as lithium ion batteries, lithium sulfur batteries, lithium air batteries, and the like.
  • a ninth aspect of the present invention provides a gellable system for a lithium ion battery, the system comprising the following components: a lithium salt for a lithium ion battery, an ether compound, and a lithium ion battery.
  • the sum of the weight percentages of the components is 100% by weight.
  • the mass percentage of the lithium salt for the lithium ion battery is 5% by weight or more and 60% by weight or less; the cyclic ethers.
  • the mass percentage of the compound is 20% by weight or more and 90% by weight or less; the mass percentage of the electrolyte or the solvent thereof for the lithium ion battery is 5% by weight or more and 75% by weight or less.
  • the mass percentage of the lithium salt for the lithium ion battery is 10% by weight or more and 40% by weight or less; the cyclic ether compound The mass percentage is 20% by weight or more and 60% by weight or less; the mass percentage of the electrolyte or the solvent thereof for the lithium ion battery is 20% by weight or more and 60% by weight or less.
  • the mass percentage of the lithium salt for the lithium ion battery is 10% by weight or more and 40% by weight or less; the cyclic ether compound The mass percentage is more than 60% by weight and less than or equal to 85% by weight; the mass percentage of the electrolytic solution or solvent thereof for the lithium ion battery is 5% by weight or more and 30% by weight or less.
  • a tenth aspect of the present invention provides a gel obtained by gelling a gellizable system for a lithium ion battery described above; wherein the mass of the lithium salt for the lithium ion battery is 100 The fractional content is 5% by weight or more and 60% by weight or less; the mass percentage of the cyclic ether compound is 20% by weight or more and 60% by weight or less; and the mass of the electrolytic solution or solvent thereof for the lithium ion battery is 100% The content of the component is 20% by weight or more and 75% by weight or less.
  • the mass percentage of the lithium salt for the lithium ion battery is 10% by weight or more and 40% by weight or less; the cyclic ether compound The mass percentage is 20% by weight or more and 60% by weight or less; the mass percentage of the electrolyte or the solvent thereof for the lithium ion battery is 20% by weight or more and 60% by weight or less.
  • the gel has a transition temperature of 40 to 90 ° C, preferably 60 to 75 ° C.
  • the gel has a conductivity of 10 -6 to 10 -1 S/cm, preferably 10 -5 to 5 ⁇ 10 -2 S/cm.
  • An eleventh aspect of the present invention provides a method for producing the above gel, comprising the steps of:
  • the gelation process needs to be completed under standing conditions.
  • the gel is formed at a temperature lower than the transition temperature of the gel, and the gel is formed for a time of 30 seconds to 300 hours.
  • an electrolyte for a lithium ion battery or a solvent thereof, a lithium salt for a lithium ion battery, and a cyclic ether compound are subjected to a pre-water removal treatment; preferably, a molecular sieve and/or a vacuum drying method is employed.
  • An electrolyte for a lithium ion battery or a solvent thereof, a lithium salt for a lithium ion battery, and a cyclic ether compound are subjected to a pre-water removal treatment.
  • a twelfth aspect of the present invention provides a solid electrolyte obtained by gelling a gellizable system for a lithium ion battery described above; wherein the quality of the lithium salt for the lithium ion battery is The percentage content is 5% by weight or more and 60% by weight or less; the mass percentage of the cyclic ether compound is more than 60% by weight and less than or equal to 90% by weight; the mass of the electrolyte or the solvent thereof for the lithium ion battery is 100% The content of the component is 5% by weight or more and 30% by weight or less.
  • the mass percentage of the lithium salt for the lithium ion battery is 10% by weight or more and 40% by weight or less; the cyclic ether compound The mass percentage is more than 60% by weight and less than or equal to 85% by weight; the mass percentage of the electrolytic solution or solvent thereof for the lithium ion battery is 5% by weight or more and 30% by weight or less.
  • the solid electrolyte has a transition temperature of 65 to 130 ° C, preferably 75 to 120 ° C.
  • the solid electrolyte has a conductivity of 10 -7 to 10 -3 S/cm, preferably 10 -6 to 10 -3 S/cm.
  • a thirteenth aspect of the present invention provides a method for producing the above solid electrolyte, comprising the steps of:
  • the gelation process needs to be completed under standing conditions.
  • the solid electrolyte is formed at a temperature lower than a transition temperature of the solid electrolyte, and the solid electrolyte is formed for a time of 30 minutes to 150 hours.
  • an electrolyte for a lithium ion battery or a solvent thereof, a lithium salt for a lithium ion battery, and a cyclic ether compound are subjected to a pre-water removal treatment; preferably, a molecular sieve and/or a vacuum drying method is employed.
  • An electrolyte for a lithium ion battery or a solvent thereof, a lithium salt for a lithium ion battery, and a cyclic ether compound are subjected to a pre-water removal treatment.
  • a fourteenth aspect of the invention provides a gel electrolyte comprising the gel described above.
  • a fifteenth aspect of the invention provides a lithium ion battery comprising the above gel electrolyte and/or solid electrolyte.
  • a sixteenth aspect of the present invention provides the use of the above gel, the above solid electrolyte, and the above gel electrolyte, which can be used in the field of lithium ion batteries and the like.
  • a seventeenth aspect of the present invention provides a gellable system for a lithium sulfur battery, which comprises the following components: a lithium salt, an ether compound, and an electrolyte for a lithium sulfur battery or a solvent thereof
  • the ether compound is selected from the group consisting of cyclic ether compounds; in addition, the gelatinizable polymer and/or gellizable prepolymer in the system has a mass percentage of 1% by weight or less.
  • the sum of the weight percentages of the components is 100% by weight.
  • the mass percentage of the lithium salt is more than 5% by weight and less than or equal to 60% by weight; the mass percentage of the cyclic ether compound is equal to 20% by weight and 90% by weight or less, the mass percentage of the electrolyte or the solvent thereof for the lithium sulfur battery is 5% by weight or more and 75% by weight or less.
  • the mass percentage of the lithium salt is 10% by weight or more and 40% by weight or less; and the mass percentage of the cyclic ether compound is greater than or equal to 20% by weight and 60% by weight or less, the above-mentioned electrolyte solution for a lithium sulfur battery or a solvent thereof has a mass percentage of 20% by weight or more and 60% by weight or less.
  • the mass percentage of the lithium salt is 10% by weight or more and 40% by weight or less; and the mass percentage of the cyclic ether compound is more than 60wt. % and less than or equal to 85 wt%, the mass percentage of the electrolyte or the solvent thereof for the lithium sulfur battery is more than 5 wt% and less than 30 wt%.
  • An eighteenth aspect of the present invention provides a gel obtained by gelling a gellizable system for a lithium sulfur battery as described above; wherein the gelation for a lithium sulfur battery
  • the mass percentage of the lithium salt is greater than 5% by weight and less than or equal to 60% by weight
  • the mass percentage of the cyclic ether compound is equal to 20% by weight and less than or equal to 60% by weight
  • the lithium sulphur battery The mass percentage of the electrolyte or its solvent is 20% by weight or more and 75% by weight or less.
  • the mass percentage of the lithium salt is 10% by weight or more and 40% by weight or less; and the mass percentage of the cyclic ether compound is greater than or equal to 20% by weight and 60% by weight or less, the above-mentioned electrolyte solution for a lithium sulfur battery or a solvent thereof has a mass percentage of 20% by weight or more and 60% by weight or less.
  • the gel has a transition temperature of 40 to 95 ° C, preferably 45 to 85 ° C.
  • the gel has a conductivity of 10 -5 to 10 -1 S/cm, preferably 10 -5 to 10 -2 S/cm.
  • a nineteenth aspect of the present invention provides a method for producing the above gel, comprising the steps of:
  • the gelation process needs to be completed under standing conditions.
  • the gel is formed at a temperature lower than the transition temperature of the gel, and the gel is formed for a time of 30 seconds to 300 hours.
  • the electrolyte for lithium-sulfur battery or its solvent, lithium salt and cyclic ether compound are subjected to pre-water removal treatment; preferably, molecular sieve and/or vacuum drying method is used for lithium-sulfur battery.
  • the electrolyte or a solvent thereof, a lithium salt, and a cyclic ether compound are subjected to a pre-water removal treatment.
  • a twentieth aspect of the present invention provides a solid electrolyte obtained by gelling a gellizable system for a lithium sulfur battery as described above; wherein the lithium salt has a mass percentage of 5 wt% or more % by weight and less than or equal to 60% by weight; the mass percentage of the cyclic ether compound is more than 60% by weight and less than or equal to 90% by weight; and the mass percentage of the electrolytic solution or solvent thereof for the lithium-sulfur battery is 5% by weight or more Less than or equal to 30% by weight.
  • the mass percentage of the lithium salt is 10% by weight or more and 40% by weight or less; and the mass percentage of the cyclic ether compound is more than 60wt. % and less than or equal to 85 wt%; the mass percentage of the electrolyte or the solvent thereof for the lithium sulfur battery is 5% by weight or more and 30% by weight or less.
  • the solid electrolyte has a transition temperature of 60 to 130 ° C, preferably 80 to 110 ° C.
  • the solid electrolyte has a conductivity of 10 -7 to 10 -3 S/cm, preferably 10 -6 to 10 -4 S/cm.
  • a twenty-first aspect of the present invention provides a method for producing the above solid electrolyte, comprising the steps of:
  • the gelation process needs to be completed under standing conditions.
  • the solid electrolyte is formed at a temperature lower than a transition temperature of the solid electrolyte, and the solid electrolyte is formed for a time of 30 minutes to 100 hours.
  • the electrolyte for lithium-sulfur battery or its solvent, lithium salt and cyclic ether compound are subjected to pre-water removal treatment; preferably, molecular sieve and/or vacuum drying method is used for lithium-sulfur battery.
  • the electrolyte or a solvent thereof, a lithium salt, and a cyclic ether compound are subjected to a pre-water removal treatment.
  • a twenty-second aspect of the present invention provides a gel electrolyte comprising the above gel.
  • a twenty-third aspect of the present invention provides a lithium sulfur battery comprising the above gel electrolyte and/or solid electrolyte.
  • a twenty-fourth aspect of the present invention provides the use of the above gel, the above solid electrolyte, and the above gel electrolyte, which can be used in the field of lithium sulfur batteries and the like.
  • a twenty-fifth aspect of the present invention provides a gellable system comprising the following components: a lithium salt, an ether compound and inorganic nanoparticles; and the ether compound is selected from the group consisting of cyclic ether compounds
  • the gelatinizable polymer and/or the gellable prepolymer in the system has a mass percentage of 1% by weight or less.
  • the sum of the weight percentages of the components is 100% by weight.
  • the mass percentage of the lithium salt is more than 5% by weight and less than or equal to 60% by weight; the mass percentage of the cyclic ether compound is greater than or equal to 20% by weight and less than or equal to 95% by weight; the inorganic nanoparticles have a mass percentage greater than 0 and less than or equal to 30% by weight.
  • the mass percentage of the lithium salt is greater than or equal to 10% by weight and less than or equal to 40% by weight; and the mass percentage of the cyclic ether compound is greater than or equal to 20% by weight and less than or equal to 60% by weight. %; the inorganic nanoparticle has a mass percentage of more than 0% by weight and less than or equal to 15% by weight.
  • the mass percentage of the lithium salt is greater than 10% and less than or equal to 40% by weight; the mass percentage of the cyclic ether compound is greater than 60% by weight and less than or equal to 90% by weight;
  • the inorganic nanoparticles have a mass percentage of more than 0% by weight and less than or equal to 20% by weight.
  • the gellable system further includes other solvents and/or electrolytes including an electrolyte for a lithium sulfur battery, a solvent for an electrolyte of a lithium sulfur battery. At least one of an electrolyte for a lithium ion battery and a solvent for an electrolyte of a lithium ion battery.
  • the mass percentage of the other solvent and/or electrolyte is greater than or equal to 0 wt% and less than or equal to 75 wt%.
  • the mass percentage of the other solvent and/or electrolyte is 5% by weight or more and 60% by weight or less.
  • a twenty-sixth aspect of the present invention provides a gel obtained by gelation of the above gellable system; wherein, in the gellizable system, the mass percentage of the lithium salt
  • the content of the cyclic ether compound is greater than or equal to 20% by weight and less than or equal to 60% by weight; the mass percentage of the inorganic nanoparticles is greater than 0 and less than or equal to 30% by weight;
  • the mass percentage of the (d) other solvent and/or electrolyte is greater than or equal to 0% by weight and less than or equal to 75% by weight.
  • the mass percentage of the lithium salt is greater than or equal to 10% by weight and less than or equal to 40% by weight; and the mass percentage of the cyclic ether compound is greater than or equal to 20% by weight and less than or equal to 60% by weight. %; the inorganic nanoparticle has a mass percentage of more than 0% by weight and less than or equal to 15% by weight; and the (d) other solvent and/or electrolyte has a mass percentage of 5% by weight or more and 60% by weight or less.
  • the gel has a transition temperature of 40 to 170 ° C, preferably 45 to 105 ° C.
  • the gel has a conductivity of 10 -5 to 10 -1 S/cm, preferably 10 -5 to 8 ⁇ 10 -2 S/cm.
  • a twenty-seventh aspect of the present invention provides a method for producing the above gel, comprising the steps of:
  • the preparation method of the gel specifically comprises the following steps:
  • the method for preparing the gel specifically comprises the following steps:
  • the preparation method of the gel specifically comprises the following steps:
  • the mixed solution prepared in the step 1') is added to the lithium salt solution prepared in the step 2'), and a ring containing a lithium salt in which other inorganic solvents and/or electrolytes are dissolved is obtained by stirring.
  • the ether compound solution that is, the gellable system, is continuously stirred, and gelled to obtain the gel.
  • the lithium salt, the cyclic ether compound, the inorganic nanoparticles, and other solvents and/or electrolytes are subjected to a pre-water removal treatment; preferably, the lithium salt is used by molecular sieve and/or vacuum drying.
  • the cyclic ether compound, the inorganic nanoparticles, and other solvents and/or electrolytes are subjected to a pre-water removal treatment.
  • the gelation process needs to be completed under standing conditions.
  • the gel is formed at a temperature lower than the transition temperature of the gel, and the gel is formed for a time of 30 seconds to 300 hours.
  • a twenty-eighth aspect of the present invention provides a solid electrolyte obtained by gelation of the above gellable system; wherein, in the gellizable system, the mass percentage of the lithium salt
  • the content of the cyclic ether compound is greater than 60% by weight and less than or equal to 95% by weight; the mass percentage of the inorganic nanoparticles is greater than 0% by weight and less than or equal to 30% by weight;
  • the mass percentage of the (d) other solvent and/or electrolyte is greater than or equal to 0% by weight and less than or equal to 75% by weight.
  • the mass percentage of the lithium salt is greater than 10% and less than or equal to 40% by weight; the mass percentage of the cyclic ether compound is greater than 60% by weight and less than or equal to 90% by weight;
  • the inorganic nanoparticles have a mass percentage of more than 0% by weight and less than or equal to 20% by weight; and the (d) other solvent and/or electrolyte has a mass percentage of 5% by weight or more and 60% by weight or less.
  • the solid electrolyte has a transition temperature of 70 to 180 ° C, preferably 72 to 145 ° C.
  • the solid electrolyte has a conductivity of 10 -7 to 10 -2 S/cm, preferably 10 -6 to 2 x 10 -3 S/cm.
  • a twenty-ninth aspect of the present invention provides a method for producing the above solid electrolyte, comprising the steps of:
  • the method for preparing the solid electrolyte specifically comprises the following steps:
  • the method for preparing the solid electrolyte specifically includes the following steps:
  • the method for preparing the solid electrolyte specifically comprises the following steps:
  • the lithium salt, the cyclic ether compound, the inorganic nanoparticles, and other solvents and/or electrolytes are subjected to a pre-water removal treatment; preferably, the lithium salt is used by molecular sieve and/or vacuum drying.
  • the cyclic ether compound, the inorganic nanoparticles, and other solvents and/or electrolytes are subjected to a pre-water removal treatment.
  • the gelation process needs to be completed under standing conditions.
  • the solid electrolyte is formed at a temperature lower than a transition temperature of the gel solid electrolyte, and the solid electrolyte is formed for a time of 30 minutes to 150 hours.
  • a thirtieth aspect of the invention provides a gel electrolyte comprising the gel described above.
  • a thirty-first aspect of the invention provides a lithium-based battery comprising the above-described gel electrolyte and/or solid electrolyte.
  • a thirty-second aspect of the present invention provides the use of the above gel, the above solid electrolyte, which can be used in the field of lithium batteries, building materials and the like.
  • a thirty-third aspect of the present invention provides an application of the above gel electrolyte, which can be used in the field of lithium-based batteries and the like.
  • the lithium-based battery includes at least one of a lithium ion battery, a lithium sulfur battery, and a lithium air battery.
  • a thirty-fourth aspect of the present invention provides a gellable system comprising the following components: a lithium salt, an ether compound and an additive; and the ether compound is selected from the group consisting of cyclic ether compounds; The additive is selected from one or more of the polyesters or blends thereof; the mass percentage of the gellable polymer and/or gellable prepolymer in the system is ⁇ 1 wt%.
  • the sum of the weight percentages of the components is 100% by weight.
  • the mass percentage of the lithium salt is 5% by weight or more and 60% by weight or less; the mass percentage of the cyclic ether compound is 20% by weight or more and less than Equal to 90% by weight; the mass percentage of the additive is 5% by weight or more and 60% by weight or less.
  • the mass percentage of the lithium salt is greater than or equal to 10% by weight and less than or equal to 40% by weight; and the mass percentage of the cyclic ether compound is greater than or equal to 20% by weight and less than or equal to 60% by weight. %; the mass percentage of the additive is greater than 20% by weight and less than or equal to 60% by weight.
  • the mass percentage of the lithium salt is 10% by weight or more and 40% by weight or less; and the mass percentage of the cyclic ether compound is more than 60% by weight and less than or equal to 90% by weight.
  • the mass percentage of the additive is 5% by weight or more and 20% by weight or less.
  • the gellable system further includes other solvents and/or electrolytes including an electrolyte for a lithium sulfur battery, a solvent for an electrolyte of a lithium sulfur battery. At least one of an electrolyte for a lithium ion battery and a solvent for an electrolyte of a lithium ion battery.
  • the mass percentage of the other solvent and/or electrolyte is greater than or equal to 0% by weight and less than or equal to 60% by weight.
  • the other solvent and/or electrolyte has a mass percentage of more than 0% by weight and less than or equal to 25% by weight.
  • the gellable system may further include inorganic nanoparticles.
  • the inorganic nanoparticles in the gellizable system, have a mass percentage of greater than or equal to 0% by weight and less than or equal to 30% by weight.
  • the inorganic nanoparticles in the gellizable system, have a mass percentage of more than 0% by weight and less than or equal to 15% by weight.
  • a thirty-fifth aspect of the present invention provides a gel obtained by gelation of the above gellable system; wherein, in the gellizable system, the mass percentage of the lithium salt
  • the content is 5% by weight or more and 60% by weight or less; the mass percentage of the cyclic ether compound is 20% by weight or more and 60% by weight or less; and the mass percentage of the additive is 5% by weight or more and 60% by weight or less.
  • the mass percentage of the other solvent and/or electrolyte is greater than or equal to 0 wt% and less than or equal to 60 wt%; and the inorganic nanoparticle has a mass percentage of greater than or equal to 0 wt% and less than or equal to 30 wt%.
  • the mass percentage of the lithium salt is greater than or equal to 10% by weight and less than or equal to 40% by weight; and the mass percentage of the cyclic ether compound is greater than or equal to 20% by weight and less than or equal to 60% by weight. %; the mass percentage of the additive is 20% by weight or more and 60% by weight or less; the mass percentage of the other solvent and/or electrolyte is more than 0% by weight and less than or equal to 30% by weight; the quality of the inorganic nanoparticles The percentage is more than 0% by weight and less than or equal to 15% by weight.
  • the gel has a transition temperature of 30 to 150 ° C, preferably 40 to 100 ° C.
  • the gel has a conductivity of 10 -4 to 10 -1 S/cm, preferably 10 -3 to 5 ⁇ 10 -2 S/cm.
  • a thirty-sixth aspect of the present invention provides a method for producing the above gel, comprising the steps of:
  • the preparation method of the gel specifically comprises the following steps:
  • the preparation method of the gel specifically comprises the following steps:
  • the preparation method of the gel specifically comprises the following steps:
  • the method for preparing the gel specifically comprises the following steps:
  • the mixed solution prepared in the step 1") is added to the lithium salt, and a solution of a cyclic ether compound containing a lithium salt of the additive and the inorganic nanoparticle is obtained under stirring, that is, the gellable system is continued.
  • the solution was stirred and gelled to obtain the gel.
  • the lithium salt, the cyclic ether compound, the additive, the inorganic nanoparticle, and other solvents and/or the electrolyte are subjected to a pre-water removal treatment; preferably, the method is performed by molecular sieve and/or vacuum drying.
  • the lithium salt, the cyclic ether compound additive, the inorganic nanoparticles, and other solvents and/or electrolytes are subjected to a pre-water removal treatment.
  • the temperature at which the gel is formed is lower than the transition temperature of the gel, and the gel formation time is from 5 minutes to 500 hours.
  • a thirty-seventh aspect of the present invention provides a solid electrolyte obtained by gelation of the above gellable system; wherein, in the gellizable system, the mass percentage of the lithium salt a content of 5 wt% or more and 60 wt% or less; a mass percentage of the cyclic ether compound is greater than 60 wt% and less than or equal to 90 wt%; a mass percent of the additive is greater than or equal to 5 wt% and less than or equal to 60 wt%; The mass percentage of the other solvent and/or electrolyte is greater than or equal to 0 wt% and less than or equal to 60 wt%; and the inorganic nanoparticle has a mass percentage of greater than or equal to 0 wt% and less than or equal to 30 wt%.
  • the mass percentage of the lithium salt is 10% by weight or more and 40% by weight or less; and the mass percentage of the cyclic ether compound is more than 60% by weight and less than or equal to 90% by weight.
  • the mass percentage of the additive is 5% by weight or more and 20% by weight or less; the mass percentage of the other solvent and/or electrolyte is more than 0% by weight and less than or equal to 15% by weight; the mass of the inorganic nanoparticles is 100%
  • the fraction content is more than 0% by weight and less than or equal to 15% by weight.
  • the solid electrolyte has a transition temperature of 70 to 170 ° C, preferably 80 to 120 ° C.
  • the solid electrolyte has a conductivity of 10 -7 to 10 -3 S/cm, preferably 10 -5 to 10 -3 S/cm.
  • a thirty-eighth aspect of the invention provides a method for producing the above solid electrolyte, comprising the steps of:
  • the method for preparing the solid electrolyte specifically comprises the following steps:
  • the method for preparing the solid electrolyte specifically comprises the following steps:
  • the method for preparing the solid electrolyte specifically comprises the following steps:
  • the method for preparing the solid electrolyte specifically includes the following steps:
  • the mixed solution prepared in the step 1") is added to the lithium salt, and a solution of a cyclic ether compound containing a lithium salt of the additive and the inorganic nanoparticle is obtained under stirring, that is, the gellable system is continued.
  • the solution was stirred and gelled to obtain the solid electrolyte.
  • the lithium salt, the cyclic ether compound, the additive, the inorganic nanoparticle, and other solvents and/or the electrolyte are subjected to a pre-water removal treatment; preferably, the method is performed by molecular sieve and/or vacuum drying.
  • the lithium salt, the cyclic ether compound additive, the inorganic nanoparticles, and other solvents and/or electrolytes are subjected to a pre-water removal treatment.
  • the solid electrolyte is formed at a temperature lower than a transition temperature of the solid electrolyte, and the solid electrolyte is formed for a time of 50 minutes to 200 hours.
  • a thirty-ninth aspect of the invention provides a gel electrolyte comprising the gel described above.
  • a fortieth aspect of the invention provides a lithium-based battery comprising the above-described gel electrolyte and/or solid electrolyte.
  • a fortieth aspect of the present invention provides the use of the above gel, the above solid electrolyte, and the above gel electrolyte, which is used in the field of lithium batteries and the like.
  • the lithium-based battery includes at least one of a lithium ion battery, a lithium sulfur battery, and a lithium air battery.
  • a forty-second aspect of the present invention provides a gellable system comprising the following components: a lithium salt and an ether compound, wherein the ether compound is selected from a linear ether compound;
  • the gelled polymer and/or gellable prepolymer has a mass percentage of less than or equal to 1% by weight.
  • the sum of the weight percentages of the components is 100% by weight.
  • the lithium salt has a mass percentage of 2% by weight or more and 75% by weight or less; and the linear ether compound has a mass percentage of 25% by weight or more and 98% by weight or less.
  • the mass percentage of the lithium salt is greater than or equal to 5 wt% and less than 20 wt%; the mass percentage of the linear ether compound is greater than 80 wt% and less than or equal to 95 wt%; or, the mass of the lithium salt is The content of the fraction is 20% by weight or more and 30% by weight or less; the mass percentage of the linear ether compound is 70% by weight or more and 80% by weight or less.
  • the gellable system further includes other solvents and/or electrolytes including an electrolyte for a lithium sulfur battery, a solvent for an electrolyte of a lithium sulfur battery. At least one of an electrolyte for a lithium ion battery and a solvent for an electrolyte of a lithium ion battery.
  • the mass percentage of the other solvent and/or electrolyte is greater than or equal to 0 wt% and less than or equal to 75 wt%.
  • the mass percentage of the other solvent and/or electrolyte is greater than 0 wt% and less than or equal to 60 wt%.
  • the gellable system may further include inorganic nanoparticles.
  • the inorganic nanoparticles in the gellizable system, have a mass percentage of greater than or equal to 0% by weight and less than or equal to 30% by weight.
  • the inorganic nanoparticles in the gellizable system, have a mass percentage of more than 0% by weight and less than or equal to 20% by weight.
  • a forty-third aspect of the present invention provides a gel obtained by gelation of the above gellable system; wherein the lithium salt has a mass percentage of 2% by weight or more and less than 20% by weight.
  • the mass percentage of the linear ether compound is 80% by weight or more and 98% by weight or less; the mass percentage of the other solvent and/or electrolyte is greater than or equal to 0% by weight and less than or equal to 75% by weight;
  • the mass percentage of the nanoparticles is 0% by weight or more and 30% by weight or less.
  • the lithium salt has a mass percentage of 5% by weight or more and less than 20% by weight; the linear ether compound has a mass percentage of more than 80% by weight and less than or equal to 95% by weight; the other solvent and/or electrolysis
  • the mass percentage of the liquid is more than 0% by weight and less than or equal to 60% by weight; the mass percentage of the inorganic nanoparticles is more than 0% by weight and less than or equal to 20% by weight.
  • the gel has a transition temperature of 40 to 170 ° C, preferably 55 to 130 ° C, and more preferably 55 to 85 ° C.
  • the gel has a conductivity of 10 -5 to 10 -1 S/cm, preferably 10 -5 to 5 ⁇ 10 -2 S/cm.
  • a forty-fourth aspect of the present invention provides a method for producing the above gel, comprising the steps of:
  • the preparation method of the gel specifically comprises the following steps:
  • Adding a linear ether compound to a lithium salt stirring to obtain a solution of a linear ether compound of a lithium salt, optionally adding other solvents and/or electrolytes and/or inorganic nanoparticles to the linear ether of the lithium salt
  • the compound solution i.e., the gellable system, continues to stir the solution and gels to obtain the gel.
  • the lithium salt, the linear ether compound, optionally other solvents and/or electrolyte and optionally the inorganic nanoparticles are subjected to a pre-water removal treatment; preferably, molecular sieves and/or vacuum drying are employed.
  • a pre-water removal treatment preferably, molecular sieves and/or vacuum drying are employed.
  • the lithium salt, linear ether compound, optionally other solvents and/or electrolytes and optionally inorganic nanoparticles are subjected to a pre-water removal treatment.
  • the gelation process needs to be completed under standing conditions.
  • the gel is formed at a temperature lower than the transition temperature of the gel, and the gel is formed for a time of 30 seconds to 300 hours.
  • a forty-fifth aspect of the present invention provides a solid electrolyte obtained by gelation of the above gellable system; wherein the lithium salt has a mass percentage of 20 wt% or more and 75 wt% or less %; the mass percentage of the linear ether compound is 25 wt% or more and 80 wt% or less; the mass percentage of the other solvent and/or electrolyte is 0 wt% or more and 75 wt% or less;
  • the inorganic nanoparticles have a mass percentage of greater than or equal to 0% by weight and less than or equal to 30% by weight.
  • the lithium salt has a mass percentage of 20% by weight or more and 30% by weight or less; the linear ether compound has a mass percentage of 70% by weight or more and 80% by weight or less; the other solvent and/or Or the mass percentage of the electrolyte is greater than 0 wt% and less than or equal to 60 wt%; the mass percentage of the inorganic nanoparticles is greater than 0 wt% and less than or equal to 20 wt%.
  • the solid electrolyte has a transition temperature of 70 to 140 ° C, preferably 75 to 110 ° C.
  • the solid electrolyte has a conductivity of 10 -7 to 10 -3 S/cm, preferably 10 -6 to 10 -3 S/cm, and more preferably 10 -5 to 10 -3 S/cm.
  • a forty-sixth aspect of the invention provides a method for producing the above solid electrolyte, comprising the steps of:
  • the method for preparing the solid electrolyte specifically comprises the following steps:
  • Adding a linear ether compound to a lithium salt stirring to obtain a solution of a linear ether compound of a lithium salt, optionally adding other solvents and/or electrolytes and/or inorganic nanoparticles to the linear ether of the lithium salt
  • the compound solution that is, the gellable system, is continuously stirred, and gelled to obtain the solid electrolyte.
  • the lithium salt, the linear ether compound, optionally other solvents and/or electrolyte and optionally the inorganic nanoparticles are subjected to a pre-water removal treatment; preferably, molecular sieves and/or vacuum drying are employed.
  • a pre-water removal treatment preferably, molecular sieves and/or vacuum drying are employed.
  • the lithium salt, linear ether compound, optionally other solvents and/or electrolytes and optionally inorganic nanoparticles are subjected to a pre-water removal treatment.
  • the gelation process needs to be completed under standing conditions.
  • the solid electrolyte is formed at a temperature lower than a transition temperature of the solid electrolyte, and the solid electrolyte is formed for a time of 30 minutes to 200 hours.
  • a forty-seventh aspect of the invention provides a gel electrolyte comprising the gel described above.
  • a forty-eighth aspect of the invention provides a lithium-based battery comprising the above-described gel electrolyte and/or solid electrolyte.
  • a forty-ninth aspect of the present invention provides the above gel, the above solid electrolyte, and the above gel electrolyte, which are used in the field of lithium batteries and the like.
  • the lithium-based battery includes at least one of a lithium ion battery, a lithium sulfur battery, and a lithium air battery.
  • the gellable system of the present invention contains an ether compound selected from the group consisting of cyclic ether compounds.
  • the cyclic ether compound is selected from C 2 to C 20 cycloalkanes having at least one oxygen atom (that is, 2 to 20 carbon atoms in the cyclic structure) or C 3 having at least one oxygen atom.
  • C 20 cyclic olefin i.e., 3 to 20 carbon atoms in the cyclic structure
  • containing at least one carbon-carbon double bond i.e., 3 to 20 carbon atoms in the cyclic structure
  • the cycloalkane or cycloalkene is a monocyclic ring, a fused ring (such as a bicyclic ring), a spiro ring or a bridged ring; when the cycloalkane or cycloalkene is a spiro ring or a bridged ring and contains two or more oxygen atoms
  • the oxygen atoms may be on one ring or on multiple rings.
  • the cyclic ether compound is selected from a C 2 to C 20 monocycloalkane having at least one oxygen atom, and is preferably selected from a C 3 to C 20 monocycloalkane having at least one oxygen atom.
  • first class compounds one of the following first class compounds:
  • the cyclic ether compound is selected from a C 4 to C 20 fused cycloalkane having at least one oxygen atom, and is, for example, one of the following second compounds:
  • the cyclic ether compound is selected from a C 4 to C 20 bridged cycloalkane having at least one oxygen atom, and is, for example, one of the following third types of compounds:
  • the cyclic ether compound is selected from a C 4 to C 20 spirocycloalkane having at least one oxygen atom, and is, for example, one of the following fourth compounds:
  • the carbon atom on the ring may be substituted with one or more R1 groups; the cycloalkane or cycloalkene is a bridge.
  • R1 groups When cyclic, its non-bridged ring carbon atom may be substituted by one or more R1 groups; when the cycloalkane or cycloalkene is a spiro ring, the ring carbon atom may be substituted by one or more R1 groups.
  • the R1 group is selected from the group consisting of an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, a halogenated alkyl group, a cycloalkyl group, a cycloalkyloxy group, a cycloalkyl sulfide. , heterocyclic, heterocyclyloxy, heterocyclylthio, aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy, decyl, nitro, carboxy, amino, ester, Halogen, acyl, aldehyde group.
  • the cyclic ether compound containing an oxygen is selected from a substituted or unsubstituted oxetane, a substituted or unsubstituted tetrahydrofuran, a substituted or unsubstituted tetrahydropyran;
  • the number may be one or more; the substituent is the above R1 group.
  • the cyclic ether compound containing one oxygen is selected from the group consisting of 3,3-dichloromethyloxetane, 2-chloromethyloxetane, and 2-chloromethylpropylene oxide. , 1,3-epoxycyclohexane, 1,4-epoxycyclohexane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropyran, oxygen Heterocycloheptane, oxacyclooctane, oxetan or oxetane.
  • the cyclic ether compound containing two oxygens is selected from substituted or unsubstituted 1,3-dioxolane (DOL), substituted or unsubstituted 1,4-dioxane;
  • DOL 1,3-dioxolane
  • the number of the substituents may be one or more; the substituent is the above R1 group.
  • the cyclic ether compound containing three oxygens is selected from substituted or unsubstituted paraformaldehyde; the number of the substituents may be one or more; and the substituent is the above R1 group. group.
  • the oxygen-containing ether compound is selected from the group consisting of substituted or unsubstituted 18-crown-6, substituted or unsubstituted 12-crown-4, substituted or unsubstituted 24-crown-8;
  • the number of the substituents may be one or more; the substituent is the above R1 group.
  • the gellable system of the present invention contains an ether compound selected from a linear ether compound.
  • the general formula of the linear ether compound is as shown in the formula (1):
  • R 2 is selected from linear or branched alkylene of C 1 -C 6 alkyl, linear or branched C 2 -C 6 alkenylene group; and R 2 on the H on a carbon atom may be substituted by at least one of the following groups: alkenyl, alkynyl, alkoxy, alkylthio, cycloalkyl, cycloalkyloxy, cycloalkylthio, hetero Cyclo, heterocyclyloxy, heterocyclylthio, aryl, aryloxy, heteroaryl, heteroaryloxy, hydroxy, decyl, nitro, carboxy, amino, ester, halogen, acyl Aldehyde;
  • R 1 and R 3 are the same or different and are independently selected from one or more of a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, an alkynyl group; the carbon of the R 1 and R 3 H on an atom may be substituted by at least one of the following groups: alkenyl, alkynyl, alkoxy, alkylthio, cycloalkyl, cycloalkyloxy, cycloalkylthio, heterocyclic , heterocyclyloxy, heterocyclylthio, aryl, aryloxy, hydroxy, decyl, nitro, carboxy, amino, ester, halogen, acyl, aldehyde.
  • n is an integer between 1 and 6;
  • R 2 is selected from a linear or branched C 1 -C 4 alkylene group, a linear or branched C 2 -C 6 alkenylene group;
  • R 1 The same or different from R 3 , independently of each other, is selected from a linear or branched C 1 -C 6 alkyl group.
  • R 2 is selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and vinyl; and R 1 and R 3 are the same or different and are independently selected from the group consisting of methyl, ethyl, and C. base.
  • linear ether compound is selected from the group consisting of ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ether, 1,4-butanediol dimethyl ether, 1,4-butanediol diethyl ether One or more of 1,4-butanediol methyl ethyl ether and the like.
  • the linear ether compound is, for example, one of the following compounds:
  • the other solvent and/or electrolyte includes an electrolyte for a lithium sulfur battery, a solvent for an electrolyte of a lithium sulfur battery, an electrolyte for a lithium ion battery, and an electrolysis for a lithium ion battery. At least one of the solvents of the liquid.
  • the electrolyte for a lithium ion battery is selected from the group consisting of an ester mixture containing a lithium salt for a lithium ion battery, such as ethylene carbonate (EC) and dimethyl carbonate containing 1 M lithium hexafluorophosphate (LiPF 6 ).
  • a lithium salt for a lithium ion battery such as ethylene carbonate (EC) and dimethyl carbonate containing 1 M lithium hexafluorophosphate (LiPF 6 ).
  • EC ethylene carbonate
  • LiPF 6 lithium hexafluorophosphate
  • the solvent for the electrolyte of the lithium ion battery is selected from the group consisting of a cyclic nonaqueous organic solvent for an electrolyte of a lithium ion battery and a chain nonaqueous organic solvent for an electrolyte of a lithium ion battery. At least one of them.
  • the cyclic non-aqueous organic solvent is selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), fluoroethylene carbonate (FEC), ⁇ -butyrolactone (GBL), and vinyl sulfite.
  • EC ethylene carbonate
  • PC propylene carbonate
  • FEC fluoroethylene carbonate
  • GBL ⁇ -butyrolactone
  • ES propylene sulfite
  • PS sulfolane
  • GC glycerin carbonate
  • the chain non-aqueous organic solvent is selected from the group consisting of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methylpropyl carbonate (MPC), and dipropyl carbonate.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methylpropyl carbonate
  • dipropyl carbonate dipropyl carbonate
  • DPC ethyl propyl carbonate
  • EPC ethyl propyl carbonate
  • EA ethyl acetate
  • PA propyl acetate
  • EP ethyl propionate
  • EB ethyl butyrate
  • MB methyl butyrate
  • DMS dimethyl sulfite
  • DES diethyl sulfite
  • EMS ethyl methyl sulfite
  • MSM dimethyl sulfone
  • DMSO dimethyl sulfoxide
  • the electrolyte for the lithium sulfur battery is selected from the group consisting of ether mixtures containing lithium salts, for example, 1,3-dioxolane containing 1 M lithium bistrifluoromethanesulfonimide (LiTFSI).
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • the solvent for the electrolyte of the lithium sulfur battery is selected from the group consisting of 1,3-dioxolane, 1,2-dimethoxyethane, triethylene glycol dimethyl ether, and tetraethylene glycol.
  • 1,3-dioxolane 1,2-dimethoxyethane
  • triethylene glycol dimethyl ether triethylene glycol dimethyl ether
  • tetraethylene glycol triethylene glycol dimethyl ether
  • dimethyl ether, fluoroethylene carbonate, polyethylene glycol borate, 1,1', 2,2'-tetrafluoroethyl-2,2',3,3'-tetrafluoropropene ether 1,1', 2,2'-tetrafluoroethyl-2,2',3,3'-tetrafluoropropene etherkind or more.
  • the inorganic nanoparticles are selected from the group consisting of silica, alumina, silicon nitride, zinc oxide, titanium dioxide, silicon carbide, silicate, calcium carbonate, barium sulfate, clay, triiron tetroxide, antimony oxide, One or more of a nano carbon material, iron oxide, or the like; preferably, the inorganic nanoparticle is selected from one or more of the group consisting of silica, alumina, titania, and zinc oxide.
  • the lithium salt may be selected from lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium trifluoromethanesulfonate, lithium perfluorobutylsulfonate, bistrifluoromethanesulfonate.
  • the lithium salt when used in a lithium ion battery, is selected from one or both of lithium hexafluorophosphate, lithium perchlorate, and the like.
  • the lithium salt when used in a lithium sulfur battery, is selected from the group consisting of lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium perchlorate, lithium trifluoromethanesulfonate, lithium bistrifluoromethanesulfonimide, difluorosulfonate.
  • lithium imide lithium fluorosulfonimide, lithium chloride, and the like.
  • the additive is selected from one or more of a polyester or a blend thereof.
  • the polyester is obtained by polycondensation of a polybasic acid or an acid anhydride with a polyol.
  • the polybasic acid is selected from the group consisting of a dibasic acid, a tribasic acid or a polybasic acid
  • the polyhydric alcohol is selected from the group consisting of a glycol, a triol or a polyhydric alcohol.
  • the polybasic acid is selected from one or two or three or more of the following polybasic acids which are substituted or unsubstituted: oxalic acid, malonic acid, succinic acid , butenedioic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, triglyceride; the number of said substituents may be one or more; When the substituent is plural, it may form a ring; the substituent is an alkyl group, a cycloalkyl group, an aryl group, a hydroxyl group, an amino group, an ester group, a halogen, an acyl group, an aldehyde group, a decyl group, an alkoxy group or the like. One or more.
  • the anhydride is selected from one or two or three or more of the following anhydrides, substituted or unsubstituted: oxalic anhydride, malonic anhydride, succinic anhydride, butyl Adipic anhydride, glutaric anhydride, adipic anhydride, pimelic anhydride, suberic anhydride, sebacic anhydride, sebacic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride; the number of said substituents may be one or more; When the substituent is plural, it may form a ring; the substituent is an alkyl group, a cycloalkyl group, an aryl group, a hydroxyl group, an amino group, an ester group, a halogen, an acyl group, an aldehyde group, a decyl group, an alkoxy group, or the like. One or more of them.
  • the polyol is selected from one or more of the following substituted or unsubstituted polyols: propylene glycol, butylene glycol, pentanediol, hexanediol, heptanediol, octane a diol, a decanediol, a decane diol, a polyethylene glycol, a glycerin; the number of the substituents may be one or more; when the substituent is plural, it may form a ring;
  • the substituent is one or more selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, a hydroxyl group, an amino group, an ester group, a halogen, an acyl group, an aldehyde group, a decyl group, an alkoxy group and the like.
  • the polyol is selected from the group consisting of polyethylene glycol, or a combination of polyethylene glycol and one or more of the following polyols: propylene glycol, butylene glycol, pentanediol, Glycol, heptanediol, octanediol, decanediol, decanediol.
  • the polyethylene glycol has a degree of polymerization of from 100 to 1000, preferably from 150 to 800, still more preferably from 200 to 600.
  • the weight ratio of the polyethylene glycol to the other polyol is 1: (0 to 1), preferably 1: (0 to 0.9), and more preferably 1: (0 to 0.8).
  • gel in the present invention has a meaning well known in the art, and the term “gelling” also has the meanings well known in the art.
  • the gellable polymer and/or gellable prepolymer in the present invention means a polymer and/or a prepolymer which can form a gel or can be gelled under certain conditions.
  • the gellable polymer and/or gellable prepolymer of the present invention may be selected from the group consisting of polyethylene oxide (PEO), polyethylene glycol (PEG), and polyvinylidene fluoride (PVDF).
  • PVC polyvinyl chloride
  • PS polystyrene
  • PAN polyacrylonitrile
  • PAN polyethyl acetate
  • PVAC polyvinylpyrrolidone
  • PVS polydivinyl sulfide
  • PTMC poly Sanya Methyl carbonate
  • PMMA polymethyl methacrylate
  • PEGDM polyethylene glycol dimethacrylate
  • PPO polyoxypropylene
  • PDMSO polydimethylsiloxane
  • halogen means fluoro, chloro, bromo and iodo.
  • alkyl group used alone or as a suffix or prefix in the present invention is intended to include a branch having from 1 to 20, preferably from 1 to 6 carbon atoms (or a specific number if a specific number of carbon atoms is provided) Chain and linear saturated aliphatic hydrocarbon groups.
  • C 1-6 alkyl means a straight-chain or branched alkyl group having 1, 2, 3, 4, 5 or 6 carbon atoms.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, and hexyl.
  • Haloalkyl or "alkyl halide”, as used alone or as a suffix or prefix, is intended to include having at least one halogen substituent and having from 1 to 20, preferably from 1 to 6 carbon atoms (or if provided)
  • the specific number of carbon atoms refers to the specific number of branched and linear saturated aliphatic hydrocarbon groups.
  • C 1-10 haloalkyl means a haloalkyl group having 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms.
  • haloalkyl groups include, but are not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, 1-fluoroethyl, 3-fluoropropyl, 2-chloropropyl, 3,4-di Fluorobutyl and the like.
  • alkenyl used alone or as a suffix or prefix in the present invention is intended to include the inclusion of 2 to 20, preferably 2 to 6 carbon atoms (or the specific number if a specific number of carbon atoms is provided) Branched and linear aliphatic hydrocarbon groups of alkenyl or olefin.
  • C 2-6 alkenyl means an alkenyl group having 2, 3, 4, 5 or 6 carbon atoms.
  • alkenyl groups include, but are not limited to, vinyl, allyl, 1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, 3 Methylbut-1-enyl, 1-pentenyl, 3-pentenyl and 4-hexenyl.
  • alkynyl used alone or as a suffix or prefix in the present invention is intended to include inclusions having from 2 to 20, preferably from 2 to 6 carbon atoms (or the specific number if a particular number of carbon atoms is provided) Branched and linear aliphatic hydrocarbon groups of alkynyl or alkyne.
  • ethynyl, propynyl eg, 1-propynyl, 2-propynyl
  • 3-butynyl pentynyl, hexynyl, and 1-methylpent-2-ynyl.
  • aryl as used herein means an aromatic ring structure composed of 5 to 20 carbon atoms.
  • an aromatic ring structure containing 5, 6, 7 and 8 carbon atoms may be a monocyclic aromatic group such as a phenyl group; a ring structure comprising 8, 9, 10, 11, 12, 13 or 14 carbon atoms It may be polycyclic such as naphthyl.
  • the aromatic ring may be substituted with one or more of the above substituents at one or more ring positions.
  • aryl also includes polycyclic ring systems having two or more rings wherein two or more carbons are shared by two adjacent rings (the ring is a "fused ring"), wherein at least One ring is aromatic and the other ring may be, for example, a cycloalkyl, cycloalkenyl, cycloalkynyl, aryl and/or heterocyclic group.
  • polycyclic rings include, but are not limited to, 2,3-dihydro-1,4-benzodioxadiene and 2,3-dihydro-1-benzofuran.
  • cycloalkyl as used herein is intended to include saturated cyclic groups having the indicated number of carbon atoms. These terms may include fused or bridged polycyclic systems.
  • the cycloalkyl group has 3 to 40 carbon atoms in its ring structure. In one embodiment, the cycloalkyl has 3, 4, 5 or 6 carbon atoms in its ring structure.
  • C 3-6 cycloalkyl means a group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group or a cyclohexyl group.
  • heteroaryl refers to a heteroaromatic heterocycle having at least one ring heteroatom such as sulfur, oxygen or nitrogen.
  • Heteroaryl groups include monocyclic systems and polycyclic systems (eg, having 2, 3 or 4 fused rings).
  • heteroaryl groups include, but are not limited to, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, furyl, quinolyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, fluorene , pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, 1,2,4 -thiadiazolyl, isothiazolyl, benzothienyl, fluorenyl, oxazolyl, benzimidazolyl, benzoxazolyl, azabenzoxazolyl, imidazothiazolyl, benzo[1] 4] dioxolyl, benzo[1,3]dioxolyl and the
  • a heteroaryl has from 3 to 40 carbon atoms and in other embodiments from 3 to 20 carbon atoms. In some embodiments, a heteroaryl group contains 3 to 14, 4 to 14, 3 to 7, or 5 to 6 ring-forming atoms. In some embodiments, a heteroaryl has 1 to 4, 1 to 3 or 1 to 2 heteroatoms. In some embodiments, a heteroaryl has 1 heteroatom.
  • heterocyclyl refers to a saturated, unsaturated or partially saturated monocyclic, bicyclic or tricyclic ring containing from 3 to 20 atoms, wherein 1, 2, 3, 4 or 5 Ring atoms are selected from nitrogen, sulfur or oxygen, and unless otherwise indicated, may be attached by carbon or nitrogen, wherein the -CH 2 - group is optionally replaced by -C(O)-; and unless otherwise stated
  • the ring nitrogen atom or the ring sulfur atom is optionally oxidized to form an N-oxide or S-oxide or a ring nitrogen atom, optionally quaternized; wherein -NH in the ring is optionally acetyl, formyl, A Substituted with a methanesulfonyl group; and the ring is optionally substituted with one or more halogens.
  • heterocyclic group when the total number of S atoms and O atoms in the heterocyclic group exceeds 1, these hetero atoms are not adjacent to each other.
  • the heterocyclic group is bicyclic or tricyclic, at least one ring may be optionally a heteroaromatic or aromatic ring, provided that at least one ring is non-heteroaromatic. If the heterocyclic group is a monocyclic ring, it must not be aromatic. Examples of heterocyclic groups include, but are not limited to, piperidinyl, N-acetylpiperidinyl, N-methylpiperidinyl, N-formylpiperazinyl, N-methylsulfonylpiperazinyl, homopiperazinyl.
  • the conductivity described in this example was obtained using an electrochemical workstation of the Model 1000 model from Gamry, Inc., and the test scanning frequency was from 1.0 Hz to 100 kHz.
  • the test of the battery described in this embodiment is a blue battery pack.
  • the lithium salt is subjected to a water removal treatment by vacuum drying at 40 ° C for 10 hours or more before use.
  • the cyclic ether compound is subjected to water removal treatment via molecular sieve before use.
  • the liquid including the electrolyte for the lithium ion battery or its solvent is dried by molecular sieve removal of water before use.
  • the liquid including the electrolyte for the lithium sulfur battery or its solvent is subjected to water removal treatment by molecular sieve before use.
  • the additive is dehydrated by vacuum drying at 45 ° C for 24 h or more before use.
  • the conventional electrolyte of the lithium ion battery used in the present embodiment is selected from the group consisting of a mixture of ethylene carbonate and dimethyl carbonate containing 1 M lithium hexafluorophosphate, wherein the volume ratio of the ethylene carbonate and dimethyl carbonate is 1:1.
  • the conventional electrolyte of the lithium-sulfur battery used in the present embodiment is selected from the group consisting of ether mixtures containing lithium salts, for example, 1,3-dioxolane and ethylene glycol containing 1 M lithium bistrifluoromethanesulfonimide.
  • ether mixtures containing lithium salts for example, 1,3-dioxolane and ethylene glycol containing 1 M lithium bistrifluoromethanesulfonimide.
  • the inorganic nanoparticles are subjected to water removal treatment by vacuum drying at 60 ° C for 10 hours or more before use.
  • the positive electrode material is selected from the group consisting of lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, ternary material nickel cobalt manganese oxide, nano positive electrode material (such as nanocrystalline spinel LiMn 2 O 4 , yttrium magnesium manganese ore type MnO 2 nano fiber) , polypyrrole-coated spinel LiMn 2 O 4 nanotubes, polypyrrole/V 2 O 5 nanocomposites, etc.), blended electrodes, vanadium oxides, layered compounds (such as aniline modified oxy groups) At least one of ferric chloride or the like.
  • nano positive electrode material such as nanocrystalline spinel LiMn 2 O 4 , yttrium magnesium manganese ore type MnO 2 nano fiber
  • polypyrrole-coated spinel LiMn 2 O 4 nanotubes such as polypyrrole/V 2 O 5 nanocomposites, etc.
  • blended electrodes vanadium oxides
  • layered compounds such as aniline modified oxy groups
  • the negative electrode material is at least one selected from the group consisting of metal negative electrode materials (such as metal lithium, lithium alloy, etc.), inorganic nonmetal negative electrode materials (such as carbon materials, silicon materials, and other non-metal composite materials, etc.).
  • metal negative electrode materials such as metal lithium, lithium alloy, etc.
  • inorganic nonmetal negative electrode materials such as carbon materials, silicon materials, and other non-metal composite materials, etc.
  • the separator is selected from the group consisting of a solid electrolyte membrane or a polyolefin porous membrane prepared by the gellable system of the present invention, such as at least one of a polyethylene microporous membrane, a polypropylene microporous membrane, and a three-layer composite membrane.
  • Preparation of positive electrode tab of lithium ion battery uniformly mixing positive electrode material with conductive graphite, conductive agent acetylene black (super p) and binder polyvinylidene fluoride (PVDF) according to mass ratio of 85:5:5:5.
  • the mixture was prepared into a slurry by N-methyl-pyrrolidone (NMP), uniformly coated on an aluminum foil, and dried in a vacuum oven at 120 ° C for 24 hours, and used;
  • NMP N-methyl-pyrrolidone
  • the positive electrode material and the conductive agent acetylene black (super p) and the binder polyvinylidene fluoride (PVDF) are uniformly mixed at a mass ratio of 8:1:1, and N-methyl group is used.
  • - pyrrolidone (NMP) to prepare a mixture into a slurry, uniformly coated on an aluminum foil, and dried in a vacuum oven at 60 ° C for 24 hours, ready for use;
  • the solid electrolyte When the prepared solid electrolyte is heated above 60 ° C, the solid electrolyte begins to become sticky. When the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the transition temperature of the solid electrolyte has been reached, and when the temperature drops below 60 ° C. The solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte is completely dissolved in a solvent (such as deionized water), and then precipitated in ethanol, and the obtained polymer is dissolved in deuterated chloroform, and the nuclear magnetic resonance spectrum is tested.
  • a solvent such as deionized water
  • the test results are shown in Fig. 26, and the results are as follows.
  • the chemical shift is 3.72 ppm attributed to the polymer segment -O-CH 2 -CH 2 -O-, and the chemical shift is 4.75 ppm attributed to the polymer segment -O-CH 2 -O-, both
  • the integral area is 2:1, which is the same as the ratio of the two segments in the repeating unit (-CH 2 -O-CH 2 -CH 2 -O-), indicating that the target polymer is successfully obtained in the electrolyte system.
  • the solid electrolyte is completely dissolved in a solvent (such as deionized water), and then precipitated in ethanol.
  • a solvent such as deionized water
  • the obtained polymer is uniformly mixed with an appropriate amount of KBr powder, compressed into tablets, and characterized by infrared spectroscopy. 27 can be seen: a peak at 1100cm -1 corresponding to the -CH 2 - stretching vibration at 2900cm -1 corresponding to the peak is -CH 2 - stretching vibrations, further demonstrate the structure of the compound.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 1).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the solid electrolyte When the prepared solid electrolyte is heated above 90 ° C, the solid electrolyte begins to become sticky. When the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the transition temperature of the solid electrolyte has been reached, and when the temperature drops below 90 ° C. The solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 1).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • Figure 1 is an optical photograph of the gel of Example 1-2. It can be seen from the figure that the colorless transparent gel can be prepared by using the above ratio of the lithium salt and the cyclic ether cyclate; When the temperature is below, the gel does not flow when the reagent bottle is inverted.
  • the gel When the prepared gel is heated above 65 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the gel transition temperature has been reached, and when the temperature drops below 65 ° C. The gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery cell (test results are shown in Table 1).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the formation time of the solid electrolyte was tested to be 12 h; the formation temperature of the solid electrolyte was room temperature, the transition temperature of the solid electrolyte was 80 ° C, and the conductivity of the solid electrolyte was 3.26 ⁇ 10 -6 S/cm. .
  • FIG. 2 is an optical photograph of the solid electrolyte of Examples 1-3, and it can be seen from the figure that the ratio of the above lithium salt and the cyclic ether cyclate can be used to prepare a solid electrolyte; moreover, below the transition temperature, The solid electrolyte did not flow when the reagent bottle was inverted.
  • the solid electrolyte When the prepared solid electrolyte is heated above 80 ° C, the solid electrolyte begins to become sticky. When the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the transition temperature of the solid electrolyte has been reached, and when the temperature drops below 80 ° C. The solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 1).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the gel When the prepared gel is heated above 45 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow to the bottle mouth, indicating that the gel transition temperature has been reached, and when the temperature drops to 45. When the temperature is below °C, the gel is reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery cell (test results are shown in Table 1).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the gel When the prepared gel was heated above 63 ° C, the gel began to become sticky. When the reagent bottle was inverted, the gel was observed to flow downward, indicating that the gel transition temperature had been reached, and when the temperature dropped to 63 ° C. In the following, the gel was reformed again, indicating that the prepared gel has good reversibility.
  • Figure 3 is an optical photograph of the gel of Examples 1-5, it can be seen from the figure that the gel can be prepared by using the above ratio of the lithium salt and the cyclic ether cyclate; and the gel has a good The tensile properties and plasticity can be stretched and twisted into any shape without automatic recovery, requiring external force to restore plasticity.
  • the gel electrolyte is completely dissolved in a solvent (such as deionized water), and then precipitated in ethanol, and the obtained polymer is dissolved in deuterated chloroform, and subjected to nuclear magnetic resonance spectrum measurement.
  • a solvent such as deionized water
  • the test results are shown in FIG. As a result, it can be seen that the chemical shift is 1.51 ppm attributed to the polymer segment -O-CH 2 -CH 2 - (two H on the thick C), and the chemical shift is 3.37 ppm attributed to -O-CH 2 -CH.
  • the integral area of the two is 1:1, and the two chains in the repeating unit (-O-CH 2 -CH 2 -CH 2 -CH 2 -O-)
  • the segment ratio is the same, indicating that the target polymer is successfully obtained in the electrolyte system.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery cell (test results are shown in Table 1).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the gel When the prepared gel is heated above 67 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the gel transition temperature has been reached, and when the temperature drops below 67 ° C. The gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery cell (test results are shown in Table 1).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • trioxane 0.15g of lithium bisfluorosulfonimide and 0.1g of lithium perfluorobutyl sulfonate in a reagent bottle, and add 3.0mL of 1,4-dioxane (before use)
  • the lithium salt and the paraformaldehyde are all dissolved under magnetic stirring, and the lithium salt of bisfluorosulfonimide + lithium perfluorobutyl sulfonate / 1,4-1.
  • the dioxane + paraformaldehyde solution was allowed to stand for a while to obtain a gel.
  • the gel was tested for a formation time of 26 h, the gel was formed at room temperature, the gel had a transition temperature of 82 ° C, and the gel had a conductivity of 4.18 ⁇ 10 -3 S/cm. .
  • the gel When the prepared gel is heated above 82 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the gel transition temperature has been reached, and when the temperature drops below 82 ° C. The gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied to a battery as a gel electrolyte, and the electrochemical performance of the battery was tested using a blue battery (test results are shown in Table 1).
  • the battery is prepared by fully infiltrating the positive electrode tab and the negative electrode tab with the gellable system, and then placing the separator between the positive electrode and the negative electrode, and then injecting the gel prepared in the above step (1).
  • the electrolyte is packaged, compacted, assembled into a battery, and allowed to stand in the gellable system to become a gel electrolyte.
  • the gel When the prepared gel is heated above 55 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the transition temperature of the gel, and when the temperature drops below 55 ° C. At the same time, the gel was reformed again, indicating that the prepared gel has good reversibility.
  • the method for preparing the button battery comprises: replacing the gelatinizable system in the above step (1) with a conventional binder polyvinylidene fluoride (PVDF), and participating in the preparation of the positive electrode tab and the negative electrode tab.
  • PVDF polyvinylidene fluoride
  • the material and the conductive agent are beaten together, coated into a pole piece, and then the separator is placed between the positive electrode and the negative electrode, and then the gelatinizable electrolyte prepared in the above step (1) is injected, packaged and compacted, assembled into a battery, and statically
  • the gellable system is set to become a gel electrolyte.
  • the gel When the prepared gel is heated above 62 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the transition temperature of the gel, and when the temperature drops below 62 ° C. At the same time, the gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a 1 Ah lithium manganate soft pack battery, and the electrochemical performance of the soft pack battery was tested using a blue electric battery pack (test results are shown in Table 1).
  • the preparation method of the soft pack battery is: placing a separator between the positive electrode and the negative electrode, winding, leaving a liquid injection port when sealing, injecting the gellable system prepared in the step (1), vacuum packaging, assembling into The soft pack battery is left to stand until the gellable system becomes a gel electrolyte.
  • Example 4 is a first charge and discharge diagram of the gel electrolyte obtained in Example 1-4 assembled into a battery as an electrolyte of a lithium sulfur battery.
  • the gel electrolyte is used as an electrolyte solution for a lithium-sulfur battery, and the lithium-sulfur battery can be normally charged and discharged, and the active material therein can be fully utilized to obtain a high specific capacity.
  • Fig. 5 is a graph showing the cycle performance of the gel electrolyte obtained in Example 1-4 as a battery of a lithium sulfur battery assembled into a battery.
  • the gel electrolyte as the electrolyte of the lithium-sulfur battery can significantly slow down the "flying effect", thereby improving the utilization rate of the active material and further improving the cycle performance of the battery.
  • Figure 28 is a graph showing the cycle performance of the gel electrolyte obtained in Example 1-9 as a battery of a lithium manganate soft pack battery (1Ah) assembled into a battery, and its corresponding coulombic efficiency diagram, as shown in the figure, the gel electrolyte is In the soft pack battery, the capacity can be fully utilized, close to the theoretical capacity, and the capacity remains basically stable after 50 cycles, and the Coulomb efficiency is always close to 100% during the cycle, showing good cycle stability.
  • the gel When the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature is reached. Upon falling below the transition temperature of the gel, the gel reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 2).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the lithium salt used for the lithium ion battery has a mass percentage of 19% by weight; the cyclic ether compound has a mass percentage of 48% by weight; and the electrolyte for a lithium ion battery or a solvent thereof The percentage by mass is 33% by weight.
  • the performance parameters of the gel were tested in Table 2.
  • the gel When the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature is reached. Upon falling below the transition temperature of the gel, the gel reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 2).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the lithium salt used for the lithium ion battery has a mass percentage of 15% by weight; the cyclic ether compound has a mass percentage of 67% by weight; and the electrolyte for a lithium ion battery or a solvent thereof The mass percentage is 18% by weight.
  • the performance parameters of the solid electrolyte were tested in Table 2.
  • the solid electrolyte When the prepared solid electrolyte is heated above the transition temperature of the solid electrolyte, the solid electrolyte begins to become sticky, and when the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the temperature has reached the transition temperature of the solid electrolyte, and when the temperature When the temperature drops below the transition temperature of the solid electrolyte, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 2).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the mass percentage of the lithium salt used for the lithium ion battery is 13 wt%; the mass percentage of the cyclic ether compound is 66 wt%; and the electrolyte for the lithium ion battery or its solvent The mass percentage is 21% by weight.
  • the performance parameters of the solid electrolyte were tested in Table 2.
  • the solid electrolyte When the prepared solid electrolyte is heated above the transition temperature of the solid electrolyte, the solid electrolyte begins to become sticky, and when the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the temperature has reached the transition temperature of the solid electrolyte, and when the temperature When the temperature drops below the transition temperature of the solid electrolyte, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 2).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • trioxane 0.6 g of lithium aluminate and 0.2 g of lithium tetrafluoroborate in a reagent bottle
  • the salt and the paraformaldehyde were all dissolved, and 1.85 mL of tetrahydrofuran was added, and after thorough mixing, a gellable system was obtained; after a while, a solid electrolyte was formed.
  • the mass percentage of the lithium salt for the lithium ion battery is 13.1 wt%; the mass percentage of the cyclic ether compound is 60.7 wt%; the electrolyte for the lithium ion battery or The mass percentage of the solvent was 26.2% by weight.
  • the performance parameters of the solid electrolyte were tested in Table 2.
  • the solid electrolyte When the prepared solid electrolyte is heated above the transition temperature of the solid electrolyte, the solid electrolyte begins to become sticky, and when the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the temperature has reached the transition temperature of the solid electrolyte, and when the temperature When the temperature drops below the transition temperature of the solid electrolyte, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte is completely dissolved in a solvent (such as deionized water), and then precipitated in ethanol, and the obtained polymer is dissolved in deuterated chloroform, and the nuclear magnetic resonance spectrum is tested.
  • a solvent such as deionized water
  • the test results are shown in Fig. 32, and the results are as follows.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 2).
  • the method for preparing the button battery is: fully infiltrating the positive electrode sheet and the negative electrode sheet with the gellable system prepared in the above step (1), and simultaneously scraping the gellable system prepared in the above step (1) After being applied to a glass plate, after it is allowed to stand as a solid electrolyte, it is peeled off, placed between the infiltrated positive electrode and the negative electrode, packaged and compacted, assembled into a battery, and allowed to stand for gelation. The system becomes a solid electrolyte.
  • lithium hexafluoroarsenate 0.8 g was weighed into a reagent bottle, 1.0 mL of ethyl methyl carbonate and 1.0 mL of dimethyl carbonate were added thereto, and the lithium salt was completely dissolved by stirring, and 4.0 mL of 1,4-dioxane was added thereto.
  • the lithium salt solution after stirring and mixing well, a gellable system is obtained; after a while, a gel is formed.
  • the lithium salt used for the lithium ion battery has a mass percentage of 12% by weight; the cyclic ether compound has a mass percentage of 58% by weight; and the electrolyte for a lithium ion battery or a solvent thereof The mass percentage is 30% by weight.
  • the performance parameters of the gel were tested in Table 2.
  • the gel When the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature is reached. Upon falling below the transition temperature of the gel, the gel reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 2).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the lithium salt used for the lithium ion battery has a mass percentage of 23% by weight; the cyclic ether compound has a mass percentage of 61% by weight; and the electrolyte for a lithium ion battery or a solvent thereof The mass percentage is 16% by weight.
  • the performance parameters of the solid electrolyte were tested in Table 2.
  • the solid electrolyte When the prepared solid electrolyte is heated above the transition temperature of the solid electrolyte, the solid electrolyte begins to become sticky, and when the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the temperature has reached the transition temperature of the solid electrolyte, and when the temperature When the temperature drops below the transition temperature of the solid electrolyte, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 2).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • trioxin 0.6 g of lithium bistrifluoromethanesulfonate and 0.2 g of lithium tetrafluoroborate in a reagent bottle, and add 0.8 mL of t-butyl carbonate and 0.8 mL of dimethyl carbonate.
  • the mixture was thoroughly mixed under magnetic stirring until all the lithium salt and the paraformaldehyde were dissolved, and 2.7 mL of tetrahydrofuran was added thereto, and after thorough mixing, a gellable system was obtained; after a while, a solid electrolyte was formed.
  • the lithium salt used for the lithium ion battery has a mass percentage of 13 wt%; the cyclic ether compound has a mass percentage of 61 wt%; and the electrolyte for a lithium ion battery or a solvent thereof The mass percentage is 26% by weight.
  • the performance parameters of the solid electrolyte were tested in Table 2.
  • the solid electrolyte When the prepared solid electrolyte is heated above the transition temperature of the solid electrolyte, the solid electrolyte begins to become sticky, and when the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the temperature has reached the transition temperature of the solid electrolyte, and when the temperature When the temperature drops below the transition temperature of the solid electrolyte, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 2).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery.
  • the gellable system was allowed to stand to become a solid electrolyte, and then circulated at a high temperature of 60 °C.
  • Fig. 6 is a first charge and discharge diagram of the gel electrolyte obtained in Example 2-1 assembled into a battery as a lithium ion battery electrolyte.
  • the gel electrolyte is used as an electrolyte solution for a lithium ion battery, and the lithium ion battery can be normally charged and discharged, and the active material therein can be fully utilized to obtain a high specific capacity.
  • Fig. 7 is a graph showing the cycle performance of a gel electrolyte obtained in Example 2-1 as a lithium ion battery electrolyte assembled into a battery.
  • the gel as an electrolyte of a lithium ion battery, can exhibit stable cycle performance, and the specific capacity remains substantially unchanged.
  • Fig. 8 is a first charge and discharge diagram of the solid electrolyte obtained in Example 2-4 assembled into a battery as a lithium ion battery electrolyte.
  • the solid electrolyte is used as an electrolyte of a lithium ion battery, and the lithium ion battery can be normally charged and discharged, and the active material therein can be fully utilized to obtain a high specific capacity.
  • Fig. 9 is a graph showing the cycle performance of a solid electrolyte obtained in Example 2-4 as a lithium ion battery electrolyte assembled into a battery. As can be seen from the figure, the solid electrolyte can exhibit stable cycle performance as an electrolyte of a lithium ion battery, and the specific capacity remains substantially unchanged.
  • Fig. 29 is a graph showing the cycle performance of a solid electrolyte obtained in Example 2-8 assembled into a battery as a lithium iron phosphate electrolyte. The figure shows that the solid electrolyte at a high temperature of 60 deg.] C, initial discharge capacity of 148.7mAh ⁇ g -1, the loop coil 50, discharge capacity of 142.9mAh ⁇ g -1, exhibit good high temperature properties.
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • the mass percentage of the lithium salt is 13% by weight; the mass percentage of the cyclic ether compound is 52% by weight; and the mass percentage of the electrolyte or solvent used in the lithium-sulfur battery is 35wt %.
  • the performance parameters of the gel were tested in Table 3.
  • the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky.
  • the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature is reached.
  • the gel Upon lowering below the transition temperature of the gel, the gel reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 3).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 20% by weight; the mass percentage of the cyclic ether compound is 56% by weight; and the mass percentage of the electrolyte or solvent used in the lithium-sulfur battery is 24wt %.
  • the performance parameters of the gel were tested in Table 3.
  • the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky.
  • the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature is reached.
  • the gel Upon lowering below the transition temperature of the gel, the gel reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 3).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 15% by weight; the mass percentage of the cyclic ether compound is 68% by weight; and the mass percentage of the electrolyte or solvent used in the lithium-sulfur battery is 17wt %.
  • the performance parameters of the solid electrolyte were tested in Table 3.
  • the solid electrolyte When the prepared solid electrolyte is heated above the transition temperature of the solid electrolyte, the solid electrolyte begins to become sticky, and when the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the temperature has reached the transition temperature of the solid electrolyte, and when the temperature When the temperature is lowered below the transition temperature of the solid electrolyte, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 3).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the mass percentage of the lithium salt is 15% by weight; the mass percentage of the cyclic ether compound is 64% by weight; and the mass percentage of the electrolyte or solvent used in the lithium-sulfur battery is 21wt %.
  • the performance parameters of the solid electrolyte were tested in Table 3.
  • the solid electrolyte When the prepared solid electrolyte is heated above the transition temperature of the solid electrolyte, the solid electrolyte begins to become sticky, and when the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the temperature has reached the transition temperature of the solid electrolyte, and when the temperature When the temperature is lowered below the transition temperature of the solid electrolyte, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 3).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the mass percentage of the lithium salt is 17% by weight; the mass percentage of the cyclic ether compound is 50% by weight; and the mass percentage of the electrolyte or solvent used in the lithium-sulfur battery is 33wt %.
  • the performance parameters of the gel were tested in Table 3.
  • the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky.
  • the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature is reached.
  • the gel Upon lowering below the transition temperature of the gel, the gel reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 3).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 16% by weight; the mass percentage of the cyclic ether compound is 42% by weight; and the mass percentage of the electrolyte or solvent used in the lithium-sulfur battery is 42wt %.
  • the performance parameters of the gel were tested in Table 3.
  • the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky.
  • the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature is reached.
  • the gel Upon lowering below the transition temperature of the gel, the gel reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 3).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 14% by weight; the mass percentage of the cyclic ether compound is 48% by weight; and the mass percentage of the electrolyte or solvent used in the lithium-sulfur battery is 38wt %.
  • the performance parameters of the gel were tested in Table 3.
  • the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky.
  • the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature is reached.
  • the gel Upon lowering below the transition temperature of the gel, the gel reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 3).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 14% by weight; the mass percentage of the cyclic ether compound is 43% by weight; and the mass percentage of the electrolyte or solvent used in the lithium-sulfur battery is 43wt %.
  • the performance parameters of the gel were tested in Table 3.
  • the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky.
  • the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature is reached.
  • the gel Upon lowering below the transition temperature of the gel, the gel reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 3).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • Fig. 10 is a first charge and discharge diagram of the gel electrolyte obtained in Example 3-1 assembled into a battery as a lithium sulfur battery electrolyte.
  • the gel electrolyte as a lithium-sulfur battery electrolyte can make the active material inside the battery function normally, and can be normally charged and discharged.
  • Fig. 11 is a graph showing the cycle performance of a gel electrolyte obtained in Example 3-1 as a lithium sulfur battery electrolyte assembled into a battery.
  • the gel electrolyte as a lithium-sulfur battery electrolyte can significantly slow down the "flying effect", thereby improving the utilization rate of the active material and further improving the cycle performance of the battery.
  • Fig. 30 is a graph showing the cycle performance of the gel electrolyte obtained in Example 3-8 as a battery of a lithium sulfur battery assembled into a battery.
  • the gel electrolyte as a lithium-sulfur battery electrolyte can significantly inhibit the diffusion of polysulfide ions, improve the utilization rate of the active material, and slow the capacity decay, thereby improving the cycle stability of the battery.
  • the mass percentage of the lithium salt is 13% by weight; the mass percentage of the cyclic ether compound is 43% by weight; the mass percentage of the inorganic nanoparticles is 1% by weight; other solvents and/or electrolysis
  • the mass percentage of the liquid was 43% by weight.
  • the gel was tested to have a formation time of 20 h, the gel was formed at room temperature, the gel had a transition temperature of 55 ° C, and the gel had a conductivity of 1.78 ⁇ 10 -2 S/cm. .
  • the gel When the prepared gel is heated above the transition temperature of the gel, the gel begins to become sticky, and when the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the transition temperature of the gel, and When the temperature drops below the transition temperature of the gel, the gel re-forms, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 5).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the gel was prepared in the same manner as in Example 1 except that the components and the amounts of the components in the gel system were different; the specific components and amounts are listed in Table 4.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 5).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • 0.05 g of alumina was weighed into a reagent bottle, and 4.5 mL of 1,3-dioxolane was added thereto, and the mixture was thoroughly mixed under magnetic stirring to obtain a mixed solution A.
  • Another 0.4 g of fluorosulfonimide lithium and 0.6 g of lithium perchlorate were placed in a reagent bottle, and 1.2 mL of a lithium sulfur battery conventional electrolyte was added thereto, and stirred until the lithium salt was completely dissolved to obtain a mixed solution B.
  • the A and B solutions obtained above were thoroughly mixed, and the resulting mixture was obtained to obtain a gellable system; it was allowed to stand for a while to form a solid electrolyte.
  • the mass percentage of the lithium salt is 15% by weight; the mass percentage of the cyclic ether compound is 66.3 wt%; the mass percentage of the inorganic nanoparticles is 0.7 wt%; other solvents and / Or the mass percentage of the electrolyte is 18% by weight.
  • the formation time of the solid electrolyte was tested to be 12 h, the formation temperature of the solid electrolyte was room temperature, the transition temperature of the solid electrolyte was 96 ° C, and the conductivity of the solid electrolyte was 2.38 ⁇ 10 -5 S/cm. .
  • the solid electrolyte When the prepared solid electrolyte is heated above the gel transition temperature of the solid electrolyte gel, the solid electrolyte begins to become sticky, and when the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the temperature has reached the transition temperature of the solid electrolyte. When the temperature drops below the gel transition temperature, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 6).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the preparation method of the solid electrolyte is the same as that of Example 8, except that the selection and the amount of each component in the solid electrolyte system are different; the specific components and amounts are listed in Table 4.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 6).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • Fig. 12 is a view showing the first charge and discharge of the gel electrolyte obtained in Example 4-1 as a battery of a lithium ion battery assembled into a battery.
  • the gel electrolyte is used as an electrolyte solution for a lithium ion battery, and the lithium ion battery can be normally charged and discharged, and the active material therein can be fully utilized to obtain a high specific capacity.
  • Fig. 13 is a graph showing the cycle performance of a gel electrolyte obtained in Example 4-1 as a battery of a lithium ion battery assembled into a battery.
  • the gel as an electrolyte of a lithium ion battery, can exhibit stable cycle performance, and the specific capacity remains substantially unchanged.
  • Fig. 14 is a view showing the first charge and discharge of the gel electrolyte obtained in Example 4-5 as a battery of a lithium sulfur battery assembled into a battery.
  • the gel electrolyte is used as an electrolyte solution for a lithium-sulfur battery, and the lithium ion battery can be normally charged and discharged, and the active material therein can be fully utilized to obtain a high specific capacity.
  • Fig. 15 is a graph showing the cycle performance of a gel electrolyte obtained in Example 4-5 as a battery of a lithium sulfur battery assembled into a battery.
  • the gel electrolyte as an electrolyte of the flow battery can effectively alleviate the "flying effect", thereby improving the utilization rate of the active material, increasing the specific capacity of the battery, and exhibiting excellent cycle performance.
  • the performance parameters of the gel were tested in Table 8. As can be seen from Table 8, the gel obtained by the preparation of Example 1 was formed for 10 hours; the transition temperature of the gel was 60 ° C, and the conductivity of the gel was 2.1 ⁇ 10 -3 S/cm. When the prepared gel is heated to above 60 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature drops below 60 ° C. At the same time, the gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 16% by weight; the mass percentage of the cyclic ether compound is 50% by weight; the mass percentage of the other solvent and/or electrolyte is 12% by weight; The mass percentage of the additive was 22% by weight.
  • the performance parameters of the gel were tested in Table 8. As can be seen from Table 8, the gelation time of the gel prepared in Example 2 was 9 h; the transition temperature of the gel was 58 ° C, and the conductivity of the gel was 1.3 ⁇ 10 -2 S/cm. When the prepared gel is heated to above 58 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the temperature has reached the gel transition temperature, and when the temperature drops below 58 ° C. At the same time, the gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 22% by weight; the mass percentage of the cyclic ether compound is 45 wt%; the mass percentage of the polyester additive is 21 wt%; other solvents and/or electrolysis
  • the mass percentage of the liquid was 11% by weight; the mass percentage of silica was 1% by weight.
  • the performance parameters of the gel were tested in Table 8. As can be seen from Table 8, the gel obtained by the preparation of Example 3 was formed for 8 hours; the transition temperature of the gel was 60 ° C, and the conductivity of the gel was 8.8 ⁇ 10 -3 S/cm. When the prepared gel is heated above 60 ° C, the gel becomes able to flow. When the reagent bottle is inverted, the gel is found to flow downward, indicating that the gel transition temperature has been reached, and when the temperature drops to 60 ° C. In the following, the gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the performance parameters of the solid electrolyte were tested in Table 8. As can be seen from Table 8, the solid electrolyte prepared in Example 4 had a formation time of 10 h; the solid electrolyte had a transition temperature of 85 ° C, and the solid electrolyte had an electric conductivity of 2.5 ⁇ 10 -4 S/cm. When the prepared solid electrolyte is heated above 85 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the temperature has reached the transition temperature of the solid electrolyte, and when the temperature drops below 85 ° C. At the same time, the solid electrolyte was reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the mass percentage of the lithium salt is 25 wt%; the mass percentage of the cyclic ether compound is 43 wt%; the mass percentage of other solvents and/or electrolyte is 11 wt%; The mass percentage of the additive was 21% by weight.
  • the performance parameters of the gel were tested in Table 8. As can be seen from Table 8, the gel prepared in Example 5 was formed at a time of 9 h; the transition temperature of the gel was 56 ° C, and the conductivity of the gel was 3.3 ⁇ 10 -2 S/cm. When the prepared gel was heated to above 56 ° C, the gel began to become sticky. When the reagent bottle was inverted, the gel was found to flow downward, indicating that the gel transition temperature had been reached, and when the temperature dropped below 56 ° C. The gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 16% by weight; the mass percentage of the cyclic ether compound is 47% by weight; the mass percentage of the polyester additive is 21% by weight; other solvents and/or electrolysis
  • the mass percentage of the liquid was 13% by weight; the mass percentage of the inorganic nanoparticles was 3% by weight.
  • the performance parameters of the gel were tested in Table 8. As can be seen from Table 8, the gel obtained by the preparation of Example 6 was formed for 10 hours; the transition temperature of the gel was 56 ° C, and the conductivity of the gel was 9.9 ⁇ 10 -3 S/cm. When the prepared gel was heated above 56 ° C, the gel began to become sticky. When the reagent bottle was inverted, the gel was observed to flow downward, indicating that the gel transition temperature had been reached, and when the temperature dropped to 56 ° C. In the following, the gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the performance parameters of the gel were tested in Table 8. As can be seen from Table 8, the gel obtained by the preparation of Example 7 was formed for 9 hours; the transition temperature of the gel was 66 ° C, and the conductivity of the gel was 6.7 ⁇ 10 -3 S/cm. When the prepared gel electrolyte was heated to above 66 ° C, the gel began to become sticky. When the reagent bottle was inverted, the gel was observed to flow downward, indicating that the gel transition temperature had been reached, and when the temperature dropped to 66. When the temperature is below °C, the gel is reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 15% by weight; the mass percentage of the cyclic ether compound is 70% by weight; the mass percentage of the polyester additive is 9% by weight; other solvents and/or electrolysis The mass percentage of the liquid was 6% by weight.
  • the performance parameters of the solid electrolyte were tested in Table 8. As can be seen from Table 8, the formation time of the solid electrolyte prepared in Example 8 was 9 h; the transition temperature of the solid electrolyte was 93 ° C, and the conductivity of the solid electrolyte was 1.01 ⁇ 10 -4 S/cm. When the prepared solid electrolyte is heated above 93 ° C, the solid electrolyte begins to become sticky. When the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the solid electrolyte transition temperature has been reached, and when the temperature drops to 93 ° C. In the following, the solid electrolyte was reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the preparation method of the solid electrolyte is the same as that of Example 1, except that in the gellizable system, the solid electrolyte is prepared without adding the polyester A.
  • the mass percentage of the lithium salt is 17% by weight; and the mass percentage of the cyclic ether compound is 83% by weight.
  • the performance parameters of the solid electrolyte were tested in Table 8. It can be seen from Table 8 that the formation time of the solid electrolyte prepared in Comparative Example 1 is 12 h; the transition temperature of the solid electrolyte is 96 ° C, and the conductivity of the solid electrolyte is 2.0 ⁇ 10 -5 S/cm; The addition of the polyester additive causes the system to change from the state of the solid electrolyte to the gel state, which enlarges the gel formation time, lowers the gel transition temperature, and improves the conductivity of the gel.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack, and it was found that the battery assembled by the solid electrolyte had no capacity.
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the gel was prepared in the same manner as in Example 5 except that no polyester E was added to the gellable system.
  • the mass percentage of the lithium salt is 22% by weight; the mass percentage of the cyclic ether compound is 54% by weight; and the mass percentage of the other solvent and/or electrolyte is 24% by weight.
  • the performance parameters of the gel were tested in Table 8. It can be seen from Table 8 that the gelation time of the gel prepared in Comparative Example 2 was 7 h; the transition temperature of the gel was 65 ° C; the conductivity of the gel was 3.4 ⁇ 10 -3 S/cm; The addition of the polyester additive causes the gel formation time to be prolonged, the gel transition temperature to decrease, and the gel conductivity to be improved.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the gel was prepared in the same manner as in Example 3 except that no polyester C was added to the gellable system.
  • the mass percentage of the lithium salt is 28 wt%; the mass percentage of the cyclic ether compound is 57 wt%; the mass percentage of other solvents and/or electrolyte is 14 wt%; inorganic nano
  • the mass percentage of the particles was 1% by weight.
  • the performance parameters of the gel were tested in Table 8. It can be seen from Table 8 that the gel prepared by the preparation of Comparative Example 1 has a formation time of 6 h; the transition temperature of the gel is 69 ° C; and the conductivity of the gel is 1.0 ⁇ 10 -3 S/cm; The addition of the polyester additive causes the gel formation time to be prolonged, the gel transition temperature to decrease, and the gel conductivity to be improved.
  • the gel prepared above was applied as a gel electrolyte to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the method for preparing the gel and the method for preparing the battery are the same as those of Example 6, except that in the gellizable system, no polyester F is added.
  • the mass percentage of the lithium salt is 20% by weight; the mass percentage of the cyclic ether compound is 60% by weight; the mass percentage of the other solvent and/or electrolyte is 16% by weight; The mass percentage of the particles was 4% by weight.
  • the performance parameters of the gel were tested in Table 8. It can be seen from Table 8 that the gel prepared by the preparation of Comparative Example 1 has a formation time of 8 h; the transition temperature of the gel is 75 ° C; and the conductivity of the gel is 1.0 ⁇ 10 -4 S/cm; The addition of the polyester additive causes the gel formation time to be prolonged, the gel transition temperature to decrease, and the gel conductivity to be improved.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue electric battery pack (test results are shown in Table 8).
  • the method for preparing the button battery comprises: placing a separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (2) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • Figure 16 is a photo of a solid electrolyte obtained in Example 5-8. As can be seen from the figure, the solid electrolyte obtained in Example 8 does not naturally flow down, has no fluidity, exhibits good liquid retention rate and electrical conductivity, and is chemically stable.
  • Fig. 17 is a view showing the first charge and discharge of the gel electrolyte obtained in Example 5-1 as a battery of a lithium ion battery assembled into a battery.
  • the gel electrolyte is used as an electrolyte of a lithium ion battery, so that the lithium ion battery can be normally charged and discharged, and the active material is fully exerted, and a high specific capacity is obtained.
  • Fig. 18 is a graph showing the cycle performance of a gel electrolyte obtained in Example 5-1 as a battery of a lithium ion battery assembled into a battery.
  • the gel electrolyte as a lithium ion battery electrolyte can exhibit stable cycle performance, and the specific capacity remains substantially unchanged.
  • Example 19 is a first charge and discharge diagram of the solid electrolyte obtained in Example 5-8 assembled into a battery as an electrolyte of a lithium sulfur battery. It can be seen from the figure that the solid electrolyte is used as an electrolyte of a lithium ion battery, so that the lithium-sulfur battery can be normally charged and discharged, and the active material is fully exerted, and a high specific capacity is obtained.
  • Fig. 20 is a graph showing the cycle performance of the solid electrolyte obtained in Example 5-8 as a battery of a lithium sulfur battery assembled into a battery.
  • the solid electrolyte as a lithium-sulfur battery electrolyte can exhibit relatively stable cycle performance, and the specific capacity decreases slowly, effectively suppressing the capacity drop caused by the shuttle effect.
  • the gel When the prepared gel was heated above 67 ° C, the gel began to become sticky. When the reagent bottle was inverted, the gel was observed to flow downward, indicating that the temperature had reached the gel transition temperature, and when the temperature dropped to 67. When the temperature is below °C, the gel is reformed again, indicating that the prepared gel has good reversibility.
  • LiPF 6 lithium hexafluorophosphate
  • LiClO 4 lithium perchlorate
  • the mass percentage of the lithium salt is 20% by weight; and the mass percentage of the linear ether compound is 80% by weight.
  • the formation time of the solid electrolyte was tested to be 12 h; the formation temperature of the solid electrolyte was room temperature, the transition temperature of the solid electrolyte was 84 ° C, and the conductivity of the solid electrolyte was 3.31 ⁇ 10 -6 S/cm. .
  • the solid electrolyte When the prepared solid electrolyte is heated above 84 ° C, the solid electrolyte begins to become sticky. When the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the transition temperature of the solid electrolyte has been reached, and when the temperature drops to 84 ° C. In the following, the solid electrolyte was reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the mass percentage of the lithium salt was 19% by weight; the mass percentage of the linear ether compound was 48% by weight; and the mass percentage of the other solvent and/or electrolyte was 33% by weight.
  • the performance parameters of the gel were tested in Table 9.
  • the gel When the prepared gel is heated above 65 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the gel transition temperature has been reached, and when the temperature drops to 65 ° C. In the following, the gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell, and the electrochemical performance of the button cell was tested using a blue battery (test results are shown in Table 9).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the solid electrolyte When the prepared solid electrolyte is heated above 100 ° C, the solid electrolyte begins to become sticky. When the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the transition temperature of the solid electrolyte has been reached, and when the temperature drops to 100 ° C. In the following, the solid electrolyte was reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery cell (test results are shown in Table 9).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the mass percentage of the lithium salt is 20% by weight; the mass percentage of the linear ether compound is 56% by weight; and the mass percentage of the other electrolyte or solvent is 24% by weight.
  • the performance parameters of the solid electrolyte were tested in Table 9.
  • the solid electrolyte When the prepared solid electrolyte is heated above 76 ° C, the solid electrolyte begins to become sticky, and the downward flow of the gel is observed when the reagent bottle is inverted, indicating that the transition temperature of the solid electrolyte has been reached, and when the temperature drops to 76 ° C. In the following, the solid electrolyte was reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery cell (test results are shown in Table 9).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 15% by weight; the mass percentage of the linear ether compound is 64% by weight; and the mass percentage of the other electrolyte or solvent is 21% by weight.
  • the performance parameters of the solid electrolyte were tested in Table 9.
  • the solid electrolyte When the prepared solid electrolyte is heated above 87 ° C, the solid electrolyte begins to become sticky. When the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the transition temperature of the solid electrolyte has been reached, and when the temperature drops to 87 ° C. In the following, the solid electrolyte was reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery pack (test results are shown in Table 9).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the mass percentage of the lithium salt is 13% by weight; the mass percentage of the linear ether compound is 43% by weight; the mass percentage of the inorganic nanoparticles is 1% by weight; other solvents and/or electrolysis
  • the mass percentage of the liquid was 43% by weight.
  • the formation time of the gel was tested to be 24 h, the gel formation temperature was room temperature, the gel transition temperature was 50 ° C, and the conductivity of the gel was 1.38 ⁇ 10 -2 S/cm. .
  • the gel When the prepared gel is heated to above 50 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the gel transition temperature has been reached, and when the temperature drops to At 50 ° C or less, the gel was re-formed, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell, and the electrochemical performance of the button cell was tested using a blue battery (test results are shown in Table 9).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • 0.05 g of silica was weighed into a reagent bottle, and 4.5 mL of ethylene glycol methyl ether was added thereto, and the mixture was thoroughly mixed under magnetic stirring to obtain a mixed solution A.
  • Another 0.4 g of lithium bistrifluoromethanesulfonimide and 0.6 g of lithium perchlorate were placed in a reagent bottle, and 1.2 mL of a lithium sulfur battery conventional electrolyte was added thereto, and stirred until the lithium salt was completely dissolved to obtain a mixed solution B.
  • the A and B solutions obtained above were thoroughly mixed, and the resulting mixture was obtained to obtain a gellable system; it was allowed to stand for a while to form a solid electrolyte.
  • the mass percentage of the lithium salt is 15% by weight; the mass percentage of the linear ether compound is 66.3 wt%; the mass percentage of the inorganic nanoparticles is 0.7 wt%; other solvents and/or Or the mass percentage of the electrolyte is 18% by weight.
  • the formation time of the solid electrolyte was tested to be 14 h, the formation temperature of the solid electrolyte was room temperature, the transition temperature of the solid electrolyte was 98 ° C, and the conductivity of the solid electrolyte was 2.06 ⁇ 10 -5 S/cm. .
  • the solid electrolyte When the prepared solid electrolyte is heated above 98 ° C, the solid electrolyte begins to become sticky. When the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the transition temperature of the solid electrolyte has been reached, and when the temperature drops to When the temperature is below 98 °C, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery cell (test results are shown in Table 9).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • the mass percentage of the lithium salt is 11% by weight; the mass percentage of the linear ether compound is 42% by weight; the mass percentage of the inorganic nanoparticles is 1.1% by weight; other solvents and/or
  • the mass percentage of the electrolyte was 45.9 wt%.
  • the formation time of the gel was tested to be 26 h, the gel formation temperature was room temperature, the gel transition temperature was 50 ° C, and the conductivity of the gel was 1.49 ⁇ 10 -2 S/cm. .
  • the gel When the prepared gel is heated to above 45 ° C, the gel begins to become sticky. When the reagent bottle is inverted, the gel is observed to flow downward, indicating that the gel transition temperature has been reached, and when the temperature drops to At 45 ° C or less, the gel was reformed again, indicating that the prepared gel has good reversibility.
  • the gel prepared above was applied as a gel electrolyte to a coin cell, and the electrochemical performance of the button cell was tested using a blue battery (test results are shown in Table 9).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a gel electrolyte.
  • the mass percentage of the lithium salt is 16% by weight; the mass percentage of the linear ether compound is 63.6 wt%; the mass percentage of the inorganic nanoparticles is 1.3 wt%; other solvents and / Or the mass percentage of the electrolyte is 19.1% by weight.
  • the formation time of the solid electrolyte was tested to be 15 h, the formation temperature of the solid electrolyte was room temperature, the transition temperature of the solid electrolyte was 95 ° C, and the conductivity of the solid electrolyte was 3.67 ⁇ 10 -5 S/cm. .
  • the solid electrolyte When the prepared solid electrolyte is heated above 95 ° C, the solid electrolyte begins to become sticky, and when the reagent bottle is inverted, the solid electrolyte flows downward, indicating that the transition temperature of the solid electrolyte has been reached, and when the temperature drops to When the temperature is below 95 °C, the solid electrolyte is reformed again, indicating that the prepared solid electrolyte has good reversibility.
  • the solid electrolyte prepared above was applied to a coin cell battery, and the electrochemical performance of the button cell was tested using a blue battery cell (test results are shown in Table 9).
  • the method for preparing the button battery placing the separator between the positive electrode and the negative electrode, filling the gelatinizable system prepared in the step (1) between the three, packing and compacting, and assembling into a CR-2032 button battery. The gellable system is allowed to stand to become a solid electrolyte.
  • Figure 21 is an optical photograph of the solid electrolyte obtained in Example 6-2. It can be seen from the figure that the solid electrolyte cannot flow naturally under the action of gravity, the color is relatively transparent, and the physical properties and chemical properties are stable.
  • Fig. 22 is a view showing the first charge and discharge of the gel electrolyte obtained in Example 6-3 as a battery of a lithium ion battery assembled into a battery.
  • the gel electrolyte is used as an electrolyte solution for a lithium ion battery, and the lithium ion battery can be normally charged and discharged, and the active material therein can be fully utilized to obtain a high specific capacity.
  • Fig. 23 is a graph showing the cycle performance of the gel electrolyte obtained in Example 6-3 as a battery of a lithium ion battery assembled into a battery.
  • the gel as an electrolyte of a lithium ion battery, can exhibit stable cycle performance, and the specific capacity remains substantially unchanged.
  • Fig. 24 is a view showing the first charge and discharge of the solid electrolyte obtained in Example 6-6 as a battery of a lithium sulfur battery assembled into a battery.
  • the gel electrolyte is used as an electrolyte of a lithium-sulfur battery, which can cause normal charging and discharging of the lithium ion battery, and fully exerts the active material therein to obtain a high specific capacity.
  • Fig. 25 is a graph showing the cycle performance of the solid electrolyte obtained in Example 6-6 as a battery of a lithium sulfur battery assembled into a battery. It can be seen from the figure that the gel electrolyte as the electrolyte of the flow battery can effectively alleviate the "flying effect", thereby improving the utilization rate of the active material, increasing the specific capacity of the battery, and exhibiting excellent cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

本发明提供了一种可凝胶化体系及其制备方法和应用。所述可凝胶化体系是将锂盐和小分子醚类化合物(如环状醚类化合物或直链醚类化合物)混合,任选地加入无机纳米颗粒、添加剂、其他溶剂和/或电解质;通过二者的相互作用(如生成新的络合物或自组装作用等)和小分子环状醚类化合物的开环聚合或缩聚;或者和小分子直链醚类化合物的断链聚合等方式可形成凝胶体系或固态体系,所述凝胶体系或固态体系不仅具备优于普通凝胶体系或固态体系的使用安全性,而且还具有较好的强度可调性,可以通过改变原材料的组分含量和种类,从源头上改善形成凝胶的强度,所述强度的改变可使得所述凝胶体系扩展到所述固态体系中,从而更加扩大了凝胶体系的应用范围。

Description

一种含有醚类化合物的可凝胶化体系及其制备方法和应用 技术领域
本发明属于凝胶技术领域,涉及一种含有醚类化合物的可凝胶化体系及其制备方法和应用。
背景技术
近年来,由于人类活动造成化石能源急剧下降,部分能源即将枯竭,而由此引起的环境恶化,资源不合理的运用,给人类的生活和生产都带来了不可小觑的影响。为了满足人们日益增长的物质文化需求,同时也要确保人们安全绿色的进行生产生活,由此,开发新型安全环保的能源体系刻不容缓。
锂离子电池不仅可以应用在便携式电子设备,例如:数码相机和便携式计算机等设备中,而且在电动工具、电动车等方面也有着广泛的应用。然而,诸如燃烧、爆炸等安全问题也制约其进一步的发展,锂离子电池的安全问题主要涉及到正负极材料的溶解、隔膜的刺穿和液态电解液的挥发和泄露等问题,但是目前常用的液态电解液均是由可挥发液体制备得到的,并且其参与电化学反应的所有过程。因此,挥发性电解液的泄露、电池可燃和过电势分解等问题严重制约着锂离子电池的安全性。
为了克服液态电解液的泄露和可燃等问题,无机固态电解质、聚合物固态电解质以及聚合物凝胶电解质等已经被广泛研究,其中,无机固态电解质是一种含有无机超离子导电性的锂盐;聚合物固态电解质是聚合物和锂盐构成的具有导电性的固体,但是,目前报道的固态电解质的导电性均不好,这严重影响了制备得到的电池的循环性能。
锂硫电池作为锂电池的一种,其主要是以硫元素作为电池正极,金属锂作为负极的一种锂电池。由于单质硫在地球中储量丰富,具有价格低廉、环境友好等特点。利用硫作为正极材料的锂硫电池,其材料理论比容量和电池理论比能量较高,分别达到1672mAh/g和2600Wh/kg。但是锂硫电池却有着很多缺点而限制了其商业化,例如:活性物质利用率低、放电中间产物溶解在电解液中而形成“飞梭效应”等。
很多研究者针对锂硫电池的缺点而设计出各种各样的正极材料,例如:多孔碳负载硫、N掺杂的硫碳复合材料等,这些正极材料的设计在一定程度上抑制了多硫化物的“飞梭效应”,但是正极的合成过程繁琐冗长,产率低,重复性差。而凝胶电解质和固态电解质可以减缓甚至杜绝多硫化物发生“飞梭效应”,从而提高活性物质的利用率,另外,凝胶电解质和固态电解质可以避免液体电解液的泄露,从而杜绝安全隐患。
凝胶是介于液体和固体之间的一种半固态体系,它兼具液体和固体两者的优点和特点,这也使得其成为研究领域和生产生活中的热点之一,也有很多的研究者想方设法的将各种材料设计成凝胶的状态。众所周知,凝胶体系可以应用的领域很多,例如:可以将锂电池的电解液设计成凝胶电解质或者是固态电解质,从而改善了液体电解液的泄露问题,降低其安全隐患;也可以将凝胶体系引入到人体中,来进行人造器官的搭建;或者将凝胶体系应用到建筑材料等领域中。
目前来看,普遍的凝胶体系搭建主要有两种:一种是将一种或者多种高分子直接引入到溶剂中,使其形成网络结构或者互穿网络结构,这种凝胶的强度较高;另一种是将小分子的有机凝胶 因子引入某种溶剂中,高温下使其溶于该溶剂,而在室温或者低温下形成凝胶,这种凝胶的强度一般都比较低。对于上述两种方式形成的凝胶体系,无论是作为锂离子二次电池的电解液,还是被应用于人造器官的搭建等领域,都不可避免的从原料上引入高分子或者合成步骤比较复杂的小分子的有机凝胶因子,而且通常会使用比较繁琐冗长的实验方法,制备费时费力费原料,而且容易出现因高分子分子量的不同而使得得到的凝胶体系也不尽相同、导致由所述凝胶制备得到的产品存在差异等问题。且目前报道的凝胶体系都是不可逆的,即在凝胶被破坏后,很难再恢复原来的形貌和优势,这也限制了凝胶的使用与推广。
发明内容
为了解决现有技术的不足,本发明的目的之一在于提供一种可凝胶化体系,该体系中包括锂盐和醚类化合物,所述醚类化合物选自环状醚类化合物和/或直链醚类化合物。该体系中还进一步包括其他溶剂和/或电解液、无机纳米颗粒、添加剂等。
本发明的目的之二在于提供一种上述可凝胶化体系经凝胶化制备得到的凝胶或固态电解质,及所述凝胶或固态电解质的制备方法和应用。
本发明的目的是通过如下技术方案实现的:
一种可凝胶化体系,该体系中包括以下组分:锂盐和醚类化合物,所述醚类化合物选自环状醚类化合物或直链醚类化合物中的至少一种;体系中可凝胶化的聚合物和/或可凝胶化的预聚物的质量百分含量小于等于1wt%。
一种凝胶,所述凝胶由上述的可凝胶化体系经凝胶化得到;所述可凝胶化体系中,所述锂盐的质量百分含量大于等于2wt%且小于20wt%;所述环状醚类化合物的质量百分含量大于80wt%且小于等于98wt%;或者,所述锂盐的质量百分含量大于等于2wt%且小于20wt%;所述直链醚类化合物的质量百分含量大于等于80wt%且小于等于98wt%。
一种固态电解质,所述固态电解质由上述的可凝胶化体系经凝胶化得到;所述可凝胶化体系中,所述锂盐的质量百分含量大于等于20wt%且小于等于50wt%;所述环状醚类化合物的质量百分含量大于等于50wt%且小于等于80wt%;或者,所述锂盐的质量百分含量大于等于20wt%且小于等于75wt%;所述直链醚类化合物的质量百分含量大于等于25wt%且小于等于80wt%。
一种凝胶电解质,所述凝胶电解质包括上述的凝胶。
一种锂系电池,所述锂系电池包括上述的凝胶电解质和/或上述的固态电解质。
上述的凝胶、上述的固态电解质或上述的凝胶电解质的应用,其用于锂系电池领域中;优选地,用于锂离子电池、锂硫电池、锂空气电池领域中。
本发明的有益效果:
1.本发明提供了一种可凝胶化体系及其制备得到的凝胶和/或固态电解质、及其制备方法和应用。申请人在研究中发现,将锂盐和小分子醚类化合物(如环状醚类化合物或直链醚类化合物)混合,通过二者的相互作用(如生成新的络合物或自组装作用等)和小分子环状醚类化合物的开环聚合或缩聚;或者和小分子直链醚类化合物的断链聚合等方式可形成凝胶体系或固态体系,所述凝胶体系或固态体系不仅具备优于普通凝胶体系或固态体系的使用安全性,而且还具有较好的强度可调性,可以通过改变原材料的组分含量和种类,从源头上改善形成凝胶的强度,所述强度的改变可使得所述凝胶体系扩展到所述固态体系中,从而更加扩大了凝胶体系的应用范围。
2.本发明所述的可凝胶体系制备得到的凝胶和固态电解质的强度可调、形成时间(即由可自由流动的液体状态转变成不可流动的凝胶状态和/或固态电解质状态)可调、转变温度(即由不可流动的凝胶状态和/或固态电解质状态转变成可自由流动的液体状态时的最低温度)可调,即可以根据具体需要制备不同强度的凝胶和固态电解质,以满足不同的需要。所述凝胶和固态电解质具有较强的抗冲击能力,在应用于锂系电池领域中时,不仅可以有效解决液体电解液溶液泄露等问题,还可以使得锂系电池具有更高的充放电效率、更好的耐冲击性,减缓甚至杜绝“飞梭效应”和可以更好地防止由于锂枝晶的生长刺破隔膜或者固态电解质而引起电池短路,使所述锂系电池具有更高的使用安全性。
3.本发明所述的可凝胶体系制备得到的凝胶和固态电解质具有较高的转变温度,同时也具有可逆性。若向体系中加入添加剂,可以降低原体系中凝胶或固态电解质的强度,降低凝胶或固态电解质的转变温度,增加凝胶或固态电解质的可塑性,提高凝胶或固态电解质的电导率,制备得到性能更为优异的凝胶或固态电解质。由此,添加剂的加入可以拓宽凝胶和固态电解质的形成时间,拓宽凝胶和固态电解质的转变温度范围,提高凝胶和固态电解质的电导率,从而扩大了凝胶和固态电解质的应用领域。若向体系中加入无机纳米颗粒,更加增强了凝胶体系和固态体系的机械强度,可以提高电解质膜的孔隙率,使电解质膜能够吸附更多的液态电解液,从而提高锂离子在凝胶或固态电解质中的迁移率和电导率;当所述凝胶或固态电解质的使用温度高于其转变温度后,凝胶或固态电解质会变得可以流动,但是将其冷却至低于转变温度后,其具有可逆性,又可重新形成凝胶或固态电解质而被重新使用;由于其具有较高的转变温度和可逆性,可以延缓使用寿命,节约成本,使其成为一个绿色环保的新型凝胶材料。
4.本发明所述的凝胶和固态电解液的制备方法简单、反应条件温和、反应周期短、产物收率高、制备成本低、易于实现工业化生产。
5.本发明所述的可凝胶体系制备得到的凝胶和固态电解质可在低温展现出更好的凝胶状态或固态电解质状态,即在所述凝胶或固态电解质的转变温度以下均可以保持很好的凝胶状态或固态电解质状态,且低温下所述凝胶和固态电解质的强度更佳。
6.本发明所述的可凝胶体系制备得到的凝胶或固态电解质可应用于锂系电池(如锂离子电池、锂硫电池、锂空气电池等等),且在高低温下仍然能够使用。
附图说明
图1为实施例1-2的凝胶的光学照片。
图2为实施例1-3的固态电解质的光学照片。
图3为实施例1-5的可拉伸的凝胶的光学照片。
图4为实施例1-4中得到的凝胶电解质作为锂硫电池的电解液组装成电池的首次充放电图。
图5为实施例1-4中得到的凝胶电解质作为锂硫电池的电解液组装成电池的循环性能图。
图6为实施例2-1中得到的凝胶电解质作为锂离子电池电解液组装成电池的首次充放电图。
图7为实施例2-1中得到的凝胶电解质作为锂离子电池电解液组装成电池的循环性能图。
图8为实施例2-4中得到的固态电解质作为锂离子电池电解质组装成电池的首次充放电图。
图9为实施例2-4中得到的固态电解质作为锂离子电池电解质组装成电池的循环性能图。
图10为实施例3-1中得到的凝胶电解质作为锂硫电池电解液组装成电池的首次充放电图。
图11为实施例3-1中得到的凝胶电解质作为锂硫电池电解液组装成电池的循环性能图。
图12为实施例4-1中得到的凝胶电解质作为锂离子电池的电解液组装成电池的首次充放电图。
图13为实施例4-1中得到的凝胶电解质作为锂离子电池的电解液组装成电池的循环性能图。
图14为实施例4-5中得到的凝胶电解质作为锂硫电池的电解液组装成电池的首次充放电图。
图15为实施例4-5中得到的凝胶电解质作为锂硫电池的电解液组装成电池的循环性能图。
图16为实施例5-8中得到的固态电解质光学照片。
图17为实施例5-1中得到的凝胶电解质作为锂离子电池的电解液组装成电池的首次充放电图。
图18为实施例5-1中得到的凝胶电解质作为锂离子电池的电解液组装成电池的循环性能图。
图19为实施例5-8中得到的固态电解质作为锂硫电池的电解液组装成电池的首次充放电图。
图20为实施例5-8中得到的固态电解质作为锂硫电池的电解液组装成电池的循环性能图。
图21为实施例6-2中得到的固态电解质的光学照片。
图22为实施例6-3中得到的凝胶电解质作为锂离子电池的电解液组装成电池的首次充放电图。
图23为实施例6-3中得到的凝胶电解质作为锂离子电池的电解液组装成电池的循环性能图。
图24为实施例6-6中得到的固态电解质作为锂硫电池的电解液组装成电池的首次充放电图。
图25为实施例6-6中得到的固态电解质作为锂硫电池的电解液组装成电池的循环性能图。
图26为实施例1-0中得到的固态电解质提纯物的核磁共振氢谱图。
图27为实施例1-0中得到的固态电解质提纯物的红外光谱图。
图28为实施例1-9中得到的凝胶电解质作为锰酸锂软包电池(1Ah)的电解液组装成电池的循环性能以及其对应的库伦效率图。
图29为实施例2-8中得到的固态电解质作为磷酸铁锂电解质组装成电池的循环性能图。
图30为实施例3-8中得到的凝胶电解质作为锂硫电池的电解液组装成电池的循环性能图。
图31为实施例1-5中得到的凝胶电解质提纯物的核磁共振氢谱。
图32为实施例2-5中得到的固态电解质提纯物的核磁共振氢谱。
具体实施方式
[含有锂盐和环状醚类化合物的可凝胶化体系及其制备方法和应用]
本发明的第一个方面是提供一种可凝胶化体系,该体系中包括以下组分:锂盐和醚类化合物,所述醚类化合物选自环状醚类化合物;体系中可凝胶化的聚合物和/或可凝胶化的预聚物的质量百分含量小于等于1wt%。所述可凝胶化体系中,各组分的重量百分比之和为100wt%。
本发明中,所述锂盐的质量百分含量大于等于2wt%且小于等于50wt%;所述环状醚类化合物的质量百分含量大于等于50wt%且小于等于98wt%。
其中,所述锂盐的质量百分含量大于等于5wt%且小于20wt%;所述环状醚类化合物的质量百分含量大于80wt%且小于等于95wt%;或者,所述锂盐的质量百分含量大于等于20wt%且小于等于30wt%;所述环状醚类化合物的质量百分含量大于等于70wt%且小于等于80wt%。
本发明中,所述环状醚类化合物选自含有一个氧、两个氧、三个氧或更多氧的环状醚类化合物。所述环状醚类化合物可以是单环、螺环、稠合环(如双环)或桥环。
本发明的第二个方面是提供一种凝胶,其由上述的可凝胶化体系经凝胶化得到;所述锂盐的质量百分含量大于等于2wt%且小于20wt%;所述环状醚类化合物的质量百分含量大于80wt%且小 于等于98wt%。
其中,所述锂盐的质量百分含量大于等于5wt%且小于20wt%;所述环状醚类化合物的质量百分含量大于80wt%且小于等于95wt%。
本发明中,所述凝胶的转变温度为30~100℃,优选为45~90℃。
本发明中,所述凝胶的导电率为10 -5~10 -2S/cm,优选为10 -5~5×10 -3S/cm。
本发明的第三个方面是提供一种上述凝胶的制备方法,其包括以下步骤:将环状醚类化合物和锂盐混合,搅拌下得到锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
其中,所述凝胶的制备方法具体包括如下步骤:将环状醚类化合物加入锂盐中,搅拌下得到锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
本发明中,对所述锂盐和环状醚类化合物进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对所述锂盐和环状醚类化合物进行预先除水处理。
本发明中,所述凝胶化过程需要在静置条件下完成。所述凝胶形成的温度低于所述凝胶的转变温度,所述凝胶形成的时间为30秒~200小时。
本发明的第四个方面是提供一种固态电解质,其由上述的可凝胶化体系经凝胶化得到;所述锂盐的质量百分含量大于等于20wt%且小于等于50wt%;所述环状醚类化合物的质量百分含量大于等于50wt%且小于等于80wt%。
其中,所述锂盐的质量百分含量大于等于20wt%且小于等于30wt%;所述环状醚类化合物的质量百分含量大于等于70wt%且小于等于80wt%。
本发明中,所述固态电解质的转变温度为60~150℃,优选为70~110℃。
本发明中,所述固态电解质的导电率为10 -7~10 -3S/cm,优选为10 -7~10 -5S/cm。
本发明的第五个方面是提供上述固态电解质的制备方法,其包括以下步骤:
将环状醚类化合物和锂盐混合,搅拌下得到锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
其中,所述固态电解质的制备方法具体包括如下步骤:将环状醚类化合物加入锂盐中,搅拌下得到锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
本发明中,对所述锂盐和环状醚类化合物进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对所述锂盐和环状醚类化合物进行预先除水处理。
本发明中,所述凝胶化过程需要在静置条件下完成。所述固态电解质形成的温度低于所述固态电解质的转变温度,所述固态电解质形成的时间为30分钟~100小时。
本发明的第六个方面是提供一种凝胶电解质,所述凝胶电解质包括上述的凝胶。
本发明的第七个方面是提供一种锂系电池,其包括上述的凝胶电解质和/或固态电解质。
本发明的第八个方面是提供上述凝胶、上述固态电解质、上述凝胶电解质的应用,其可以用于锂系电池领域中,例如锂离子电池、锂硫电池、锂空气电池等领域中。
[含有锂盐、用于锂离子电池的电解液或其溶剂和环状醚类化合物的可凝胶化体系及其制备方法和应用]
本发明的第九个方面是提供一种用于锂离子电池的可凝胶化体系,该体系中包括以下组分: 用于锂离子电池的锂盐,醚类化合物和用于锂离子电池的电解液或其溶剂;所述醚类化合物选自环状醚类化合物;另外,体系中可凝胶化的聚合物和/或可凝胶化的预聚物的质量百分含量小于等于1wt%。
所述用于锂离子电池的可凝胶化体系中,各组分的重量百分比之和为100wt%。
本发明中,所述用于锂离子电池的可凝胶化体系中,所述用于锂离子电池的锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于90wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于5wt%小于等于75wt%。
其中,所述用于锂离子电池的可凝胶化体系中,所述用于锂离子电池的锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于60wt%。
其中,所述用于锂离子电池的可凝胶化体系中,所述用于锂离子电池的锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于85wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于5wt%且小于等于30wt%。
本发明的第十个方面是提供一种凝胶,其由上述的用于锂离子电池的可凝胶化体系经凝胶化得到;其中,所述用于锂离子电池的锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于20wt%小于等于75wt%。
其中,所述用于锂离子电池的可凝胶化体系中,所述用于锂离子电池的锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于60wt%。
本发明中,所述凝胶的转变温度为40~90℃,优选为60~75℃。
本发明中,所述凝胶的导电率为10 -6~10 -1S/cm,优选为10 -5~5×10 -2S/cm。
本发明的第十一个方面是提供一种上述凝胶的制备方法,其包括以下步骤:
1)将用于锂离子电池的锂盐加入到用于锂离子电池的电解液或其溶剂中,搅拌均匀后,得到含有锂盐的混合溶液;
2)将环状醚类化合物加入到上述混合溶液中,搅拌下得到混合体系,即所述用于锂离子电池的可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
本发明中,在步骤2)中,所述凝胶化过程需要在静置条件下完成。所述凝胶形成的温度低于所述凝胶的转变温度,所述凝胶形成的时间为30秒~300小时。
本发明中,对用于锂离子电池的电解液或其溶剂、用于锂离子电池的锂盐和环状醚类化合物进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对用于锂离子电池的电解液或其溶剂、用于锂离子电池的锂盐和环状醚类化合物进行预先除水处理。
本发明的第十二个方面是提供一种固态电解质,其由上述的用于锂离子电池的可凝胶化体系经凝胶化得到;其中,所述用于锂离子电池的锂盐的质量百分含量大于等于5wt%且小于等于 60wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于5wt%小于等于30wt%。
其中,所述用于锂离子电池的可凝胶化体系中,所述用于锂离子电池的锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于85wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于5wt%且小于等于30wt%。
本发明中,所述固态电解质的转变温度为65~130℃,优选为75~120℃。
本发明中,所述固态电解质的导电率为10 -7~10 -3S/cm,优选为10 -6~10 -3S/cm。
本发明的第十三个方面是提供一种上述固态电解质的制备方法,其包括以下步骤:
1)将用于锂离子电池的锂盐加入到用于锂离子电池的电解液或其溶剂中,搅拌均匀后,得到含有锂盐的混合溶液;
2)将环状醚类化合物加入到上述混合溶液中,搅拌下得到混合体系,即所述用于锂离子电池的可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
本发明中,在步骤2)中,所述凝胶化过程需要在静置条件下完成。所述固态电解质的形成的温度低于所述固态电解质的转变温度,所述固态电解质的形成的时间为30分钟~150小时。
本发明中,对用于锂离子电池的电解液或其溶剂、用于锂离子电池的锂盐和环状醚类化合物进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对用于锂离子电池的电解液或其溶剂、用于锂离子电池的锂盐和环状醚类化合物进行预先除水处理。
本发明的第十四个方面是提供一种凝胶电解质,所述凝胶电解质包括上述的凝胶。
本发明的第十五个方面是提供一种锂离子电池,其包括上述的凝胶电解质和/或固态电解质。
本发明的第十六个方面是提供上述凝胶、上述固态电解质、上述凝胶电解质的应用,其可以用于锂离子电池等领域中。
[含有锂盐、用于锂硫电池的电解液或其溶剂和环状醚类化合物的可凝胶化体系及其制备方法和应用]
本发明的第十七个方面是提供一种用于锂硫电池的可凝胶化体系,该体系中包括以下组分:锂盐,醚类化合物和用于锂硫电池的电解液或其溶剂;所述醚类化合物选自环状醚类化合物;另外,体系中可凝胶化的聚合物和/或可凝胶化的预聚物的质量百分含量小于等于1wt%。
所述用于锂硫电池的可凝胶化体系中,各组分的重量百分比之和为100wt%。
本发明中,所述用于锂硫电池的可凝胶化体系中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量等于20wt%且小于等于90wt%,所述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于5wt%且小于等于75wt%。
其中,所述用于锂硫电池的可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%,上述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于60wt%。
其中,所述用于锂硫电池的可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于85wt%,所述用于锂硫电池的电解液或其溶剂的质量百分含量大于5wt%且小于30wt%。
本发明的第十八个方面是提供一种凝胶,其由上述的用于锂硫电池的可凝胶化体系经凝胶化 得到;其中,所述用于锂硫电池的可凝胶化体系中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量等于20wt%且小于等于60wt%,所述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于75wt%。
其中,所述用于锂硫电池的可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%,上述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于60wt%。
本发明中,所述凝胶的转变温度为40~95℃,优选为45~85℃。
本发明中,所述凝胶的导电率为10 -5~10 -1S/cm,优选为10 -5~10 -2S/cm。
本发明的第十九个方面是提供一种上述凝胶的制备方法,其包括以下步骤:
1)将锂盐加入到用于锂硫电池的电解液或其溶剂中,搅拌均匀后,得到含有锂盐的混合溶液;
2)将环状醚类化合物加入到上述混合溶液中,搅拌下得到混合体系,即所述的用于锂硫电池的可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
本发明中,在步骤2)中,所述凝胶化过程需要在静置条件下完成。所述凝胶形成的温度低于所述凝胶的转变温度,所述凝胶形成的时间为30秒~300小时。
本发明中,对用于锂硫电池的电解液或其溶剂、锂盐和环状醚类化合物进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对用于锂硫电池的电解液或其溶剂、锂盐和环状醚类化合物进行预先除水处理。
本发明的第二十个方面是提供一种固态电解质,其由上述的用于锂硫电池的可凝胶化体系经凝胶化得到;其中,所述锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于5wt%小于等于30wt%。
其中,所述用于锂硫电池的可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于85wt%;所述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于5wt%且小于等于30wt%。
本发明中,所述固态电解质的转变温度为60~130℃,优选为80~110℃。
本发明中,所述固态电解质的导电率为10 -7~10 -3S/cm,优选为10 -6~10 -4S/cm。
本发明的第二十一个方面是提供一种上述固态电解质的制备方法,其包括以下步骤:
1)将锂盐加入到用于锂硫电池的电解液或其溶剂中,搅拌均匀后,得到含有锂盐的混合溶液;
2)将环状醚类化合物加入到上述混合溶液中,搅拌下得到混合体系,即所述的用于锂硫电池的可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
本发明中,在步骤2)中,所述凝胶化过程需要在静置条件下完成。所述固态电解质形成的温度低于所述固态电解质的转变温度,所述固态电解质形成的时间为30分钟~100小时。
本发明中,对用于锂硫电池的电解液或其溶剂、锂盐和环状醚类化合物进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对用于锂硫电池的电解液或其溶剂、锂盐和环状醚类化合物进行预先除水处理。
本发明的第二十二个方面是提供一种凝胶电解质,所述凝胶电解质包括上述的凝胶。
本发明的第二十三个方面是提供一种锂硫电池,其包括上述的凝胶电解质和/或固态电解质。
本发明的第二十四个方面是提供上述凝胶、上述固态电解质、上述凝胶电解质的应用,其可以用于锂硫电池等领域中。
[含有锂盐、无机纳米颗粒和环状醚类化合物的可凝胶化体系及其制备方法和应用]
本发明的第二十五个方面是提供一种可凝胶化体系,该体系中包括以下组分:锂盐,醚类化合物和无机纳米颗粒;所述醚类化合物选自环状醚类化合物;另外,体系中可凝胶化的聚合物和/或可凝胶化的预聚物的质量百分含量小于等于1wt%。
所述可凝胶化体系中,各组分的重量百分比之和为100wt%。
本发明中,所述可凝胶化体系中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于95wt%;所述无机纳米颗粒的质量百分含量大于0且小于等于30wt%。
其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%。
其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于10%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%。
本发明中,所述可凝胶化体系还包括其他溶剂和/或电解液,所述其他溶剂和/或电解液包括用于锂硫电池的电解液、用于锂硫电池的电解液的溶剂、用于锂离子电池的电解液、用于锂离子电池的电解液的溶剂中的至少一种。
本发明中,所述可凝胶化体系中,所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%。优选地,所述可凝胶化体系中,所述其他溶剂和/或电解液的质量百分含量大于等于5wt%且小于等于60wt%。
本发明的第二十六个方面是提供一种凝胶,其由上述的可凝胶化体系经凝胶化得到;其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于0且小于等于30wt%;所述(d)其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%。
其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%;所述(d)其他溶剂和/或电解液的质量百分含量大于等于5wt%且小于等于60wt%。
本发明中,所述凝胶的转变温度为40~170℃,优选为45~105℃。
本发明中,所述凝胶的导电率为10 -5~10 -1S/cm,优选为10 -5~8×10 -2S/cm。
本发明的第二十七个方面是提供一种上述凝胶的制备方法,其包括以下步骤:
将无机纳米颗粒、锂盐和环状醚类化合物混合,搅拌下得到含有无机纳米颗粒的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
优选地,所述凝胶的制备方法具体包括如下步骤:
1)将无机纳米颗粒加入到环状醚类化合物中,制备得到分散均匀的混合溶液;
2)将上述制备得到的混合溶液加入到锂盐中,搅拌下得到含有无机纳米颗粒的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
还优选地,所述凝胶的制备方法具体包括如下步骤:
将无机纳米颗粒、锂盐、环状醚类化合物和其他溶剂和/或电解液混合,搅拌下得到含有无机纳米颗粒的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
进一步优选地,所述凝胶的制备方法具体包括如下步骤:
1’)将无机纳米颗粒加入到环状醚类化合物中,制备得到分散均匀的混合溶液;
2’)将锂盐溶解在其他溶剂和/或电解液中,制备得到锂盐溶液;
3’)将步骤1’)中制备得到的混合溶液加入到步骤2’)制备得到的锂盐溶液中,搅拌下得到含有无机纳米颗粒的溶解有其他溶剂和/或电解液的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
本发明中,对所述锂盐、环状醚类化合物、无机纳米颗粒和其他溶剂和/或电解液进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对所述锂盐、环状醚类化合物、无机纳米颗粒和其他溶剂和/或电解液进行预先除水处理。
本发明中,所述凝胶化过程需要在静置条件下完成。所述凝胶形成的温度低于所述凝胶的转变温度,所述凝胶形成的时间为30秒~300小时。
本发明的第二十八个方面是提供一种固态电解质,其由上述的可凝胶化体系经凝胶化得到;其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于95wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于30wt%;所述(d)其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%。
其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于10%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%;所述(d)其他溶剂和/或电解液的质量百分含量大于等于5wt%且小于等于60wt%。
本发明中,所述固态电解质的转变温度为70~180℃,优选为72~145℃。
本发明中,所述固态电解质的导电率为10 -7~10 -2S/cm,优选为10 -6~2×10 -3S/cm。
本发明的第二十九个方面是提供一种上述固态电解质的制备方法,其包括以下步骤:
将无机纳米颗粒、锂盐和环状醚类化合物混合,搅拌下得到含有无机纳米颗粒的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
优选地,所述固态电解质的制备方法具体包括如下步骤:
a)将无机纳米颗粒加入到环状醚类化合物中,制备得到分散均匀的混合溶液;
b)将上述制备得到的混合溶液加入到锂盐中,搅拌下得到含有无机纳米颗粒的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
还优选地,所述固态电解质的制备方法具体包括如下步骤:
将无机纳米颗粒、锂盐、环状醚类化合物和其他溶剂和/或电解液混合,搅拌下得到含有无机 纳米颗粒的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
进一步优选地,所述固态电解质的制备方法具体包括如下步骤:
a’)将无机纳米颗粒加入到环状醚类化合物中,制备得到分散均匀的混合溶液;
b’)将锂盐溶解在其他溶剂和/或电解液中,制备得到锂盐溶液;
c’)将步骤a’)中制备得到的混合溶液加入到步骤b’)制备得到的锂盐溶液中,搅拌下得到含有无机纳米颗粒的溶解有其他溶剂和/或电解液的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
本发明中,对所述锂盐、环状醚类化合物、无机纳米颗粒和其他溶剂和/或电解液进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对所述锂盐、环状醚类化合物、无机纳米颗粒和其他溶剂和/或电解液进行预先除水处理。
本发明中,所述凝胶化过程需要在静置条件下完成。所述固态电解质形成的温度低于所述凝胶固态电解质的转变温度,所述固态电解质的形成的时间为30分钟~150小时。
本发明的第三十个方面是提供一种凝胶电解质,所述凝胶电解质包括上述的凝胶。
本发明的第三十一个方面是提供一种锂系电池,其包括上述的凝胶电解质和/或固态电解质。
本发明的第三十二个方面是提供上述凝胶、上述固态电解质的应用,其可以用于锂系电池、建筑材料等领域中。
本发明的第三十三个方面是提供一种上述凝胶电解质的应用,其可用于锂系电池等领域中。优选地,所述锂系电池包括锂离子电池、锂硫电池、锂空气电池中的至少一种。
[含有锂盐、添加剂和环状醚类化合物的可凝胶化体系及其制备方法和应用]
本发明的第三十四个方面是提供一种可凝胶化体系,该体系中包括以下组分:锂盐,醚类化合物和添加剂;所述醚类化合物选自环状醚类化合物;所述添加剂选自聚酯或其共混物中的一种或几种;体系中可凝胶化的聚合物和/或可凝胶化的预聚物的质量百分含量≤1wt%。
所述可凝胶化体系中,各组分的重量百分比之和为100wt%。
本发明中,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于90wt%;所述添加剂的质量百分含量大于等于5wt%且小于等于60wt%。
其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述添加剂的质量百分含量大于20wt%且小于等于60wt%。
其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述添加剂的质量百分含量大于等于5wt%且小于等于20wt%。
本发明中,所述可凝胶化体系还包括其他溶剂和/或电解液,所述其他溶剂和/或电解液包括用于锂硫电池的电解液、用于锂硫电池的电解液的溶剂、用于锂离子电池的电解液、用于锂离子电池的电解液的溶剂中的至少一种。
本发明中,所述可凝胶化体系中,所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于60wt%。优选地,所述可凝胶化体系中,所述其他溶剂和/或电解液的质量百分含量大 于0wt%且小于等于25wt%。
本发明中,所述可凝胶化体系中可以进一步包括无机纳米颗粒。
本发明中,所述可凝胶化体系中,所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。优选地,所述可凝胶化体系中,所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%。
本发明的第三十五个方面是提供一种凝胶,其由上述的可凝胶化体系经凝胶化得到;其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述添加剂的质量百分含量大于等于5wt%且小于等于60wt%;所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。
其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述添加剂的质量百分含量大于等于20wt%且小于等于60wt%;所述其他溶剂和/或电解液的质量百分含量大于0wt%且小于等于30wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%。
本发明中,所述凝胶的转变温度为30~150℃,优选为40~100℃。
本发明中,所述凝胶的导电率为10 -4~10 -1S/cm,优选为10 -3~5×10 -2S/cm。
本发明的第三十六个方面是提供一种上述凝胶的制备方法,其包括以下步骤:
将添加剂、锂盐和环状醚类化合物混合,搅拌下得到含有添加剂的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
优选地,所述凝胶的制备方法具体包括如下步骤:
1)将添加剂加入到环状醚类化合物中,制备得到均一的混合溶液;
2)将上述制备得到的均一混合溶液加入到锂盐中,搅拌下得到添加剂的锂盐的醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
优选地,所述凝胶的制备方法具体包括如下步骤:
将添加剂、锂盐、环状醚类化合物、其他溶剂和/或电解液和/或无机纳米颗粒混合,搅拌下得到含有添加剂的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
进一步优选地,所述凝胶的制备方法具体包括如下步骤:
1’)将添加剂和任选地无机纳米颗粒加入到环状醚类化合物中,制备得到分散均匀的混合溶液;
2’)将锂盐溶解在其他溶剂和/或电解液中,制备得到锂盐溶液;
3’)将步骤1’)中制备得到的混合溶液加入到步骤2’)制备得到的锂盐溶液中,搅拌下得到含有添加剂和任选地无机纳米颗粒的溶解有其他溶剂和/或电解液的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
还优选地,所述凝胶的制备方法具体包括如下步骤:
1”)将添加剂和无机纳米颗粒加入到环状醚类化合物中,制备得到分散均匀的混合溶液;
2”)将步骤1”)中制备得到的混合溶液加入到锂盐中,搅拌下得到含有添加剂和无机纳米颗粒的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述 凝胶。
本发明中,对所述锂盐、环状醚类化合物、添加剂、无机纳米颗粒和其他溶剂和/或电解液进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对所述锂盐、环状醚类化合物添加剂、无机纳米颗粒和其他溶剂和/或电解液进行预先除水处理。
本发明中,所述凝胶形成的温度低于所述凝胶的转变温度,凝胶形成的时间为5分钟~500小时。
本发明的第三十七个方面是提供一种固态电解质,其由上述的可凝胶化体系经凝胶化得到;其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述添加剂的质量百分含量大于等于5wt%且小于等于60wt%;所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。
其中,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述添加剂的质量百分含量大于等于5wt%且小于等于20wt%;所述其他溶剂和/或电解液的质量百分含量大于0wt%且小于等于15wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%。
本发明中,所述固态电解质的转变温度为70~170℃,优选为80~120℃。
本发明中,所述固态电解质的导电率为10 -7~10 -3S/cm,优选为10 -5~10 -3S/cm。
本发明的第三十八个方面是提供一种上述固态电解质的制备方法,其包括以下步骤:
将添加剂、锂盐和环状醚类化合物混合,搅拌下得到含有添加剂的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
优选地,所述固态电解质的制备方法具体包括如下步骤:
1)将添加剂加入到环状醚类化合物中,制备得到均一的混合溶液;
2)将上述制备得到的均一混合溶液加入到锂盐中,搅拌下得到添加剂的锂盐的醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
优选地,所述固态电解质的制备方法具体包括如下步骤:
将添加剂、锂盐、环状醚类化合物、其他溶剂和/或电解液和/或无机纳米颗粒混合,搅拌下得到含有添加剂的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
进一步优选地,所述固态电解质的制备方法具体包括如下步骤:
1’)将添加剂和任选地无机纳米颗粒加入到环状醚类化合物中,制备得到分散均匀的混合溶液;
2’)将锂盐溶解在其他溶剂和/或电解液中,制备得到锂盐溶液;
3’)将步骤1’)中制备得到的混合溶液加入到步骤2’)制备得到的锂盐溶液中,搅拌下得到含有添加剂和任选地无机纳米颗粒的溶解有其他溶剂和/或电解液的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
还优选地,所述固态电解质的制备方法具体包括如下步骤:
1”)将添加剂和无机纳米颗粒加入到环状醚类化合物中,制备得到分散均匀的混合溶液;
2”)将步骤1”)中制备得到的混合溶液加入到锂盐中,搅拌下得到含有添加剂和无机纳米颗 粒的锂盐的环状醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
本发明中,对所述锂盐、环状醚类化合物、添加剂、无机纳米颗粒和其他溶剂和/或电解液进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对所述锂盐、环状醚类化合物添加剂、无机纳米颗粒和其他溶剂和/或电解液进行预先除水处理。
本发明中,所述固态电解质形成的温度低于所述固态电解质的转变温度,所述固态电解质形成的时间为50分钟~200小时。
本发明的第三十九个方面是提供一种凝胶电解质,所述凝胶电解质包括上述的凝胶。
本发明的第四十个方面是提供一种锂系电池,其包括上述的凝胶电解质和/或固态电解质。
本发明的第四十一个方面是提供上述凝胶、上述固态电解质、上述凝胶电解质的应用,其用于锂系电池等领域中。优选地,所述锂系电池包括锂离子电池、锂硫电池、锂空气电池中的至少一种。
[含有锂盐和直链醚类化合物的可凝胶化体系及其制备方法和应用]
本发明的第四十二个方面是提供一种可凝胶化体系,该体系中包括以下组分:锂盐和醚类化合物,所述醚类化合物选自直链醚类化合物;体系中可凝胶化的聚合物和/或可凝胶化的预聚物的质量百分含量小于等于1wt%。
所述可凝胶化体系中,各组分的重量百分比之和为100wt%。
本发明中,所述锂盐的质量百分含量大于等于2wt%且小于等于75wt%;所述直链醚类化合物的质量百分含量大于等于25wt%且小于等于98wt%。
其中,所述锂盐的质量百分含量大于等于5wt%且小于20wt%;所述直链醚类化合物的质量百分含量大于80wt%且小于等于95wt%;或者,所述锂盐的质量百分含量大于等于20wt%且小于等于30wt%;所述直链醚类化合物的质量百分含量大于等于70wt%且小于等于80wt%。
本发明中,所述可凝胶化体系还包括其他溶剂和/或电解液,所述其他溶剂和/或电解液包括用于锂硫电池的电解液、用于锂硫电池的电解液的溶剂、用于锂离子电池的电解液、用于锂离子电池的电解液的溶剂中的至少一种。
本发明中,所述可凝胶化体系中,所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%。优选地,所述可凝胶化体系中,所述其他溶剂和/或电解液的质量百分含量大于0wt%且小于等于60wt%。
本发明中,所述可凝胶化体系中可以进一步包括无机纳米颗粒。
本发明中,所述可凝胶化体系中,所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。优选地,所述可凝胶化体系中,所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%。
本发明的第四十三个方面是提供一种凝胶,其由上述的可凝胶化体系经凝胶化得到;其中,所述锂盐的质量百分含量大于等于2wt%且小于20wt%;所述直链醚类化合物的质量百分含量大于等于80wt%且小于等于98wt%;所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%;所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。
优选地,所述锂盐的质量百分含量大于等于5wt%且小于20wt%;所述直链醚类化合物的质量百分含量大于80wt%且小于等于95wt%;所述其他溶剂和/或电解液的质量百分含量大于0wt%且小 于等于60wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%。
本发明中,所述凝胶的转变温度为40~170℃,优选为55~130℃,还优选为55~85℃。
本发明中,所述凝胶的导电率为10 -5~10 -1S/cm,优选为10 -5~5×10 -2S/cm。
本发明的第四十四个方面是提供一种上述凝胶的制备方法,其包括以下步骤:
将直链醚类化合物、锂盐以及任选地其他溶剂和/或电解液和任选地无机纳米颗粒混合,搅拌下得到锂盐的直链醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
优选地,所述凝胶的制备方法具体包括如下步骤:
将直链醚类化合物加入锂盐中,搅拌下得到锂盐的直链醚类化合物溶液,任选地将其他溶剂和/或电解液和/或无机纳米颗粒加入到锂盐的直链醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述凝胶。
本发明中,对所述锂盐、直链醚类化合物、任选地其他溶剂和/或电解液和任选地无机纳米颗粒进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对所述锂盐、直链醚类化合物、任选地其他溶剂和/或电解液和任选地无机纳米颗粒进行预先除水处理。
本发明中,所述凝胶化过程需要在静置条件下完成。所述凝胶形成的温度低于所述凝胶的转变温度,所述凝胶形成的时间为30秒~300小时。
本发明的第四十五个方面是提供一种固态电解质,其由上述的可凝胶化体系经凝胶化得到;其中,所述锂盐的质量百分含量大于等于20wt%且小于等于75wt%;所述直链醚类化合物的质量百分含量大于等于25wt%且小于等于80wt%;所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%;所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。
优选地,所述锂盐的质量百分含量大于等于20wt%且小于等于30wt%;所述直链醚类化合物的质量百分含量大于等于70wt%且小于等于80wt%;所述其他溶剂和/或电解液的质量百分含量大于0wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%。
本发明中,所述固态电解质的转变温度为70~140℃,优选为75~110℃。
本发明中,所述固态电解质的导电率为10 -7~10 -3S/cm,优选为10 -6~10 -3S/cm,还优选为10 -5~10 -3S/cm。
本发明的第四十六个方面是提供一种上述固态电解质的制备方法,其包括以下步骤:
将直链醚类化合物、锂盐以及任选地其他溶剂和/或电解液和任选地无机纳米颗粒混合,搅拌下得到锂盐的直链醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
优选地,所述固态电解质的制备方法具体包括如下步骤:
将直链醚类化合物加入锂盐中,搅拌下得到锂盐的直链醚类化合物溶液,任选地将其他溶剂和/或电解液和/或无机纳米颗粒加入到锂盐的直链醚类化合物溶液,即所述可凝胶化体系,继续搅拌所述溶液,经凝胶化得到所述固态电解质。
本发明中,对所述锂盐、直链醚类化合物、任选地其他溶剂和/或电解液和任选地无机纳米颗粒进行预先除水处理;优选地,采用分子筛和/或真空干燥的方法对所述锂盐、直链醚类化合物、任选地其他溶剂和/或电解液和任选地无机纳米颗粒进行预先除水处理。
本发明中,所述凝胶化过程需要在静置条件下完成。所述固态电解质形成的温度低于所述固 态电解质的转变温度,所述固态电解质形成的时间为30分钟~200小时。
本发明的第四十七个方面是提供一种凝胶电解质,所述凝胶电解质包括上述的凝胶。
本发明的第四十八个方面是提供一种锂系电池,其包括上述的凝胶电解质和/或固态电解质。
本发明的第四十九个方面是提供上述凝胶、上述固态电解质、上述凝胶电解质的应用,其用于锂系电池等领域中。优选地,所述锂系电池包括锂离子电池、锂硫电池、锂空气电池中的至少一种。
[环状醚类化合物]
本发明的可凝胶化体系中含有醚类化合物,所述醚类化合物选自环状醚类化合物。所述环状醚类化合物选自至少含有1个氧原子的C 2~C 20环烷烃(即环状结构中的碳原子数为2-20个)或至少含有1个氧原子的C 3~C 20环烯烃(即环状结构中的碳原子数为3-20个),其中至少含有一个碳碳双键。
本发明中,所述环烷烃或环烯烃为单环、稠合环(如双环)、螺环或桥环;当所述环烷烃或环烯烃为螺环或桥环且含有两个以上氧原子时,氧原子可以在一个环上,也可以在多个环上。
本发明中,所述环状醚类化合物选自至少含有1个氧原子的C 2~C 20的单环烷烃,优选选自至少含有1个氧原子的C 3~C 20的单环烷烃,例如为下述第一类化合物中的一种:
Figure PCTCN2018088494-appb-000001
本发明中,所述环状醚类化合物选自至少含有1个氧原子的C 4~C 20的稠合环烷烃,例如为下述第二类化合物中的一种:
Figure PCTCN2018088494-appb-000002
Figure PCTCN2018088494-appb-000003
本发明中,所述环状醚类化合物选自至少含有1个氧原子的C 4~C 20的桥环烷烃,例如为下述第三类化合物中的一种:
Figure PCTCN2018088494-appb-000004
本发明中,所述环状醚类化合物选自至少含有1个氧原子的C 4~C 20的螺环烷烃,例如为下述第四类化合物中的一种:
Figure PCTCN2018088494-appb-000005
本发明中,上述四类化合物中的环结构上的C-C键至少有一个被C=C替代且为稳定存在的化 合物,则为上述的至少含有1个氧原子的C 3~C 20环烯烃,为本发明优选的环状醚类化合物的一种。
本发明中,所述环烷烃或环烯烃为单环或稠合环时,其所述环上的碳原子上可以被1个或多个R1基团取代;所述环烷烃或环烯烃为桥环时,其非桥连环碳原子可以被1个或多个R1基团取代;所述环烷烃或环烯烃为螺环时,其环上碳原子上可以被1个或多个R1基团取代;所述R1基团选自下述基团的一种:烷基、烯基、炔基、烷氧基、烷硫基、卤代烷基、环烷基、环烷基氧基、环烷基硫基、杂环基、杂环基氧基、杂环基硫基、芳基、芳基氧基、杂芳基、杂芳基氧基、羟基、巯基、硝基、羧基、氨基、酯基、卤素、酰基、醛基。
本发明中,所述含有一个氧的环状醚类化合物选自取代或未取代的氧杂环丁烷、取代或未取代的四氢呋喃、取代或未取代的四氢吡喃;所述取代基的个数可以是一个或多个;所述取代基为上述的R1基团。
本发明中,所述含有一个氧的环状醚类化合物选自3,3-二氯甲基氧杂环丁烷、2-氯甲基氧杂环丁烷、2-氯甲基环氧丙烷、1,3-环氧环己烷、1,4-环氧环己烷、四氢呋喃、2-甲基四氢呋喃、3-甲基四氢呋喃、四氢吡喃、2-甲基四氢吡喃、氧杂环庚烷、氧杂环辛烷、氧杂环壬烷或氧杂环癸烷。
本发明中,所述含有两个氧的环状醚类化合物选自取代或未取代的1,3-二氧戊环(DOL)、取代或未取代的1,4-二氧六环;所述取代基的个数可以是一个或多个;所述取代基为上述的R1基团。
本发明中,所述含有三个氧的环状醚类化合物选自取代或未取代的三聚甲醛;所述取代基的个数可以是一个或多个;所述取代基为上述的R1基团。
本发明中,所述含有更多氧的醚类化合物选自取代或未取代的18-冠-6、取代或未取代的12-冠-4、取代或未取代的24-冠-8;所述取代基的个数可以是一个或多个;所述取代基为上述的R1基团。
[直链醚类化合物]
本发明的可凝胶化体系中含有醚类化合物,所述醚类化合物选自直链醚类化合物。所述直链醚类化合物的通式如式(1)所示:
R 1—O—(R 2—O) n—R 3    式(1)
其中,n为大于0的整数;R 2选自直链或支链的C 1-C 6的亚烷基、直链或支链的C 2-C 6的亚烯基;所述R 2上的碳原子上的H可以被下述基团中的至少一种取代:烯基、炔基、烷氧基、烷硫基、环烷基、环烷基氧基、环烷基硫基、杂环基、杂环基氧基、杂环基硫基、芳基、芳基氧基、杂芳基、杂芳基氧基、羟基、巯基、硝基、羧基、氨基、酯基、卤素、酰基、醛基;
R 1和R 3相同或不同,彼此独立地选自氢原子、烷基、环烷基、杂环基、烯基、炔基中的一种或多种;所述R 1和R 3的碳原子上的H可以被下述基团中的至少一种取代:烯基、炔基、烷氧基、烷硫基、环烷基、环烷基氧基、环烷基硫基、杂环基、杂环基氧基、杂环基硫基、芳基、芳基氧基、羟基、巯基、硝基、羧基、氨基、酯基、卤素、酰基、醛基。
其中,n为1~6之间的整数;R 2选自直链或支链的C 1-C 4的亚烷基、直链或支链的C 2-C 6的亚烯基;R 1和R 3相同或不同,彼此独立地选自直链或支链的C 1-C 6的烷基。
其中,R 2选自甲基、乙基、丙基、异丙基、丁基、异丁基、乙烯基;R 1和R 3相同或不同,彼此独立地选自甲基、乙基、丙基。
其中,所述直链醚类化合物选自乙二醇二甲醚,乙二醇二乙醚,乙二醇甲乙醚,1,4-丁二醇 二甲醚,1,4-丁二醇二乙醚,1,4-丁二醇甲乙醚等中的一种或多种。
本发明中,所述直链醚类化合物例如为下述化合物中的一种:
Figure PCTCN2018088494-appb-000006
[其他溶剂和/或电解液]
本发明中,所述其他溶剂和/或电解液包括用于锂硫电池的电解液、用于锂硫电池的电解液的溶剂、用于锂离子电池的电解液、用于锂离子电池的电解液的溶剂中的至少一种。
本发明中,所述用于锂离子电池的电解液选自含有用于锂离子电池的锂盐的酯类混合液,例如含1M六氟磷酸锂(LiPF 6)的碳酸乙烯酯(EC)和碳酸二甲酯(DMC)的混合液,其中,所述碳酸乙烯酯(EC)和碳酸二甲酯(DMC)的体积比为1:1。
本发明中,所述用于锂离子电池的电解液的溶剂选自用于锂离子电池的电解液的环状非水有机溶剂和用于锂离子电池的电解液的链状非水有机溶剂中的至少一种。
本发明中,所述环状非水有机溶剂选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、氟代碳酸乙烯酯(FEC)、γ-丁内酯(GBL)、亚硫酸乙烯酯(ES)、亚硫酸丙烯酯(PS)、环丁砜(SL)、碳酸甘油酯(GC)中的至少一种。
本发明中,所述链状非水有机溶剂选自碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸甲丙酯(MPC)、碳酸二丙酯(DPC)、碳酸乙丙酯(EPC)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸乙酯(EP)、丁酸乙酯(EB)、丁酸甲酯(MB)、亚硫酸二甲酯(DMS)、亚硫酸二乙酯(DES)、亚硫酸甲乙酯(EMS)、二甲基砜(MSM)、二甲基亚砜(DMSO)中的至少一种。
本发明中,所述用于锂硫电池的电解液选自含有锂盐的醚类混合液,例如:含有1M双三氟甲烷磺酰亚胺锂(LiTFSI)的1,3-二氧戊环(DOL)和乙二醇二甲醚(DME)的混合液,其中,所述1,3-二氧戊环(DOL)和乙二醇二甲醚(DME)的体积比为1:1。
本发明中,所述用于锂硫电池的电解液的溶剂选自1,3-二氧戊环、1,2-二甲氧基乙烷、三乙二醇二甲醚、四乙二醇二甲醚、氟代碳酸乙烯酯、聚乙二醇硼酸酯、1,1’,2,2’-四氟乙基-2,2’,3,3’-四氟丙烯醚中的一种或多种。
[无机纳米颗粒]
本发明中,所述无机纳米颗粒选自二氧化硅、氧化铝、氮化硅、氧化锌、二氧化钛、碳化硅、硅酸盐、碳酸钙、硫酸钡、黏土、四氧化三铁、氧化铈、纳米碳材料、氧化铁等中的一种或多种;优选地,所述无机纳米颗粒选自二氧化硅、氧化铝、二氧化钛、氧化锌中的一种或多种。
[锂盐]
本发明中,所述锂盐可选自六氟磷酸锂、四氟硼酸锂、六氟砷酸锂、高氯酸锂、三氟甲基磺酸锂、全氟丁基磺酸锂、双三氟甲烷磺酰亚胺锂、双氟磺酰亚胺锂、铝酸锂、氯铝酸锂、氟代磺酰亚胺锂、氯化锂和碘化锂中的一种或多种;
优选地,用于锂离子电池时,所述锂盐选自六氟磷酸锂、高氯酸锂等中的一种或两种。
优选地,用于锂硫电池时,所述锂盐选自六氟磷酸锂、六氟砷酸锂、高氯酸锂、三氟甲基磺酸锂、双三氟甲烷磺酰亚胺锂、双氟磺酰亚胺锂、氟代磺酰亚胺锂、氯化锂等中的一种或多种。
[添加剂]
本发明中,所述添加剂选自聚酯或其共混物中的一种或几种。其中,所述聚酯由多元酸或酸酐与多元醇缩聚而得。
其中,所述多元酸选自二元酸、三元酸或更多元酸,所述多元醇选自二元醇、三元醇或更多元醇。
在一个优选的实施方式中,所述多元酸选自取代或未取代的下述多元酸中的一种或两种或三种或多于三种:乙二酸,丙二酸,丁二酸,丁烯二酸,戊二酸,己二酸,庚二酸,辛二酸,癸二酸,壬二酸,丙三酸;所述取代基的个数可以是一个或多个;当所述取代基为多个时,其可成环;所述取代基为烷基、环烷基、芳基、羟基、氨基、酯基、卤素、酰基、醛基、巯基、烷氧基等中的一种或多种。
在一个优选的实施方式中,所述酸酐选自取代或未取代的下述酸酐中的一种或两种或三种或多于三种:乙二酸酐,丙二酸酐,丁二酸酐,丁烯二酸酐,戊二酸酐,己二酸酐,庚二酸酐,辛二酸酐,癸二酸酐,壬二酸酐,六氢苯酐,四氢苯酐;所述取代基的个数可以是一个或多个;当所述取代基为多个时,其可成环;所述取代基为烷基、环烷基、芳基、羟基、氨基、酯基、卤素、酰基、醛基、巯基、烷氧基等中的一种或多种。
在一个优选的实施方式中,所述多元醇选自取代或未取代的下述多元醇中的一种或几种:丙二醇,丁二醇,戊二醇,己二醇,庚二醇,辛二醇,壬二醇,癸二醇,聚乙二醇,丙三醇;所述取代基的个数可以是一个或多个;当所述取代基为多个时,其可成环;所述取代基为烷基、环烷基、芳基、羟基、氨基、酯基、卤素、酰基、醛基、巯基、烷氧基等中的一种或多种。
在一个优选的实施方式中,所述多元醇选自聚乙二醇,或者聚乙二醇与下述多元醇中的一种或几种的组合:丙二醇,丁二醇,戊二醇,己二醇,庚二醇,辛二醇,壬二醇,癸二醇。
在一个优选的实施方式中,所述聚乙二醇的聚合度为100-1000,优选为150-800,还优选为200-600。其中,所述聚乙二醇与其他多元醇的重量比为1:(0~1),优选为1:(0~0.9),还优选为1:(0~0.8)。
[术语和定义]
除非另有说明,本申请说明书中记载的基团和术语定义,包括其作为实例的定义、示例性的定义、优选的定义、表格中记载的定义、实施例中具体化合物的定义等,可以彼此之间任意组合和结合。这样的组合和结合后的基团定义及化合物结构,应当属于本申请保护的范围内。
本发明中的术语“凝胶”具有本领域公知的含义,术语“凝胶化”也具有本领域公知的含义。
本发明中的可凝胶化的聚合物和/或可凝胶化的预聚物是指在一定条件下可以形成凝胶或可以凝胶化的聚合物和/或预聚物。不限制的,本发明所述可凝胶化的聚合物和/或可凝胶化的预聚物可选自聚氧化乙烯(PEO)、聚乙二醇(PEG)、聚偏氟乙烯(PVDF)、聚氯乙烯(PVC)、聚苯 乙烯(PS)、聚丙烯腈(PAN)、聚乙酸乙酯(PVAC)、聚乙烯基吡咯烷酮(PVP)、聚二乙烯基硫(PVS)、聚三亚甲基碳酸酯(PTMC)、聚甲基丙烯酸甲酯(PMMA)、聚乙二醇二甲基丙烯酸酯(PEGDM)、聚氧化丙烯(PPO)、聚二甲基硅氧烷(PDMSO)或其预聚物,或其共聚物,或其共混物中的一种或多种。
本申请说明书中记载的数值范围,当该数值范围被定义为“整数”时,应当理解为记载了该范围的两个端点以及该范围内的每一个整数。例如,“0~10的整数”应当理解为记载了0、1、2、3、4、5、6、7、8、9和10的每一个整数。当该数值范围被定义为“数”时,应当理解为记载了该范围的两个端点、该范围内的每一个整数以及该范围内的每一个小数。例如,“0~10的数”应当理解为不仅记载了0、1、2、3、4、5、6、7、8、9和10的每一个整数,还至少记载了其中每一个整数分别与0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9的和。
本发明使用的“卤素”指氟、氯、溴和碘。
本发明单独使用或用作后缀或前缀的“烷基”意在包括具有1至20个,优选1-6个碳原子(或若提供了碳原子的具体数目,则指该具体数目)的支链和直链饱和脂族烃基。例如,“C 1-6烷基”表示具有1、2、3、4、5或6个碳原子的直链和支链烷基。烷基的实例包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基和己基。
本发明单独使用或用作后缀或前缀的“卤代烷基”或“烷基卤化物”意在包括具有至少一个卤素取代基且具有1-20个,优选1-6个碳原子(或若提供了碳原子的具体数目,则指该具体数目)的支链和直链饱和脂族烃基。例如,“C 1-10卤代烷基”表示具有0、1、2、3、4、5、6、7、8、9、10个碳原子的卤代烷基。卤代烷基的实例包括但不限于氟甲基、二氟甲基、三氟甲基、氯氟甲基、1-氟乙基、3-氟丙基、2-氯丙基、3,4-二氟丁基等。
本发明单独使用或用作后缀或前缀的“烯基”意在包括具有2至20个,优选2-6个碳原子(或若提供了碳原子的具体数目,则指该具体数目)的包含烯基或烯烃的支链和直链脂族烃基。例如,“C 2-6烯基”表示具有2、3、4、5或6个碳原子的烯基。烯基的实例包括但不限于乙烯基、烯丙基、1-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、2-甲基丁-2-烯基、3-甲基丁-1-烯基、1-戊烯基、3-戊烯基和4-己烯基。
本发明单独使用或用作后缀或前缀的“炔基”意在包括具有2至20个,优选2-6个碳原子(或若提供了碳原子的具体数目,则指该具体数目)的包含炔基或炔烃的支链和直链脂族烃基。例如乙炔基、丙炔基(例如l-丙炔基、2-丙炔基)、3-丁炔基、戊炔基、己炔基和1-甲基戊-2-炔基。
本发明使用的术语“芳基”指由5至20个碳原子构成的芳族环结构。例如:包含5、6、7和8个碳原子的芳族环结构可以是单环芳族基团例如苯基;包含8、9、10、11、12、13或14个碳原子的环结构可以是多环的例如萘基。芳环可在一个或多个环位置取代有上述那些取代基。术语“芳基”还包括具有两个或更多个环的多环环系,其中两个或更多个碳为两个相邻环所共有(所述环为“稠环”),其中至少一个环是芳族的且其它环例如可以是环烷基、环烯基、环炔基、芳基和/或杂环基。多环的实例包括但不限于2,3-二氢-1,4-苯并二氧杂环己二烯和2,3-二氢-1-苯并呋喃。
本发明使用的术语“环烷基”意在包括具有指定数目碳原子的饱和环基。这些术语可包括稠合或桥接的多环系统。环烷基在其环结构中具有3至40个碳原子。在一个实施方案中,环烷基在其环结构中具有3、4、5或6个碳原子。例如,“C 3-6环烷基”表示例如环丙基、环丁基、环戊基或环己基的基团。
本发明使用的“杂芳基”指具有至少一个环杂原子(例如硫、氧或氮)的杂芳族杂环。杂芳基包括单环系统和多环系统(例如具有2、3或4个稠环)。杂芳基的实例包括但不限于吡啶基、嘧啶基、吡嗪基、哒嗪基、三嗪基、呋喃基、喹啉基、异喹啉基、噻吩基、咪唑基、噻唑基、吲哚基、吡咯基、噁唑基、苯并呋喃基、苯并噻吩基、苯并噻唑基、异噁唑基、吡唑基、三唑基、四唑基、吲唑基、1,2,4-噻二唑基、异噻唑基、苯并噻吩基、嘌呤基、咔唑基、苯并咪唑基、苯并噁唑基、氮杂苯并噁唑基、咪唑并噻唑基、苯并[1,4]二氧杂环己烯基、苯并[1,3]二氧杂环戊烯基等。在一些实施方案中,杂芳基具有3至40个碳原子且在其它实施方案中具有3至20个碳原子。在一些实施方案中,杂芳基包含3至14个、4至14个、3至7个或5至6个成环原子。在一些实施方案中,杂芳基具有1至4个、1至3个或1至2个杂原子。在一些实施方案中,杂芳基具有1个杂原子。
除非另有说明,本发明使用的术语“杂环基”指包含3至20个原子的饱和、不饱和或部分饱和的单环、二环或三环,其中1、2、3、4或5个环原子选自氮、硫或氧,除非另有说明,其可通过碳或氮来连接,其中-CH 2-基团任选被-C(O)-代替;及其中除非另有相反说明,环氮原子或环硫原子任选被氧化以形成N-氧化物或S-氧化物或环氮原子任选被季铵化;其中环中的-NH任选被乙酰基、甲酰基、甲基或甲磺酰基取代;及环任选被一个或多个卤素取代。应该理解的是,当杂环基中S原子和O原子的总数超过1时,这些杂原子不彼此相邻。若所述杂环基为二环或三环,则至少一个环可任选为杂芳族环或芳族环,条件是至少一个环是非杂芳族的。若所述杂环基为单环,则其一定不是芳族的。杂环基的实例包括但不限于哌啶基、N-乙酰基哌啶基、N-甲基哌啶基、N-甲酰基哌嗪基、N-甲磺酰基哌嗪基、高哌嗪基、哌嗪基、氮杂环丁烷基、氧杂环丁烷基、吗啉基、四氢异喹啉基、四氢喹啉基、二氢吲哚基、四氢吡喃基、二氢-2H-吡喃基、四氢呋喃基、四氢噻喃基、四氢噻喃-1-氧化物、四氢噻喃-1,1-二氧化物、1H-吡啶-2-酮和2,5-二氧代咪唑烷基。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,应理解,在阅读了本发明所记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的范围。
[测试方法]
本实施例所述的导电率是使用Gamry公司的Interface 1000型号的电化学工作站测试得到的,所述测试扫描频率为1.0Hz~100kHz。本实施例所述的电池的测试是蓝电电池组。
[原料和试剂]
本实施例中,所述锂盐在使用前,经40℃真空干燥10h以上进行除水处理。所述环状醚类化合物在使用前,经分子筛进行除水处理。所述包括用于锂离子电池的电解液或其溶剂的液体在使用前,经分子筛除水干燥。所述包括用于锂硫电池的电解液或其溶剂的液体在使用前,经分子筛进行除水处理。所述添加剂在使用前,经45℃真空干燥24h以上除水处理。
本实施例中所用的锂离子电池常规电解液选自含1M六氟磷酸锂的碳酸乙烯酯和碳酸二甲酯的混合液,其中,所述碳酸乙烯酯和碳酸二甲酯的体积比为1:1。
本实施例中所用的锂硫电池常规电解液选自含有锂盐的醚类混合液,例如:含有1M双三氟甲烷磺酰亚胺锂的1,3-二氧戊环和乙二醇二甲醚的混合液,其中,所述1,3-二氧戊环和乙二醇二甲醚的体积比为1:1。所述无机纳米颗粒在使用前,经60℃真空干燥10h以上进行除水处理。
[下述实施例中的电池的组成]
正极材料选自锂钴氧化物、锂镍氧化物、锂锰氧化物、三元材料镍钴锰氧、纳米正极材料(如 纳米结晶尖晶石LiMn 2O 4、钡镁锰矿型MnO 2纳米纤维、聚吡咯包覆尖晶石型LiMn 2O 4纳米管、聚吡咯/V 2O 5纳米复合材料等)、共混电极、钒氧化物、层状化合物(如经过苯胺改性后的氧基氯化铁等)中的至少一种。
负极材料选自金属类负极材料(如金属锂、锂合金等)、无机非金属类负极材料(如碳材料、硅材料以及其他不同非金属的复合材料等)中的至少一种。
隔膜选自本发明所述的可凝胶体系制备得到的固态电解质隔膜或聚烯烃多孔膜,如聚乙烯微孔膜、聚丙烯微孔膜、三层复合隔膜中的至少一种。
锂离子电池的正极极片的制备:将正极材料与导电石墨、导电剂乙炔黑(super p)、粘结剂聚偏二氟乙烯(PVDF)按照质量比85:5:5:5均匀混合,用N-甲基-吡咯烷酮(NMP)将此混合物调制成浆料,均匀涂敷在铝箔上,于120℃真空烘箱中干燥24小时,备用;
锂硫电池的正极极片的制备:将正极材料与导电剂乙炔黑(super p)、粘结剂聚偏二氟乙烯(PVDF)按照质量比8:1:1均匀混合,用N-甲基-吡咯烷酮(NMP)将此混合物调制成浆料,均匀涂敷在铝箔上,于60℃真空烘箱中干燥24小时,备用;
实施例1-0
(1)可凝胶化体系和固态电解质的制备
称取0.5g的四氟硼酸锂固体于试剂瓶中,加入1.6mL的1,3-二氧戊环,在磁力搅拌下使得锂盐全部溶解,配制成锂盐含量为23wt%的四氟硼酸锂/1,3-二氧戊环溶液,得到可凝胶化体系;静置一段时间,得到固态电解质。经测试,所述固态电解质的形成时间为6h,所述固态电解质的形成温度为室温,所述固态电解质的转变温度为60℃;所述固态电解质的导电率为1.06×10 -5S/cm。
将制备得到的固态电解质加热到60℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明已经达到固态电解质的转变温度,而当温度降到60℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
将此固态电解质用溶剂(如去离子水)全部溶解,然后在乙醇中沉降出,得到的聚合物用氘代氯仿溶解,进行核磁共振氢谱的测试,测试结果如图26所示,从结果可以看出:化学位移为3.72ppm归属于聚合物链段-O-CH 2-CH 2-O-,化学位移为4.75ppm归属于聚合物链段-O-CH 2-O-,两者的积分面积为2:1,与重复单元(-CH 2-O-CH 2-CH 2-O-)中的两种链段比相同,表明在电解质体系中,成功得到目标聚合物。
同样地,将此固态电解质用溶剂(如去离子水)全部溶解,然后在乙醇中沉降出,得到的聚合物与适量的KBr粉末研磨混合均匀,压制成片,用红外光谱进行表征,从图27中可以看出:在1100cm -1处峰对应的是-CH 2-的伸缩振动,2900cm -1处峰对应的是-CH 2-的伸缩振动,进一步证明该化合物的结构。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表1中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例1-1
(1)可凝胶化体系和固态电解质的制备
称取0.5g的四氟硼酸锂固体于试剂瓶中,加入1.6mL的四氢吡喃,在磁力搅拌下使得锂盐全部溶解,配制成锂盐含量为23wt%的四氟硼酸锂/四氢吡喃溶液,得到可凝胶化体系;静置一段时间,得到固态电解质。经测试,所述固态电解质的形成时间为6h,所述固态电解质的形成温度为室温,所述固态电解质的转变温度为90℃;所述固态电解质的导电率为1.06×10 -6S/cm。
将制备得到的固态电解质加热到90℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明已经达到固态电解质的转变温度,而当温度降到90℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表1中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例1-2
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.7g的六氟砷酸锂固体于试剂瓶中,加入5.0mL的1,4-二氧六环,在磁力搅拌下,配制成锂盐含量为12wt%的六氟砷酸锂/1,4-二氧六环溶液,得到可凝胶化体系;继续搅拌,静置一段时间,得到凝胶。经测试,所述凝胶的形成时间为24h;所述凝胶的形成温度为室温,所述凝胶的转变温度为65℃,所述凝胶的导电率为5.27×10 -4S/cm。
图1为实施例1-2的凝胶的光学照片,由图可以看出采用上述锂盐和环状醚类环合物的配比,可以制备得到无色透明的凝胶;此外,在转变温度以下时,倒置试剂瓶时凝胶没有出现流动现象。
将制备得到的凝胶加热到65℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明已经达到凝胶的转变温度,而当温度降到65℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表1中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例1-3
(1)可凝胶化体系和固态电解质的制备
称取0.45g的氟代磺酰亚胺锂和0.45g的高氯酸锂(LiClO 4)固体于试剂瓶中,加入3.6mL的2-甲基四氢吡喃,在磁力搅拌下配制成锂盐含量为20wt%的氟代磺酰亚胺锂+LiClO 4/2-甲基四氢吡喃溶液,得到可凝胶化体系;继续搅拌,静置一段时间,得到固态电解质。经测试,所述固态电解质的形成时间为12h;所述固态电解质的形成温度为室温,所述固态电解质的转变温度为80℃,所述固态电解质的导电率为3.26×10 -6S/cm。
图2为实施例1-3的固态电解质的光学照片,由图可以看出采用上述锂盐和环状醚类环合物的配比,可以制备得到固态电解质;此外,在转变温度以下时,倒置试剂瓶时固态电解质没有出现流动现象。
将制备得到的固态电解质加热到80℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明已经达到固态电解质的转变温度,而当温度降到80℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表1中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例1-4
(1)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
称取0.2g的全氟丁基磺酸锂和0.2g的双氟磺酰亚胺锂固体于试剂瓶中,加入8.0mL的1,3-二氧戊环(DOL),在磁力搅拌下配制成锂盐含量为5wt%的全氟丁基磺酸锂+双氟磺酰亚胺锂/DOL溶液,得到可凝胶化体系;继续搅拌直到锂盐完全溶解,静置一段时间,得到凝胶。经测试,所述凝胶的形成时间为20h,所述凝胶的形成温度为室温,所述凝胶的转变温度为45℃,所述凝胶的导电率为6.14×10 -3S/cm。
将制备得到的凝胶加热到45℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向瓶口流动,说明此时已经达到凝胶的转变温度,而当温度降到45℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表1中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例1-5
(1)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
称取0.3g的氯化锂、0.3g的双三氟甲烷磺酰亚胺锂和0.2g的高氯酸锂固体于试剂瓶中,加入10.0mL四氢呋喃,在磁力搅拌下配制成锂盐含量为7.4wt%的氯化锂+双三氟甲烷磺酰亚胺锂+高氯酸锂/四氢呋喃溶液,得到可凝胶化体系;持续搅拌直到锂盐完全溶解,静置一段时间,可形成凝胶。经测试,所述凝胶的形成时间为14h,所述凝胶的形成温度为室温,所述凝胶的转变温度为63℃,所述凝胶的导电率为3.52×10 -3S/cm。
将制备得到的凝胶加热到63℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明此时已经达到凝胶的转变温度,而当温度降到63℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
图3为实施例1-5的凝胶的光学照片,由图可以看出采用上述锂盐和环状醚类环合物的配比,可以制备得到凝胶;且所述凝胶具有很好的拉伸性能和可塑性,可拉伸扭捏成任意形状,且不会自动恢复,需要外力进行恢复塑性。
将此凝胶电解质用溶剂(如去离子水)全部溶解,然后在乙醇中沉降出,得到的聚合物用氘代氯仿溶解,进行核磁共振氢谱的测试,测试结果如图31所示,从结果可以看出:化学位移为 1.51ppm归属于聚合物链段-O-CH 2-CH 2-(加粗C上的两个H),化学位移为3.37ppm归属于-O-CH 2-CH 2-(加粗C上的两个H),两者的积分面积为1:1,与重复单元(-O-CH 2-CH 2-CH 2-CH 2-O-)中的两种链段比相同,表明在电解质体系中,成功得到目标聚合物。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表1中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例1-6
(1)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
称取0.2g的六氟磷酸锂和0.2g的全氟丁基磺酸锂固体于试剂瓶中,加入4.0mL的1,4-环氧环己烷,在磁力搅拌下使得锂盐全部溶解,配制成锂盐含量为10wt%的六氟磷酸锂+全氟丁基磺酸锂/1,4-环氧环己烷溶液,得到可凝胶化体系;静置一段时间,得到凝胶。经测试,所述凝胶的形成时间为12h,所述凝胶的形成温度为室温,所述凝胶的转变温度为67℃,所述凝胶的导电率为1.05×10 -4S/cm。
将制备得到的凝胶加热到67℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明已经达到凝胶的转变温度,而当温度降到67℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表1中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例1-7
(1)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
称取1.2g三聚甲醛、0.15g的双氟磺酰亚胺锂和0.1g的全氟丁基磺酸锂固体于试剂瓶中,加入3.0mL的1,4-二氧六环(使用前已经通过分子筛除水),在磁力搅拌下使得锂盐和三聚甲醛全部溶解,配制成锂盐含量为6wt%的双氟磺酰亚胺锂+全氟丁基磺酸锂/1,4-二氧六环+三聚甲醛溶液,静置一段时间,得到凝胶。经测试,所述凝胶的形成时间为26h,所述凝胶的形成温度为室温,所述凝胶的转变温度为82℃,所述凝胶的导电率为4.18×10 -3S/cm。
将制备得到的凝胶加热到82℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明已经达到凝胶的转变温度,而当温度降到82℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到电池中,使用蓝电电池组测试电池的电化学性能(测试结果列于表1中)。其中,所述电池的制备方法:将正极极片和负极极片用上述可凝胶化体系充分浸润,然后将隔膜放置于正极和负极之间,再注入上述步骤(1)制备的可凝胶化的电解液,封装压实,组装成电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例1-8
(1)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
称取0.15g的氟代磺酰亚胺锂和0.2g的全氟丁基磺酸锂固体于试剂瓶中,加入1.5mL的3-甲基四氢呋喃和1.5mL的1,3-环氧环己烷,在磁力搅拌下使得锂盐全部溶解,配制成锂盐含量为12wt%的氟代磺酰亚胺锂+全氟丁基磺酸锂/3-甲基四氢呋喃+1,3-环氧环己烷溶液,得到可凝胶化体系;静置一段时间,得到凝胶。经测试,所述凝胶的形成时间为12h,所述凝胶的形成温度为室温,所述凝胶的转变温度为55℃;所述凝胶的导电率为3.74×10 -4S/cm。
将制备得到的凝胶加热到55℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经到达凝胶的转变温度,而当温度降到55℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表1中)。其中,所述纽扣电池的制备方法:将上述步骤(1)中的可凝胶化体系代替传统的粘结剂聚偏氟乙烯(PVDF),在正极极片和负极极片制备时,参与活性物质和导电剂一起打浆,涂布成极片,然后将隔膜放置于正极和负极之间,再注入上述步骤(1)制备的可凝胶化的电解液,封装压实,组装成电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例1-9
(1)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
称取0.15g的六氟磷酸锂和0.2g的双草酸硼酸锂固体于试剂瓶中,加入1.0g的尿素、0.5g的三聚甲醛和1.5mL的1,3-环氧环己烷,在磁力搅拌下使得锂盐全部溶解,配制成锂盐含量为12wt%的六氟磷酸锂+双草酸硼酸锂/三聚甲醛+1,3-环氧环己烷溶液,得到可凝胶化体系;静置一段时间,得到凝胶。经测试,所述凝胶的形成时间为10h,所述凝胶的形成温度为室温,所述凝胶的转变温度为62℃;所述凝胶的导电率为3.88×10 -4S/cm。
将制备得到的凝胶加热到62℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经到达凝胶的转变温度,而当温度降到62℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到1Ah的锰酸锂软包电池中,使用蓝电电池组测试软包电池的电化学性能(测试结果列于表1中)。其中,所述软包电池的制备方法:将隔膜放置于正极和负极之间,进行缠绕,封口时留一个注液口,注入步骤(1)制备的可凝胶化体系,真空封装,组装成软包电池,静置待所述可凝胶化体系变成凝胶电解质。
表1 实施例1-0至1-9中的凝胶或固态电解质制备得到的电池的性能参数
Figure PCTCN2018088494-appb-000007
Figure PCTCN2018088494-appb-000008
图4为实施例1-4中得到的凝胶电解质作为锂硫电池的电解液组装成电池的首次充放电图。由图可知,该凝胶电解质作为锂硫电池的电解液,可以使得锂硫电池正常的充放电,并将其中的活性物质充分发挥出来,得到了较高的比容量。
图5为实施例1-4中得到的凝胶电解质作为锂硫电池的电解液组装成电池的循环性能图。由图可知,该凝胶电解质作为锂硫电池的电解液,可以明显的减缓“飞梭效应”,从而使得活性物质的利用率提高,进一步提高了电池的循环性能。
图28为实施例1-9中得到的凝胶电解质作为锰酸锂软包电池(1Ah)的电解液组装成电池的循环性能以及其对应的库伦效率图,由图可知,该凝胶电解质在软包电池中可以使得其容量充分的发挥,接近理论容量,而且在循环50圈后,容量基本保持稳定,循环过程中,库伦效率一直接近在100%,表现出很好的循环稳定性。
实施例2-1
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.9g的六氟磷酸锂固体于试剂瓶中,加入1.5mL的碳酸二甲酯(DMC),充分搅拌后,使得六氟磷酸锂完全溶解,向其中加入1.5mL的1,4-环氧辛烷,在磁力搅拌下充分混合,得到可凝胶化体系;静置一段时间,形成凝胶。所述凝胶体系中,用于锂离子电池的锂盐的质量百分含量为23wt%;环状醚类化合物的质量百分含量为38wt%;用于锂离子电池的电解液或其溶剂的质量百分含量为39wt%。经测试,所述凝胶的性能参数列于表2中。
将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降到凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表2中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例2-2
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.3g的高氯酸锂和0.3g的四氟硼酸锂固体于试剂瓶中,加入1.0mL的混合碳酸酯类溶剂(体积比为1:1的碳酸二乙酯(DEC)和碳酸乙烯酯(EC)的混合溶液),在磁力搅拌下使锂盐全部溶解,然后加入1.5mL的2-甲基-四氢吡喃于上述混合液中,充分混合后,得到可凝胶化体系;静置一段时间,形成凝胶。所述凝胶体系中,用于锂离子电池的锂盐的质量百分含量为19wt%;环状醚类化合物的质量百分含量为48wt%;用于锂离子电池的电解液或其溶剂的质量百分含量为33wt%。经测试,所述凝胶的性能参数列于表2中。
将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察 到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降到凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表2中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例2-3
(1)可凝胶化体系和固态电解质的制备
称取1.2g的氟代磺酰亚胺锂固体于试剂瓶中,加入1.5mL的常规锂电池电解液(含1mol/L LiPF 6的碳酸二乙酯(DEC)和碳酸乙烯酯(EC)的混合溶液,所述碳酸二乙酯(DEC)和碳酸乙烯酯(EC)的体积比为1:1),在磁力搅拌下使得锂盐完全溶解,然后加入5.5mL的四氢吡喃于上述混合溶液中,充分混合后,得到可凝胶化体系;静置一段时间,形成固态电解质。所述固态电解质体系中,用于锂离子电池的锂盐的质量百分含量为15wt%;环状醚类化合物的质量百分含量为67wt%;用于锂离子电池的电解液或其溶剂的质量百分含量为18wt%。经测试,所述固态电解质的性能参数列于表2中。
将制备得到的固态电解质加热到所述固态电解质的转变温度以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明温度已经达到固态电解质的转变温度,而当温度降到固态电解质的转变温度以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表2中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例2-4
(1)可凝胶化体系和固态电解质的制备
称取0.4g六氟磷酸锂和0.9g氟代磺酰亚胺锂固体于试剂瓶中,加入1.0mL的碳酸甲乙酯和1.0mL的碳酸乙烯酯,在磁力搅拌下,使得锂盐全部溶解,加入3.0mL的四氢吡喃和3.5mL的1,3-二氧戊环,充分混合后,得到可凝胶化体系;静置一段时间,形成固态电解质。所述固态电解质体系中,用于锂离子电池的锂盐的质量百分含量为13wt%;环状醚类化合物的质量百分含量为66wt%;用于锂离子电池的电解液或其溶剂的质量百分含量为21wt%。经测试,所述固态电解质的性能参数列于表2中。
将制备得到的固态电解质加热到所述固态电解质的转变温度以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明温度已经达到固态电解质的转变温度,而当温度降到固态电解质的转变温度以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表2中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例2-5
(1)可凝胶化体系和固态电解质的制备
称取1.85g三聚甲醛、0.6g的铝酸锂和0.2g的四氟硼酸锂固体于试剂瓶中,加入1.0mL碳酸丙烯酯和0.6mLγ-丁内酯,在磁力搅拌下充分混合直到锂盐和三聚甲醛全部溶解,加入1.85mL四氢呋喃,充分混合后,得到可凝胶化体系;静止一段时间,形成固态电解质。所述固态电解质体系中,用于锂离子电池的锂盐的质量百分含量为13.1wt%;环状醚类化合物的质量百分含量为60.7wt%;用于锂离子电池的电解液或其溶剂的质量百分含量为26.2wt%。经测试,所述固态电解质的性能参数列于表2中。
将制备得到的固态电解质加热到所述固态电解质的转变温度以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明温度已经达到固态电解质的转变温度,而当温度降到固态电解质的转变温度以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
将此固态电解质用溶剂(如去离子水)全部溶解,然后在乙醇中沉降出,得到的聚合物用氘代氯仿溶解,进行核磁共振氢谱的测试,测试结果如图32所示,从结果可以看出:化学位移为4.50ppm归属于-O-CH 2-O-,是聚甲醛的特征峰,化学位移为1.51ppm归属于聚合物链段-O-CH 2-CH 2-(加粗C上的两个H),化学位移为3.37ppm归属于-O-CH 2-CH 2-(加粗C上的两个H),两者的积分面积为1:1,与聚四氢呋喃的重复单元中的两种链段比相同,两种物质的特征峰面积比为1:1,恰好是投料比,表明在电解质体系中,成功得到目标聚合物。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表2中)。其中,所述纽扣电池的制备方法:将正极极片和负极极片用上述步骤(1)制备的可凝胶化体系充分浸润,同时将上述步骤(1)制备的可凝胶化体系涂刮涂在玻璃板上,待其静置成固态电解质后,将其揭下,将其放置于浸润后的正极和负极之间,封装压实,组装成电池,静置待所述可凝胶化体系变成固态电解质。
实施例2-6
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.8g六氟砷酸锂于试剂瓶中,向其中加入1.0mL碳酸甲乙酯和1.0mL碳酸二甲酯,搅拌使得锂盐完全溶解,将4.0mL1,4-二氧六环加入上述锂盐溶液中,搅拌充分混合后,得到可凝胶化体系;静止一段时间,形成凝胶。所述凝胶体系中,用于锂离子电池的锂盐的质量百分含量为12wt%;环状醚类化合物的质量百分含量为58wt%;用于锂离子电池的电解液或其溶剂的质量百分含量为30wt%。经测试,所述凝胶的性能参数列于表2中。
将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降到凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表2中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例2-7
(1)可凝胶化体系和固态电解质的制备
称取0.6g氯化锂和1.0g高氯酸锂于试剂瓶中,向其中加入1.1mL锂离子常规电解液,在磁力搅拌下,使得锂盐完全溶解,向其中加入2.1mL1,4-环氧环己烷和2.1mL四氢呋喃,搅拌使得充分混合,得到可凝胶化体系;静止一段时间,形成固态电解质。所述固态电解质体系中,用于锂离子电池的锂盐的质量百分含量为23wt%;环状醚类化合物的质量百分含量为61wt%;用于锂离子电池的电解液或其溶剂的质量百分含量为16wt%。经测试,所述固态电解质的性能参数列于表2中。
将制备得到的固态电解质加热到所述固态电解质的转变温度以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明温度已经达到固态电解质的转变温度,而当温度降到固态电解质的转变温度以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表2中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例2-8
(1)可凝胶化体系和固态电解质的制备
称取1.0g三聚甲醛、0.6g双三氟甲基磺酸亚酰胺锂和0.2g的四氟硼酸锂固体于试剂瓶中,加入0.8mL碳酸叔丁酯和0.8mL碳酸二甲酯,在磁力搅拌下充分混合直到锂盐和三聚甲醛全部溶解,加入2.7mL四氢呋喃,充分混合后,得到可凝胶化体系;静止一段时间,形成固态电解质。所述固态电解质体系中,用于锂离子电池的锂盐的质量百分含量为13wt%;环状醚类化合物的质量百分含量为61wt%;用于锂离子电池的电解液或其溶剂的质量百分含量为26wt%。经测试,所述固态电解质的性能参数列于表2中。
将制备得到的固态电解质加热到所述固态电解质的转变温度以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明温度已经达到固态电解质的转变温度,而当温度降到固态电解质的转变温度以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表2中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质,然后放在60℃的高温条件进行循环。
对比例2-1
称取1.0g双三氟甲烷磺酰亚胺锂和1.0g六氟磷酸锂于试剂瓶中,加入4.0mL锂离子电池常规电解液(含1M LiPF 6的碳酸二甲酯(DMC)和碳酸乙烯酯(EC)体积比=1/1)充分搅拌,使得锂盐完全溶解,静止。上述体系中,用于锂离子电池的锂盐的质量百分含量为33wt%;环状醚类化合物的质量百分含量为0wt%;用于锂离子电池的电解液或其溶剂的质量百分含量为67wt%。
发现静止很长时间,溶液的流动性都很好,并不能形成稳定的凝胶。说明在没有环醚类化合物的存在下,只是锂盐和溶剂混合,是无法形成稳定的凝胶的。
图6为实施例2-1中得到的凝胶电解质作为锂离子电池电解液组装成电池的首次充放电图。由图可知,该凝胶电解质作为锂离子电池的电解液,可以使得锂离子电池正常的充放电,并将其中的活性物质充分发挥出来,得到了较高的比容量。
图7为实施例2-1中得到的凝胶电解质作为锂离子电池电解液组装成电池的循环性能图。由图可知,该凝胶作为锂离子电池的电解液,可以展现出稳定的循环性能,比容量基本保持不变。
图8为实施例2-4中得到的固态电解质作为锂离子电池电解质组装成电池的首次充放电图。由图可知,该固态电解质作为锂离子电池的电解液,可以使得锂离子电池正常的充放电,并将其中的活性物质充分发挥出来,得到了较高的比容量。
图9为实施例2-4中得到的固态电解质作为锂离子电池电解质组装成电池的循环性能图。由图可知,该固态电解质作为锂离子电池的电解液,可以展现出稳定的循环性能,比容量基本保持不变。
图29为实施例2-8中得到的固态电解质作为磷酸铁锂电解质组装成电池的循环性能图。由图可知,该固态电解质在60℃的高温下,首次放电比容量为148.7mAh·g -1,循环50圈后,放电比容量为142.9mAh·g -1,表现出较好的高温性能。
表2 实施例2-1至2-8和对比例2-1的凝胶电解质和/或固态电解质及制备得到的电池的性能参数
Figure PCTCN2018088494-appb-000009
Figure PCTCN2018088494-appb-000010
实施例3-1
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.8g的六氟砷酸锂和0.4g的双三氟甲烷磺酰亚胺锂(LiTFSI)固体于试剂瓶中,加入3.2mL的乙二醇二甲醚(DME),充分搅拌后,使得六氟砷酸锂和双三氟甲烷磺酰亚胺锂完全溶解,向其中加入4.7mL的2-氯甲基环氧丙烷,在磁力搅拌下充分混合,得到可凝胶化体系;静置一段时间,形成凝胶。所述凝胶体系中,锂盐的质量百分含量为13wt%;环状醚类化合物的质量百分含量为52wt%;用于锂硫电池的电解液或其溶剂的质量百分含量为35wt%。经测试,所述凝胶的性能参数列于表3中。将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降低到所述凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表3中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例3-2
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取1.0g的三氟甲基黄酸锂和0.2g的高氯酸锂固体于试剂瓶中,加入2.0mL锂硫电池常规电解液(1M双三氟甲烷磺酰亚胺锂(LiTFSI),其中1,4-二氧戊环和乙二醇二甲醚的体积比为1:1),在磁力搅拌下直到高氯酸锂和三氟甲基黄酸锂全部溶解,加入4.0mL的1,4-环氧环乙烷,充分混合后,得到可凝胶化体系;静置一段时间,形成凝胶。所述凝胶体系中,锂盐的质量百分含量为20wt%;环状醚类化合物的质量百分含量为56wt%;用于锂硫电池的电解液或其溶剂的质量百分含量为24wt%。经测试,所述凝胶的性能参数列于表3中。将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降低到所述凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表3中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例3-3
(1)可凝胶化体系和固态电解质的制备
称取1.0g的氟代磺酰亚胺锂、0.5g六氟磷酸锂和0.2g氯化锂于试剂瓶中,向其中加入1mL内含1M双三氟甲烷磺酰亚胺锂(LiTFSI)的四乙二醇二甲醚和2.0mL三乙二醇二甲醚,在磁力搅拌下,使锂盐完全溶解,加入8.0mL的四氢呋喃,充分混合后,得到可凝胶化体系;静置一段时间,形成固态电解质。所述固态电解质体系中,锂盐的质量百分含量为15wt%;环状醚类化合物的质量百分含量为68wt%;用于锂硫电池的电解液或其溶剂的质量百分含量为17wt%。经测试,所述固态电解质的性能参数列于表3中。将制备得到的固态电解质加热到所述固态电解质的转变温度以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明温度已经达到固态电解质的转变温度,而当温度降低到固态电解质的转变温度以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表3中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例3-4
(1)可凝胶化体系和固态电解质的制备
称取0.75g氯铝酸锂和0.1g双氟磺酰亚胺锂于试剂瓶中,加入1.2mL三乙二醇二甲醚,在磁力搅拌下,使氯铝酸锂和双氟磺酰亚胺锂全部溶解,加入2.5mL四氢吡喃和1.2mL1,4-二氧六环,充分混合后,得到可凝胶化体系;静置一段时间,形成固态电解质。所述固态电解质体系中,锂盐的质量百分含量为15wt%;环状醚类化合物的质量百分含量为64wt%;用于锂硫电池的电解液或其溶剂的质量百分含量为21wt%。
经测试,所述固态电解质的性能参数列于表3中。将制备得到的固态电解质加热到所述固态电解质的转变温度以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明温度已经达到固态电解质的转变温度,而当温度降低到固态电解质的转变温度以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表3中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例3-5
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取1.55g四氟硼酸锂和0.45g双三氟甲烷磺酰亚胺锂固体于试剂瓶中,加入四乙二醇二甲醚和乙二醇二甲醚各2.0mL,在磁力搅拌下使四氟硼酸锂和双三氟甲烷磺酰亚胺锂全部溶解,向其中加入6.0mL3-甲基四氢呋喃,充分混合后,得到可凝胶化体系;静置一段时间,形成凝胶。所述凝胶体系中,锂盐的质量百分含量为17wt%;环状醚类化合物的质量百分含量为50wt%;用于锂硫电池的电解液或其溶剂的质量百分含量为33wt%。经测试,所述凝胶的性能参数列于表3中。将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝 胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降低到所述凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表3中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例3-6
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.5g双三氟甲烷磺酰亚胺锂和1.0g四氟硼酸锂于试剂瓶中,加入2.0mL锂硫电池常规电解液,充分搅拌,使得锂盐全部溶解,得到溶液A。称取4.0g三聚甲醛,加入2.0mL乙二醇二甲醚,在磁力搅拌下,使得三聚甲醛充分溶解,得到混合液B。将上述得到的混合液A和B进行充分混合,得到可凝胶化体系;静止一段时间,形成凝胶。所述凝胶体系中,锂盐的质量百分含量为16wt%;环状醚类化合物的质量百分含量为42wt%;用于锂硫电池的电解液或其溶剂的质量百分含量为42wt%。经测试,所述凝胶的性能参数列于表3中。将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降低到所述凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表3中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例3-7
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.5g双氟磺酰亚胺锂和2.0g四氟硼酸锂于试剂瓶中,加入2.0mL锂硫电池常规电解液,充分搅拌,使得锂盐全部溶解,得到溶液A。称取8.5g十八-冠-六,加入1.5mL乙二醇二甲醚和3.5mL四乙二醇二甲醚,在磁力搅拌下,使得十八-冠-六充分溶解,得到混合液B。将上述得到的混合液A和B进行充分混合,得到可凝胶化体系;静止一段时间,形成凝胶。所述凝胶体系中,锂盐的质量百分含量为14wt%;环状醚类化合物的质量百分含量为48wt%;用于锂硫电池的电解液或其溶剂的质量百分含量为38wt%。经测试,所述凝胶的性能参数列于表3中。将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降低到所述凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表3中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静 置待所述可凝胶化体系变成凝胶电解质。
实施例3-8
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取1.22g六氟磷酸锂和0.78g高氯酸锂固体于试剂瓶中,加入苯甲醚和乙二醇二甲醚各3.0mL,在磁力搅拌下使六氟磷酸锂和高氯酸锂全部溶解,向其中加入4.0mL3-甲基四氢呋喃和2mL 1,3-二氧戊环,充分混合后,得到可凝胶化体系;静置一段时间,形成凝胶。所述凝胶体系中,锂盐的质量百分含量为14wt%;环状醚类化合物的质量百分含量为43wt%;用于锂硫电池的电解液或其溶剂的质量百分含量为43wt%。经测试,所述凝胶的性能参数列于表3中。将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降低到所述凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表3中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
对比例3-1
称取2.0g双三氟甲烷磺酰亚胺锂(LiTFSI)固体于试剂瓶中,加入3.0mL四乙二醇二甲醚,在磁力搅拌下搅拌至锂盐完全溶解,静止。上述体系中,锂盐的质量百分含量为40wt%;环状醚类化合物的质量百分含量为0wt%;用于锂硫电池的电解液或其溶剂的质量百分含量为60wt%。
发现静止很长时间都不能形成凝胶,也不能形成固态电解质,说明环醚类化合物的加入是必要的。
表3 实施例3-1至3-8和对比例3-1的凝胶电解质或固态电解质及制备得到的电池的性能参数
Figure PCTCN2018088494-appb-000011
图10为实施例3-1中得到的凝胶电解质作为锂硫电池电解液组装成电池的首次充放电图。由图可知,该凝胶电解质作为锂硫电池电解液可以使得电池内部的活性物质正常发挥作用,可以正常 充放电。
图11为实施例3-1中得到的凝胶电解质作为锂硫电池电解液组装成电池的循环性能图。由图可知,该凝胶电解质作为锂硫电池电解液,可以明显的减缓“飞梭效应”,从而使得活性物质的利用率提高,进一步提高了电池的循环性能。
图30为实施例3-8中得到的凝胶电解质作为锂硫电池的电解液组装成电池的循环性能图。由图可知,该凝胶电解质作为锂硫电池电解液,可以明显阻碍多硫离子的扩散,提高活性物质的利用率,容量衰减缓慢,提高了电池的循环稳定性。
实施例4-1
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.06g的二氧化硅于试剂瓶中,向其中加入2.6mL的四氢呋喃,在磁力搅拌下使其充分混合均匀,得到混合液A。另取0.8g四氟硼酸锂于试剂瓶中,向其中加入2.6mL的碳酸二甲酯,搅拌直到锂盐完全溶解,得到混合液B。将上面得到的A和B溶液进行充分混合,得到的混合液,得到可凝胶化体系;静置一段时间,形成凝胶。所述凝胶体系中,锂盐的质量百分含量为13wt%;环状醚类化合物的质量百分含量为43wt%;无机纳米颗粒的质量百分含量为1wt%;其他溶剂和/或电解液的质量百分含量为43wt%。经测试,所述凝胶的形成时间为20h,所述凝胶的形成温度为室温,所述凝胶的转变温度为55℃,所述凝胶的导电率为1.78×10 -2S/cm。
将制备得到的凝胶加热到所述凝胶的转变温度以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到该凝胶的转变温度,而当温度降到凝胶的转变温度以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表5中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例4-2至4-7和对比例4-1
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
所述凝胶的制备方法同实施例1,区别仅在于,所述凝胶体系中的各组分的选择和用量不同;具体组分及用量列于表4中。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表5中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例4-8
(1)可凝胶化体系和固态电解质的制备
称取0.05g的氧化铝于试剂瓶中,向其中加入4.5mL的1,3-二氧戊环,在磁力搅拌下使其充分混合均匀,得到混合液A。另取0.4g氟代磺酰亚胺锂和0.6g高氯酸锂于试剂瓶中,向其中加入1.2mL 的锂硫电池常规电解液,搅拌直到锂盐完全溶解,得到混合液B。将上面得到的A和B溶液进行充分混合,得到的混合液,得到可凝胶化体系;静置一段时间,形成固态电解质。
所述凝胶体系中,锂盐的质量百分含量为15wt%;环状醚类化合物的质量百分含量为66.3wt%;无机纳米颗粒的质量百分含量为0.7wt%;其他溶剂和/或电解液的质量百分含量为18wt%。经测试,所述固态电解质的形成时间为12h,所述固态电解质的形成温度为室温,所述固态电解质的转变温度为96℃,所述固态电解质的导电率为2.38×10 -5S/cm。
将制备得到的固态电解质加热到所述固态电解质胶的凝胶转变温度以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明温度已经达到该固态电解质的转变温度,而当温度降到凝胶转变温度以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表6中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例4-9至4-14和对比例4-2
(1)可凝胶化体系和固态电解质的制备
所述固态电解质的制备方法同实施例8,区别仅在于,所述固态电解质体系中的各组分的选择和用量不同;具体组分及用量列于表4中。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表6中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
表4 实施例4-1至4-14和对比例4-1至4-2中凝胶电解质或固态电解质的各组分的组成和含量
Figure PCTCN2018088494-appb-000012
Figure PCTCN2018088494-appb-000013
表5 实施例4-1至4-7和对比例4-1中的凝胶及制备得到的电池的性能参数
Figure PCTCN2018088494-appb-000014
表6 实施例4-8至4-14和对比例4-2中的固态电解质及制备得到的电池的性能参数
Figure PCTCN2018088494-appb-000015
图12为实施例4-1中得到的凝胶电解质作为锂离子电池的电解液组装成电池的首次充放电图。由图可知,该凝胶电解质作为锂离子电池的电解液,可以使得锂离子电池正常的充放电,并将其中的活性物质充分发挥出来,得到了较高的比容量。
图13为实施例4-1中得到的凝胶电解质作为锂离子电池的电解液组装成电池的循环性能图。由图可知,该凝胶作为锂离子电池的电解液,可以展现出稳定的循环性能,比容量基本保持不变。
图14为实施例4-5中得到的凝胶电解质作为锂硫电池的电解液组装成电池的首次充放电图。由图可知,该凝胶电解质作为锂硫电池的电解液,可以使得锂离子电池正常的充放电,并将其中的活性物质充分发挥出来,得到了较高的比容量。
图15为实施例4-5中得到的凝胶电解质作为锂硫电池的电解液组装成电池的循环性能图。由图可知,该凝胶电解质作为流电池的电解液,可以有效的减缓“飞梭效应”,进而提高活性物质的利用率,提高电池的比容量,表现出优异的循环性能。
与对比例4-1和4-2相比,无机纳米颗粒的加入可以有效地提高凝胶或固态电解质的电导率,表现出更优异的电化学性能。
实施例5-1
(1)聚酯的合成
称取8.0g丁烯二酸,12.0g丁二酸,60.0g聚乙二醇-200于三口烧瓶中,油浴加热至温度升至140℃,恒温0.5h,每隔半个小时升温20℃,直到温度升至220℃,恒温2h,后加入催化剂(0.16g钛酸四丁酯和0.16g阻聚剂对羟基苯酚),反应1h,后减压反应2h,停止加热,并降温,得到粗产物,加入二氯甲烷50.0mL,50℃回流搅拌溶解18h,置于石油醚中沉降,产物于50℃真空烘箱中干燥24h,得聚酯A,于手套箱中保存。
(2)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
量取1.9mL3-甲基四氢呋喃,1.0g聚酯A,搅拌使两者混合,得混合均一液体,之后加入0.4g高氯酸锂,搅拌0.5h,使高氯酸锂完全溶于上述液体中,得到可凝胶化体系;继续搅拌2h,后静置14h,得凝胶。所述凝胶体系中,锂盐的质量百分含量为12wt%;环状醚类化合物的质量百分含量为58wt%;聚酯添加剂的质量百分含量为30wt%。
经测试,所述凝胶的性能参数列于表8中。从表8中可以看出,实施例1制备得到的凝胶的形 成时间为10h;凝胶的转变温度为60℃,凝胶的电导率为2.1×10 -3S/cm。将制备得到的凝胶加热到60℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降到60℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(3)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例5-2
(1)聚酯的合成
称取10.0g丙二酸,10.0g丁二酸,10.0g1,2-丙二醇,25.0g聚乙二醇-200于三口烧瓶中,油浴加热至温度升至110℃,恒温1h,每隔半个小时升温25℃,直到温度升至240℃,恒温3h,后加入0.16g催化剂(钛酸四丁酯),反应1h,停止加热,并降温,得到相关产物,加入二氯甲烷50.0mL,室温搅拌溶解12h,置于石油醚中沉降,产物于60℃真空烘箱中干燥12h,得聚酯B,于手套箱中保存。
(2)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
量取0.96mL聚酯B,2.2mL1,4-环氧环己烷,加入0.53mL常规锂离子电池电解液,在磁力搅拌下使得搅拌使三者混合,得澄清透明液体,之后加入0.7g四氟硼酸锂,搅拌2h,使四氟硼酸锂完全溶于上述混合液中,得到可凝胶化体系;继续搅拌2h,后静置9h,得无色凝胶。
所述凝胶体系中,锂盐的质量百分含量为16wt%;环状醚类化合物的质量百分含量为50wt%;其他溶剂和/或电解液的质量百分含量为12wt%;聚酯添加剂的质量百分含量为22wt%。
经测试,所述凝胶的性能参数列于表8中。从表8中可以看出,实施例2制备得到的凝胶的形成时间为9h;凝胶的转变温度为58℃,凝胶的电导率为1.3×10 -2S/cm。将制备得到的凝胶加热到58℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明温度已经达到凝胶的转变温度,而当温度降到58℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(3)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例5-3
(1)聚酯的合成
称取20.0g丙二酸,20.0g丁二酸,94.0g聚乙二醇-400于三口烧瓶中,于油浴中加热至温度升至120℃,恒温0.5h,每隔25min升温30℃,直到温度升至210℃,恒温3h,后加入0.32g催化剂(钛酸四丁酯),反应0.5h,之后抽真空2h,停止加热,并且降温,得到相关产物,加入三氯甲烷40.0mL,45℃回流加热6h,滴加到甲醇中沉降,产物于60℃真空烘箱中干燥12h,得聚酯C,于手套箱中保存。
(2)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
量取0.83mL聚酯C,1.8mL1,4-环氧环己烷,0.07g二氧化硅,0.44mL常规锂电池电解液,搅拌使四者混合,得澄清透明液体,之后加入0.87g六氟磷酸锂,搅拌2h,使六氟磷酸锂完全溶于上述混合液中,得到可凝胶化体系;继续搅拌2h,后静置8h,得无色凝胶。所述凝胶体系中,锂盐的质量百分含量为22wt%;环状醚类化合物的质量百分含量为45wt%;聚酯添加剂的质量百分含量为21wt%;其他溶剂和/或电解液的质量百分含量为11wt%;二氧化硅的质量百分含量1wt%。
经测试,所述凝胶的性能参数列于表8中。从表8中可以看出,实施例3制备得到的凝胶的形成时间为8h;凝胶的转变温度为60℃,凝胶的电导率为8.8×10 -3S/cm。将制备得到的凝胶加热到60℃以上时,凝胶变得可以流动,倒置试剂瓶时会发现凝胶向下流动,说明此时已经达到凝胶的转变温度,而当温度降到60℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(3)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例5-4
(1)聚酯的合成
称取15.0g戊二酸,10.0g丁烯二酸,20.0g聚乙二醇-400,10.0g1,4-丁二醇于三口烧瓶中,油浴加热至温度升至140℃,恒温1.5h,每隔20min升温20℃,直到温度升至220℃,恒温2h,加入催化剂(0.2g钛酸四丁酯和0.2g阻聚剂对羟基苯酚),反应50min,抽真空1h,并降温得粗产物,加入三氯甲烷50.0mL,室温搅拌24h,至于乙醇中沉降,产物于60℃真空烘箱中干燥24h,得聚酯D,于手套箱中保存。
(2)可凝胶化体系和固态电解质的制备
量取1.0mL聚酯D,4.67mL四氢呋喃,搅拌使二者混合,得澄清透明液体,混匀之后加入1.0g氟代磺酰亚胺锂,搅拌1h,使氟代磺酰亚胺锂完全溶于上述混合液中,得到可凝胶化体系;继续搅拌2h,后静置10h,得固态电解质。所述固态电解质体系中,锂盐的质量百分含量为15wt%;环状醚类化合物的质量百分含量为70wt%;聚酯添加剂的质量百分含量为15wt%。
经测试,所述固态电解质的性能参数列于表8中。从表8中可以看出,实施例4制备得到的固态电解质的形成时间为10h;固态电解质的转变温度为85℃,固态电解质的电导率为2.5×10 -4S/cm。将制备得到的固态电解质加热到85℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明温度已经达到固态电解质的转变温度,而当温度降到85℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(3)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例5-5
(1)聚酯的合成
称取20.0g己二酸,40.0g聚乙二醇-600于三口烧瓶中,油浴加热至温度升至150℃,恒温1h,每隔20min升温15℃,直到温度升至210℃,恒温2h,加入0.16g催化剂(钛酸四丁酯),反应30min,抽真空3h,并降温得粗产物,加入三氯甲烷40.0mL,50℃搅拌15h,于乙醇中沉降,产物于50℃真空烘箱中干燥24h,得聚酯E,于手套箱中保存。
(2)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
量取0.42mL聚酯E,0.86mL四氢吡喃,0.22mL锂离子电池常规电解液搅拌使三者混合,得澄清透明液体,混匀之后加入0.3g六氟磷酸锂和0.2g双三氟磺酰亚胺锂,搅拌1h,使氟代磺酰亚胺锂完全溶于上述混合液中,得到可凝胶化体系;继续搅拌2h,后静置9h,得无色凝胶,倒置不流动。所述凝胶体系中,锂盐的质量百分含量为25wt%;环状醚类化合物的质量百分含量为43wt%;其他溶剂和/或电解液的质量百分含量为11wt%;聚酯添加剂的质量百分含量为21wt%。
经测试,所述凝胶的性能参数列于表8中。从表8中可以看出,实施例5制备得到的凝胶的形成时间为9h;凝胶的转变温度为56℃,凝胶的电导率为3.3×10 -2S/cm。将制备得到的凝胶加热到56℃以上时,凝胶开始变粘,倒置试剂瓶时发现凝胶向下流动,说明此时已经达到凝胶的转变温度,而当温度降到56℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(3)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例5-6
(1)聚酯的合成
称取15.0g癸二酸,15.0g丁烯二酸,30.0g聚乙二醇-200于三口烧瓶中,氮气氛围中油浴加热至温度升至150℃,恒温0.5h,每隔15min升温15℃,直到温度升至225℃,恒温1h,加入催化剂(0.24g钛酸四丁酯和0.24g阻聚剂对羟基苯酚),反应1h,减压2h,并降温得粗产物,加入二氯甲烷40.0mL,45℃搅拌10h,于甲醇中沉降,产物于44℃真空烘箱中干燥24h,得聚酯F,于手套箱中保存。
(2)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
量取1.7mL聚酯F,0.8g三聚甲醛和3.0mL1,3-二氧戊环,1.1mL常规锂电池电解液,0.24g二氧化硅搅拌使四者混合,得均一液体,之后加入1.3g六氟磷酸锂,搅拌2h,使六氟磷酸锂完全溶于上述混合液中,得到可凝胶化体系;继续搅拌2h,后静置6h,得无色凝胶,倒置不流动。
所述凝胶体系中,锂盐的质量百分含量为16wt%;环状醚类化合物的质量百分含量为47wt%;聚酯添加剂的质量百分含量为21wt%;其他溶剂和/或电解液的质量百分含量为13wt%;无机纳米颗粒的质量百分含量为3wt%。
经测试,所述凝胶的性能参数列于表8中。从表8中可以看出,实施例6制备得到的凝胶的形成时间为10h;凝胶的转变温度为56℃,凝胶的电导率为9.9×10 -3S/cm。将制备得到的凝胶加热到56℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明此时已经达到凝胶的转变温度,而当温度降到56℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(3)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的 电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例5-7
(1)聚酯的合成
称取30.0g壬二酸,15.0g1,3-丙二醇,30.0g聚乙二醇-200于三口烧瓶中,氮气氛围中油浴加热至温度升至130℃,恒温0.5h,每隔25min升温20℃,直到温度升至210℃,恒温1h,加入0.24g催化剂(钛酸四丁酯),反应0.5h,减压反应1h,并降温得粗产物,加入三氯甲烷50.0mL,50℃搅拌12h,于乙醇中沉降,产物于55℃真空烘箱中干燥24h,得聚酯G,于手套箱中保存。
(2)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
量取4.6mL的四氢吡喃于试剂瓶中,加入2.2mL的聚酯G,在磁力搅拌下使得二者混合均匀,然后加入1.2g的全氟丁基磺酸锂固体于上述混合溶液中,得到可凝胶化体系;继续搅拌2h,静置9h,形成凝胶。所述凝胶体系中,锂盐的质量百分含量为15wt%;环状醚类化合物的质量百分含量为58wt%;聚酯添加剂的质量百分含量为27wt%。
经测试,所述凝胶的性能参数列于表8中。从表8中可以看出,实施例7制备得到的凝胶的形成时间为9h;凝胶的转变温度为66℃,凝胶的电导率为6.7×10 -3S/cm。将制备得到的凝胶电解质加热到66℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明此时已经达到凝胶的转变温度,而当温度降到66℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(3)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例5-8
(1)聚酯的合成
称取20.0g丁二酸,15.0g戊二酸,20.0g聚乙二醇-200,15.0g1,4-丁二醇于三口烧瓶中,氮气氛围中油浴加热至温度升至145℃,恒温1h,每隔25min升温20℃,直到温度升至210℃,加入0.28g催化剂(钛酸四丁酯),反应0.5h,减压反应1h,并降温得粗产物,加入三氯甲烷50.0mL,50℃搅拌12h,于甲醇中沉降,产物于55℃真空烘箱中干燥24h,得聚酯H,于手套箱中保存。
(2)可凝胶化体系和固态电解质的制备
量取0.9mL的聚酯H于试剂瓶中,加入7.0mL的四氢呋喃和0.6mL锂硫电池常规电解液搅拌下使得三者混合均匀,然后加入1.5g的全氟丁基磺酸锂固体于上述混合溶液中,得到可凝胶化体系;磁力搅拌2h,静置9h,形成固态电解质。
所述固态电解质体系中,锂盐的质量百分含量为15wt%;环状醚类化合物的质量百分含量为70wt%;聚酯添加剂的质量百分含量为9wt%;其他溶剂和/或电解液的质量百分含量为6wt%。
经测试,所述固态电解质的性能参数列于表8中。从表8中可以看出,实施例8制备得到的固态电解质的形成时间为9h;固态电解质的转变温度为93℃,固态电解质的电导率为1.01×10 -4S/cm。 将制备得到的固态电解质加热到93℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明此时已经达到固态电解质的转变温度,而当温度降到93℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(3)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
对比例5-1
(1)可凝胶化体系和固态电解质的制备
固态电解质的制备方法同实施例1,区别仅在于,所述可凝胶化体系中,不添加聚酯A,制备得到固态电解质。所述固态电解质体系中,锂盐的质量百分含量为17wt%;环状醚类化合物的质量百分含量为83wt%。
经测试,所述固态电解质的性能参数列于表8中。从表8中可以看出,对比例1制备得到的固态电解质的形成时间为12h;固态电解质的转变温度为96℃,固态电解质的电导率为2.0×10 -5S/cm;由此可以说明,聚酯添加剂的加入,使得体系从固态电解质的状态转变为凝胶状态,扩大了凝胶的形成时间,降低了凝胶的转变温度,提高了凝胶的电导率。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能,发现此固态电解质组装的电池没有容量。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
对比例5-2
(1)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
所述凝胶的制备方法同实施例5,区别仅在于,所述可凝胶化体系中,不添加聚酯E。
所述凝胶体系中,锂盐的质量百分含量为22wt%;环状醚类化合物的质量百分含量为54wt%;其他溶剂和/或电解液的质量百分含量为24wt%。
经测试,所述凝胶的性能参数列于表8中。从表8中可以看出,对比例2制备得到的凝胶的形成时间为7h;凝胶的转变温度为65℃;凝胶的电导率为3.4×10 -3S/cm;由此可以说明,聚酯添加剂的加入,使得凝胶的形成时间延长,凝胶的转变温度降低,凝胶的电导率提高。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
对比例5-3
(1)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
所述凝胶的制备方法同实施例3,区别仅在于,所述可凝胶化体系中,不添加聚酯C。
所述凝胶体系中,锂盐的质量百分含量为28wt%;环状醚类化合物的质量百分含量为57wt%;其他溶剂和/或电解液的质量百分含量为14wt%;无机纳米颗粒的质量百分含量为1wt%。
经测试,所述凝胶的性能参数列于表8中。从表8中可以看出,对比例1制备得到的凝胶的形成时间为6h;凝胶的转变温度为69℃;凝胶的电导率为1.0×10 -3S/cm;由此可以说明,聚酯添加剂的加入,使得凝胶的形成时间延长,凝胶的转变温度降低,凝胶的电导率提高。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
对比例5-4
(1)可凝胶化体系和凝胶(可用作凝胶电解质)的制备
所述凝胶的制备方法及电池制备方法同实施例6,区别仅在于,所述可凝胶化体系中,不添加聚酯F。
所述凝胶体系中,锂盐的质量百分含量为20wt%;环状醚类化合物的质量百分含量为60wt%;其他溶剂和/或电解液的质量百分含量为16wt%;无机纳米颗粒的质量百分含量为4wt%。
经测试,所述凝胶的性能参数列于表8中。从表8中可以看出,对比例1制备得到的凝胶的形成时间为8h;凝胶的转变温度为75℃;凝胶的电导率为1.0×10 -4S/cm;由此可以说明,聚酯添加剂的加入,使得凝胶的形成时间延长,凝胶的转变温度降低,凝胶的电导率提高。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表8中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(2)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
表7 实施例5-1至5-8和对比例5-1至5-4的凝胶电解质和/或固态电解质的组分含量
Figure PCTCN2018088494-appb-000016
表8 实施例5-1至5-8和对比例5-1至5-4的凝胶电解质和/或固态电解质及制备得到的电池的性能参数
Figure PCTCN2018088494-appb-000017
图16为实施例5-8中得到的固态电解质光学照片。由图可以看出,实施例8得到的固态电解质不会自然流下,没有流动性,表现出很好的保液率和电导率,化学性质稳定。
图17为实施例5-1中得到的凝胶电解质作为锂离子电池的电解液组装成电池的首次充放电图。由图可以看出,该凝胶电解质作为锂离子电池的电解液,可以使得锂离子电池正常充放电,并将其活性物质充分发挥出来,得到了较高的比容量。
图18为实施例5-1中得到的凝胶电解质作为锂离子电池的电解液组装成电池的循环性能图。由图可以看出,该凝胶电解质作为锂离子电池电解液,可以展现出稳定的循环性能,比容量基本保持不变。
图19为实施例5-8中得到的固态电解质作为锂硫电池的电解液组装成电池的首次充放电图。由图可以看出,该固态电解质作为锂离子电池的电解液,可以使得锂硫电池正常充放电,并将其活性物质充分发挥出来,得到了较高的比容量。
图20为实施例5-8中得到的固态电解质作为锂硫电池的电解液组装成电池的循环性能图。由图可以看出,该固态电解质作为锂硫电池电解液,可以展现出比较稳定的循环性能,比容量下降较为缓慢,有效抑制了飞梭效应带来的容量下降。
实施例6-1
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.7g的全氟丁基磺酸锂固体于试剂瓶中,加入3.0mL的乙二醇甲乙醚和2.0mL的乙二醇二乙醚(使用前已经通过分子筛除水),在磁力搅拌下,配制成锂盐含量为12wt%的全氟丁基磺酸锂/乙二醇甲乙醚+乙二醇二乙醚溶液,继续搅拌一段时间,得到可凝胶化体系;静置一段时间,得到凝胶。所述凝胶体系中,锂盐的质量百分含量为12wt%;直链醚类化合物的质量百分含量为88wt%。经测试,所述凝胶的形成时间为24h;所述凝胶的形成温度为室温,所述凝胶的转变温度 为67℃,所述凝胶的导电率为4.97×10 -4S/cm。
将制备得到的凝胶加热到67℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明此时温度已经达到凝胶的转变温度,而当温度降到67℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
实施例6-2
(1)可凝胶化体系和固态电解质的制备
称取0.45g的六氟磷酸锂(LiPF 6)和0.45g的高氯酸锂(LiClO 4)固体于试剂瓶中,加入3.6mL的乙二醇二甲醚(使用前已经通过分子筛除水),在磁力搅拌下配制成锂盐含量为20wt%的LiPF 6+LiClO 4/乙二醇甲乙醚,继续搅拌,得到可凝胶化体系;静置一段时间,得到固态电解质。
所述固态电解质体系中,锂盐的质量百分含量为20wt%;直链醚类化合物的质量百分含量为80wt%。经测试,所述固态电解质的形成时间为12h;所述固态电解质的形成温度为室温,所述固态电解质的转变温度为84℃,所述固态电解质的导电率为3.31×10 -6S/cm。
将制备得到的固态电解质加热到84℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明此时已经达到固态电解质的转变温度,而当温度降到84℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
实施例6-3
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.4g的高氯酸锂和0.2g的六氟砷酸锂固体于试剂瓶中,加入1.0mL的锂离子电池常规电解液(含1mol/L LiPF 6的体积比为1:1的碳酸二甲酯(DMC)和碳酸乙烯酯(EC)的混合溶液),在磁力搅拌下使锂盐全部溶解,然后加入1.5mL1,4-丁二醇二甲醚于上述混合液中,充分混合后,得到可凝胶化体系;静置一段时间,形成凝胶。
所述凝胶体系中,锂盐的质量百分含量为19wt%;直链醚类化合物的质量百分含量为48wt%;其他溶剂和/或电解液的质量百分含量为33wt%。经测试,所述凝胶的性能参数列于表9中。
将制备得到的凝胶加热到65℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明此时已经达到凝胶的转变温度,而当温度降到65℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表9中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例6-4
(1)可凝胶化体系和固态电解质的制备
称取1.2g的四氟硼酸锂固体于试剂瓶中,加入1.5mL的混合酯类溶剂(体积比为1:1的碳酸二乙酯(DEC)和碳酸乙烯酯(EC)的混合溶液),在磁力搅拌下使得锂盐完全溶解,然后加入5.5mL的乙二醇二甲醚于上述混合溶液中,充分混合后,得到可凝胶化体系;静置一段时间,形成固态电解质。所述固态电解质体系中,锂盐的质量百分含量为15wt%;直链醚类化合物的质量百分含量为67wt%;其他溶剂和/或电解液的质量百分含量为18wt%。经测试,所述固态电解质的性能参 数列于表9中。
将制备得到的固态电解质加热到100℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明此时已经达到固态电解质的转变温度,而当温度降到100℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表9中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例6-5
(1)可凝胶化体系和固态电解质的制备
称取0.6g的氟代磺酰亚胺锂和0.6g的高氯酸锂固体于试剂瓶中,加入2.0mL锂硫电池常规电解液(1M双三氟甲烷磺酰亚胺锂(LiTFSI),其中1,3-二氧戊环和乙二醇二甲醚的体积比为1:1),在磁力搅拌下直到高氯酸锂和三氟甲基黄酸锂全部溶解,加入4.0mL的而乙二醇二甲醚,充分混合后,得到可凝胶化体系;静置一段时间,形成固态电解质。所述固态电解质体系中,锂盐的质量百分含量为20wt%;直链醚类化合物的质量百分含量为56wt%;其他电解液或溶剂的质量百分含量为24wt%。经测试,所述固态电解质的性能参数列于表9中。
将制备得到的固态电解质加热到76℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明此时已经达到固态电解质的转变温度,而当温度降到76℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表9中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例6-6
(1)可凝胶化体系和固态电解质的制备
称取0.35g氯铝酸锂和0.5g高氯酸锂于试剂瓶中,加入1.2mL锂硫电池常规电解液(1M LiTFSI-DOL/DME=1/1),在磁力搅拌下,使氯铝酸锂和双氟磺酰亚胺锂全部溶解,加入2.5mL乙二醇二甲醚和1.2mL乙二醇甲乙醚,充分混合后,得到可凝胶化体系;静置一段时间,形成固态电解质。所述凝胶体系中,锂盐的质量百分含量为15wt%;直链醚类化合物的质量百分含量为64wt%;其他电解液或溶剂的质量百分含量为21wt%。经测试,所述固态电解质的性能参数列于表9中。
将制备得到的固态电解质加热到87℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明此时已经达到固态电解质的转变温度,而当温度降到87℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性 能(测试结果列于表9中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
实施例6-7
(1)可凝胶化体系和凝胶(可用作电池的凝胶电解质)的制备
称取0.06g的三氧化二铝于试剂瓶中,向其中加入2.6mL的乙二醇二甲醚,在磁力搅拌下使其充分混合均匀,得到混合液A。另取0.8g六氟砷酸锂于试剂瓶中,向其中加入2.6mL的锂离子电池常规电解液(1M LiPF 6的DMC:EC=1:1),搅拌直到锂盐完全溶解,得到混合液B。将上面得到的A和B溶液进行充分混合,得到的混合液,得到可凝胶化体系;静置一段时间,形成凝胶。
所述凝胶体系中,锂盐的质量百分含量为13wt%;直链醚类化合物的质量百分含量为43wt%;无机纳米颗粒的质量百分含量为1wt%;其他溶剂和/或电解液的质量百分含量为43wt%。经测试,所述凝胶的形成时间为24h,所述凝胶的形成温度为室温,所述凝胶的转变温度为50℃,所述凝胶的导电率为1.38×10 -2S/cm。
将制备得到的凝胶加热到50℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明此时已经达到所述凝胶的转变温度,而当温度降到50℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表9中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例6-8
(1)可凝胶化体系和固态电解质的制备
称取0.05g的二氧化硅于试剂瓶中,向其中加入4.5mL的乙二醇甲乙醚,在磁力搅拌下使其充分混合均匀,得到混合液A。另取0.4g双三氟甲烷磺酰亚胺锂和0.6g高氯酸锂于试剂瓶中,向其中加入1.2mL的锂硫电池常规电解液,搅拌直到锂盐完全溶解,得到混合液B。将上面得到的A和B溶液进行充分混合,得到的混合液,得到可凝胶化体系;静置一段时间,形成固态电解质。
所述凝胶体系中,锂盐的质量百分含量为15wt%;直链醚类化合物的质量百分含量为66.3wt%;无机纳米颗粒的质量百分含量为0.7wt%;其他溶剂和/或电解液的质量百分含量为18wt%。经测试,所述固态电解质的形成时间为14h,所述固态电解质的形成温度为室温,所述固态电解质的转变温度为98℃,所述固态电解质的导电率为2.06×10 -5S/cm。
将制备得到的固态电解质加热到98℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明此时已经达到所述固态电解质的转变温度,而当温度降到98℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表9中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述 可凝胶化体系变成固态电解质。
实施例6-9
称取0.08g的二氧化钛于试剂瓶中,向其中加入1.5mL的苯甲醚和1.5mL乙二醇二甲醚,在磁力搅拌下使其充分混合均匀,得到混合液A。另取0.2g六氟砷酸锂和0.6g六氟磷酸锂于试剂瓶中,向其中加入3.2mL的锂离子电池常规电解液(1M LiPF 6的DMC:EC=1:1),搅拌直到锂盐完全溶解,得到混合液B。将上面得到的A和B溶液进行充分混合,得到的混合液,得到可凝胶化体系;静置一段时间,形成凝胶。
所述凝胶体系中,锂盐的质量百分含量为11wt%;直链醚类化合物的质量百分含量为42wt%;无机纳米颗粒的质量百分含量为1.1wt%;其他溶剂和/或电解液的质量百分含量为45.9wt%。经测试,所述凝胶的形成时间为26h,所述凝胶的形成温度为室温,所述凝胶的转变温度为50℃,所述凝胶的导电率为1.49×10 -2S/cm。
将制备得到的凝胶加热到45℃以上时,凝胶开始变粘,倒置试剂瓶时会观察到凝胶向下流动,说明此时已经达到所述凝胶的转变温度,而当温度降到45℃以下时,凝胶又重新形成,说明制备得到的凝胶具有很好的可逆性。
(2)电池的制备
将上述制备得到的凝胶作为凝胶电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表9中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成凝胶电解质。
实施例6-10
(1)可凝胶化体系和固态电解质的制备
称取0.08g的氮化硅于试剂瓶中,向其中加入4.0mL的二苯醚,在磁力搅拌下使其充分混合均匀,得到混合液A。另取0.5g双三氟甲烷磺酰亚胺锂和0.5g四氟硼酸锂于试剂瓶中,向其中加入1.2mL的碳酸二甲酯,搅拌直到锂盐完全溶解,得到混合液B。将上面得到的A和B溶液进行充分混合,得到的混合液,得到可凝胶化体系;静置一段时间,形成固态电解质。所述凝胶体系中,锂盐的质量百分含量为16wt%;直链醚类化合物的质量百分含量为63.6wt%;无机纳米颗粒的质量百分含量为1.3wt%;其他溶剂和/或电解液的质量百分含量为19.1wt%。
经测试,所述固态电解质的形成时间为15h,所述固态电解质的形成温度为室温,所述固态电解质的转变温度为95℃,所述固态电解质的导电率为3.67×10 -5S/cm。
将制备得到的固态电解质加热到95℃以上时,固态电解质开始变粘,倒置试剂瓶时会观察到固态电解质向下流动,说明此时已经达到所述固态电解质的转变温度,而当温度降到95℃以下时,固态电解质又重新形成,说明制备得到的固态电解质具有很好的可逆性。
(2)电池的制备
将上述制备得到的固态电解质应用到纽扣电池中,使用蓝电电池组测试纽扣电池的电化学性能(测试结果列于表9中)。其中,所述纽扣电池的制备方法:将隔膜放置于正极和负极之间,三者之间充满步骤(1)制备的可凝胶化体系,封装压实,组装成CR-2032型纽扣电池,静置待所述可凝胶化体系变成固态电解质。
表9 实施例1-8的凝胶电解质和/或固态电解质及制备得到的电池的性能参数
Figure PCTCN2018088494-appb-000018
图21为实施例6-2中得到的固态电解质的光学照片。由图可以看出,该固态电解质在重力的作用下无法自然流动,颜色比较透明,物理性质和化学性质稳定。
图22为实施例6-3中得到的凝胶电解质作为锂离子电池的电解液组装成电池的首次充放电图。由图可知,该凝胶电解质作为锂离子电池的电解液,可以使得锂离子电池正常的充放电,并将其中的活性物质充分发挥出来,得到了较高的比容量。
图23为实施例6-3中得到的凝胶电解质作为锂离子电池的电解液组装成电池的循环性能图。由图可知,该凝胶作为锂离子电池的电解液,可以展现出稳定的循环性能,比容量基本保持不变。
图24为实施例6-6中得到的固态电解质作为锂硫电池的电解液组装成电池的首次充放电图。由图可以看出,该凝胶电解质作为锂硫电池的电解液,可以使得锂离子电池正常的充放电,并将其中的活性物质充分发挥出来,得到了较高的比容量。
图25为实施例6-6中得到的固态电解质作为锂硫电池的电解液组装成电池的循环性能图。由图可以看出,该凝胶电解质作为流电池的电解液,可以有效的减缓“飞梭效应”,进而提高活性物质的利用率,提高电池的比容量,表现出优异的循环性能。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种可凝胶化体系,其特征在于,该体系中包括以下组分:锂盐和醚类化合物,所述醚类化合物选自环状醚类化合物或直链醚类化合物中的至少一种;体系中可凝胶化的聚合物和/或可凝胶化的预聚物的质量百分含量小于等于1wt%。
    优选地,所述醚类化合物选自环状醚类化合物,所述锂盐的质量百分含量大于等于2wt%且小于等于50wt%;所述环状醚类化合物的质量百分含量大于等于50wt%且小于等于98wt%。
    优选地,所述醚类化合物选自环状醚类化合物,所述锂盐的质量百分含量大于等于5wt%且小于20wt%;所述环状醚类化合物的质量百分含量大于80wt%且小于等于95wt%;或者,所述锂盐的质量百分含量大于等于20wt%且小于等于30wt%;所述环状醚类化合物的质量百分含量大于等于70wt%且小于等于80wt%。
    优选地,所述醚类化合物选自直链醚类化合物,所述锂盐的质量百分含量大于等于2wt%且小于等于75wt%;所述直链醚类化合物的质量百分含量大于等于25wt%且小于等于98wt%。
    优选地,所述醚类化合物选自直链醚类化合物,所述锂盐的质量百分含量大于等于5wt%且小于20wt%;所述直链醚类化合物的质量百分含量大于80wt%且小于等于95wt%;或者,所述锂盐的质量百分含量大于等于20wt%且小于等于30wt%;所述直链醚类化合物的质量百分含量大于等于70wt%且小于等于80wt%。
  2. 根据权利要求1所述的可凝胶化体系,其特征在于,所述可凝胶化体系可用于锂离子电池,该体系中还包括用于锂离子电池的电解液或其溶剂;所述可凝胶化体系中,所述用于锂离子电池的锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于90wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于5wt%小于等于75wt%。
    优选地,所述用于锂离子电池的锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于60wt%。
    优选地,所述用于锂离子电池的锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于85wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于5wt%且小于等于30wt%。
    优选地,所述可凝胶化体系可用于锂硫电池,所述体系中还包括用于锂硫电池的电解液或其溶剂;所述可凝胶化体系中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量等于20wt%且小于等于90wt%,所述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于5wt%且小于等于75wt%。
    优选地,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%,所述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于60wt%。
    优选地,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于85wt%,所述用于锂硫电池的电解液或其溶剂的质量百分含量大于5wt%且小于30wt%。
    优选地,所述体系中还包括无机纳米颗粒;所述可凝胶化体系中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于95wt%;所述无机纳米颗粒的质量百分含量大于0且小于等于30wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于10%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%。
    优选地,所述体系中还包括无机纳米颗粒;所述可凝胶化体系中,所述锂盐的质量百分含量大于等于2wt%且小于等于75wt%;所述直链醚类化合物的质量百分含量大于等于25wt%且小于等于98wt%,所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%,优选地,所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%。
    优选地,所述体系中还包括添加剂;所述可凝胶化体系中,所述锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于90wt%;所述添加剂的质量百分含量大于等于5wt%且小于等于60wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述添加剂的质量百分含量大于20wt%且小于等于60wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述添加剂的质量百分含量大于等于5wt%且小于等于20wt%。
    优选地,所述可凝胶化体系中可以进一步包括其他溶剂和/或电解液。
    优选地,所述可凝胶化体系中,所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%。例如大于0wt%且小于等于60wt%。
  3. 根据权利要求2所述的可凝胶化体系,其特征在于,当所述可凝胶化体系包括无机纳米颗粒时;所述可凝胶化体系还包括其他溶剂和/或电解液,所述其他溶剂和/或电解液包括用于锂硫电池的电解液、用于锂硫电池的电解液的溶剂、用于锂离子电池的电解液、用于锂离子电池的电解液的溶剂中的至少一种;所述可凝胶化体系中,所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%。
    优选地,所述其他溶剂和/或电解液的质量百分含量大于等于5wt%且小于等于60wt%。
    优选地,当所述可凝胶化体系包括添加剂时;所述可凝胶化体系还包括其他溶剂和/或电解液,所述其他溶剂和/或电解液包括用于锂硫电池的电解液、用于锂硫电池的电解液的溶剂、用于锂离子电池的电解液、用于锂离子电池的电解液的溶剂中的至少一种;所述可凝胶化体系中,所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于60wt%。
    优选地,所述其他溶剂和/或电解液的质量百分含量大于0wt%且小于等于25wt%。
    优选地,当所述可凝胶化体系包括添加剂、其他溶剂和/或电解液时,所述可凝胶化体系中可以进一步包括无机纳米颗粒;所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。
    优选地,所述可凝胶化体系中,所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%。
  4. 根据权利要求1-3任一项所述的可凝胶化体系,其特征在于,所述环状醚类化合物选自含有一个氧、两个氧、三个氧或更多氧的环状醚类化合物。
    优选地,所述环状醚类化合物可以是单环、稠合环(如双环)、螺环或桥环。
    优选地,所述环状醚类化合物选自至少含有1个氧原子的C 2~C 20环烷烃,即环状结构中的碳原子数为2-20个;或至少含有1个氧原子的C 3~C 20环烯烃,即环状结构中的碳原子数为3-20个,其中至少含有一个碳碳双键。
    优选地,所述环烷烃或环烯烃为单环、稠合环(如双环)、螺环或桥环;当所述环烷烃或环烯烃为螺环或桥环且含有两个以上氧原子时,氧原子可以在一个环上,也可以在多个环上。
    优选地,所述环状醚类化合物选自至少含有1个氧原子的C 2~C 20的单环烷烃,优选选自至少含有1个氧原子的C 3~C 20的单环烷烃,例如为下述第一类化合物中的一种:
    Figure PCTCN2018088494-appb-100001
    优选地,所述环状醚类化合物选自至少含有1个氧原子的C 4~C 20的稠合环烷烃,例如为下述第二类化合物中的一种:
    Figure PCTCN2018088494-appb-100002
    Figure PCTCN2018088494-appb-100003
    优选地,所述环状醚类化合物选自至少含有1个氧原子的C 4~C 20的桥环烷烃,例如为下述第三类化合物中的一种:
    Figure PCTCN2018088494-appb-100004
    优选地,所述环状醚类化合物选自至少含有1个氧原子的C 4~C 20的螺环烷烃,例如为下述第四类化合物中的一种:
    Figure PCTCN2018088494-appb-100005
    Figure PCTCN2018088494-appb-100006
    优选地,上述四类化合物中的环结构上的C-C键至少有一个被C=C替代且为稳定存在的化合物,则为上述的至少含有1个氧原子的C 3~C 20环烯烃,为本发明优选的环状醚类化合物的一种。
    优选地,所述环烷烃或环烯烃为单环或稠合环时,其所述环上的碳原子上可以被1个或多个R1基团取代;所述环烷烃或环烯烃为桥环时,其非桥连环碳原子可以被1个或多个R1基团取代;所述环烷烃或环烯烃为螺环时,其环上碳原子上可以被1个或多个R1基团取代;所述R1基团选自下述基团的一种:烷基、烯基、炔基、烷氧基、烷硫基、卤代烷基、环烷基、环烷基氧基、环烷基硫基、杂环基、杂环基氧基、杂环基硫基、芳基、芳基氧基、杂芳基、杂芳基氧基、羟基、巯基、硝基、羧基、氨基、酯基、卤素、酰基、醛基。
    优选地,所述含有一个氧的环状醚类化合物选自取代或未取代的氧杂环丁烷、取代或未取代的四氢呋喃、取代或未取代的四氢吡喃;所述取代基的个数可以是一个或多个;所述取代基为上述的R1基团。
    优选地,所述含有一个氧的环状醚类化合物选自3,3-二氯甲基氧杂环丁烷、2-氯甲基氧杂环丁烷、2-氯甲基环氧丙烷、1,3-环氧环己烷、1,4-环氧环己烷、四氢呋喃、2-甲基四氢呋喃、3-甲基四氢呋喃、四氢吡喃、 2-甲基四氢吡喃、氧杂环庚烷、氧杂环辛烷、氧杂环壬烷或氧杂环癸烷。
    优选地,所述含有两个氧的环状醚类化合物选自取代或未取代的1,3-二氧戊环(DOL)、取代或未取代的1,4-二氧六环;所述取代基的个数可以是一个或多个;所述取代基为上述的R1基团。
    优选地,所述含有三个氧的环状醚类化合物选自取代或未取代的三聚甲醛;所述取代基的个数可以是一个或多个;所述取代基为上述的R1基团。
    优选地,所述含有更多氧的醚类化合物选自取代或未取代的18-冠-6、取代或未取代的12-冠-4、取代或未取代的24-冠-8;所述取代基的个数可以是一个或多个;所述取代基为上述的R1基团。
    优选地,所述直链醚类化合物的通式如式(1)所示:
    R 1—O—(R 2—O) n—R 3  式(1)
    其中,n为大于0的整数;
    R 2选自直链或支链的C 1-C 6的亚烷基、直链或支链的C 2-C 6的亚烯基;所述R 2上的碳原子上的H可以被下述基团中的至少一种取代:烯基、炔基、烷氧基、烷硫基、环烷基、环烷基氧基、环烷基硫基、杂环基、杂环基氧基、杂环基硫基、芳基、芳基氧基、杂芳基、杂芳基氧基、羟基、巯基、硝基、羧基、氨基、酯基、卤素、酰基、醛基;
    R 1和R 3相同或不同,彼此独立地选自氢原子、烷基、环烷基、杂环基、烯基、炔基中的一种或多种;所述R 1和R 3的碳原子上的H可以被下述基团中的至少一种取代:烯基、炔基、烷氧基、烷硫基、环烷基、环烷基氧基、环烷基硫基、杂环基、杂环基氧基、杂环基硫基、芳基、芳基氧基、羟基、巯基、硝基、羧基、氨基、酯基、卤素、酰基、醛基。
    优选地,n为1~6之间的整数;
    R 2选自直链或支链的C 1-C 4的亚烷基、直链或支链的C 2-C 6的亚烯基;
    R 1和R 3相同或不同,彼此独立地选自直链或支链的C 1-C 6的烷基。
    优选地,R 2选自甲基、乙基、丙基、异丙基、丁基、异丁基、乙烯基;
    R 1和R 3相同或不同,彼此独立地选自甲基、乙基、丙基。
    优选地,所述直链醚类化合物选自乙二醇二甲醚,乙二醇二乙醚,乙二醇甲乙醚,1,4-丁二醇二甲醚,1,4-丁二醇二乙醚,1,4-丁二醇甲乙醚等中的一种或多种。
  5. 根据权利要求1-4任一项所述的可凝胶化体系,其特征在于,所述锂盐可选自六氟磷酸锂、四氟硼酸锂、六氟砷酸锂、高氯酸锂、三氟甲基磺酸锂、全氟丁基磺酸锂、双三氟甲烷磺酰亚胺锂、双氟磺酰亚胺锂、铝酸锂、氯铝酸锂、氟代磺酰亚胺锂、氯化锂和碘化锂中的一种或多种;
    优选地,用于锂离子电池时,所述锂盐选自六氟磷酸锂、高氯酸锂等中的一种或两种。
    优选地,用于锂硫电池时,所述锂盐选自六氟磷酸锂、六氟砷酸锂、高氯酸锂、三氟甲基磺酸锂、双三氟甲烷磺酰亚胺锂、双氟磺酰亚胺锂、氟代磺酰亚胺锂、氯化锂等中的一种或多种。
    优选地,所述添加剂选自聚酯或其共混物中的一种或几种。其中,所述聚酯由多元酸或酸酐与多元醇缩聚而得。
    优选地,所述多元酸选自二元酸、三元酸或更多元酸,所述多元醇选自二元醇、三元醇或更多元醇。
    优选地,所述多元酸选自取代或未取代的下述多元酸中的一种或两种或三种或多于三种:乙二酸,丙二酸,丁二酸,丁烯二酸,戊二酸,己二酸,庚二酸,辛二酸,癸二酸,壬二酸,丙三酸;所述取代基的个数可以是一个或多个;当所述取代基为多个时,其可成环;所述取代基为烷基、环烷基、芳基、羟基、氨基、酯基、卤素、酰基、醛基、巯基、烷氧基等中的一种或多种。
    优选地,所述酸酐选自取代或未取代的下述酸酐中的一种或两种或三种或多于三种:乙二酸酐,丙二酸酐,丁二酸酐,丁烯二酸酐,戊二酸酐,己二酸酐,庚二酸酐,辛二酸酐,癸二酸酐,壬二酸酐,六氢苯酐,四氢苯酐;所述取代基的个数可以是一个或多个;当所述取代基为多个时,其可成环;所述取代基为烷基、环烷基、芳基、羟基、氨基、酯基、卤素、酰基、醛基、巯基、烷氧基等中的一种或多种。
    优选地,所述多元醇选自取代或未取代的下述多元醇中的一种或几种:丙二醇,丁二醇,戊二醇,己二醇,庚二醇,辛二醇,壬二醇,癸二醇,聚乙二醇,丙三醇;所述取代基的个数可以是一个或多个;当所述取代基为多个时,其可成环;所述取代基为烷基、环烷基、芳基、羟基、氨基、酯基、卤素、酰基、醛基、巯基、烷氧基等中的一种或多种。
    优选地,所述多元醇选自聚乙二醇,或者聚乙二醇与下述多元醇中的一种或几种的组合:丙二醇,丁二醇,戊二醇,己二醇,庚二醇,辛二醇,壬二醇,癸二醇。
    优选地,所述聚乙二醇的聚合度为100-1000,优选为150-800,还优选为200-600。其中,所述聚乙二醇与其他多元醇的重量比为1:(0~1),优选为1:(0~0.9),还优选为1:(0~0.8)。
  6. 一种凝胶,其特征在于,所述凝胶由权利要求1-5任一项所述的可凝胶化体系经凝胶化得到;所述可凝胶化体系中,所述锂盐的质量百分含量大于等于2wt%且小于20wt%;所述环状醚类化合物的质量百分含量大于80wt%且小于等于98wt%;或者,所述锂盐的质量百分含量大于等于2wt%且小于20wt%;所述直链醚类化合物的质量百分含量大于等于80wt%且小于等于98wt%。
    优选地,所述锂盐的质量百分含量大于等于5wt%且小于20wt%;所述环状醚类化合物的质量百分含量大于80wt%且小于等于95wt%。
    优选地,所述可凝胶化体系用于锂离子电池中,所述用于锂离子电池的锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于20wt%小于等于75wt%。
    优选地,所述用于锂离子电池的可凝胶化体系中,所述用于锂离子电池的锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于60wt%。
    优选地,所述可凝胶化体系用于锂硫电池中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量等于20wt%且小于等于60wt%,所述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于75wt%。
    优选地,所述用于锂硫电池的可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%,上述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于20wt%且小于等于60wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于30wt%;所述(d)其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%;所述(d)其他溶剂和/或电解液的质量百分含量大于等于5wt%且小于等于60wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述添加剂的质量百分含量大于等于5wt% 且小于等于60wt%;所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于等于20wt%且小于等于60wt%;所述添加剂的质量百分含量大于等于20wt%且小于等于60wt%;所述其他溶剂和/或电解液的质量百分含量大于0wt%且小于等于30wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%。
    优选地,所述锂盐的质量百分含量大于等于2wt%且小于20wt%;所述直链醚类化合物的质量百分含量大于等于80wt%且小于等于98wt%;所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%;所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。
    优选地,所述锂盐的质量百分含量大于等于5wt%且小于20wt%;所述直链醚类化合物的质量百分含量大于80wt%且小于等于95wt%;所述其他溶剂和/或电解液的质量百分含量大于0wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%。
  7. 一种固态电解质,其特征在于,所述固态电解质由权利要求1-5任一项所述的可凝胶化体系经凝胶化得到;所述可凝胶化体系中,所述锂盐的质量百分含量大于等于20wt%且小于等于50wt%;所述环状醚类化合物的质量百分含量大于等于50wt%且小于等于80wt%;或者,所述锂盐的质量百分含量大于等于20wt%且小于等于75wt%;所述直链醚类化合物的质量百分含量大于等于25wt%且小于等于80wt%。
    优选地,所述锂盐的质量百分含量大于等于20wt%且小于等于30wt%;所述环状醚类化合物的质量百分含量大于等于70wt%且小于等于80wt%。
    优选地,所述可凝胶化体系用于锂离子电池中,所述用于锂离子电池的锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于5wt%小于等于30wt%。
    优选地,所述用于锂离子电池的可凝胶化体系中,所述用于锂离子电池的锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于85wt%;所述用于锂离子电池的电解液或其溶剂的质量百分含量大于等于5wt%且小于等于30wt%。
    优选地,所述可凝胶化体系用于锂硫电池中,所述锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于5wt%小于等于30wt%。
    优选地,所述用于锂硫电池的可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于85wt%;所述用于锂硫电池的电解液或其溶剂的质量百分含量大于等于5wt%且小于等于30wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于95wt%;所述无机纳米颗粒的质量百分含量大于0且小于等于30wt%;所述(d)其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于10%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%;所述(d)其他溶剂和/或电解液的质量百分含量大于等于5wt%且小于等于60wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于5wt%且小于等于60wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述添加剂的质量百分含量大于等于5wt%且小 于等于60wt%;所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。
    优选地,所述可凝胶化体系中,所述锂盐的质量百分含量大于等于10wt%且小于等于40wt%;所述环状醚类化合物的质量百分含量大于60wt%且小于等于90wt%;所述添加剂的质量百分含量大于等于5wt%且小于等于20wt%;所述其他溶剂和/或电解液的质量百分含量大于0wt%且小于等于15wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于15wt%。
    优选地,所述锂盐的质量百分含量大于等于20wt%且小于等于75wt%;所述直链醚类化合物的质量百分含量大于等于25wt%且小于等于80wt%;所述其他溶剂和/或电解液的质量百分含量大于等于0wt%且小于等于75wt%;所述无机纳米颗粒的质量百分含量大于等于0wt%且小于等于30wt%。
    优选地,所述锂盐的质量百分含量大于等于20wt%且小于等于30wt%;所述直链醚类化合物的质量百分含量大于等于70wt%且小于等于80wt%;所述其他溶剂和/或电解液的质量百分含量大于0wt%且小于等于60wt%;所述无机纳米颗粒的质量百分含量大于0wt%且小于等于20wt%。
  8. 一种凝胶电解质,其特征在于,所述凝胶电解质包括权利要求6所述的凝胶。
  9. 一种锂系电池,其特征在于,所述锂系电池包括权利要求8所述的凝胶电解质和/或权利要求7所述的固态电解质。
  10. 权利要求6所述的凝胶、权利要求7所述的固态电解质或权利要求8所述的凝胶电解质的应用,其用于锂系电池领域中;优选地,用于锂离子电池、锂硫电池、锂空气电池领域中。
PCT/CN2018/088494 2017-05-26 2018-05-25 一种含有醚类化合物的可凝胶化体系及其制备方法和应用 WO2018214971A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020515814A JP7173616B2 (ja) 2017-05-26 2018-05-25 エーテル系化合物を含むゲル化可能な体系及びその製造方法並びに応用
KR1020197035813A KR102662511B1 (ko) 2017-05-26 2018-05-25 에테르계 화합물을 포함하는 겔화 가능 시스템 및 이의 제조 방법 및 응용
EP18805783.0A EP3637523A4 (en) 2017-05-26 2018-05-25 GELATINIZED SYSTEM CONTAINING ETHER COMPOUNDS, ITS PREPARATION PROCESS AND ITS APPLICATIONS
US16/696,510 US11777142B2 (en) 2017-05-26 2019-11-26 Gelable system containing ether compounds, preparation method therefor and use thereof

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201710386733.7A CN108933275B (zh) 2017-05-26 2017-05-26 一种用于锂硫电池的可凝胶化体系及其制备方法和应用
CN201710385201.1 2017-05-26
CN201710385201.1A CN108933285B (zh) 2017-05-26 2017-05-26 一种含有直链醚类化合物的可凝胶化体系及其制备方法和应用
CN201710386734.1A CN108963330B (zh) 2017-05-26 2017-05-26 一种含有无机纳米颗粒的可凝胶化体系及其制备方法和应用
CN201710386736.0A CN108933286B (zh) 2017-05-26 2017-05-26 一种含有环状醚类化合物的可凝胶化体系及其制备方法和应用
CN201710386734.1 2017-05-26
CN201710386736.0 2017-05-26
CN201710385203.0A CN108963333B (zh) 2017-05-26 2017-05-26 一种具有可调的强度和/或转变温度的凝胶及其制备方法和应用
CN201710386733.7 2017-05-26
CN201710386738.XA CN108933287B (zh) 2017-05-26 2017-05-26 一种用于锂离子电池的可凝胶化体系及其制备方法和应用
CN201710386738.X 2017-05-26
CN201710385203.0 2017-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/696,510 Continuation-In-Part US11777142B2 (en) 2017-05-26 2019-11-26 Gelable system containing ether compounds, preparation method therefor and use thereof

Publications (1)

Publication Number Publication Date
WO2018214971A1 true WO2018214971A1 (zh) 2018-11-29

Family

ID=64395298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088494 WO2018214971A1 (zh) 2017-05-26 2018-05-25 一种含有醚类化合物的可凝胶化体系及其制备方法和应用

Country Status (5)

Country Link
US (1) US11777142B2 (zh)
EP (1) EP3637523A4 (zh)
JP (1) JP7173616B2 (zh)
KR (1) KR102662511B1 (zh)
WO (1) WO2018214971A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224155A (zh) * 2020-02-27 2020-06-02 中航锂电技术研究院有限公司 可凝胶体系、凝胶态/固态电解质、锂硫电池及制备方法
JP2020177814A (ja) * 2019-04-18 2020-10-29 株式会社豊田自動織機 電解液及び二次電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102596721B1 (ko) * 2017-05-26 2023-10-31 베이징사범대학교 플렉시플 전고체 리튬 이온 2 차 전지 및 이의 제조방법
WO2018214973A1 (zh) * 2017-05-26 2018-11-29 北京师范大学 一种可凝胶化体系及在锂空气电池、有机体系的超级电容器或电容电池中的应用
CN113937357B (zh) * 2021-08-31 2023-12-19 浙江工业大学 用于金属-硫二次电池的电解液及含有该电解液的金属-硫二次电池
WO2023059063A1 (ko) * 2021-10-06 2023-04-13 주식회사 삼양사 포화 퓨로디옥신 유도체 화합물 및 그의 이차전지용 첨가제 용도
KR20230101992A (ko) 2021-12-29 2023-07-07 군산대학교산학협력단 1,2-디에톡시에탄 기반 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235684A (ja) * 2004-02-23 2005-09-02 Samsung Sdi Co Ltd ゲルポリマー電解質およびリチウム二次電池
CN102610857A (zh) * 2012-03-01 2012-07-25 合肥国轩高科动力能源有限公司 一种聚氧化乙烯基凝胶聚合物电解质膜的制备方法
CN105206872A (zh) * 2015-09-23 2015-12-30 上海交通大学 一种接枝型梳状聚合物固体电解质材料及其制备方法
CN105529497A (zh) * 2015-12-11 2016-04-27 中国电子科技集团公司第十八研究所 一种原位生成凝胶聚合物电解质的制备方法
CN105811007A (zh) * 2016-06-06 2016-07-27 北京师范大学 电解液凝胶、锂硫电池及制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3406472A1 (de) * 1984-02-23 1985-08-29 Basf Ag, 6700 Ludwigshafen Elektrochemische zelle oder batterie
JP2000299129A (ja) * 1999-04-16 2000-10-24 Sanyo Electric Co Ltd ゲル状高分子電解質
JP2002343435A (ja) 2001-05-18 2002-11-29 Hitachi Maxell Ltd 高分子電解質およびそれを用いた電池
KR100709207B1 (ko) 2004-06-30 2007-04-18 삼성에스디아이 주식회사 리튬 이차 전지
JP2010527133A (ja) 2007-05-15 2010-08-05 エルジー・ケム・リミテッド 二次電池およびその製造方法
WO2009092058A1 (en) 2008-01-16 2009-07-23 Seeo, Inc Gel polymer electrolytes for batteries
KR101173200B1 (ko) 2008-08-05 2012-08-10 주식회사 엘지화학 겔 폴리머 전해질 이차전지 제조방법 및 그에 의해 제조된겔 폴리머 전해질 이차전지
WO2011028804A2 (en) * 2009-09-02 2011-03-10 Ut-Battelle, Llc Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries
CN102130364A (zh) 2011-02-12 2011-07-20 中南大学 一种锂硫二次电池体系用凝胶型聚合物电解质及制备方法
CN102208680B (zh) 2011-05-05 2014-07-02 中国东方电气集团有限公司 凝胶电解质及其制备方法、和相应的正极、锂硫电池
JP2013194112A (ja) 2012-03-19 2013-09-30 Jsr Corp ゲル電解質形成剤、ゲル電解質形成用組成物、ゲル電解質、および蓄電デバイス
KR102005448B1 (ko) 2012-09-13 2019-07-31 삼성전자주식회사 리튬전지
CN103811802B (zh) 2012-11-08 2016-09-07 深圳市崧鼎实业有限公司 一种聚合物锂离子电池及其制造方法
KR20150050412A (ko) 2013-10-29 2015-05-08 주식회사 엘지화학 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
US10505227B2 (en) * 2014-01-23 2019-12-10 NOHMs Technologies, Inc. Functionalized ionic liquid combinations
KR102422983B1 (ko) 2014-05-15 2022-07-19 암테크 리서치 인터내셔널 엘엘씨 공유 가교 결합된 겔 전해질
JP2016039209A (ja) 2014-08-06 2016-03-22 Jsr株式会社 電解液、ゲル電解質形成用組成物、ゲル電解質、及び蓄電デバイス
KR101666714B1 (ko) 2014-08-30 2016-10-14 주식회사 제낙스 플렉시블 이차 전지 및 그 제조 방법
KR102395989B1 (ko) * 2014-09-17 2022-05-10 삼성전자주식회사 복합전극, 이를 포함하는 전기화학전지 및 전극제조방법
CN105789694A (zh) 2014-12-15 2016-07-20 中国电子科技集团公司第十八研究所 锂硫电池用凝胶电解液的制备方法
CN107408728A (zh) * 2015-02-09 2017-11-28 固态能源系统公司 用于可充电锂电池的高盐浓度电解质
CN105720300B (zh) * 2016-03-31 2019-06-21 成都国珈星际固态锂电科技有限公司 凝胶聚合物锂离子电池及其制备方法,及电动车
CN105914405B (zh) 2016-04-21 2019-06-25 中国科学院青岛生物能源与过程研究所 一种由环氧化合物原位开环聚合制备全固态聚合物电解质的制备方法以及在全固态锂电池中应用
CN106532115A (zh) * 2016-11-25 2017-03-22 张家港市国泰华荣化工新材料有限公司 一种凝胶电解质及锂硫二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235684A (ja) * 2004-02-23 2005-09-02 Samsung Sdi Co Ltd ゲルポリマー電解質およびリチウム二次電池
CN102610857A (zh) * 2012-03-01 2012-07-25 合肥国轩高科动力能源有限公司 一种聚氧化乙烯基凝胶聚合物电解质膜的制备方法
CN105206872A (zh) * 2015-09-23 2015-12-30 上海交通大学 一种接枝型梳状聚合物固体电解质材料及其制备方法
CN105529497A (zh) * 2015-12-11 2016-04-27 中国电子科技集团公司第十八研究所 一种原位生成凝胶聚合物电解质的制备方法
CN105811007A (zh) * 2016-06-06 2016-07-27 北京师范大学 电解液凝胶、锂硫电池及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177814A (ja) * 2019-04-18 2020-10-29 株式会社豊田自動織機 電解液及び二次電池
JP7218663B2 (ja) 2019-04-18 2023-02-07 株式会社豊田自動織機 電解液及び二次電池
CN111224155A (zh) * 2020-02-27 2020-06-02 中航锂电技术研究院有限公司 可凝胶体系、凝胶态/固态电解质、锂硫电池及制备方法

Also Published As

Publication number Publication date
JP2020529116A (ja) 2020-10-01
KR102662511B1 (ko) 2024-04-30
EP3637523A1 (en) 2020-04-15
US20200099096A1 (en) 2020-03-26
KR20200010298A (ko) 2020-01-30
US11777142B2 (en) 2023-10-03
EP3637523A4 (en) 2021-03-03
JP7173616B2 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2018214971A1 (zh) 一种含有醚类化合物的可凝胶化体系及其制备方法和应用
Wu et al. Advances and prospects of PVDF based polymer electrolytes
Didwal et al. An advanced solid polymer electrolyte composed of poly (propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries
JP6765663B2 (ja) リチウム金属電池
WO2018214972A1 (zh) 一种柔性全固态锂离子二次电池及其制备方法
CN108933284B (zh) 一种柔性全固态锂离子二次电池及其制备方法
CN102154739B (zh) 锂离子电池负极材料ZnFe2O4/C纳米纤维的制备方法
KR100754378B1 (ko) 실란 화합물을 포함하는 유기전해액 및 리튬 전지
JP2019059912A (ja) 改質セルロースをベースとする固体ポリマー電解質、及びリチウム又はナトリウム二次電池におけるその使用
WO2018214973A1 (zh) 一种可凝胶化体系及在锂空气电池、有机体系的超级电容器或电容电池中的应用
JP2021520054A (ja) リチウム二次電池用電解質
JP2014130706A (ja) 蓄電デバイス用正極および蓄電デバイス
CN111106382B (zh) 一种含有交联剂的可凝胶化体系及其制备方法和应用
Wang et al. A Three-Dimensional Electrospun Li6. 4La3Zr1. 4Ta0. 6O12–Poly (Vinylidene Fluoride-Hexafluoropropylene) Gel Polymer Electrolyte for Rechargeable Solid-State Lithium Ion Batteries
Zhang et al. Fabrication of polymer electrolyte via lithium salt-induced surface-initiated radical polymerization for lithium metal batteries
CN105375029B (zh) 一种三元硅酸盐复合正极材料及其制备方法
CN108933275B (zh) 一种用于锂硫电池的可凝胶化体系及其制备方法和应用
CN108933286B (zh) 一种含有环状醚类化合物的可凝胶化体系及其制备方法和应用
CN108933285B (zh) 一种含有直链醚类化合物的可凝胶化体系及其制备方法和应用
CN108963330B (zh) 一种含有无机纳米颗粒的可凝胶化体系及其制备方法和应用
CN108933287B (zh) 一种用于锂离子电池的可凝胶化体系及其制备方法和应用
CN115566268A (zh) 一种腈类聚合物固态电解质及其制备方法和应用
CN108963333B (zh) 一种具有可调的强度和/或转变温度的凝胶及其制备方法和应用
TW201327974A (zh) 膠體電解質形成劑、膠體電解質形成用組成物、膠體電解質及蓄電裝置
JP5896154B2 (ja) 固体電解質膜形成剤、およびそれを含有する電解液、蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197035813

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018805783

Country of ref document: EP

Effective date: 20191203