WO2022219836A1 - リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法 - Google Patents

リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法 Download PDF

Info

Publication number
WO2022219836A1
WO2022219836A1 PCT/JP2021/041877 JP2021041877W WO2022219836A1 WO 2022219836 A1 WO2022219836 A1 WO 2022219836A1 JP 2021041877 W JP2021041877 W JP 2021041877W WO 2022219836 A1 WO2022219836 A1 WO 2022219836A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
graphite oxide
oxide particles
amorphous carbon
graphite
Prior art date
Application number
PCT/JP2021/041877
Other languages
English (en)
French (fr)
Inventor
健太郎 瀧澤
哲 中村
将也 影山
Original Assignee
東海カーボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海カーボン株式会社 filed Critical 東海カーボン株式会社
Publication of WO2022219836A1 publication Critical patent/WO2022219836A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for lithium ion secondary batteries and a method for producing the negative electrode material for lithium ion secondary batteries.
  • Lithium-ion secondary batteries are installed in many devices such as mobile phones and personal computers, and are being used in various fields due to their high capacity, high voltage, small size and light weight.
  • Patent Document 1 2 to 50 parts by weight of carbon black and pitch are mixed with 100 parts by weight of a base material in which natural graphite is formed into a spherical shape, impregnated and coated with natural graphite particles, and fired at 900 ° C. to 1500 ° C. , discloses graphite particles (A) for lithium ion secondary batteries having a BET specific surface area of 2 m 2 /g or more and having fine projections formed on the surface. According to Patent Document 1, it is possible to provide a negative electrode material for a lithium ion secondary battery that has a high discharge capacity per unit volume, a small capacity loss during initial charge and discharge, and excellent high-speed charge and discharge characteristics. It is
  • an object of the present invention is to provide a negative electrode material for lithium ion secondary batteries that is excellent in high-speed charge/discharge characteristics and initial efficiency, and a method for producing the negative electrode material for lithium ion secondary batteries.
  • the inventors of the present invention conducted extensive studies, and found that graphite oxide particles obtained by oxidizing graphite particles were adopted, and organic binder-coated graphite oxide particles in which the graphite oxide particles were covered with an organic binder were produced.
  • the present invention (1) A negative electrode material for a lithium ion secondary battery, a first coating step of mixing graphite oxide particles and an organic binder to obtain organic binder-coated graphite oxide particles in which the graphite oxide particles are coated with an organic binder; Amorphous carbon particles are mixed with the organic binder-coated graphite oxide particles to form amorphous carbon particle-attached graphite oxide particles in which the amorphous carbon particles are attached to the surfaces of the organic binder-coated graphite oxide particles.
  • Graphite oxide having on its surface an amorphous carbon particle-containing layer in which the amorphous carbon particle-attached graphite oxide particles and an organic binder are mixed, and the amorphous carbon particles on the surface of the graphite oxide particles are coated with an organic binder.
  • a negative electrode material for a lithium ion secondary battery comprising composite graphite particles having graphite oxide particles and a coating layer containing amorphous carbon particles and an amorphous carbonized binder material and covering the graphite oxide particles;
  • the amount of amorphous carbon particles mixed in the step of forming the amorphous carbon particle-attached graphite oxide particles is 10.0 to 40.0 parts by mass per 100.0 parts by mass of the graphite oxide particles.
  • N 2 SA nitrogen adsorption specific surface area
  • a method for producing a negative electrode material for a lithium ion secondary battery comprising: a first coating step of mixing graphite oxide particles and an organic binder to obtain organic binder-coated graphite oxide particles in which the graphite oxide particles are coated with an organic binder; Amorphous carbon particles are mixed with the organic binder-coated graphite oxide particles to form amorphous carbon particle-attached graphite oxide particles in which the amorphous carbon particles are attached to the surfaces of the organic binder-coated graphite oxide particles.
  • a negative electrode material for a lithium ion secondary battery characterized by obtaining composite graphite particles having graphite oxide particles and a coating layer containing amorphous carbon particles and an amorphous carbonized binder material and covering the graphite oxide particles.
  • Production method (6) The negative electrode material for a lithium ion secondary battery according to (5) above, wherein the graphite oxide particles are obtained by heat-treating graphite particles at 300 to 800 ° C. for 1 to 18 hours in an oxidizing gas atmosphere.
  • Production method (7) The amount of amorphous carbon particles mixed in the step of forming the amorphous carbon particle-attached graphite oxide particles is 10.0 to 40.0 parts by mass per 100.0 parts by mass of the graphite oxide particles.
  • the edge surfaces of the graphite particles are increased and the diffusion paths of lithium ions are increased.
  • high-speed charge/discharge characteristics can be improved.
  • after attaching amorphous carbon particles to the surface of graphite oxide particles via an organic binder by coating the surface with an organic binder again, fine unevenness on the surface is smoothed. The specific surface area of the graphite particles can be reduced, so that the initial efficiency can be improved when used as a negative electrode material for lithium ion secondary batteries.
  • the present invention it is possible to provide a negative electrode material for a lithium ion secondary battery that is excellent in high-speed charge/discharge characteristics and initial efficiency, and a method for producing the negative electrode material for a lithium ion secondary battery.
  • FIG. 1 is a schematic cross-sectional view of an example of the form of composite graphite particles constituting a negative electrode material for a lithium ion secondary battery according to the present invention
  • FIG. 1 is a schematic cross-sectional view of an example of the form of amorphous carbon particle-attached graphite oxide particles in which amorphous carbon particles are attached to the surface of organic binder-coated graphite oxide particles, which is an intermediate product in the production method according to the present invention.
  • FIG. 1 is a schematic cross-sectional view of an example of the form of composite graphite particles constituting a negative electrode material for a lithium ion secondary battery according to the present invention
  • FIG. 1 is a schematic cross-sectional view of an example of the form of amorphous carbon particle-attached graphite oxide particles in which amorphous carbon particles are attached to the surface of organic binder-coated graphite oxide particles, which is an intermediate product in the production method according to the present invention.
  • the negative electrode material for lithium ion secondary batteries according to the present invention is a first coating step of mixing graphite oxide particles and an organic binder to obtain organic binder-coated graphite oxide particles in which the graphite oxide particles are coated with an organic binder; Amorphous carbon particles are mixed with the organic binder-coated graphite oxide particles to form amorphous carbon particle-attached graphite oxide particles in which the amorphous carbon particles are attached to the surfaces of the organic binder-coated graphite oxide particles.
  • Graphite oxide having on its surface an amorphous carbon particle-containing layer in which the amorphous carbon particle-attached graphite oxide particles and an organic binder are mixed, and the amorphous carbon particles on the surface of the graphite oxide particles are coated with an organic binder.
  • a second coating step to obtain particles; and a calcining and carbonizing step of calcining and carbonizing the graphite oxide particles having the amorphous carbon particle-containing layer on the surface, It is characterized by comprising composite graphite particles having graphite oxide particles and a coating layer containing amorphous carbon particles and an amorphous carbonized binder material and covering the graphite oxide particles.
  • a negative electrode material for a lithium ion secondary battery according to the present invention is obtained by performing the first coating step, the step of forming graphite oxide particles with amorphous carbon particles attached, the second coating step, and the calcination carbonization step. The details of these steps are as described later in the description of the method for producing a negative electrode material for a lithium ion secondary battery according to the present invention.
  • the negative electrode material for a lithium ion secondary battery according to the present invention includes at least the first coating step, the step of forming amorphous carbon particle-attached graphite oxide particles, the second coating step, and the calcination carbonization step. It is possible to perform other processes within the range that does not impair the effects of the present invention.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of composite graphite particles constituting a negative electrode material for a lithium ion secondary battery according to the present invention.
  • a composite graphite particle 10 that constitutes a negative electrode material for a lithium ion secondary battery is composed of graphite oxide particles 1 and a coating layer 4 that covers the graphite oxide particles 1 .
  • the coating layer 4 includes amorphous carbon particles 3 and an amorphous carbonized binder material 2, and the amorphous carbon particles 3 are typically embedded within the amorphous carbonized binder material to form lithium. It is fixed to the composite graphite particles 10 that constitute the negative electrode material for the ion secondary battery. In the composite graphite particles 10 constituting the negative electrode material for lithium ion secondary batteries, almost all the amorphous carbon particles 3 constituting the composite graphite particles are in contact with the surfaces of the graphite oxide particles 1 .
  • the graphite oxide particles serving as the core material of the composite graphite particles are oxides of graphite particles.
  • Spherical graphite particles can be mentioned as the graphite particles that are the raw material of the graphite oxide particles.
  • the graphite particles may consist of natural graphite, or may consist of artificial graphite.
  • the average lattice spacing d(002) of the graphite particles that are the raw material of the graphite oxide particles is 0.3360 nm or less, and the average lattice spacing d(002) of the graphite particles is 0.3360 nm or less. can be made large enough.
  • the average lattice spacing d(002) of graphite particles is preferably 0.3358 nm or less in order to further improve the reversible capacity.
  • the average lattice spacing d (002) is measured using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.), using X-rays obtained by monochromaticizing Cu-K ⁇ rays with a Ni filter. Using high-purity silicon as a standard material, X-ray powder diffractometry is performed. From the intensity and half-value width of the diffraction peak of the carbon (002) plane obtained, the Gakushin method established by the 117th committee of the Japan Society for the Promotion of Science It is a value obtained according to
  • the method for forming the graphite oxide particles that serve as the core material of the composite graphite particles is not particularly limited.
  • the graphite oxide particles include those obtained by heat-treating graphite particles in an oxidizing gas atmosphere.
  • oxidizing gas one or more selected from air, oxygen, ozone, etc. can be mentioned.
  • the heating temperature of the graphite particles is preferably 300 to 800°C, more preferably 400 to 700°C, and even more preferably 500 to 600°C.
  • the heating temperature of the graphite particles is preferably 300 to 800°C, more preferably 400 to 700°C, and even more preferably 500 to 600°C.
  • the heating time of the graphite particles is preferably 1 to 18 hours, more preferably 2 to 12 hours, and even more preferably 2 to 6 hours. By setting the heating time to 1 hour or more, the edge surface is sufficiently increased, and the capacitance is sufficiently improved. Further, by setting the heating time to 18 hours or less, it is possible to suppress oxidation consumption of the graphite particles and prevent weight reduction.
  • the capacitance of the graphite oxide particles is preferably 0.30 F/g or more, more preferably 0.32 F/g or more, and even more preferably 0.34 F/g or more.
  • the capacitance of the graphite oxide particles is 0.30 F / g or more, the edge sites of the graphite oxide particles are increased, the acceptability of lithium ions is improved, and a lithium ion secondary with excellent high-speed chargeability is produced. A battery negative electrode material can be easily obtained.
  • the capacitance of the graphite oxide particles is preferably 0.60 F/g or less. When the electrostatic capacity of the graphite oxide particles is 0.60 F/g or less, it is possible to suppress an increase in the specific surface area of the composite graphite particles, which will be described later, and to prevent a decrease in initial efficiency as a battery characteristic.
  • capacitance means a value measured by the following method. That is, first, in order to remove the surface functional groups, after heating at 800 ° C. for 1 hour in an Ar atmosphere, the weight of the measured powder was changed in increments of 0.5 mg in the range of 4 to 10 mg. A sheet was produced by binding polyvinylidene fluoride (PVDF) to a mass %, and then punched into a disk shape with a diameter of 15.95 mm to obtain a punched sheet.
  • PVDF polyvinylidene fluoride
  • the cell is assembled under an inert atmosphere by laminating a washer, a spacer, the punched sheet, a separator (polypropylene), and the punched sheet in this order and sealing with a sealing lid (cap).
  • the electrolytic solution used was a propylene carbonate (PC) solution in which 1 mol/dm 3 of tetraethylammonium tetrafluoroborate was dissolved.
  • the negative electrode material for a lithium ion secondary battery according to the present invention by adopting graphite oxide particles obtained by oxidizing graphite particles, the edge surfaces of the graphite particles are increased and the diffusion paths of lithium ions are increased.
  • composite graphite particles containing such graphite oxide particles are used as a negative electrode material for a lithium ion secondary battery, high-speed charge/discharge characteristics can be easily improved.
  • the coating layer contains amorphous carbon particles and an amorphous carbonized binder material.
  • the amorphous carbonized binding material is obtained by firing an organic binder covering the surface of graphite oxide particles to be amorphously carbonized, and has an average lattice spacing d (002) of 0.3370 nm or more. do.
  • the amorphous carbon particles 3 are usually partially or wholly embedded in the amorphous carbonized binding material 2 to form the graphite oxide particles 1. Fixed.
  • the amorphous carbon particles are not particularly limited, but examples include carbon black such as furnace black and thermal black.
  • the average lattice spacing d(002) of the amorphous carbon particles is 0.3370 nm or more, and the average lattice spacing d(002) of the amorphous carbon particles is 0.3370 nm or more.
  • the reaction resistance tends to decrease, and when used as a negative electrode material for a lithium ion secondary battery, excellent high-speed charge/discharge characteristics can be easily exhibited.
  • the average lattice spacing d(002) of the amorphous carbon particles is preferably 0.3400 nm or more in order to further improve the high-speed charge/discharge characteristics. It is more preferably 3500 nm or more.
  • the average particle size of the amorphous carbon particles when observing the surface of the composite graphite particles is preferably 50 to 300 nm. It is possible to easily obtain composite graphite particles excellent in high-speed charge/discharge characteristics as a negative electrode material for lithium ion secondary batteries while suppressing an increase in .
  • the average particle size of the amorphous carbon particles when the surface of the composite graphite particles is observed is more preferably 100 nm or more in order to further suppress the increase in irreversible capacity, and in order to further improve the high-speed charge/discharge characteristics, 200 nm or less is more preferable.
  • the average particle size of the amorphous carbon particles when observing the surface of the composite graphite particles means the value obtained as follows. That is, the surface of the composite graphite particles is observed with a scanning electron microscope (SEM, JSM7900F manufactured by JEOL Ltd.), and the amorphous carbon particles on the composite graphite particles are arbitrarily selected from the obtained SEM image. Using analysis software (WINROOF manufactured by Mitani Shoji Co., Ltd.), the diameter of the circumscribed circle of the amorphous carbon particles is calculated as the particle diameter. In the same way, 1000 or more amorphous carbon particles are arbitrarily extracted from the SEM image to determine the particle size of each particle, and the arithmetic average value thereof is taken as the average particle size of the amorphous carbon particles in surface observation.
  • the thickness of the amorphous carbonized bonding material in cross-sectional observation is appropriately selected, and is preferably 30 nm to 1000 nm in consideration of the embedding of amorphous carbon particles. Since the amorphous carbonized binder material has a thickness of 30 nm or more, the amorphous carbon particles are sufficiently fixed and embedded, and when used as a negative electrode material for a lithium ion secondary battery, it has excellent high-speed charge-discharge characteristics. Composite graphite particles can be easily obtained.
  • the thickness of the amorphous carbon bonding material is 1000 nm or less, the amorphous carbon particles are not laminated in multiple layers, the interface between particles is controlled to be small, and the composite graphite grains are excellent in high-speed charge-discharge characteristics. can be obtained easily.
  • the thickness of the amorphous carbonized binding material means a value measured by the following method. First, the cross section of one particle arbitrarily extracted from the composite graphite particles is observed with a scanning electron microscope (SEM, JSM7900F manufactured by JEOL Ltd.), and the amorphous carbonized bonding material in the obtained SEM image Arithmetic mean value is obtained when the thickness of the cross section of is measured at 10 arbitrary points.
  • SEM scanning electron microscope
  • the arithmetic average value of the thickness of the cross section of the amorphous carbonized binding material is similarly obtained for each particle, and the obtained arithmetic average values are averaged to obtain a non-crystalline It is the thickness of the crystalline carbonized bonding material.
  • a negative electrode material for a lithium ion secondary battery according to the present invention is composed of composite graphite particles having graphite oxide particles and a coating layer containing amorphous carbon particles and an amorphous carbonized binder material and covering the graphite oxide particles. .
  • the ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite oxide particles is preferably 10.0 to 40.0 parts by mass. be.
  • the proportion of amorphous carbon particles is 10.0 parts by mass or more with respect to 100.0 parts by mass of graphite oxide particles, it is possible to easily improve high-speed charge/discharge characteristics while suppressing an increase in irreversible capacity during the initial charge.
  • the ratio of the amorphous carbon particles is 40.0 parts by mass or less with respect to 100.0 parts by mass of the graphite oxide particles, the high-speed charge/discharge characteristics can be improved without decreasing the discharge capacity.
  • the ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite oxide particles is more preferably 15.0 parts by mass or more in order to further improve the high-speed charge/discharge property. is preferably 30.0 parts by mass or less in order to suppress the increase in the irreversible capacity during the initial charge.
  • the average particle diameter D50 of the composite graphite particles in the laser diffraction particle size distribution is preferably 5.0 to 30.0 ⁇ m, and the average particle diameter D50 of the composite graphite particles in the laser diffraction particle size distribution is 5.0 ⁇ m or more.
  • the reaction specific surface area increases, the reaction resistance decreases, and excellent high-speed charge-discharge characteristics are exhibited. Makes it easier to improve speed.
  • the average particle diameter D50 of the composite graphite particles in the laser diffraction particle size distribution is more preferably 7.0 ⁇ m or more in order to suppress the increase in irreversible capacity during the initial charge, and is 25 in order to further improve the high-speed charge/discharge characteristics. 0 ⁇ m or less is more preferable, and 20.0 ⁇ m or less is even more preferable for particularly improving high-speed charge/discharge characteristics.
  • the particle size distribution index SPAN ((D 90 ⁇ D 10 )/D 50 ) of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention is preferably less than 2.0, and the particle size distribution index SPAN ((D 90 ⁇ D 10 )/D 50 ) is less than 2.0, the number of fine particles is small, and the majority of the particles are within a relatively narrow particle size range. Excellent initial efficiency can be easily exhibited in the ion secondary battery.
  • the particle size distribution index SPAN ((D 90 ⁇ D 10 )/D 50 ) of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention suppresses an increase in the specific surface area and is a lithium ion secondary battery. It is more preferably less than 1.0 because it can easily exhibit even better initial efficiency at .
  • D 10 , D 50 (average particle diameter) and D 90 of powder or particles are measured using a laser diffraction particle size distribution analyzer (LA-960S manufactured by Horiba, Ltd.).
  • the cumulative particle size when measuring the distribution means the particle size of 10%, 50% and 90% respectively.
  • the nitrogen adsorption specific surface area (N 2 SA) of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery of the present invention is preferably less than 5.0 m 2 /g, and the nitrogen adsorption specific surface area of the composite graphite particles is within the above range.
  • the nitrogen adsorption specific surface area (N 2 SA) of the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries of the present invention is more preferably 3.0 m 2 /g or less in order to further suppress the decrease in initial efficiency, 2.5 m 2 /g or less is more preferable. In terms of charge/discharge efficiency, it is more preferably 1.0 m 2 /g or more, and even more preferably 1.5 m 2 /g or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of the powder or particles is measured using a fully automatic surface area measuring device (Gemini V manufactured by Shimadzu Corporation), and the relative pressure in the nitrogen adsorption isotherm is 0.05. It means a value calculated by the BET multipoint method in the range of ⁇ 0.2.
  • the Raraman R (Raman spectrum intensity ratio R) of the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention is preferably 0.3 or more, and the composite graphite constituting the negative electrode material for lithium ion secondary batteries When the Raman R of the particles is 0.3 or more, the particle surfaces are sufficiently amorphous, so the reaction resistance is low and the high-speed charge/discharge characteristics of the negative electrode material for lithium ion secondary batteries are easily improved. be able to.
  • the Raraman R (Raman spectral intensity ratio R) of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention is more preferably 0.4 or more in order to further improve high-speed charge/discharge characteristics.
  • Raman R is measured with a Raman spectrometer (HR800, manufactured by Horiba, Ltd.) equipped with a Nd/YAG laser with a wavelength of 532 nm, and is due to crystal defects in the surface layer and mismatching of the lamination structure.
  • the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention preferably have an average lattice spacing d (002) of 0.3360 nm or less, and the average lattice spacing d (002 ) is 0.3360 nm or less, the reversible capacity can be sufficiently improved when used as a negative electrode material for a lithium ion secondary battery.
  • the average lattice spacing d(002) is more preferably 0.3358 nm or less in order to further improve the reversible capacity.
  • the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention preferably have an average lattice spacing d(002) of 0.3355 nm or more, and an average lattice spacing d(002) of 0.3355 nm or more.
  • the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention have an average lattice spacing d (002) of 0 in order to facilitate the insertion of lithium ions and further improve the high-speed charge-discharge characteristics. 0.3356 nm or more is more preferable.
  • the average lattice spacing d (002) is measured using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.), using X-rays obtained by monochromaticizing Cu-K ⁇ rays with a Ni filter. Using high-purity silicon as a standard material, X-ray powder diffractometry is performed. From the intensity and half-value width of the diffraction peak of the carbon (002) plane obtained, the Gakushin method established by the 117th committee of the Japan Society for the Promotion of Science means the value determined according to
  • a composite graphite particle 10 constituting a negative electrode material for a lithium ion secondary battery according to the present invention is composed of graphite oxide particles 1 and a coating layer 4 covering the graphite oxide particles 1 .
  • the coating layer 4 includes amorphous carbon particles 3 and an amorphous carbonized binder material 2, and the amorphous carbon particles 3 are usually embedded inside the amorphous carbonized binder material 2, It is fixed to the composite graphite particles 10 constituting the negative electrode material for lithium ion secondary batteries.
  • the amorphous carbonized bonding material 2 is composed of a fired organic binder 2a' coated in the first coating step and a fired organic binder 2b' coated in the second coating step.
  • the fired product 2b′ of the organic binder coated in the second coating step together with the fired product 2a′ of the organic binder coated in the first coating step, the fine unevenness of the surface is smoothed Composite graphite particles obtained. can reduce the specific surface area of When the specific surface area is reduced, the formation of an SEI (Solid Electrolyte Interphase) layer is suppressed, so that the initial efficiency can be easily improved when used as a negative electrode material for lithium ion secondary batteries.
  • SEI Solid Electrolyte Interphase
  • the negative electrode material for lithium ion secondary batteries according to the present invention can be suitably produced by the production method according to the present invention, which will be detailed below.
  • a method for producing a negative electrode material for a lithium ion secondary battery according to the present invention comprises: a first coating step of mixing graphite oxide particles and an organic binder to obtain organic binder-coated graphite oxide particles in which the graphite oxide particles are coated with an organic binder; Amorphous carbon particles are mixed with the organic binder-coated graphite oxide particles to form amorphous carbon particle-attached graphite oxide particles in which the amorphous carbon particles are attached to the surfaces of the organic binder-coated graphite oxide particles.
  • the present invention is characterized by obtaining composite graphite particles having graphite oxide particles and a coating layer containing amorphous carbon particles and an amorphous carbonized binder material and covering the graphite oxide particles.
  • the graphite oxide particles and the organic binder are mixed in the first coating step to obtain organic binder-coated graphite oxide particles in which the graphite particles are covered with the organic binder.
  • the edge surfaces of the graphite particles are further increased and the diffusion paths of lithium ions are increased.
  • the composite graphite particles containing the composite graphite particles are used as a negative electrode material for a lithium ion secondary battery, high-speed charge/discharge characteristics can be easily improved.
  • the organic binder used in the first coating step is used as a binder, and examples thereof include pitch.
  • the pitch include one or more selected from coal tar pitch, naphtha cracked tar pitch, crude oil catalytically cracked tar pitch, Nigrin-extracted biomass pitch, creosote oil, and the like.
  • the softening point of the organic binder is preferably 300° C. or lower, more preferably 200° C. or lower, still more preferably 150° C. or lower, and even more preferably 100° C. or lower.
  • a softening point of 300° C. or lower ensures sufficient fluidity of the organic binder, which is suitable for uniform mixing.
  • a temperature of 40° C. or higher usually facilitates handling of the organic binder-coated graphite oxide particles after the first coating step.
  • the softening point of an organic binder means the value measured based on the ring and ball method of JISK2425.
  • the amount of the organic binder mixed and brought into contact with the graphite oxide particles is preferably 5.0 parts by mass or more per 100.0 parts by mass of the graphite oxide particles, and per 100.0 parts by mass of the graphite oxide particles.
  • the amount of the organic binder mixed and brought into contact with the graphite oxide particles is more preferably 8.0 parts by mass or more per 100.0 parts by mass of the graphite oxide particles in order to enable more uniform coating. More preferably, it is 10.0 parts by mass or more per 100.0 parts by mass of graphite oxide particles in order to enable uniform coating.
  • the amount of the organic binder mixed and brought into contact with the graphite oxide particles is preferably 40.0 parts by mass or less per 100.0 parts by mass of the graphite oxide particles, and per 100.0 parts by mass of the graphite oxide particles.
  • the amount of the organic binder mixed and brought into contact with the graphite oxide particles is 30.0 parts by mass or less per 100.0 parts by mass of the graphite oxide particles in order to further reduce the aggregation of the graphite oxide particles.
  • it is more preferably 25.0 parts by mass or less per 100.0 parts by mass of the graphite oxide particles.
  • the method of mixing the graphite oxide particles and the organic binder is not particularly limited, and includes a method of mixing using a mixer such as a kneader, trimix, high speed mixer, Henschel mixer, and the like.
  • the mixing temperature when mixing the graphite oxide particles and the organic binder is appropriately adjusted so that it is equal to or higher than the softening point of the organic binder used.
  • the graphite oxide particles are mixed with an organic binder and brought into contact with each other to adhere the organic binder, thereby forming a binder that fixes the amorphous carbon particles described later.
  • amorphous carbon particles are mixed with the organic binder-coated graphite oxide particles obtained in the first coating step, and the amorphous carbon particles are coated on the surfaces of the organic binder-coated graphite oxide particles.
  • Amorphous carbon particle-attached graphite oxide particles to which carbon particles are attached are obtained.
  • FIG. 2 is a schematic cross-sectional view of an example of amorphous carbon particle-attached graphite oxide particles obtained in this step.
  • the organic binder-coated graphite oxide particles thus obtained are mixed with amorphous carbon particles 3 to obtain amorphous carbon particle-coated graphite oxide particles in which the amorphous carbon particles 3 are attached to the surfaces of the organic binder-coated graphite oxide particles. obtain.
  • the amorphous carbon particles are not particularly limited, but may include, for example, one or more selected from carbon black such as furnace black and thermal black.
  • the average particle size of the amorphous carbon particles is preferably 50 nm to 300 nm, and the average particle size of the amorphous carbon particles is 50 nm or more, thereby suppressing an increase in irreversible capacity.
  • the interface is controlled to be small, and high-speed charge/discharge characteristics can be improved.
  • the average particle size of the amorphous carbon particles is more preferably 100 nm or more in order to further suppress the increase in irreversible capacity, and 200 nm in order to further improve the high-speed charge/discharge characteristics. The following are more preferred.
  • the average particle size of the amorphous carbon particles used in the production method according to the present invention is determined by a transmission electron microscope (TEM, H-7650 type transmission electron microscope manufactured by Hitachi, Ltd.).
  • TEM transmission electron microscope
  • H-7650 type transmission electron microscope manufactured by Hitachi, Ltd.
  • the diameter of the circumscribed circle of each amorphous carbon particle was defined as the particle diameter of each 10,000 particles. means the arithmetic mean value when the particle diameter of the amorphous carbon particles is determined.
  • the average lattice spacing d(002) of the amorphous carbon particles is 0.3370 nm or more, and the average lattice spacing d(002) of the amorphous carbon particles is 0.3370 nm or more.
  • the reaction resistance tends to decrease, and when used as a negative electrode material for a lithium ion secondary battery, excellent high-speed charge/discharge characteristics can be easily exhibited.
  • the average lattice spacing d(002) of the amorphous carbon particles is preferably 0.3400 nm or more in order to further improve the high-speed charge/discharge characteristics. It is more preferably 3500 nm or more.
  • the average lattice spacing d(002) of the amorphous carbon particles is 0.3370 nm or more, and the average lattice spacing d(002) of the amorphous carbon particles is 0.3370 nm or more.
  • the reaction resistance of the particle surface is likely to be reduced, and excellent high-speed charge/discharge characteristics are likely to be exhibited.
  • the DBP oil absorption of the carbon black is preferably 100 ml/100 g or less, and the DBP oil absorption of the carbon black is 100 ml/100 g or less. Therefore, it is possible to suppress an increase in the specific surface area of the obtained composite graphite particles and easily suppress an increase in the irreversible capacity during the initial charge when used as a negative electrode material for a lithium ion secondary battery.
  • the DBP oil absorption of the carbon black is more preferably 80 ml/100 g or less in order to further suppress the increase in the irreversible capacity, and the increase in the irreversible capacity. is more preferably 65 ml/100 g or less in order to particularly suppress the
  • the mixed amount of the amorphous carbon particles in the step of forming the amorphous carbon particle-attached graphite oxide particles is 10.0 to 40.0 mass parts per 100.0 mass parts of the graphite oxide particles. It is preferable that it is a part.
  • the mixed amount of the amorphous carbon particles is 10.0 parts by mass or more per 100.0 parts by mass of the graphite oxide particles, the increase in the irreversible capacity during the initial charge is suppressed, and the high-speed charge/discharge characteristics are easily improved.
  • the proportion of amorphous carbon particles is 40.0 parts by mass or less per 100.0 parts by mass of graphite oxide particles, high-speed charge/discharge characteristics can be improved without lowering the discharge capacity.
  • the mixed amount of the amorphous carbon particles is more preferably 15.0 parts by mass or more per 100.0 parts by mass of the graphite oxide particles in order to further improve the high-speed charge/discharge property.
  • it is more preferably 30.0 parts by mass or less per 100.0 parts by mass of the graphite oxide particles.
  • the treatment temperature for mixing the organic binder-coated graphite oxide particles with the amorphous carbon particles is not particularly limited, but is adjusted to a temperature equal to or higher than the softening point of the organic binder constituting the organic binder-coated graphite oxide particles. is preferred.
  • the mixing means may include one or more mixing devices selected from kneaders, trimixes, high-speed mixers, Henschel mixers, and the like.
  • organic binder-coated graphite oxide particles and amorphous carbon particles are mixed using a Henschel mixer (FM20C manufactured by Mitsui Mining Co., Ltd.), for example, organic binder-coated graphite oxide particles Amorphous carbon particles such as carbon black are put into the tank of the Henschel mixer containing , and after reaching a predetermined temperature, treated at a peripheral speed of 30 m/s for 15 minutes.
  • the amount of amorphous carbon particles exceeds 30 parts by mass with respect to 100 parts by mass of graphite oxide particles that constitute the organic binder-coated graphite oxide particles, the amorphous carbon particles are divided into three parts and added in order to obtain a composite The uniformity of the coating of the amorphous carbon particles on the graphite particles can be easily improved.
  • the amorphous carbon particles on the surface of the graphite oxide particles are mixed with the organic binder, so that the amorphous carbon particles on the surfaces of the graphite oxide particles are mixed with the organic binder.
  • Graphite oxide particles having a coated amorphous carbon particle-containing layer on the surface are obtained.
  • organic binders used in the second coating process include thermosetting resins such as phenolic resins and urea resins, and thermoplastic resins such as polyvinyl chloride resins and acrylic resins.
  • the organic binder may be appropriately dispersed in a solvent and used as an organic binder solution.
  • the solvent constituting the organic binder solution is not particularly limited, and may be one or more selected from water, alcohols such as ethanol and diethylene glycol, and mixtures thereof.
  • the concentration of the organic binder constituting the organic binder solution is 4.0 to 16.0 parts by mass per 100.0 parts by mass of graphite oxide particles after the calcination and carbonization treatment described later. It is preferable that the concentration be
  • the concentration of the organic binder that constitutes the organic binder solution is a concentration that produces 4.0 parts by mass or more of the amorphous carbonized binding material per 100.0 parts by mass of the graphite oxide particles after the calcination and carbonization treatment described later.
  • the surface of the amorphous carbon particle-attached graphite oxide particles can thereby be suitably covered, and the amount of 16.0 parts by mass or less per 100.0 parts by mass of the graphite oxide particles results in an excessive amount of the organic binder. It is possible to cover the surface of the amorphous carbon particle-adhered graphite oxide particles while suppressing the resulting aggregation and adhesion of the graphite oxide particles.
  • the amount of the organic binder mixed and brought into contact with the amorphous carbon particle-attached graphite oxide particles is 10.0 parts by mass per 100.0 parts by mass of the graphite oxide particles constituting the amorphous carbon particle-attached graphite oxide particles. It is preferably 0 to 60.0 parts by mass.
  • the amount of the organic binder mixed and brought into contact with the amorphous carbon particle-attached graphite oxide particles is 10.0 mass parts per 100.0 parts by mass of the graphite oxide particles constituting the amorphous carbon particle-attached graphite oxide particles.
  • the surface of the amorphous carbon particle-attached graphite oxide particles can be covered and uniform coating can be easily achieved, and the oxide constituting the amorphous carbon particle-attached graphite oxide particles can be easily coated. Since the content is 60.0 parts by mass or less per 100.0 parts by mass of the graphite particles, the amorphous carbon particle-adhered graphite oxide particles are suppressed from cohesive adhesion of the graphite oxide powder caused by an excessive amount of the organic binder.
  • the amount of the organic binder mixed with and brought into contact with the amorphous carbon particle-attached graphite oxide particles is such that the coating with a uniform layer thickness is obtained per 100.0 parts by mass of the amorphous carbon particle-attached graphite oxide particles.
  • the method of mixing the amorphous carbon particle-attached graphite oxide particles and the organic binder and the mixing temperature are preferably the methods and conditions described in the explanation of the first coating step.
  • the organic binder in the second coating step, is mixed with the organic binder-coated graphite oxide particles and brought into contact with the organic binder to further adhere the organic binder.
  • a binder is used to fix the crystalline carbon particles to the graphite oxide particles.
  • a calcining and carbonizing step of calcining and carbonizing the graphite oxide particles having the amorphous carbon particle-containing layer on the surface obtained in the second coating step is performed.
  • the temperature at which the graphite oxide particles having the amorphous carbon particle-containing layer on their surfaces are calcined and carbonized is preferably 800° C. or higher. The quality can be easily improved by sufficiently removing the included unburned matter.
  • the temperature for calcining and carbonizing the graphite oxide particles having the amorphous carbon particle-containing layer on their surfaces is more preferably 1000° C. or higher in order to further remove the unburned portion.
  • the upper limit of the temperature for calcination and carbonization is not particularly limited, but the temperature for calcination and carbonization of graphite oxide particles having an amorphous carbon particle-containing layer on their surfaces is preferably 1400° C. or less, more preferably 1200° C., in terms of improving high-speed charge-discharge characteristics. The following are more preferred.
  • the time for calcining and carbonizing the graphite oxide particles having the amorphous carbon particle-containing layer on the surface thereof is preferably 1 hour or longer.
  • the quality can be improved by sufficiently removing the unburned matter contained in the carbon particles.
  • the time for calcining and carbonizing the graphite oxide particles having the amorphous carbon particle-containing layer on their surfaces is more preferably 2 hours or more in order to further remove the unburned portion contained in the amorphous carbon particles.
  • the atmosphere when calcining and carbonizing graphite oxide particles having an amorphous carbon particle-containing layer on their surfaces is preferably an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere.
  • the calcined carbide obtained by the carbonization calcination step may be subjected to a pulverization treatment step, and if necessary, a classification treatment step and the like may be applied.
  • the target negative electrode material for lithium ion secondary batteries comprising composite graphite particles can be obtained by performing the above steps.
  • composite graphite particles 10 constituting a negative electrode material for a lithium ion secondary battery obtained by the production method according to the present invention include graphite oxide particles 1 and a coating layer 4 covering the graphite oxide particles 1.
  • the coating layer 4 includes amorphous carbon particles 3 and an amorphous carbonized binder material 2, and the amorphous carbon particles 3 are typically embedded within the amorphous carbonized binder material to form lithium. It is fixed to the composite graphite particles 10 that constitute the negative electrode material for the ion secondary battery.
  • the amorphous carbonized bonding material 2 is composed of a fired organic binder 2a' coated in the first coating step and a fired organic binder 2b' coated in the second coating step.
  • the fired product 2b' of the organic binder coated in the second coating step together with the fired product 2a' of the organic binder, the fine irregularities on the surface are smoothed and the specific surface area of the obtained composite graphite particles is reduced. can be done. Since formation of an SEI (Solid Electrolyte Interphase) layer is suppressed when the specific surface area is reduced, the initial efficiency can be easily improved when used as a negative electrode material for a lithium ion secondary battery.
  • SEI Solid Electrolyte Interphase
  • Examples of the negative electrode material for lithium ion secondary batteries obtained by the production method according to the present invention include the negative electrode material for lithium ion secondary batteries according to the present invention.
  • the present invention will be described in more detail below based on examples and comparative examples, but the present invention is not limited by these examples.
  • the average particle size of carbon black, the average particle size D 50 of graphite oxide particles and composite graphite particles, and the particle size distribution index SPAN of composite graphite particles were determined by the following methods. It is.
  • Analyzer LA-960S manufactured by Horiba Ltd.
  • Light source semiconductor laser (650 nm)
  • a powdery measurement sample was added to an aqueous solution containing 10% by mass of an amphoteric surfactant with respect to 100 parts by mass of distilled water, and dispersed by ultrasonic waves to obtain a dispersion.
  • the obtained dispersion is flowed into a measurement cell in the device, irradiated with a laser, and the scattered light is detected by a ring-shaped detector and analyzed to determine the volumetric cumulative particle size distribution.
  • the particle size at which the cumulative particle size is 50% is D 50
  • the particle size at which the cumulative particle size is 10% (D 10 ) and the particle size at which the cumulative particle size is 90% (D 90 )
  • the following formula: particle size distribution index SPAN (D 90 - D 10 )/D 50 Determine the particle size distribution index SPAN.
  • Example 1 Process for preparing graphite oxide particles Natural graphite (average particle diameter ( D50 ) 11.0 ⁇ m, nitrogen adsorption specific surface area ( N2SA ) 7.0 m2 /g) was prepared at 500°C for 6 hours in an air atmosphere. By heating, graphite oxide particles (average particle diameter (D 50 ): 10.8 ⁇ m, nitrogen adsorption specific surface area: 8.3 m 2 /g) were obtained.
  • Second coating step 100.0 parts by mass of the graphite oxide particles and 20.0 parts by mass of pitch (softening point: 90°C) are put into a mixer (Henschel mixer manufactured by Mitsui Mining Co., Ltd.), By mixing at 130° C.
  • Carbon black particle-adhered graphite oxide particle forming step Next, at 130 ° C., carbon black particles having an average particle diameter of 122 nm (Tokai carbon 20.0 parts by mass of Furnace Black S-TA (manufactured by Co., Ltd.) was added and further mixed for 10 minutes to obtain carbon black particle-adhered graphite oxide particles.
  • the mixture was further mixed for 10 minutes to obtain graphite oxide particles having on the surface a carbon black-containing layer in which the carbon black particles on the surface of the graphite oxide particles were coated with a resin.
  • the graphite oxide particles having the carbon black-containing layer on the surface were calcined in a Kanthal furnace at 1000° C. for 2 hours in a nitrogen gas atmosphere to be carbonized.
  • the obtained fired powder was pulverized at 8000 rpm using a pulverizer (Super rotor: SR25 manufactured by Nisshin Engineering Co., Ltd.), and then classified with a classifier (device name: sieve classification, mesh size 45 ⁇ m),
  • a negative electrode material for a lithium ion secondary battery composed of composite graphite particles (average particle diameter D 50 12.1 ⁇ m, particle size distribution index SPAN 0.8, nitrogen adsorption specific surface area 4.3 m 2 /g) was obtained as the undersize fraction.
  • Example 2 (1) Process for preparing graphite oxide particles Natural graphite (average particle diameter ( D50 ) 11.0 ⁇ m, nitrogen adsorption specific surface area ( N2SA ) 7.0 m2 /g) was heated at 600°C for 6 hours in an air atmosphere. By heating, graphite oxide particles (average particle diameter (D 50 ): 10.8 ⁇ m, nitrogen adsorption specific surface area: 8.3 m 2 /g) were obtained.
  • Carbon black particle-adhered graphite oxide particle forming step Next, at 130 ° C., carbon black particles having an average particle diameter of 122 nm (Tokai carbon 20.0 parts by mass of Furnace Black S-TA (manufactured by Co., Ltd.) was added and further mixed for 10 minutes to obtain carbon black particle-adhered graphite oxide particles.
  • the mixture was further mixed for 10 minutes to obtain graphite oxide particles having on the surface a carbon black-containing layer in which the carbon black particles on the surface of the graphite oxide particles were coated with a resin.
  • the graphite oxide particles having the carbon black-containing layer on the surface were calcined in a Kanthal furnace at 1000° C. for 2 hours in a nitrogen gas atmosphere to be carbonized.
  • the obtained fired powder was pulverized at 8000 rpm using a pulverizer (Super rotor: SR25 manufactured by Nisshin Engineering Co., Ltd.), and then classified with a classifier (device name: sieve classification, mesh size 45 ⁇ m), A negative electrode material for a lithium ion secondary battery composed of composite graphite particles (average particle diameter D 50 11.9 ⁇ m, particle size distribution index SPAN 0.8, nitrogen adsorption specific surface area 3.9 m 2 /g) was obtained as the undersize fraction.
  • a pulverizer Super rotor: SR25 manufactured by Nisshin Engineering Co., Ltd.
  • a classifier device name: sieve classification, mesh size 45 ⁇ m
  • a negative electrode material for a lithium ion secondary battery composed of composite graphite particles (average particle diameter D 50 11.9 ⁇ m, particle size distribution index SPAN 0.8, nitrogen adsorption specific surface area 3.9 m 2 /g) was obtained as the undersize fraction.
  • Furnace Black S-TA 20.0 parts by mass was added and mixed for 10 minutes to obtain carbon black particle-attached graphite particles.
  • (4) Firing and Carbonization Step The graphite particles having the carbon black-containing layer on their surfaces were calcined in a Kanthal furnace at 1000° C.
  • the obtained fired powder was pulverized at 8000 rpm using a pulverizer (Super rotor: SR25 manufactured by Nisshin Engineering Co., Ltd.), and then classified with a classifier (device name: sieve classification, mesh size 45 ⁇ m), A negative electrode material for a lithium ion secondary battery composed of composite graphite particles (average particle diameter D 50 11.9 ⁇ m, particle size distribution index SPAN 0.8, nitrogen adsorption specific surface area 4.9 m 2 /g) was obtained as the undersize fraction.
  • a pulverizer Super rotor: SR25 manufactured by Nisshin Engineering Co., Ltd.
  • a classifier device name: sieve classification, mesh size 45 ⁇ m
  • a negative electrode material for a lithium ion secondary battery composed of composite graphite particles (average particle diameter D 50 11.9 ⁇ m, particle size distribution index SPAN 0.8, nitrogen adsorption specific surface area 4.9 m 2 /g) was obtained as the undersize fraction.
  • the obtained fired powder was pulverized at 8000 rpm using a pulverizer (Super rotor: SR25 manufactured by Nisshin Engineering Co., Ltd.), and then classified with a classifier (device name: sieve classification, mesh size 45 ⁇ m),
  • a negative electrode material for a lithium ion secondary battery composed of composite graphite particles (average particle diameter D 50 11.8 ⁇ m, particle size distribution index SPAN 0.8, nitrogen adsorption specific surface area 6.9 m 2 /g) was obtained as the undersize fraction.
  • the initial efficiency is a value (%) obtained by dividing the first cycle discharge capacity by the first cycle charge capacity.
  • the 2C charge capacity is the charge capacity when fully charged in 30 minutes from the fully discharged state after 3 cycles.
  • the electrolytic solution used was a propylene carbonate (PC) solution in which 1 mol/dm 3 of tetraethylammonium tetrafluoroborate was dissolved.
  • Constant current charging and discharging (30 ⁇ A) is performed in the potential range of 0 to 0.4 V, the obtained electric quantity is used to obtain the capacitance, the capacitance is plotted against the weight of the graphite powder used, and the slope is used to obtain graphite.
  • the capacitance (F/g) per unit weight of the powder was calculated.
  • Table 1 shows the treatment conditions in each of the above examples and comparative examples, and the properties of the composite graphite particles obtained in each of the above examples and comparisons.
  • Table 1 shows the battery characteristics when laminated batteries were produced using the electrodes (negative electrodes) made of the negative electrode materials obtained in the above Examples and Comparative Examples.
  • the negative electrode materials for lithium ion secondary batteries obtained in Examples 1 and 2 have, as specific steps, the first coating step, the amorphous carbon particle-adhered graphite oxide particle forming step, and the second coating step. Since it is made of specific composite graphite particles obtained by applying the process and the calcination and carbonization process, it can exhibit excellent high-speed charge-discharge characteristics and initial efficiency when used in lithium-ion secondary batteries. I know there is.
  • the negative electrode material for a lithium ion secondary battery obtained in Comparative Example 1 used graphite particles instead of graphite oxide particles, so it was inferior in 2C charge capacity and sufficient high-speed charge and discharge. It turns out that the characteristics cannot be exhibited. Further, from Table 1, the negative electrode material for a lithium ion secondary battery obtained in Comparative Example 2 has a specific surface area cannot be sufficiently reduced, and the initial efficiency is poor.
  • the present invention it is possible to provide a negative electrode material for lithium ion secondary batteries that is excellent in initial efficiency and high-speed charge/discharge characteristics, and a method for producing the negative electrode material for lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

高速充放電特性および初期効率に優れたリチウムイオン二次電池用負極材を提供する。 リチウムイオン二次電池用負極材であって、各々特定の工程である、酸化黒鉛粒子を有機質バインダーで被覆する第一被覆工程と、上記有機質バインダーに非晶質炭素粒子を付着させる非晶質炭素粒子付着酸化黒鉛粒子の形成工程と、さらに上記非晶質炭素粒子を有機質バインダーで被覆して非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を得る第二被覆工程と、非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する焼成炭化工程とを施して得られる複合黒鉛粒子からなるリチウムイオン二次電池用負極材である。

Description

リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法
 本発明は、リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法に関する。
 リチウムイオン二次電池は、携帯電話、パソコン等の多くの機器に搭載され、高容量で、高電圧、小型軽量である点から多様な分野で利用されるようになっている。
 近年、リチウムイオン二次電池は、車載用途の需要が急激に高まっており、車載用に求められる特性としては、高容量で、高寿命かつ高入出力であり、かつこれらの特性のバランスに優れていることが求められている。このため、エネルギー密度が高くかつ膨張収縮が小さい負極材が必要とされ、これらの特性を満たす負極材として黒鉛粒子製のものが広く利用されるようになっている。
 黒鉛材料を用いるリチウムイオン二次電池用負極材においては、黒鉛材料の結晶性を高めることにより、放電容量を向上し得ることが知られているが、リチウムイオン二次電池用負極材としては、放電容量が高いことに加えて、高速充放電特性に優れることが要求される。
 そして、このような黒鉛粒子を用いるリチウムイオン二次電池用負極材の性能向上を目的として、黒鉛粒子を複合化した複合粒子が提案されるようになっている(例えば、特許文献1参照)。
 特許文献1には、天然黒鉛を球状に賦形した母材100重量部にカーボンブラック2~50重量部及びピッチを混合して天然黒鉛粒子を含浸・被覆して900℃~1500℃で焼成し、表面に微小突起を形成したBET比表面積2m/g以上であるリチウムイオン二次電池用黒鉛粒子(A)が開示されている。特許文献1によれば、単位体積当たりの放電容量が高く、初期充放電時の容量ロスが小さいことに加え、高速充放電特性に優れるリチウムイオン二次電池用負極材を提供することができるとされている。
特開2011-233541号公報
 しかしながら、本発明者等が検討したところ、特許文献1記載のリチウムイオン二次電池用黒鉛粒子は、リチウムイオン二次電池用負極材として用いた場合に初期効率の低下を招きやすいことが判明した。
 これは、黒鉛粒子にカーボンブラックを被覆する際に、カーボンブラック表面に付着したピッチを介して複合黒鉛粒子同士が強固に結合してしまい、焼成後に粉砕して複合黒鉛粒子を得ようとする際に強い衝撃を生じて、得られる複合黒鉛粒子が微粉化し易くなり、比表面積の増加を招き易いためと考えられた。
 また、従来より、高速充放電特性を向上させ得るリチウムイオン二次電池用負極材が強く望まれるようになっており、特許文献1記載のリチウムイオン二次電池用黒鉛粒子よりも、さらに高速充放電特性に優れるリチウムイオン二次電池用負極材が求められるようになっていた。
 従って、本発明は、高速充放電特性および初期効率に優れたリチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法を提供することを目的とするものである。
 上記技術背景の下、本発明者等が鋭意検討を重ねたところ、黒鉛粒子を酸化処理した酸化黒鉛粒子を採用するとともに、前記酸化黒鉛粒子が有機質バインダーで覆われた有機質バインダー被覆酸化黒鉛粒子を得る第一被覆工程と、
 前記有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子を混合して、前記有機質バインダー被覆酸化黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着酸化黒鉛粒子を形成する工程と、
 前記非晶質炭素粒子付着酸化黒鉛粒子と有機質バインダーとを混合して、前記酸化黒鉛粒子表面の非晶質炭素粒子が有機質バインダーで被覆された非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を得る第二被覆工程と、を用いて、非晶質炭素粒子を固定した複合黒鉛粒子からなるリチウムイオン二次電池用負極材により、上記技術課題を解決し得ることを見出し、係る知見に基づいて本発明を完成するに至った。
 すなわち、本発明は、
(1)リチウムイオン二次電池用負極材であって、
 酸化黒鉛粒子と有機質バインダーとを混合することにより、前記酸化黒鉛粒子が有機質バインダーで覆われた有機質バインダー被覆酸化黒鉛粒子を得る第一被覆工程と、
 前記有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子を混合して、前記有機質バインダー被覆酸化黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着酸化黒鉛粒子を形成する工程と、
 前記非晶質炭素粒子付着酸化黒鉛粒子と有機質バインダーとを混合して、前記酸化黒鉛粒子表面の非晶質炭素粒子が有機質バインダーで被覆された非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を得る第二被覆工程と、
 前記非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する焼成炭化工程とを施して得られる、
 酸化黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記酸化黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなる
ことを特徴とするリチウムイオン二次電池用負極材、
(2)前記酸化黒鉛粒子が、酸化性ガス雰囲気下において、黒鉛粒子を300~800℃で1~18時間加熱処理したものである上記(1)に記載のリチウムイオン二次電池用負極材、
(3)前記非晶質炭素粒子付着酸化黒鉛粒子を形成する工程における非晶質炭素粒子の混合量が、前記酸化黒鉛粒子100.0質量部当たり10.0~40.0質量部である上記(1)または(2)に記載のリチウムイオン二次電池用負極材、
(4)前記複合黒鉛粒子の窒素吸着比表面積(NSA)が、5.0m/g未満である上記(1)~(3)のいずれかに記載のリチウムイオン二次電池用負極材、
(5)リチウムイオン二次電池用負極材の製造方法であって、
酸化黒鉛粒子と有機質バインダーとを混合することにより、前記酸化黒鉛粒子が有機質バインダーで覆われた有機質バインダー被覆酸化黒鉛粒子を得る第一被覆工程と、
 前記有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子を混合して、前記有機質バインダー被覆酸化黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着酸化黒鉛粒子を形成する工程と、
 前記非晶質炭素粒子付着酸化黒鉛粒子と有機質バインダーとを混合して、前記酸化黒鉛粒子表面の非晶質炭素粒子が有機質バインダーで被覆された非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を得る第二被覆工程と、
 前記非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する焼成炭化工程とを施すことにより、
 酸化黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記酸化黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子を得る
ことを特徴とするリチウムイオン二次電池用負極材の製造方法、
(6)前記酸化黒鉛粒子が、酸化性ガス雰囲気下において、黒鉛粒子を300~800℃で1~18時間加熱処理したものである上記(5)に記載のリチウムイオン二次電池用負極材の製造方法、
(7)前記非晶質炭素粒子付着酸化黒鉛粒子を形成する工程における非晶質炭素粒子の混合量が、前記酸化黒鉛粒子100.0質量部当たり10.0~40.0質量部である上記(5)または(6)に記載のリチウムイオン二次電池用負極材の製造方法、
(8)前記複合黒鉛粒子の窒素吸着比表面積(NSA)が、5.0m/g未満である上記(5)~(7)のいずれかに記載のリチウムイオン二次電池用負極材の製造方法
を提供するものである。
 本発明によれば、黒鉛粒子を酸化処理した酸化黒鉛粒子を用いることにより黒鉛粒子のエッジ面がより増加してリチウムイオンの拡散パスが増加するために、上記複合黒鉛粒子をリチウムイオン二次電池用負極材として用いたときに高速充放電特性を向上させることができる。
 また、本発明によれば、酸化黒鉛粒子表面に有機質バインダーを介して非晶質炭素粒子を付着させた後、再度有機質バインダーを被覆することにより、表面の微細な凹凸が平滑化され得られる複合黒鉛粒子の比表面積を低減させることができ、このためにリチウムイオン二次電池用負極材として用いたときにその初期効率を向上させることができる。
 このため、本発明によれば、高速充放電特性および初期効率に優れたリチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法を提供することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の形態例における断面の概略図である。 本発明に係る製造方法における中間生成物である、有機質バインダー被覆酸化黒鉛粒子の表面に非晶質炭素粒子が付着した非晶質炭素粒子付着酸化黒鉛粒子の形態例における断面の概略図である。
 先ず、本発明に係るリチウムイオン二次電池用負極材について説明する。
 本発明に係るリチウムイオン二次電池用負極材は、
 酸化黒鉛粒子と有機質バインダーとを混合することにより、前記酸化黒鉛粒子が有機質バインダーで覆われた有機質バインダー被覆酸化黒鉛粒子を得る第一被覆工程と、
 前記有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子を混合して、前記有機質バインダー被覆酸化黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着酸化黒鉛粒子を形成する工程と、
 前記非晶質炭素粒子付着酸化黒鉛粒子と有機質バインダーとを混合して、前記酸化黒鉛粒子表面の非晶質炭素粒子が有機質バインダーで被覆された非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を得る第二被覆工程と、
 前記非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する焼成炭化工程とを施して得られる、
 酸化黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記酸化黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなる
ことを特徴とするものである。
 本発明に係るリチウムイオン二次電池用負極材は、上記第一被覆工程と、非晶質炭素粒子付着酸化黒鉛粒子を形成する工程と、第二被覆工程と、焼成炭化工程とを施して得られる複合黒鉛粒子からなるものであり、これ等の工程の詳細は、後述する本発明に係るリチウムイオン二次電池用負極材の製造方法の説明で説明するとおりである。
 なお、本発明に係るリチウムイオン二次電池用負極材は、上記第一被覆工程と、非晶質炭素粒子付着酸化黒鉛粒子を形成する工程と、第二被覆工程と、焼成炭化工程とを少なくとも行って得られるものであり、本発明の効果を損なわない範囲で、他の工程を行うことは許容される。
 本発明に係るリチウムイオン二次電池用負極材について、適宜、図面を用いて説明する。図1は、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の一形態例における断面の概略図である。
 図1中、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10は、酸化黒鉛粒子1と酸化黒鉛粒子1を覆う被覆層4とからなる。被覆層4は、非晶質炭素粒子3及び非晶質炭素化結合材料2を含み、非晶質炭素粒子3は、通常、非晶質炭素化結合材料の内部に埋め込まれるようにして、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10に固定されている。また、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10において、複合黒鉛粒子を構成するほぼ全ての非晶質炭素粒子3が酸化黒鉛粒子1の表面に接している。
 本発明に係るリチウムイオン二次電池用負極材において、複合黒鉛粒子の芯材となる酸化黒鉛粒子は、黒鉛粒子の酸化物である。
 酸化黒鉛粒子の原料となる黒鉛粒子としては、球形化した黒鉛粒子を挙げることができる。黒鉛粒子は、天然黒鉛からなるものであってもよいし、人造黒鉛からなるものであってもよい。
 酸化黒鉛粒子の原料となる黒鉛粒子の平均格子面間隔d(002)は、0.3360nm以下であり、黒鉛粒子の平均格子面間隔d(002)が0.3360nm以下であることにより、可逆容量を十分に大きくすることができる。黒鉛粒子の平均格子面間隔d(002)は、可逆容量をさらに向上させる上では、0.3358nm以下であることが好ましい。
 なお、本出願書類において、平均格子面間隔d(002)は、X線回折装置((株)リガク製UltimaIV)を用い、Cu-Kα線をNiフィルターで単色化したX線を使用して、高純度シリコンを標準物質として粉末X線回折法で測定を行い、得られた炭素(002)面の回折ピークの強度と半値幅より、日本学術振興会第117委員会によって定められた学振法に従って求めた値である。
 本発明に係るリチウムイオン二次電池用負極材において、複合黒鉛粒子の芯材となる酸化黒鉛粒子の形成方法は、特に制限されない。
 上記酸化黒鉛粒子としては、酸化性ガス雰囲気下において黒鉛粒子を加熱処理してなるものが挙げられる。
 酸化性ガスとしては、空気、酸素、オゾン等から選ばれる一種以上を挙げることができる。
 上記黒鉛粒子の加熱温度は、300~800℃が好ましく、400~700℃がより好ましく、500~600℃がさらに好ましい。上記黒鉛粒子の加熱温度が300℃以上であることにより、エッジ面が十分に増加し十分な静電容量の向上が得られる。温度を800℃以下にすることで、黒鉛粒子の酸化消耗を抑制し、重量減少を防止することができる。
 上記黒鉛粒子の加熱時間は、1~18時間が好ましく、2~12時間がより好ましく、2~6時間がさらに好ましい。
 加熱時間を1時間以上にすることでエッジ面が十分に増加し、十分な静電容量の向上が得られる。また、加熱時間を18時間以下にすることで、黒鉛粒子の酸化消耗を抑制し、重量減少を防止することができる。
 上記酸化黒鉛粒子の静電容量は、0.30F/g以上が好ましく、0.32F/g以上がより好ましく、0.34F/g以上がさらに好ましい。
 酸化黒鉛粒子の静電容量が0.30F/g以上であることにより、酸化黒鉛粒子のエッジサイトが増加して、リチウムイオンの受け入れ性が向上して、高速充電性に優れたリチウムイオン二次電池用負極材を容易に得ることができる。
 また、上記酸化黒鉛粒子の静電容量は、0.60F/g以下であることが好ましい。酸化黒鉛粒子の静電用容量が0.60F/g以下であることで後述する複合黒鉛粒子の比表面積の増大を抑制し、電池特性として初期効率の低下を防ぐことができる。
 なお、本出願書類において、静電容量は、以下の方法で測定される値を意味する。
 すなわち、まず表面官能基を除去するために、Ar雰囲気中800℃で1時間加熱した後、4~10mgの範囲で0.5mg刻みに重量を変化させた測定粉末に対し、含有割合が各々10質量%となるようにポリフッ化ビニリデン(PVDF)を結着させてシートを作製した後、直径15.95mmの円盤状に打ち抜いて、打ち抜きシートとした。
 コイン型の対称セルを用い、ワッシャー、スペーサー、上記打ち抜きシート、セパレータ(ポリプロピレン)、上記打ち抜きシートの順に積層し、封口蓋( キャップ)で封止することにより、セルを不活性雰囲気下で組み立てる。
 電解液は1 mol/dmのテトラフルオロホウ酸テトラエチルアンモニウムを溶解したプロピレンカーボネート(PC)溶液を使用した。ポテンシャルレンジ0.0~0.4Vの間で定電流充放電(30μA)を行い、得られた電気量により静電容量を得、使用した測定粉末の重量に対する静電容量をプロットし、その傾きから測定粉末の単位重量あたりの静電容量(F/g)を算出する。
 本発明に係るリチウムイオン二次電池用負極材によれば、黒鉛粒子を酸化処理した酸化黒鉛粒子を採用することにより黒鉛粒子のエッジ面がより増加してリチウムイオンの拡散パスが増加するために、係る酸化黒鉛粒子を含む複合黒鉛粒子をリチウムイオン二次電池用負極材として用いたときに高速充放電特性を容易に向上させることができる。
 本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、被覆層は、非晶質炭素粒子及び非晶質炭素化結合材料を含む。
 上記非晶質炭素化結合材料は、酸化黒鉛粒子表面を覆う有機質バインダーが焼成され非晶質炭素化されたものであり、平均格子面間隔d(002)が0.3370nm以上であるものを意味する。
 図1に例示するように、複合黒鉛粒子10において、非晶質炭素粒子3は、通常、その一部または全体が非晶質炭素化結合材料2に埋め込まれるようにして、酸化黒鉛粒子1に固定されている。
 非晶質炭素粒子としては、特に制限されないが、例えば、ファーネスブラック、サーマルブラック等のカーボンブラックが挙げられる。
 非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上であり、非晶質炭素粒子の平均格子面間隔d(002)が0.3370nm以上であることにより、粒子表面の反応抵抗が下がり易くなりリチウムイオン二次電池用負極材として使用したときに優れた高速充放電特性を容易に発揮することができる。
 非晶質炭素粒子の平均格子面間隔d(002)は、高速充放電性をさらに向上させる上では、0.3400nm以上であることが好ましく、更に高速充放電特性が向上する点で、0.3500nm以上であることがより好ましい。
 複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、50~300nmが好ましく、表面観察における球状の非晶質炭素材料の平均粒子径が上記範囲にあることにより、不可逆容量の増大を抑制しつつ、リチウムイオン二次電池用負極材として高速充放電特性に優れた複合黒鉛粒子を容易に得ることができる。
 複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、不可逆容量の増大をさらに抑制する上では、100nm以上がより好ましく、また、高速充放電特性をさらに向上させる上では、200nm以下がより好ましい。
 なお、本出願書類において、複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、以下のとおり求めた値を意味する。
 すなわち、複合黒鉛粒子を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により表面観察し、得られたSEM画像中から複合黒鉛粒子上の非晶質炭素粒子を任意に選択し、画像解析ソフト(三谷商事(株)製WINROOF)を用いて、係る非晶質炭素粒子の外接円の直径を粒子径として算出する。同様にして、SEM画像から任意に1000個以上の非晶質炭素粒子を抽出して各粒子径を求め、それらの算術平均値を表面観察における非晶質炭素粒子の平均粒子径とする。
 断面観察における非晶質炭素化結合材料の厚みは、適宜選定され、非晶質炭素粒子の埋め込みを考慮した場合は、30nm~1000nmであることが好ましい。非晶質炭素化結合材料の厚みが30nm以上あることで非晶質炭素粒子の固定化および埋め込みが十分になされ、リチウムイオン二次電池用負極材として使用したときに高速充放電特性に優れた複合黒鉛粒を容易に得ることができる。また、非晶質炭素結合材料の厚みが1000nm以下であることで、非晶質炭素粒子が多層に積層せず、粒子間の界面が少なく制御され、高速充放電特性に優れた複合黒鉛粒を容易に得ることができる。
 なお、本発明のリチウムイオン二次電池用負極材において、非晶質炭素化結合材料の厚みは、以下の手法により測定した値を意味する。
 先ず、上記複合黒鉛粒子のうち任意に抽出した1粒子の断面を、走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により観察し、得られるSEM画像中の非晶質炭素化結合材料の断面の厚みを、任意に10か所測定したときの算術平均値を求める。
 そして、複合黒鉛粒子を任意に少なくとも10粒子抽出し、各粒子について、非晶質炭素化結合材料の断面の厚みの算術平均値を同様に求め、得られた算術平均値を平均して、非晶質炭素化結合材料の厚みとする。
 本発明に係るリチウムイオン二次電池用負極材は、酸化黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み上記酸化黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなる。
 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、酸化黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は、好ましくは10.0~40.0質量部である。非晶質炭素粒子の割合が酸化黒鉛粒子100.0質量部に対し10.0質量部以上であることにより、初回充電時の不可逆容量の増大を抑制しつつ、高速充放電特性を容易に向上させることができる。非晶質炭素粒子の割合が酸化黒鉛粒子100.0質量部に対し40.0質量部以下であることにより、放電容量が低下することなく高速充放電特性を向上させることができる。酸化黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は高速充放電性をさらに向上する上で、15.0質量部以上がより好ましく、また、被覆されずに単離する粒子の発生を抑制し、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下が好ましい。
 レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 は、5.0~30.0μmが好ましく、レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 が5.0μm以上であることにより、反応比表面積が増加して反応抵抗が下がり優れた高速充放電特性を発揮するとともに、複合黒鉛粒子の平均粒子径D50が30.0μm以下であることにより、酸化黒鉛粒子内のリチウムイオンの移動速度を向上させ易くなる。
 レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 は、初回充電時における不可逆容量の増大を抑制する上では7.0μm以上がより好ましく、また、高速充放電特性をさらに向上する上では25.0μm以下がより好ましく、高速充放電特性を特に向上する上では20.0μm以下がさらに好ましい。
 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の粒度分布指数SPAN((D90-D10)/D50)は2.0未満が好ましく、粒度分布指数SPAN((D90-D10)/D50)が2.0未満であることにより、微粒状物が少なく、大多数の粒子が比較的狭い粒度範囲内にあることから、比表面積の増加を抑制してリチウムイオン二次電池において優れた初期効率を容易に発揮することができる。
 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の粒度分布指数SPAN((D90-D10)/D50)は、比表面積の増加を抑制してリチウムイオン二次電池においてさらに優れた初期効率を容易に発揮し得ることから、1.0未満がより好ましい。
 なお、本出願書類において、粉末又は粒子のD10、D50(平均粒子径)およびD90は、レーザー回折粒度分布測定装置((株)堀場製作所製LA-960S)を用いて体積基準積算粒度分布を測定したときの積算粒度が、それぞれ、10%、50%および90%の粒径を意味する。
 本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の窒素吸着比表面積(NSA)は、5.0m/g未満が好ましく、複合黒鉛粒子の窒素吸着比表面積が上記範囲内にあることにより、リチウムイオン二次電池用負極材として使用したときに初期効率の低下を容易に抑制することができる。
 本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の窒素吸着比表面積(NSA)は、初期効率の低下をさらに抑制する上では3.0m/g以下がより好ましく、2.5m/g以下がさらに好ましい。充放電効率の上では、1.0m/g以上がより好ましく、1.5m/g以上がさらに好ましい。
 なお、本出願書類において、粉末又は粒子の窒素吸着比表面積(NSA)は、全自動表面積測定装置((株)島津製作所製ジェミニV)を用い、窒素吸着等温線における相対圧0.05~0.2の範囲におけるBET多点法により算出される値を意味する。
 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のララマンR(ラマンスペクトル強度比R)は、0.3以上が好ましく、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子のラマンRが0.3以上あることにより、粒子表面が十分に非晶質化されているため、反応抵抗が低く、リチウムイオン二次電池用負極材の高速充放電特性を容易に向上させることができる。
 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のララマンR(ラマンスペクトル強度比R)は、高速充放電特性をさらに向上する上では、0.4以上がより好ましい。
 なお、本出願書類において、ラマンRは、波長532nmのNd/YAGレーザーを備えたラマン分光分析器(堀場製作所社製、HR800 )で測定し、表層での結晶欠陥及び積層構造の不整合等による結晶構造の乱れに帰属する1360cm-1近傍のスペクトルI 1360を、炭素六角網面内の格子震動に相当するE2g型振動に帰属する1580cm-1近傍のスペクトルI 1580で除し、ラマンR=(I 1360/I 1580)により算出したときに、100μmの照射面積にて10点以上測定した平均値を意味する。
 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、平均格子面間隔d(002)が0.3360nm以下であることが好ましく、複合黒鉛粒子の平均格子面間隔d(002)が0.3360nm以下であることにより、リチウムイオン二次電池用負極材として使用したときに可逆容量を十分に向上させることができる。
 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、平均格子面間隔d(002)は、可逆容量をさらに向上する上では、0.3358nm以下であることがより好ましい。
 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、平均格子面間隔d(002)が0.3355nm以上であることが好ましく、平均格子面間隔d(002)が0.3355nm以上であることにより、リチウムイオンを容易に挿入することができ高速充放電特性を向上させ易くなる。
 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、リチウムイオンを更に挿入し易くし、高速充放電特性を更に向上する上では、平均格子面間隔d(002)が0.3356nm以上であることがより好ましい。
 なお、本出願書類において、平均格子面間隔d(002)は、X線回折装置((株)リガク製UltimaIV)を用い、Cu-Kα線をNiフィルターで単色化したX線を使用して、高純度シリコンを標準物質として粉末X線回折法で測定を行い、得られた炭素(002)面の回折ピークの強度と半値幅より、日本学術振興会第117委員会によって定められた学振法に従って求めた値を意味する。
 図1に例示するように、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子10は、酸化黒鉛粒子1と酸化黒鉛粒子1を覆う被覆層4とからなる。
 被覆層4は、非晶質炭素粒子3及び非晶質炭素化結合材料2を含み、非晶質炭素粒子3は、通常、非晶質炭素化結合材料2の内部に埋め込まれるようにして、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10に固定されている。
 非晶質炭素化結合材料2は、第一被覆工程で被覆した有機質バインダーの焼成物2a'と第二被覆工程で被覆した有機質バインダーの焼成物2b'からなり、非晶質炭素化結合材料2が、第一被覆工程で被覆した有機質バインダーの焼成物2a'とともに第二被覆工程で被覆した有機質バインダーの焼成物2b'を含むことにより、表面の微細な凹凸が平滑化され得られる複合黒鉛粒子の比表面積を低減させることができる。
 上記比表面積が低減するとSEI(Solid Electrolyte Interphase)層の形成が抑制されることから、リチウムイオン二次電池用負極材として使用したときに初期効率を容易に向上させることができる。
 本発明に係るリチウムイオン二次電池用負極材は、以下に詳述する本発明に係る製造方法により好適に製造することができる。
 本発明によれば、高速充放電特性および初期効率に優れたリチウムイオン二次電池用負極材を提供することができる。
 次に、本発明に係るリチウムイオン二次電池用負極材の製造方法について説明する。
 本発明に係るリチウムイオン二次電池用負極材の製造方法は、
 酸化黒鉛粒子と有機質バインダーとを混合することにより、前記酸化黒鉛粒子が有機質バインダーで覆われた有機質バインダー被覆酸化黒鉛粒子を得る第一被覆工程と、
 前記有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子を混合して、前記有機質バインダー被覆酸化黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着酸化黒鉛粒子を形成する工程と、
 前記非晶質炭素粒子付着酸化黒鉛粒子と有機質バインダーとを混合して、前記酸化黒鉛粒子表面の非晶質炭素粒子が有機質バインダーで被覆された非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を得る第二被覆工程と、
 前記非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する焼成炭化工程とを施すことにより、
 酸化黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記酸化黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子を得る
ことを特徴とするものである。
 本発明に係る製造方法においては、第一被覆工程において、酸化黒鉛粒子と有機質バインダーとを混合することにより、上記黒鉛粒子が有機質バインダーで覆われた有機質バインダー被覆酸化黒鉛粒子を得る。
 第一被覆工程で使用する酸化黒鉛粒子としては、上述したものと同様のものを挙げることができる。
 本発明に係る製造方法によれば、黒鉛粒子を酸化処理した酸化黒鉛粒子を用いることにより、黒鉛粒子のエッジ面がより増加してリチウムイオンの拡散パスが増加するために、係る酸化黒鉛粒子を含む複合黒鉛粒子をリチウムイオン二次電池用負極材として用いたときに高速充放電特性を容易に向上させることができる。
 第一被覆工程で用いられる有機質バインダーは、結合剤として使用されるものであり、ピッチ等を挙げることができる。
 上記ピッチとしては、コールタールピッチ、ナフサ分解タールピッチ、原油接触分解タールピッチ、ニグリン抽出バイオマスピッチ、クレオソート油等から選ばれる一種以上を挙げることができる。
 本発明に係る製造方法において、有機質バインダーの軟化点は、300℃ 以下が好ましく、200℃ 以下がより好ましく、150℃ 以下がさらに好ましく、100℃ 以下が一層好ましい。軟化点が300℃以下であることで有機質バインダーの流動性を十分に確保することができ、均一な混合に好適となる。下限は特に制限されないが、通常40℃以上であることで、第一被覆工程終了後の有機質バインダー被覆酸化黒鉛粒子の取り扱いが容易となる。
 なお、本出願書類において、有機質バインダーの軟化点は、JIS K 2425の環球法に基づき測定される値を意味する。
 第一被覆工程において、酸化黒鉛粒子に混合、接触させる有機質バインダーの量は、酸化黒鉛粒子100.0質量部あたり5.0質量部以上であることが好ましく、酸化黒鉛粒子100.0質量部あたり5.0質量部以上の有機質バインダーを接触させることにより、酸化黒鉛粒子との結着面積を増大させて結着力を増加させるとともに、均一な被覆を容易に達成することができる。
 第一被覆工程において、酸化黒鉛粒子に混合、接触させる有機質バインダーの量は、さらに均一な被覆を可能とする上では酸化黒鉛粒子100.0質量部あたり8.0質量部以上であることがより好ましく、特に均一な被覆を可能とする上では酸化黒鉛粒子100.0質量部あたり10.0質量部以上であることがさらに好ましい。
 第一被覆工程において、酸化黒鉛粒子に混合、接触させる有機質バインダーの量は、酸化黒鉛粒子100.0質量部あたり40.0質量部以下であることが好ましく、酸化黒鉛粒子100.0質量部あたり40.0質量部以下の有機質バインダーを接触させることにより、酸化黒鉛粒子同士の凝集を低減させた状態で酸化黒鉛粒子の表面にバインダーを被覆することができる。
 第一被覆工程において、酸化黒鉛粒子に混合、接触させる有機質バインダーの量は、酸化黒鉛粒子同士の凝集をより低減させる上では、酸化黒鉛粒子100.0質量部あたり30.0質量部以下であることがより好ましく、酸化黒鉛粒子同士の凝集をさらに低減させる上では、酸化黒鉛粒子100.0質量部あたり25.0質量部以下であることがさらに好ましい。
 第一被覆工程において、酸化黒鉛粒子と有機質バインダーとを混合する方法としては、特に制限されず、ニーダー、トリミクス、ハイスピードミキサー、ヘンシェルミキサー等の混合機を用いて混合する方法が挙げられる。
 第一被覆工程において、酸化黒鉛粒子と有機質バインダーとを混合するときの混合温度は、使用する有機バインダーの軟化点以上になるように適宜調整する。
 本発明に係る製造方法においては、第一被覆工程において、酸化黒鉛粒子に有機質バインダーを混合、接触させて有機質バインダーを付着させることにより、後述する非晶質炭素粒子を固定するバインダーとする。
 本発明に係る製造方法においては、第一被覆工程で得られた有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子を混合して、上記有機質バインダー被覆酸化黒鉛粒子の表面に上記非晶質炭素粒子が付着した非晶質炭素粒子付着酸化黒鉛粒子を得る。
 図2は、本工程で得られる非晶質炭素粒子付着酸化黒鉛粒子の一例における断面の概略図であり、図2に示すように、本工程においては、酸化黒鉛粒子1が有機質バインダー2aで覆われた有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子3を混合して、有機質バインダー被覆酸化黒鉛粒子の表面に非晶質炭素粒子3が付着した非晶質炭素粒子付着酸化黒鉛粒子を得る。
 上記非晶質炭素粒子としては、特に制限されないが、例えば、ファーネスブラック、サーマルブラック等のカーボンブラックから選ばれる一種以上を挙げることができる。
 本発明に係る製造方法において、非晶質炭素粒子の平均粒子径は50nm~300nmであることが好ましく、非晶質炭素粒子の平均粒子径が50nm以上であることにより、不可逆容量の増大を抑制しつつ、リチウムイオン二次電池用負極材として高速充放電特性に優れた複合黒鉛粒子を容易に得ることができ、非晶質炭素粒子の平均粒子径が300nm以下であることにより、粒子間の界面が少なく制御され、高速充放電特性を向上させることができる。
 本発明に係る製造方法において、非晶質炭素粒子の平均粒子径は、不可逆容量の増大をさらに抑制する上では、100nm以上がより好ましく、また、高速充放電特性をさらに向上させる上では、200nm以下がより好ましい。
 なお、本出願書類において、本発明に係る製造方法で使用する非晶質炭素粒子の平均粒子径は、透過型電子顕微鏡(TEM、(株)日立製作所製H-7650型透過型電子顕微鏡)を用いて各非晶質炭素粒子を観察したときに、画像解析ソフト(三谷商事(株)製WINROOF)により、各非晶質炭素粒子の外接円の直径を各々の粒子径として、10,000個の非晶質炭素粒子の粒子径を求めたときの算術平均値を意味する。
 非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上であり、非晶質炭素粒子の平均格子面間隔d(002)が0.3370nm以上であることにより、粒子表面の反応抵抗が下がり易くなりリチウムイオン二次電池用負極材として使用したときに優れた高速充放電特性を容易に発揮することができる。
 非晶質炭素粒子の平均格子面間隔d(002)は、高速充放電性をさらに向上させる上では、0.3400nm以上であることが好ましく、更に高速充放電特性が向上する点で、0.3500nm以上であることがより好ましい。
 本発明に係る製造方法において、非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上であり、非晶質炭素粒子の平均格子面間隔d(002)が0.3370nm以上にあることにより、粒子表面の反応抵抗が低下し易くなり優れた高速充放電特性を発揮し易くなる。
 本発明に係る製造方法において、非晶質炭素粒子がカーボンブラックである場合、カーボンブラックのDBP吸油量は、100ml/100g以下が好ましく、カーボンブラックのDBP吸油量が100ml/100g以下であることにより、得られる複合黒鉛粒子の比表面積の増大を抑制し、リチウムイオン二次電池用負極材として使用したときに初回充電時における不可逆容量の増大を容易に抑制することができる。
 本発明に係る製造方法において、非晶質炭素粒子がカーボンブラックである場合、カーボンブラックのDBP吸油量は、不可逆容量の増大をさらに抑制する上で80ml/100g以下がより好ましく、不可逆容量の増大を特に抑制する上で65ml/100g以下がさらに好ましい。
 本発明に係る製造方法において、非晶質炭素粒子付着酸化黒鉛粒子を形成する工程における非晶質炭素粒子の混合量が、前記酸化黒鉛粒子100.0質量部当たり10.0~40.0質量部であることが好ましい。
 非晶質炭素粒子の混合量が酸化黒鉛粒子100.0質量部あたり10.0質量部以上であることにより、初回充電時の不可逆容量の増大を抑制しつつ、高速充放電特性を容易に向上させることができる。
 非晶質炭素粒子の割合が酸化黒鉛粒子100.0質量部あたり40.0質量部以下であることにより、放電容量を低下させることなく高速充放電特性を向上させることができる。
 非晶質炭素粒子の混合量は、高速充放電性をさらに向上する上で、酸化黒鉛粒子100.0質量部あたり15.0質量部以上であることがより好ましく、また、被覆されずに単離する粒子の発生を抑制し初回充電時における不可逆容量の増大を抑制する上では、酸化黒鉛粒子100.0質量部あたり30.0質量部以下がより好ましい。
 有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子を混合するときの処理温度は、特に限定されないが、有機質バインダー被覆酸化黒鉛粒子を構成する有機質バインダーの軟化点以上の温度になるよう調整することが好ましい。
 有機質バインダー被覆酸化黒鉛粒子に対し非晶質炭素粒子を混合する工程において、混合手段としては、ニーダー、トリミックス、ハイスピードミキサー、ヘンシェルミキサー等から選ばれる一種以上の混合装置を挙げることができる。
 本発明に係る製造方法において、有機質バインダー被覆酸化黒鉛粒子と非晶質炭素粒子との混合を、ヘンシェルミキサー(三井鉱山(株)製FM20C)を用いて行う場合、例えば、有機質バインダー被覆酸化黒鉛粒子を収容したヘンシェルミキサーの槽内にカーボンブラック等の非晶質炭素粒子を投入し、所定の温度に到達した後、周速30m/sで15分間処理をする。有機質バインダー被覆酸化黒鉛粒子を構成する酸化黒鉛粒子100質量部に対する非晶質炭素粒子が30質量部を超える場合は、非晶質炭素粒子を3分割して順次で投入することにより、得られる複合黒鉛粒子における非晶質炭素粒子の被覆の均一性を容易に向上させることができる。
 本発明に係る製造方法においては、第二被覆工程において、上記非晶質炭素粒子付着酸化黒鉛粒子と有機質バインダーとを混合することにより、上記酸化黒鉛粒子表面の非晶質炭素粒子が有機質バインダーで被覆された非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を得る。
 第二被覆工程で用いられる有機質バインダーの例としては、フェノール樹脂や尿素樹脂などの熱硬化性樹脂や、ポリ塩化ビニル樹脂やアクリル樹脂などの熱可塑性樹脂などを挙げることができる。
 第二被覆工程において、有機質バインダーは、適宜溶媒に分散して有機質バインダー溶液として使用してもよい。
 上記有機質バインダー溶液を構成する溶剤としては特に制限されず、水、エタノールやジエチレングリコール等のアルコール類、またはそれらの混合物から選ばれる一種以上を挙げることができる。
 上記有機質バインダー溶液を構成する有機質バインダーの濃度は、後述する焼成炭化処理後において、酸化黒鉛粒子100.0質量部あたり、4.0~16.0質量部の非晶質炭素化結合材料を生成する濃度であることが好ましい。
 上記有機質バインダー溶液を構成する有機質バインダーの濃度が、後述する焼成炭化処理後において、酸化黒鉛粒子100.0質量部あたり4.0質量部以上の非晶質炭素化結合材料を生成する濃度であることにより非晶質炭素粒子付着酸化黒鉛粒子の表面を好適に覆うことができ、酸化黒鉛粒子100.0質量部あたり16.0質量部以下であることにより、有機質バインダーが過剰量となることにより生じる酸化黒鉛粒子同士の凝集付着を抑制しつつ、非晶質炭素粒子付着酸化黒鉛粒子の表面を覆うことができる。
 第二被覆工程において、非晶質炭素粒子付着酸化黒鉛粒子に混合、接触させる有機質バインダーの量は、非晶質炭素粒子付着酸化黒鉛粒子を構成する酸化黒鉛粒子100.0質量部あたり、10.0~60.0質量部であることが好ましい。
 第二被覆工程において非晶質炭素粒子付着酸化黒鉛粒子に混合、接触させる有機質バインダーの量が、非晶質炭素粒子付着酸化黒鉛粒子を構成する酸化黒鉛粒子100.0質量部あたり10.0質量部以上であることにより、非晶質炭素粒子付着酸化黒鉛粒子の表面を覆うことができるとともに、均一な被覆を容易に達成することができ、非晶質炭素粒子付着酸化黒鉛粒子を構成する酸化黒鉛粒子100.0質量部あたり60.0質量部以下であることにより、有機質バインダーが過剰量となることにより生じる酸化黒鉛粉同士の凝集付着を抑制しつつ、非晶質炭素粒子付着酸化黒鉛粒子の表面を覆うことができる。
 第二被覆工程において、非晶質炭素粒子付着酸化黒鉛粒子に混合、接触させる有機質バインダーの量は、非晶質炭素粒子付着酸化黒鉛粒子100.0質量部あたり、層の厚さが均一な被覆を可能とする上では非晶質炭素粒子付着酸化黒鉛粒子を構成する酸化黒鉛粒子100.0質量部あたり50.0重量部以下であることがより好ましく、特に被覆されていない部分を抑制する上では非晶質炭素粒子付着酸化黒鉛粒子を構成する酸化黒鉛粒子100.0質量部あたり20.0重量部以上であることがより好ましい。
 第二被覆工程において、非晶質炭素粒子付着酸化黒鉛粒子と有機質バインダーとを混合する方法や、混合温度としても、上述した第一被覆工程の説明で述べた方法ないし条件であることが好ましい。
 本発明に係る製造方法においては、第二被覆工程において、有機質バインダー被覆酸化黒鉛粒子に有機質バインダーを混合、接触させて有機質バインダーをさらに付着させることにより、第一被覆工程で混合した有機質バインダーとともに非晶質炭素粒子を酸化黒鉛粒子に固定する結合剤(バインダー)とする。
 このとき、有機質バインダーの濃度、粘度ないしは使用量を適宜調整することにより、酸化黒鉛粒子や非晶質炭素粒子への付着量や、酸化黒鉛粒子表面における有機質バインダーの厚さを容易に制御することができる。
 本発明に係る製造方法においては、第二被覆工程で得られた非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する焼成炭化工程を施す。
 非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する温度は、800℃以上が好ましく、焼成炭化温度が800℃以上であることにより、特にカーボンブラック等の非晶質炭素粒子に含まれる未燃分を十分に除去し、容易に品質を向上させることができる。
 非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する温度は、未燃焼分を更に除去する上では1000℃以上がより好ましい。
 焼成炭化する温度の上限は特に制限されないが、非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する温度は、高速充放電特性が向上する点で1400℃以下が好ましく、1200℃以下がより好ましい。
 非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する時間は、1時間以上であることが好ましく、焼成炭化時間が1時間以上であることにより、特にカーボンブラック等の非晶質炭素粒子に含まれる未燃分を十分に除去し、品質を向上することができる。
 非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する時間は、非晶質炭素粒子に含まれる未燃焼分をさらに除去する上では2時間以上であることがより好ましい。
 非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化するときの雰囲気は、窒素ガス雰囲気、アルゴンガス雰囲気等の不活性ガス雰囲気であることが好ましい。
 本発明に係るリチウムイオン二次電池用負極材の製造方法では、炭化焼成工程を行って得られる焼成炭化物に粉砕処理工程を施し、必要に応じて分級処理工程等を施してもよい。
 本発明に係るリチウムイオン二次電池用負極材の製造方法においては、上記各工程を施すことにより、目的とする複合黒鉛粒子からなるリチウムイオン二次電池用負極材を得ることができる。
 図1に例示するように、本発明に係る製造方法で得られたリチウムイオン二次電池用負極材を構成する複合黒鉛粒子10は、酸化黒鉛粒子1と酸化黒鉛粒子1を覆う被覆層4とからなる。
 被覆層4は、非晶質炭素粒子3及び非晶質炭素化結合材料2を含み、非晶質炭素粒子3は、通常、非晶質炭素化結合材料の内部に埋め込まれるようにして、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10に固定されている。
 非晶質炭素化結合材料2は、第一被覆工程で被覆した有機質バインダーの焼成物2a'と第二被覆工程で被覆した有機質バインダーの焼成物2b'からなり、非晶質炭素化結合材料2が、有機質バインダーの焼成物2a'とともに第二被覆工程で被覆した有機質バインダーの焼成物2b'を含むことにより、表面の微細な凹凸が平滑化され得られる複合黒鉛粒子の比表面積を低減させることができる。
 上記比表面積が低減するとSEI(Solid Electrolyte Interphase)層の形成が抑制されることから、リチウムイオン二次電池用負極材として使用したときに初期効率を容易に向上させることができる。
 本発明に係る製造方法によって得られるリチウムイオン二次電池用負極材としては、本発明に係るリチウムイオン二次電池用負極材を挙げることができる。
 本発明によれば、高速充放電特性および初期効率に優れたリチウムイオン二次電池用負極材の製造方法を提供することができる。
 以下、本発明を実施例および比較例に基づいて更に詳細に説明するが、本発明はこれ等の例により何ら限定されるものではない。
 なお、以下の実施例および比較例において、カーボンブラックの平均粒子径、酸化黒鉛粒子および複合黒鉛粒子の平均粒子径D50、並びに複合黒鉛粒子の粒度分布指数SPANは、各々以下の方法で求めたものである。
<カーボンブラックの平均粒子径測定方法>
 分析装置:透過型電子顕微鏡(TEM、(株)日立製作所製H-7650型透過型電子顕微鏡
 加速電圧:100kV
<天然黒鉛、酸化黒鉛粒子および複合黒鉛粒子の平均粒子径D50と、複合黒鉛粒子の粒度分布指数SPANの測定方法>
 分析装置:堀場製作所社製:LA-960S
 光源  :半導体レーザー(650nm)
 蒸留水100質量部に対して10質量%の両性界面活性剤を添加した水溶液に対し、粉末状の測定試料を投入して超音波で分散させて分散液を得た。得られた分散液を装置内の測定セルにフローし、レーザーを照射し、散乱光をリング状検出器で検出、解析することで体積積算粒度分布を求める。
 このときに得られた体積基準積算粒度分布において、積算粒度が50%の粒径をD50とし、同じく積算粒度が10%の粒径(D10)と積算粒度が90%の粒径(D90)を求め、下記式
 粒度分布指数SPAN=(D90-D10)/D50
により粒度分布指数SPANを求める。
(実施例1)
(1)酸化黒鉛粒子の作製工程
 天然黒鉛(平均粒子径(D50)11.0μm、窒素吸着比表面積(NSA)7.0m/g)を、空気雰囲気下、500℃で6時間加熱することにより、酸化黒鉛粒子(平均粒子径(D50)10.8μm、窒素吸着比表面積8.3m/g)を得た。
(2)第一被覆工程
 上記酸化黒鉛粒子100.0質量部と、ピッチ(軟化点90℃)20.0質量部とを、それぞれ混合機(三井鉱山(株)製ヘンシェルミキサー)に投入し、130℃で15分間混合することにより、酸化黒鉛粒子がピッチで覆われたピッチ被覆酸化黒鉛粒子を得た。
(3)カーボンブラック粒子付着酸化黒鉛粒子の形成工程
 次いで、130℃のまま、上記混合機中に、上記酸化黒鉛粒子100.0質量部に対し、平均粒子径が122nmのカーボンブラック粒子(東海カーボン(株)製ファーネスブラックS-TA)20.0質量部を投入し、さらに10分間混合してカーボンブラック粒子付着酸化黒鉛粒子を得た。
(4)第二被覆工程
 次いで、60℃にして、上記混合機中に、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))20.0質量部を投入し、さらに10分間混合して、酸化黒鉛粒子表面のカーボンブラック粒子が樹脂で被覆されたカーボンブラック含有層を表面に有する酸化黒鉛粒子を得た。
(5)焼成炭化工程
 上記カーボンブラック含有層を表面に有する酸化黒鉛粒子を、カンタル炉中で、窒素ガス雰囲気下、1000℃で2時間焼成して炭化した。
 次いで、得られた焼成粉を粉砕機(日清エンジニアリング(株)製スーパーローター:SR25)を用いて8000rpmで粉砕した後、分級装置(装置名:篩分級、目開き45μm)で分級して、篩下分として複合黒鉛粒子(平均粒子径D5012.1μm、粒度分布指数SPAN0.8、窒素吸着比表面積4.3m/g)からなるリチウムイオン二次電池用負極材を得た。
(実施例2)
(1)酸化黒鉛粒子の作製工程
 天然黒鉛(平均粒子径(D50)11.0μm、窒素吸着比表面積(NSA) 7.0m/g)を、空気雰囲気下、600℃で6時間加熱することにより、酸化黒鉛粒子(平均粒子径(D50)10.8μm、窒素吸着比表面積8.3m/g)を得た。
(2)第一被覆工程
 上記酸化黒鉛粒子100.0質量部と、ピッチ(軟化点90℃)15.0質量部とを、それぞれ混合機(三井鉱山(株)製ヘンシェルミキサー)に投入し、130℃で15分間混合することにより、酸化黒鉛粒子がピッチで覆われたピッチ被覆酸化黒鉛粒子を得た。
(3)カーボンブラック粒子付着酸化黒鉛粒子の形成工程
 次いで、130℃のまま、上記混合機中に、上記酸化黒鉛粒子100.0質量部に対し、平均粒子径が122nmのカーボンブラック粒子(東海カーボン(株)製ファーネスブラックS-TA)20.0質量部を投入し、さらに10分間混合してカーボンブラック粒子付着酸化黒鉛粒子を得た。
(4)第二被覆工程
 次いで、60℃にして、上記混合機中に、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))20.0質量部を投入し、さらに10分間混合して、酸化黒鉛粒子表面のカーボンブラック粒子が樹脂で被覆されたカーボンブラック含有層を表面に有する酸化黒鉛粒子を得た。
(5)焼成炭化工程
 上記カーボンブラック含有層を表面に有する酸化黒鉛粒子を、カンタル炉中で、窒素ガス雰囲気下、1000℃で2時間焼成して炭化した。
 次いで、得られた焼成粉を粉砕機(日清エンジニアリング(株)製スーパーローター:SR25)を用いて8000rpmで粉砕した後、分級装置(装置名:篩分級、目開き45μm)で分級して、篩下分として複合黒鉛粒子(平均粒子径D5011.9μm、粒度分布指数SPAN0.8、窒素吸着比表面積3.9m/g)からなるリチウムイオン二次電池用負極材を得た。
(比較例1)
(1)第一被覆工程
 天然黒鉛粒子(平均粒子径(D50)11.0μm、窒素吸着比表面積(NSA)7.0m/g)100.0質量部と、ピッチ(軟化点90℃)20.0質量部とを、それぞれ混合機(三井鉱山(株)製ヘンシェルミキサー)に投入し、130℃で15分間混合することにより、黒鉛粒子がピッチで覆われたピッチ被覆黒鉛粒子を得た。
(2)カーボンブラック粒子付着黒鉛粒子の形成工程
 次いで、130℃のまま、上記混合機中に、上記黒鉛粒子100.0質量部に対し、平均粒子径が122nmのカーボンブラック粒子(東海カーボン(株)製ファーネスブラックS-TA)20.0質量部を投入し、さらに10分間混合してカーボンブラック粒子付着黒鉛粒子を得た。
(3)第二被覆工程
 次いで、60℃にして、上記混合機中に、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))20.0質量部を投入し、さらに10分間混合して、黒鉛粒子表面のカーボンブラック粒子が樹脂で被覆されたカーボンブラック含有層を表面に有する黒鉛粒子を得た。
(4)焼成炭化工程
 上記カーボンブラック含有層を表面に有する黒鉛粒子を、カンタル炉中で、窒素ガス雰囲気下、1000℃で2時間焼成して炭化した。
 次いで、得られた焼成粉を粉砕機(日清エンジニアリング(株)製スーパーローター:SR25)を用いて8000rpmで粉砕した後、分級装置(装置名:篩分級、目開き45μm)で分級して、篩下分として複合黒鉛粒子(平均粒子径D5011.9μm、粒度分布指数SPAN0.8、窒素吸着比表面積4.9m/g)からなるリチウムイオン二次電池用負極材を得た。
(比較例2)
(1)酸化黒鉛粒子の作製工程
 天然黒鉛(平均粒子径(D50)11.0μm、窒素吸着比表面積(NSA) 7.0m/g)を、空気雰囲気下、500℃で6時間加熱することにより、酸化黒鉛粒子(平均粒子径(D50)10.8μm、窒素吸着比表面積8.3m/g)を得た。
(2)被覆工程
 上記酸化黒鉛粒子100.0質量部と、ピッチ(軟化点90℃)20.0質量部とを、それぞれ混合機(三井鉱山(株)製ヘンシェルミキサー)に投入し、130℃で15分間混合することにより、酸化黒鉛粒子がピッチで覆われたピッチ被覆酸化黒鉛粒子を得た。
(3)カーボンブラック粒子付着酸化黒鉛粒子の形成工程
 次いで、130℃のまま、上記混合機中に、上記酸化黒鉛粒子100.0質量部に対し、平均粒子径が122nmのカーボンブラック粒子(東海カーボン(株)製ファーネスブラックS-TA)20.0質量部を投入し、さらに10分間混合してカーボンブラック粒子付着酸化黒鉛粒子を得た。
(4)焼成炭化工程
 上記カーボンブラック含有層を表面に有する酸化黒鉛粒子を、カンタル炉中で、窒素ガス雰囲気下、1000℃で2時間焼成して炭化した。
 次いで、得られた焼成粉を粉砕機(日清エンジニアリング(株)製スーパーローター:SR25)を用いて8000rpmで粉砕した後、分級装置(装置名:篩分級、目開き45μm)で分級して、篩下分として複合黒鉛粒子(平均粒子径D5011.8μm、粒度分布指数SPAN0.8、窒素吸着比表面積6.9m/g)からなるリチウムイオン二次電池用負極材を得た。
(電池特性評価方法)
 得られた各複合黒鉛粒子を用いて、以下の方法により各種電池特性を求めた。
<初期効率(%)および2C充電容量(mAh/g)の測定方法>
(1)電極シートの作製
 複合黒鉛粒子90.2重量%に対し、N-メチル-2ピロリドンに溶解した有機系結着材ポリフッ化ビニリデン(PVDF)を固形分で9.8重量%加えて攪拌混合し、負極合材ペーストを調製した。 
 得られた負極合材ペーストを厚さ20μmの銅箔(集電体)上にドクターブレード法で塗布した後、乾燥機で90℃で90分間、更に真空中で130℃で11時間加熱して溶媒を完全に揮発させ、目付量が3.5±0.2mg/cmである電極シートを得た。
 なお、ここで目付量とは、電極シートの単位面積当たりの複合黒鉛粒子の重量を意味する。
(2)ラミネート電池の作製
 正極(Li金属、セパレータ(ポリプロピレン)および上記(1)で作製した電極シートからなる負極を順に積層し、さらに、Niタブを取り付けた後、積層物をアルミラミネートして、ラミネート電池を不活性雰囲気下で組み立てた。電解液は1 mol/dmのリチウム塩LiPF6を溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC)1:1混合溶液を使用した。
 上記ラミネート電池を用い、充電は電流密度0 .2mA/cm、終止電圧5mVで定電流充電を終えた後、下限電流0.02mA/cmとなるまで定電位保持する。放電は電流密度0.2mA/cmにて終止電圧1.5Vまで定電流放電を行い、3サイクル終了後の放電容量を可逆容量とした。
 初期効率は、1サイクル目の放電容量を1サイクル目の充電容量で除した値(%)である。また、2C充電容量は、3サイクル後の完放電の状態から、30分間で満充電させたときの充電容量である。
<静電容量の測定方法>
 まず表面官能基を除去するために、Ar雰囲気中800℃で1時間加熱した後、4~10mgの範囲で0.5mg刻みに重量を変化させた複合黒鉛粉末に対し、含有割合が各々10質量%となるようにポリフッ化ビニリデン(PVDF)を結着させてシートを作製した後、直径15.95mmの円盤状に打ち抜いて、打ち抜きシートとした。
 コイン型の対称セルを用い、ワッシャー、スペーサー、上記打ち抜きシート、セパレータ(ポリプロピレン)、上記打ち抜きシートの順に積層し、封口蓋( キャップ)で封止することにより、セルを不活性雰囲気下で組み立てた。
 電解液は1 mol/dmのテトラフルオロホウ酸テトラエチルアンモニウムを溶解したプロピレンカーボネート(PC)溶液を使用した。ポテンシャルレンジ0~0.4Vの間で定電流充放電(30μA)を行い、得られた電気量により静電容量を得、使用した黒鉛粉末の重量に対する静電容量をプロットし、その傾きから黒鉛粉末の単位重量あたりの静電容量(F/g)を算出した。
 上記各実施例および比較例における処理条件と、上記各実施例及び比較で得られた複合黒鉛粒子の特性を表1に示す。また、上記各実施例及び比較例で得られた負極材からなる電極(負極)を用いて各々ラミネート電池を作製したときの電池特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~実施例2で得られたリチウムイオン二次電池用負極材は、特定工程として、第一被覆工程、非晶質炭素粒子付着酸化黒鉛粒子の形成工程、第二被覆工程および焼成炭化工程を施して得られた、特定の複合黒鉛粒子からなるものであることから、リチウムイオン二次電池に用いたときに優れた高速充放電特性および初期効率を発揮し得るものであることが分かる。
 一方、表1より、比較例1で得られたリチウムイオン二次電池用負極材は、酸化黒鉛粒子ではなく黒鉛粒子を用いたものであることから、2C充電容量に劣り、十分な高速充放電特性を発揮し得ないことが分かる。
 また、表1より、比較例2で得られたリチウムイオン二次電池用負極材は、非晶質炭素化結合材料が、有機質バインダーを複数回塗布して焼成されたものでないことから、比表面積を十分に低減し得ず、初期効率に劣るものであることが分かる。
 本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法を提供することができる。
1  酸化黒鉛粒子
2  非晶質炭素化結合材料
2a 有機質バインダー
2a’第一被覆工程で被覆した有機質バインダーの焼成物
2b’第二被覆工程で被覆した有機質バインダーの焼成物
3  非晶質炭素粒子
4  被覆層
10  複合黒鉛粒子

Claims (8)

  1.  リチウムイオン二次電池用負極材であって、
     酸化黒鉛粒子と有機質バインダーとを混合することにより、前記酸化黒鉛粒子が有機質バインダーで覆われた有機質バインダー被覆酸化黒鉛粒子を得る第一被覆工程と、
     前記有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子を混合して、前記有機質バインダー被覆酸化黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着酸化黒鉛粒子を形成する工程と、
     前記非晶質炭素粒子付着酸化黒鉛粒子と有機質バインダーとを混合して、前記酸化黒鉛粒子表面の非晶質炭素粒子が有機質バインダーで被覆された非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を得る第二被覆工程と、
     前記非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する焼成炭化工程とを施して得られる、
     酸化黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記酸化黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなる
    ことを特徴とするリチウムイオン二次電池用負極材。
  2.  前記酸化黒鉛粒子が、酸化性ガス雰囲気下において、黒鉛粒子を300~800℃で1~18時間加熱処理したものである請求項1に記載のリチウムイオン二次電池用負極材。
  3.  前記非晶質炭素粒子付着酸化黒鉛粒子を形成する工程における非晶質炭素粒子の混合量が、前記酸化黒鉛粒子100.0質量部当たり10.0~40.0質量部である請求項1または請求項2に記載のリチウムイオン二次電池用負極材。
  4.  前記複合黒鉛粒子の窒素吸着比表面積(NSA)が、5.0m/g未満である請求項1乃至3のいずれか一項に記載のリチウムイオン二次電池用負極材。
  5.  リチウムイオン二次電池用負極材の製造方法であって、
     酸化黒鉛粒子と有機質バインダーとを混合することにより、前記酸化黒鉛粒子が有機質バインダーで覆われた有機質バインダー被覆酸化黒鉛粒子を得る第一被覆工程と、
     前記有機質バインダー被覆酸化黒鉛粒子に対し、非晶質炭素粒子を混合して、前記有機質バインダー被覆酸化黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着酸化黒鉛粒子を形成する工程と、
     前記非晶質炭素粒子付着酸化黒鉛粒子と有機質バインダーとを混合して、前記酸化黒鉛粒子表面の非晶質炭素粒子が有機質バインダーで被覆された非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を得る第二被覆工程と、
     前記非晶質炭素粒子含有層を表面に有する酸化黒鉛粒子を焼成炭化する焼成炭化工程とを施すことにより、
     酸化黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記酸化黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子を得る
    ことを特徴とするリチウムイオン二次電池用負極材の製造方法。
  6.  前記酸化黒鉛粒子が、酸化性ガス雰囲気下において、黒鉛粒子を300~800℃で1~18時間加熱処理したものである請求項5に記載のリチウムイオン二次電池用負極材の製造方法。
  7.  前記非晶質炭素粒子付着酸化黒鉛粒子を形成する工程における非晶質炭素粒子の混合量が、前記酸化黒鉛粒子100.0質量部当たり10.0~40.0質量部である請求項5または請求項6に記載のリチウムイオン二次電池用負極材の製造方法。
  8.  前記複合黒鉛粒子の窒素吸着比表面積(NSA)が、5.0m/g未満である請求項5乃至7のいずれか一項に記載のリチウムイオン二次電池用負極材の製造方法。
PCT/JP2021/041877 2021-04-14 2021-11-15 リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法 WO2022219836A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021068404A JP2022163466A (ja) 2021-04-14 2021-04-14 リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法
JP2021-068404 2021-04-14

Publications (1)

Publication Number Publication Date
WO2022219836A1 true WO2022219836A1 (ja) 2022-10-20

Family

ID=83639520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041877 WO2022219836A1 (ja) 2021-04-14 2021-11-15 リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法

Country Status (2)

Country Link
JP (1) JP2022163466A (ja)
WO (1) WO2022219836A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272625A (ja) * 2002-03-15 2003-09-26 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008305722A (ja) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
JP2010218758A (ja) * 2009-03-13 2010-09-30 Tokai Carbon Co Ltd リチウム二次電池用負極材及びその製造方法
US20180219216A1 (en) * 2016-05-27 2018-08-02 Lg Chem, Ltd. Negative electrode active material and lithium secondary battery including the same
JP2018163833A (ja) * 2017-03-27 2018-10-18 三洋電機株式会社 非水電解質二次電池及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272625A (ja) * 2002-03-15 2003-09-26 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008305722A (ja) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
JP2010218758A (ja) * 2009-03-13 2010-09-30 Tokai Carbon Co Ltd リチウム二次電池用負極材及びその製造方法
US20180219216A1 (en) * 2016-05-27 2018-08-02 Lg Chem, Ltd. Negative electrode active material and lithium secondary battery including the same
JP2018163833A (ja) * 2017-03-27 2018-10-18 三洋電機株式会社 非水電解質二次電池及びその製造方法

Also Published As

Publication number Publication date
JP2022163466A (ja) 2022-10-26

Similar Documents

Publication Publication Date Title
JP7161523B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP4844943B2 (ja) リチウムイオン二次電池用負極材とその製造方法
EP2081243B1 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP7201616B2 (ja) リチウムイオン二次電池用負極材の製造方法
JP6256346B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5811999B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2009059676A (ja) リチウムイオン二次電池用負極活物質及び負極
TW201445799A (zh) 鋰離子二次電池負極用之非晶質碳材料及石墨質碳材料、使用其之鋰離子二次電池以及鋰離子二次電池負極用之碳材料之製造方法
JP5186409B2 (ja) 二次電池用負極活物質、これを含む二次電池及びその製造方法
WO2022162950A1 (ja) リチウムイオン二次電池用負極材、その評価方法及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
WO2021192650A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料
JP5212682B2 (ja) リチウムイオン二次電池用負極材の製造方法
TWI744137B (zh) 鋰離子二次電池之負極用碳材料及其製造方法,以及使用其之負極及鋰離子二次電池
JP2016146343A (ja) リチウムイオン二次電池負極用炭素材料、リチウムイオン二次電池負極およびリチウムイオン二次電池の製造方法
WO2022219836A1 (ja) リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法
JP2022032057A (ja) リチウムイオン二次電池電極用黒鉛材料
JP7263284B2 (ja) リチウムイオン二次電池用負極材の製造方法
JP6924917B1 (ja) リチウムイオン二次電池の負極用炭素材料およびその製造方法並びにそれを用いた負極およびリチウムイオン二次電池
JP2009266816A (ja) 二次電池用負極活物質、これを含む二次電池用電極および二次電池、並びにそれらの製造方法
WO2021192651A1 (ja) リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法
JP2016213130A (ja) 非水電解液二次電池用負極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937029

Country of ref document: EP

Kind code of ref document: A1