WO2018193832A1 - 電気的接続装置 - Google Patents

電気的接続装置 Download PDF

Info

Publication number
WO2018193832A1
WO2018193832A1 PCT/JP2018/014252 JP2018014252W WO2018193832A1 WO 2018193832 A1 WO2018193832 A1 WO 2018193832A1 JP 2018014252 W JP2018014252 W JP 2018014252W WO 2018193832 A1 WO2018193832 A1 WO 2018193832A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
guide hole
shape
electrical connection
connection device
Prior art date
Application number
PCT/JP2018/014252
Other languages
English (en)
French (fr)
Inventor
孝幸 林崎
Original Assignee
株式会社日本マイクロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本マイクロニクス filed Critical 株式会社日本マイクロニクス
Priority to US16/604,546 priority Critical patent/US10768207B2/en
Priority to CN201880024912.9A priority patent/CN110546518A/zh
Priority to KR1020197031675A priority patent/KR102156363B1/ko
Publication of WO2018193832A1 publication Critical patent/WO2018193832A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07371Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate card or back card with apertures through which the probes pass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06744Microprobes, i.e. having dimensions as IC details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07357Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with flexible bodies, e.g. buckling beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Definitions

  • the present invention relates to an electrical connection device used for measurement of electrical characteristics of an object to be inspected.
  • an electrical connection device having a probe that is brought into contact with the object to be inspected is used.
  • the probe is held in a state of penetrating a guide hole formed in the probe head (see, for example, Patent Document 1).
  • a probe having a polygonal cross section perpendicular to the axial direction is also used.
  • a probe having a quadrangular cross section perpendicular to the axial direction is used for measurement of MEMS (Micro Electro Mechanical Systems).
  • MEMS Micro Electro Mechanical Systems
  • the shape of the guide hole of the probe head is also formed in a square shape in accordance with the shape of the cross section of the probe.
  • the corner portion of the guide hole is formed by R-chamfering. For this reason, there is a problem that the corner area of the probe comes into contact with the inner wall surface of the corner portion of the guide hole, and the probe is worn or damaged.
  • an object of the present invention is to provide an electrical connection device in which wear and damage of a probe due to contact between a corner region of a probe and an inner wall surface of a guide hole of a probe head are suppressed. .
  • a probe head having a guide hole, the shape perpendicular to the extending direction of the guide hole is a shape in which a corner portion of a polygonal shape is chamfered, and a probe in a state of penetrating the guide hole
  • an electrical connection device including a probe held by a head and having a notch along the axial direction of the probe formed in a corner region facing a corner portion of a guide hole of the probe.
  • FIG. 1 It is a schematic diagram which shows the structure of the electrical connection apparatus which concerns on embodiment of this invention. It is a typical top view which shows the cross section of the probe of the electrical connection apparatus which concerns on embodiment of this invention, and the shape of the guide hole of a probe head. It is a typical top view which shows the cross section of the probe of a comparative example, and the shape of the guide hole of a probe head. It is a schematic diagram which shows the example of the probe and probe head of the electrical connection apparatus which concern on embodiment of this invention. It is a typical top view which shows the cross section of the probe of another comparative example, and the shape of the guide hole of a probe head.
  • FIG. 1 It is a schematic diagram which shows the structure of the electrical connection apparatus which concerns on embodiment of this invention. It is a typical top view which shows the cross section of the probe of the electrical connection apparatus which concerns on embodiment of this invention, and the shape of the guide hole of a probe head.
  • FIG. 6 is a schematic process diagram for explaining a method of manufacturing a probe for an electrical connection device according to an embodiment of the present invention (No. 1), FIG. 6 (a) is a plan view, and FIG. 6 (b) is a cross-sectional view.
  • FIG. 6C is a perspective view of the tip region.
  • FIGS. 7A and 7B are schematic process diagrams for explaining a method of manufacturing a probe for an electrical connection device according to an embodiment of the present invention (part 2), FIG. 7A is a plan view, and FIG. FIG. 7C is a perspective view of the tip region.
  • FIGS. 8A and 8B are schematic process diagrams for explaining a method of manufacturing a probe for an electrical connection device according to an embodiment of the present invention (No. 3), FIG.
  • FIGS. 9A and 9B are schematic process diagrams for explaining a method of manufacturing a probe for an electrical connection device according to an embodiment of the present invention (No. 4), FIG. 9A is a plan view, and FIG. 9B is a cross-sectional view. FIG. 9C is a perspective view of the tip region.
  • FIGS. 10A and 10B are schematic process diagrams for explaining a method of manufacturing a probe for an electrical connection device according to an embodiment of the present invention (No. 5), FIG. 10A is a plan view, and FIG. FIG. 10C is a perspective view of the tip region.
  • FIG. 11A and 11B are schematic views showing another example of the probe of the electrical connection device according to the embodiment of the present invention, in which FIG. 11A is a plan view, and FIG. 11B is a BB direction of FIG. FIG. It is a typical top view which shows the cross section of the probe of the electrical connection apparatus which concerns on the modification of embodiment of this invention, and the shape of the guide hole of a probe head. It is a typical top view which shows the cross section of the probe of the electrical connection apparatus which concerns on the other modification of embodiment of this invention, and the shape of the guide hole of a probe head.
  • the electrical connection device 1 includes a probe 10, a probe head 20 that holds the probe 10, and an electrode substrate 30 to which the probe head 20 is attached.
  • the electrical connection device 1 is a vertical operation type probe card used for measuring the electrical characteristics of the device under test 2, and the tip of the probe 10 is an inspection pad of the device under test 2 when measuring the device under test 2. (Not shown).
  • FIG. 1 shows a state where the probe 10 is not in contact with the object 2 to be inspected. At the time of measurement, for example, the chuck 3 on which the object to be inspected 2 is mounted rises, and the tip of the probe 10 contacts the object to be inspected 2.
  • the probe head 20 has a guide hole 200 penetrating between the first main surface 201 facing the object to be inspected 2 and the second main surface 202 facing the electrode substrate 30.
  • the probe 10 is held by the probe head 20 while passing through the guide hole 200.
  • the proximal end portion of the probe 10 protruding from the second main surface 202 of the probe head 20 is connected to the electrode pad 31 formed on the lower surface of the electrode substrate 30.
  • the electrode pad 31 is electrically connected to a connection pad 32 disposed on the upper surface of the electrode substrate 30 by electrode wiring (not shown) formed inside the electrode substrate 30.
  • the connection pad 32 is electrically connected to an inspection device such as an IC tester (not shown). A predetermined voltage or current is applied to the object 2 via the probe 10 by the inspection device. And the signal output from the to-be-inspected object 2 is sent to an inspection apparatus via the probe 10, and the characteristic of the to-be-inspected object 2 is test
  • cross section The shape of a cross section perpendicular to the axial direction of the probe 10 (hereinafter simply referred to as “cross section”) is a polygonal shape.
  • hole shape The shape perpendicular to the extending direction of the guide hole 200 (hereinafter referred to as “hole shape”) is a shape in which a polygonal corner portion corresponding to the cross-sectional shape of the probe 10 is chamfered.
  • FIG. 2 shows an example in which the probe 10 has a square cross section.
  • the hole shape of the guide hole 200 is a shape that approximates a quadrilateral shape having four R-chamfered corner portions 200 ⁇ / b> C.
  • the corner portion 200C of the guide hole 200 is generally chamfered as shown in FIG.
  • the corner portion 200 ⁇ / b> C is rounded with a size of 8 ⁇ m.
  • a cutout is formed along the axial direction of the probe 10 in a corner region facing the corner portion 200 ⁇ / b> C of the guide hole 200.
  • the notch formed in the probe 10 has a shape in which a corner region is cut into a quadrangular shape in a cross section perpendicular to the axial direction.
  • the area of the cross section of the probe 10 is maximized when the apex of the corner region is in contact with the apex of the arc of the guide hole 200.
  • the probe 10 is worn or damaged.
  • the probe 10 when the probe 10 is held inside the probe head 20 in a state of being bent by elastic deformation, the probe 10 slides inside the guide hole 200, and thus the guide hole 200. The probe 10 is likely to be worn by contact with the inner wall surface.
  • the probe head 20 shown in FIG. 4 has a top portion 21, an upper guide portion 24, a lower guide portion 25, and a bottom portion 23 through which the probe 10 passes.
  • the top portion 21, the upper guide portion 24, the lower guide portion 25, and the bottom portion 23 each have a guide hole that allows the probe 10 to pass therethrough.
  • a notch is formed in a corner region facing at least the corner portion of each guide hole of the probe 10.
  • a spacer 22 is disposed between the top portion 21 and the bottom portion 23 of the probe head 20 to form a hollow region 210.
  • the position of the guide hole of the top part 21 and the guide hole of the bottom part 23 which the same probe 10 passes is arrange
  • the probe 10 buckles in the hollow region 210. That is, the probe 10 is further bent by the bending deformation. Thereby, the probe 10 contacts the device under test 2 with a predetermined pressure. Since the probe 10 has elasticity, when the probe 10 and the device under test 2 are brought into a non-contact state after the measurement is completed, the probe 10 returns to the shape before contacting the device under test 2.
  • the probe 10 held by the probe head 20 shown in FIG. 4 slides inside the guide hole 200 when the measurement of the device under test 2 is started and after the measurement is completed. For this reason, in the state shown in FIG. 3, the corner region of the probe 10 is likely to come into contact with the inner wall surface of the guide hole 200.
  • the contact between the probe 10 and the inner wall surface of the guide hole 200 can be suppressed by reducing the area of the cross section of the probe 10 as in the comparative example shown in FIG.
  • the electrical resistance of the probe 10 increases. For this reason, the allowable amount of current flowing through the probe 10 is reduced, and there is a case where the measurement of the device under test 2 is hindered.
  • the probe 10 shown in FIG. 2 since the notch is formed in the corner region, the distance between the corner portion 200C of the guide hole 200 and the corner region of the probe 10 is wider than the state of FIG. It has become. Therefore, even when the probe 10 slides inside the guide hole 200, the probe 10 does not contact the inner wall surface of the guide hole 200. For this reason, wear and breakage of the probe 10 are suppressed. Furthermore, since the reduction of the cross-sectional area is smaller than that of the comparative example shown in FIG. 5, the allowable amount of current flowing through the probe 10 can be increased.
  • the size of the notch formed in the probe 10 is set so that the corner region of the probe 10 does not come into contact with the corner portion 200C of the guide hole 200.
  • the size of the notch is set in consideration of assembly accuracy, changes in the position and shape of the probe 10 over time, and the like.
  • the size of the notch is set in consideration of changes in the position and shape of the probe 10 during measurement.
  • the notch is not necessarily formed in the corner region of the probe 10 having a large distance from the corner portion 200 ⁇ / b> C of the guide hole 200. Accordingly, when compared with the cross-sectional area of the probe 10 shown in FIG. 2, not all the corner regions facing the corner portion 200C are notched, so that the cross-section of the probe 10 is larger than that of the embodiment shown in FIG. The reduction in the area can be reduced. For this reason, the allowable amount of current flowing through the probe 10 can be increased.
  • the notch is formed in the corner region of the probe 10 so that the probe 10 and the inner wall surface of the guide hole 200 are brought into contact with each other.
  • the wear and damage of the probe 10 resulting from it can be suppressed.
  • the decrease in the cross-sectional area is small, it is possible to suppress a decrease in the allowable amount of current flowing through the probe 10.
  • FIG. 2C is a perspective view of the tip region S of the probe 10 surrounded by a broken line in FIG.
  • a sacrificial layer 110 is formed on the upper surface of the support substrate 100.
  • the sacrificial layer 110 has a shape along the outer edge shape of the probe 10. As will be described later, a part of the probe 10 is formed in a region surrounded by the sacrificial layer 110.
  • the sacrificial layer 110 is formed by copper plating or the like.
  • a region surrounded by the sacrificial layer 110 is embedded in the upper surface of the sacrificial layer 110 so that the cross section of the probe 10 has a T shape.
  • a portion 10a is formed.
  • the remaining portion 10b of the probe 10 is formed on the upper surface of the portion 10a symmetrically with the region surrounded by the sacrificial layer 110.
  • the probe 10 is formed as shown in FIGS. 8 (a) to 8 (c).
  • the sacrificial layer 110 is removed from the support substrate 100. Further, as shown in FIGS. 10A to 10C, the probe 10 is peeled from the support substrate 100 to complete the probe 10.
  • the material of the probe 10 is, for example, a nickel (Ni) alloy.
  • the probe 10 can be manufactured by the subtractive method or its composite process.
  • the probe 10 can also be manufactured by a dry process such as thermoelectrolytic plating or vapor deposition.
  • the method for manufacturing the probe 10 having a curved shape in plan view has been described.
  • the shape of the probe 10 is not curved.
  • the probe 10 may be linear.
  • the shape of the notch formed in the probe 10 can be arbitrarily set. That is, in the above description, the example in which the notch of the probe 10 has a shape obtained by cutting the corner region into a quadrangular shape is shown, but the notch may have another shape.
  • the cutout may have a shape in which a corner region is cut into a step shape in a cross section perpendicular to the axial direction. According to the cutout having the shape shown in FIG. 12, the cross-sectional area of the probe 10 can be increased as compared with the cutout having the shape shown in FIG. Therefore, the allowable amount of current flowing through the probe 10 can be increased.
  • the corner region of the probe 10 may be chamfered to form a notch.
  • the contact between the probe 10 and the corner portion 200 ⁇ / b> C of the guide hole 200 can be suppressed, and the reduction of the cross-sectional area of the probe 10 can be suppressed.
  • the cross section of the probe 10 in the state where the notch is not formed in the corner region is a quadrangular shape
  • the cross section of the probe 10 may be another polygonal shape.
  • the wear and breakage of the probe 10 can be suppressed by forming a notch in the angular region along the axial direction. Can do.
  • the electrical connection device of this embodiment can be used in the field of measuring the characteristics of an object to be inspected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

ガイド穴(200)を有し、ガイド穴(200)の延伸方向に垂直な形状が、多角形状のコーナー部をR面取りした形状であるプローブヘッド(20)と、ガイド穴(200)を貫通した状態でプローブヘッド(20)に保持されているプローブ(10)とを備え、プローブ(10)のガイド穴(200)のコーナー部(200C)と対向する角領域に、プローブ(10)の軸方向に沿った切り欠きが形成されている。

Description

電気的接続装置
 本発明は、被検査体の電気的特性の測定に使用される電気的接続装置に関する。
 集積回路などの被検査体の電気的特性をウェハから分離しない状態で測定するために、被検査体に接触させるプローブを有する電気的接続装置が用いられている。プローブは、例えばプローブヘッドに形成されたガイド穴を貫通した状態で保持される(例えば、特許文献1参照。)。
 プローブには、軸方向に垂直な断面の形状が多角形状であるものも使用される。例えば、MEMS(Micro Electro Mechanical Systems)の測定に、軸方向に垂直な断面の形状が四角形状であるプローブが使用されている。この場合、プローブの断面の形状に合わせてプローブヘッドのガイド穴の形状も四角形状に形成される。
特開2015-118064号公報
 プローブヘッドに形成されるガイド穴の形状が多角形状である場合は、ガイド穴のコーナー部がR面取りされて形成されることが一般的である。このため、プローブの角領域がガイド穴のコーナー部の内壁面と接触し、プローブが摩耗したり破損したりするという問題があった。
 上記問題点に鑑み、本発明は、プローブの角領域とプローブヘッドのガイド穴の内壁面との接触に起因するプローブの摩耗や損傷が抑制された電気的接続装置を提供することを目的とする。
 本発明の一態様によれば、ガイド穴を有し、ガイド穴の延伸方向に垂直な形状が、多角形状のコーナー部をR面取りした形状であるプローブヘッドと、ガイド穴を貫通した状態でプローブヘッドに保持されているプローブとを備え、プローブのガイド穴のコーナー部と対向する角領域に、プローブの軸方向に沿った切り欠きが形成されている電気的接続装置が提供される。
 本発明によれば、プローブの角領域とプローブヘッドのガイド穴の内壁面との接触に起因するプローブの摩耗や損傷が抑制された電気的接続装置を提供できる。
本発明の実施形態に係る電気的接続装置の構成を示す模式図である。 本発明の実施形態に係る電気的接続装置のプローブの断面とプローブヘッドのガイド穴の形状を示す模式的な平面図である。 比較例のプローブの断面とプローブヘッドのガイド穴の形状を示す模式的な平面図である。 本発明の実施形態に係る電気的接続装置のプローブとプローブヘッドの例を示す模式図である。 他の比較例のプローブの断面とプローブヘッドのガイド穴の形状を示す模式的な平面図である。 本発明の実施形態に係る電気的接続装置のプローブの製造方法を説明するための模式的な工程図であり(その1)、図6(a)は平面図、図6(b)は断面図、図6(c)は先端領域の斜視図である。 本発明の実施形態に係る電気的接続装置のプローブの製造方法を説明するための模式的な工程図であり(その2)、図7(a)は平面図、図7(b)は断面図、図7(c)は先端領域の斜視図である。 本発明の実施形態に係る電気的接続装置のプローブの製造方法を説明するための模式的な工程図であり(その3)、図8(a)は平面図、図8(b)は断面図、図8(c)は先端領域の斜視図である。 本発明の実施形態に係る電気的接続装置のプローブの製造方法を説明するための模式的な工程図であり(その4)、図9(a)は平面図、図9(b)は断面図、図9(c)は先端領域の斜視図である。 本発明の実施形態に係る電気的接続装置のプローブの製造方法を説明するための模式的な工程図であり(その5)、図10(a)は平面図、図10(b)は断面図、図10(c)は先端領域の斜視図である。 本発明の実施形態に係る電気的接続装置のプローブの他の例を示す模式図であり、図11(a)は平面図、図11(b)は図11(a)のB-B方向に沿った断面図である。 本発明の実施形態の変形例に係る電気的接続装置のプローブの断面とプローブヘッドのガイド穴の形状を示す模式的な平面図である。 本発明の実施形態の他の変形例に係る電気的接続装置のプローブの断面とプローブヘッドのガイド穴の形状を示す模式的な平面図である。
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、各部の厚みの比率などは現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の材質、形状、構造、配置などを下記のものに特定するものでない。
 本発明の実施形態に係る電気的接続装置1は、図1に示すように、プローブ10と、プローブ10を保持するプローブヘッド20と、プローブヘッド20が取り付けられた電極基板30とを備える。電気的接続装置1は、被検査体2の電気的特性の測定に使用される垂直動作式プローブカードであり、被検査体2の測定時にプローブ10の先端部が被検査体2の検査用パッド(図示略)と接触する。図1では、プローブ10が被検査体2に接触していない状態を示している。測定時には、例えば被検査体2を搭載したチャック3が上昇して、プローブ10の先端部が被検査体2に接触する。
 プローブヘッド20は、被検査体2に対向する第1主面201と電極基板30に対向する第2主面202との間を貫通するガイド穴200を有する。プローブ10は、ガイド穴200を貫通した状態でプローブヘッド20に保持される。
 図1に示すように、プローブヘッド20の第2主面202から突出したプローブ10の基端部が電極基板30の下面に形成された電極パッド31に接続する。電極パッド31は、電極基板30の内部に形成された電極配線(図示略)によって、電極基板30の上面に配置された接続パッド32と電気的に接続されている。接続パッド32は、図示を省略するICテスタなどの検査装置と電気的に接続される。プローブ10を介して、検査装置によって被検査体2に所定の電圧や電流が印加される。そして、被検査体2から出力される信号がプローブ10を介して検査装置に送られ、被検査体2の特性が検査される。
 プローブ10の軸方向と垂直な断面(以下において単に「断面」とおいう。)の形状は、多角形状である。ガイド穴200の延伸方向に垂直な形状(以下において、「穴形状」という。)は、プローブ10の断面の形状に対応した多角形状のコーナー部をR面取りした形状である。
 図2に、プローブ10の断面が四角形状である例を示した。プローブ10の断面の形状に対応して、ガイド穴200の穴形状は、R面取りしたコーナー部200Cを4つ有する四角形状に近似した形状である。ガイド穴200の穴形状を多角形状にする場合には、加工の問題などにより図2に示すようにガイド穴200のコーナー部200CがR面取りされるのが一般的である。例えば、一辺の長さが40μmの四角形状のガイド穴200の場合には、8μmの大きさでコーナー部200CがR面取りされる。
 図2に示すように、ガイド穴200のコーナー部200Cと対向する角領域に、プローブ10の軸方向に沿って切り欠きが形成されている。図2に示した例では、プローブ10に形成された切り欠きは、軸方向に垂直な断面において角領域を四角形状に切り取った形状である。
 ところで、プローブ10の断面の面積が大きいほど、プローブ10に流す電流の許容量が大きくなる。プローブ10の断面の面積が最大になるのは、角領域の頂点がガイド穴200の円弧の頂点に接する場合である。例えば、図3に示すように角領域に切り欠きが形成されていない比較例のプローブ10の場合に、断面の面積が最大になる。
 しかし、図3に示した状態では、プローブ10の角領域がガイド穴200の内壁面に接触するため、プローブ10が摩耗したり破損したりする。例えば、図4に示すようにプローブヘッド20の内部でプローブ10を弾性変形によって湾曲させた状態で保持している場合には、プローブ10がガイド穴200の内部で摺動するため、ガイド穴200の内壁面との接触によってプローブ10が摩耗しやすい。
 なお、図4に示したプローブヘッド20は、それぞれをプローブ10が貫通するトップ部21、上部ガイド部24、下部ガイド部25及びボトム部23を有する。トップ部21、上部ガイド部24、下部ガイド部25、及びボトム部23は、それぞれプローブ10を貫通させるガイド穴を有している。そして、プローブ10の少なくともそれぞれのガイド穴のコーナー部と対向する角領域に、切り欠きが形成されている。プローブヘッド20のトップ部21とボトム部23との間にスペーサ22が配置され、中空領域210が構成されている。そして、同一のプローブ10が通過するトップ部21のガイド穴とボトム部23のガイド穴の位置がずらして配置されている。このため、プローブ10は弾性変形によって湾曲している。
 図4に示したプローブヘッド20では、被検査体2の測定を開始する時にプローブ10の先端部が被検査体2と接触すると、中空領域210においてプローブ10が座屈する。即ち、プローブ10が撓み変形により更に大きく湾曲する。これにより、所定の圧力でプローブ10が被検査体2に接触する。プローブ10は弾性を有するため、測定が終了した後にプローブ10と被検査体2とが非接触状態になると、プローブ10は被検査体2に接触する前の形状に復帰する。
 上記のように、図4に示したプローブヘッド20に保持されるプローブ10は、被検査体2の測定を開始する時及び終了した後に、ガイド穴200の内部で摺動する。このため、図3に示した状態では、プローブ10の角領域がガイド穴200の内壁面と接触しやすい。
 一方、図5に示す比較例のように、プローブ10の断面の面積を小さくすることによって、プローブ10とガイド穴200の内壁面との接触を抑制することができる。しかし、プローブ10の断面の面積を小さくすることにより、プローブ10の電気抵抗が増大する。このため、プローブ10に流す電流の許容量が減少し、被検査体2の測定に支障が生じる場合がある。
 これに対し、図2に示したプローブ10では角領域に切り欠きが形成されているため、ガイド穴200のコーナー部200Cとプローブ10の角領域との距離が、図3の状態に比べて広くなっている。したがって、プローブ10がガイド穴200の内部で摺動する場合などでも、プローブ10がガイド穴200の内壁面と接触しない。このため、プローブ10の摩耗や破損が抑制される。更に、図5に示した比較例よりも断面の面積の減少が小さいため、プローブ10に流す電流の許容量を大きくできる。
 また、プローブ10がガイド穴200の内壁面と接触した場合でも、プローブ10の角領域に切り欠きが形成されていることにより、1つの角領域についてプローブ10の複数の箇所がガイド穴200の内壁面と接触する。このため、それぞれの接触箇所でのプローブ10がガイド穴200の内壁面と接触する圧力が低減される。したがって、プローブ10の摩耗や破損が抑制される。
 プローブ10に形成する切り欠きの大きさは、プローブ10の角領域がガイド穴200のコーナー部200Cと接触しない程度に設定することが好ましい。例えば、組み立て精度や、プローブ10の位置や形状の経時変化などを考慮して、切り欠きの大きさを設定する。また、測定時におけるプローブ10の位置や形状の変化なども考慮して、切り欠きの大きさを設定する。
 また、図4に示したプローブヘッド20に保持されるプローブ10においては、ガイド穴200の内部で摺動する際にプローブ10のガイド穴200のコーナー部200Cと近接して対向する角領域に、少なくとも切り欠きが形成されていればよい。つまり、ガイド穴200のコーナー部200Cとの距離が大きいプローブ10の角領域については、必ずしも切り欠きを形成しなくてもよい。これにより、図2に示したプローブ10の断面の面積と比較すると、コーナー部200Cと対向する角領域のすべてに切り欠きが形成されないことから、図2に示した実施例よりもプローブ10の断面の面積の減少を小さくできる。このため、プローブ10に流す電流の許容量を大きくできる。
 以上に説明したように、本発明の実施形態に係る電気的接続装置1によれば、プローブ10の角領域に切り欠きを形成することにより、プローブ10とガイド穴200の内壁面との接触に起因するプローブ10の摩耗や損傷を抑制することができる。更に、断面の面積の減少が小さいため、プローブ10に流す電流の許容量の減少を抑制できる。
 以下に、図6から図10を参照して、本発明の実施形態に係る電気的接続装置1のプローブ10の製造方法を説明する。なお、以下に述べるプローブ10の製造方法は一例であり、この変形例を含めて、これ以外の種々の製造方法により実現可能であることはもちろんである。図6~図10において、図(a)は平面図であり、図(b)は図(a)のB-B方向に沿った断面図である。図(c)は、図(a)において破線で囲ったプローブ10の先端領域Sの斜視図である。
 先ず、図6(a)~図6(c)に示すように、支持基板100の上面に、犠牲層110を形成する。犠牲層110は、プローブ10の外縁形状に沿った形状である。後述するように、犠牲層110に囲まれた領域にプローブ10の一部が形成される。犠牲層110には、銅メッキなどにより形成される。
 次いで、図7(a)~図7(c)に示すように、犠牲層110の上面に、犠牲層110に囲まれた領域を埋め込むようにして、プローブ10の一部として断面がT形状の部分10aを形成する。そして、部分10aの上面に、犠牲層110に囲まれた領域と対称にプローブ10の残りの部分10bを形成する。これにより、図8(a)~図8(c)に示すように、プローブ10が形成される。
 その後、図9(a)~図9(c)に示すように、支持基板100から犠牲層110を除去する。更に、図10(a)~図10(c)に示すように、支持基板100からプローブ10を剥離して、プローブ10が完成する。
 プローブ10の材料には、例えばニッケル(Ni)合金などが使用される。なお、上記ではセミアディティブ法での製造方法を説明したが、サブトラクティブ法や、若しくはその複合プロセスによってプローブ10を製造可能である。また、熱電解めっきや蒸着などのドライプロセスによってもプローブ10の製造は可能である。
 また、上記では平面視で湾曲している形状のプローブ10について、製造方法を説明した。しかし、プローブ10の形状が湾曲している場合に限られないことはもちろんであり、例えば図11に示すように、プローブ10が直線形状であってもよい。
 <変形例>
 プローブ10に形成する切り欠きの形状は、任意に設定可能である。即ち、上記ではプローブ10の切り欠きが角領域を四角形状に切り取った形状である例を示したが、切り欠きが他の形状であってもよい。例えば、図12に示すように、切り欠きが、軸方向に垂直な断面において角領域を階段形状に切り取った形状であってもよい。図12に示す形状の切り欠きによれば、図2に示した形状の切り欠きに比べて、プローブ10の断面の面積を増大させることができる。そのため、プローブ10に流す電流の許容量を増加させることができる。
 或いは、図13に示すように、プローブ10の角領域を面取りして切り欠きを形成してもよい。これにより、プローブ10とガイド穴200のコーナー部200Cとの接触を抑制し、且つ、プローブ10の断面の面積の減少を抑制できる。
 (その他の実施形態)
 上記のように本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、上記では角領域に切り欠きを形成していない状態のプローブ10の断面が四角形状である場合を示したが、プローブ10の断面が他の多角形状であってもよい。例えば、プローブ10の断面やガイド穴200の穴形状が五角形状や六角形状の場合にも、軸方向に沿って切り欠きを角領域に形成することにより、プローブ10の摩耗や破損を抑制することができる。
 このように、本発明はここでは記載していない様々な実施形態などを含むことはもちろんである。
 本実施形態の電気的接続装置は、被検査体の特性測定の分野に利用可能である。

Claims (7)

  1.  ガイド穴を有し、前記ガイド穴の延伸方向に垂直な形状が、多角形状のコーナー部をR面取りした形状であるプローブヘッドと、
     前記ガイド穴を貫通した状態で前記プローブヘッドに保持されているプローブと
     を備え、前記プローブの前記ガイド穴の前記コーナー部と対向する角領域に、前記プローブの軸方向に沿った切り欠きが形成されていることを特徴とする電気的接続装置。
  2.  前記切り欠きが、前記軸方向に垂直な断面において前記角領域を四角形状に切り取った形状であることを特徴とする請求項1に記載の電気的接続装置。
  3.  前記切り欠きが、前記軸方向に垂直な断面において前記角領域を階段形状に切り取った形状であることを特徴とする請求項1に記載の電気的接続装置。
  4.  前記プローブの前記角領域を面取りして前記切り欠きが形成されていることを特徴とする請求項1に記載の電気的接続装置。
  5.  前記ガイド穴の延伸方向に垂直な形状が、前記コーナー部を4つ有する四角形状に近似した形状であることを特徴とする請求項1に記載の電気的接続装置。
  6.  前記プローブが、前記プローブヘッドの内部で弾性変形によって湾曲させた状態で保持されていることを特徴とする請求項1に記載の電気的接続装置。
  7.  前記プローブヘッドが、トップ部、上部ガイド部、下部ガイド部、及びボトム部を有し、
     前記トップ部、前記上部ガイド部、前記下部ガイド部、及び前記ボトム部は、それぞれ前記プローブを貫通させる前記ガイド穴を有し、
     前記プローブの少なくとも前記ガイド穴の前記コーナー部と対向する前記角領域に、前記切り欠きが形成されていることを特徴とする請求項1に記載の電気的接続装置。
PCT/JP2018/014252 2017-04-21 2018-04-03 電気的接続装置 WO2018193832A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/604,546 US10768207B2 (en) 2017-04-21 2018-04-03 Electrical connection device
CN201880024912.9A CN110546518A (zh) 2017-04-21 2018-04-03 电连接装置
KR1020197031675A KR102156363B1 (ko) 2017-04-21 2018-04-03 전기적 접속 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084468 2017-04-21
JP2017084468A JP6872960B2 (ja) 2017-04-21 2017-04-21 電気的接続装置

Publications (1)

Publication Number Publication Date
WO2018193832A1 true WO2018193832A1 (ja) 2018-10-25

Family

ID=63856681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014252 WO2018193832A1 (ja) 2017-04-21 2018-04-03 電気的接続装置

Country Status (6)

Country Link
US (1) US10768207B2 (ja)
JP (1) JP6872960B2 (ja)
KR (1) KR102156363B1 (ja)
CN (1) CN110546518A (ja)
TW (1) TWI677687B (ja)
WO (1) WO2018193832A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715866A1 (en) * 2019-03-27 2020-09-30 MPI Corporation Probe head and probe card
TWI775509B (zh) * 2019-03-27 2022-08-21 旺矽科技股份有限公司 探針頭及探針卡

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076486A (ja) * 2019-11-11 2021-05-20 株式会社日本マイクロニクス 電気的接続装置
KR102342806B1 (ko) 2020-03-30 2021-12-23 (주)포인트엔지니어링 프로브 헤드 및 이를 구비하는 프로브 카드
TWI793956B (zh) * 2022-01-05 2023-02-21 旭臻科技有限公司 微機電探針之製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132362U (ja) * 1987-02-21 1988-08-30
US5009613A (en) * 1990-05-01 1991-04-23 Interconnect Devices, Inc. Spring contact twister probe for testing electrical printed circuit boards
JP2002323515A (ja) * 2001-04-25 2002-11-08 Fuji Photo Film Co Ltd コンタクトプローブ
JP2005009927A (ja) * 2003-06-17 2005-01-13 Tesu Hanbai Kk スプリングプローブ
JP2006164660A (ja) * 2004-12-06 2006-06-22 Yokowo Co Ltd プローブ
US20070167022A1 (en) * 2005-12-30 2007-07-19 Industrial Technology Research Institute Method of fabricating vertical probe head
JP2015504164A (ja) * 2012-01-04 2015-02-05 フォームファクター, インコーポレイテッド プログラム可能な動作を有するプローブ

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156462U (ja) * 1984-03-27 1985-10-18 株式会社ヨコオ 多接点形コンタクトプロ−ブ
JPH0690676B2 (ja) 1986-11-22 1994-11-14 日本電気株式会社 コマンド動作制御方式
EP0283545B1 (de) * 1987-03-27 1991-10-16 Ibm Deutschland Gmbh Kontaktsonden-Anordnung zur elektrischen Verbindung einer Prüfeinrichtung mit den kreisförmigen Anschlussflächen eines Prüflings
JPH0675415B2 (ja) * 1991-03-15 1994-09-21 山一電機株式会社 リードレス形icパッケージ用接続器
JP2799973B2 (ja) * 1995-07-06 1998-09-21 日本電子材料株式会社 垂直作動式プローブカード
US5791912A (en) * 1995-12-01 1998-08-11 Riechelmann; Bernd Contactor with multiple redundant connecting paths
TW392074B (en) * 1997-11-05 2000-06-01 Feinmetall Gmbh Test head for microstructures with interface
US6411112B1 (en) * 1998-02-19 2002-06-25 International Business Machines Corporation Off-axis contact tip and dense packing design for a fine pitch probe
JP3955407B2 (ja) 1999-02-05 2007-08-08 株式会社ルネサステクノロジ 素子検査用プローブとその製造方法およびそれを用いた半導体素子検査装置
IT1317517B1 (it) * 2000-05-11 2003-07-09 Technoprobe S R L Testa di misura per microstrutture
JP2002296297A (ja) * 2001-03-29 2002-10-09 Isao Kimoto 接触子組立体
US7118393B1 (en) * 2005-08-08 2006-10-10 Tyco Electronics Corporation Bonded elastomeric connector
JPWO2008133089A1 (ja) * 2007-04-20 2010-07-22 日本発條株式会社 導電性接触子ユニット
JP2009128211A (ja) * 2007-11-26 2009-06-11 Sensata Technologies Inc プローブピン
DE102008023761B9 (de) * 2008-05-09 2012-11-08 Feinmetall Gmbh Elektrisches Kontaktelement zum Berührungskontaktieren von elektrischen Prüflingen sowie entsprechende Kontaktieranordnung
US9702904B2 (en) * 2011-03-21 2017-07-11 Formfactor, Inc. Non-linear vertical leaf spring
US9702905B2 (en) * 2011-08-02 2017-07-11 Nhk Spring Co., Ltd. Probe unit
TWI648542B (zh) 2012-06-20 2019-01-21 瓊斯科技國際公司 測試接觸針總成
US9774121B2 (en) * 2012-12-04 2017-09-26 Japan Electronics Material Corporation Contact probe
JP6112890B2 (ja) * 2013-02-07 2017-04-12 日置電機株式会社 プローブユニット、基板検査装置およびプローブユニット組立方法
JP6235785B2 (ja) * 2013-03-18 2017-11-22 日本電子材料株式会社 プローブカード用ガイド板およびプローブカード用ガイド板の製造方法
TWI525326B (zh) * 2013-06-03 2016-03-11 Probe and probe module using the probe
JP6305754B2 (ja) 2013-12-20 2018-04-04 東京特殊電線株式会社 コンタクトプローブユニット
WO2015122472A1 (ja) * 2014-02-13 2015-08-20 日本発條株式会社 プローブユニット
CN104865425B (zh) * 2014-02-24 2018-07-20 旺矽科技股份有限公司 具有弹簧套筒式探针的探针装置
JP6484137B2 (ja) * 2014-11-26 2019-03-13 株式会社日本マイクロニクス プローブ及び接触検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132362U (ja) * 1987-02-21 1988-08-30
US5009613A (en) * 1990-05-01 1991-04-23 Interconnect Devices, Inc. Spring contact twister probe for testing electrical printed circuit boards
JP2002323515A (ja) * 2001-04-25 2002-11-08 Fuji Photo Film Co Ltd コンタクトプローブ
JP2005009927A (ja) * 2003-06-17 2005-01-13 Tesu Hanbai Kk スプリングプローブ
JP2006164660A (ja) * 2004-12-06 2006-06-22 Yokowo Co Ltd プローブ
US20070167022A1 (en) * 2005-12-30 2007-07-19 Industrial Technology Research Institute Method of fabricating vertical probe head
JP2015504164A (ja) * 2012-01-04 2015-02-05 フォームファクター, インコーポレイテッド プログラム可能な動作を有するプローブ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715866A1 (en) * 2019-03-27 2020-09-30 MPI Corporation Probe head and probe card
TWI775509B (zh) * 2019-03-27 2022-08-21 旺矽科技股份有限公司 探針頭及探針卡
US11733267B2 (en) 2019-03-27 2023-08-22 Mpi Corporation Probe head and probe card

Also Published As

Publication number Publication date
KR20190134680A (ko) 2019-12-04
TW201842340A (zh) 2018-12-01
US20200124639A1 (en) 2020-04-23
CN110546518A (zh) 2019-12-06
US10768207B2 (en) 2020-09-08
TWI677687B (zh) 2019-11-21
JP6872960B2 (ja) 2021-05-19
KR102156363B1 (ko) 2020-09-15
JP2018179934A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2018193832A1 (ja) 電気的接続装置
JP5607934B2 (ja) プローブユニット
KR102156364B1 (ko) 전기적 접속 장치
KR101002218B1 (ko) 도전성 접촉자 홀더의 제조방법 및 도전성 접촉자 홀더
WO2020179596A1 (ja) 電気的接続装置
JP6283929B2 (ja) 検査用治具及び検査用治具の製造方法
TWI528037B (zh) 探針頭結構及使用在探針頭結構中的探針製造方法
WO2009102029A1 (ja) コンタクトプローブおよびプローブユニット
JP2017215221A (ja) プローブ及びその製造方法
JP2009014480A (ja) 検査冶具
JP6527042B2 (ja) ワイヤープローブの保持構造
JP4624372B2 (ja) 多層電気プローブ
JP2018189396A (ja) プローブ及びその製造方法
TW202215056A (zh) 電性接觸子的電性接觸構造及電性連接裝置
TW202138819A (zh) 探針及電性連接裝置
WO2016031512A1 (ja) 検査端子ユニットおよびプローブカードおよび検査端子ユニットの製造方法
JPWO2012067125A1 (ja) プローブユニット
JP2006010588A (ja) コンタクトプローブおよびその製造方法
KR101018490B1 (ko) 프로브 카드용 니들
WO2024122086A1 (ja) プローブおよび電気的接続装置
JP2007047059A (ja) プローブユニット、プローブユニットの製造方法及び電子デバイスの検査方法
TW201835575A (zh) 探針、探針頭及探針頭的製造方法
JP4354366B2 (ja) 半導体装置の製造方法と検査方法
JP2009025026A (ja) 検査治具および検査治具の接続電極保持部の製造方法
JPH11326374A (ja) プローブカード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031675

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18788531

Country of ref document: EP

Kind code of ref document: A1