WO2021192649A1 - リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料 - Google Patents
リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料 Download PDFInfo
- Publication number
- WO2021192649A1 WO2021192649A1 PCT/JP2021/004286 JP2021004286W WO2021192649A1 WO 2021192649 A1 WO2021192649 A1 WO 2021192649A1 JP 2021004286 W JP2021004286 W JP 2021004286W WO 2021192649 A1 WO2021192649 A1 WO 2021192649A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphite particles
- amorphous carbon
- particles
- negative electrode
- ion secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode material for a lithium ion secondary battery, a method for manufacturing a negative electrode material for a lithium ion secondary battery, and a material for manufacturing a negative electrode material for a lithium ion secondary battery.
- Lithium-ion secondary batteries are installed in many devices such as mobile phones and personal computers, and are being used in various fields because of their high capacity, high voltage, small size and light weight.
- Patent Document 1 100 parts by weight of a base material formed by forming a spherical shape of natural graphite is mixed with 2 to 50 parts by weight of carbon black and a pitch, impregnated and coated with natural graphite particles, and fired at 900 ° C to 1500 ° C. , Graphite particles (A) for a lithium ion secondary battery having a BET specific surface area of 2 m 2 / g or more having microprojections formed on the surface are disclosed. According to Patent Document 1, it is possible to provide a negative electrode material for a lithium ion secondary battery, which has a high discharge capacity per unit volume, a small capacity loss during initial charge / discharge, and excellent high-speed charge / discharge characteristics. Has been done.
- the present invention provides a negative electrode material for a lithium ion secondary battery, a method for manufacturing a negative electrode material for a lithium ion secondary battery, and a material for manufacturing a negative electrode material for a lithium ion secondary battery, which are excellent in initial efficiency and high-speed charge / discharge characteristics.
- the purpose is to do.
- an amorphous carbonized bond material layer derived from a resin solution was provided on the surface of the graphite particles, and the amorphous carbonized bond material layer was interposed through the amorphous carbonized bond material layer.
- the present invention (1) Negative electrode material for lithium ion secondary batteries
- Amorphous carbon particles are mixed with the resin-coated graphite particles in an amount of 10.0 to 40.0 parts by mass per 100.0 parts by mass of the graphite particles, and the amorphous carbon particles are formed on the surface of the resin-coated graphite particles.
- Amorphous carbon particles with attached graphite particles It is obtained by performing a calcining carbonization step of calcining carbonizing the graphite particles adhering to the amorphous carbon particles.
- the composite graphite particle is composed of a composite graphite particle having graphite particles and a coating layer containing amorphous carbon particles and an amorphous carbonized bonding material and covering the graphite particles.
- the composite graphite particles are a negative electrode material for a lithium ion secondary battery, characterized in that the coverage of the amorphous carbon particles covering the graphite particles is 50% or more when the surface is observed.
- Amorphous carbon particles are mixed with the resin-coated graphite particles in an amount of 10.0 to 40.0 parts by mass per 100.0 parts by mass of the graphite particles, and the amorphous carbon particles are formed on the surface of the resin-coated graphite particles.
- Amorphous carbon particles with attached graphite particles A method for producing a negative electrode material for a lithium ion secondary battery, which comprises a calcined carbonization step of calcining carbonized graphite particles adhering to amorphous carbon particles. (6) The lithium ion secondary according to (5) above, wherein the average particle size D 50 of the graphite particles is 5.0 to 30.0 ⁇ m, and the average particle size of the amorphous carbon particles is 50 to 300 nm.
- the graphite particles attached are composed of a plurality of bonded aggregates.
- the bound aggregate contains 10.0 to 40.0 parts by mass of the amorphous carbon particles per 100.0 parts by mass of the graphite particles, which is a material for producing a negative electrode material for a lithium ion secondary battery (a material for producing a negative electrode material for a lithium ion secondary battery).
- Amorphous carbon particle-coated graphite particles whose surface is coated with an amorphous carbonized bonding material and amorphous carbon particles are composed of a plurality of fixed aggregates.
- the fixed aggregate contains 10.0 to 40.0 parts by mass of the amorphous carbon particles per 100.0 parts by mass of the graphite particles.
- the specific surface area change rate indicating the change rate of the nitrogen adsorption specific surface area is 20% or less.
- a negative electrode material for a lithium ion secondary battery a method for manufacturing a negative electrode material for a lithium ion secondary battery, and a material for manufacturing a negative electrode material for a lithium ion secondary battery, which are excellent in initial efficiency and high-speed charge / discharge characteristics. can do.
- FIG. 1 It is the schematic of the cross section in the form example of the composite graphite particle which comprises the negative electrode material for a lithium ion secondary battery which concerns on this invention. It is a schematic diagram for demonstrating the calculation method of the coating ratio which the amorphous carbon particle covers a graphite particle in the composite graphite particle which comprises the negative electrode material for a lithium ion secondary battery which concerns on this invention. It is a schematic diagram for demonstrating the calculation method of the burial ratio in which the amorphous carbon particles are embedded in the amorphous carbonization bond material in the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery which concerns on this invention. be. FIG.
- FIG. 5 is a schematic cross-sectional view showing a bonded aggregate in which a plurality of amorphous carbon particle-attached graphite particles in which amorphous carbon particles are adhered together with a resin on the surface of the graphite particles are bonded.
- the negative electrode material for a lithium ion secondary battery according to the present invention is A coating step of obtaining resin-coated graphite particles in which the graphite particles are covered with a resin by mixing the graphite particles and a resin solution. Amorphous carbon particles are mixed with the resin-coated graphite particles in an amount of 10.0 to 40.0 parts by mass per 100.0 parts by mass of the graphite particles, and the amorphous carbon particles are formed on the surface of the resin-coated graphite particles.
- Amorphous carbon particles with attached graphite particles It is obtained by performing a calcining carbonization step of calcining carbonizing the graphite particles adhering to the amorphous carbon particles. It is composed of a composite graphite particle having graphite particles and a coating layer containing amorphous carbon particles and an amorphous carbonized bonding material and covering the graphite particles.
- the composite graphite particles are characterized in that the coverage of the amorphous carbon particles covering the graphite particles is 50% or more when the surface is observed.
- the negative electrode material for a lithium ion secondary battery according to the present invention is composed of composite graphite particles obtained by performing the above coating step, a step of obtaining amorphous carbon particle-attached graphite particles, and a calcined carbonization step. Details of these steps will be described in detail in the description of the method for manufacturing the negative electrode material for a lithium ion secondary battery according to the present invention, which will be described later.
- the negative electrode material for a lithium ion secondary battery according to the present invention is obtained by performing at least the above coating step, the step of obtaining amorphous carbon particle-adhered graphite particles, and the firing carbonization step, and the present invention. It is permissible to carry out other steps as long as the effect of the above is not impaired.
- FIG. 1 is a schematic cross-sectional view of an example of a composite graphite particle constituting a negative electrode material for a lithium ion secondary battery according to the present invention.
- the composite graphite particles 10 constituting the negative electrode material for a lithium ion secondary battery are composed of the graphite particles 1 and the coating layer 4 covering the graphite particles 1.
- the coating layer 4 contains the amorphous carbon particles 3 and the amorphous carbonized bonding material 2, and the amorphous carbon particles 3 are usually embedded in the layer of the amorphous carbonized bonding material 2. It is fixed to the composite graphite particles 10 constituting the negative electrode material for the lithium ion secondary battery. Further, in the composite graphite particles 10 constituting the negative electrode material for the lithium ion secondary battery, almost all the amorphous carbon particles 3 constituting the composite graphite particles are in contact with the surface of the graphite particles 1.
- examples of the graphite particles serving as the core material of the composite graphite particles include spherical graphite particles in which flat graphite is spherically aggregated.
- the graphite particles may be made of natural graphite or artificial graphite.
- the average lattice spacing d (002) of the graphite particles is 0.3360 nm or less, and the average lattice spacing d (002) of the graphite particles is 0.3360 nm or less, so that the reversible capacitance can be sufficiently increased. can.
- the average lattice spacing d (002) of the graphite particles is preferably 0.3358 nm or less in order to further improve the reversible capacitance.
- the average lattice spacing d (002) is determined by using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.) and using X-rays obtained by monochromaticizing Cu—K ⁇ rays with a Ni filter. Measurement was performed by powder X-ray diffraction method using high-purity silicon as a standard substance, and the intensity and half-value width of the diffraction peak of the obtained carbon (002) plane were used to determine the Gakushin method established by the 117th Committee of the Japan Society for the Promotion of Science. It is a value obtained according to.
- the coating layer contains amorphous carbon particles and an amorphous carbonized bonding material (amorphous resin carbonized material).
- amorphous carbonized bonding material means that the resin covering the surface of the graphite particles is calcined and amorphous carbonized, and the average lattice spacing d (002) is 0.3370 nm or more.
- the amorphous carbon particles 3 are usually fixed to the graphite particles 1 so that a part thereof is embedded in the amorphous carbonized bonding material 2. There is.
- the amorphous carbon particles are not particularly limited, and examples thereof include carbon black such as furnace black and thermal black.
- the average lattice spacing d (002) of the amorphous carbon particles is 0.3370 nm or more, and the average lattice spacing d (002) of the amorphous carbon particles is 0.3370 nm or more, so that the particle surface The reaction resistance tends to decrease, and excellent high-speed charge / discharge characteristics can be easily exhibited when used as a negative electrode material for a lithium ion secondary battery.
- the average lattice spacing d (002) of the amorphous carbon particles is preferably 0.3400 nm or more in order to further improve the high-speed charge / discharge property, and 0. It is more preferably 3500 nm or more.
- the average particle size of the amorphous carbon particles when the composite graphite particles are surface-observed is preferably 50 to 300 nm, and the average particle size of the spherical amorphous carbon material in the surface observation is in the above range, so that the irreversible capacity is irreversible. It is possible to easily obtain composite graphite particles having excellent high-speed charge / discharge characteristics as a negative electrode material for a lithium ion secondary battery while suppressing an increase in the amount of the particles.
- the average particle size of the amorphous carbon particles when the composite graphite particles are observed on the surface is more preferably 100 nm or more in order to further suppress the increase in the irreversible capacity, and further improve the high-speed charge / discharge performance. More preferably 200 nm or less.
- the average particle size of the amorphous carbon particles when the composite graphite particles are surface-observed means the values obtained as follows. That is, the surface of the composite graphite particles was observed with a scanning electron microscope (SEM, JSM7900F manufactured by JEOL Ltd.), and amorphous carbon particles on the composite graphite particles were arbitrarily selected from the obtained SEM images, and the image was taken. Using analysis software (WINROOF manufactured by Mitani Shoji Co., Ltd.), the diameter of the circumscribing circle of the amorphous carbon particles is calculated as the particle diameter. Similarly, 1000 or more amorphous carbon particles are arbitrarily extracted from the SEM image to obtain each particle size, and the arithmetic mean value thereof is used as the average particle size of the amorphous carbon particles in surface observation.
- SEM scanning electron microscope
- JSM7900F manufactured by JEOL Ltd.
- amorphous carbon particles on the composite graphite particles were arbitrarily selected from the obtained SEM images, and the
- the thickness of the amorphous carbonized bonding material (thickness of the amorphous carbonized bonding material 2 shown by reference numeral 8 in FIG. 3 to be described later) in the cross-sectional observation is appropriately selected, and is 15 nm when the embedding of the coating particles is taken into consideration. It is preferably about 1 ⁇ m.
- the thickness of the amorphous carbonized bonding material in the cross-sectional observation is within the above range, the amorphous carbon particles are sufficiently immobilized and embedded, and the speed is high when used as a negative electrode material for a lithium ion secondary battery. Composite graphite particles with excellent charge / discharge characteristics can be easily obtained.
- the thickness of the amorphous carbonized bonding material in cross-sectional observation is such that one of the composite graphite particles is arbitrarily extracted from a scanning electron microscope (SEM, Japan). Observe the cross section with JSM7900F manufactured by Electronics Co., Ltd.), measure the thickness of the cross section of the amorphous carbonized bonding material in the obtained SEM image at 10 arbitrary points, calculate the average of them, and calculate the value. The thickness of the cross section of the amorphous carbonized bonding material.
- the thickness of the cross section of the amorphous carbonized bonding material is obtained for each particle, and the thicknesses are averaged to obtain the thickness of the amorphous carbonized bonding material in the cross-sectional observation.
- the thickness of the cross section is obtained for each particle, and the thicknesses are averaged to obtain the thickness of the amorphous carbonized bonding material in the cross-sectional observation.
- the negative electrode material for a lithium ion secondary battery according to the present invention is composed of composite graphite particles having graphite particles and a coating layer containing amorphous carbon particles and an amorphous carbonized bonding material and covering the graphite particles.
- the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention have a coverage of 50% or more of the amorphous carbon particles covering the graphite particles when the surface is observed. Since the coverage of the amorphous carbon particles when observing the surface is 50% or more, excellent high-speed charge / discharge characteristics can be easily achieved when the composite graphite particles are used as a negative electrode material for a lithium ion secondary battery. be able to.
- the coverage of the amorphous carbon particles covering the graphite particles when the surface is observed further improves the high-speed charge / discharge property. It is more preferably 70% or more, and further preferably 80% or more in order to particularly improve the high-speed charge / discharge property.
- the upper limit of the coverage is not particularly limited, but is usually 90% or less.
- FIG. 2A shows the vicinity of the surface of the composite graphite particles 10 constituting the negative electrode material for the lithium ion secondary battery shown in FIG. 1 when observed with a scanning electron microscope (SEM, JSM7900F manufactured by JEOL Ltd.). It is a schematic diagram, and as illustrated in FIG. 2 (A), in the SEM observation image, the observation range is surrounded by a frame line (broken line) 9 so as to include 50 or more arbitrary amorphous carbon particles 3. do.
- SEM scanning electron microscope
- FIG. 2 (B) shows the total area ⁇ (area shown by diagonal lines) of the amorphous carbon particles 3 within the observation range shown in FIG. 2 (A), and the area ⁇ of the entire observation range (area within the frame line 9). ) Is shown.
- Coverage of amorphous carbon particles at each observation point (total area of amorphous carbon particles within the observation range ⁇ / total area ⁇ of the observation range) ⁇ 100 (1) Then, the surface of the composite graphite particles was observed with a scanning electron microscope (SEM) at 10 points to obtain the coverage of the amorphous carbon particles at each of the observation points, and the calculated average value of the obtained coverage was calculated. The coverage is such that the amorphous carbon particles cover the graphite particles when the surface is observed.
- SEM scanning electron microscope
- FIG. 3 is an enlarged view of the vicinity of the surface of the negative electrode material for a lithium ion secondary battery shown in FIG. 1, and as illustrated in FIG. 3, the composite graphite constituting the negative electrode material for a lithium ion secondary battery according to the present invention.
- the coating layer is usually in a state in which a part of the amorphous carbon particles 3 is embedded in the amorphous carbonized bonding material 2 provided in a layer on the surface of the graphite particles 1.
- the ratio of the amorphous carbon particles embedded in the amorphous carbonized bonding material when the composite graphite particles are observed in cross section is preferably 50 to 80%, and when the burial ratio of the amorphous carbon particles when the composite graphite particles are observed in cross section is within the above range, excellent high-speed charge / discharge characteristics can be easily exhibited. Can be done.
- a certain burial ratio is more preferably 60 to 80% in order to improve the high-speed charge / discharge characteristics.
- the burial ratio which is the ratio of the amorphous carbon particles embedded in the amorphous carbonized bonding material when the composite graphite particles are observed in cross section. It is as follows. That is, as shown in FIG. 3, when the composite graphite particles 10 constituting the negative electrode material for the lithium ion secondary battery are cross-sectionally observed with a scanning electron microscope (SEM, JSM7900F manufactured by JEOL Ltd.), they are amorphous. The intersections of the contours of the carbon particles 3 and the outer contours of the amorphous carbonized bonding material 2 are defined as intersections 6a and 6b. The portion on the graphite particle 1 side (the shaded portion in FIG.
- Burial ratio (%) of each amorphous carbon particle by cross-sectional observation (area of buried portion of amorphous carbon particle ⁇ / total area of amorphous carbon particle ⁇ ) ⁇ 100 (2) Then, the burial ratio of each amorphous carbon particle is calculated by observing the cross section with a scanning electron microscope (SEM) at 10 locations, and the arithmetic mean value is taken as the burial ratio of the amorphous carbon particles.
- SEM scanning electron microscope
- the ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite particles is preferably 10.0 to 40.0 parts by mass. .. Since the proportion of amorphous carbon particles is 10.0 to 40.0 parts by mass with respect to 100 parts by mass of graphite particles, high-speed charge / discharge characteristics are easily improved while suppressing an increase in irreversible capacity at the time of initial charging. can do.
- the ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite particles is more preferably 20.0 parts by mass or more in order to further improve the high-speed charge / discharge property, and the generation of particles to be isolated without being coated is generated. In order to suppress the increase in irreversible capacity at the time of initial charging, 30.0 parts by mass or less is preferable.
- Composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention preferably has a tap density of 0.60 g / cm 3 or more, by a tap density of 0.60 g / cm 3 or more , There are few fine particles, and the majority of the particles are within a relatively narrow particle size range, which makes it possible to suppress an increase in the specific surface area and easily exhibit excellent initial efficiency.
- the tap density of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention is more preferably 0.70 g / cm 3 or more in order to further improve the initial efficiency, and particularly to improve the initial efficiency. Then, 0.80 g / cm 3 or more is more preferable.
- the upper limit of the tap density of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention is not particularly limited, but the tap density makes it possible to secure an interparticle conductive path and secure liquid immersion property. In terms of points, 1.20 g / cm 3 or less is preferable.
- the tap density is such that 5 g of graphite particle powder is put into a 25 ml graduated cylinder and tapped 1000 times with a gap of 10 mm using a tapping type powder reduction measuring instrument manufactured by Tsutsui Rikagaku Kikai Co., Ltd. It means a value calculated by the following formula (3) from the value of the apparent volume after the repetition and the mass of the composite graphite particle powder charged into the measuring cylinder.
- Tap density (g / cm 3 ) mass of powder charged into the graduated cylinder (g) / value of apparent volume after repeated tapping 1000 times (cm 3 ) (3)
- the average particle size D 50 of the composite graphite particles in the laser diffraction particle size distribution is preferably 5.0 to 30.0 ⁇ m, and the average particle size D 50 of the composite graphite particles in the laser diffraction particle size distribution is 5.0 to 30.0 ⁇ m.
- the average particle diameter D 50 of the composite graphite particle in the laser diffraction particle size distribution is in suppressing an increase in irreversible capacity upon initial charge, also to further improve the high-speed charge-discharge performance 25 It is more preferably 0.0 ⁇ m or less, and further preferably 20.0 ⁇ m or less in order to particularly improve the high-speed charge / discharge performance.
- the particle size distribution index SPAN ((D 90- D 10 ) / D 50 ) of the composite graphite particles constituting the negative electrode material for the lithium ion secondary battery according to the present invention is preferably less than 2.0, and the particle size distribution index SPAN ((D 90-D 10) / D 50) is preferable. Since 90- D 10 ) / D 50 ) is less than 2.0, there are few fine particles and the majority of particles are within a relatively narrow particle size range, so that the increase in specific surface area is suppressed and lithium is used. Excellent initial efficiency can be easily exhibited in an ion secondary battery.
- the particle size distribution index SPAN ((D 90- D 10 ) / D 50 ) of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention suppresses an increase in the specific surface area of the lithium ion secondary battery. More excellent initial efficiency can be easily exhibited in the above case, and therefore less than 1.0 is more preferable.
- D 10 , D 50 (average particle size) and D 90 of powder or particles are volume-based integrated particle size using a laser diffraction particle size distribution measuring device (LA-960S manufactured by Horiba Seisakusho Co., Ltd.).
- the integrated particle size when the distribution is measured means the particle size of 10%, 50% and 90%, respectively.
- the nitrogen adsorption specific surface area (N 2 SA) of the composite graphite particles constituting the negative electrode material for the lithium ion secondary battery of the present invention is preferably 3.0 to 7.0 m 2 / g, and the nitrogen adsorption specific surface area of the composite graphite particles. Is within the above range, it is possible to easily suppress a decrease in initial efficiency when used as a negative electrode material for a lithium ion secondary battery.
- the nitrogen adsorption specific surface area (N 2 SA) of the composite graphite particles constituting the negative electrode material for the lithium ion secondary battery of the present invention is 3.0 to 5.0 m 2 / g in order to further suppress the decrease in initial efficiency. More preferred.
- the nitrogen adsorption specific surface area (N 2 SA) of the powder or particles is determined by using a fully automatic surface area measuring device (Gemini V manufactured by Shimadzu Corporation) and the relative pressure at the nitrogen adsorption isotherm is 0.05. It means a value calculated by the BET multipoint method in the range of ⁇ 0.2.
- the La Raman R (Raman spectral intensity ratio R) of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention is preferably 0.3 or more, and the composite graphite constituting the negative electrode material for a lithium ion secondary battery is preferable. Since the Raman R of the particles is within the above range, the surface of the particles is sufficiently amorphized, so that the reaction resistance is low and the high-speed charge / discharge characteristics of the negative electrode material for the lithium ion secondary battery are easily improved. be able to.
- the La Raman R (Raman spectral intensity ratio R) of the composite graphite particles constituting the negative electrode material for the lithium ion secondary battery according to the present invention is more preferably 0.4 or more in order to further improve the high-speed charge / discharge performance.
- Raman R is measured by a Raman spectrophotometer (HR800 manufactured by Horiba Seisakusho Co., Ltd.) equipped with an Nd / YAG laser having a wavelength of 532 nm, and is caused by crystal defects on the surface layer and inconsistency of the laminated structure.
- the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention preferably have an average lattice spacing d (002) of 0.3360 nm or less, and the average lattice spacing d (002) of the composite graphite particles. ) Is 0.3360 nm or less, the reversible capacity can be sufficiently improved when used as a negative electrode material for a lithium ion secondary battery.
- the average lattice spacing d (002) is more preferably 0.3358 nm or less in order to further improve the reversible capacity.
- the average lattice spacing d (002) is determined by using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.) and using X-rays obtained by monochromaticizing Cu—K ⁇ rays with a Ni filter. Measurement was performed by powder X-ray diffraction method using high-purity silicon as a standard substance, and the intensity and half-value width of the diffraction peak of the obtained carbon (002) plane were used to determine the Gakushin method established by the 117th Committee of the Japan Society for the Promotion of Science. It means the value obtained according to.
- the negative electrode material for a lithium ion secondary battery according to the present invention can be suitably manufactured by the manufacturing method according to the present invention described in detail below.
- the present invention it is possible to provide a negative electrode material for a lithium ion secondary battery having excellent initial efficiency and high-speed charge / discharge characteristics.
- the method for manufacturing a negative electrode material for a lithium ion secondary battery according to the present invention is as follows.
- Amorphous carbon particles are mixed with the resin-coated graphite particles in an amount of 10.0 to 40.0 parts by mass per 100.0 parts by mass of the graphite particles, and the amorphous carbon particles are formed on the surface of the resin-coated graphite particles.
- Amorphous carbon particles with attached graphite particles It is characterized by having a calcined carbonization step of calcining and carbonizing the graphite particles adhering to the amorphous carbon particles.
- the graphite particles and the resin solution are mixed to obtain resin-coated graphite particles in which the graphite particles are covered with a resin.
- the graphite particles involved in the coating step are not particularly limited, but those in which flat graphite is spherically aggregated are preferable.
- the graphite particles may be made of natural graphite or artificial graphite.
- the average particle diameter D 50 of the graphite particles is preferably 5.0 ⁇ 30.0, by the average particle diameter D 50 of the graphite particles is within the above range, the reaction specific surface area increases As a result, the reaction resistance is likely to decrease, and the movement speed of lithium ions in the graphite particles is also likely to be improved.
- the average particle diameter D 50 of the graphite particles in suppressing the increase in irreversible capacity upon initial charge, more preferably at least 7.0 .mu.m, may further improve the high-speed charge-discharge performance
- 25.0 ⁇ m or less is more preferable, and 20.0 ⁇ m or less is further preferable in order to particularly improve the high-speed charge / discharge performance.
- the average lattice spacing d (002) of the graphite particles is 0.3360 nm or less, and the average lattice spacing d (002) of the graphite particles is within the above range, so that the reversible capacitance Can be made large enough.
- the average lattice spacing d (002) of the graphite particles is preferably 0.3358 nm or less in order to further improve the reversible capacitance.
- the resin constituting the resin solution used in the coating step is used as a binder, and is not particularly limited as long as it is carbonized in the calcining carbonization step and becomes an amorphous carbon material.
- the resin include one or more selected from thermoplastic resins such as polyvinyl chloride resin and acrylic resin, and synthetic resins such as thermosetting resins such as phenol resin and urea resin.
- the solvent constituting the resin solution used in the coating step is not particularly limited, and examples thereof include water, alcohols such as diethylene glycol, and one or more selected from a mixture thereof.
- the resin concentration constituting the resin solution is a concentration that produces 4.0 to 16.0 parts by mass of an amorphous carbonized bonding material per 100.0 parts by mass of graphite particles after the calcining carbonization treatment described later. It is preferable that the concentration of the resin constituting the resin solution is within the above range, so that the amorphous carbon particles can be attached to the graphite particles with a desired adhesive force. Resin concentration constituting the resin solution, after baking carbonization process to be described later, in order to control the deposition rate of the amorphous carbon particles in the desired range, the graphite particles 100.0 parts by weight, per 6.0 to 14.
- the concentration produces 0 parts by mass of the amorphous carbonized bonding material, and in order to further control the adhesion rate of the amorphous carbon particles within a desired range, 8 per 100.0 parts by mass of the graphite particles. It is more preferable that the concentration is such that 0 to 12.0 parts by mass of amorphous carbonized bonding material is produced.
- the viscosity of the resin solution is preferably 0.005 to 40 Pa ⁇ s, and when the viscosity of the resin constituting the resin solution is within the above range, the amorphous carbon particles are uniformly desired to be attached to the graphite particles. It can be attached by force.
- the viscosity of the resin solution is more preferably 0.3 to 10 Pa ⁇ s in order to control the adhesion rate of the amorphous carbon particles within a desired range.
- the viscosity of the resin solution means a value measured by a rotary b-type viscometer.
- the amount of the resin to be mixed and brought into contact with the graphite particles is preferably 10.0 to 60.0 parts by mass per 100.0 parts by mass of the graphite particles, and is mixed and brought into contact with the graphite particles in the coating step.
- the amount of the resin is within the above range, the bonding area with the coating particles is increased to increase the bonding force, and uniform coating is possible.
- the amount of the resin mixed and brought into contact with the graphite particles is more preferably 10.0 to 50.0 parts by mass per 100.0 parts by mass of the graphite particles, in order to enable more uniform coating. In particular, 10.0 to 40.0 parts by mass is more preferable in order to enable uniform coating.
- the method of mixing the graphite particles and the resin solution in the coating step is not particularly limited, and examples thereof include a method of mixing using a mixer such as a kneader, a trimix, a high-speed mixer, or a Henschel mixer.
- a mixer such as a kneader, a trimix, a high-speed mixer, or a Henschel mixer.
- the mixing temperature when the graphite particles and the resin solution are mixed is not particularly limited, but it is preferable to adjust the viscosity of the resin to 0.005 to 40 Pa ⁇ s.
- a resin solution is mixed with the graphite particles and brought into contact with each other to adhere the resin, thereby forming a binder for fixing the amorphous carbon particles described later.
- the concentration, viscosity, or amount of the resin solution used by appropriately adjusting the concentration, viscosity, or amount of the resin solution used, the amount of adhesion to the graphite particles and the amorphous carbon particles described later and the thickness of the resin layer on the surface of the graphite particles can be easily controlled. Therefore, when the agglomerates obtained by calcining and carbonizing are pulverized to obtain composite graphite particles, the impact is alleviated, the formation of fine powders is suppressed, and the particle size distribution is narrow. Composite graphite particles can be easily obtained. Therefore, according to the production method according to the present invention, composite graphite particles exhibiting excellent initial efficiency when used as a negative electrode material for a lithium ion secondary battery can be easily produced.
- the amorphous carbon particles are mixed with the resin-coated graphite particles obtained in the coating step by 10.0 to 40.0 parts by mass per 100.0 parts by mass of the graphite particles.
- Amorphous carbon particle-attached graphite particles having amorphous carbon particles attached to the surface of the resin-coated graphite particles are obtained.
- the amorphous carbon particles are not particularly limited, and examples thereof include one or more selected from carbon blacks such as furnace black and thermal black.
- the average particle size of the amorphous carbon particles is preferably 50 to 300 nm, and when the average particle size of the amorphous carbon particles is within the above range, the irreversible capacity is increased. It is possible to easily obtain composite graphite particles having excellent high-speed charge / discharge characteristics as a negative electrode material for a lithium ion secondary battery.
- the average particle size of the amorphous carbon particles is more preferably 100 nm or more in order to further suppress the increase in irreversible capacity, and 200 nm in order to further improve the high-speed charge / discharge performance. The following is more preferable.
- the average particle size of the amorphous carbon particles used in the production method according to the present invention is determined by using a transmission electron microscope (TEM, H-7650 transmission electron microscope manufactured by Hitachi, Ltd.). When each amorphous carbon particle was observed using the image analysis software (WINROOF manufactured by Mitani Shoji Co., Ltd.), 10,000 particles were used with the diameter of the circumscribing circle of each amorphous carbon particle as the particle diameter. It means the arithmetic average value when the particle size of the amorphous carbon particles of.
- the average lattice spacing d (002) of the amorphous carbon particles is 0.3370 nm or more, and the average lattice spacing d (002) of the amorphous carbon particles is within the above range.
- the reaction resistance on the surface of the particles is likely to decrease, and excellent high-speed charge / discharge characteristics are likely to be exhibited.
- the average lattice spacing d (002) of the amorphous carbon particles is preferably 0.3400 nm or more in order to improve the high-speed charge / discharge characteristics, and further improves the high-speed charge / discharge performance. It is more preferably 0.3500 nm or more in that it can be improved.
- the DBP oil absorption amount of carbon black is preferably 300 ml / 100 g or less, and the DBP oil absorption amount of carbon black is 300 ml / 100 g or less.
- the increase in the specific surface area of the obtained composite graphite particles can be suppressed, and the increase in the irreversible capacity at the time of initial charging can be easily suppressed when used as a negative electrode material for a lithium ion secondary battery.
- the DBP oil absorption amount of the carbon black is more preferably 250 ml / 100 g or less in order to further suppress the increase in the irreversible capacity, and the increase in the irreversible capacity is increased. 200 ml / 100 g or less is more preferable in order to particularly suppress the above.
- the amorphous carbon particles are added to the resin-coated graphite particles by 10.0 to 40.0 parts by mass per 100.0 parts by mass of the graphite particles (constituting the resin-coated graphite particles). Mix.
- the mixed amount of the amorphous carbon particles is within the above range, when the obtained composite graphite particles are used as a negative electrode material for a lithium ion secondary battery, the increase in irreversible capacity at the time of initial charging is suppressed while suppressing the increase in irreversible capacity. High-speed charge / discharge performance can be easily improved.
- the amount of the amorphous carbon particles mixed with the resin-coated graphite particles is the amount of the amorphous carbon particles mixed with 100.0 parts by mass of the graphite particles (constituting the resin-coated graphite particles). 20.0 parts by mass or more is more preferable for further improving the high-speed charge / discharge property, and 30.0 parts by mass or less is more preferable for suppressing an increase in the irreversible capacity at the time of initial charging.
- the treatment temperature when the specific amorphous carbon particles are mixed with the resin-coated graphite particles is not particularly limited, but it is preferable to adjust the viscosity of the resin to 0.005 to 40 Pa ⁇ s.
- examples of the mixing means include one or more mixing devices selected from a kneader, a trimix, a high-speed mixer, a Henschel mixer and the like.
- a Henshell mixer FM20C manufactured by Mitsui Mine Co., Ltd.
- Amorphous carbon particles such as carbon black are put into the tank of the mixer, and after reaching a predetermined temperature, the treatment is performed at a peripheral speed of 30 m / s for 15 minutes.
- the amount of amorphous carbon particles exceeds 30 parts by mass with respect to 100 parts by mass of the graphite particles constituting the resin-coated graphite particles, the amorphous carbon particles are divided into three and sequentially charged to obtain the composite graphite particles.
- the uniformity of the coating of the amorphous carbon particles can be easily improved.
- the amorphous carbon particle-adhered graphite particles having amorphous carbon particles adhered to the surface of the resin-coated graphite particles are subjected to a calcining carbonization step of calcining the amorphous carbon particles.
- the temperature at which the graphite particles adhering to the amorphous carbon particles are calcined by firing is preferably 800 ° C. or higher, and when the calcined carbonization temperature is within the above range, unburned components contained in carbon black or the like can be sufficiently removed. can.
- the temperature at which the graphite particles adhering to the amorphous carbon particles are calcined and carbonized is more preferably 1000 ° C. or higher in order to remove unburned components.
- the upper limit of the temperature for calcining and carbonizing is not particularly limited, but the temperature for calcining and carbonizing the graphite particles adhering to amorphous carbon particles is preferably 3000 ° C. or lower, and more preferably 2000 ° C. or lower in terms of improving high-speed charge / discharge characteristics.
- the time for calcining and carbonizing the graphite particles adhering to the amorphous carbon particles is preferably 1 hour or more, and the calcining carbonization time is 1 hour or more, so that unburned components contained in carbon black or the like are sufficiently removed. can do.
- the time for calcining and carbonizing the graphite particles adhering to the amorphous carbon particles is more preferably 2 hours or more in order to remove the unburned portion.
- the atmosphere when the amorphous carbon particle-attached graphite particles are calcined and carbonized is an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere.
- the calcined charcoal obtained by performing a carbonization firing step may be subjected to a pulverization treatment and, if necessary, a classification treatment or the like.
- Examples of the negative electrode material for a lithium ion secondary battery obtained by the manufacturing method according to the present invention include a negative electrode material for a lithium ion secondary battery according to the present invention.
- a method for manufacturing a negative electrode material for a lithium ion secondary battery which is excellent in initial efficiency and high-speed charge / discharge characteristics.
- the manufacturing material 1 of the negative electrode material for a lithium ion secondary battery according to the present invention is Amorphous carbon particles attached to the surface of graphite particles together with resin Amorphous carbon particles adhered Graphite particles consist of a plurality of bonded aggregates.
- the bound aggregate is characterized by containing 10.0 to 40.0 parts by mass of the amorphous carbon particles per 100.0 parts by mass of the graphite particles.
- the material 1 for producing the negative electrode material for the lithium ion secondary battery according to the present invention should be referred to as an intermediate for producing the composite graphite particles constituting the negative electrode material for the lithium ion secondary battery according to the present invention.
- amorphous carbon particles are mixed with resin-coated graphite particles to obtain amorphous carbon particle-attached graphite particles in which the amorphous carbon particles are attached to the surface of the resin-coated graphite particles. It corresponds to what is obtained by performing the process.
- the manufacturing material 1 of the negative electrode material for a lithium ion secondary battery according to the present invention the details of the graphite particles, the amorphous carbon particles and the resin constituting the binder aggregate are described in the manufacturing method according to the present invention. It is the same as the content described in the explanation. Further, as described in the production method according to the present invention, the material 1 for producing the negative electrode material for the lithium ion secondary battery according to the present invention is resin-coated by mixing amorphous carbon particles with the resin-coated graphite particles.
- It can be produced by performing a step of obtaining the amorphous carbon particle-attached graphite particles having the amorphous carbon particles attached to the surface of the graphite particles, and the details thereof are as described in the description of the production method according to the present invention. Is.
- the binder aggregate contains 10.0 to 40.0 parts by mass of amorphous carbon particles per 100.0 parts by mass of graphite particles.
- the ratio of the amorphous carbon particles is 10.0 to 40.0 parts by mass with respect to 100.0 parts by mass of the graphite particles, so that the negative electrode material for the lithium ion secondary battery obtained at the time of initial charging High-speed charge / discharge characteristics can be easily improved while suppressing an increase in irreversible capacitance.
- the ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite particles is more preferably 20.0 parts by mass or more in order to further improve the high-speed charge / discharge property, and the generation of particles to be isolated without coating is generated. 30.0 parts by mass or less is more preferable in order to suppress the increase in irreversible capacity at the time of initial charging.
- FIG. 4 is a schematic cross-sectional view showing a bonded aggregate 30 in which a plurality of amorphous carbon particle-attached graphite particles 20 having amorphous carbon particles 3 attached to the surface of the graphite particles 1 together with a resin are bonded.
- the material 1 for producing the negative electrode material for a lithium ion secondary battery according to the present invention is composed of a binder aggregate 30 in which a plurality of amorphous carbon particle-adhered graphite particles 20 are bonded, and each non-amorphous carbon particle adhered graphite particle 20 is bonded.
- the graphite particles 20 adhering to the crystalline carbon particles are bound to each other with an appropriate binding force via a film-like resin.
- the pulverization treatment can be performed without applying an extra impact force between the particles. Therefore, composite graphite particles having a narrow particle size distribution and a uniform particle size can be obtained. It can be suitably prepared, and an increase in the specific surface area of the obtained composite graphite particles can be suppressed. Therefore, it is possible to provide composite graphite particles capable of exhibiting excellent initial efficiency when used as a negative electrode material for a lithium ion secondary battery.
- the material 2 for producing the negative electrode material for a lithium ion secondary battery according to the present invention is an amorphous carbon particle-coated graphite particle in which the surface of the graphite particle is coated with the amorphous carbonized bonding material and the amorphous carbon particle.
- the fixed aggregate contains 10.0 to 40.0 parts by mass of the amorphous carbon particles per 100.0 parts by mass of the graphite particles.
- the material 2 for producing the negative electrode material for a lithium ion secondary battery according to the present invention should also be referred to as an intermediate for producing the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention.
- the fixed aggregate corresponds to that obtained by subjecting a calcined carbonization step of calcining and carbonizing the graphite particles adhering to amorphous carbon particles. Therefore, in the material 2 for producing the negative electrode material for a lithium ion secondary battery according to the present invention, the details of the graphite particles, the amorphous carbon particles and the resin, which are the raw materials for the fixed aggregate, are described in the production method according to the present invention.
- the manufacturing material 2 of the negative electrode material for a lithium ion secondary battery according to the present invention is subjected to a firing carbonization step of calcining and carbonizing the graphite particles adhering to amorphous carbon particles as described in the manufacturing method according to the present invention.
- the details thereof are as described in the description of the manufacturing method according to the present invention.
- the adhered aggregate contains 10.0 to 40.0 parts by mass of amorphous carbon particles per 100.0 parts by mass of graphite particles.
- the ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite particles constituting the adhered aggregate is more preferably 20.0 parts by mass or more in order to further improve the high-speed charge / discharge property, and the particles are not coated. It is 30.0 parts by mass or less in order to suppress the generation of the particles to be isolated and the increase in the irreversible capacity at the time of initial charging.
- the material 2 for producing the negative electrode material for a lithium ion secondary battery according to the present invention has a specific surface area of nitrogen adsorption when the rate of change in tap density, which represents the rate of change in tap density before and after crushing of the fixed aggregate, is 10% to 60%.
- the specific surface area change rate, which indicates the change rate of, is 20% or less.
- the material 2 for producing the negative electrode material for a lithium ion secondary battery according to the present invention has a specific surface area of nitrogen adsorption when the rate of change in tap density, which represents the rate of change in tap density before and after crushing of the fixed aggregate, is 10% to 60%.
- the specific surface area change rate indicating the rate of change of is 20% or less, and the specific surface area change rate before and after crushing the fixed aggregate is within the above range, thereby reducing damage to the composite graphite particles during impact crushing. By suppressing the increase in the specific surface area, it is possible to easily reduce the increase in the irreversible capacity at the time of initial charging.
- the material 2 for producing the negative electrode material for a lithium ion secondary battery according to the present invention has a specific surface area of nitrogen adsorption when the rate of change in tap density, which represents the rate of change in tap density before and after crushing of the fixed aggregate, is 10% to 60%.
- the specific surface area change rate which indicates the rate of change in the above, is preferably 15% or less in order to further suppress the increase in the irreversible capacity, and more preferably 10% or less in order to particularly suppress the increase in the irreversible capacity.
- the crushing treatment of the fixed aggregate when calculating the tap density change rate and the specific surface area change rate is performed by using a super rotor (SR25) manufactured by Nisshin Engineering Co., Ltd. at a rotation speed of 4000 rpm. It is done by processing with.
- the tap density and the nitrogen adsorption specific surface area before and after pulverization mean the values measured by the above-mentioned method, and the tap density change rate and the specific surface area change rate are calculated by the following equations (4) and (5), respectively. Means a value.
- the material 2 for producing the negative electrode material for a lithium ion secondary battery according to the present invention is composed of a fixed aggregate in which a plurality of amorphous carbon particle-coated graphite particles are fixed, and the amorphous carbon particle-coated graphite particles are film-like to each other. It is fixed with an appropriate fixing force through the amorphous carbonized bonding material of. Therefore, when the fixed aggregate is pulverized, it can be pulverized without applying an extra impact force between the particles, so that composite graphite particles having a narrow particle size distribution and a uniform particle size can be suitably prepared. Even when the tap density change rate is 10% to 60%, the specific surface area change rate can be suppressed to 20% or less. Therefore, when the material 2 for producing the negative electrode material for a lithium ion secondary battery according to the present invention is used as the negative electrode material for a lithium ion secondary battery, excellent initial efficiency can be exhibited.
- a material for manufacturing a negative electrode material for a lithium ion secondary battery which is excellent in initial efficiency and high-speed charge / discharge characteristics.
- furnace black S-TA manufactured by Tokai Carbon Co., Ltd.
- the obtained powder was calcined by calcining at 1000 ° C. for 2 hours in a nitrogen gas atmosphere.
- the obtained calcined powder was pulverized at 4000 rpm using a crusher (Super Rotor manufactured by Nisshin Engineering Co., Ltd .: SR25), and then classified by a classification device (device name: sieve classification, opening 45 ⁇ m).
- composite graphite particles coverage 75%, tap density 0.91 g / cm 3 , average particle diameter D 50 17.1 ⁇ m, particle
- Example 2 The same as in Example 1 except that the input amount of particle black (S-TA manufactured by Tokai Carbon Co., Ltd.) with respect to 100.0 parts by mass of natural graphite was changed from 20.0 parts by mass to 5.0 parts by mass.
- Lithium ion 2 composed of composite graphite particles (coverage 12%, tap density 0.94 g / cm 3 , average particle size D 50 12.1 ⁇ m, particle size distribution index SPAN 0.9, nitrogen adsorption ratio surface area 4.7 m 2 / g) A negative electrode material for the next battery was obtained.
- Example 3 The same as in Example 1 except that the input amount of particle black (S-TA manufactured by Tokai Carbon Co., Ltd.) with respect to 100.0 parts by mass of natural graphite was changed from 20.0 parts by mass to 50.0 parts by mass.
- Lithium ion 2 composed of composite graphite particles (coverage 95%, tap density 0.92 g / cm 3 , average particle size D 50 14.3 ⁇ m, particle size distribution index SPAN 1.1, nitrogen adsorption ratio surface area 6.4 m 2 / g) A negative electrode material for the next battery was obtained.
- TEM Transmission electron microscope
- Battery characteristic evaluation method Using the composite graphite particles obtained in each Example and Comparative Example, the electrode plate density was measured by the following method, and a laminated battery was produced to determine various battery characteristics.
- ⁇ Pole plate density> (1) Preparation of Electrode Sheet To 90.2% by weight of composite graphite particles, 9.8% by weight of polyvinylidene fluoride (PVDF), an organic binder dissolved in N-methyl-2pyrrolidone, was added as a solid content and stirred. Mix to prepare a negative electrode mixture paste. The obtained negative electrode mixture paste is applied on a copper foil (current collector) having a thickness of 20 ⁇ m by the doctor blade method, and then heated in a dryer at 90 ° C. for 90 minutes and further in a vacuum at 130 ° C. for 11 hours. The solvent is completely volatilized to obtain an electrode sheet having a grain size of 3.5 ⁇ 0.2 mg / cm 2.
- the basis weight means the weight of the composite graphite particles per unit area of the electrode sheet.
- the electrode sheet is cut into strips having a width of 6 cm and rolled by a roller press so that the electrode plate density is 1.2 g / cm 3.
- the pressed electrode sheet is cut into a length of 2.8 cm and a width of 5.5 cm.
- the arithmetic mean value of the plate densities obtained from each weight A (g) and the thickness B (cm) of the central portion by the following formula (6) was defined as the plate density.
- Plate density (g / cm 3 ) ⁇ (A (g) -copper foil weight (g)) x weight ratio of composite graphite particles in the negative electrode mixture layer (0.902) ⁇ / ⁇ (B (cm)) -Copper foil thickness (cm)) x electrode area (cm 2 ) ⁇ (6) ⁇ Making laminated batteries>
- the same electrode sheet as that used for measuring the electrode plate density was prepared and used as a negative electrode.
- a positive electrode (Li metal, a separator (polypropylene)), and a negative electrode are laminated in this order, and after attaching a Ni tab, the laminate is aluminum-laminated, and the laminated battery is placed in an inert atmosphere.
- the electrolytic solution used was a 1: 1 mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol / dm 3 lithium salt LiPF 6 was dissolved.
- Charging was performed at a current density of 0.2 mA / cm 2 . after completion of the constant-current charge at a final voltage 5 mV, until the lower-limit current 0.02 mA / cm 2 for holding a constant potential. discharging a constant current discharge to the final voltage of 1.5V at a current density of 0.2 mA / cm 2
- the discharge capacity after the end of 3 cycles was defined as the reversible capacity.
- the initial efficiency is a value (%) obtained by dividing the discharge capacity of the 1st cycle by the charge capacity of the 1st cycle.
- the charge capacity of 5C is 3 cycles. This is the charge capacity when the battery is fully charged in 12 minutes from the state of complete discharge later.
- Table 1 shows the raw material composition (parts by mass) used in each of the above Examples and Comparative Examples, and the characteristics of the obtained composite graphite particles.
- Table 1 shows the battery characteristics when each laminated battery is manufactured using the electrodes (negative electrodes) made of the negative electrode materials obtained in each of the above Examples and Comparative Examples.
- the negative electrode materials for lithium ion secondary batteries obtained in Examples 1 to 3 were subjected to a coating step, a step of obtaining amorphous carbon particle-adhered graphite particles, and a calcined carbonization step as specific steps. Since it is composed of the obtained specific composite graphite particles, it can be seen that it can exhibit excellent initial efficiency and high-speed charge / discharge characteristics when used in a lithium ion secondary battery.
- a negative electrode material for a lithium ion secondary battery a method for manufacturing a negative electrode material for a lithium ion secondary battery, and a material for manufacturing a negative electrode material for a lithium ion secondary battery, which are excellent in initial efficiency and high-speed charge / discharge characteristics. can do.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材を提供する。 リチウムイオン二次電池用負極材であって、各々特定の工程である、被覆工程と、非晶質炭素粒子付着黒鉛粒子を得る工程と、前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程とを施して得られる複合黒鉛粒子からなり、当該複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が50%以上であることを特徴とするリチウムイオン二次電池用負極材である。
Description
本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料に関する。
リチウムイオン二次電池は、携帯電話、パソコン等の多くの機器に搭載され、高容量で、高電圧、小型軽量である点から多様な分野で利用されるようになっている。
近年、リチウムイオン二次電池は、車載用途の需要が急激に高まっており、車載用に求められる特性としては、高容量で、高寿命かつ高入出力であり、かつこれらの特性のバランスに優れていることが求められている。このため、エネルギー密度が高くかつ膨張収縮が小さい負極材が必要とされ、これらの特性を満たす負極材として黒鉛粒子製のものが広く利用されるようになっている。
黒鉛材料を用いるリチウムイオン二次電池用負極材においては、黒鉛材料の結晶性を高めることにより、放電容量を向上し得ることが知られているが、リチウムイオン二次電池用負極材としては、放電容量が高いことに加えて、高速充放電特性に優れることが要求される。
そして、このような黒鉛粒子を用いるリチウムイオン二次電池用負極材の性能向上を目的として、黒鉛粒子を複合化した複合粒子が提案されるようになっている(例えば、特許文献1参照)。
特許文献1には、天然黒鉛を球状に賦形した母材100重量部にカーボンブラック2~50重量部及びピッチを混合して天然黒鉛粒子を含浸・被覆して900℃~1500℃で焼成し、表面に微小突起を形成したBET比表面積2m2/g以上であるリチウムイオン二次電池用黒鉛粒子(A)が開示されている。特許文献1によれば、単位体積当たりの放電容量が高く、初期充放電時の容量ロスが小さいことに加え、高速充放電特性に優れるリチウムイオン二次電池用負極材を提供することができるとされている。
しかしながら、本発明者等が検討したところ、特許文献1記載のリチウムイオン二次電池用黒鉛粒子は、リチウムイオン二次電池用負極材として用いた場合に初期効率の低下を招きやすいことが判明した。
これは、黒鉛粒子にカーボンブラックを被覆する際にバインダーとしてピッチを用いているために、カーボンブラック表面に付着したピッチを介して複合黒鉛粒子同士が強固に結合してしまい、焼成後に粉砕して複合黒鉛粒子を得ようとする際に強い衝撃を生じて、得られる複合黒鉛粒子が微粉化し易くなり、比表面積の増加を招き易いためと考えられた。
これは、黒鉛粒子にカーボンブラックを被覆する際にバインダーとしてピッチを用いているために、カーボンブラック表面に付着したピッチを介して複合黒鉛粒子同士が強固に結合してしまい、焼成後に粉砕して複合黒鉛粒子を得ようとする際に強い衝撃を生じて、得られる複合黒鉛粒子が微粉化し易くなり、比表面積の増加を招き易いためと考えられた。
また、従来より、高速充放電特性を向上させ得るリチウムイオン二次電池用負極材が強く望まれるようになっており、特許文献1記載のリチウムイオン二次電池用黒鉛粒子よりも、さらに高速充放電特性に優れるリチウムイオン二次電池用負極材が求められるようになっていた。
従って、本発明は、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料を提供することを目的とするものである。
上記技術背景の下、本発明者等が鋭意検討を重ねたところ、黒鉛粒子の表面に樹脂溶液に由来する非晶質炭素化結合材料層を設け、係る非晶質炭素化結合材料層を介して非晶質炭素粒子を所定量固定した複合黒鉛粒子により、比表面積の増加を抑制しつつ、リチウムイオンのパスを増大させて高速放電特性に優れるリチウムイオン二次電池用負極材が得られることを見出し、本知見に基づいて本発明を完成させるに至った。
すなわち、本発明は、
(1)リチウムイオン二次電池用負極材であって、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を施して得られる、
黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなり、
当該複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が50%以上である
ことを特徴とするリチウムイオン二次電池用負極材、
(2)タップ密度が0.60g/cm3以上であることを特徴とする上記(1)に記載のリチウムイオン二次電池用負極材、
(3)前記複合黒鉛粒子は、平均粒子径D50が5.0~30.0μm、粒度分布指数SPANが2.0未満である上記(1)に記載のリチウムイオン二次電池用負極材、
(4)前記複合黒鉛粒子を断面観察したときの前記非晶質炭素粒子の平均粒子径が50~300nmである上記(1)に記載のリチウムイオン二次電池用負極材、
(5)リチウムイオン二次電池用負極材の製造方法であって、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を有する
ことを特徴とするリチウムイオン二次電池用負極材の製造方法、
(6)前記黒鉛粒子の平均粒子径D50が5.0~30.0μmであり、前記非晶質炭素粒子の平均粒子径が50~300nmである上記(5)に記載のリチウムイオン二次電池用負極材の製造方法、
(7)黒鉛粒子の表面に樹脂とともに非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子が、複数結着した結着集合物からなり、
当該結着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含む
ことを特徴とするリチウムイオン二次電池用負極材の製造材料(以下、適宜、本発明に係るリチウムイオン二次電池用負極材の製造材料1と称する)、
(8)黒鉛粒子の表面が非晶質炭素化結合材料と非晶質炭素粒子によって被覆された非晶質炭素粒子被覆黒鉛粒子が、複数固着した固着集合物からなり、
当該固着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含み、
粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が20%以下である
ことを特徴とするリチウムイオン二次電池用負極材の製造材料(以下、適宜、本発明に係るリチウムイオン二次電池用負極材の製造材料2と称する)
を提供するものである。
(1)リチウムイオン二次電池用負極材であって、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を施して得られる、
黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなり、
当該複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が50%以上である
ことを特徴とするリチウムイオン二次電池用負極材、
(2)タップ密度が0.60g/cm3以上であることを特徴とする上記(1)に記載のリチウムイオン二次電池用負極材、
(3)前記複合黒鉛粒子は、平均粒子径D50が5.0~30.0μm、粒度分布指数SPANが2.0未満である上記(1)に記載のリチウムイオン二次電池用負極材、
(4)前記複合黒鉛粒子を断面観察したときの前記非晶質炭素粒子の平均粒子径が50~300nmである上記(1)に記載のリチウムイオン二次電池用負極材、
(5)リチウムイオン二次電池用負極材の製造方法であって、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を有する
ことを特徴とするリチウムイオン二次電池用負極材の製造方法、
(6)前記黒鉛粒子の平均粒子径D50が5.0~30.0μmであり、前記非晶質炭素粒子の平均粒子径が50~300nmである上記(5)に記載のリチウムイオン二次電池用負極材の製造方法、
(7)黒鉛粒子の表面に樹脂とともに非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子が、複数結着した結着集合物からなり、
当該結着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含む
ことを特徴とするリチウムイオン二次電池用負極材の製造材料(以下、適宜、本発明に係るリチウムイオン二次電池用負極材の製造材料1と称する)、
(8)黒鉛粒子の表面が非晶質炭素化結合材料と非晶質炭素粒子によって被覆された非晶質炭素粒子被覆黒鉛粒子が、複数固着した固着集合物からなり、
当該固着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含み、
粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が20%以下である
ことを特徴とするリチウムイオン二次電池用負極材の製造材料(以下、適宜、本発明に係るリチウムイオン二次電池用負極材の製造材料2と称する)
を提供するものである。
本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料を提供することができる。
先ず、本発明に係るリチウムイオン二次電池用負極材について説明する。
本発明に係るリチウムイオン二次電池用負極材は、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を施して得られる、
黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなり、
当該複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が50%以上である
ことを特徴とするものである。
本発明に係るリチウムイオン二次電池用負極材は、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を施して得られる、
黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなり、
当該複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が50%以上である
ことを特徴とするものである。
本発明に係るリチウムイオン二次電池用負極材は、上記被覆工程と、非晶質炭素粒子付着黒鉛粒子を得る工程と、焼成炭化工程とを施して得られる複合黒鉛粒子からなるものであり、これ等の工程の詳細は、後述する本発明に係るリチウムイオン二次電池用負極材の製造方法の説明で詳述するとおりである。
なお、本発明に係るリチウムイオン二次電池用負極材は、上記被覆工程と、非晶質炭素粒子付着黒鉛粒子を得る工程と、焼成炭化工程とを少なくとも行って得られるものであり、本発明の効果を損なわない範囲で、他の工程を行うことは許容される。
なお、本発明に係るリチウムイオン二次電池用負極材は、上記被覆工程と、非晶質炭素粒子付着黒鉛粒子を得る工程と、焼成炭化工程とを少なくとも行って得られるものであり、本発明の効果を損なわない範囲で、他の工程を行うことは許容される。
本発明に係るリチウムイオン二次電池用負極材について、適宜、図1~図3を用いて説明する。図1は、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の一形態例における断面の概略図である。
図1中、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10は、黒鉛粒子1と黒鉛粒子1を覆う被覆層4とからなる。被覆層4は、非晶質炭素粒子3及び非晶質炭素化結合材料2を含み、非晶質炭素粒子3は、通常、非晶質炭素化結合材料2の層に埋め込まれるようにして、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10に固定されている。また、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10において、複合黒鉛粒子を構成するほぼ全ての非晶質炭素粒子3が黒鉛粒子1の表面に接している。
本発明に係るリチウムイオン二次電池用負極材において、複合黒鉛粒子の芯材となる黒鉛粒子としては、扁平状の黒鉛が球状に凝集した球状の黒鉛粒子を挙げることができる。
黒鉛粒子は、天然黒鉛からなるものであってもよいし、人造黒鉛からなるものであってもよい。
黒鉛粒子は、天然黒鉛からなるものであってもよいし、人造黒鉛からなるものであってもよい。
黒鉛粒子の平均格子面間隔d(002)は、0.3360nm以下であり、黒鉛粒子の平均格子面間隔d(002)が0.3360nm以下であることにより、可逆容量を十分に大きくすることができる。黒鉛粒子の平均格子面間隔d(002)は、可逆容量をさらに向上させる上では、0.3358nm以下であることが好ましい。
なお、本出願書類において、平均格子面間隔d(002)は、X線回折装置((株)リガク製UltimaIV)を用い、Cu-Kα線をNiフィルターで単色化したX線を使用して、高純度シリコンを標準物質として粉末X線回折法で測定を行い、得られた炭素(002)面の回折ピークの強度と半値幅より、日本学術振興会第117委員会によって定められた学振法に従って求めた値である。
本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、被覆層は、非晶質炭素粒子及び非晶質炭素化結合材料(非晶質樹脂炭素化物)を含む。
上記非晶質炭素化結合材料は、黒鉛粒子表面を覆う樹脂が焼成され非晶質炭素化されたものであり、平均格子面間隔d(002)が0.3370nm以上であるものを意味する。
上記非晶質炭素化結合材料は、黒鉛粒子表面を覆う樹脂が焼成され非晶質炭素化されたものであり、平均格子面間隔d(002)が0.3370nm以上であるものを意味する。
図1に例示するように、複合黒鉛粒子10において、非晶質炭素粒子3は、通常、その一部が非晶質炭素化結合材料2に埋め込まれるようにして、黒鉛粒子1に固定されている。
非晶質炭素粒子としては、特に制限されないが、例えば、ファーネスブラック、サーマルブラック等のカーボンブラックが挙げられる。
非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上であり、非晶質炭素粒子の平均格子面間隔d(002)が0.3370nm以上であることにより、粒子表面の反応抵抗が下がり易くなりリチウムイオン二次電池用負極材として使用したときに優れた高速充放電特性を容易に発揮することができる。
非晶質炭素粒子の平均格子面間隔d(002)は、高速充放電性をさらに向上させる上では、0.3400nm以上であることが好ましく、更に高速充放電性能が向上する点で、0.3500nm以上であることがより好ましい。
非晶質炭素粒子の平均格子面間隔d(002)は、高速充放電性をさらに向上させる上では、0.3400nm以上であることが好ましく、更に高速充放電性能が向上する点で、0.3500nm以上であることがより好ましい。
複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、50~300nmが好ましく、表面観察における球状の非晶質炭素材料の平均粒子径が上記範囲にあることにより、不可逆容量の増大を抑制しつつ、リチウムイオン二次電池用負極材として高速充放電特性に優れた複合黒鉛粒子を容易に得ることができる。
複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、不可逆容量の増大をさらに抑制する上では、100nm以上がより好ましく、また、高速充放電性能をさらに向上させる上では、200nm以下がより好ましい。
複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、不可逆容量の増大をさらに抑制する上では、100nm以上がより好ましく、また、高速充放電性能をさらに向上させる上では、200nm以下がより好ましい。
なお、本出願書類において、複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、以下のとおり求めた値を意味する。
すなわち、複合黒鉛粒子を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により表面観察し、得られたSEM画像中から複合黒鉛粒子上の非晶質炭素粒子を任意に選択し、画像解析ソフト(三谷商事(株)製WINROOF)を用いて、係る非晶質炭素粒子の外接円の直径を粒子径として算出する。同様にして、SEM画像から任意に1000個以上の非晶質炭素粒子を抽出して各粒子径を求め、それらの算術平均値を表面観察における非晶質炭素粒子の平均粒子径とする。
すなわち、複合黒鉛粒子を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により表面観察し、得られたSEM画像中から複合黒鉛粒子上の非晶質炭素粒子を任意に選択し、画像解析ソフト(三谷商事(株)製WINROOF)を用いて、係る非晶質炭素粒子の外接円の直径を粒子径として算出する。同様にして、SEM画像から任意に1000個以上の非晶質炭素粒子を抽出して各粒子径を求め、それらの算術平均値を表面観察における非晶質炭素粒子の平均粒子径とする。
断面観察における非晶質炭素化結合材料の厚み(後述する図3に符号8で示す非晶質炭素化結合材料2の厚み)は、適宜選定され、被覆粒子の埋め込みを考慮した場合は、15nm~1μmであることが好ましい。断面観察における非晶質炭素化結合材料の厚みが上記範囲内にあることにより、非晶質炭素粒子の固定化および埋め込みが十分になされ、リチウムイオン二次電池用負極材として使用したときに高速充放電特性に優れた複合黒鉛粒を容易に得ることができる。
なお、本発明のリチウムイオン二次電池用負極材において、断面観察における非晶質炭素化結合材料の厚みは、複合黒鉛粒子のうち任意に抽出した1粒子を、走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により断面観察し、得られるSEM画像中の非晶質炭素化結合材料の断面の厚みを、任意に10か所測定して、それらの平均を計算し、その値を非晶質炭素化結合材料の断面の厚みとする。
そして、複合黒鉛粒子を任意に少なくとも10粒子抽出し、各粒子について、非晶質炭素化結合材料の断面の厚みを求め、それらの厚みを平均し、断面観察における非晶質炭素化結合材料の断面の厚みとする。
そして、複合黒鉛粒子を任意に少なくとも10粒子抽出し、各粒子について、非晶質炭素化結合材料の断面の厚みを求め、それらの厚みを平均し、断面観察における非晶質炭素化結合材料の断面の厚みとする。
本発明に係るリチウムイオン二次電池用負極材は、黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が、50%以上である。表面観察したときにおける非晶質炭素粒子の被覆率が50%以上であることにより、複合黒鉛粒子をリチウムイオン二次電池用負極材として用いたときに優れた高速充放電特性を容易に達成することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率は、高速充放電性をさらに向上する上では70%以上であることがより好ましく、高速充放電性を特に向上する上では80%以上であることがさらに好ましい。
上記被覆率の上限は特に制限されないが、通常、90%以下である。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が、50%以上である。表面観察したときにおける非晶質炭素粒子の被覆率が50%以上であることにより、複合黒鉛粒子をリチウムイオン二次電池用負極材として用いたときに優れた高速充放電特性を容易に達成することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率は、高速充放電性をさらに向上する上では70%以上であることがより好ましく、高速充放電性を特に向上する上では80%以上であることがさらに好ましい。
上記被覆率の上限は特に制限されないが、通常、90%以下である。
本出願書類において、複合黒鉛粒子を表面観察したときに非晶質炭素粒子が黒鉛粒子を被覆する被覆率の算出方法を、図2を用いて説明すると以下のとおりとなる。
図2(A)は、図1に示すリチウムイオン二次電池用負極材を構成する複合黒鉛粒子10の表面付近を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により観察したときの模式図であり、図2(A)に例示するように、SEM観察画像において、50個以上の任意の非晶質炭素粒子3が含まれるように枠線(破線)9で囲んで観察範囲とする。
図2(B)は、上記図2(A)に示す観察範囲内における非晶質炭素粒子3の合計面積α(斜線で示す面積)と、観察範囲全体の面積β(枠線9内の面積)を示すものである。
上記各面積を画像解析ソフトウェア(三谷商事(株)製WINROOF)を用いて算出した上で、各観察箇所における非晶質炭素粒子の被覆率を下記式(1)により求める。
各観察箇所における非晶質炭素粒子の被覆率(%)=(観察範囲内における非晶質炭素粒子の合計面積α/観察範囲全体の面積β)×100 (1)
そして、上記複合黒鉛粒子の表面の走査型電子顕微鏡(SEM)による観察を10箇所について行って各観察箇所における非晶質炭素粒子の被覆率を求め、得られた被覆率の算術平均値を、表面観察したときに非晶質炭素粒子が黒鉛粒子を被覆する被覆率とする。
図2(A)は、図1に示すリチウムイオン二次電池用負極材を構成する複合黒鉛粒子10の表面付近を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により観察したときの模式図であり、図2(A)に例示するように、SEM観察画像において、50個以上の任意の非晶質炭素粒子3が含まれるように枠線(破線)9で囲んで観察範囲とする。
図2(B)は、上記図2(A)に示す観察範囲内における非晶質炭素粒子3の合計面積α(斜線で示す面積)と、観察範囲全体の面積β(枠線9内の面積)を示すものである。
上記各面積を画像解析ソフトウェア(三谷商事(株)製WINROOF)を用いて算出した上で、各観察箇所における非晶質炭素粒子の被覆率を下記式(1)により求める。
各観察箇所における非晶質炭素粒子の被覆率(%)=(観察範囲内における非晶質炭素粒子の合計面積α/観察範囲全体の面積β)×100 (1)
そして、上記複合黒鉛粒子の表面の走査型電子顕微鏡(SEM)による観察を10箇所について行って各観察箇所における非晶質炭素粒子の被覆率を求め、得られた被覆率の算術平均値を、表面観察したときに非晶質炭素粒子が黒鉛粒子を被覆する被覆率とする。
図3は、図1に示すリチウムイオン二次電池用負極材の表面付近の拡大図であり、図3に例示するように、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、被覆層は、通常、黒鉛粒子1の表面に層状に設けられた非晶質炭素化結合材料2に非晶質炭素粒子3の一部が埋設された状態になっている。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、当該複合黒鉛粒子を断面観察したときにおける、非晶質炭素粒子が非晶質炭素化結合材料に埋設された割合である埋没割合は、50~80%が好ましく、複合黒鉛粒子を断面観察したときの非晶質炭素粒子の埋没割合が上記範囲内にあることにより、優れた高速充放電特性を容易に発揮することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、当該複合黒鉛粒子を断面観察したときにおける、非晶質炭素粒子が非晶質炭素化結合材料に埋設された割合である埋没割合は、高速充放電特性を向上する上で、60~80%がより好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、当該複合黒鉛粒子を断面観察したときにおける、非晶質炭素粒子が非晶質炭素化結合材料に埋設された割合である埋没割合は、高速充放電特性を向上する上で、60~80%がより好ましい。
本出願書類において、複合黒鉛粒子を断面観察したときにおける、非晶質炭素粒子が非晶質炭素化結合材料に埋め混まれた割合である埋没割合の算出方法を、図3を用いて説明すると以下のとおりとなる。
すなわち、図3に示すように、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により断面観察した場合において、非晶質炭素粒子3の輪郭と非晶質炭素化結合材料2の外側の輪郭との交点を、交点6a、交点6bとする。交点6aと交点6b結んだ線よりも黒鉛粒子1側にある部分(図3(A)の斜線部)が、非晶質炭素粒子3の埋没部分5である。そして、非晶質炭素粒子3の埋没部分5(図3(A)の斜線部)の面積γおよび非晶質炭素粒子3の全体7(図3(B)の斜線部)の面積δを、画像解析ソフトウェア(三谷商事(株)製WINROOF)を用いて算出した上で、各非晶質炭素粒子の埋没割合(%)を下記式(2)により求める。
断面観察による各非晶質炭素粒子の埋没割合(%)=(非晶質炭素粒子の埋没部分の面積γ/非晶質炭素粒子の全体の面積δ)×100 (2)
そして、上記断面の走査型電子顕微鏡(SEM)観察による各非晶質炭素粒子の埋没割合の算出を、10箇所について行って、その算術平均値を非晶質炭素粒子の埋没割合とする。
すなわち、図3に示すように、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により断面観察した場合において、非晶質炭素粒子3の輪郭と非晶質炭素化結合材料2の外側の輪郭との交点を、交点6a、交点6bとする。交点6aと交点6b結んだ線よりも黒鉛粒子1側にある部分(図3(A)の斜線部)が、非晶質炭素粒子3の埋没部分5である。そして、非晶質炭素粒子3の埋没部分5(図3(A)の斜線部)の面積γおよび非晶質炭素粒子3の全体7(図3(B)の斜線部)の面積δを、画像解析ソフトウェア(三谷商事(株)製WINROOF)を用いて算出した上で、各非晶質炭素粒子の埋没割合(%)を下記式(2)により求める。
断面観察による各非晶質炭素粒子の埋没割合(%)=(非晶質炭素粒子の埋没部分の面積γ/非晶質炭素粒子の全体の面積δ)×100 (2)
そして、上記断面の走査型電子顕微鏡(SEM)観察による各非晶質炭素粒子の埋没割合の算出を、10箇所について行って、その算術平均値を非晶質炭素粒子の埋没割合とする。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は、好ましくは10.0~40.0質量部である。非晶質炭素粒子の割合が黒鉛粒子100質量部に対し10.0~40.0質量部であることにより、初回充電時の不可逆容量の増大を抑制しつつ、高速充放電特性を容易に向上することができる。黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は高速充放電性をさらに向上する上で、20.0質量部以上がより好ましく、また、被覆されずに単離する粒子の発生を抑制し、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下が好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、タップ密度が0.60g/cm3以上であることが好ましく、タップ密度が0.60g/cm3以上であることにより、微粒状物が少なく、大多数の粒子が比較的狭い粒度範囲内にあり、このために比表面積の増加を抑制して優れた初期効率を容易に発揮することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のタップ密度は、初期効率をさらに向上する上では、0.70g/cm3以上がより好ましく、初期効率を特に向上する上では、0.80g/cm3以上がさらに好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のタップ密度の上限は特に制限されないが、上記タップ密度は、粒子間導電パスの確保及び浸液性の確保が可能となる点で、1.20g/cm3以下が好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のタップ密度は、初期効率をさらに向上する上では、0.70g/cm3以上がより好ましく、初期効率を特に向上する上では、0.80g/cm3以上がさらに好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のタップ密度の上限は特に制限されないが、上記タップ密度は、粒子間導電パスの確保及び浸液性の確保が可能となる点で、1.20g/cm3以下が好ましい。
なお、本出願書類において、タップ密度は、25mlメスシリンダーに黒鉛粒子粉末5gを投入し、筒井理化学器械(株)製のタッピング式粉体減少度測定器を用いてギャップ10mmにて1000回タッピングを繰り返した後の見かけ体積の値と、メスシリンダーに投入した複合黒鉛粒子粉末の質量から、下記式(3)により算出した値を意味する。
タップ密度(g/cm3)=メスシリンダーに投入した粉末の質量(g)/1000回タッピングを繰り返した後の見かけ体積の値(cm3) (3)
タップ密度(g/cm3)=メスシリンダーに投入した粉末の質量(g)/1000回タッピングを繰り返した後の見かけ体積の値(cm3) (3)
レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 は、5.0~30.0μmが好ましく、レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 が5.0~30.0μmであることにより、反応比表面積が増加して反応抵抗が下がり優れた高速充放電特性を発揮するとともに、黒鉛粒子内のリチウムイオンの移動速度を向上させ易くなる。
レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 は、初回充電時における不可逆容量の増大を抑制する上では7.0μm以上がより好ましく、また、高速充放電性能をさらに向上する上では25.0μm以下がより好ましく、高速充放電性能を特に向上する上では20.0μm以下がさらに好ましい。
レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 は、初回充電時における不可逆容量の増大を抑制する上では7.0μm以上がより好ましく、また、高速充放電性能をさらに向上する上では25.0μm以下がより好ましく、高速充放電性能を特に向上する上では20.0μm以下がさらに好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の粒度分布指数SPAN((D90-D10)/D50)は2.0未満が好ましく、粒度分布指数SPAN((D90-D10)/D50)が2.0未満であることにより、微粒状物が少なく、大多数の粒子が比較的狭い粒度範囲内にあることから、比表面積の増加を抑制してリチウムイオン二次電池において優れた初期効率を容易に発揮することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の粒度分布指数SPAN((D90-D10)/D50)は、比表面積の増加を抑制してリチウムイオン二次電池においてさらに優れた初期効率を容易に発揮し得ることから、1.0未満がより好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の粒度分布指数SPAN((D90-D10)/D50)は、比表面積の増加を抑制してリチウムイオン二次電池においてさらに優れた初期効率を容易に発揮し得ることから、1.0未満がより好ましい。
なお、本出願書類において、粉末又は粒子のD10、D50(平均粒子径)およびD90は、レーザー回折粒度分布測定装置((株)堀場製作所製LA-960S)を用いて体積基準積算粒度分布を測定したときの積算粒度が、それぞれ、10%、50%および90%の粒径を意味する。
本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の窒素吸着比表面積(N2SA)は、3.0 ~7.0m2/gが好ましく、複合黒鉛粒子の窒素吸着比表面積が上記範囲内にあることにより、リチウムイオン二次電池用負極材として使用したときに初期効率の低下を容易に抑制することができる。
本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の窒素吸着比表面積(N2SA)は、初期効率の低下をさらに抑制する上では3.0~5.0m2/gがより好ましい。
本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の窒素吸着比表面積(N2SA)は、初期効率の低下をさらに抑制する上では3.0~5.0m2/gがより好ましい。
なお、本出願書類において、粉末又は粒子の窒素吸着比表面積(N2SA)は、全自動表面積測定装置((株)島津製作所製ジェミニV)を用い、窒素吸着等温線における相対圧0.05~0.2の範囲におけるBET多点法により算出される値を意味する。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のララマンR(ラマンスペクトル強度比R)は、0.3以上が好ましく、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子のラマンRが上記範囲内にあることにより、粒子表面が十分に非晶質化されているため、反応抵抗が低く、リチウムイオン二次電池用負極材の高速充放電特性を容易に向上させることができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のララマンR(ラマンスペクトル強度比R)は、高速充放電性能をさらに向上する上では、0.4以上がより好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のララマンR(ラマンスペクトル強度比R)は、高速充放電性能をさらに向上する上では、0.4以上がより好ましい。
なお、本出願書類において、ラマンRは、波長532nmのNd/YAGレーザーを備えたラマン分光分析器(堀場製作所社製、HR800 )で測定し、表層での結晶欠陥及び積層構造の不整合等による結晶構造の乱れに帰属する1360cm-1近傍のスペクトルI 1360を、炭素六角網面内の格子震動に相当するE2g型振動に帰属する1580cm-1近傍のスペクトルI 1580で除し、ラマンR=(I 1360/I 1580)により算出したときに、100μm2の照射面積にて10点以上測定した平均値を意味する。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、平均格子面間隔d(002)が0.3360nm以下であることが好ましく、複合黒鉛粒子の平均格子面間隔d(002)が0.3360nm以下であることにより、リチウムイオン二次電池用負極材として使用したときに可逆容量を十分に向上させることができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、平均格子面間隔d(002)は、可逆容量をさらに向上する上では、0.3358nm以下であることがより好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、平均格子面間隔d(002)は、可逆容量をさらに向上する上では、0.3358nm以下であることがより好ましい。
なお、本出願書類において、平均格子面間隔d(002)は、X線回折装置((株)リガク製UltimaIV)を用い、Cu-Kα線をNiフィルターで単色化したX線を使用して、高純度シリコンを標準物質として粉末X線回折法で測定を行い、得られた炭素(002)面の回折ピークの強度と半値幅より、日本学術振興会第117委員会によって定められた学振法に従って求めた値を意味する。
本発明に係るリチウムイオン二次電池用負極材は、以下に詳述する本発明に係る製造方法により好適に製造することができる。
本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材を提供することができる。
次に、本発明に係るリチウムイオン二次電池用負極材の製造方法について説明する。
本発明に係るリチウムイオン二次電池用負極材の製造方法は、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を有する
ことを特徴とするものである。
本発明に係るリチウムイオン二次電池用負極材の製造方法は、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を有する
ことを特徴とするものである。
本発明に係る製造方法においては、被覆工程において、黒鉛粒子と樹脂溶液とを混合することにより、上記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る。
被覆工程に係る黒鉛粒子としては、特に制限されないが、扁平状の黒鉛が球状に凝集したものが好ましい。黒鉛粒子は、天然黒鉛からなるものであってもよいし、人造黒鉛からなるものであってもよい。
本発明に係る製造方法において、黒鉛粒子の平均粒子径D50は、5.0~30.0μmが好ましく、黒鉛粒子の平均粒子径D50が上記範囲内にあることにより、反応比表面積が増加して反応抵抗が低下し易くなるとともに、黒鉛粒子内のリチウムイオンの移動速度も向上し易くなる。
本発明に係る製造方法において、黒鉛粒子の平均粒子径D50は、初回充電時における不可逆容量の増大を抑制する上では、7.0μm以上がより好ましく、また、高速充放電性能をさらに向上する上では、25.0μm以下がより好ましく、高速充放電性能を特に向上する上では、20.0μm以下がさらに好ましい。
本発明に係る製造方法において、黒鉛粒子の平均粒子径D50は、初回充電時における不可逆容量の増大を抑制する上では、7.0μm以上がより好ましく、また、高速充放電性能をさらに向上する上では、25.0μm以下がより好ましく、高速充放電性能を特に向上する上では、20.0μm以下がさらに好ましい。
本発明に係る製造方法において、黒鉛粒子の平均格子面間隔d(002)は、0.3360nm以下であり、黒鉛粒子の平均格子面間隔d(002)が上記範囲内にあることにより、可逆容量を十分に大きくすることができる。
本発明に係る製造方法において、黒鉛粒子の平均格子面間隔d(002)は、可逆容量をさらに向上する上では、0.3358nm以下が好ましい。
本発明に係る製造方法において、黒鉛粒子の平均格子面間隔d(002)は、可逆容量をさらに向上する上では、0.3358nm以下が好ましい。
被覆工程で用いられる樹脂溶液を構成する樹脂は、結合剤として使用されるものであり、焼成炭化工程において炭化し非晶質の炭素材料となるものであれば、特に制限されない。
上記樹脂としては、例えば、ポリ塩化ビニル樹脂やアクリル樹脂などの熱可塑性樹脂、フェノール樹脂や尿素樹脂などの熱硬化性樹脂等の合成樹脂から選ばれる一種以上を挙げることができる。
上記樹脂としては、例えば、ポリ塩化ビニル樹脂やアクリル樹脂などの熱可塑性樹脂、フェノール樹脂や尿素樹脂などの熱硬化性樹脂等の合成樹脂から選ばれる一種以上を挙げることができる。
被覆工程で用いられる樹脂溶液を構成する溶剤としては、特に制限されず、水、ジエチレングリコール等のアルコール類、またはそれらの混合物から選ばれる一種以上を挙げることができる。
上記樹脂溶液を構成する樹脂濃度は、後述する焼成炭化処理後において、黒鉛粒子100.0質量部あたり、4.0~16.0質量部の非晶質炭素化結合材料を生成する濃度であることが好ましく、上記樹脂溶液を構成する樹脂濃度が上記範囲内にあることにより、黒鉛粒子に対し、非晶質炭素粒子を所望の付着力で付着させることができる。
上記樹脂溶液を構成する樹脂濃度は、後述する焼成炭化処理後において、非晶質炭素粒子の付着率を所望範囲に制御する上では、黒鉛粒子100.0質量部あたり、6.0~14.0質量部の非晶質炭素化結合材料を生成する濃度であることがより好ましく、非晶質炭素粒子の付着率をさらに所望範囲に制御する上では、黒鉛粒子100.0質量部あたり、8.0~12.0質量部の非晶質炭素化結合材料を生成する濃度であることがさらに好ましい。
上記樹脂溶液を構成する樹脂濃度は、後述する焼成炭化処理後において、非晶質炭素粒子の付着率を所望範囲に制御する上では、黒鉛粒子100.0質量部あたり、6.0~14.0質量部の非晶質炭素化結合材料を生成する濃度であることがより好ましく、非晶質炭素粒子の付着率をさらに所望範囲に制御する上では、黒鉛粒子100.0質量部あたり、8.0~12.0質量部の非晶質炭素化結合材料を生成する濃度であることがさらに好ましい。
上記樹脂溶液の粘度は、0.005~40Pa・sが好ましく、上記樹脂溶液を構成する樹脂粘度が上記範囲内にあることにより、黒鉛粒子に対し、非晶性炭素粒子を均一に所望の付着力で付着させることができる。上記樹脂溶液の粘度は、非晶質炭素粒子の付着率を所望範囲に制御する上で、0.3~10Pa・sがより好ましい。
なお、本出願書類において、樹脂溶液の粘度は、回転式b型粘度計により測定される値を意味する。
なお、本出願書類において、樹脂溶液の粘度は、回転式b型粘度計により測定される値を意味する。
被覆工程において、黒鉛粒子に混合、接触させる樹脂の量は、黒鉛粒子100.0質量部あたり、10.0~60.0質量部であることが好ましく、被覆工程において黒鉛粒子に混合、接触させる樹脂の量が上記範囲内にあることにより、被覆粒子との結着面積が増大させて結着力を増加させるとともに、均一な被覆が可能となる。
被覆工程において、黒鉛粒子に混合、接触させる樹脂の量は、黒鉛粒子100.0質量部あたり、さらに均一な被覆を可能とする上では10.0~50.0質量部であることがより好ましく、特に均一な被覆を可能とする上では10.0~40.0質量部であることがさらに好ましい。
被覆工程において、黒鉛粒子に混合、接触させる樹脂の量は、黒鉛粒子100.0質量部あたり、さらに均一な被覆を可能とする上では10.0~50.0質量部であることがより好ましく、特に均一な被覆を可能とする上では10.0~40.0質量部であることがさらに好ましい。
被覆工程において、黒鉛粒子と樹脂溶液を混合する方法としては、特に制限されず、ニーダー、トリミクス、ハイスピードミキサー、ヘンシェルミキサー等の混合機を用いて混合する方法が挙げられる。
被覆工程において、黒鉛粒子と樹脂溶液を混合するときの混合温度は、特に限定されないが、樹脂の粘度が0.005~40Pa・sとなるよう調整することが好ましい。
本発明に係る製造方法においては、被覆工程において、黒鉛粒子に樹脂溶液を混合、接触させて樹脂を付着することにより、後述する非晶質炭素粒子を固定する結合剤(バインダー)とする。
このとき、樹脂溶液の濃度、粘度ないしは使用量を適宜調整することにより、黒鉛粒子や後述する非晶質炭素粒子への付着量や、黒鉛粒子表面における樹脂層の厚さを容易に制御することができ、このために、焼成炭化して得られる塊状物を粉砕処理して複合黒鉛粒子を得る際に、衝撃を緩和して、微粉状物の生成を抑制し、粒度分布の狭い粒度の揃った複合黒鉛粒子を容易に得ることができる。
このため、本発明に係る製造方法によれば、リチウムイオン二次電池用負極材として使用したときに優れた初期効率を発揮する複合黒鉛粒子を容易に製造することができる。
このとき、樹脂溶液の濃度、粘度ないしは使用量を適宜調整することにより、黒鉛粒子や後述する非晶質炭素粒子への付着量や、黒鉛粒子表面における樹脂層の厚さを容易に制御することができ、このために、焼成炭化して得られる塊状物を粉砕処理して複合黒鉛粒子を得る際に、衝撃を緩和して、微粉状物の生成を抑制し、粒度分布の狭い粒度の揃った複合黒鉛粒子を容易に得ることができる。
このため、本発明に係る製造方法によれば、リチウムイオン二次電池用負極材として使用したときに優れた初期効率を発揮する複合黒鉛粒子を容易に製造することができる。
本発明に係る製造方法においては、被覆工程で得られた樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る。
上記非晶質炭素粒子としては、特に制限されないが、例えば、ファーネスブラック、サーマルブラック等のカーボンブラックから選ばれる一種以上を挙げることができる。
本発明に係る製造方法において、非晶質炭素粒子の平均粒子径は、50~300nmであることが好ましく、非晶質炭素粒子の平均粒子径が上記範囲内にあることにより、不可逆容量の増大を抑制しつつ、リチウムイオン二次電池用負極材として高速充放電特性に優れた複合黒鉛粒子を容易に得ることができる。
本発明に係る製造方法において、非晶質炭素粒子の平均粒子径は、不可逆容量の増大をさらに抑制する上では、100nm以上がより好ましく、また、高速充放電性能をさらに向上させる上では、200nm以下がより好ましい。
本発明に係る製造方法において、非晶質炭素粒子の平均粒子径は、不可逆容量の増大をさらに抑制する上では、100nm以上がより好ましく、また、高速充放電性能をさらに向上させる上では、200nm以下がより好ましい。
なお、本出願書類において、本発明に係る製造方法で使用する非晶質炭素粒子の平均粒子径は、透過型電子顕微鏡(TEM、(株)日立製作所製H-7650型透過型電子顕微鏡)を用いて各非晶質炭素粒子を観察したときに、画像解析ソフト(三谷商事(株)製WINROOF)により、各非晶質炭素粒子の外接円の直径を各々の粒子径として、10,000個の非晶質炭素粒子の粒子径を求めたときの算術平均値を意味する。
本発明に係る製造方法において、非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上であり、非晶質炭素粒子の平均格子面間隔d(002)が上記範囲内にあることにより、粒子表面の反応抵抗が低下し易くなり優れた高速充放電特性を発揮し易くなる。
本発明に係る製造方法において、非晶質炭素粒子の平均格子面間隔d(002)は、高速充放電特性を向上する上で、0.3400nm以上であることが好ましく、さらに高速充放電性能を向上し得る点で、0.3500nm以上であることがより好ましい。
本発明に係る製造方法において、非晶質炭素粒子の平均格子面間隔d(002)は、高速充放電特性を向上する上で、0.3400nm以上であることが好ましく、さらに高速充放電性能を向上し得る点で、0.3500nm以上であることがより好ましい。
本発明に係る製造方法において、非晶質炭素粒子がカーボンブラックである場合、カーボンブラックのDBP吸油量は、300ml/100g以下が好ましく、カーボンブラックのDBP吸油量が300ml/100g以下であることにより、得られる複合黒鉛粒子の比表面積の増大を抑制し、リチウムイオン二次電池用負極材として使用したときに初回充電時における不可逆容量の増大を容易に抑制することができる。
本発明に係る製造方法において、非晶質炭素粒子がカーボンブラックである場合、カーボンブラックのDBP吸油量は、不可逆容量の増大をさらに抑制する上で250ml/100g以下がより好ましく、不可逆容量の増大を特に抑制する上で200ml/100g以下がさらに好ましい。
本発明に係る製造方法において、非晶質炭素粒子がカーボンブラックである場合、カーボンブラックのDBP吸油量は、不可逆容量の増大をさらに抑制する上で250ml/100g以下がより好ましく、不可逆容量の増大を特に抑制する上で200ml/100g以下がさらに好ましい。
本発明に係る製造方法においては、樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を、(樹脂被覆黒鉛粒子を構成する)黒鉛粒子100.0質量部当たり、10.0~40.0質量部混合する。
非晶質炭素粒子の混合量が上記範囲内にあることにより、得られる複合黒鉛粒子をリチウムイオン二次電池用負極材として使用したときに、初回充電時の不可逆容量の増大を抑制しつつ、高速充放電性能を容易に向上させることができる。
本発明に係る製造方法においては、樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を、(樹脂被覆黒鉛粒子を構成する)黒鉛粒子100.0質量部に対する、非晶質炭素粒子の混合量は、高速充放電性をさらに向上する上では、20.0質量部以上がより好ましく、また、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下がより好ましい。
非晶質炭素粒子の混合量が上記範囲内にあることにより、得られる複合黒鉛粒子をリチウムイオン二次電池用負極材として使用したときに、初回充電時の不可逆容量の増大を抑制しつつ、高速充放電性能を容易に向上させることができる。
本発明に係る製造方法においては、樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を、(樹脂被覆黒鉛粒子を構成する)黒鉛粒子100.0質量部に対する、非晶質炭素粒子の混合量は、高速充放電性をさらに向上する上では、20.0質量部以上がより好ましく、また、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下がより好ましい。
本発明に係る製造方法においては、樹脂被覆黒鉛粒子に対し非晶質炭素粒子を混合することにより、樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る。
樹脂被覆黒鉛粒子に対し、特定の非晶質炭素粒子を混合するときの処理温度は、特に限定されないが、樹脂の粘度が0.005~40Pa・sとなるよう調整することが好ましい。
樹脂被覆黒鉛粒子に対し非晶質炭素粒子を混合する工程において、混合手段としては、ニーダー、トリミクス、ハイスピードミキサー、ヘンシェルミキサー等から選ばれる一種以上の混合装置を挙げることができる。
本発明に係る製造方法において、樹脂被覆黒鉛粒子と非晶質炭素粒子との混合を、ヘンシェルミキサー(三井鉱山(株)製FM20C)を用いて行う場合、例えば、樹脂被覆黒鉛粒子を収容したヘンシェルミキサーの槽内にカーボンブラック等の非晶質炭素粒子を投入し、所定の温度に到達した後、周速30m/sで15分間処理をする。樹脂被覆黒鉛粒子を構成する黒鉛粒子100質量部に対する非晶質炭素粒子が30質量部を超える場合は、非晶質炭素粒子を3分割して順次で投入することにより、得られる複合黒鉛粒子における非晶質炭素粒子の被覆の均一性を容易に向上させることができる。
本発明に係る製造方法において、樹脂被覆黒鉛粒子と非晶質炭素粒子との混合を、ヘンシェルミキサー(三井鉱山(株)製FM20C)を用いて行う場合、例えば、樹脂被覆黒鉛粒子を収容したヘンシェルミキサーの槽内にカーボンブラック等の非晶質炭素粒子を投入し、所定の温度に到達した後、周速30m/sで15分間処理をする。樹脂被覆黒鉛粒子を構成する黒鉛粒子100質量部に対する非晶質炭素粒子が30質量部を超える場合は、非晶質炭素粒子を3分割して順次で投入することにより、得られる複合黒鉛粒子における非晶質炭素粒子の被覆の均一性を容易に向上させることができる。
本発明に係る製造方法においては、樹脂被覆黒鉛粒子の表面に非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子に対し、これを焼成炭化する焼成炭化工程を施す。
非晶質炭素粒子付着黒鉛粒子を焼成炭化する温度は、800℃以上が好ましく、焼成炭化温度が上記範囲内にあることにより、特にカーボンブラック等に含まれる未燃分を十分に除去することができる。非晶質炭素粒子付着黒鉛粒子を焼成炭化する温度は、未燃焼分を除去する上では1000℃以上がより好ましい。
焼成炭化する温度の上限は特に制限されないが、非晶質炭素粒子付着黒鉛粒子を焼成炭化する温度は、3000℃以下が好ましく、高速充放電特性が向上する点で2000℃以下がより好ましい。
焼成炭化する温度の上限は特に制限されないが、非晶質炭素粒子付着黒鉛粒子を焼成炭化する温度は、3000℃以下が好ましく、高速充放電特性が向上する点で2000℃以下がより好ましい。
非晶質炭素粒子付着黒鉛粒子を焼成炭化する時間は、1時間以上であることが好ましく、焼成炭化時間が1時間以上であることにより、特にカーボンブラック等に含まれる未燃分を十分に除去することができる。
非晶質炭素粒子付着黒鉛粒子を焼成炭化する時間は、未燃焼分を除去する上では2時間以上であることがより好ましい。
非晶質炭素粒子付着黒鉛粒子を焼成炭化する時間は、未燃焼分を除去する上では2時間以上であることがより好ましい。
非晶質炭素粒子付着黒鉛粒子を焼成炭化するときの雰囲気は、窒素ガス雰囲気、アルゴンガス雰囲気等の不活性ガス雰囲気である。
本発明に係るリチウムイオン二次電池用負極材の製造方法では、炭化焼成工程を行って得られる焼成炭化物に粉砕処理を施し、必要に応じて分級処理等を施してもよい。
本発明に係る製造方法によって得られるリチウムイオン二次電池用負極材としては、本発明に係るリチウムイオン二次電池用負極材を挙げることができる。
本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材の製造方法を提供することができる。
次に、本発明に係るリチウムイオン二次電池用負極材の製造材料について説明する。
本発明に係るリチウムイオン二次電池用負極材の製造材料1は、
黒鉛粒子の表面に樹脂とともに非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子が、複数結着した結着集合物からなり、
当該結着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含む
ことを特徴とするものである。
本発明に係るリチウムイオン二次電池用負極材の製造材料1は、
黒鉛粒子の表面に樹脂とともに非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子が、複数結着した結着集合物からなり、
当該結着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含む
ことを特徴とするものである。
本発明に係るリチウムイオン二次電池用負極材の製造材料1は、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の製造するための中間体と称すべきものであり、本発明に係る製造方法において、樹脂被覆黒鉛粒子に対し非晶質炭素粒子を混合して、樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程を施すことにより得られるものに相当する。
このため、本発明に係るリチウムイオン二次電池用負極材の製造材料1において、結着集合物を構成する、黒鉛粒子、非晶質炭素粒子および樹脂の詳細は、本発明に係る製造方法の説明で述べた内容と同様である。
また、本発明に係るリチウムイオン二次電池用負極材の製造材料1は、本発明に係る製造方法において述べたように、樹脂被覆黒鉛粒子に対し非晶質炭素粒子を混合して、樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程を施すことにより製造することができ、その詳細は本発明に係る製造方法の説明で述べたとおりである。
このため、本発明に係るリチウムイオン二次電池用負極材の製造材料1において、結着集合物を構成する、黒鉛粒子、非晶質炭素粒子および樹脂の詳細は、本発明に係る製造方法の説明で述べた内容と同様である。
また、本発明に係るリチウムイオン二次電池用負極材の製造材料1は、本発明に係る製造方法において述べたように、樹脂被覆黒鉛粒子に対し非晶質炭素粒子を混合して、樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程を施すことにより製造することができ、その詳細は本発明に係る製造方法の説明で述べたとおりである。
本発明に係るリチウムイオン二次電池用負極材の製造材料1において、結着集合物は、黒鉛粒子100.0質量部あたり、非晶質炭素粒子を10.0~40.0質量部含むものであり、非晶質炭素粒子の割合が黒鉛粒子100.0質量部に対し10.0~40.0質量部であることにより、得られるリチウムイオン二次電池用負極材において、初回充電時における不可逆容量の増大を抑制しつつ、高速充放電特性を容易に向上することができる。黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は、高速充放電性をさらに向上させる上では、20.0質量部以上がより好ましく、また、被覆されずに単離する粒子の発生を抑制し、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下がより好ましい。
図4は、黒鉛粒子1の表面に樹脂とともに非晶質炭素粒子3が付着した非晶質炭素粒子付着黒鉛粒子20が、複数結着した結着集合物30を示す断面の概略図である。
図4に例示するように、本発明に係るリチウムイオン二次電池用負極材の製造材料1は、非晶質炭素粒子付着黒鉛粒子20が複数結着した結着集合物30からなり、各非晶質炭素粒子付着黒鉛粒子20は、互いに膜状の樹脂を介して適度な結着力で結着している。
このため、上記結着集合物を焼成炭化処理し、次いで粉砕する際に、粒子間に余分な衝撃力を加えることなく粉砕処理し得ることから、粒度分布が狭く粒度の揃った複合黒鉛粒子を好適に調製することができ、かつ、得られる複合黒鉛粒子の比表面積の増大を抑制することができる。このためにリチウムイオン二次電池用負極材として使用したときに、優れた初期効率を発揮し得る複合黒鉛粒子を提供することができる。
図4に例示するように、本発明に係るリチウムイオン二次電池用負極材の製造材料1は、非晶質炭素粒子付着黒鉛粒子20が複数結着した結着集合物30からなり、各非晶質炭素粒子付着黒鉛粒子20は、互いに膜状の樹脂を介して適度な結着力で結着している。
このため、上記結着集合物を焼成炭化処理し、次いで粉砕する際に、粒子間に余分な衝撃力を加えることなく粉砕処理し得ることから、粒度分布が狭く粒度の揃った複合黒鉛粒子を好適に調製することができ、かつ、得られる複合黒鉛粒子の比表面積の増大を抑制することができる。このためにリチウムイオン二次電池用負極材として使用したときに、優れた初期効率を発揮し得る複合黒鉛粒子を提供することができる。
また、本発明に係るリチウムイオン二次電池用負極材の製造材料2は、黒鉛粒子の表面が非晶質炭素化結合材料と非晶質炭素粒子によって被覆された非晶質炭素粒子被覆黒鉛粒子が、複数固着した固着集合物からなり、
当該固着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含み、
粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が20%以下である
ことを特徴とするものである。
当該固着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含み、
粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が20%以下である
ことを特徴とするものである。
本発明に係るリチウムイオン二次電池用負極材の製造材料2も、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の製造するための中間体と称すべきものであり、本発明に係る製造方法において、固着集合物は、非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程を施すことにより得られるものに相当する。
このため、本発明に係るリチウムイオン二次電池用負極材の製造材料2において、固着集合物の原料となる、黒鉛粒子、非晶質炭素粒子および樹脂の詳細は、本発明に係る製造方法の説明で述べた内容と同様である。
また、本発明に係るリチウムイオン二次電池用負極材の製造材料2は、本発明に係る製造方法において述べたように、非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程を施すことにより製造することができ、その詳細は本発明に係る製造方法の説明で述べたとおりである。
このため、本発明に係るリチウムイオン二次電池用負極材の製造材料2において、固着集合物の原料となる、黒鉛粒子、非晶質炭素粒子および樹脂の詳細は、本発明に係る製造方法の説明で述べた内容と同様である。
また、本発明に係るリチウムイオン二次電池用負極材の製造材料2は、本発明に係る製造方法において述べたように、非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程を施すことにより製造することができ、その詳細は本発明に係る製造方法の説明で述べたとおりである。
本発明に係るリチウムイオン二次電池用負極材の製造材料2において、固着集合物は、黒鉛粒子100.0質量部あたり、非晶質炭素粒子を10.0~40.0質量部含むものであり、固着集合物が、非晶質炭素粒子の割合が黒鉛粒子100.0質量部に対し10.0~40.0質量部含むことにより、得られるリチウムイオン二次電池用負極材において、初回充電時における不可逆容量の増大を抑制しつつ、高速充放電特性を容易に向上することができる。固着集合物を構成する黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は、高速充放電性をさらに向上する上では、20.0質量部以上がより好ましく、また、被覆されずに単離する粒子の発生を抑制し、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下である。
本発明に係るリチウムイオン二次電池用負極材の製造材料2は、固着集合物の粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が20%以下であることを特徴とするものである。
本発明に係るリチウムイオン二次電池用負極材の製造材料2は、固着集合物の粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が、20%以下であり、固着集合物の粉砕前後における比表面積変化率が上記範囲内にあることにより、衝撃粉砕時における複合黒鉛粒子の損傷を低減し、比表面積の増大を抑制することで、初回充電時における不可逆容量の増大を容易に低減することができる。
本発明に係るリチウムイオン二次電池用負極材の製造材料2は、固着集合物の粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が、不可逆容量の増大をさらに抑制する上で15%以下であることが好ましく、不可逆容量の増大を特に抑制する上で10%以下であることがより好ましい。
本発明に係るリチウムイオン二次電池用負極材の製造材料2は、固着集合物の粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が、不可逆容量の増大をさらに抑制する上で15%以下であることが好ましく、不可逆容量の増大を特に抑制する上で10%以下であることがより好ましい。
なお、本出願書類において、上記タップ密度変化率及び比表面積変化率を算出する際の固着集合物の粉砕処理は、日清エンジニアリング(株)製のスーパーローター(SR25)を用いて4000rpmの回転数で処理することにより行われる。
また、粉砕前後のタップ密度および窒素吸着比表面積は、上述した方法により測定される値を意味し、タップ密度変化率および比表面積変化率は各々下記式(4)および(5)により算出される値を意味する。
タップ密度変化率=(粉砕後のタップ密度-粉砕前のタップ密度)/(粉砕前のタップ密度)×100(4)
比表面積変化率=(粉砕後の窒素吸着比表面積-粉砕前の窒素吸着比表面積)/(粉砕前の窒素吸着比表面積)×100 (5)
また、粉砕前後のタップ密度および窒素吸着比表面積は、上述した方法により測定される値を意味し、タップ密度変化率および比表面積変化率は各々下記式(4)および(5)により算出される値を意味する。
タップ密度変化率=(粉砕後のタップ密度-粉砕前のタップ密度)/(粉砕前のタップ密度)×100(4)
比表面積変化率=(粉砕後の窒素吸着比表面積-粉砕前の窒素吸着比表面積)/(粉砕前の窒素吸着比表面積)×100 (5)
本発明に係るリチウムイオン二次電池用負極材の製造材料2は、非晶質炭素粒子被覆黒鉛粒子が複数固着した固着集合物からなり、各非晶質炭素粒子被覆黒鉛粒子は、互いに膜状の非晶質炭素化結合材料を介して適度な固着力で固着している。
このため、上記固着集合物を粉砕する際に、粒子間に余分な衝撃力を加えることなく粉砕処理し得ることから、粒度分布が狭く粒度の揃った複合黒鉛粒子を好適に調製することができ、タップ密度変化率が10%~60%である場合においても比表面積変化率を20%以下に抑制することができる。
従って、本発明に係るリチウムイオン二次電池用負極材の製造材料2をリチウムイオン二次電池用負極材として使用したときに、優れた初期効率を発揮することができる。
このため、上記固着集合物を粉砕する際に、粒子間に余分な衝撃力を加えることなく粉砕処理し得ることから、粒度分布が狭く粒度の揃った複合黒鉛粒子を好適に調製することができ、タップ密度変化率が10%~60%である場合においても比表面積変化率を20%以下に抑制することができる。
従って、本発明に係るリチウムイオン二次電池用負極材の製造材料2をリチウムイオン二次電池用負極材として使用したときに、優れた初期効率を発揮することができる。
本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材の製造材料を提供することができる。
(実施例1)
天然黒鉛(平均粒子径(D50)10.4μm、BET吸着比表面積7.4m2/g、タップ密度0.76g/cm3)100.0質量部と、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))を20.0質量部とを、それぞれ混合機(三井鉱山(株)製ヘンシェルミキサー)に投入し、40℃で15分間混合した。次いで、40℃のまま、上記天然黒鉛100.0質量部に対し、平均粒子径が122nmのファーネスブラック(東海カーボン(株)製S-TA)20.0質量部を投入し、さらに10分間混合した。
得られた粉体を窒素ガス雰囲気下、1000℃で2時間焼成炭化した。次いで、得られた焼成粉を粉砕機(日清エンジニアリング(株)製スーパーローター:SR25)を用いて4000rpmで粉砕した後、分級装置(装置名:篩分級、目開き45μm)で分級して、篩下分として複合黒鉛粒子(被覆率90%、タップ密度0.96g/cm3、平均粒子径D5012.5μm、粒度分布指数SPAN0.9、窒素吸着比表面積4.9m2/g)からなるリチウムイオン二次電池用負極材を得た。
上記粉砕処理前後におけるタップ密度変化率は20%、比表面積変化率は 13%であった。
得られたリチウムイオン二次電池用負極材の分析結果及び評価結果を表1に示す。
天然黒鉛(平均粒子径(D50)10.4μm、BET吸着比表面積7.4m2/g、タップ密度0.76g/cm3)100.0質量部と、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))を20.0質量部とを、それぞれ混合機(三井鉱山(株)製ヘンシェルミキサー)に投入し、40℃で15分間混合した。次いで、40℃のまま、上記天然黒鉛100.0質量部に対し、平均粒子径が122nmのファーネスブラック(東海カーボン(株)製S-TA)20.0質量部を投入し、さらに10分間混合した。
得られた粉体を窒素ガス雰囲気下、1000℃で2時間焼成炭化した。次いで、得られた焼成粉を粉砕機(日清エンジニアリング(株)製スーパーローター:SR25)を用いて4000rpmで粉砕した後、分級装置(装置名:篩分級、目開き45μm)で分級して、篩下分として複合黒鉛粒子(被覆率90%、タップ密度0.96g/cm3、平均粒子径D5012.5μm、粒度分布指数SPAN0.9、窒素吸着比表面積4.9m2/g)からなるリチウムイオン二次電池用負極材を得た。
上記粉砕処理前後におけるタップ密度変化率は20%、比表面積変化率は 13%であった。
得られたリチウムイオン二次電池用負極材の分析結果及び評価結果を表1に示す。
(実施例2)
実施例1において、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))を樹脂水溶液(住友ベークライト(株)製PR-56265:水=1:1(質量比))に変更した以外は、実施例1と同様にして、複合黒鉛粒子(被覆率85%、タップ密度0.93g/cm3、平均粒子径D5012.4μm、粒度分布指数SPAN0.9、窒素吸着比表面積4.3m2/g)からなるリチウムイオン二次電池用負極材を得た。
なお、粉砕前後におけるタップ密度変化率は21%、比表面積変化率は7%であった。
実施例1において、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))を樹脂水溶液(住友ベークライト(株)製PR-56265:水=1:1(質量比))に変更した以外は、実施例1と同様にして、複合黒鉛粒子(被覆率85%、タップ密度0.93g/cm3、平均粒子径D5012.4μm、粒度分布指数SPAN0.9、窒素吸着比表面積4.3m2/g)からなるリチウムイオン二次電池用負極材を得た。
なお、粉砕前後におけるタップ密度変化率は21%、比表面積変化率は7%であった。
(比較例1)
実施例1において、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))20.0質量部に代えてピッチ40.0質量部を用いた以外は、実施例1と同様にして、複合黒鉛粒子(被覆率75%、タップ密度0.91g/cm3、平均粒子径D5017.1μm、粒度分布指数SPAN1.0、窒素吸着比表面積6.1m2/g)からなるリチウムイオン二次電池用負極材を得た。
実施例1において、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))20.0質量部に代えてピッチ40.0質量部を用いた以外は、実施例1と同様にして、複合黒鉛粒子(被覆率75%、タップ密度0.91g/cm3、平均粒子径D5017.1μm、粒度分布指数SPAN1.0、窒素吸着比表面積6.1m2/g)からなるリチウムイオン二次電池用負極材を得た。
(比較例2)
天然黒鉛100.0質量部に対するファーネスブラック(東海カーボン(株)製S-TA)の投入量を20.0質量部から5.0質量部に変更した以外は、実施例1と同様にして、複合黒鉛粒子(被覆率12%、タップ密度0.94g/cm3、平均粒子径D5012.1μm、粒度分布指数SPAN0.9、窒素吸着比表面積4.7m2/g)からなるリチウムイオン二次電池用負極材を得た。
天然黒鉛100.0質量部に対するファーネスブラック(東海カーボン(株)製S-TA)の投入量を20.0質量部から5.0質量部に変更した以外は、実施例1と同様にして、複合黒鉛粒子(被覆率12%、タップ密度0.94g/cm3、平均粒子径D5012.1μm、粒度分布指数SPAN0.9、窒素吸着比表面積4.7m2/g)からなるリチウムイオン二次電池用負極材を得た。
(比較例3)
天然黒鉛100.0質量部に対するファーネスブラック(東海カーボン(株)製S-TA)の投入量を20.0質量部から50.0質量部に変更した以外は、実施例1と同様にして、複合黒鉛粒子(被覆率95%、タップ密度0.92g/cm3、平均粒子径D5014.3μm、粒度分布指数SPAN1.1、窒素吸着比表面積6.4m2/g)からなるリチウムイオン二次電池用負極材を得た。
天然黒鉛100.0質量部に対するファーネスブラック(東海カーボン(株)製S-TA)の投入量を20.0質量部から50.0質量部に変更した以外は、実施例1と同様にして、複合黒鉛粒子(被覆率95%、タップ密度0.92g/cm3、平均粒子径D5014.3μm、粒度分布指数SPAN1.1、窒素吸着比表面積6.4m2/g)からなるリチウムイオン二次電池用負極材を得た。
<被覆率測定時における走査型電子顕微鏡(SEM)測定条件>
分析装置:日本電子(株)製JSM7900F
加速電圧:2-5kVで加速した電子線を試料に当て二次電子像を観察。
分析装置:日本電子(株)製JSM7900F
加速電圧:2-5kVで加速した電子線を試料に当て二次電子像を観察。
<カーボンブラックの平均粒子径測定時における透過型電子顕微鏡(TEM)測定条件>
分析装置:透過型電子顕微鏡(TEM、(株)日立製作所製H-7650型透過型電子顕微鏡
加速電圧:100kV
分析装置:透過型電子顕微鏡(TEM、(株)日立製作所製H-7650型透過型電子顕微鏡
加速電圧:100kV
<平均粒子径D50およびSPANの測定条件>
分析装置:堀場製作所社製:LA-960S
光源 :半導体レーザー(650nm)
蒸留水100質量部に対して10質量%の両性界面活性剤を添加した水溶液に対し、粉末を投入して超音波で分散させた。分散させた粉末を装置内の測定セルにフローし、レーザーを照射する。散乱光をリング状検出器で検出、解析することで求めた粒度分布から、平均粒子径D50およびSPANを求めた。
分析装置:堀場製作所社製:LA-960S
光源 :半導体レーザー(650nm)
蒸留水100質量部に対して10質量%の両性界面活性剤を添加した水溶液に対し、粉末を投入して超音波で分散させた。分散させた粉末を装置内の測定セルにフローし、レーザーを照射する。散乱光をリング状検出器で検出、解析することで求めた粒度分布から、平均粒子径D50およびSPANを求めた。
<タップ密度の測定条件>
25mlメスシリンダーに黒鉛粒子粉末5gを投入し、筒井理化学器械(株)製のタッピング式粉体減少度測定器を用いてギャップ10mmにて1000回タッピングを繰り返した後の見かけ体積の値と、メスシリンダーに投入した黒鉛粒子粉末の質量から、下記式(3)により算出した。
タップ密度(g/cm3)=メスシリンダーに投入した粉末の質量(g)/1000回タッピングを繰り返した後の見かけ体積の値(cm3) (3)
25mlメスシリンダーに黒鉛粒子粉末5gを投入し、筒井理化学器械(株)製のタッピング式粉体減少度測定器を用いてギャップ10mmにて1000回タッピングを繰り返した後の見かけ体積の値と、メスシリンダーに投入した黒鉛粒子粉末の質量から、下記式(3)により算出した。
タップ密度(g/cm3)=メスシリンダーに投入した粉末の質量(g)/1000回タッピングを繰り返した後の見かけ体積の値(cm3) (3)
(電池特性評価方法)
各実施例および比較例で得られた複合黒鉛粒子を用いて、以下の方法により極板密度を測定するとともに、ラミネート電池を作製して各種電池特性を求めた。
各実施例および比較例で得られた複合黒鉛粒子を用いて、以下の方法により極板密度を測定するとともに、ラミネート電池を作製して各種電池特性を求めた。
<極板密度>
(1)電極シートの作製
複合黒鉛粒子90.2重量%に対し、N-メチル-2ピロリドンに溶解した有機系結着材ポリフッ化ビニリデン(PVDF)を固形分で9.8重量%加えて攪拌混合し、負極合材ペーストを調製する。
得られた負極合材ペーストを厚さ20μmの銅箔(集電体)上にドクターブレード法で塗布した後、乾燥機で90℃で90分間、更に真空中で130℃で11時間加熱して溶媒を完全に揮発させ、目付量が3.5±0.2mg/cm2である電極シートを得る。
なお、ここで目付量とは、電極シートの単位面積当たりの複合黒鉛粒子の重量を意味する。
(1)電極シートの作製
複合黒鉛粒子90.2重量%に対し、N-メチル-2ピロリドンに溶解した有機系結着材ポリフッ化ビニリデン(PVDF)を固形分で9.8重量%加えて攪拌混合し、負極合材ペーストを調製する。
得られた負極合材ペーストを厚さ20μmの銅箔(集電体)上にドクターブレード法で塗布した後、乾燥機で90℃で90分間、更に真空中で130℃で11時間加熱して溶媒を完全に揮発させ、目付量が3.5±0.2mg/cm2である電極シートを得る。
なお、ここで目付量とは、電極シートの単位面積当たりの複合黒鉛粒子の重量を意味する。
(2)極板密度の測定
上記電極シートを幅6cmの短冊状に切り出し、極板密度が1.2g/cm3となるようにローラープレスによる圧延を行う。プレスした電極シートは縦2.8cm、横5.5cmに切断する。各重量A(g)と中心部分の厚みB(cm)から下記式(6)によって各々得られる極板密度の算術平均値を極板密度とした。
上記電極シートを幅6cmの短冊状に切り出し、極板密度が1.2g/cm3となるようにローラープレスによる圧延を行う。プレスした電極シートは縦2.8cm、横5.5cmに切断する。各重量A(g)と中心部分の厚みB(cm)から下記式(6)によって各々得られる極板密度の算術平均値を極板密度とした。
極板密度(g/cm3)={(A(g)-銅箔重量(g))×負極合材層中の複合黒鉛粒子の重量割合(0.902)}/{(B(cm)-銅箔厚み(cm))×電極面積(cm2)} (6)
<ラミネート電池の作製>
上記極板密度の測定に使用したものと同一の電極シートを作製し負極とした。
その上で、評価用電池として、正極(Li金属、セパレータ(ポリプロピレン)、負極を順に積層し、さらに、Niタブを取り付けた後、積層物をアルミラミネートして、ラミネート電池を不活性雰囲気下で組み立てた。電解液は1 mol/dm3のリチウム塩LiPF6を溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC)1:1混合溶液を使用した。充電は電流密度0.2mA/cm2、終止電圧5mVで定電流充電を終えた後、下限電流0.02mA/cm2となるまで定電位保持する。放電は電流密度0.2mA/cm2にて終止電圧1.5Vまで定電流放電を行い、3サイクル終了後の放電容量を可逆容量とした。初期効率は、1サイクル目の放電容量を1サイクル目の充電容量で除した値(%)である。5Cの充電容量は、3サイクル後の完放電の状態から、12分間で満充電させたときの充電容量である。
<ラミネート電池の作製>
上記極板密度の測定に使用したものと同一の電極シートを作製し負極とした。
その上で、評価用電池として、正極(Li金属、セパレータ(ポリプロピレン)、負極を順に積層し、さらに、Niタブを取り付けた後、積層物をアルミラミネートして、ラミネート電池を不活性雰囲気下で組み立てた。電解液は1 mol/dm3のリチウム塩LiPF6を溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC)1:1混合溶液を使用した。充電は電流密度0.2mA/cm2、終止電圧5mVで定電流充電を終えた後、下限電流0.02mA/cm2となるまで定電位保持する。放電は電流密度0.2mA/cm2にて終止電圧1.5Vまで定電流放電を行い、3サイクル終了後の放電容量を可逆容量とした。初期効率は、1サイクル目の放電容量を1サイクル目の充電容量で除した値(%)である。5Cの充電容量は、3サイクル後の完放電の状態から、12分間で満充電させたときの充電容量である。
上記各実施例および比較例で使用した原料配合(質量部)、得られた複合黒鉛粒子の特性を表1に示す。また、上記各実施例および比較例で得られた負極材からなる電極(負極)を用いて各々ラミネート電池を作製したときの電池特性を表1に示す。
表1より、実施例1~実施例3で得られたリチウムイオン二次電池用負極材は、特定工程として、被覆工程、非晶質炭素粒子付着黒鉛粒子を得る工程および焼成炭化工程を施して得られた、特定の複合黒鉛粒子からなるものであることから、リチウムイオン二次電池に用いたときに優れた初期効率および高速充放電特性を発揮し得るものであることが分かる。
一方、表1より、比較例1~比較例3で得られたリチウムイオン二次電池用負極材は、被覆工程で樹脂を用いていなかったり(比較例1)、複合黒鉛粒子の被覆率が50%未満であったり(比較例2)、非晶質炭素粒子付着黒鉛粒子を得る工程で使用する黒鉛粒子100.0質量部当たりの非晶質炭素粒子量が所定範囲外である(比較例3)ために、リチウムイオン二次電池に用いたときに初期効率または高速充放電特性に劣ることが分かる。
本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料を提供することができる。
1 黒鉛粒子
2 非晶質炭素化結合材料
3 非晶質炭素粒子
4 被覆層
5 非晶質炭素粒子埋没部分
6a、6b 交点
7 非晶質炭素粒子全体
8 非晶質炭素化結合材料の厚み
9 枠線
10 複合黒鉛粒子
20 非晶質炭素粒子付着黒鉛粒子
30 結着集合物
2 非晶質炭素化結合材料
3 非晶質炭素粒子
4 被覆層
5 非晶質炭素粒子埋没部分
6a、6b 交点
7 非晶質炭素粒子全体
8 非晶質炭素化結合材料の厚み
9 枠線
10 複合黒鉛粒子
20 非晶質炭素粒子付着黒鉛粒子
30 結着集合物
Claims (8)
- リチウムイオン二次電池用負極材であって、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を施して得られる、
黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなり、
当該複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が50%以上である
ことを特徴とするリチウムイオン二次電池用負極材。 - タップ密度が0.60g/cm3以上であることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材。
- 前記複合黒鉛粒子は、平均粒子径D50が5.0~30.0μmであり、粒度分布指数SPANが2.0未満である請求項1に記載のリチウムイオン二次電池用負極材。
- 前記複合黒鉛粒子を表面観察したときの前記非晶質炭素粒子の平均粒子径が50~300nmである請求項1に記載のリチウムイオン二次電池用負極材。
- リチウムイオン二次電池用負極材の製造方法であって、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を有する
ことを特徴とするリチウムイオン二次電池用負極材の製造方法。 - 前記黒鉛粒子の平均粒子径D50が5.0~30.0μmであり、前記非晶質炭素粒子の平均粒子径が50~300nmである請求項5に記載のリチウムイオン二次電池用負極材の製造方法。
- 黒鉛粒子の表面に樹脂とともに非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子が、複数結着した結着集合物からなり、
当該結着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含む
ことを特徴とするリチウムイオン二次電池用負極材の製造材料。 - 黒鉛粒子の表面が非晶質炭素化結合材料と非晶質炭素粒子によって被覆された非晶質炭素粒子被覆黒鉛粒子が、複数固着した固着集合物からなり、
当該固着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含み、
粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が20%以下である
ことを特徴とするリチウムイオン二次電池用負極材の製造材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-052397 | 2020-03-24 | ||
JP2020052397A JP7263284B2 (ja) | 2020-03-24 | 2020-03-24 | リチウムイオン二次電池用負極材の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192649A1 true WO2021192649A1 (ja) | 2021-09-30 |
Family
ID=77887401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/004286 WO2021192649A1 (ja) | 2020-03-24 | 2021-02-05 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7263284B2 (ja) |
WO (1) | WO2021192649A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008027664A (ja) * | 2006-07-19 | 2008-02-07 | Nippon Carbon Co Ltd | リチウムイオン二次電池用負極及び負極活物質 |
JP2008305722A (ja) * | 2007-06-08 | 2008-12-18 | Tokai Carbon Co Ltd | リチウムイオン二次電池用負極材とその製造方法 |
JP2010218758A (ja) * | 2009-03-13 | 2010-09-30 | Tokai Carbon Co Ltd | リチウム二次電池用負極材及びその製造方法 |
JP2014186956A (ja) * | 2013-03-25 | 2014-10-02 | Mitsubishi Chemicals Corp | 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池 |
JP2017054703A (ja) * | 2015-09-09 | 2017-03-16 | 三洋化成工業株式会社 | 非水系二次電池活物質被覆用樹脂、非水系二次電池用被覆活物質及び非水系二次電池用被覆活物質の製造方法 |
US20180062167A1 (en) * | 2016-08-26 | 2018-03-01 | Contemporary Amperex Technology Co., Limited | Negative electrode material for secondary battery, method for preparing the same, and battery containing the same |
WO2018110263A1 (ja) * | 2016-12-12 | 2018-06-21 | 昭和電工株式会社 | 複合黒鉛粒子、その製造方法及びその用途 |
WO2018207410A1 (ja) * | 2017-05-11 | 2018-11-15 | 日立化成株式会社 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
WO2019189800A1 (ja) * | 2018-03-29 | 2019-10-03 | 三菱ケミカル株式会社 | 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3844931B2 (ja) * | 2000-02-10 | 2006-11-15 | 東洋炭素株式会社 | 負極及び二次電池 |
JP5408702B2 (ja) * | 2009-01-23 | 2014-02-05 | Necエナジーデバイス株式会社 | リチウムイオン電池 |
CN106898738B (zh) * | 2015-12-18 | 2019-07-23 | 华为技术有限公司 | 一种锂离子二次电池负极活性材料及制备方法、锂离子二次电池负极极片和锂离子二次电池 |
JP6902732B2 (ja) * | 2016-08-09 | 2021-07-14 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
-
2020
- 2020-03-24 JP JP2020052397A patent/JP7263284B2/ja active Active
-
2021
- 2021-02-05 WO PCT/JP2021/004286 patent/WO2021192649A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008027664A (ja) * | 2006-07-19 | 2008-02-07 | Nippon Carbon Co Ltd | リチウムイオン二次電池用負極及び負極活物質 |
JP2008305722A (ja) * | 2007-06-08 | 2008-12-18 | Tokai Carbon Co Ltd | リチウムイオン二次電池用負極材とその製造方法 |
JP2010218758A (ja) * | 2009-03-13 | 2010-09-30 | Tokai Carbon Co Ltd | リチウム二次電池用負極材及びその製造方法 |
JP2014186956A (ja) * | 2013-03-25 | 2014-10-02 | Mitsubishi Chemicals Corp | 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池 |
JP2017054703A (ja) * | 2015-09-09 | 2017-03-16 | 三洋化成工業株式会社 | 非水系二次電池活物質被覆用樹脂、非水系二次電池用被覆活物質及び非水系二次電池用被覆活物質の製造方法 |
US20180062167A1 (en) * | 2016-08-26 | 2018-03-01 | Contemporary Amperex Technology Co., Limited | Negative electrode material for secondary battery, method for preparing the same, and battery containing the same |
WO2018110263A1 (ja) * | 2016-12-12 | 2018-06-21 | 昭和電工株式会社 | 複合黒鉛粒子、その製造方法及びその用途 |
WO2018207410A1 (ja) * | 2017-05-11 | 2018-11-15 | 日立化成株式会社 | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 |
WO2019189800A1 (ja) * | 2018-03-29 | 2019-10-03 | 三菱ケミカル株式会社 | 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JP7263284B2 (ja) | 2023-04-24 |
JP2021152997A (ja) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6876946B2 (ja) | 負極材料および非水電解質二次電池 | |
EP2081243B1 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same | |
EP3086392B1 (en) | Anode active material, and lithium secondary battery comprising same | |
EP2237347A2 (en) | Positive electrode material, its manufacturing method and lithium batteries | |
JP6621664B2 (ja) | 導電性カーボンの製造方法、このカーボンを含む電極材料の製造方法、この電極材料を用いた電極の製造方法及びこの電極を備えた蓄電デバイスの製造方法 | |
JP2008305722A (ja) | リチウムイオン二次電池用負極材とその製造方法 | |
JP6927292B2 (ja) | 全固体リチウムイオン二次電池 | |
JP2021132047A (ja) | 全固体リチウムイオン二次電池 | |
JP6621663B2 (ja) | 導電性カーボンの製造方法、このカーボンを含む電極材料の製造方法、この電極材料を用いた電極の製造方法及びこの電極を備えた蓄電デバイスの製造方法 | |
WO2021192650A1 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料 | |
JP5186409B2 (ja) | 二次電池用負極活物質、これを含む二次電池及びその製造方法 | |
US20200227746A1 (en) | Negative electrode active material for secondary battery, and secondary battery | |
CN114597326A (zh) | 一种负极活性材料及含有该负极活性材料的负极片和电池 | |
JP4021652B2 (ja) | リチウムイオン二次電池用正極板およびその製造方法、並びに該正極板を用いたリチウムイオン二次電池 | |
JP2002093417A (ja) | Li−Co系複合酸化物、ならびにそれを用いた正極板およびリチウムイオン二次電池 | |
JP2009110968A (ja) | 黒鉛質粒子、リチウムイオン二次電池、そのための負極材料および負極 | |
JP6276573B2 (ja) | 二次電池用負極材及びそれを用いた二次電池 | |
JP6922927B2 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
KR20220134559A (ko) | 리튬이온 이차전지용 음극재 및 그 제조 방법, 리튬이온 이차전지용 음극, 및 리튬이온 이차전지 | |
JP5636689B2 (ja) | 黒鉛粒子、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
WO2021192649A1 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料 | |
JP4635413B2 (ja) | 非水電解液二次電池負極用黒鉛粒子の製造方法 | |
JP4053763B2 (ja) | リチウムイオン二次電池 | |
WO2022219836A1 (ja) | リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法 | |
WO2021192651A1 (ja) | リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21774295 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21774295 Country of ref document: EP Kind code of ref document: A1 |