WO2018207735A1 - エポキシ化合物の製造方法 - Google Patents

エポキシ化合物の製造方法 Download PDF

Info

Publication number
WO2018207735A1
WO2018207735A1 PCT/JP2018/017641 JP2018017641W WO2018207735A1 WO 2018207735 A1 WO2018207735 A1 WO 2018207735A1 JP 2018017641 W JP2018017641 W JP 2018017641W WO 2018207735 A1 WO2018207735 A1 WO 2018207735A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
single bond
denotes
formula
Prior art date
Application number
PCT/JP2018/017641
Other languages
English (en)
French (fr)
Inventor
武明 庄子
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020197035355A priority Critical patent/KR20190140474A/ko
Priority to CN201880030437.6A priority patent/CN110662740A/zh
Priority to JP2019517613A priority patent/JPWO2018207735A1/ja
Publication of WO2018207735A1 publication Critical patent/WO2018207735A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/22Ethers with hydroxy compounds containing no oxirane rings with monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • C07D303/44Esterified with oxirane-containing hydroxy compounds

Definitions

  • the present invention relates to a novel method for producing an epoxy compound.
  • a ternary catalyst using hydrogen peroxide as an oxidizing agent and containing a tungstate or molybdate, a quaternary ammonium salt, and a phosphate or phosphonate as a catalyst is used as a method for producing an epoxy compound.
  • a method (for example, Patent Document 1) of using and epoxidizing an olefin compound is known.
  • a method is known in which hydrogen peroxide is used as an oxidizing agent, and an olefin compound is epoxidized in a pyrophosphate-pyrophosphate aqueous solution in the presence of a nitrile compound (for example, Patent Document 2).
  • Patent Document 1 does not disclose any application to an olefin compound having a specific branched aliphatic group.
  • An object of this invention is to provide the manufacturing method of the high quality epoxy compound which is suitable for industrial manufacture, and is a high yield and does not require a complicated post-process, and does not require coloring.
  • the present inventors have reacted the olefin compound in a solvent containing hydrogen peroxide, a nitrile compound, and an alkaline substance, so that the olefin moiety can be obtained in a high yield.
  • the inventors have found that an epoxidized epoxy compound can be obtained, and that an epoxy compound with less coloring can be obtained by simple post-treatment, and the present invention has been completed.
  • the present invention is represented by the formula [2], characterized by reacting the olefin compound represented by the formula [1], hydrogen peroxide, a nitrile compound, and an alkaline substance in a solvent.
  • the present invention relates to a method for producing an epoxy compound.
  • R 1 and R 2 each independently represents an alkyl group having 2 to 27 carbon atoms
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 25 carbon atoms, provided that —CR 1 R
  • the total number of carbon atoms contained in the 2 R 3 group is 10 to 30,
  • R 4 to R 6 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and
  • X is * —C ( ⁇ O) O—, * —CH 2 O— or * —CH 2 OC ( ⁇ O) —
  • A represents a single bond or an aliphatic hydrocarbon group which may contain an (n + 1) -valent ether bond
  • Z represents a single bond or an oxygen atom, provided that when A represents a single bond, Z represents a single bond.
  • L represents an alkylene group having 1 to 8 carbon atoms which may contain an ether bond.
  • N represents an integer of 1 to 8, provided that n represents 1 when A represents a single bond.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , X, A, Z, L and n have the same meaning as described above.
  • the present invention relates to the production method according to the first aspect or the second aspect, wherein X is * —C ( ⁇ O) O—.
  • the A is an aliphatic hydrocarbon group that may include an (n + 1) -valent ether bond, and the n is an integer of 2 to 8. The manufacturing method according to any one of the above.
  • the A is glycerin, 2-hydroxy-1,4-butanediol, trimethylolmethane, 1,1,1-trimethylolethane, 1,1,1-trimethylolpropane, ditrimethylolpropane
  • the present invention relates to the production method according to the fourth aspect, which is a group derived by removing some or all of the hydroxy groups from a polyol selected from the group consisting of pentaerythritol and dipentaerythritol.
  • the present invention relates to the production method according to the fifth aspect, wherein the polyol is a polyol selected from the group consisting of 1,1,1-trimethylolpropane and pentaerythritol.
  • the present invention relates to the production method according to the fifth aspect or the sixth aspect, in which the A is a group derived by removing all hydroxy groups from the polyol.
  • the present invention relates to the production method according to any one of the first to seventh aspects, wherein L is a methylene group.
  • the present invention relates to the production method according to any one of the first to eighth aspects, wherein the —CR 1 R 2 R 3 group is a group having 14 to 26 carbon atoms.
  • the present invention relates to the production method according to any one of the first aspect to the ninth aspect, in which the alkaline substance is an alkali metal hydroxide.
  • the manufacturing method as described in any one among the 1st viewpoint thru
  • the compound represented by the formula [1] is a branched fatty acid containing -CR 1 R 2 R 3 group or an activated product thereof, or a branched alcohol containing -CR 1 R 2 R 3 group; It is related with the manufacturing method as described in any one of the 1st viewpoint thru
  • an epoxy compound can be obtained with a high yield of nearly 80%, and an epoxy compound having a high light transmittance (less coloring) can be produced by a simple post-treatment.
  • the present invention provides an epoxy compound represented by the formula [2], which comprises reacting an olefin compound represented by the following formula [1], hydrogen peroxide, a nitrile compound, and an alkaline substance in a solvent. Target method.
  • R 1 and R 2 each independently represents an alkyl group having 2 to 27 carbon atoms
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 25 carbon atoms, provided that —CR 1 R
  • the number of carbon atoms contained in the 2 R 3 group is 10 to 30 in total
  • R 4 to R 6 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • X is * —C ( ⁇ O) O—, * —CH 2 O— or * —CH 2 OC ( ⁇ O) —
  • A represents a single bond or an aliphatic hydrocarbon group which may contain an (n + 1) -valent ether bond
  • Z represents a single bond or an oxygen atom, provided that when A represents a single bond, Z represents a single bond.
  • L represents an alkylene group having 1 to 8 carbon atoms which may contain an ether bond.
  • N represents an integer of 1 to 8, provided that n represents 1 when A represents a single bond.
  • R 1 and R 2 are each independently preferably an alkyl group having 4 to 16 carbon atoms, more preferably an alkyl group having 6 to 10 carbon atoms. Among them, R 1 and R 2 are preferably each independently a branched alkyl group, more preferably a branched alkyl group having 4 to 16 carbon atoms, still more preferably 6 to 10 carbon atoms. It is a branched alkyl group.
  • R 1 and R 2 are each independently hexyl, heptyl, octyl, nonyl, decyl, 4-methylhexyl, 4,4-dimethylpentan-2-yl, 6 Particularly preferred are -methylheptan-2-yl group, 6-methyloctyl group, 3,5,5-trimethylhexyl group, and 3,7-dimethyloctyl group.
  • the alkyl group having 1 to 25 carbon atoms in R 3 may have not only a linear structure but also a branched structure or a cyclic structure.
  • Examples of the alkyl group having 1 to 25 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group (amyl group), hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group.
  • dodecyl group (lauryl group), tridecyl group, tetradecyl group (myristyl group), pentadecyl group, hexadecyl group (palmityl group), heptadecyl group (margaryl group), octadecyl group (stearyl group), nonadecyl group, icosyl group (aralkyl) Group), heicosyl group, docosyl group (behenyl group), tricosyl group, tetracosyl group (lignoseryl group), pentacosyl group and the like linear alkyl groups; isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl Group, neopentyl group, tert-pentyl group, sec Isoamyl group, isohexyl group, texyl group, 4-methylhexyl group, 5-methyl
  • —CR 1 R 2 R 3 group has a total number of carbon atoms contained in the group of 10 to 30, preferably —CR 1 R 2 R 3
  • the group is a group having 14 to 26 carbon atoms, and particularly preferably a group having 14 to 20 carbon atoms.
  • —CR 1 R 2 R 3 group examples include a 3-methylnonan-3-yl group, a 4-ethyloctane-4-yl group, an undecan-5-yl group, a 3-ethylnonan-3-yl group, 5-ethylnonan-5-yl group, 2,2,4,5,5-pentamethylhexan-4-yl group, tridecan-6-yl group, tridecan-7-yl group, 7-ethylundecan-2-yl Group, 3-ethylundecan-3-yl group, 5-ethylundecan-5-yl group, pentadecan-7-yl group, pentadecan-8-yl group, heptadecan-7-yl group, heptadecan-8-yl group, Heptadecan-9-yl group, 3,13-dimethylpentadecan-7-yl group, 2,2,4,8,10,10-hexamethylundecan-5-yl group,
  • Examples of the alkyl group having 1 to 10 carbon atoms in R 4 to R 6 include, for example, methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, sec-butyl group, tert- Butyl group, cyclobutyl group, pentyl group (amyl group), isopentyl group, neopentyl group, tert-pentyl group, sec-isoamyl group, cyclopentyl group, hexyl group, isohexyl group, cyclohexyl group, heptyl group, octyl group, 2 -Ethylhexyl group, nonyl group, decyl group and the like.
  • preferable examples of R 4 to R 6 include a hydrogen atom.
  • Examples of the aliphatic hydrocarbon group which may contain an (n + 1) -valent ether bond in A above include, for example, the above alkyl group having 2 to 27 carbon atoms, an alkyl group having 1 to 25 carbon atoms, or a carbon atom.
  • examples of the polyol include a polyol selected from the group consisting of 1,1,1-trimethylolpropane and pentaerythritol, and a group derived by removing all hydroxy groups from the polyol structure. It is done.
  • A is an aliphatic hydrocarbon group that may contain an (n + 1) -valent ether bond
  • n is preferably an integer of 2 to 8.
  • Z represents a single bond
  • n represents 1.
  • Examples of the alkylene group having 1 to 8 carbon atoms which may contain an ether bond in L include a methylene group, an ethylene group, a trimethylene group, a methylethylene group, a tetramethylene group, a 1-methyltrimethylene group, and a pentamethylene group.
  • L is preferably a methylene group, trimethylene group, hexamethylene group, 2-oxatetramethylene group, more preferably a methylene group.
  • the procedure for producing the epoxy compound represented by the formula [2] from the olefin compound represented by the formula [1] is not particularly limited.
  • the olefin compound, hydrogen peroxide, nitrile compound and alkaline substance are used as a solvent. Can be charged and reacted at once. Moreover, after adding components other than hydrogen peroxide to the solvent, hydrogen peroxide may be added dropwise thereto, and then the reaction may be performed.
  • the amount of hydrogen peroxide used in the reaction for obtaining the epoxy compound represented by the formula [2] from the olefin compound represented by the formula [1] is 1 equivalent of the double bond in the olefin compound. 0.5 to 50 equivalents, or 0.5 to 30 equivalents, or 1 to 10 equivalents.
  • Hydrogen peroxide can be added into the reaction system, for example, as 35% by mass hydrogen peroxide water. Hydrogen peroxide can be added all at once, but a predetermined addition amount can be divided into several times (for example, about 2 to 5 times) and added sequentially. Hydrogen peroxide can be added preferably by a dropping method, and in this case, one dropping (addition) can be performed over 1 to 24 hours.
  • the reaction After the addition (dropping) is completed, the reaction can be performed for 1 to 24 hours.
  • the yield of the reaction from the olefin to the epoxy group can be improved.
  • Examples of the nitrile compound used in the reaction for obtaining the epoxy compound from the olefin compound include aliphatic nitriles and aromatic nitriles.
  • Examples of the aromatic nitrile include benzonitrile and the like, and examples of the aliphatic nitrile include acetonitrile and propionitrile.
  • an aliphatic nitrile is preferable, and acetonitrile is preferably used.
  • the amount of the nitrile compound used is 0.5 to 50 equivalents, or 1 to 30 equivalents, or 3 to 15 equivalents with respect to 1 equivalent of the double bond in the olefin compound.
  • Examples of the alkaline substance used in the reaction for obtaining an epoxy compound from the olefin compound include phosphoric acid compounds, carbonate compounds, and alkali metal hydroxides.
  • Examples of the phosphoric acid compound include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, and salts thereof.
  • Examples of the carbonate compound include sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate and the like.
  • Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. Among these, phosphates, carbonates, or alkali metal hydroxides can be particularly preferably used.
  • Examples of the phosphate include sodium phosphate, potassium phosphate, and ammonium phosphate
  • examples of the carbonate include carbonates.
  • Examples of the alkali metal hydroxide include sodium, sodium hydrogen carbonate, and the like, and sodium hydroxide. More preferred is an alkali metal hydroxide, and sodium hydroxide is even more preferred.
  • the addition amount of these alkaline substances is 0.01 to 10 equivalents or 0.01 to 2 equivalents with respect to 1 equivalent of the double bond in the olefin compound.
  • the liquidity of the reaction solution at the time of the reaction is preferably pH 9 to 11, more preferably pH 9.2 to 10.5, and it is desirable to add the alkaline substance so that the pH falls within this range.
  • the alcohol solvent is used as the solvent used in the reaction for obtaining the epoxy compound from the olefin compound.
  • the alcohol solvent linear, branched or cyclic alcohols such as methanol, ethanol, 2-propanol, n-butanol, tert-amyl alcohol and cyclohexanol are used.
  • methanol can be preferably used.
  • a non-alcohol solvent such as toluene may be mixed with the alcohol solvent.
  • the reaction for obtaining the epoxy compound from the olefin compound can be performed, for example, at 5 to 60 ° C. for 2 to 48 hours (including the time for adding hydrogen peroxide).
  • the reaction solution containing the reaction mixture is a known purification operation, for example, a solvent such as heptane is added to separate the organic layer, and then the obtained organic layer is added to an aqueous sodium thiosulfate solution, an aqueous ammonium sulfate solution, etc. After washing the organic layer, the solvent can be distilled off to obtain an epoxy compound.
  • the conversion rate from olefin to epoxy group is 60% or more, for example, 75% or more, or 90% or more.
  • the olefin compound represented by the above formula [1] is a conventionally known olefinic compound having an unsaturated bond described in, for example, International Publication No. 2012/128325 (intermediate) using a carboxylic acid or an alcohol as a starting material. Can be manufactured by the method of (1).
  • ester compound represents a O- group, as an example, -CR 1 R 2 R 3 group branched fatty acid or its activity embodying (acid halide containing acid anhydride , Acid azide, active ester, etc.) and an unsaturated alcohol such as allyl alcohol, or an unsaturated halide such as allyl halide, whereby X in formula [1] is * —C ( ⁇ O).
  • An ester compound representing the O-group can be obtained.
  • Branched alcohols containing a branched fatty acid and -CR 1 R 2 R 3 groups, including said -CR 1 R 2 R 3 group can be used commercially.
  • the branched fatty acid containing the above-mentioned —CR 1 R 2 R 3 group Fine Oxocol (registered trademark) Isopalmitic acid, Isostearic acid, Isostearic acid N, Isostearic acid T, Isostearic acid T manufactured by Nissan Chemical Industries, Ltd.
  • examples thereof include isoarachidic acid and the like, and activated products (derivatives) of these branched fatty acids can be used.
  • the branched alcohol containing the —CR 1 R 2 R 3 group include Fine Oxocol (registered trademark) 1600, 180, 180N, 180T, and 2000 manufactured by Nissan Chemical Industries, Ltd.
  • unsaturated alcohol examples include allyl alcohol, glycerin monoallyl ether, glyceryl diallyl ether, 2,4-diallyloxybutanol, 3,4-diallyloxybutanol, 1,4-diallyloxy-2-butanol, and trimethylol.
  • the unsaturated halide examples include allyl halides such as allyl chloride, allyl bromide, allyl iodide, 2,2-bis (allyloxymethyl) -1-bromobutane, 1,1,1-tris. (Allyloxymethyl) -2-bromoethane and the like can be mentioned. Commercially available products can be used for these unsaturated alcohols and unsaturated halides.
  • the reaction flask was charged with 8.00 g (16.6 mmol) of ISA2A prepared according to Preparation Example 1, 9.60 g (234 mmol) of acetonitrile, and 80 g of methanol.
  • the liquidity of this solution was adjusted to pH 9.5 with an 8% by mass aqueous sodium hydroxide solution and then heated to 40 ° C. While maintaining the liquidity of this solution at pH 9.5 with an 8% by mass aqueous sodium hydroxide solution, 12.9 g of 35% by mass hydrogen peroxide (133 mmol as H 2 O 2 ) was added dropwise over 16 hours, and further 11 Stir for hours.
  • the total amount of 8 mass% sodium hydroxide aqueous solution used was 17.2 g.
  • 16 g of heptane was added to the reaction mixture and stirred, and the organic layer was separated. The organic layer was washed sequentially with 16 g of 5% by mass aqueous sodium thiosulfate solution and 16 g of 2% by mass aqueous ammonium sulfate solution, and then the solvent was distilled off to give 2- (4,4-dimethylpentan-2-yl) -5,7.
  • a reaction flask was charged with 4.00 g (12.9 mmol) of IS1AE prepared according to Preparation Example 2, 4.80 g (117 mmol) of acetonitrile, and 40 g of methanol.
  • the liquidity of this solution was adjusted to pH 9.5 with an 8% by mass aqueous sodium hydroxide solution and then heated to 40 ° C. While maintaining the liquidity of this solution at pH 9.5 with an 8% by mass aqueous sodium hydroxide solution, 5.01 g of 35% by mass hydrogen peroxide (51.6 mmol as H 2 O 2 ) was added dropwise over 16 hours, The mixture was further stirred for 15 hours.
  • the total amount of 8 mass% sodium hydroxide aqueous solution used was 6.5 g.
  • the organic layer was washed with 35 kg of 5% by weight aqueous sodium thiosulfate solution. Further, after removing the catalyst (tungstic acid catalyst and phase transfer catalyst) remaining in the solution by the adsorbent treatment, the solvent was distilled off to give 2- (4,4-dimethylpentan-2-yl)- 2,3.6 kg of 2,2-bis (glycidyloxymethyl) butyl 2,7,7-trimethyloctanoate (ISA2G) (epoxy purity 90%, yield 63%) was obtained as a colorless transparent liquid. Moreover, the light transmittance of the obtained epoxy compound (ISA2G) at a wavelength of 400 nm was 91.2%.
  • an epoxy compound can be obtained in a high yield of nearly 80%, and an epoxy compound having a high light transmittance (less coloring) can be obtained by a simple post-treatment. Was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】工業的製造に適した、高収率であり、かつ、煩雑な後処理を必要としない、着色のない高品質なエポキシ化合物の製造方法を提供する。 【解決手段】式[1]で表されるオレフィン化合物、過酸化水素、ニトリル化合物、及びアルカリ性物質を溶媒中で反応させることを特徴とする、式[2]で表されるエポキシ化合物の製造方法。(式中、R1及びR2はそれぞれ独立して、炭素原子数2乃至27のアルキル基を表し、R3は水素原子又は炭素原子数1乃至25のアルキル基を表し、ただし-CR1R2R3基に含まれる炭素原子の数の合計は10乃至30であり、R4乃至R6はそれぞれ独立して、水素原子又は炭素原子数1乃至10のアルキル基を表し、Xは、*-C(=O)O-、*-CH2O-又は*-CH2OC(=O)-を表し(ここで*は-CR1R2R3基に結合する端を示す。)、Aは単結合、又は(n+1)価のエーテル結合を含んでいてもよい脂肪族炭化水素基を表し、Zは単結合又は酸素原子を表し、ただしAが単結合を表すときZは単結合を表し、Lはエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基を表し、nは1乃至8の整数を表し、ただしAが単結合を表すときnは1を表す。)

Description

エポキシ化合物の製造方法
 本発明はエポキシ化合物の新規な製造方法に関する。
 これまで、エポキシ化合物の製造方法として、酸化剤として過酸化水素を用い、触媒としてタングステン酸塩又はモリブデン酸塩、第4級アンモニウム塩、及びリン酸塩又はホスホン酸塩を含む三元系触媒を用いて、オレフィン化合物をエポキシ化する方法(例えば、特許文献1)が知られている。また、酸化剤として過酸化水素を用い、ニトリル化合物存在下、ピロリン酸塩-ピロリン酸水溶液中で、オレフィン化合物をエポキシ化する方法(例えば、特許文献2)が知られている。
特開2012-25688号公報 特開2002-145872号公報
 しかしながら、特許文献1に記載の方法では、反応混合物中に残存する触媒(タングステン酸塩やモリブデン酸塩、第4級アンモニウム塩等)の除去が必要であった。このため、吸着剤等を用いた後処理により製造プロセスが煩雑となり、収率の低下が課題となっていた。また、反応温度が高いなど反応条件が通常過酷なため、得られるエポキシ化合物が着色してしまうという課題があった。
 一方、特許文献2には、特定の分岐状脂肪族基を有するオレフィン化合物への適用について、一切開示されていない。
 本発明は、工業的製造に適した、高収率であり、かつ、煩雑な後処理を必要としない、着色のない高品質なエポキシ化合物の製造方法を提供することを目的とする。
 本発明者らは、上記の課題を解決するべく鋭意検討を行った結果、過酸化水素、ニトリル化合物及びアルカリ性物質を含む溶媒中でオレフィン化合物を反応させることで、高い収率にてオレフィン部分がエポキシ化したエポキシ化合物が得られること、さらに、簡便な後処理にて、着色の少ないエポキシ化合物が得られることを見出し、本発明を完成させた。
 すなわち本発明は、第1観点として、式[1]で表されるオレフィン化合物、過酸化水素、ニトリル化合物、及びアルカリ性物質を溶媒中で反応させることを特徴とする、式[2]で表されるエポキシ化合物の製造方法に関する。
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRはそれぞれ独立して、炭素原子数2乃至27のアルキル基を表し、Rは水素原子又は炭素原子数1乃至25のアルキル基を表し、ただし-CR基に含まれる炭素原子の数の合計は10乃至30であり、R乃至Rはそれぞれ独立して、水素原子又は炭素原子数1乃至10のアルキル基を表し、Xは、*-C(=O)O-、*-CHO-又は*-CHOC(=O)-を表し(ここで*は-CR基に結合する端を示す。)、Aは単結合、又は(n+1)価のエーテル結合を含んでいてもよい脂肪族炭化水素基を表し、Zは単結合又は酸素原子を表し、ただしAが単結合を表すときZは単結合を表し、Lはエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基を表し、nは1乃至8の整数を表し、ただしAが単結合を表すときnは1を表す。)
Figure JPOXMLDOC01-appb-C000004
(式中、R、R、R、R、R、R、X、A、Z、L及びnは前記と同じ意味を表す。)
 第2観点として、前記Xが*-CHO-であり、かつ前記nが2乃至8の整数であるか、又は前記Xが*-C(=O)O-若しくは*-CHOC(=O)である、第1観点に記載の製造方法に関する。
 第3観点として、前記Xが*-C(=O)O-である、第1観点又は第2観点に記載の製造方法に関する。
 第4観点として、前記Aが(n+1)価のエーテル結合を含んでいてもよい脂肪族炭化水素基であり、かつ前記nが2乃至8の整数である、第1観点乃至第3観点のうち何れか一項に記載の製造方法に関する。
 第5観点として、前記Aが、グリセリン、2-ヒドロキシ-1,4-ブタンジオール、トリメチロールメタン、1,1,1-トリメチロールエタン、1,1,1-トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、及びジペンタエリスリトールからなる群から選ばれるポリオールからヒドロキシ基を一部又は全部除いて誘導される基である、第4観点に記載の製造方法に関する。
 第6観点として、前記ポリオールが、1,1,1-トリメチロールプロパン、及びペンタエリスリトールからなる群から選ばれるポリオールである、第5観点に記載の製造方法に関する。
 第7観点として、前記Aが、前記ポリオールからヒドロキシ基を全部除いて誘導される基である、第5観点又は第6観点に記載の製造方法に関する。
 第8観点として、前記Lがメチレン基である、第1観点乃至第7観点のうち何れか一項に記載の製造方法に関する。
 第9観点として、前記-CR基が炭素原子数14乃至26の基である、第1観点乃至第8観点のうち何れか一項に記載の製造方法に関する。
 第10観点として、前記アルカリ性物質がアルカリ金属水酸化物である、第1観点乃至第9観点のうち何れか一項に記載の製造方法に関する。
 第11観点として、前記溶媒がアルコールである、第1観点乃至第10観点のうち何れか一項に記載の製造方法に関する。
 第12観点として、前記式[1]で表される化合物が、-CR基を含む分岐脂肪酸若しくはその活性化体、又は-CR基を含む分岐アルコールと、不飽和アルコール又は不飽和ハロゲン化物との反応生成物である、第1観点乃至第11観点のうち何れか一項に記載の製造方法に関する。
 本発明の製造方法によれば、80%近い高収率でエポキシ化合物が得られ、また、簡便な後処理で光透過率の高い(着色の少ない)エポキシ化合物を製造することができる。
<式[2]で表されるエポキシ化合物の製造方法>
 本発明は、下記式[1]で表されるオレフィン化合物、過酸化水素、ニトリル化合物、及びアルカリ性物質を溶媒中で反応させることを特徴とする、式[2]で表されるエポキシ化合物の製造方法を対象とする。
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRはそれぞれ独立して、炭素原子数2乃至27のアルキル基を表し、Rは水素原子又は炭素原子数1乃至25のアルキル基を表し、ただし-CR基に含まれる炭素原子の数は合計で10乃至30であり、R乃至Rはそれぞれ独立して、水素原子又は炭素原子数1乃至10のアルキル基を表し、Xは、*-C(=O)O-、*-CHO-又は*-CHOC(=O)-を表し(ここで*は-CR基に結合する端を示す。)、Aは単結合、又は(n+1)価のエーテル結合を含んでいてもよい脂肪族炭化水素基を表し、Zは単結合又は酸素原子を表し、ただしAが単結合を表すときZは単結合を表し、Lはエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基を表し、nは1乃至8の整数を表し、ただしAが単結合を表すときnは1を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R、R、R、R、R、R、X、A、Z、L及びnは前記と同じ意味を表す。)
 上記R及びRにおける炭素原子数2乃至27のアルキル基としては、直鎖構造のみならず、分岐構造、環状構造を有していてもよい。
 具体的には、エチル基、プロピル基、ブチル基、ペンチル基(アミル基)、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基)、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(パルミチル基)、ヘプタデシル基(マルガリル基)、オクタデシル基(ステアリル基)、ノナデシル基、イコシル基(アラキル基)、ヘンイコシル基、ドコシル基(ベヘニル基)、トリコシル基、テトラコシル基(リグノセリル基)、ペンタコシル基、ヘキサコシル基、ヘプタコシル基等の直鎖状アルキル基;イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、sec-イソアミル基、イソヘキシル基、テキシル基、4-メチルヘキシル基、5-メチルヘキシル基、2-エチルペンチル基、ヘプタン-3-イル基、ヘプタン-4-イル基、4-メチルヘキサン-2-イル基、3-メチルヘキサン-3-イル基、2,3-ジメチルペンタン-2-イル基、2,4-ジメチルペンタン-2-イル基、4,4-ジメチルペンタン-2-イル基、6-メチルヘプチル基、2-エチルヘキシル基、オクタン-2-イル基、6-メチルヘプタン-2-イル基、6-メチルオクチル基、3,5,5-トリメチルヘキシル基、ノナン-4-イル基、2,6-ジメチルヘプタン-3-イル基、3,6-ジメチルヘプタン-3-イル基、3-エチルヘプタン-3-イル基、3,7-ジメチルオクチル基、8-メチルノニル基、3-メチルノナン-3-イル基、4-エチルオクタン-4-イル基、9-メチルデシル基、ウンデカン-5-イル基、3-エチルノナン-3-イル基、5-エチルノナン-5-イル基、2,2,4,5,5-ペンタメチルヘキサン-4-イル基、10-メチルウンデシル基、11-メチルドデシル基、トリデカン-6-イル基、トリデカン-7-イル基、7-エチルウンデカン-2-イル基、3-エチルウンデカン-3-イル基、5-エチルウンデカン-5-イル基、12-メチルトリデシル基、13-メチルテトラデシル基、ペンタデカン-7-イル基、ペンタデカン-8-イル基、14-メチルペンタデシル基、15-メチルヘキサデシル基、ヘプタデカン-8-イル基、ヘプタデカン-9-イル基、3,13-ジメチルペンタデカン-7-イル基、2,2,4,8,10,10-ヘキサメチルウンデカン-5-イル基、16-メチルヘプタデシル基、17-メチルオクタデシル基、ノナデカン-9-イル基、ノナデカン-10-イル基、2,6,10,14-テトラメチルペンタデカン-7-イル基、18-メチルノナデシル基、19-メチルイコシル基、ヘンイコサン-10-イル基、20-メチルヘンイコシル基、21-メチルドコシル基、トリコサン-11-イル基、22-メチルトリコシル基、23-メチルテトラコシル基、ペンタコサン-12-イル基、ペンタコサン-13-イル基、2,22-ジメチルトリコサン-11-イル基、3,21-ジメチルトリコサン-11-イル基、9,15-ジメチルトリコサン-11-イル基、24-メチルペンタコシル基、25-メチルヘキサコシル基、ヘプタコサン-13-イル基等の分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、4-tert-ブチルシクロヘキシル基、1,6-ジメチルシクロヘキシル基、メンチル基、シクロヘプチル基、シクロオクチル基、ビシクロ[2.2.1]ヘプタン-2-イル基、ボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロ[5.2.1.02,6]デカン-4-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、シクロドデシル基等の脂環式アルキル基が挙げられる。
 上記R及びRはそれぞれ独立して、好ましくは炭素原子数4乃至16のアルキル基であり、より好ましくは炭素原子数6乃至10のアルキル基である。
 中でも、R及びRはそれぞれ独立して、分岐鎖状のアルキル基であることが好ましく、より好ましくは炭素原子数4乃至16の分岐鎖状アルキル基、さらに好ましくは炭素原子数6乃至10の分岐鎖状アルキル基である。
 具体的には、R及びRはそれぞれ独立して、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、4-メチルヘキシル基、4,4-ジメチルペンタン-2-イル基、6-メチルヘプタン-2-イル基、6-メチルオクチル基、3,5,5-トリメチルヘキシル基、3,7-ジメチルオクチル基であることが特に好ましい。
 上記Rにおける炭素原子数1乃至25のアルキル基としては、直鎖構造のみならず、分岐構造、環状構造を有していてもよい。
 このような炭素原子数1乃至25のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基(アミル基)、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基)、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(パルミチル基)、ヘプタデシル基(マルガリル基)、オクタデシル基(ステアリル基)、ノナデシル基、イコシル基(アラキル基)、ヘンイコシル基、ドコシル基(ベヘニル基)、トリコシル基、テトラコシル基(リグノセリル基)、ペンタコシル基等の直鎖状アルキル基;イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、sec-イソアミル基、イソヘキシル基、テキシル基、4-メチルヘキシル基、5-メチルヘキシル基、2-エチルペンチル基、ヘプタン-3-イル基、ヘプタン-4-イル基、4-メチルヘキサン-2-イル基、3-メチルヘキサン-3-イル基、2,3-ジメチルペンタン-2-イル基、2,4-ジメチルペンタン-2-イル基、4,4-ジメチルペンタン-2-イル基、6-メチルヘプチル基、2-エチルヘキシル基、オクタン-2-イル基、6-メチルヘプタン-2-イル基、6-メチルオクチル基、3,5,5-トリメチルヘキシル基、ノナン-4-イル基、2,6-ジメチルヘプタン-3-イル基、3,6-ジメチルヘプタン-3-イル基、3-エチルヘプタン-3-イル基、3,7-ジメチルオクチル基、8-メチルノニル基、3-メチルノナン-3-イル基、4-エチルオクタン-4-イル基、9-メチルデシル基、ウンデカン-5-イル基、3-エチルノナン-3-イル基、5-エチルノナン-5-イル基、2,2,4,5,5-ペンタメチルヘキサン-4-イル基、10-メチルウンデシル基、11-メチルドデシル基、トリデカン-6-イル基、トリデカン-7-イル基、7-エチルウンデカン-2-イル基、3-エチルウンデカン-3-イル基、5-エチルウンデカン-5-イル基、12-メチルトリデシル基、13-メチルテトラデシル基、ペンタデカン-7-イル基、ペンタデカン-8-イル基、14-メチルペンタデシル基、15-メチルヘキサデシル基、ヘプタデカン-8-イル基、ヘプタデカン-9-イル基、3,13-ジメチルペンタデカン-7-イル基、2,2,4,8,10,10-ヘキサメチルウンデカン-5-イル基、16-メチルヘプタデシル基、17-メチルオクタデシル基、ノナデカン-9-イル基、ノナデカン-10-イル基、2,6,10,14-テトラメチルペンタデカン-7-イル基、18-メチルノナデシル基、19-メチルイコシル基、ヘンイコサン-10-イル基、20-メチルヘンイコシル基、21-メチルドコシル基、トリコサン-11-イル基、22-メチルトリコシル基、23-メチルテトラコシル基、ペンタコサン-12-イル基、ペンタコサン-13-イル基、2,22-ジメチルトリコサン-11-イル基、3,21-ジメチルトリコサン-11-イル基、9,15-ジメチルトリコサン-11-イル基等の分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、4-tert-ブチルシクロヘキシル基、1,6-ジメチルシクロヘキシル基、メンチル基、シクロヘプチル基、シクロオクチル基、ビシクロ[2.2.1]ヘプタン-2-イル基、ボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロ[5.2.1.02,6]デカン-4-イル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、シクロドデシル基等の脂環式アルキル基が挙げられる。
 中でもRは、水素原子であることが好ましい。
 上記R、R及びRを有する基:-CR基は、該基に含まれる炭素原子の数の合計が10乃至30であり、好ましくは-CR基は炭素原子数14乃至26の基であり、特に好ましくは炭素原子数14乃至20の基である。
 上記-CR基の具体例としては、3-メチルノナン-3-イル基、4-エチルオクタン-4-イル基、ウンデカン-5-イル基、3-エチルノナン-3-イル基、5-エチルノナン-5-イル基、2,2,4,5,5-ペンタメチルヘキサン-4-イル基、トリデカン-6-イル基、トリデカン-7-イル基、7-エチルウンデカン-2-イル基、3-エチルウンデカン-3-イル基、5-エチルウンデカン-5-イル基、ペンタデカン-7-イル基、ペンタデカン-8-イル基、ヘプタデカン-7-イル基、ヘプタデカン-8-イル基、ヘプタデカン-9-イル基、3,13-ジメチルペンタデカン-7-イル基、2,2,4,8,10,10-ヘキサメチルウンデカン-5-イル基、ノナデカン-9-イル基、ノナデカン-10-イル基、2,6,10,14-テトラメチルペンタデカン-7-イル基、ヘンイコサン-10-イル基、トリコサン-11-イル基、ペンタコサン-12-イル基、ペンタコサン-13-イル基、2,22-ジメチルトリコサン-11-イル基、3,21-ジメチルトリコサン-11-イル基、9,15-ジメチルトリコサン-11-イル基、ヘプタコサン-13-イル基、ノナコサン-14-イル基等が挙げられる。
 上記R乃至Rにおける炭素原子数1乃至10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、ペンチル基(アミル基)、イソペンチル基、ネオペンチル基、tert-ペンチル基、sec-イソアミル基、シクロペンチル基、ヘキシル基、イソヘキシル基、シクロへキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等が挙げられる。
 中でも好適なR乃至Rとしては、水素原子が挙げられる。
 上記Xは、*-C(=O)O-、*-CHO-又は*-CHOC(=O)-を表し、中でも上記Xが*-CHO-であり、且つnが2乃至8の整数であるか、あるいは、上記Xが*-C(=O)O-又は*-CHOC(=O)-であることが好ましい。
 特に上記Xは、*-C(=O)O-であることが好ましい。
 上記Aにおける(n+1)価のエーテル結合を含んでいてもよい脂肪族炭化水素基としては、例えば、上記の炭素原子数2乃至27のアルキル基、炭素原子数1乃至25のアルキル基あるいは炭素原子数1乃至10のアルキル基から、更に(n)個の水素原子を除いて誘導される(n+1)価の基が挙げられる。またこれらの基は、任意の炭素-炭素結合間にエーテル結合(-O-)を含んでいてもよい。
 具体的には、例えば、グリセリン、2-ヒドロキシ-1,4-ブタンジオール、トリメチロールメタン、1,1,1-トリメチロールエタン、1,1,1-トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、及びジペンタエリスリトールからなる群から選ばれるポリオール構造からヒドロキシ基を一部又は全部除いて誘導される(n+1)価の基が挙げられる。これらの中でも、上記ポリオールとしては、1,1,1-トリメチロールプロパン及びペンタエリスリトールからなる群から選ばれるポリオールが挙げられ、また、上記ポリオール構造からヒドロキシ基を全部除いて誘導される基が挙げられる。
 また上記Aが(n+1)価のエーテル結合を含んでいてもよい脂肪族炭化水素基であるとき、nが2乃至8の整数であることが好ましい。
 なお、Aが単結合を表すとき、Zは単結合を表し、またnは1を表す。
 上記Lにおけるエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、ペンタメチレン基、2,2-ジメチルトリメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、2-オキサテトラメチレン基、2,5-ジオキサヘプタメチレン基、2,5,8-トリオキサデカメチレン基、2-オキサ-3-メチルテトラメチレン基、2,5-ジオキサ-3,6-ジメチルヘプタメチレン基等が挙げられる。
 上記Lとしては、好ましくはメチレン基、トリメチレン基、ヘキサメチレン基、2-オキサテトラメチレン基、より好ましくはメチレン基が挙げられる。
 上記式[1]で表されるオレフィン化合物から式[2]で表されるエポキシ化合物を製造する手順は特に限定されないが、例えば、前記オレフィン化合物、過酸化水素、ニトリル化合物及びアルカリ性物質を溶媒に一括投入し、反応させることができる。また、過酸化水素以外の成分を溶媒に投入した後、ここに、過酸化水素を滴下して投入し、その後、反応を実施してもよい。
 上記式[1]で表されるオレフィン化合物から式[2]で表されるエポキシ化合物を得る反応において用いられる過酸化水素の使用量は、前記オレフィン化合物中の二重結合の1当量に対して、0.5~50当量、又は0.5~30当量、又は1~10当量である。過酸化水素は例えば35質量%の過酸化水素水として反応系内に添加し得る。
 過酸化水素の添加は一度に添加することも可能であるが、所定の添加量を数回(例えば2~5回程度)に分け、逐次添加する方法を用いることができる。過酸化水素の添加は好ましくは滴下法で行われ得、この場合、1回の滴下(添加)を1~24時間かけて行うことができる。そして、添加(滴下)終了後、1~24時間の反応を行うことができる。
 この添加(滴下)した後に反応を行う組合せ(滴下と反応)を数回(例えば2~5回程度)繰り返すことにより、オレフィンからエポキシ基への反応の収率を向上させることができる。
 上記オレフィン化合物からエポキシ化合物を得る反応時に用いられるニトリル化合物としては、脂肪族ニトリル、芳香族ニトリルが挙げられる。芳香族ニトリルとしては、ベンゾニトリル等が挙げられ、脂肪族ニトリルとしては、アセトニトリル、プロピオニトリル等が挙げられる。特に脂肪族ニトリルが好ましく、アセトニトリルが好ましく用いられる。ニトリル化合物の使用量は、オレフィン化合物中の二重結合の1当量に対して、0.5~50当量、又は1~30当量、又は3~15当量である。
 上記オレフィン化合物からエポキシ化合物を得る反応時に用いられるアルカリ性物質としては、リン酸系化合物、炭酸塩系化合物、アルカリ金属水酸化物等が挙げられる。
 上記リン酸系化合物としては、リン酸、ピロリン酸、ポリリン酸、及びそれらの塩が挙げられる。
 上記炭酸塩系化合物としては、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム等が挙げられる。
 上記アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。
 これらの中でも、特にリン酸塩、炭酸塩、又はアルカリ金属水酸化物が好ましく用いられ得、前記リン酸塩としてはリン酸ナトリウム、リン酸カリウム、リン酸アンモニウム等が、前記炭酸塩としては炭酸ナトリウム、炭酸水素ナトリウム等が、そして前記アルカリ金属水酸化物としては水酸化ナトリウムが、それぞれ例示され得る。より好ましくは、アルカリ金属水酸化物であり、水酸化ナトリウムがより一層好ましい。
 これらのアルカリ性物質の添加量はオレフィン化合物中の二重結合の1当量に対して、0.01~10当量、又は0.01~2当量である。
 なお、上記反応時における反応液の液性は、好ましくはpH9~11、より好ましくはpH9.2~10.5であり、pHがこの範囲となるように上記アルカリ性物質を添加することが望ましい。
 上記オレフィン化合物からエポキシ化合物を得る反応時の反応に用いられる溶媒は、アルコール系溶媒が用いられる。このアルコール系溶媒としてはメタノール、エタノール、2-プロパノール、n-ブタノール、tert-アミルアルコール、シクロヘキサノール等の直鎖、分岐、環状のアルコールが用いられる。特にメタノールを好ましく用いることができる。また、このアルコール系溶媒にトルエン等の非アルコール系溶媒を混合してもよい。
 上記オレフィン化合物からエポキシ化合物を得る反応は、例えば、5~60℃で、2~48時間(過酸化水素を添加する時間を含む)で行うことができる。
 反応終了後、反応混合物を含む反応溶液は、公知の精製操作、例えば、ヘプタン等の溶媒を加えて有機層を分取し、その後、得られた有機層に、チオ硫酸ナトリウム水溶液、硫酸アンモニウム水溶液等を加えて有機層を洗浄した後、溶媒を留去し、エポキシ化合物を得ることができる。
 本発明の製造方法による、オレフィンからエポキシ基への転換率は60%以上、例えば75%以上、又は90%以上で得られる。
<式[1]で表されるオレフィン化合物>
 上記式[1]で表されるオレフィン化合物は、カルボン酸類又はアルコール類を出発原料として、従来公知(例えば、国際公開第2012/128325号等に記載される不飽和結合を有する化合物(中間体)の製造方法)の方法によって製造可能である。
 例えばXが*-C(=O)O-基を表すエステル化合物の場合には、一例として、-CR基を含む分岐脂肪酸若しくはその活性化体(酸ハロゲン化物、酸無水物、酸アジド、活性エステルなど)と、アリルアルコールなどの不飽和アルコール、又は、ハロゲン化アリルなどの不飽和ハロゲン化物とを反応させることで、式[1]においてXが*-C(=O)O-基を表すエステル化合物を得ることができる。
 また、Xが*-CHO-基を表すエーテル化合物の場合には、例えば、-CR基を含む分岐アルコールと、不飽和ハロゲン化物とを反応させることで、式[1]においてXが*-CHO-基を表するエーテル化合物を得ることができる。
 上記-CR基を含む分岐脂肪酸及び-CR基を含む分岐アルコールは市販品を使用し得る。
 例えば、上記-CR基を含む分岐脂肪酸としては、日産化学工業(株)製 ファインオキソコール(登録商標)イソパルミチン酸、同イソステアリン酸、同イソステアリン酸N、同イソステアリン酸T、同イソアラキン酸等が挙げられ、またこれら分岐脂肪酸の活性化体(誘導体)を使用することができる。
 上記-CR基を含む分岐アルコールとしては、日産化学工業(株)製 ファインオキソコール(登録商標)1600、同180、同180N、同180T、同2000等が挙げられる。
 上記不飽和アルコールとしては、例えば、アリルアルコール、グリセリンモノアリルエーテル、グリセリンジアリルエーテル、2,4-ジアリルオキシブタノール、3,4-ジアリルオキシブタノール、1,4-ジアリルオキシ-2-ブタノール、トリメチロールメタンモノアリルエーテル、トリメチロールメタンジアリルエーテル、1,1,1-トリメチロールエタンモノアリルエーテル、1,1,1-トリメチロールエタンジアリルエーテル、1,1,1-トリメチロールプロパンモノアリルエーテル、1,1,1-トリメチロールプロパンジアリルエーテル、ジトリメチロールプロパンモノアリルエーテル、ジトリメチロールプロパンジアリルエーテル、ジトリメチロールプロパントリアリルエーテル、ペンタエリスリトールモノアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジペンタエリスリトールモノアリルエーテル、ジペンタエリスリトールジアリルエーテル、ジペンタエリスリトールトリアリルエーテル、ジペンタエリスリトールテトラアリルエーテル、ジペンタエリスリトールペンタアリルエーテル等が挙げられる。
 また、上記不飽和ハロゲン化物としては、例えば、塩化アリル、臭化アリル、ヨウ化アリルなどのハロゲン化アリル、2,2-ビス(アリルオキシメチル)-1-ブロモブタン、1,1,1-トリス(アリルオキシメチル)-2-ブロモエタン等を挙げることができる。
 これら不飽和アルコール及び不飽和ハロゲン化物は、市販品を使用し得る。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下のとおりである。
(1)H NMRスペクトル(300MHz)
 装置:(株)JEOL RESONANCE製 JNM-ECP300
 基準:テトラメチルシラン(0.00ppm)
(2)H NMRスペクトル(400MHz)
 装置:Varian社製 INOVA-400
 基準:テトラメチルシラン(0.00ppm)
(3)GC-MS(ガスクロマトグラフ質量分析)
 装置:(株)島津製作所製 GCMS-QP2010 Ultra
 カラム:アジレント・テクノロジー(株)製 Agilent J&W GCカラム HP-5(長さ30m、内径0.32mm、膜厚0.25μm)
 注入量:2.0μL
 注入口温度:250℃
 カラム温度:40℃(5分間)、20℃/分で300℃まで昇温、300℃(12分間)
(4)GC(ガスクロマトグラフ)
<システムA>(実施例1、比較例1)
 装置:(株)島津製作所製 GC-2010 Plus
 検出器:FID
 カラム:アジレント・テクノロジー(株)製 Agilent J&W GCカラム HP-1(長さ30m、内径0.32mm、膜厚0.25μm)
 注入量:2.0μL
 注入口温度:200℃
 カラム温度:200℃(5分間)、5℃/分で300℃まで昇温、300℃(5分間)
<システムB>(実施例2)
 装置:アジレント・テクノロジー(株)製 Agilent 7890A GCシステム
 検出器:FID
 カラム:アジレント・テクノロジー(株)製 Agilent J&W GCカラム HP-5(長さ30m、内径0.32mm、膜厚0.25μm)
 注入量:2.0μL
 注入口温度:250℃
 カラム温度:40℃(5分間)、20℃/分で300℃まで昇温、300℃(12分間)
(5)エポキシ当量
 装置:京都電子工業(株)製 電位差自動滴定装置AT-710
 電極:京都電子工業(株)製 複合ガラス電極 C-173
(6)光透過率
 装置:(株)島津製作所製 紫外可視近赤外分光光度計 UV-3600 Plus
 また、略記号は以下の意味を表す。
ISA:2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸[日産化学工業(株)製 ファインオキソコール(登録商標)イソステアリン酸]
ISOL:2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン-1-オール[日産化学工業(株)製 ファインオキソコール(登録商標)180]
AllBr:臭化アリル[東京化成工業(株)製]
TMPDA:トリメチロールプロパンジアリルエーテル[(株)大阪ソーダ製 ネオアリルT-20]
DMF:N,N-ジメチルホルムアミド
NMP:N-メチル-2-ピロリドン
THF:テトラヒドロフラン
[製造例1]2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸2,2-ビス(アリルオキシメチル)ブチル(ISA2A)の製造
 反応槽に、ISA 24.0kg(84.4mol)、DMF 0.185kg、及びトルエン24kgを仕込んだ。この溶液へ、塩化チオニル10.5kg(88.6mol)を室温(およそ23℃)で45分間かけて滴下し、さらに2時間撹拌した。この反応混合物へ、トルエン24kgを加えた後、余剰の塩化チオニル、溶媒等合わせて24kgを留去した。再度、トルエン24kgを加え、上記同様に24kgを留去した。
 得られた溶液に、トルエン48kg及びピリジン12.0kg(152mol)を加えた。この溶液へ、予め蒸留精製したTMPDA 18.1kg(84.4mol)を室温(およそ23℃)で1時間かけて滴下し、さらに12時間撹拌した。この反応液を、1N塩酸48.0kg、5質量%水酸化ナトリウム水溶液36.0kg、及びイオン交換水で順に洗浄した。この有機層の溶媒を留去して、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸2,2-ビス(アリルオキシメチル)ブチル(ISA2A)40.5kgを無色透明液体として得た。
H NMR(300MHz,CDCl):δ=6.0~5.8(m,2H),5.3~5.1(m,4H),4.1~3.9(m,6H),3.4~3.2(s,4H),2.2~0.8(m,40H)(ppm)
GC-MS(CI):m/z=481(M+1)
[製造例2]2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクチル=アリル=エーテル(IS1AE)の製造
 反応フラスコに、55質量%水素化ナトリウム[関東化学(株)製]6.45g(NaHとして0.15mol)及びTHF80gを仕込んだ。ここへ、ISOL 40.0g(0.15mol)を10分間かけて滴下し、その後70℃に昇温した。この溶液へ、AllBr 21.4g(0.18mol)を10分間かけて滴下し、さらに3時間撹拌した。この反応混合物へ、トルエン120g及びイオン交換水40gを加え撹拌し、有機層を分取した。この有機層へトルエン120gを加え、イオン交換水40gで洗浄した後、溶媒を留去した。得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=98:2(体積比))で精製することで、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクチル=アリル=エーテル(IS1AE)35.7gを淡黄色透明液体として得た。
H NMR(300MHz,CDCl):δ=6.0~5.8(m,1H),5.3(d,J=17.1Hz,1H),5.2(d,J=10.5Hz,1H),4.0~3.9(m,2H),3.4~3.2(m,2H),2.2~0.8(m,35H)(ppm)
GC-MS(CI):m/z=311(M+1)
[実施例1]2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸2,2-ビス(グリシジルオキシメチル)ブチル(ISA2G)の製造
Figure JPOXMLDOC01-appb-C000007
 反応フラスコに、製造例1に従って製造したISA2A 8.00g(16.6mmol)、アセトニトリル9.60g(234mmol)、及びメタノール80gを仕込んだ。この溶液の液性を、8質量%水酸化ナトリウム水溶液でpH9.5に調整し、その後40℃に昇温した。この溶液の液性を8質量%水酸化ナトリウム水溶液でpH9.5に保持しながら、35質量%過酸化水素水12.9g(Hとして133mmol)を16時間かけて滴下し、さらに11時間撹拌した。8質量%水酸化ナトリウム水溶液の総使用量は17.2gであった。反応溶液のGC定量分析から、オレフィン化合物(ISA2A)の消費率(=(仕込量-残存量)÷仕込量×100)は97%であった。
 この反応混合物にヘプタン16gを加え撹拌し、有機層を分取した。有機層を、5質量%チオ硫酸ナトリウム水溶液16g、2質量%硫酸アンモニウム水溶液16gで順に洗浄した後、溶媒を留去して、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸2,2-ビス(グリシジルオキシメチル)ブチル(ISA2G)6.71g(エポキシ純度89%、得率79%)を無色透明液体として得た。なお、エポキシ純度は、JIS K7236:2009に準じて測定したエポキシ当量から、エポキシ純度[%]=エポキシ当量(測定値)÷エポキシ当量(理論値)×100として算出した。
 また、得られたエポキシ化合物(ISA2G)の波長400nmの光透過率は96.8%であった。
H NMR(300MHz,CDCl):δ=4.0(m,2H),3.7(m,2H),3.5~3.3(m,6H),3.1(m,2H),2.8(m,2H),2.6(m,2H),1.8~0.8(m,40H)(ppm)
GC-MS(CI):m/z=513(M+1)
[実施例2]2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクチル=グリシジル=エーテル(IS1GE)の製造
Figure JPOXMLDOC01-appb-C000008
 反応フラスコに、製造例2に従って製造したIS1AE 4.00g(12.9mmol)、アセトニトリル4.80g(117mmol)、及びメタノール40gを仕込んだ。この溶液の液性を、8質量%水酸化ナトリウム水溶液でpH9.5に調整し、その後40℃に昇温した。この溶液の液性を8質量%水酸化ナトリウム水溶液でpH9.5に保持しながら、35質量%過酸化水素水5.01g(Hとして51.6mmol)を16時間かけて滴下し、さらに15時間撹拌した。8質量%水酸化ナトリウム水溶液の総使用量は6.5gであった。反応溶液のGC定量分析から、オレフィン化合物(IS1AE)の消費率は92%であった。この反応混合物を、実施例1と同様に後処理して、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクチル=グリシジル=エーテル(IS1GE)を得た。
H NMR(400MHz,CDCl):δ=3.67~3.64(m,1H),3.41~3.23(m,3H),3.13(m,1H),2.80~2.77(m,1H),2.61~2.59(m,1H),1.80~0.82(m,35H)(ppm)
GC-MS(CI):m/z=327(M+1)
[比較例1]2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸2,2-ビス(グリシジルオキシメチル)ブチル(ISA2G)の製造
 反応槽に、製造例1に従って製造したISA2A 35.0kg(72.8mol)、タングステン酸ナトリウム二水和物[和光純薬工業(株)(現 富士フイルム和光純薬(株))製]3.84kg(11.6mol)、J.Org.Chem.,61,8310(1996)に準じて調製したメチル硫酸メチル(トリオクチル)アンモニウム(相間移動触媒)2.79kg(5.81mol)、10質量%リン酸水溶液14.3kg、及びトルエン35kgを仕込み、55℃に昇温した。この溶液へ、35質量%過酸化水素水21.2kg(Hとして218mol)を8時間かけて滴下し、さらに16時間撹拌した。反応溶液のGC定量分析から、オレフィン化合物(ISA2A)の消費率は97%であった。
 この反応混合物にトルエン35kgを加え撹拌し、有機層を分取した。有機層を、5質量%チオ硫酸ナトリウム水溶液35kgで洗浄した。さらに、吸着剤処理により溶液内に残存している触媒(タングステン酸触媒及び相間移動触媒)を除去した後、溶媒を留去して、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸2,2-ビス(グリシジルオキシメチル)ブチル(ISA2G)23.6kg(エポキシ純度90%、得率63%)を無色透明液体として得た。
 また、得られたエポキシ化合物(ISA2G)の波長400nmの光透過率は91.2%であった。
 以上のように、本発明の製造方法によれば、80%近い高収率でエポキシ化合物が得られ、また、簡便な後処理で光透過率の高い(着色の少ない)エポキシ化合物が得られることが確認された。

Claims (12)

  1. 式[1]で表されるオレフィン化合物、過酸化水素、ニトリル化合物、及びアルカリ性物質を溶媒中で反応させることを特徴とする、式[2]で表されるエポキシ化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRはそれぞれ独立して、炭素原子数2乃至27のアルキル基を表し、Rは水素原子又は炭素原子数1乃至25のアルキル基を表し、ただし-CR基に含まれる炭素原子の数の合計は10乃至30であり、R乃至Rはそれぞれ独立して、水素原子又は炭素原子数1乃至10のアルキル基を表し、Xは、*-C(=O)O-、*-CHO-又は*-CHOC(=O)-を表し(ここで*は-CR基に結合する端を示す。)、Aは単結合、又は(n+1)価のエーテル結合を含んでいてもよい脂肪族炭化水素基を表し、Zは単結合又は酸素原子を表し、ただしAが単結合を表すときZは単結合を表し、Lはエーテル結合を含んでいてもよい炭素原子数1乃至8のアルキレン基を表し、nは1乃至8の整数を表し、ただしAが単結合を表すときnは1を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、R、R、R、R、X、A、Z、L及びnは前記と同じ意味を表す。)
  2. 前記Xが*-CHO-であり、かつ前記nが2乃至8の整数であるか、又は前記Xが*-C(=O)O-若しくは*-CHOC(=O)である、請求項1に記載の製造方法。
  3. 前記Xが*-C(=O)O-である、請求項1又は請求項2に記載の製造方法。
  4. 前記Aが(n+1)価のエーテル結合を含んでいてもよい脂肪族炭化水素基であり、かつ前記nが2乃至8の整数である、請求項1乃至請求項3のうち何れか一項に記載の製造方法。
  5. 前記Aが、グリセリン、2-ヒドロキシ-1,4-ブタンジオール、トリメチロールメタン、1,1,1-トリメチロールエタン、1,1,1-トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、及びジペンタエリスリトールからなる群から選ばれるポリオールからヒドロキシ基を一部又は全部除いて誘導される基である、請求項4に記載の製造方法。
  6. 前記ポリオールが、1,1,1-トリメチロールプロパン、及びペンタエリスリトールからなる群から選ばれるポリオールである、請求項5に記載の製造方法。
  7. 前記Aが、前記ポリオールからヒドロキシ基を全部除いて誘導される基である、請求項5又は請求項6に記載の製造方法。
  8. 前記Lがメチレン基である、請求項1乃至請求項7のうち何れか一項に記載の製造方法。
  9. 前記-CR基が炭素原子数14乃至26の基である、請求項1乃至請求項8のうち何れか一項に記載の製造方法。
  10. 前記アルカリ性物質がアルカリ金属水酸化物である、請求項1乃至請求項9のうち何れか一項に記載の製造方法。
  11. 前記溶媒がアルコールである、請求項1乃至請求項10のうち何れか一項に記載の製造方法。
  12. 前記式[1]で表される化合物が、-CR基を含む分岐脂肪酸若しくはその活性化体、又は-CR基を含む分岐アルコールと、不飽和アルコール又は不飽和ハロゲン化物との反応生成物である、請求項1乃至請求項11のうち何れか一項に記載の製造方法。
PCT/JP2018/017641 2017-05-09 2018-05-07 エポキシ化合物の製造方法 WO2018207735A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197035355A KR20190140474A (ko) 2017-05-09 2018-05-07 에폭시 화합물의 제조방법
CN201880030437.6A CN110662740A (zh) 2017-05-09 2018-05-07 环氧化合物的制造方法
JP2019517613A JPWO2018207735A1 (ja) 2017-05-09 2018-05-07 エポキシ化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-093057 2017-05-09
JP2017093057 2017-05-09

Publications (1)

Publication Number Publication Date
WO2018207735A1 true WO2018207735A1 (ja) 2018-11-15

Family

ID=64104849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017641 WO2018207735A1 (ja) 2017-05-09 2018-05-07 エポキシ化合物の製造方法

Country Status (5)

Country Link
JP (1) JPWO2018207735A1 (ja)
KR (1) KR20190140474A (ja)
CN (1) CN110662740A (ja)
TW (1) TW201900626A (ja)
WO (1) WO2018207735A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965652A (en) * 1958-05-13 1960-12-20 Monsanto Chemicals Process of preparing glycidyl ethers
JPS56108781A (en) * 1980-02-01 1981-08-28 Kao Corp Preparation of glycidyl ether
EP2687580A1 (fr) * 2012-07-19 2014-01-22 Breitling AG Pièce d'horlogerie
WO2017077846A1 (ja) * 2015-11-05 2017-05-11 日産化学工業株式会社 エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物
WO2017077845A1 (ja) * 2015-11-05 2017-05-11 日産化学工業株式会社 多官能エポキシ化合物及びそれを含む硬化性組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5385546B2 (ja) * 2008-04-18 2014-01-08 株式会社クラレ エポキシアルコールの製造方法
EP2354130A1 (en) * 2010-02-02 2011-08-10 Momentive Specialty Chemicals Research Belgium Manufacture of an epoxyethyl carboxylate or glycidyl carboxylate
JP2011195483A (ja) * 2010-03-18 2011-10-06 Nippon Steel Chem Co Ltd トリエポキシエチルシクロヘキサン及びエポキシ樹脂の製造方法
JP5867749B2 (ja) * 2011-03-23 2016-02-24 日産化学工業株式会社 多官能エポキシ化合物
JP6248526B2 (ja) * 2012-10-11 2017-12-20 三菱ケミカル株式会社 新規エポキシ化合物
WO2014065239A1 (ja) * 2012-10-25 2014-05-01 日産化学工業株式会社 エポキシ化合物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965652A (en) * 1958-05-13 1960-12-20 Monsanto Chemicals Process of preparing glycidyl ethers
JPS56108781A (en) * 1980-02-01 1981-08-28 Kao Corp Preparation of glycidyl ether
EP2687580A1 (fr) * 2012-07-19 2014-01-22 Breitling AG Pièce d'horlogerie
WO2017077846A1 (ja) * 2015-11-05 2017-05-11 日産化学工業株式会社 エポキシ系反応性希釈剤及びそれを含むエポキシ樹脂組成物
WO2017077845A1 (ja) * 2015-11-05 2017-05-11 日産化学工業株式会社 多官能エポキシ化合物及びそれを含む硬化性組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAROCK, R. C., COMPREHENSIVE ORGANIC TRANSFORMATIONS:A GUIDE TO FUNCTIONAL GROUP PREPARATIONS SECOND EDITION, 1999, pages 915 - 927 *
NEW EXPERIMENTAL CHEMISTRY LECTURE 15: OXIDATION AND REDUCTION 1-2, vol. 15, no. I-2, 20 September 1976 (1976-09-20), pages 630 - 631 *

Also Published As

Publication number Publication date
KR20190140474A (ko) 2019-12-19
JPWO2018207735A1 (ja) 2020-03-19
TW201900626A (zh) 2019-01-01
CN110662740A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
JP5800709B2 (ja) エポキシ化合物の製造方法
US10106477B2 (en) Process for preparing 1,4-bis(ethoxymethyl)cyclohexane
WO2009145063A1 (ja) ハロゲン化α-フルオロエーテル類の製造方法
JPS63255273A (ja) アクリル酸グリシジルまたはメタクリル酸グリシジルの精製方法
WO2018207735A1 (ja) エポキシ化合物の製造方法
JPWO2020175634A1 (ja) 有機リン化合物の製造方法
EP2684869A1 (en) Preparation of 3-mercaptopropionates
JP6957465B2 (ja) 非イオン界面活性剤
Cirkva et al. Radical additions to fluoroolefins. Photochemical fluoroalkylation of alkanols and alkane diols with perfluoro vinyl ethers; photo-supported O-alkylation of butane-1, 4-diol with hexafluoropropene
JP2014205662A (ja) (メタ)アクリル酸エステルの製造方法
US4127731A (en) Process for producing fluorinated acyl fluoride having an ester group
WO2018220730A1 (ja) Pge1コアブロック誘導体およびその製造方法
US20150141675A1 (en) Method for producing alicyclic diepoxy compound
JP2014125462A (ja) エポキシド誘導体およびその製造方法
JP2014047144A (ja) 脂環式エポキシ化合物及びその製造方法
US7772443B2 (en) Iodine-containing fluoropolyether and process for producing the same
JP2014114227A (ja) 過酸組成物および該過酸組成物を用いたアセトキシフェニル化合物の製造方法
JP7211837B2 (ja) 含フッ素化合物の製造方法
JP2018162218A (ja) 新規な環状尿素誘導体−三臭化水素酸塩
JP2007056024A (ja) ノルボルネン誘導体の製造方法
JP2006248992A (ja) ホスホリルコリン類の製造方法
JP7199664B2 (ja) 塩素化ケトン化合物の製造方法
JPH04156933A (ja) 界面活性剤
US6677465B2 (en) Method for the enantioselective preparation of 3,3-diphenyl-2,3-epoxy propionic acid esters
JP2009256307A (ja) 不飽和カルボン酸アダマンチルエステル及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197035355

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18798286

Country of ref document: EP

Kind code of ref document: A1