WO2018207410A1 - リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2018207410A1
WO2018207410A1 PCT/JP2018/002799 JP2018002799W WO2018207410A1 WO 2018207410 A1 WO2018207410 A1 WO 2018207410A1 JP 2018002799 W JP2018002799 W JP 2018002799W WO 2018207410 A1 WO2018207410 A1 WO 2018207410A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion secondary
lithium ion
carbon material
secondary battery
Prior art date
Application number
PCT/JP2018/002799
Other languages
English (en)
French (fr)
Inventor
元宏 伊坂
秀介 土屋
賢匠 星
佐藤 力
啓太 須賀
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64104422&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018207410(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2019516891A priority Critical patent/JP6747587B2/ja
Priority to CN201880030675.7A priority patent/CN110612626B/zh
Priority to US16/611,983 priority patent/US11605818B2/en
Priority to KR1020237031648A priority patent/KR20230140595A/ko
Priority to CN202211700355.2A priority patent/CN115939379B/zh
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020197032853A priority patent/KR102580763B1/ko
Priority to TW107115988A priority patent/TWI751332B/zh
Priority to PCT/JP2018/018220 priority patent/WO2018207896A1/ja
Priority to TW107115998A priority patent/TWI750373B/zh
Priority to CN201880045741.8A priority patent/CN110892571B/zh
Priority to JP2019517707A priority patent/JP6747588B2/ja
Publication of WO2018207410A1 publication Critical patent/WO2018207410A1/ja
Priority to JP2020133261A priority patent/JP6888723B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for lithium ion secondary batteries, a method for producing a negative electrode material for lithium ion secondary batteries, a negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
  • Lithium ion secondary batteries have been widely used in electronic devices such as notebook PCs, mobile phones, smartphones, and tablet PCs, taking advantage of their small size, light weight, and high energy density.
  • electronic devices such as notebook PCs, mobile phones, smartphones, and tablet PCs, taking advantage of their small size, light weight, and high energy density.
  • clean electric vehicles (EV) that run only on batteries
  • HEV hybrid electric vehicles
  • the performance of the negative electrode material of a lithium ion secondary battery greatly affects the characteristics of the lithium ion secondary battery.
  • a carbon material is widely used as a material for a negative electrode material for a lithium ion secondary battery.
  • Carbon materials used for the negative electrode material are roughly classified into graphite and carbon materials (amorphous carbon or the like) having lower crystallinity than graphite.
  • Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly stacked, and when it is used as a negative electrode material for a lithium ion secondary battery, lithium ion insertion and desorption reactions proceed from the end of the hexagonal network surface, and the graphite is charged. Discharge occurs.
  • Amorphous carbon has an irregular hexagonal mesh surface or no hexagonal mesh surface. For this reason, in a negative electrode material using amorphous carbon, lithium ion insertion and desorption reactions proceed on the entire surface of the negative electrode material. Therefore, it is easier to obtain a lithium ion battery having better input / output characteristics than when graphite is used as the negative electrode material (see, for example, Patent Document 1 and Patent Document 2). On the other hand, since amorphous carbon has lower crystallinity than graphite, its energy density is lower than that of graphite.
  • JP-A-4-370662 Japanese Patent Laid-Open No. 5-307956 International Publication No. 2012/015054
  • amorphous carbon and graphite must be combined to improve the input / output characteristics while maintaining high energy density, and the graphite must be covered with amorphous carbon.
  • a negative electrode material with improved input / output characteristics while reducing the surface reactivity and maintaining good initial charge / discharge efficiency (see, for example, Patent Document 3).
  • Lithium ion secondary batteries used for EVs, HEVs, and the like are required to have high input / output characteristics because they are charged for regenerative braking and discharged for driving the motor.
  • automobiles are easily affected by the outside air temperature, and particularly in the summer, lithium ion secondary batteries are exposed to high temperatures. Therefore, both input / output characteristics and high-temperature storage characteristics are required.
  • a negative electrode material for a lithium ion secondary battery capable of producing a lithium ion secondary battery excellent in input / output characteristics and high-temperature storage characteristics
  • a method for producing a negative electrode material for lithium ion secondary batteries and a lithium ion secondary
  • An object is to provide a negative electrode for a battery. Furthermore, an object of one embodiment of the present invention is to provide a lithium ion secondary battery that is excellent in input / output characteristics and high-temperature storage characteristics.
  • the particle diameter of the negative electrode material for a lithium ion secondary battery can be reduced.
  • the input / output characteristics can be improved, while the high-temperature storage characteristics tend to deteriorate.
  • the present inventors have found a means for making the input / output characteristics and the high-temperature storage characteristics in a trade-off relationship compatible with each other. Specific means for solving the above problems includes the following aspects.
  • a negative electrode material for a lithium ion secondary battery comprising a carbon material satisfying the following (1) to (3).
  • the average particle diameter (D50) is 22 ⁇ m or less.
  • the particle diameter D90 / D10 is 2.2 or less.
  • Linseed oil absorption is 50 mL / 100 g or less.
  • a negative electrode material for a lithium ion secondary battery comprising a carbon material satisfying the following (1), (2) and (4).
  • the average particle diameter (D50) is 22 ⁇ m or less.
  • the particle diameter D90 / D10 is 2.2 or less.
  • the tap density is 1.00 g / cm 3 or more.
  • a negative electrode material for a lithium ion secondary battery comprising a carbon material satisfying the following (1), (2) and (5).
  • the average particle diameter (D50) is 22 ⁇ m or less.
  • the particle diameter D90 / D10 is 2.2 or less.
  • the ratio of D10 after ultrasonic irradiation to D10 before ultrasonic irradiation when further irradiated with ultrasonic waves for 15 minutes with an ultrasonic cleaner D10 after ultrasonic irradiation / D10) before ultrasonic irradiation is 0.90 or more.
  • ⁇ 4> The negative electrode material for a lithium ion secondary battery according to ⁇ 1>, wherein the carbon material satisfies at least one of the following (4) and (5).
  • the tap density is 1.00 g / cm 3 or more.
  • the ratio of D10 after ultrasonic irradiation to D10 before ultrasonic irradiation when further irradiated with ultrasonic waves for 15 minutes with an ultrasonic cleaner D10 after ultrasonic irradiation / D10) before ultrasonic irradiation is 0.90 or more.
  • ⁇ 5> The negative electrode material for a lithium ion secondary battery according to ⁇ 2>, wherein the carbon material satisfies at least one of the following (3) and (5).
  • ⁇ 6> The negative electrode material for a lithium ion secondary battery according to ⁇ 3>, wherein the carbon material satisfies at least one of the following (3) and (4).
  • (3) Linseed oil absorption is 50 mL / 100 g or less.
  • (4) The tap density is 1.00 g / cm 3 or more.
  • the carbon material does not have two or more exothermic peaks in a temperature range of 300 ° C. to 1000 ° C. in a differential thermal analysis in an air stream, and any one of ⁇ 1> to ⁇ 8>
  • the negative electrode material for lithium ion secondary batteries as described.
  • ⁇ 12> The negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 11>, wherein the carbon material satisfies at least one of the following (6) and (7).
  • the ratio of the circularity of 0.6 to 0.8 and the particle diameter of 10 ⁇ m to 20 ⁇ m is 5% by number or more of the entire carbon material.
  • the ratio of the circularity of 0.7 or less and the particle diameter of 10 ⁇ m or less is 0.3% by number or less of the entire carbon material.
  • ⁇ 14> Any one of ⁇ 1> to ⁇ 13> by heat-treating a mixture including a first carbon material serving as a nucleus and a precursor of a second carbon material having lower crystallinity than the first carbon material
  • the manufacturing method of the negative electrode material for lithium ion secondary batteries including the process of manufacturing the carbon material of description.
  • a negative electrode for a lithium ion secondary battery comprising a negative electrode material layer comprising the negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 13>, and a current collector.
  • a lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to ⁇ 16>, a positive electrode, and an electrolytic solution.
  • a negative electrode material for a lithium ion secondary battery capable of producing a lithium ion secondary battery excellent in input / output characteristics and high-temperature storage characteristics
  • a method for producing a negative electrode material for lithium ion secondary batteries, and a lithium ion secondary A negative electrode for a battery can be provided.
  • a lithium ion secondary battery having excellent input / output characteristics and high-temperature storage characteristics can be provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes.
  • numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with a value shown in each test.
  • the content and content of each component in the negative electrode material and in the composition are the negative electrode material and the negative electrode material unless there is a specific case when there are a plurality of substances corresponding to each component in the negative electrode material and the composition. It means the total content and content of the plurality of substances present in and in the composition.
  • the particle diameter of each component in the negative electrode material and in the composition is such that in the negative electrode material and in the composition, when there are plural kinds of particles corresponding to each component, unless otherwise specified, in the negative electrode material and in the composition It means the value for the mixture of the plural types of particles present therein.
  • the term “layer” refers to a case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. included.
  • laminate indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the negative electrode material for a lithium ion secondary battery in the first embodiment of the present invention includes a carbon material that satisfies the following (1) to (3).
  • the average particle diameter (D50) is 22 ⁇ m or less.
  • the particle diameter D90 / D10 is 2.2 or less.
  • Linseed oil absorption is 50 mL / 100 g or less.
  • the tap density of the carbon material tends to be improved.
  • the electrode density when the negative electrode material for lithium ion secondary batteries is applied to the current collector is increased by improving the tap density of the carbon material.
  • the required pressing pressure tends to be reduced.
  • the orientation of the carbon material in the lateral direction is lowered, and it becomes easier to take in and out lithium ions during charge and discharge.
  • lithium ion secondary batteries with superior input / output characteristics can be manufactured. It is in.
  • the carbon material In lithium ion secondary batteries, the carbon material repeatedly expands and contracts due to charge and discharge, so if the adhesion between the carbon material and the current collector is low, the carbon material peels off from the current collector and the charge / discharge capacity decreases, resulting in a cycle. There is a risk that the characteristics will deteriorate.
  • the adhesion between the carbon material that is the negative electrode active material and the current collector tends to be improved by improving the tap density of the carbon material.
  • the negative electrode material for a lithium ion secondary battery of this embodiment even when the carbon material repeatedly expands and contracts due to charge and discharge, the adhesion between the carbon material and the current collector is maintained, There is a tendency that a lithium ion secondary battery having excellent life characteristics such as high-temperature storage characteristics and cycle characteristics can be produced.
  • the negative electrode material for lithium ion secondary batteries has high adhesion between the carbon material and the current collector, the amount of binder required when manufacturing the negative electrode can be reduced, and the energy density can be reduced. There is a tendency that an excellent lithium ion secondary battery can be manufactured at low cost.
  • the negative electrode material for a lithium ion secondary battery of the first embodiment includes a carbon material that satisfies the above (1) to (3).
  • the content of the carbon material in the negative electrode material is not particularly limited, and is preferably, for example, 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more, It is especially preferable that it is 100 mass%.
  • the negative electrode material may include other carbon materials other than the carbon material satisfying the above (1) to (3).
  • the other carbon material is not particularly limited, and examples thereof include natural graphite such as scale, earth, and sphere, graphite such as artificial graphite, amorphous carbon, carbon black, fibrous carbon, and nanocarbon.
  • the negative electrode material may contain particles containing an element capable of inserting and extracting lithium ions.
  • the element capable of inserting and extracting lithium ions is not particularly limited, and examples thereof include Si, Sn, Ge, and In.
  • the average particle diameter (D50) of the carbon material is 22 ⁇ m or less. Further, the average particle diameter (D50) of the carbon material is 17 ⁇ m from the viewpoint that the diffusion distance of lithium from the surface of the negative electrode material to the inside is suppressed and the input / output characteristics in the lithium ion secondary battery are further improved. Or less, more preferably 15 ⁇ m or less, and even more preferably 13 ⁇ m or less. In addition, the average particle diameter (D50) of the carbon material is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and further preferably 9 ⁇ m or more from the viewpoint that a carbon material excellent in tap density is easily obtained. preferable.
  • the average particle diameter (D50) of the carbon material is the particle diameter when the cumulative volume distribution curve is drawn from the small diameter side in the particle diameter distribution of the carbon material and the cumulative 50%.
  • the average particle diameter (D50) is measured, for example, by dispersing a carbon material in purified water containing a surfactant and using a laser diffraction particle size distribution measuring apparatus (for example, SALD-3000J, manufactured by Shimadzu Corporation). be able to.
  • the particle diameter D90 / D10 of the carbon material is 2.2 or less. Further, the particle diameter D90 / D10 of the carbon material is preferably 2.0 or less, from the viewpoint of easily obtaining a carbon material having an excellent tap density and suppressing aggregation of the carbon materials, and 1.8 or less. Is more preferable, and it is further more preferable that it is 1.6 or less. Moreover, the lower limit of D90 / D10 of the particle diameter of a carbon material is not specifically limited, What is necessary is just 1.0 or more, for example from the point that the contact
  • the particle diameter (D10) of the carbon material is a particle diameter when the cumulative volume distribution curve is drawn from the small diameter side in the particle diameter distribution of the carbon material, and the cumulative particle diameter (D90) is 10%.
  • the particle size (D10) and the particle size (D90) are 0.06 g of a carbon material and purified water containing a surfactant having a mass ratio of 0.2% (trade name: Liponol T / 15, manufactured by Lion Corporation).
  • the sample was placed in a test tube (12 mm ⁇ 120 mm, manufactured by Maruemu Co., Ltd.), stirred for 20 seconds with a test tube mixer (Pasolina NS-80, manufactured by ASONE Co., Ltd.), and then a laser diffraction particle size distribution analyzer (for example, Shimadzu Corporation). It can be measured using a SALD-3000J) manufactured by Seisakusho.
  • the linseed oil absorption of the carbon material is 50 mL / 100 g or less. Further, the linseed oil absorption amount of the carbon material is preferably 48 mL / 100 g or less from the viewpoint of improving the tap density of the carbon material and further improving the input / output characteristics and cycle characteristics of the lithium ion secondary battery, / 100 g or less is more preferable, and 45 mL / 100 g or less is more preferable. Moreover, the minimum of the linseed oil absorption amount of a carbon material is not specifically limited, For example, 35 mL / 100g or more may be sufficient and 40 mL / 100g or more may be sufficient.
  • the linseed oil absorption amount of the carbon material is dibutyl phthalate (DBP) as a reagent liquid described in JIS K6217-4: 2008 “Carbon black for rubber—Basic characteristics—Part 4: Determination of oil absorption amount”. ), But not linseed oil (manufactured by Kanto Chemical Co., Inc.). Tilt linseed oil to the target carbon powder with a constant speed burette and measure the change in viscosity characteristics from the torque detector. The addition amount of the reagent liquid per unit mass of the carbon material corresponding to 70% of the generated maximum torque is defined as the linseed oil absorption (mL / 100 g). As a measuring device, it can measure, for example using the absorption amount measuring apparatus of Asahi Research Institute.
  • the carbon material preferably satisfies at least one of the following (4) and (5) together with the above (1) to (3).
  • the tap density is 1.00 g / cm 3 or more.
  • D10 before ultrasonic irradiation (the carbon material in (2) above)
  • the ratio of D10 after ultrasonic irradiation to the particle size (D10) is 0.90 or more.
  • a lithium ion secondary battery having superior input / output characteristics and cycle characteristics can be manufactured.
  • the press pressure required for obtaining the target electrode density in the negative electrode for a lithium ion secondary battery can be further reduced. This tends to make it possible to manufacture a lithium ion secondary battery that is superior in input / output characteristics. Furthermore, by satisfying the above (4), there is a tendency that a lithium ion secondary battery excellent in the adhesion between the carbon material and the current collector and in the cycle characteristics can be manufactured.
  • the rate of change of D10 before and after ultrasonic irradiation of the carbon material is small. Thereby, aggregation of carbon materials is suppressed more and it exists in the tendency for the circularity of a carbon material to become higher. As a result, the tap density of the carbon material is excellent, and the input / output characteristics and the cycle characteristics of the negative electrode for a lithium ion secondary battery tend to be excellent.
  • the tap density of the carbon material from the viewpoint of more excellent cycle characteristics and energy density of the lithium ion secondary battery, more preferably 1.02 g / cm 3 or more, further preferably 1.05 g / cm 3 or more .
  • the tap density of the carbon material is within the range satisfying the above (1) to (3).
  • the average particle diameter (D50) of the carbon material is increased, or the particle diameter D90 / D10 of the carbon material is decreased.
  • the value tends to increase by decreasing the linseed oil absorption of the carbon material.
  • the tap density of the carbon material is such that a sample powder of 100 cm 3 is put into a flat bottom test tube with a capacity of 150 cm 3 (manufactured by Kuramochi Scientific Instruments, KRS-406), and the flat bottom test tube with a scale is plugged. It means a value obtained from the mass and volume of the sample powder after dropping the graduated flat bottom test tube 250 times from a height of 5 cm.
  • D10 after ultrasonic irradiation / D10 before ultrasonic irradiation is more preferably 0.92 or more from the viewpoint of further suppressing aggregation of carbon materials and further increasing the circularity of the carbon material, More preferably, it is 0.95 or more.
  • the upper limit of D10 after ultrasonic irradiation / D10 before ultrasonic irradiation is not particularly limited, and may be, for example, 1.0 or less.
  • the sample used for the measurement of D10 after ultrasonic irradiation in (5) above is obtained as follows.
  • a test tube (12 mm ⁇ 120 mm, manufactured by Marm Co., Ltd.) containing 0.06 g of a carbon material and purified water containing a surfactant having a mass ratio of 0.2% (trade name: Liponol T / 15, manufactured by Lion Corporation).
  • a test tube mixer (Pasolina NS-80, manufactured by ASONE CORPORATION). After that, the test tube is placed in an ultrasonic cleaner (US-102, manufactured by SN Corporation) so that the test tube does not move.
  • Purified water is added to the ultrasonic cleaner until the solution in the test tube is immersed, and ultrasonic waves are applied for 15 minutes. (High frequency output 100 W and oscillation frequency 38 kHz). Thereby, the sample used for the measurement of D10 after ultrasonic irradiation is obtained.
  • the measurement method of D10 before ultrasonic irradiation and D10 after ultrasonic irradiation is the same as the measurement method of the particle diameter (D10) of the carbon material described above.
  • the carbon material preferably satisfies at least one of the following (6) and (7) together with the above (1) to (3), and more preferably satisfies the following (6) and (7).
  • (6) The ratio of the circularity of 0.6 to 0.8 and the particle diameter of 10 ⁇ m to 20 ⁇ m is 5% by number or more of the entire carbon material.
  • (7) The ratio of the circularity of 0.7 or less and the particle diameter of 10 ⁇ m or less is 0.3% by number or less of the entire carbon material.
  • a lithium ion secondary battery having excellent input / output characteristics tends to be obtained.
  • the pressure of the press at the time of manufacturing the electrode is transmitted in a highly uniform state from the surface of the coated surface to the particles near the current collector.
  • an electrode having excellent density uniformity Due to the excellent uniformity of the electrode density, a lithium ion secondary battery having excellent input / output characteristics tends to be obtained.
  • the adhesion between the negative electrode material and the current collector is unlikely to decrease, and an electrode excellent in the adhesion between the negative electrode material and the current collector tends to be obtained.
  • a lithium ion secondary battery having excellent life characteristics such as input / output characteristics, high-temperature storage characteristics, and cycle characteristics tends to be obtained.
  • the ratio of the circularity of 0.6 to 0.8 and the particle size of 10 ⁇ m to 20 ⁇ m indicates that the total number of carbon materials is 5 in terms of the balance between the electrical resistance of the electrode and the adhesion between the negative electrode material and the current collector. % To 20% by number is more preferable, and 7% to 15% by number is more preferable.
  • the ratio of the circularity of 0.7 or less and the particle size of 10 ⁇ m or less is more preferably 0.25% by number or less based on the total carbon material. More preferably, it is 2% by number or less.
  • the circularity of the carbon material and the ratio of the particle diameter within a predetermined range can be measured by a wet flow type particle diameter / shape analyzer.
  • the particle diameter and circularity of the carbon material are measured by setting the particle diameter in the range of 0.5 ⁇ m to 200 ⁇ m and the circularity in the range of 0.2 to 1.0. From the measurement data, the ratio of the circularity of 0.6 to 0.8 and the particle diameter of 10 ⁇ m to 20 ⁇ m and the ratio of the circularity of 0.7 or less and the particle diameter of 10 ⁇ m or less are calculated.
  • FPIA-3000 manufactured by Malvern
  • FPIA-3000 manufactured by Malvern
  • the carbon material preferably has an average interplanar distance d 002 obtained by an X-ray diffraction method of 0.334 nm to 0.338 nm.
  • the average interplanar distance d 002 is 0.338 nm or less, the initial charge / discharge efficiency and energy density in the lithium ion secondary battery tend to be excellent.
  • 0.3354 nm is a theoretical value of the graphite crystal, and the energy density tends to increase as the value is closer to this value.
  • the value of the average interplanar spacing d 002 of the carbon material tends to decrease, for example, by increasing the temperature of the heat treatment when producing the negative electrode material. Therefore, the average interplanar spacing d 002 of the carbon material can be controlled by adjusting the temperature of the heat treatment for producing the negative electrode material.
  • the R value of the Raman spectroscopic measurement of the carbon material is preferably 0.1 to 1.0, more preferably 0.2 to 0.8, and further preferably 0.3 to 0.7. preferable.
  • the R value is 0.1 or more, there are sufficient graphite lattice defects used for taking in and out lithium ions, and the deterioration of input / output characteristics tends to be suppressed.
  • the R value is 1.0 or less, the decomposition reaction of the electrolytic solution is sufficiently suppressed, and the decrease in the initial efficiency tends to be suppressed.
  • the R value is the Raman spectrum obtained in the Raman spectrometry, to define the intensity Ig of the maximum peak in the vicinity of 1580 cm -1, the intensity ratio of the intensity Id of the maximum peak around 1360 cm -1 and (Id / Ig) .
  • the peak appearing near 1580 cm -1 generally a peak identified as corresponding to the graphite crystal structure, means a peak observed in the example 1530cm -1 ⁇ 1630cm -1.
  • the peak appearing in the vicinity of 1360 cm ⁇ 1 is usually a peak identified as corresponding to the amorphous structure of carbon, for example, a peak observed at 1300 cm ⁇ 1 to 1400 cm ⁇ 1 .
  • the Raman spectroscopic measurement is performed by using a laser Raman spectrophotometer (model number: NRS-1000, JASCO Corporation) and an argon laser on a sample plate in which a negative electrode material for a lithium ion secondary battery is set flat. Measurement is performed by irradiating light.
  • the measurement conditions are as follows. Argon laser light wavelength: 532 nm Wave number resolution: 2.56 cm -1 Measurement range: 1180 cm ⁇ 1 to 1730 cm ⁇ 1 Peak research: background removal
  • the specific surface area (hereinafter also referred to as “N 2 specific surface area”) obtained from nitrogen adsorption measurement at 77 K of the carbon material is preferably 2 m 2 / g to 8 m 2 / g, and 2.5 m 2 / g. More preferably, it is ⁇ 7 m 2 / g, and further preferably 3 m 2 / g to 6 m 2 / g. If the N 2 specific surface area is within the above range, a good balance between the input / output characteristics and the initial charge / discharge efficiency in the lithium ion secondary battery tends to be obtained.
  • N 2 specific surface area specifically, can be determined using the BET method from an adsorption isotherm obtained from the nitrogen adsorption measurements at 77K.
  • CO 2 adsorption amount (hereinafter also referred to as “CO 2 adsorption amount”) determined by carbon dioxide adsorption at 273 K of the carbon material is A and the above-mentioned N 2 specific surface area value is B
  • CO 2 adsorption amount per unit area calculated by the formula is 0.01cm 3 / m 2 ⁇ 0.10cm 3 / m 2, 0.03cm 3 / m 2 ⁇ 0.08cm 3 / m 2 is more preferable, and 0.04 cm 3 / m 2 to 0.06 cm 3 / m 2 is even more preferable.
  • the carbon material does not have two or more exothermic peaks in a temperature range of 300 ° C. to 1000 ° C. in a differential thermal analysis (DTA analysis) in an air stream.
  • DTA analysis differential thermal analysis
  • the carbon material does not have two or more exothermic peaks means that there are no plural identifiable exothermic peaks in the temperature range of 300 ° C. to 1000 ° C., that is, no identifiable exothermic peaks. Or having one.
  • having a plurality of distinguishable exothermic peaks means having a plurality of exothermic peaks whose peak values are separated by at least 5 ° C. or more.
  • the differential thermal analysis can be measured using a differential thermal thermogravimetric simultaneous measurement apparatus (for example, EXSTAR TG / DTA6200 manufactured by Seiko Instruments Inc.). Specifically, using ⁇ -alumina as a reference, measurement was performed at a heating rate of 2.5 ° C / min under a flow of 300 mL / min of dry air, and the presence or absence of a DTA exothermic peak at 300 ° C to 1000 ° C was confirmed. To do.
  • a differential thermal thermogravimetric simultaneous measurement apparatus for example, EXSTAR TG / DTA6200 manufactured by Seiko Instruments Inc.
  • the carbon material is not particularly limited, and examples thereof include graphite, low crystalline carbon, amorphous carbon, and mesophase carbon.
  • Examples of graphite include artificial graphite, natural graphite, graphitized mesophase carbon, graphitized carbon fiber, and the like.
  • the carbon material is preferably spherical graphite particles, more preferably spherical artificial graphite, spherical natural graphite, or the like from the viewpoint of excellent charge / discharge capacity in a lithium ion secondary battery and excellent tap density.
  • the graphite particles are suitably coated. can do.
  • a carbon material having lower crystallinity for example, amorphous carbon
  • the graphite particles are suitably coated. can do.
  • the carbon material contained in the negative electrode material may be one type alone or two or more types.
  • the carbon material may include a first carbon material as a nucleus and a second carbon material that is present in at least part of the surface of the first carbon material and has lower crystallinity than the first carbon material. Good.
  • the first carbon material and the second carbon material are not particularly limited as long as the second carbon material satisfies the condition that the crystallinity of the second carbon material is lower than the crystallinity of the first carbon material. Is appropriately selected.
  • Each of the first carbon material and the second carbon material may be a single type or two or more types. The presence of the second carbon material on the surface of the first carbon material can be confirmed by observation with a transmission electron microscope.
  • the second carbon material preferably contains at least one of crystalline carbon and amorphous carbon. Specifically, it is at least one selected from the group consisting of carbonaceous substances and carbonaceous particles obtained from an organic compound (hereinafter also referred to as a precursor of the second carbon material) that can be changed to carbonaceous by heat treatment. Preferably there is.
  • the precursor of the second carbon material is not particularly limited, and examples thereof include pitch and organic polymer compounds.
  • pitch for example, ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt cracking pitch, pitch produced by pyrolyzing polyvinyl chloride, etc., and naphthalene are polymerized in the presence of a super strong acid. Pitch.
  • organic polymer compound include thermoplastic resins such as polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, and polyvinyl butyral, and natural substances such as starch and cellulose.
  • Carbonaceous particles used as the second carbon material are not particularly limited, and examples thereof include acetylene black, oil furnace black, ketjen black, channel black, thermal black, and soil graphite.
  • the ratio of the amount of the first carbon material and the second carbon material in the carbon material is not particularly limited. From the viewpoint of improving the input / output characteristics of the lithium ion secondary battery, the ratio of the amount of the second carbon material to the total mass of the carbon material is preferably 0.1% by mass to 15% by mass, and preferably 1% by mass to It is more preferably 10% by mass, and further preferably 1% by mass to 5% by mass.
  • the amount of the second carbon material in the carbon material can be calculated by multiplying the amount of the second carbon material precursor by the residual carbon ratio (mass%). .
  • the remaining carbon ratio of the precursor of the second carbon material is determined based on the second carbon material alone (or in the state of a mixture of the second carbon material precursor and the first carbon material in a predetermined ratio). From the mass of the precursor of the second carbon material before the heat treatment and the mass of the carbonaceous material derived from the precursor of the second carbon material after the heat treatment It can be calculated by thermogravimetric analysis or the like.
  • the negative electrode material for a lithium ion secondary battery in the second embodiment and the third embodiment of the present invention will be described.
  • the average particle diameter (D50) of carbon material D90 / D10 of particle diameter, linseed oil absorption, tap density, D10 / after ultrasonic irradiation D10 before irradiation with ultrasonic waves, average interplanar spacing d 002 , R value, N 2 specific surface area, preferred numerical ranges of CO 2 adsorption amount, measurement method, and the like are the same as those in the first embodiment, and thus description thereof is omitted. .
  • the carbon material used in the second embodiment and the third embodiment includes two carbon materials in a temperature range of 300 ° C. to 1000 ° C. in differential thermal analysis (DTA analysis) in an air stream. It is preferable not to have the above exothermic peak.
  • the carbon material used in the second embodiment and the third embodiment may be the carbon material specifically described in the first embodiment.
  • the negative electrode material for a lithium ion secondary battery in the second embodiment of the present invention includes a carbon material that satisfies the following (1), (2), and (4).
  • the average particle diameter (D50) is 22 ⁇ m or less.
  • the particle diameter D90 / D10 is 2.2 or less.
  • the tap density is 1.00 g / cm 3 or more.
  • the tap density of the carbon material becomes a high value, the electrode density when the negative electrode material for a lithium ion secondary battery is applied to a current collector is increased, and in the negative electrode for a lithium ion secondary battery There is a tendency that the press pressure required to obtain the target electrode density can be lowered.
  • the press pressure By reducing the press pressure, the orientation of the carbon material in the lateral direction is lowered, and it becomes easier to take in and out lithium ions during charge and discharge. As a result, lithium ion secondary batteries with superior input / output characteristics can be manufactured. It is in.
  • the carbon material In lithium ion secondary batteries, the carbon material repeatedly expands and contracts due to charge and discharge, so if the adhesion between the carbon material and the current collector is low, the carbon material peels off from the current collector and the charge / discharge capacity decreases, resulting in a cycle. There is a risk that the characteristics will deteriorate.
  • the adhesion between the carbon material that is the negative electrode active material and the current collector tends to be improved by improving the tap density of the carbon material.
  • the negative electrode material for a lithium ion secondary battery of this embodiment even when the carbon material repeatedly expands and contracts due to charge and discharge, the adhesion between the carbon material and the current collector is maintained, It tends to be possible to produce a lithium ion secondary battery having excellent cycle characteristics.
  • the negative electrode material for lithium ion secondary batteries has high adhesion between the carbon material and the current collector, the amount of binder required when manufacturing the negative electrode can be reduced, and the energy density can be reduced. There is a tendency that an excellent lithium ion secondary battery can be manufactured at low cost.
  • the carbon material preferably satisfies at least one of the following (3) and (5) together with the above (1), (2) and (4).
  • (3) Linseed oil absorption is 50 mL / 100 g or less.
  • the ratio of D10 after ultrasonic irradiation to the particle size (D10) (D10 after ultrasonic irradiation / D10 before ultrasonic irradiation) is 0.90 or more.
  • the carbon material preferably satisfies at least one of the following (6) and (7) together with the above (1), (2) and (4), and more preferably satisfies the following (6) and (7).
  • (6) The ratio of the circularity of 0.6 to 0.8 and the particle diameter of 10 ⁇ m to 20 ⁇ m is 5% by number or more of the entire carbon material.
  • (7) The ratio of the circularity of 0.7 or less and the particle diameter of 10 ⁇ m or less is 0.3% by number or less of the entire carbon material.
  • the negative electrode material for a lithium ion secondary battery in the third embodiment of the present invention includes a carbon material that satisfies the following (1), (2), and (5).
  • the average particle diameter (D50) is 22 ⁇ m or less.
  • the particle diameter D90 / D10 is 2.2 or less.
  • D10 before ultrasonic irradiation (the carbon material in (2) above)
  • the ratio of D10 after ultrasonic irradiation to the particle size (D10) is 0.90 or more.
  • the aggregation of the carbon materials is further suppressed, the circularity of the carbon material becomes higher, and the tap density of the carbon material tends to be improved.
  • the electrode density when the negative electrode material for lithium ion secondary batteries is applied to the current collector is increased by improving the tap density of the carbon material.
  • the required pressing pressure tends to be reduced.
  • the orientation of the carbon material in the lateral direction is lowered, and it becomes easier to take in and out lithium ions during charge and discharge.
  • lithium ion secondary batteries with superior input / output characteristics can be manufactured. It is in.
  • the carbon material In lithium ion secondary batteries, the carbon material repeatedly expands and contracts due to charge and discharge, so if the adhesion between the carbon material and the current collector is low, the carbon material peels off from the current collector and the charge / discharge capacity decreases, resulting in a cycle. There is a risk that the characteristics will deteriorate.
  • the adhesion between the carbon material that is the negative electrode active material and the current collector tends to be improved by improving the tap density of the carbon material.
  • the negative electrode material for a lithium ion secondary battery of this embodiment even when the carbon material repeatedly expands and contracts due to charge and discharge, the adhesion between the carbon material and the current collector is maintained, It tends to be possible to produce a lithium ion secondary battery having excellent cycle characteristics.
  • the negative electrode material for lithium ion secondary batteries has high adhesion between the carbon material and the current collector, the amount of binder required when manufacturing the negative electrode can be reduced, and the energy density can be reduced. There is a tendency that an excellent lithium ion secondary battery can be manufactured at low cost.
  • the carbon material preferably satisfies at least one of the following (3) and (4) together with the above (1), (2) and (5).
  • (3) Linseed oil absorption is 50 mL / 100 g or less.
  • (4) The tap density is 1.00 g / cm 3 or more.
  • the carbon material preferably satisfies at least one of the following (6) and (7) together with the above (1), (2) and (5), and more preferably satisfies the following (6) and (7).
  • (6) The ratio of the circularity of 0.6 to 0.8 and the particle diameter of 10 ⁇ m to 20 ⁇ m is 5% by number or more of the entire carbon material.
  • (7) The ratio of the circularity of 0.7 or less and the particle diameter of 10 ⁇ m or less is 0.3% by number or less of the entire carbon material.
  • the method for producing the negative electrode material of the present disclosure is not particularly limited. From the viewpoint of efficiently producing a negative electrode material that satisfies the above-described conditions, when producing a carbon material using a precursor of the first carbon material and the second carbon material, it is preferable to produce the negative electrode material by the following method for producing a negative electrode material. .
  • the manufacturing method of the negative electrode material for lithium ion secondary batteries in one Embodiment of this invention contains the 1st carbon material used as a nucleus, and the precursor of the 2nd carbon material whose crystallinity is lower than a 1st carbon material. A step of heat treating the mixture to produce a carbon material.
  • the negative electrode material mentioned above can be manufactured efficiently.
  • details and preferred embodiments of the first carbon material, the precursor of the second carbon material, and the carbon material are the same as those described in the item of the negative electrode material for lithium ion secondary batteries described above.
  • the temperature at which the mixture is heat-treated is preferably from 950 ° C. to 1500 ° C., more preferably from 1000 ° C. to 1300 ° C., from the viewpoint of improving input / output characteristics in the lithium ion secondary battery. More preferably, it is 1250 degreeC.
  • the temperature at which the mixture is heat treated may be constant from the start to the end of the heat treatment or may vary.
  • the contents of the precursors of the first carbon material and the second carbon material in the mixture before the heat treatment are not particularly limited.
  • the content of the first carbon material is preferably 85% by mass to 99.9% by mass with respect to the total mass of the mixture, and is 90% by mass. More preferably, it is ⁇ 99% by mass, and still more preferably 95% by mass to 99% by mass.
  • the content of the precursor of the second carbon material is 0.1% by mass to 15% by mass with respect to the total mass of the mixture from the viewpoint of improving input / output characteristics in the lithium ion secondary battery. It is preferably 1% by mass to 10% by mass, more preferably 1% by mass to 5% by mass.
  • the negative electrode for lithium ion secondary batteries of this indication contains the negative electrode material layer containing the negative electrode material for lithium ion secondary batteries of this indication mentioned above, and a collector.
  • the negative electrode for a lithium ion secondary battery may include other components as necessary in addition to the negative electrode material layer and the current collector including the negative electrode material described above.
  • a negative electrode material and a binder are kneaded together with a solvent to prepare a slurry-like negative electrode material composition, which is applied onto a current collector to form a negative electrode material layer.
  • the negative electrode material composition can be formed into a sheet shape, a pellet shape, or the like and integrated with the current collector. Kneading can be performed using a dispersing device such as a stirrer, a ball mill, a super sand mill, or a pressure kneader.
  • the binder used for preparing the negative electrode material composition is not particularly limited.
  • binders ethylenically unsaturated compounds such as styrene-butadiene copolymer, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, acrylonitrile, methacrylonitrile, hydroxyethyl acrylate, hydroxyethyl methacrylate, etc.
  • Polymers of carboxylic acid esters polymers of ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, Examples thereof include a polymer compound having high ionic conductivity such as polyacrylonitrile.
  • the amount is not particularly limited.
  • the content of the binder may be, for example, 0.5 to 20 parts by mass with respect to a total of 100 parts by mass of the negative electrode material and the binder.
  • the solvent is not particularly limited as long as it can dissolve or disperse the binder.
  • Specific examples include organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and ⁇ -butyrolactone.
  • the usage-amount of a solvent will not be restrict
  • the negative electrode material composition may contain a thickener.
  • the thickener include carboxymethyl cellulose or a salt thereof, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid or a salt thereof, alginic acid or a salt thereof, oxidized starch, phosphorylated starch, and casein.
  • the amount is not particularly limited.
  • the content of the thickener may be, for example, 0.1 to 5 parts by mass with respect to 100 parts by mass of the negative electrode material.
  • the negative electrode material composition may include a conductive auxiliary material.
  • the conductive auxiliary material include carbon materials such as natural graphite, artificial graphite, and carbon black (acetylene black, thermal black, furnace black, etc.), conductive oxides, conductive nitrides, and the like.
  • the amount is not particularly limited.
  • the content of the conductive auxiliary material may be, for example, 0.5 to 15 parts by mass with respect to 100 parts by mass of the negative electrode material.
  • the material of the current collector is not particularly limited, and can be selected from aluminum, copper, nickel, titanium, stainless steel, and the like.
  • the state of the current collector is not particularly limited, and can be selected from foil, perforated foil, mesh, and the like.
  • porous materials such as porous metal (foamed metal) and carbon paper can be used as the current collector.
  • the method is not particularly limited, and a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, Known methods such as a doctor blade method, a comma coating method, a gravure coating method, and a screen printing method can be employed.
  • the solvent contained in the negative electrode material composition is removed by drying. Drying can be performed using, for example, a hot air dryer, an infrared dryer, or a combination of these devices. You may perform a rolling process as needed. The rolling process can be performed by a method such as a flat plate press or a calendar roll.
  • the integration method is not particularly limited. For example, it can be performed by a roll, a flat plate press, or a combination of these means.
  • the pressure at the time of integration is preferably 1 MPa to 200 MPa, for example.
  • the lithium ion secondary battery of the present disclosure includes the above-described negative electrode for a lithium ion secondary battery of the present disclosure (hereinafter also simply referred to as “negative electrode”), a positive electrode, and an electrolytic solution.
  • the positive electrode can be obtained by forming a positive electrode material layer on the current collector in the same manner as the above-described negative electrode manufacturing method.
  • a metal or alloy such as aluminum, titanium, stainless steel or the like made into a foil shape, a perforated foil shape, a mesh shape, or the like can be used.
  • the positive electrode material used for forming the positive electrode material layer is not particularly limited.
  • a metal compound metal oxide, metal sulfide, etc. capable of doping or intercalating lithium ions and a conductive polymer material
  • the electrolytic solution is not particularly limited, and for example, a solution obtained by dissolving a lithium salt as an electrolyte in a non-aqueous solvent (so-called organic electrolytic solution) can be used.
  • a solution obtained by dissolving a lithium salt as an electrolyte in a non-aqueous solvent can be used.
  • the lithium salt include LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 and the like.
  • One lithium salt may be used alone, or two or more lithium salts may be used.
  • Non-aqueous solvents include ethylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, cyclohexylbenzene, sulfolane, propane sultone, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-one, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1, 2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate Ethyl acetate, trimethyl phosphate ester, triethyl ester,
  • the state of the positive electrode and the negative electrode in the lithium ion secondary battery is not particularly limited.
  • the positive electrode and the negative electrode and a separator disposed between the positive electrode and the negative electrode as necessary may be wound in a spiral shape or may be stacked in a flat plate shape.
  • the separator is not particularly limited, and for example, a resin nonwoven fabric, cloth, microporous film, or a combination thereof can be used.
  • the resin include those mainly composed of polyolefin such as polyethylene and polypropylene.
  • the shape of the lithium ion secondary battery is not particularly limited.
  • a laminate type battery, a paper type battery, a button type battery, a coin type battery, a laminated type battery, a cylindrical type battery, and a square type battery can be mentioned.
  • the lithium ion secondary battery of the present disclosure is suitable as a large-capacity lithium ion secondary battery used for electric vehicles, power tools, power storage devices, and the like because of its excellent output characteristics.
  • a lithium ion secondary battery used for electric vehicles, power tools, power storage devices, and the like because of its excellent output characteristics.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • PHEV plug-in hybrid electric vehicles
  • It is suitable as a lithium ion secondary battery.
  • the obtained carbon layer-covered carbon particles were crushed with a cutter mill and then sieved with a 350 mesh sieve, and the portion under the sieve was used as the negative electrode material for this test.
  • measurement of the average interplanar distance d 002 measurement of the R value, measurement of the N 2 specific surface area, measurement of the average particle diameter (50% D), measurement of D90 / D10, tap by the following methods
  • the density was measured and D10 after ultrasonic irradiation / D10 before ultrasonic irradiation was measured.
  • Each physical property value is shown in Table 2.
  • the carbon coating amount (%) in Table 2 means a ratio (mass%) using coal tar pitch with respect to spherical natural graphite.
  • the average interplanar spacing d002 was measured by X-ray diffraction. Specifically, the negative electrode material sample was filled in a concave portion of a quartz sample holder and set on a measurement stage, and the measurement was performed under the following measurement conditions using a wide-angle X-ray diffractometer (manufactured by Rigaku Corporation). The results are shown in Table 2.
  • Output 40kV, 20mA
  • Sampling width 0.010 ° Scanning range: 10 ° to 35 °
  • Scan speed 0.5 ° / min
  • R value performs Raman spectrometry under the following conditions, in the obtained Raman spectrum, the intensity Ig of the maximum peak in the vicinity of 1580 cm -1, the intensity ratio of the intensity Id of the maximum peak in the vicinity of 1360 cm -1 (Id / Ig).
  • the Raman spectroscopic measurement was performed by using a laser Raman spectrophotometer (model number: NRS-1000, manufactured by JASCO Corporation) and irradiating a sample plate set so that the negative electrode material sample was flat with argon laser light. The measurement conditions are as follows. The results are shown in Table 2.
  • the N 2 specific surface area was calculated by the BET method by measuring nitrogen adsorption at a liquid nitrogen temperature (77K) by a one-point method using a high-speed specific surface area / pore distribution measuring device (FlowSorbIII, manufactured by Shimadzu Corporation). The results are shown in Table 2.
  • the CO 2 adsorption amount was measured using Belsorb II manufactured by Microtrack Bell Co., Ltd. Moreover, it measured using Belprep II by a micro track bell company as a pre-processing apparatus.
  • the degree of vacuum was 1 Pa or less, the temperature was raised to 250 ° C. at 5 ° C./minute, held for 10 minutes, then heated to 350 ° C. at 3 ° C./minute and held for 210 minutes.
  • Test 1 except that the carbon coating amount was changed to the value shown in Table 2 in Test 1 and the spherical natural graphite used as a raw material was changed as appropriate to set the average particle diameter (D50) and D90 / D10 to the values shown in Table 2.
  • a negative electrode material was produced. About the produced negative electrode material, each physical-property value was measured similarly to the test 1.
  • FIG. Each physical property value is shown in Table 2.
  • lithium ion secondary batteries for input / output characteristics evaluation were produced in the following procedure.
  • an aqueous solution (CMC concentration: 2% by mass) of CMC (carboxymethyl cellulose, manufactured by Daicel Finechem Co., Ltd., product number 2200) as a thickener, the solid content of CMC becomes 1 part by mass.
  • the mixture was kneaded for 10 minutes.
  • purified water was added so that the total solid concentration of the negative electrode material and CMC was 40 mass% to 50 mass%, and kneading was performed for 10 minutes.
  • the negative electrode material composition was applied to an electrolytic copper foil having a thickness of 11 ⁇ m with a comma coater with a clearance adjusted so that the coating amount per unit area was 10.0 mg / cm 2 to form a negative electrode material layer. did. Thereafter, the electrode density was adjusted to 1.3 g / cm 3 with a hand press.
  • the electrolytic copper foil on which the negative electrode material layer was formed was punched into a disk shape having a diameter of 14 mm to produce a sample electrode (negative electrode).
  • the prepared sample electrode (negative electrode), separator, and counter electrode (positive electrode) were placed in the order of a coin-type battery container, and an electrolyte was injected to prepare a coin-type lithium ion secondary battery.
  • an electrolytic solution ethylene carbonate (EC), ethyl methyl carbonate (EMC) (volume ratio of EC to EMC is 3: 7) is mixed with vinylene carbonate (VC) 0.5% with respect to the total amount of the mixed solution. added mass%, it was used a solution obtained by dissolving LiPF 6 to a concentration of 1 mol / L.
  • the counter electrode (positive electrode) metallic lithium was used.
  • As the separator a polyethylene microporous film having a thickness of 20 ⁇ m was used. Using the produced lithium ion secondary battery, initial charge / discharge characteristics and output characteristics (initial DCR and DCR after high temperature storage) were evaluated by the following methods.
  • the direct current resistance (DCR) of the lithium ion secondary battery was measured to determine the output density of the battery. Specifically, it is as follows. Moreover, each physical property value is shown in Table 3 and FIG.
  • FIG. 1 shows the relationship between the average particle diameter (D50) of the carbon material contained in the negative electrode material and the output characteristics.
  • FIG. 1 shows the output characteristics (initial DCR ( ⁇ ) at ⁇ 30 ° C.) in the lithium ion secondary batteries of Tests 2 to 11. As shown in FIG. 1, when the average particle diameter is 17 ⁇ m or less, the output characteristics are excellent, and when the carbon coating amount is 3%, the output characteristics tend to be excellent.
  • FIG. 2 shows output characteristics (initial DCR ( ⁇ ) at ⁇ 30 ° C.) in the lithium ion secondary battery. As shown in FIG. 2, the output characteristics tend to be excellent when the carbon coating amount is around 3%.
  • the tests 1 to 11 showed a tendency to be superior in output characteristics and high temperature storage characteristics as compared to the tests 12 to 17.
  • tests 1 to 11 showed a tendency to be excellent in output characteristics and high-temperature storage characteristics.
  • Tests 1 to 9 satisfying the above (6) and (7) showed a tendency to be superior in output characteristics as compared to Tests 10 and 11.
  • lithium ion secondary batteries for cycle characteristic evaluation were produced in the following procedure. First, an aqueous solution (CMC concentration: 2% by mass) of CMC (carboxymethyl cellulose, Daiichi Kogyo Seiyaku Co., Ltd., Cellogen WS-C) as a thickener is used with respect to 98 parts by mass of the negative electrode material, and the solid content of CMC is 1 mass. And kneading for 10 minutes. Next, purified water was added so that the total solid concentration of the negative electrode material and CMC was 40 mass% to 50 mass%, and kneading was performed for 10 minutes.
  • CMC concentration carboxymethyl cellulose, Daiichi Kogyo Seiyaku Co., Ltd., Cellogen WS-C
  • purified water was added so that the total solid concentration of the negative electrode material and CMC was 40 mass% to 50 mass%, and kneading was performed for 10 minutes.
  • the produced sample electrode (negative electrode) was folded, and the folded separator and the counter electrode (positive electrode) were arranged in that order, and the electrolyte was injected to produce a lithium ion secondary battery.
  • ethylene carbonate (EC), ethyl methyl carbonate (EMC) volume ratio of EC to EMC is 3: 7
  • VC vinylene carbonate
  • a counter electrode positive electrode
  • a separator a polyethylene microporous film having a thickness of 20 ⁇ m was used.
  • Discharge capacity maintenance rate (%) (discharge capacity after 100 cycles, 200 cycles or 300 cycles / discharge capacity at the first cycle) ⁇ 100 The results are shown in FIG. As shown in FIG. 3, in Test 2, it was shown that the discharge capacity retention rate was higher than that in Test 12, and the cycle characteristics were excellent.
  • a negative electrode material composition is prepared using the negative electrode materials obtained in Test 2 and Test 12, and the negative electrode material composition is applied to an electrolytic copper foil to form a negative electrode material layer.
  • An electric field copper foil and a negative electrode material layer The adhesiveness was evaluated.
  • a negative electrode material composition was prepared by the same method as described above for the negative electrode materials obtained in Test 2 and Test 12.
  • the negative electrode material composition was applied to an electrolytic copper foil having a thickness of 20 ⁇ m with a comma coater with a clearance adjusted so that the coating amount per unit area was 10.0 mg / cm 2 to form a negative electrode material layer. did. Thereafter, the electrode density was adjusted to 1.3 g / cm 3 with a hand press.
  • the electrolytic copper foil on which the negative electrode material layer was formed was punched out to be 2.5 cm ⁇ 12 cm to obtain a copper foil with a negative electrode material layer for adhesion evaluation.
  • the exposed end of the copper foil is grasped with a peeling strength device (manufactured by Imada Co., Ltd., push-pull scale & digital force gauge), and the pedestal is laterally moved at a speed of 20 mm / min.
  • a peeling strength device manufactured by Imada Co., Ltd., push-pull scale & digital force gauge
  • the pedestal is laterally moved at a speed of 20 mm / min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

下記(1)~(3)、(6)及び(7)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。 (1)平均粒子径(D50)が22μm以下である。 (2)粒子径のD90/D10が2.2以下である。 (3)亜麻仁油吸油量が50mL/100g以下である。 (6)円形度が0.6~0.8で粒子径が10μm~20μmの割合が、炭素材料全体の5個数%以上である。 (7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。

Description

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池は小型、軽量、かつ高エネルギー密度という特性を活かし、従来よりノート型PC、携帯電話、スマートフォン、タブレット型PC等の電子機器に広く使用されている。近年、CO排出による地球温暖化等の環境問題を背景に、電池のみで走行を行うクリーンな電気自動車(EV)、ガソリンエンジンと電池を組み合わせたハイブリッド電気自動車(HEV)等が普及してきている。また最近では、電力貯蔵用にも用いられており、多岐の分野においてその用途は拡大している。
 リチウムイオン二次電池の負極材は、その性能が、リチウムイオン二次電池の特性に大きく影響する。リチウムイオン二次電池用負極材の材料としては、炭素材料が広く用いられている。負極材に使用される炭素材料は、黒鉛と、黒鉛より結晶性の低い炭素材料(非晶質炭素等)とに大別される。黒鉛は、炭素原子の六角網面が規則正しく積層した構造を有し、リチウムイオン二次電池の負極材としたときに六角網面の端部よりリチウムイオンの挿入及び脱離反応が進行し、充放電が行われる。
 非晶質炭素は、六角網面の積層が不規則であるか、六角網面を有しない。このため、非晶質炭素を用いた負極材では、リチウムイオンの挿入及び脱離反応が負極材の全表面で進行する。そのため、負極材として黒鉛を用いる場合よりも入出力特性に優れるリチウムイオン電池が得られやすい(例えば、特許文献1及び特許文献2参照)。一方、非晶質炭素は黒鉛よりも結晶性が低いため、エネルギー密度が黒鉛よりも低い。
特開平4-370662号公報 特開平5-307956号公報 国際公開第2012/015054号
 上記のような炭素材料の特性を考慮し、非晶質炭素と黒鉛とを複合化して高いエネルギー密度を維持しつつ入出力特性を高め、かつ黒鉛を非晶質炭素で被覆した状態とすることで表面の反応性を低減させ、初期の充放電効率を良好に維持しつつ入出力特性を高めた負極材も提案されている(例えば、特許文献3参照)。EV、HEV等に用いられるリチウムイオン二次電池においては、回生ブレーキの電力の充電と、モータ駆動用に放電するため、高い入出力特性が求められる。また、自動車は外気温の影響を受けやすく、特に夏場はリチウムイオン二次電池が高温状態に晒される。そのため、入出力特性と高温保存特性との両立が求められる。
 本発明の一態様では、入出力特性及び高温保存特性に優れるリチウムイオン二次電池を製造可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池用負極を提供することを目的とする。
 さらに、本発明の一態様では、入出力特性及び高温保存特性に優れるリチウムイオン二次電池を提供することを目的とする。
 入出力特性を向上させる方法として、例えば、リチウムイオン二次電池用負極材の粒子径を小さくすることが挙げられる。しかしながら、粒子径を小さくした場合、入出力特性を向上させることができる一方で、高温保存特性は悪化する傾向にある。本発明者らは、鋭意研究を行った結果、トレードオフの関係にある入出力特性と高温保存特性とを両立させる手段を見出した。
 上記課題を解決するための具体的手段は、以下の態様を含む。
<1> 下記(1)~(3)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(3)亜麻仁油吸油量が50mL/100g以下である。
<2> 下記(1)、(2)及び(4)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(4)タップ密度が1.00g/cm以上である。
<3> 下記(1)、(2)及び(5)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
<4> 前記炭素材料は、下記(4)及び(5)の少なくとも一方を満たす、<1>に記載のリチウムイオン二次電池用負極材。
(4)タップ密度が1.00g/cm以上である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
<5> 前記炭素材料は、下記(3)及び(5)の少なくとも一方を満たす、<2>に記載のリチウムイオン二次電池用負極材。
(3)亜麻仁油吸油量が50mL/100g以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
<6> 前記炭素材料は、下記(3)及び(4)の少なくとも一方を満たす、<3>に記載のリチウムイオン二次電池用負極材。
(3)亜麻仁油吸油量が50mL/100g以下である。
(4)タップ密度が1.00g/cm以上である。
<7> X線回折法より求めた平均面間隔d002が0.334nm~0.338nmである、<1>~<6>のいずれか1つに記載のリチウムイオン二次電池用負極材。
<8> ラマン分光測定のR値が0.1~1.0である、<1>~<7>のいずれか1つに記載のリチウムイオン二次電池用負極材。
<9> 前記炭素材料は、空気気流中における示差熱分析において、300℃~1000℃の温度範囲に二つ以上の発熱ピークを有さない、<1>~<8>のいずれか1つに記載のリチウムイオン二次電池用負極材。
<10> 前記炭素材料の77Kでの窒素吸着測定より求めた比表面積が2m/g~8m/gである、<1>~<9>のいずれか1つに記載のリチウムイオン二次電池用負極材。
<11> 前記炭素材料の273Kでの二酸化炭素吸着より求めたCO吸着量の値をA、前記炭素材料の77Kでの窒素吸着測定より求めた比表面積の値をBとしたとき、下記(a)式で算出される単位面積あたりのCO吸着量が0.01cm/m~0.10cm/mである、<10>に記載のリチウムイオン二次電池用負極材。
 単位面積あたりのCO吸着量(cm/m)=A(cm/g)/B(m/g)・・・(a)
<12> 前記炭素材料は、下記(6)及び(7)の少なくとも一方を満たす、<1>~<11>のいずれか1つに記載のリチウムイオン二次電池用負極材。
(6)円形度が0.6~0.8で粒子径が10μm~20μmの割合が、炭素材料全体の5個数%以上である。
(7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
<13> 前記炭素材料は、前記(6)及び(7)を満たす、<12>に記載のリチウムイオン二次電池用負極材。
<14> 核となる第一炭素材と、第一炭素材よりも結晶性の低い第二炭素材の前駆体と、を含む混合物を熱処理して<1>~<13>のいずれか1つに記載の炭素材料を製造する工程を含む、リチウムイオン二次電池用負極材の製造方法。
<15> 前記工程では、950℃~1500℃にて前記混合物を熱処理する、<14>に記載のリチウムイオン二次電池用負極材の製造方法。
<16> <1>~<13>のいずれか1つに記載のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含む、リチウムイオン二次電池用負極。
<17> <16>に記載のリチウムイオン二次電池用負極と、正極と、電解液とを含むリチウムイオン二次電池。
 本発明の一態様では、入出力特性及び高温保存特性に優れるリチウムイオン二次電池を製造可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池用負極を提供することができる。
 さらに、本発明の一態様では、入出力特性及び高温保存特性に優れるリチウムイオン二次電池を提供することができる。
各試験において、炭素材料の平均粒子径と出力特性との関係を示すグラフである。 各試験において、炭素材料の炭素被覆量と出力特性との関係を示すグラフである。 試験2及び試験12において、サイクル数と放電容量維持率との関係を示すグラフである。 試験1~11及び試験12~17において、出力特性と高温貯蔵容量維持率との関係を示すグラフである。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、各試験に示されている値に置き換えてもよい。
 本開示において、負極材中及び組成物中における各成分の含有率及び含有量は、負極材中及び組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、負極材中及び組成物中に存在する当該複数種の物質の合計の含有率及び含有量を意味する。
 本開示において負極材中及び組成物中の各成分の粒子径は、負極材中及び組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、負極材中及び組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
<リチウムイオン二次電池用負極材>
[第1実施形態]
 本発明の第1実施形態におけるリチウムイオン二次電池用負極材は、下記(1)~(3)を満たす炭素材料を含む。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(3)亜麻仁油吸油量が50mL/100g以下である。
 リチウムイオン二次電池用負極材が、上記(1)~(3)を満たすことにより、入出力特性及び高温保存特性に優れるリチウムイオン二次電池を製造可能となる。
 また、上記(1)~(3)を満たすことにより、炭素材料のタップ密度が向上する傾向にある。炭素材料のタップ密度が向上することにより、リチウムイオン二次電池用負極材を集電体に塗布した際の電極密度が高くなり、リチウムイオン二次電池用負極における目的の電極密度を得るために必要なプレス圧を低くすることができる傾向にある。プレス圧を低くすることにより、炭素材料の横方向の配向性が低くなり、充放電時のリチウムイオンの出し入れをしやすくなる結果、入出力特性により優れるリチウムイオン二次電池が製造可能となる傾向にある。
 リチウムイオン二次電池では、充放電により炭素材料が膨張収縮を繰り返すため、炭素材料と集電体との密着性が低いと炭素材料が集電体から剥離し、充放電容量が低下してサイクル特性が低下するおそれがある。一方、本実施形態のリチウムイオン二次電池用負極材では、炭素材料のタップ密度が向上することにより、負極活物質である炭素材料と集電体との密着性が向上する傾向にある。そのため、本実施形態のリチウムイオン二次電池用負極材を用いることにより、充放電により炭素材料が膨張収縮を繰り返した場合であっても、炭素材料と集電体との密着性を維持し、高温保存特性及びサイクル特性等の寿命特性に優れるリチウムイオン二次電池を製造可能となる傾向にある。
 さらに、リチウムイオン二次電池用負極材では、炭素材料と集電体との密着性が高いため、負極を製造する際に必要となる結着剤の量を削減することができ、エネルギー密度に優れるリチウムイオン二次電池を低コストで製造可能となる傾向にある。
 以下、第1実施形態のリチウムイオン二次電池用負極材の構成について、より詳細に説明する。
〔炭素材料〕
 第1実施形態のリチウムイオン二次電池用負極材(以下、単に「負極材」とも称する。)は、上記(1)~(3)を満たす炭素材料を含む。負極材中における炭素材料の含有率は、特に限定されず、例えば、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、100質量%であることが特に好ましい。
 負極材は、上記(1)~(3)を満たす炭素材料以外のその他の炭素材料を含んでもよい。その他の炭素材料としては、特に制限されず、例えば、鱗状、土状、球状等の天然黒鉛、人造黒鉛などの黒鉛、非晶質炭素、カーボンブラック、繊維状炭素、ナノカーボンなどが挙げられる。その他の炭素材料は、1種単独で用いてもよく、2種以上併用してもよい。また、負極材はリチウムイオンを吸蔵・放出可能な元素を含む粒子を含んでいてもよい。リチウムイオンを吸蔵・放出可能な元素としては、特に限定されず、Si、Sn、Ge、In等が挙げられる。
 炭素材料の平均粒子径(D50)は、22μm以下である。また、炭素材料の平均粒子径(D50)は、負極材の表面から内部へのリチウムの拡散距離が長くなることが抑制され、リチウムイオン二次電池における入出力特性をより向上させる点から、17μm以下であることが好ましく、15μm以下であることがより好ましく、13μm以下であることがさらに好ましい。また、炭素材料の平均粒子径(D50)は、タップ密度に優れる炭素材料が得られやすい点から、5μm以上であることが好ましく、7μm以上であることがより好ましく、9μm以上であることがさらに好ましい。
 炭素材料の平均粒子径(D50)は、炭素材料の粒子径分布において、小径側から体積累積分布曲線を描いた場合に、累積50%となるときの粒子径である。平均粒子径(D50)は、例えば、界面活性剤を含んだ精製水に炭素材料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製、SALD-3000J)を用いて測定することができる。
 炭素材料の粒子径のD90/D10は、2.2以下である。また、炭素材料の粒子径のD90/D10は、タップ密度に優れる炭素材料が得られやすい点及び炭素材料同士の凝集を抑制する点から、2.0以下であることが好ましく、1.8以下であることがより好ましく、1.6以下であることがさらに好ましい。また、炭素材料の粒子径のD90/D10の下限は特に限定されず、1.0以上であればよく、例えば、粒子間接触が良好となり、入出力特性及びサイクル特性により優れる点から、1.3以上であることが好ましい。
 炭素材料の粒子径(D10)は、炭素材料の粒子径分布において、小径側から体積累積分布曲線を描いた場合に、累積10%となるときの粒子径であり、炭素材料の粒子径(D90)は、炭素材料の粒子径分布において、小径側から体積累積分布曲線を描いた場合に、累積90%となるときの粒子径である。粒子径(D10)及び粒子径(D90)は、炭素材料0.06gと、質量比0.2%の界面活性剤(商品名:リポノールT/15、ライオン株式会社製)を含む精製水とを、試験管(12mm×120mm、株式会社マルエム製)に入れ、試験管ミキサー(Pasolina NS-80、アズワン株式会社製)で20秒間撹拌した後、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製、SALD-3000J)を用いて測定することができる。
 炭素材料の亜麻仁油吸油量は、50mL/100g以下である。また、炭素材料の亜麻仁油吸油量は、炭素材料のタップ密度を向上させ、リチウムイオン二次電池における入出力特性及びサイクル特性をより向上させる点から、48mL/100g以下であることが好ましく、47mL/100g以下であることがより好ましく、45mL/100g以下であることがさらに好ましい。また、炭素材料の亜麻仁油吸油量の下限は特に限定されず、例えば、35mL/100g以上であってもよく、40mL/100g以上であってもよい。
 本開示において、炭素材料の亜麻仁油吸油量は、JIS K6217-4:2008「ゴム用カーボンブラック‐基本特性‐第4部:オイル吸収量の求め方」に記載の試薬液体としてフタル酸ジブチル(DBP)ではなく、亜麻仁油(関東化学株式会社製)を使用することにより測定することができる。対象炭素粉末に定速度ビュレットで亜麻仁油を滴定し、粘度特性変化をトルク検出器から測定する。発生した最大トルクの70%のトルクに対応する、炭素材料の単位質量当りの試薬液体の添加量を亜麻仁油吸油量(mL/100g)とする。測定器としては、例えば、株式会社あさひ総研の吸収量測定装置を用いて測定することができる。
 炭素材料は、上記(1)~(3)とともに、下記(4)及び(5)の少なくとも一方を満たすことが好ましい。
(4)タップ密度が1.00g/cm以上である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10(前述の(2)における炭素材料の粒子径(D10)と同様)に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
 炭素材料が、上記(4)及び(5)の少なくとも一方を満たすことにより、入出力特性及びサイクル特性により優れるリチウムイオン二次電池を製造可能となる。
 詳述すると、上記(4)を満たすことにより、リチウムイオン二次電池用負極における目的の電極密度を得るために必要なプレス圧をより低くすることができる傾向にある。これにより、入出力特性により優れるリチウムイオン二次電池が製造可能となる傾向にある。さらに、上記(4)を満たすことにより、炭素材料と集電体との密着性により優れ、サイクル特性により優れるリチウムイオン二次電池を製造可能となる傾向にある。
 また、上記(5)を満たすことにより、炭素材料の超音波照射前後におけるD10の変化する割合が小さい。これにより、炭素材料同士の凝集がより抑制されており、炭素材料の円形度がより高くなる傾向にある。その結果、炭素材料のタップ密度に優れ、リチウムイオン二次電池用負極における入出力特性及びサイクル特性により優れる傾向にある。
 炭素材料のタップ密度は、リチウムイオン二次電池におけるサイクル特性及びエネルギー密度により優れる点から、1.02g/cm以上であることがより好ましく、1.05g/cm以上であることがさらに好ましい。
 炭素材料のタップ密度は、上記(1)~(3)を満たす範囲内において、例えば、炭素材料の平均粒子径(D50)を大きくしたり、炭素材料の粒子径のD90/D10を小さくしたり、炭素材料の亜麻仁油吸油量を小さくしたりすること等によって、値が高くなる傾向にある。
 本開示において、炭素材料のタップ密度は、容量150cmの目盛付き平底試験管(株式会社蔵持科学器械製作所製、KRS-406)に試料粉末100cmを投入し、前記目盛付き平底試験管に栓をし、この目盛付き平底試験管を5cmの高さから250回落下させた後の試料粉末の質量及び容積から求められる値を意味する。
 また、超音波照射後のD10/超音波照射前のD10は、炭素材料同士の凝集をさらに抑制し、かつ炭素材料の円形度をさらに高める点から、0.92以上であることがより好ましく、0.95以上であることがさらに好ましい。
 なお、超音波照射後のD10/超音波照射前のD10の上限は、特に限定されず、例えば1.0以下であればよい。
 上記(5)における超音波照射後のD10の測定に用いる試料は以下のようにして得られる。
 炭素材料0.06gと、質量比0.2%の界面活性剤(商品名:リポノールT/15、ライオン株式会社製)を含む精製水とを、試験管(12mm×120mm、株式会社マルエム製)に入れ、試験管ミキサー(Pasolina NS-80、アズワン株式会社製)で20秒間撹拌する。その後、超音波洗浄機(US-102、株式会社エスエヌディ製)に前記試験管が動かないように設置し、試験管内の溶液が浸かる程度まで超音波洗浄機に精製水を入れ、15分間超音波を照射(高周波出力100W及び発振周波数38kHz)する。これにより、超音波照射後のD10の測定に用いる試料が得られる。
 炭素材料において、超音波照射前のD10及び超音波照射後のD10の測定方法は、前述の炭素材料の粒子径(D10)の測定方法と同様である。
 炭素材料は、上記(1)~(3)とともに、下記(6)及び(7)の少なくとも一方を満たすことが好ましく、下記(6)及び(7)を満たすことがより好ましい。
(6)円形度が0.6~0.8で粒子径が10μm~20μmの割合が、炭素材料全体の5個数%以上である。
(7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
 上記(6)を満たす場合、円形度が0.6~0.8の炭素材料が所定量存在するため、粒子間の接触面積を増加させることができ、電気抵抗の低い電極が得られる傾向にある。電気抵抗の低い電極が得られることにより、入出力特性に優れるリチウムイオン二次電池が得られる傾向にある。また、粒子径が10μm~20μmの炭素材料が所定量存在するため、電極を製造する際のプレスの圧力が塗布面の表面から集電体付近の粒子まで均一性が高い状態にて伝わり、電極密度の均一性に優れる電極が得られる傾向にある。電極密度の均一性に優れることにより、入出力特性に優れるリチウムイオン二次電池が得られる傾向にある。
 上記(7)を満たす場合、負極材と集電体との密着性が低下しにくく、負極材と集電体との密着性に優れた電極が得られる傾向にある。負極材と集電体との密着性が良好となることで、入出力特性、高温貯蔵特性、サイクル特性等の寿命特性に優れるリチウムイオン二次電池が得られる傾向にある。
 円形度が0.6~0.8で粒子径が10μm~20μmの割合は、電極の電気抵抗、及び負極材と集電体との密着性のバランスの観点からは、炭素材料全体の5個数%~20個数%であることがより好ましく、7個数%~15個数%であることがさらに好ましい。
 円形度が0.7以下で粒子径が10μm以下の割合は、負極材と集電体との密着性を向上させる観点からは、炭素材料全体の0.25個数%以下がより好ましく、0.2個数%以下であることがさらに好ましい。
 本開示において、炭素材料の円形度及び所定の範囲の粒子径の割合は湿式フロー式粒子径・形状分析装置で測定することができる。例えば、粒子径を0.5μm~200μmの範囲及び円形度を0.2~1.0の範囲に設定して炭素材料の粒子径及び円形度を測定する。測定データから、円形度が0.6~0.8で粒子径が10μm~20μmの割合、及び円形度が0.7以下で粒子径が10μm以下の割合をそれぞれ算出する。
 測定器としては、FPIA-3000(マルバーン社製)を用いて測定することができる。本測定の前処理として、炭素材料0.06gと、質量比0.2%の界面活性剤(商品名:リポノールT/15、ライオン株式会社製)を含む精製水とを、試験管(12mm×120mm、株式会社マルエム製)に入れ、試験管ミキサー(Pasolina NS-80、アズワン株式会社製)で20秒間撹拌した後、1分間超音波で撹拌してもよい。超音波洗浄機としては、株式会社エスエヌディ製US102(高周波出力100W、発振周波数38kHz)を用いることができる。
 また、炭素材料は、X線回折法により求めた平均面間隔d002が0.334nm~0.338nmであることが好ましい。平均面間隔d002が0.338nm以下であると、リチウムイオン二次電池における初回充放電効率及びエネルギー密度に優れる傾向にある。
 平均面間隔d002の値は、0.3354nmが黒鉛結晶の理論値であり、この値に近いほどエネルギー密度が大きくなる傾向にある。
 炭素材料の平均面間隔d002は、X線(CuKα線)を試料に照射し、回折線をゴニオメーターにより測定し得た回折プロファイルより、回折角2θ=24°~27°付近に現れる炭素002面に対応した回折ピークより、ブラッグの式を用いて算出することができる。
 炭素材料の平均面間隔d002の値は、例えば、負極材を作製する際の熱処理の温度を高くすることで小さくなる傾向がある。従って、負極材を作製する際の熱処理の温度を調節することで、炭素材料の平均面間隔d002を制御することができる。
(ラマン分光測定のR値)
 炭素材料のラマン分光測定のR値は、0.1~1.0であることが好ましく、0.2~0.8であることがより好ましく、0.3~0.7であることがさらに好ましい。R値が0.1以上であると、リチウムイオンの出し入れに用いられる黒鉛格子欠陥が充分存在し、入出力特性の低下が抑制される傾向にある。R値が1.0以下であると、電解液の分解反応が充分に抑制され、初回効率の低下が抑制される傾向にある。
 前記R値は、ラマン分光測定において得られたラマン分光スペクトルにおいて、1580cm-1付近の最大ピークの強度Igと、1360cm-1付近の最大ピークの強度Idの強度比(Id/Ig)と定義する。ここで、1580cm-1付近に現れるピークとは、通常、黒鉛結晶構造に対応すると同定されるピークであり、例えば1530cm-1~1630cm-1に観測されるピークを意味する。また1360cm-1付近に現れるピークとは、通常、炭素の非晶質構造に対応すると同定されるピークであり、例えば1300cm-1~1400cm-1に観測されるピークを意味する。
 本開示において、ラマン分光測定は、レーザーラマン分光光度計(型番:NRS-1000、日本分光株式会社)を用い、リチウムイオン二次電池用負極材を平らになるようにセットした試料板にアルゴンレーザー光を照射して測定を行う。測定条件は以下の通りである。
 アルゴンレーザー光の波長:532nm
 波数分解能:2.56cm-1
 測定範囲:1180cm-1~1730cm-1
 ピークリサーチ:バックグラウンド除去
 炭素材料の77Kでの窒素吸着測定より求めた比表面積(以下、「N比表面積」とも称する。)は、2m/g~8m/gであることが好ましく、2.5m/g~7m/gであることがより好ましく、3m/g~6m/gであることがさらに好ましい。N比表面積が上記範囲内であれば、リチウムイオン二次電池における入出力特性及び初回充放電効率の良好なバランスが得られる傾向にある。N比表面積は、具体的には、77Kでの窒素吸着測定より得た吸着等温線からBET法を用いて求めることができる。
 炭素材料の273Kでの二酸化炭素吸着より求めたCO吸着量(以下、「CO吸着量」とも称する。)の値をA、前述のN比表面積の値をBとしたとき、下記(a)式で算出される単位面積あたりのCO吸着量が0.01cm/m~0.10cm/mであることが好ましく、0.03cm/m~0.08cm/mであることがより好ましく、0.04cm/m~0.06cm/mであることがさらに好ましい。上記範囲内であればリチウムイオン二次電池における入出力特性及び高温保存特性(又は初回充放電効率)について良好なバランスが得られる傾向にある。さらに、単位面積あたりのCO吸着量が0.10cm/m以下であると、電解液との副反応により生じる不可逆容量が減少し初回効率の低下が抑えられる傾向にある。なお、CO吸着量は、測定温度273K、相対圧P/P=3.0×10-2(P=平衡圧、P=26142mmHg(3.49MPa))での値を用いる。
 単位面積あたりのCO吸着量(cm/m)=A(cm/g)/B(m/g)・・・(a)
 炭素材料は、空気気流中における示差熱分析(DTA分析)において、300℃~1000℃の温度範囲に二つ以上の発熱ピークを有さないことが好ましい。これにより、リチウムイオン二次電池における入出力特性及び高温保存特性がより向上する傾向にある。
 なお、炭素材料が二つ以上の発熱ピークを有さないとは、300℃~1000℃の温度範囲において、識別可能な発熱ピークを複数有さない、すなわち、識別可能な発熱ピークを有さない、あるいは1つ有することを意味する。ここで、識別可能な発熱ピークを複数有するとは、ピーク値が少なくとも5℃以上離れている発熱ピークを複数有することを意味する。
 本開示において、示差熱分析(DTA分析)は、示差熱熱重量同時測定装置(例えば、セイコーインスツル株式会社製EXSTAR TG/DTA6200)を用いて測定することができる。具体的には、α-アルミナをリファレンスとして、乾燥空気300mL/分の流通下、昇温速度2.5℃/分で測定を行い、300℃~1000℃でのDTAの発熱ピークの有無を確認する。
 炭素材料としては、特に限定されず、例えば、黒鉛、低結晶性炭素、非晶質炭素、メソフェーズカーボン等が挙げられる。黒鉛としては、人造黒鉛、天然黒鉛、黒鉛化メソフェーズカーボン、黒鉛化炭素繊維等が挙げられる。炭素材料としては、リチウムイオン二次電池における充放電容量に優れ、かつタップ密度に優れる点から、球形の黒鉛粒子であることが好ましく、球形人造黒鉛、球形天然黒鉛等であることがより好ましい。
 また、球形の黒鉛粒子を用いることにより、黒鉛粒子同士の凝集を抑制でき、黒鉛粒子をより結晶性の低い炭素材(例えば、非晶質炭素)で被覆する場合に、好適に黒鉛粒子を被覆することができる。さらに、被覆時に凝集した炭素材料を用いて負極材組成物を作製するときに、撹拌により炭素材料の凝集がほぐれた際、前述の炭素材で被覆されていない領域が露出することが抑制される。その結果、リチウムイオン二次電池を作製した際、炭素材料の表面における電解液の分解反応が抑制されて初回効率の低下が抑制される傾向にある。
 負極材に含まれる炭素材料は、1種単独であっても2種以上であってもよい。
 炭素材料としては、核としての第一炭素材と、第一炭素材の表面の少なくとも一部に存在し、第一炭素材より結晶性が低い第二炭素材と、を含むものであってもよい。第一炭素材及び第二炭素材は、第二炭素材の結晶性が第一炭素材の結晶性よりも低いという条件を満たすものであれば特に制限されず、例えば、前述の炭素材料の例示から適宜選択される。第一炭素材及び第二炭素材は、それぞれ1種単独であっても2種以上であってもよい。
 第一炭素材の表面に第二炭素材が存在することは、透過型電子顕微鏡観察で確認することができる。
 リチウムイオン二次電池における入出力特性を向上させる点から、第二炭素材は、結晶性炭素又は非晶質炭素の少なくとも一方を含むことが好ましい。具体的には、熱処理により炭素質に変化しうる有機化合物(以下、第二炭素材の前駆体とも称する)から得られる炭素質の物質及び炭素質粒子からなる群より選択される少なくとも1種であることが好ましい。
 第二炭素材の前駆体は特に制限されず、ピッチ、有機高分子化合物等が挙げられる。ピッチとしては、例えば、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して作製されるピッチ、及びナフタレン等を超強酸存在下で重合させて作製されるピッチが挙げられる。有機高分子化合物としては、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性樹脂、デンプン、セルロース等の天然物質などが挙げられる。
 第二炭素材として用いられる炭素質粒子は特に制限されず、アセチレンブラック、オイルファーネスブラック、ケッチェンブラック、チャンネルブラック、サーマルブラック、土壌黒鉛等の粒子が挙げられる。
 炭素材料が第一炭素材及び第二炭素材を含む場合、炭素材料における第一炭素材と第二炭素材の量の割合は、特に制限されない。リチウムイオン二次電池における入出力特性を向上させる点から、炭素材料の総質量における第二炭素材の量の割合は、0.1質量%~15質量%であることが好ましく、1質量%~10質量%であることがより好ましく、1質量%~5質量%であることがさらに好ましい。
 炭素材料における第二炭素材の量は、第二炭素材の前駆体の量から計算する場合は、第二炭素材の前駆体の量にその残炭率(質量%)を乗じることで計算できる。第二炭素材の前駆体の残炭率は、第二炭素材の前駆体を単独で(又は所定割合の第二炭素材の前駆体と第一炭素材の混合物の状態で)第二炭素材の前駆体が炭素質に変化しうる温度で熱処理し、熱処理前の第二炭素材の前駆体の質量と、熱処理後の第二炭素材の前駆体に由来する炭素質の物質の質量とから、熱重量分析等により計算することができる。
 次に、本発明の第2実施形態及び第3実施形態におけるリチウムイオン二次電池用負極材について説明する。なお、第2実施形態及び第3実施形態にて用いる炭素材料について、炭素材料の平均粒子径(D50)、粒子径のD90/D10、亜麻仁油吸油量、タップ密度、超音波照射後のD10/超音波照射前のD10、平均面間隔d002、R値、N比表面積及びCO吸着量の好ましい数値範囲、測定方法等は、第1実施形態と同様であるため、その説明を省略する。
 また、第2実施形態及び第3実施形態にて用いる炭素材料としては、第1実施形態と同様、空気気流中における示差熱分析(DTA分析)において、300℃~1000℃の温度範囲に二つ以上の発熱ピークを有さないことが好ましい。また、第2実施形態及び第3実施形態にて用いる炭素材料としては、第1実施形態にて具体的に説明した炭素材料であってもよい。
[第2実施形態]
 本発明の第2実施形態におけるリチウムイオン二次電池用負極材は、下記(1)、(2)及び(4)を満たす炭素材料を含む。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(4)タップ密度が1.00g/cm以上である。
 リチウムイオン二次電池用負極材が、上記(1)、(2)及び(4)を満たすことにより、入出力特性及び高温保存特性に優れるリチウムイオン二次電池を製造可能となる。
 詳述すると、上記(1)を満たすことにより、入出力特性に優れるリチウムイオン二次電池が製造可能となる傾向にある。
 また、上記(2)を満たすことにより、タップ密度に優れる炭素材料が得られやすくなり、上記(4)を満たす炭素材料が得られやすくなる。上記(4)を満たすことにより、炭素材料のタップ密度は高い値となり、リチウムイオン二次電池用負極材を集電体に塗布した際の電極密度が高くなり、リチウムイオン二次電池用負極における目的の電極密度を得るために必要なプレス圧を低くすることができる傾向にある。プレス圧を低くすることにより、炭素材料の横方向の配向性が低くなり、充放電時のリチウムイオンの出し入れをしやすくなる結果、入出力特性により優れるリチウムイオン二次電池が製造可能となる傾向にある。
 リチウムイオン二次電池では、充放電により炭素材料が膨張収縮を繰り返すため、炭素材料と集電体との密着性が低いと炭素材料が集電体から剥離し、充放電容量が低下してサイクル特性が低下するおそれがある。一方、本実施形態のリチウムイオン二次電池用負極材では、炭素材料のタップ密度が向上することにより、負極活物質である炭素材料と集電体との密着性が向上する傾向にある。そのため、本実施形態のリチウムイオン二次電池用負極材を用いることにより、充放電により炭素材料が膨張収縮を繰り返した場合であっても、炭素材料と集電体との密着性を維持し、サイクル特性に優れるリチウムイオン二次電池を製造可能となる傾向にある。
 さらに、リチウムイオン二次電池用負極材では、炭素材料と集電体との密着性が高いため、負極を製造する際に必要となる結着剤の量を削減することができ、エネルギー密度に優れるリチウムイオン二次電池を低コストで製造可能となる傾向にある。
 炭素材料は、上記(1)、(2)及び(4)とともに、下記(3)及び(5)の少なくとも一方を満たすことが好ましい。
(3)亜麻仁油吸油量が50mL/100g以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10(前述の(2)における炭素材料の粒子径(D10)と同様)に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
 炭素材料が、上記(3)及び(5)の少なくとも一方を満たすことにより、入出力特性及びサイクル特性により優れるリチウムイオン二次電池を製造可能となる。
 炭素材料は、上記(1)、(2)及び(4)とともに、下記(6)及び(7)の少なくとも一方を満たすことが好ましく、下記(6)及び(7)を満たすことがより好ましい。
(6)円形度が0.6~0.8で粒子径が10μm~20μmの割合が、炭素材料全体の5個数%以上である。
(7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
 炭素材料が上記(6)を満たすことにより、入出力特性に優れるリチウムイオン二次電池が得られる傾向にある。
 炭素材料が上記(7)を満たす場合、入出力特性及び高温貯蔵特性、サイクル特性等の寿命特性に優れるリチウムイオン二次電池が得られる傾向にある。
[第3実施形態]
 本発明の第3実施形態におけるリチウムイオン二次電池用負極材は、下記(1)、(2)及び(5)を満たす炭素材料を含む。
(1)平均粒子径(D50)が22μm以下である。
(2)粒子径のD90/D10が2.2以下である。
(5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10(前述の(2)における炭素材料の粒子径(D10)と同様)に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
 リチウムイオン二次電池用負極材が、上記(1)、(2)及び(5)を満たすことにより、入出力特性及びサイクル特性に優れるリチウムイオン二次電池を製造可能となる。
 詳述すると、上記(1)を満たすことにより、高温保存特性に優れるリチウムイオン二次電池が製造可能となる傾向にある。
 また、上記(2)及び(5)を満たすことにより、炭素材料同士の凝集がより抑制されており、炭素材料の円形度がより高くなり、炭素材料のタップ密度が向上する傾向にある。炭素材料のタップ密度が向上することにより、リチウムイオン二次電池用負極材を集電体に塗布した際の電極密度が高くなり、リチウムイオン二次電池用負極における目的の電極密度を得るために必要なプレス圧を低くすることができる傾向にある。プレス圧を低くすることにより、炭素材料の横方向の配向性が低くなり、充放電時のリチウムイオンの出し入れをしやすくなる結果、入出力特性により優れるリチウムイオン二次電池が製造可能となる傾向にある。
 リチウムイオン二次電池では、充放電により炭素材料が膨張収縮を繰り返すため、炭素材料と集電体との密着性が低いと炭素材料が集電体から剥離し、充放電容量が低下してサイクル特性が低下するおそれがある。一方、本実施形態のリチウムイオン二次電池用負極材では、炭素材料のタップ密度が向上することにより、負極活物質である炭素材料と集電体との密着性が向上する傾向にある。そのため、本実施形態のリチウムイオン二次電池用負極材を用いることにより、充放電により炭素材料が膨張収縮を繰り返した場合であっても、炭素材料と集電体との密着性を維持し、サイクル特性に優れるリチウムイオン二次電池を製造可能となる傾向にある。
 さらに、リチウムイオン二次電池用負極材では、炭素材料と集電体との密着性が高いため、負極を製造する際に必要となる結着剤の量を削減することができ、エネルギー密度に優れるリチウムイオン二次電池を低コストで製造可能となる傾向にある。
 炭素材料は、上記(1)、(2)及び(5)とともに、下記(3)及び(4)の少なくとも一方を満たすことが好ましい。
(3)亜麻仁油吸油量が50mL/100g以下である。
(4)タップ密度が1.00g/cm以上である。
 炭素材料が、上記(3)及び(4)の少なくとも一方を満たすことにより、入出力特性及びサイクル特性により優れるリチウムイオン二次電池を製造可能となる。
 炭素材料は、上記(1)、(2)及び(5)とともに、下記(6)及び(7)の少なくとも一方を満たすことが好ましく、下記(6)及び(7)を満たすことがより好ましい。
(6)円形度が0.6~0.8で粒子径が10μm~20μmの割合が、炭素材料全体の5個数%以上である。
(7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
 炭素材料が上記(6)を満たすことにより、入出力特性に優れるリチウムイオン二次電池が得られる傾向にある。
 炭素材料が上記(7)を満たす場合、入出力特性及び高温貯蔵特性、サイクル特性等の寿命特性に優れるリチウムイオン二次電池が得られる傾向にある。
 本開示の負極材の製造方法は、特に制限されない。上述した条件を満たす負極材を効率よく製造する点から、第一炭素材及び第二炭素材の前駆体を用いて炭素材料を製造する場合、以下の負極材の製造方法により製造することが好ましい。
<リチウムイオン二次電池用負極材の製造方法>
 本発明の一実施形態におけるリチウムイオン二次電池用負極材の製造方法は、核となる第一炭素材と、第一炭素材よりも結晶性の低い第二炭素材の前駆体と、を含む混合物を熱処理して炭素材料を製造する工程を含む。
 上記方法によれば、上述した負極材を効率よく製造することができる。
 上記方法において、第一炭素材、第二炭素材の前駆体及び炭素材料の詳細ならびに好ましい態様は、前述のリチウムイオン二次電池用負極材の項目にて説明したものと同様である。
 混合物を熱処理する際の温度は、リチウムイオン二次電池における入出力特性を向上させる点から、950℃~1500℃であることが好ましく、1000℃~1300℃であることがより好ましく、1050℃~1250℃であることがさらに好ましい。混合物を熱処理する際の温度は、熱処理の開始から終了まで一定であっても、変化してもよい。
 上記方法において、熱処理前の混合物中の第一炭素材及び第二炭素材の前駆体の含有率は、特に制限されない。リチウムイオン二次電池における入出力特性を向上させる点から、第一炭素材の含有率は、混合物の総質量に対して、85質量%~99.9質量%であることが好ましく、90質量%~99質量%であることがより好ましく、95質量%~99質量%であることがさらに好ましい。一方、第二炭素材の前駆体の含有率は、リチウムイオン二次電池における入出力特性を向上させる点から、混合物の総質量に対して、0.1質量%~15質量%であることが好ましく、1質量%~10質量%であることがより好ましく、1質量%~5質量%であることがさらに好ましい。
<リチウムイオン二次電池用負極>
 本開示のリチウムイオン二次電池用負極は、上述した本開示のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含む。リチウムイオン二次電池用負極は、前述した負極材を含む負極材層及び集電体の他、必要に応じて他の構成要素を含んでもよい。
 リチウムイオン二次電池用負極は、例えば、負極材と結着剤を溶剤とともに混練してスラリー状の負極材組成物を調製し、これを集電体上に塗布して負極材層を形成することで作製したり、負極材組成物をシート状、ペレット状等の形状に成形し、これを集電体と一体化することで作製したりすることができる。混練は、撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置を用いて行うことができる。
 負極材組成物の調製に用いる結着剤は、特に限定されない。結着剤としては、スチレン-ブタジエン共重合体、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレート、アクリロニトリル、メタクリロニトリル、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート等のエチレン性不飽和カルボン酸エステルの重合体、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸の重合体、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。負極材組成物が結着剤を含む場合、その量は特に制限されない。結着剤の含有量は、例えば、負極材と結着剤の合計100質量部に対して0.5質量部~20質量部であってもよい。
 溶剤は、結着剤を溶解又は分散可能な溶剤であれば特に制限されない。具体的には、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、γ-ブチロラクトン等の有機溶剤が挙げられる。溶剤の使用量は、負極材組成物をペースト等の所望の状態にできれば特に制限されない。溶剤の使用量は、例えば、負極材100質量部に対して60質量部以上150質量部未満であることが好ましい。
 負極材組成物は、増粘剤を含んでもよい。増粘剤としては、カルボキシメチルセルロース又はその塩、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸又はその塩、アルギン酸又はその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。負極材組成物が増粘剤を含む場合、その量は特に制限されない。増粘剤の含有量は、例えば、負極材100質量部に対して0.1質量部~5質量部であってもよい。
 負極材組成物は、導電補助材を含んでもよい。導電補助材としては、天然黒鉛、人造黒鉛、カーボンブラック(アセチレンブラック、サーマルブラック、ファーネスブラック等)等の炭素材料、導電性を示す酸化物、導電性を示す窒化物などが挙げられる。負極材組成物が導電補助材を含む場合、その量は特に制限されない。導電補助材の含有量は、例えば、負極材100質量部に対して0.5質量部~15質量部であってもよい。
 集電体の材質は特に制限されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等から選択できる。集電体の状態は特に制限されず、箔、穴開け箔、メッシュ等から選択できる。また、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料なども集電体として使用可能である。
 負極材組成物を集電体に塗布して負極材層を形成する場合、その方法は特に制限されず、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、コンマコート法、グラビアコート法、スクリーン印刷法等の公知の方法を採用できる。負極材組成物を集電体に塗布した後は、負極材組成物に含まれる溶剤を乾燥により除去する。乾燥は、例えば、熱風乾燥機、赤外線乾燥機又はこれらの装置の組み合わせを用いて行うことができる。必要に応じて圧延処理を行ってもよい。圧延処理は、平板プレス、カレンダーロール等の方法で行うことができる。
 シート、ペレット等の形状に成形された負極材組成物を集電体と一体化して負極材層を形成する場合、一体化の方法は特に制限されない。例えば、ロール、平板プレス又はこれらの手段の組み合わせにより行うことができる。一体化する際の圧力は、例えば、1MPa~200MPaであることが好ましい。
<リチウムイオン二次電池>
 本開示のリチウムイオン二次電池は、上述した本開示のリチウムイオン二次電池用負極(以下、単に「負極」とも称する。)と、正極と、電解液とを含む。
 正極は、上述した負極の作製方法と同様にして、集電体上に正極材層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金を、箔状、穴開け箔状、メッシュ状等にしたものが使用可能である。
 正極材層の形成に用いる正極材は、特に制限されない。例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物(金属酸化物、金属硫化物等)及び導電性高分子材料が挙げられる。より具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、これらの複酸化物(LiCoNiMn、x+y+z=1)、添加元素M’を含む複酸化物(LiCoNiMnM’、a+b+c+d=1、M’:Al、Mg、Ti、Zr又はGe)、スピネル型リチウムマンガン酸化物(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)等のリチウム含有化合物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などが挙げられる。正極材は、1種単独であっても2種以上であってもよい。
 電解液は特に制限されず、例えば、電解質としてのリチウム塩を非水系溶媒に溶解したもの(いわゆる有機電解液)が使用可能である。
 リチウム塩としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等が挙げられる。リチウム塩は、1種単独であっても2種以上であってもよい。
 非水系溶媒としては、エチレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、シクロヘキシルベンゼン、スルホラン、プロパンスルトン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル、トリメチルリン酸エステル、トリエチルリン酸エステル等が挙げられる。非水系溶媒は、1種単独であっても2種以上であってもよい。
 リチウムイオン二次電池における正極及び負極の状態は、特に限定されない。例えば、正極及び負極と、必要に応じて正極及び負極の間に配置されるセパレータとを、渦巻状に巻回した状態であっても、これらを平板状として積層した状態であってもよい。
 セパレータは特に制限されず、例えば、樹脂製の不織布、クロス、微孔フィルム又はそれらを組み合わせたものが使用可能である。樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とするものが挙げられる。リチウムイオン二次電池の構造上、正極と負極が直接接触しない場合は、セパレータは使用しなくてもよい。
 リチウムイオン二次電池の形状は、特に制限されない。例えば、ラミネート型電池、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池及び角型電池が挙げられる。
 本開示のリチウムイオン二次電池は、出力特性に優れるため、電気自動車、パワーツール、電力貯蔵装置等に使用される大容量のリチウムイオン二次電池として好適である。特に、加速性能及びブレーキ回生性能の向上のために大電流での充放電が求められている電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)等に使用されるリチウムイオン二次電池として好適である。
 以下、本発明を以下の試験結果により具体的に説明するが、本発明はこれらの試験結果に限定されるものではない。
〔試験1〕
(負極材の作製)
 平均粒子径10μmの球形天然黒鉛(d002=0.336nm)100質量部とコールタールピッチ(軟化点90℃、残炭率(炭化率)50%)1質量部を混合した。次いで窒素流通下、20℃/時間の昇温速度で1100℃まで昇温し、1100℃(焼成処理温度)にて1時間保持して炭素層被覆黒鉛粒子(炭素材料)とした。得られた炭素層被覆炭素粒子をカッターミルで解砕した後、350メッシュ篩で篩分けを行い、その篩下分を本試験の負極材とした。得られた負極材については、下記方法により、平均面間隔d002の測定、R値の測定、N比表面積の測定、平均粒子径(50%D)の測定、D90/D10の測定、タップ密度の測定及び超音波照射後のD10/超音波照射前のD10の測定を行った。
 各物性値を表2に示す。なお、表2中の炭素被覆量(%)は、球形天然黒鉛に対するコールタールピッチを使用した割合(質量%)を意味する。
[平均面間隔d002の測定]
 平均面間隔d002の測定は、X線回折法により行った。具体的には、負極材試料を石英製の試料ホルダーの凹部分に充填して測定ステージにセットし、広角X線回折装置(株式会社リガク製)を用いて以下の測定条件で行った。結果は表2に示す。
 線源:CuKα線(波長=0.15418nm)
 出力:40kV、20mA
 サンプリング幅:0.010°
 走査範囲:10°~35°
 スキャンスピード:0.5°/分
[R値の測定]
 R値は、下記の条件でラマン分光測定を行い、得られたラマン分光スペクトルにおいて、1580cm-1付近の最大ピークの強度Igと、1360cm-1付近の最大ピークの強度Idの強度比(Id/Ig)とした。
 ラマン分光測定は、レーザーラマン分光光度計(型番:NRS-1000、日本分光株式会社製)を用い、負極材試料が平らになるようにセットした試料板にアルゴンレーザー光を照射して行った。測定条件は以下の通りである。結果は表2に示す。
 アルゴンレーザー光の波長:532nm
 波数分解能:2.56cm-1
 測定範囲:1180cm-1~1730cm-1
 ピークリサーチ:バックグラウンド除去
[N比表面積の測定]
 N比表面積は、高速比表面積/細孔分布測定装置(FlowSorbIII 株式会社島津製作所製)を用いて、液体窒素温度(77K)での窒素吸着を一点法で測定してBET法により算出した。結果は表2に示す。
[CO吸着量の測定]
 CO吸着量は、マイクロトラックベル株式会社製のBelsorpIIを使用して測定した。また、前処理装置として、マイクロトラックベル社製のBelprepIIを用いて測定した。なお、CO吸着量は、測定温度273K、相対圧P/P=0.98~0.99(P=平衡圧、P=飽和蒸気圧)での値を用いた。前処理は真空度1Pa以下で、250℃まで5℃/分で昇温し、10分間保持し、その後、350℃まで3℃/分で昇温し、210分間保持した。その後、加熱を中止し、室温になるまで冷却した。吸着量測定の測定相対圧は以下の表1の通り実施した。結果は表2に示す。
 上記方法で標準物質のアルミナ粉(BCR-171、No0446、Institute for Reference Materials and Measurements 製)のCO吸着量を測定すると、0.40cm/gであった。
Figure JPOXMLDOC01-appb-T000001
[単位面積あたりのCO吸着量(CO吸着量/N比表面積)]
 負極材試料について、前述の方法で単位面積あたりのCO吸着量を算出した。結果は表2に示す。
[平均粒子径(50%D)の測定及びD90/D10の測定]
 負極材試料を質量比0.2%の界面活性剤(商品名:リポノールT/15、ライオン株式会社製)とともに精製水中に分散させた溶液を、レーザー回折式粒度分布測定装置(SALD-3000J、株式会社島津製作所製)の試料水槽に入れた。次いで、溶液に超音波をかけながらポンプで循環させ(ポンプ流量は最大値から65%)、吸光度を0.10~0.15となるように水量を調整し、得られた粒度分布の体積累積50%粒子径(D50)を平均粒子径とした。さらに、得られた粒度分布の体積累積10%粒子径(D10)及び得られた粒度分布の体積累積90%粒子径(D90)から、D90/D10を求めた。結果は表2に示す。
[タップ密度の測定]
 容量150cmの目盛付き平底試験管(株式会社蔵持科学器械製作所製KRS-406)に試料粉末100cmを投入し、目盛付き平底試験管に栓をする。この目盛付き平底試験管を5cmの高さから250回落下させた後の試料粉末の重量及び容積から求められる値をタップ密度とした。結果は表2に示す。
[超音波照射後のD10/超音波照射前のD10の測定]
 負極材試料について、前述の方法で超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)を求めた。
[亜麻仁油吸油量(吸油量)]
 負極材試料について、前述の方法で亜麻仁油吸油量を測定した。結果は表2に示す。
〔試験2~11〕
 試験1において炭素被覆量を表2に示す値に変更し、かつ原料として用いる球形天然黒鉛を適宜変更して平均粒子径(D50)及びD90/D10の測定を表2に示す値としたこと以外は試験1と同様にして負極材を作製した。作製した負極材について、試験1と同様に各物性値を測定した。
 各物性値を表2に示す。
〔試験12~17〕
 試験1において炭素被覆量を表2に示す値に変更し、かつ原料として用いる球形天然黒鉛を適宜変更して平均粒子径(D50)及びD90/D10を表2に示す値としたこと以外は試験1と同様にして負極材を作製した。作製した負極材について、試験1と同様に各物性値を測定した。
 各物性値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(入出力特性評価用のリチウムイオン二次電池の作製)
 各試験にて作製した負極材を用いて以下の手順で入出力特性評価用のリチウムイオン二次電池をそれぞれ作製した。
 まず、負極材98質量部に対し、増粘剤としてCMC(カルボキシメチルセルロース、ダイセルファインケム株式会社製、品番2200)の水溶液(CMC濃度:2質量%)を、CMCの固形分量が1質量部となるように加え、10分間混練を行った。次いで、負極材とCMCの合計の固形分濃度が40質量%~50質量%となるように精製水を加え、10分間混練を行った。続いて、結着剤としてスチレンブタジエン共重合体ゴムであるSBR(BM400-B、日本ゼオン株式会社)の水分散液(SBR濃度:40質量%)を、SBRの固形分量が1質量部となるように加え、10分間混合してペースト状の負極材組成物を作製した。次いで、負極材組成物を、厚さ11μmの電解銅箔に単位面積当りの塗布量が10.0mg/cmとなるようにクリアランスを調整したコンマコーターで塗工して、負極材層を形成した。その後、ハンドプレスで1.3g/cmに電極密度を調整した。負極材層が形成された電解銅箔を直径14mmの円盤状に打ち抜き、試料電極(負極)を作製した。
 作製した試料電極(負極)、セパレータ、対極(正極)の順にコイン型電池容器に入れ、電解液を注入して、コイン型のリチウムイオン二次電池を作製した。電解液としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)(ECとEMCとの体積比は3:7)の混合溶媒に、混合溶液全量に対してビニレンカーボネート(VC)を0.5質量%添加し、LiPFを1mol/Lの濃度になるように溶解したものを使用した。対極(正極)としては、金属リチウムを使用した。セパレータとしては、厚み20μmのポリエチレン製微孔膜を使用した。作製したリチウムイオン二次電池を用いて、下記の方法により初回充放電特性、ならびに出力特性(初期DCR及び高温貯蔵後DCR)の評価を行った。
[入出力特性の評価]
(初回充放電特性の評価)
 作製したリチウムイオン二次電池を、電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行った。このときの容量を初回充電容量とした。
 次いで、30分間休止後、電流値0.2Cで電圧1.5V(V vs. Li/Li)まで定電流放電を行った。このときの容量を初回放電容量とした。
 また、初回充電容量の値から初回放電容量の値を差し引いて不可逆容量を求めた。
 各物性値を表3に示す。
 なお、電流値の単位として用いた「C」とは、「電流値(A)/電池容量(Ah)」を意味する。
 上記リチウムイオン二次電池の直流抵抗(DCR)を測定してこの電池の出力密度を求めた。具体的には次の通りである。
 また、各物性値を表3及び図4に示す。
(25℃での初期DCRの測定)
 上記リチウムイオン二次電池を25℃に設定した恒温槽内に入れ、充電:CC/CV 0.2C 0V 0.02C Cut、放電:CC 0.2C 1.5V Cutの条件にて1サイクル充放電を行った。
 次いで、電流値0.2CでSOC 50%まで定電流充電を行った。
 また、上記リチウムイオン二次電池を25℃に設定した恒温槽内に入れ、1C、3C、5Cの条件にて定電流充電を各10秒間ずつ行い、各定電流の電圧降下(ΔV)を測定し、下式を用いて、直流抵抗(DCR)を測定し、初期DCRとした。
 DCR[Ω]={(3C電圧降下ΔV-1C電圧降下ΔV)+(5C電圧降下ΔV-3C電圧降下ΔV)}/4
(-30℃での初期DCRの測定)
 上記リチウムイオン二次電池を25℃に設定した恒温槽内に入れ、充電:CC/CV 0.2C 0V 0.02C Cut、放電:CC 0.2C 1.5V Cutの条件にて1サイクル充放電を行った。
 次いで、電流値0.2CでSOC 50%まで定電流充電を行った。
 また、上記リチウムイオン二次電池を-30℃に設定した恒温槽内に入れ、0.1C、0.3C、0.5Cの条件にて定電流充電を各10秒間ずつ行い、各定電流の電圧降下(ΔV)を測定し、下式を用いて、直流抵抗(DCR)を測定し、初期DCRとした。
 DCR[Ω]={(0.3C電圧降下ΔV-0.1C電圧降下ΔV)+(0.5C電圧降下ΔV-0.3C電圧降下ΔV)}/0.4
[高温貯蔵維持率及び高温貯蔵回復率の評価]
 作製したリチウムイオン二次電池を、25℃に設定した恒温槽内に入れ、電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行った。次いで、30分間休止後、電流値0.2Cで電圧1.5V(V vs. Li/Li)まで定電流放電を行った。この充放電を2回繰り返し後、電流値0.2Cで電圧0V(V vs. Li/Li)まで定電流充電し、次いで電流値が0.02Cとなるまで0Vで定電圧充電を行い、この電池を60℃に設定した恒温槽に入れ、5日間保存した。
 その後、25℃に設定した恒温槽内に入れ、60分間放置し、電流値0.2Cで電圧1.5V(V vs. Li/Li)まで定電流放電を行った。次いで、上記条件で充放電を1回繰り返した。
 高温貯蔵維持率及び高温貯蔵回復率を次式から算出した。
 高温貯蔵維持率(%)=(60℃、5日間保存後、25℃にて1回目の放電容量)/(25℃にて2回目の放電容量)×100
 高温貯蔵回復率(%)=(60℃、5日間保存後、25℃にて2回目の放電容量)/(25℃にて2回目の放電容量)×100
 負極材に含まれる炭素材料の平均粒子径(D50)と、出力特性との関係を図1に示す。図1では、試験2~11のリチウムイオン二次電池における出力特性(-30℃での初期DCR(Ω))を示している。図1より、平均粒子径が17μm以下である場合に出力特性により優れ、さらに、炭素被覆量が3%である場合に出力特性により優れている傾向にある。
 次に、平均粒子径10μmの球形天然黒鉛を用いた場合において、炭素被覆量と出力特性との関係を図2に示す。図2では、リチウムイオン二次電池における出力特性(-30℃での初期DCR(Ω))を示している。図2より、炭素被覆量が3%付近にて出力特性に優れている傾向にある。
Figure JPOXMLDOC01-appb-T000003
 表3及び図4に示すように、試験1~11では、試験12~17に比べて出力特性及び高温保存特性に優れている傾向が示された。特に、平均粒子径が同程度の試験1~11と試験12~17とを比較した場合、試験1~11において、出力特性及び高温保存特性に優れている傾向が示された。さらに、試験1~11の中でも、上記(6)及び(7)を満たす試験1~9は、試験10及び11に比べ、出力特性により優れている傾向が示された。
(サイクル特性評価用のリチウムイオン二次電池の作製)
 試験2及び試験12にて作製した負極材を用いて以下の手順でサイクル特性評価用のリチウムイオン二次電池をそれぞれ作製した。
 まず、負極材98質量部に対し、増粘剤としてCMC(カルボキシメチルセルロース、第一工業製薬株式会社、セロゲンWS-C)の水溶液(CMC濃度:2質量%)を、CMCの固形分量が1質量部となるように加え、10分間混練を行った。次いで、負極材とCMCの合計の固形分濃度が40質量%~50質量%となるように精製水を加え、10分間混練を行った。続いて、結着剤としてSBR(BM400-B、日本ゼオン株式会社)の水分散液(SBR濃度:40質量%)を、SBRの固形分量が1質量部となるように加え、10分間混合してペースト状の負極材組成物を作製した。次いで、負極材組成物を、厚さ11μmの電解銅箔に単位面積当りの塗布量が10.0mg/cmとなるようにクリアランスを調整したコンマコーターで塗工して、負極材層を形成した。その後、ハンドプレスで1.3g/cmに電極密度を調整した。負極材層が形成された電解銅箔を2.5cm×12cmとなるように打ち抜き、試料電極(負極)を作製した。
 作製した試料電極(負極)を折り曲げ、その中に、折り曲げたセパレータ、対極(正極)の順に配置し、電解液を注入して、リチウムイオン二次電池を作製した。電解液としては、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)(ECとEMCとの体積比は3:7)の混合溶媒に、混合溶液全量に対してビニレンカーボネート(VC)を0.5質量%添加し、LiPFを1mol/Lの濃度になるように溶解したものを使用した。対極(正極)としては、三元系(Ni,Co,Mn)リチウム酸化物/導電材/PVDF(ポリフッ化ビニリデン)の質量比が90/5/5の電極(1.5cm×4cm×2cm)を使用した。セパレータとしては、厚み20μmのポリエチレン製微孔膜を使用した。作製したリチウムイオン二次電池を用いて、下記の方法によりサイクル特性の評価を行った。
[サイクル特性の評価]
 試験2及び試験12において、前述のように作製したリチウムイオン電池を用いて、以下のようにしてサイクル特性を評価した。
 まず、45℃において電流値2C、充電終止電圧4.2Vで定電流充電し、4.2Vに到達した時からその電圧で電流値が0.02Cになるまで定電圧充電した。30分間休止後、45℃で電流値2C、終止電圧2.7Vの定電流放電を行い、放電容量を測定した(1サイクル目の放電容量)。上記充放電を300サイクル行い、100サイクル後、200サイクル後、及び300サイクル後のそれぞれにおいて、放電容量を測定した。そして、以下の式から放電容量維持率(%)を算出した。
 放電容量維持率(%)=(100サイクル後、200サイクル後又は300サイクル後の放電容量/1サイクル目の放電容量)×100
 結果を図3に示す。図3に示すように、試験2において、試験12よりも放電容量維持率が高く、サイクル特性に優れていることが示された。
[密着性評価]
 試験2及び試験12にて得られた負極材を用いて負極材組成物を作製し、その負極材組成物を電解銅箔に塗布して負極材層を形成し、電界銅箔と負極材層との密着性について評価した。
 まず、試験2及び試験12にて得られた負極材について前述と同様の方法により、負極材組成物を作製した。次いで、負極材組成物を、厚さ20μmの電解銅箔に単位面積当りの塗布量が10.0mg/cmとなるようにクリアランスを調整したコンマコーターで塗工して、負極材層を形成した。その後、ハンドプレスで1.3g/cmに電極密度を調整した。負極材層が形成された電解銅箔を2.5cm×12cmとなるように打ち抜き、密着性評価用の負極材層付き銅箔を得た。
(負極材層剥離評価)
 次に、横方向に移動可能な台座上にデクセリアルズ株式会社製の両面テープG9000を貼り付けた後、負極材層付き銅箔の銅箔側をこの両面テープの台座に貼り付けられている側の反対面に貼り付けた。そして、3M社製の粘着テープ(18mm幅)を負極材層付き銅箔の負極材層側に粘着テープの端部が露出するように貼り付け、負極材層剥離評価用のサンプルを準備した。
 準備した負極材層剥離評価用のサンプルについて、露出した粘着テープの端部を剥離強度装置(株式会社イマダ製、プッシュプルスケール&デジタルフォースゲージ)にてつかみ、台座を20mm/分の速度で横方向に移動させながら20mm/分の速度で粘着テープの端部を上方向に引っ張ることにより、粘着テープに貼り付けられた負極材層と両面テープに貼り付けられた銅箔とを剥離し、その際の負極材層の剥離強度を測定した。
 結果を表4に示す。なお、表4中の数値は相対値である。
(銅箔剥離評価)
 次に、横方向に移動可能な台座上にデクセリアルズ株式会社製の両面テープG9000を貼り付けた後、負極材層付き銅箔の負極材層側をこの両面テープの台座に貼り付けられている側の反対面に貼り付けて銅箔剥離評価用のサンプルを準備した。なお、銅箔剥離評価用のサンプルでは、負極材層の端部から銅箔の一部が露出するように作製した負極材層付き銅箔を用いた。
 準備した負極材層剥離評価用のサンプルについて、露出した銅箔の端部を剥離強度装置(株式会社イマダ製、プッシュプルスケール&デジタルフォースゲージ)にてつかみ、台座を20mm/分の速度で横方向に移動させながら20mm/分の速度で粘着テープの端部を上方向に引っ張ることにより、銅箔と両面テープに貼り付けられた負極材層とを剥離し、その際の銅箔の剥離強度を測定した。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、試験2では、試験12と比較して負極材層の剥離強度及び銅箔の剥離強度に大きく優れることが示された。
 2017年5月11日に出願されたPCT/JP2017/017959の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (15)

  1.  下記(1)~(3)、(6)及び(7)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。
    (1)平均粒子径(D50)が22μm以下である。
    (2)粒子径のD90/D10が2.2以下である。
    (3)亜麻仁油吸油量が50mL/100g以下である。
    (6)円形度が0.6~0.8で粒子径が10μm~20μmの割合が、炭素材料全体の5個数%以上である。
    (7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
  2.  下記(1)、(2)、(4)、(6)及び(7)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。
    (1)平均粒子径(D50)が22μm以下である。
    (2)粒子径のD90/D10が2.2以下である。
    (4)タップ密度が1.00g/cm以上である。
    (6)円形度が0.6~0.8で粒子径が10μm~20μmの割合が、炭素材料全体の5個数%以上である。
    (7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
  3.  下記(1)、(2)、(5)~(7)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。
    (1)平均粒子径(D50)が22μm以下である。
    (2)粒子径のD90/D10が2.2以下である。
    (5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
    (6)円形度が0.6~0.8で粒子径が10μm~20μmの割合が、炭素材料全体の5個数%以上である。
    (7)円形度が0.7以下で粒子径が10μm以下の割合が、炭素材料全体の0.3個数%以下である。
  4.  前記炭素材料は、下記(4)及び(5)の少なくとも一方を満たす、請求項1に記載のリチウムイオン二次電池用負極材。
    (4)タップ密度が1.00g/cm以上である。
    (5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
  5.  前記炭素材料は、下記(3)及び(5)の少なくとも一方を満たす、請求項2に記載のリチウムイオン二次電池用負極材。
    (3)亜麻仁油吸油量が50mL/100g以下である。
    (5)界面活性剤を含んだ精製水中にて撹拌した後、さらに、超音波洗浄機で15分間超音波を照射したときに、超音波照射前のD10に対する超音波照射後のD10の割合(超音波照射後のD10/超音波照射前のD10)が0.90以上である。
  6.  前記炭素材料は、下記(3)及び(4)の少なくとも一方を満たす、請求項3に記載のリチウムイオン二次電池用負極材。
    (3)亜麻仁油吸油量が50mL/100g以下である。
    (4)タップ密度が1.00g/cm以上である。
  7.  X線回折法より求めた平均面間隔d002が0.334nm~0.338nmである、請求項1~請求項6のいずれか1項に記載のリチウムイオン二次電池用負極材。
  8.  ラマン分光測定のR値が0.1~1.0である、請求項1~請求項7のいずれか1項に記載のリチウムイオン二次電池用負極材。
  9.  前記炭素材料は、空気気流中における示差熱分析において、300℃~1000℃の温度範囲に二つ以上の発熱ピークを有さない、請求項1~請求項8のいずれか1項に記載のリチウムイオン二次電池用負極材。
  10.  前記炭素材料の77Kでの窒素吸着測定より求めた比表面積が2m/g~8m/gである、請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材。
  11.  前記炭素材料の273Kでの二酸化炭素吸着より求めたCO吸着量の値をA、前記炭素材料の77Kでの窒素吸着測定より求めた比表面積の値をBとしたとき、下記(a)式で算出される単位面積あたりのCO吸着量が0.01cm/m~0.10cm/mである、請求項10に記載のリチウムイオン二次電池用負極材。
     単位面積あたりのCO吸着量(cm/m)=A(cm/g)/B(m/g)・・・(a)
  12.  核となる第一炭素材と、第一炭素材よりも結晶性の低い第二炭素材の前駆体と、を含む混合物を熱処理して請求項1~請求項11のいずれか1項に記載の炭素材料を製造する工程を含む、リチウムイオン二次電池用負極材の製造方法。
  13.  前記工程では、950℃~1500℃にて前記混合物を熱処理する、請求項12に記載のリチウムイオン二次電池用負極材の製造方法。
  14.  請求項1~請求項11のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含む、リチウムイオン二次電池用負極。
  15.  請求項14に記載のリチウムイオン二次電池用負極と、正極と、電解液とを含むリチウムイオン二次電池。
PCT/JP2018/002799 2017-05-11 2018-01-29 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 WO2018207410A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020197032853A KR102580763B1 (ko) 2017-05-11 2018-01-29 리튬이온 이차전지용 음극재, 리튬이온 이차전지용 음극재의 제조 방법, 리튬이온 이차전지용 음극 및 리튬이온 이차전지
CN201880030675.7A CN110612626B (zh) 2017-05-11 2018-01-29 锂离子二次电池用负极材料及其制造方法、锂离子二次电池用负极及锂离子二次电池
US16/611,983 US11605818B2 (en) 2017-05-11 2018-01-29 Anode material for lithium ion secondary battery, method of producing anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
KR1020237031648A KR20230140595A (ko) 2017-05-11 2018-01-29 리튬이온 이차전지용 음극재, 리튬이온 이차전지용 음극재의 제조 방법, 리튬이온 이차전지용 음극 및 리튬이온 이차전지
CN202211700355.2A CN115939379B (zh) 2017-05-11 2018-01-29 锂离子二次电池用负极材料及其制造方法、锂离子二次电池用负极及锂离子二次电池
JP2019516891A JP6747587B2 (ja) 2017-05-11 2018-01-29 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019517707A JP6747588B2 (ja) 2017-05-11 2018-05-10 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
TW107115988A TWI751332B (zh) 2017-05-11 2018-05-10 鋰離子二次電池用負極材料、鋰離子二次電池用負極材料的製造方法、鋰離子二次電池用負極及鋰離子二次電池
PCT/JP2018/018220 WO2018207896A1 (ja) 2017-05-11 2018-05-10 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
TW107115998A TWI750373B (zh) 2017-05-11 2018-05-10 鋰離子二次電池用負極材料、鋰離子二次電池用負極材料的製造方法、鋰離子二次電池用負極及鋰離子二次電池
CN201880045741.8A CN110892571B (zh) 2017-05-11 2018-05-10 锂离子二次电池用负极材料、锂离子二次电池用负极材料的制造方法、锂离子二次电池用负极和锂离子二次电池
JP2020133261A JP6888723B2 (ja) 2017-05-11 2020-08-05 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/017959 WO2018207333A1 (ja) 2017-05-11 2017-05-11 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JPPCT/JP2017/017959 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018207410A1 true WO2018207410A1 (ja) 2018-11-15

Family

ID=64104422

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2017/017959 WO2018207333A1 (ja) 2017-05-11 2017-05-11 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
PCT/JP2018/002799 WO2018207410A1 (ja) 2017-05-11 2018-01-29 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
PCT/JP2018/018220 WO2018207896A1 (ja) 2017-05-11 2018-05-10 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017959 WO2018207333A1 (ja) 2017-05-11 2017-05-11 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018220 WO2018207896A1 (ja) 2017-05-11 2018-05-10 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US11605818B2 (ja)
JP (4) JP6747587B2 (ja)
KR (2) KR20230140595A (ja)
CN (3) CN110612626B (ja)
TW (2) TWI751332B (ja)
WO (3) WO2018207333A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924917B1 (ja) * 2020-02-19 2021-08-25 Jfeケミカル株式会社 リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
WO2021166359A1 (ja) * 2020-02-19 2021-08-26 Jfeケミカル株式会社 リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
WO2021192649A1 (ja) * 2020-03-24 2021-09-30 東海カーボン株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料
JP2022538509A (ja) * 2020-04-24 2022-09-05 寧徳新能源科技有限公司 負極活物質、並びに、それを用いた電気化学装置及び電子装置
EP4148832A4 (en) * 2021-04-05 2023-09-06 Resonac Corporation NEGATIVE ELECTRODE MATERIAL FOR A LITHIUM ION SECONDARY BATTERY, NEGATIVE ELECTRODE FOR A LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207333A1 (ja) * 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7022525B2 (ja) * 2017-07-04 2022-02-18 第一工業製薬株式会社 電極塗工液組成物、該電極塗工液組成物を用いて作製された蓄電デバイス用電極、および該電極を備える蓄電デバイス
EP3886222A4 (en) * 2018-11-22 2021-12-08 Showa Denko Materials Co., Ltd. NEGATIVE ELECTRODE MATERIAL FOR LITHIUM-ION ACCUMULATOR, PROCESS FOR MANUFACTURING NEGATIVE ELECTRODE MATERIAL FOR LITHIUM-ION ACCUMULATOR, SLURRY OF NEGATIVE ELECTRODE MATERIAL FOR LITHIUM-ION ACCUMULATOR, NEGATIVE ELECTRODE MATERIAL FOR LITHIUM-ION ACCUMULATOR, NEGATIVE ELECTRODE MATERIAL FOR LITHIUM-ION ACCUMULATOR, NEGATIVE LITHIUM-ION ELECTRODE ELECTRODE AND LITHIUM-ION ACCUMULATOR
CN114616708A (zh) * 2019-10-31 2022-06-10 三洋电机株式会社 非水电解质二次电池
CN112687869A (zh) * 2020-12-25 2021-04-20 宁德新能源科技有限公司 正极材料、电化学装置和电子装置
CN117882209A (zh) * 2022-09-30 2024-04-12 宁德新能源科技有限公司 负极材料、二次电池和电子装置
JP7444322B1 (ja) 2023-07-12 2024-03-06 株式会社レゾナック リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270167A (ja) * 2001-03-13 2002-09-20 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質、正極および正極の製造法
JP2010034036A (ja) * 2008-06-25 2010-02-12 Mitsubishi Chemicals Corp 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP2011238622A (ja) * 2004-08-30 2011-11-24 Mitsubishi Chemicals Corp 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池
JP2014165156A (ja) * 2013-02-28 2014-09-08 Panasonic Corp 非水電解液二次電池、および非水電解液二次電池の負極板の製造方法
WO2015037551A1 (ja) * 2013-09-13 2015-03-19 日本ゼオン株式会社 電気化学素子用複合粒子の製造方法
JP2016113952A (ja) * 2014-12-15 2016-06-23 谷川 浩保 各種エネルギ保存サイクル合体機関
JP2016143448A (ja) * 2015-01-29 2016-08-08 三菱化学株式会社 非水系二次電池用炭素材、非水系二次電池用負極、非水系二次電池、及び非水系二次電池用炭素材の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335366B2 (ja) 1991-06-20 2002-10-15 三菱化学株式会社 二次電池用電極
JP3395200B2 (ja) 1992-04-28 2003-04-07 三洋電機株式会社 非水系二次電池
JP2000090930A (ja) 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその負極の製造法
JP2008204886A (ja) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd 負極活物質およびその評価方法ならびにそれを用いた非水電解液二次電池用負極板および非水電解液二次電池
CN102362380B (zh) * 2009-03-27 2015-05-13 三菱化学株式会社 非水电解质二次电池用负极材料以及使用该负极材料的非水电解质二次电池
KR101845369B1 (ko) 2009-10-27 2018-04-04 히타치가세이가부시끼가이샤 리튬 이온 이차전지 음극용 탄소 입자, 리튬 이온 이차전지용 음극 및 리튬 이온 이차전지
JP6278596B2 (ja) 2010-07-30 2018-02-14 日立化成株式会社 炭素材料、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
EP2695857A4 (en) 2011-04-08 2014-09-17 Chuo Denki Kogyo Co Ltd MODIFIED NATURAL GRAPHITE PARTICLES
JP6291414B2 (ja) 2012-09-27 2018-03-14 昭和電工株式会社 リチウムイオン二次電池負極用炭素材およびその製造方法並びに用途
JP6098275B2 (ja) * 2013-03-25 2017-03-22 三菱化学株式会社 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP5821932B2 (ja) * 2013-11-12 2015-11-24 三菱化学株式会社 黒鉛負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
US10122018B2 (en) * 2014-03-25 2018-11-06 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery,method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2016113952A1 (ja) 2015-01-16 2016-07-21 三菱化学株式会社 炭素材及び炭素材を用いた非水系二次電池
JP6370274B2 (ja) 2015-08-11 2018-08-08 株式会社藤商事 遊技機
US20200211380A1 (en) 2016-05-19 2020-07-02 Valiant Yuk Yuen LEUNG Synergistic traffic intersection
WO2018207333A1 (ja) * 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270167A (ja) * 2001-03-13 2002-09-20 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質、正極および正極の製造法
JP2011238622A (ja) * 2004-08-30 2011-11-24 Mitsubishi Chemicals Corp 非水系二次電池用負極材料、非水系二次電池用負極、および非水系二次電池
JP2010034036A (ja) * 2008-06-25 2010-02-12 Mitsubishi Chemicals Corp 非水系二次電池用複合黒鉛粒子、それを含有する負極材料、負極及び非水系二次電池
JP2014165156A (ja) * 2013-02-28 2014-09-08 Panasonic Corp 非水電解液二次電池、および非水電解液二次電池の負極板の製造方法
WO2015037551A1 (ja) * 2013-09-13 2015-03-19 日本ゼオン株式会社 電気化学素子用複合粒子の製造方法
JP2016113952A (ja) * 2014-12-15 2016-06-23 谷川 浩保 各種エネルギ保存サイクル合体機関
JP2016143448A (ja) * 2015-01-29 2016-08-08 三菱化学株式会社 非水系二次電池用炭素材、非水系二次電池用負極、非水系二次電池、及び非水系二次電池用炭素材の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924917B1 (ja) * 2020-02-19 2021-08-25 Jfeケミカル株式会社 リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
WO2021166359A1 (ja) * 2020-02-19 2021-08-26 Jfeケミカル株式会社 リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
JP2021180186A (ja) * 2020-02-19 2021-11-18 Jfeケミカル株式会社 リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
WO2021192649A1 (ja) * 2020-03-24 2021-09-30 東海カーボン株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料
JP2021152997A (ja) * 2020-03-24 2021-09-30 東海カーボン株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料
JP7263284B2 (ja) 2020-03-24 2023-04-24 東海カーボン株式会社 リチウムイオン二次電池用負極材の製造方法
JP2022538509A (ja) * 2020-04-24 2022-09-05 寧徳新能源科技有限公司 負極活物質、並びに、それを用いた電気化学装置及び電子装置
JP7273950B2 (ja) 2020-04-24 2023-05-15 寧徳新能源科技有限公司 負極活物質、並びに、それを用いた電気化学装置及び電子装置
EP4148832A4 (en) * 2021-04-05 2023-09-06 Resonac Corporation NEGATIVE ELECTRODE MATERIAL FOR A LITHIUM ION SECONDARY BATTERY, NEGATIVE ELECTRODE FOR A LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY

Also Published As

Publication number Publication date
US20210135220A1 (en) 2021-05-06
WO2018207333A1 (ja) 2018-11-15
JP2020177932A (ja) 2020-10-29
KR102580763B1 (ko) 2023-09-20
CN110612626A (zh) 2019-12-24
CN115939379A (zh) 2023-04-07
TW201902013A (zh) 2019-01-01
CN115939379B (zh) 2024-02-02
TW201902014A (zh) 2019-01-01
JP6747588B2 (ja) 2020-08-26
JPWO2018207896A1 (ja) 2020-05-14
JP6747587B2 (ja) 2020-08-26
TWI750373B (zh) 2021-12-21
CN110892571B (zh) 2023-05-23
JPWO2018207410A1 (ja) 2020-05-14
JP6888723B2 (ja) 2021-06-16
CN110892571A (zh) 2020-03-17
KR20190141172A (ko) 2019-12-23
KR20230140595A (ko) 2023-10-06
US11605818B2 (en) 2023-03-14
CN110612626B (zh) 2023-05-12
TWI751332B (zh) 2022-01-01
JP2020177931A (ja) 2020-10-29
WO2018207896A1 (ja) 2018-11-15
JP6888722B2 (ja) 2021-06-16

Similar Documents

Publication Publication Date Title
JP6888722B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6201425B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7156468B2 (ja) リチウムイオン二次電池用負極材の製造方法、及びリチウムイオン二次電池用負極材
JP7196938B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2017191820A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2020105196A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7004093B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2023073103A (ja) リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6524647B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JPWO2018087928A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2022215126A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2023047223A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019087460A (ja) リチウムイオン二次電池用負極材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197032853

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019516891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797646

Country of ref document: EP

Kind code of ref document: A1