WO2018182038A1 - 金属-繊維強化樹脂材料複合体及びその製造方法 - Google Patents

金属-繊維強化樹脂材料複合体及びその製造方法 Download PDF

Info

Publication number
WO2018182038A1
WO2018182038A1 PCT/JP2018/014021 JP2018014021W WO2018182038A1 WO 2018182038 A1 WO2018182038 A1 WO 2018182038A1 JP 2018014021 W JP2018014021 W JP 2018014021W WO 2018182038 A1 WO2018182038 A1 WO 2018182038A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal
fiber reinforced
prepreg
metal member
Prior art date
Application number
PCT/JP2018/014021
Other languages
English (en)
French (fr)
Inventor
浩之 高橋
安藤 秀樹
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to US16/498,383 priority Critical patent/US11135825B2/en
Priority to JP2019509436A priority patent/JP7069123B2/ja
Priority to EP18775652.3A priority patent/EP3603970A4/en
Priority to KR1020197028038A priority patent/KR102511723B1/ko
Priority to CN201880021891.5A priority patent/CN110461605B/zh
Publication of WO2018182038A1 publication Critical patent/WO2018182038A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1866Handling of layers or the laminate conforming the layers or laminate to a convex or concave profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof

Definitions

  • the present invention relates to a metal-fiber reinforced resin material composite in which a metal member and a fiber reinforced resin material are laminated, and a manufacturing method thereof.
  • Fiber reinforced plastic made of reinforced fiber such as glass fiber or carbon fiber and matrix resin is lightweight and has excellent mechanical properties, and is widely used in consumer and industrial applications. Especially in the automobile industry, weight reduction of the vehicle body contributes most to the improvement of performance and fuel consumption. Therefore, from steel materials mainly used until now, carbon fiber reinforced plastic (CFRP), metal members and CFRP Replacement with composite materials is being actively studied.
  • CFRP carbon fiber reinforced plastic
  • thermoplastic resins have been studied as matrix resins for fiber-reinforced resin materials for the purpose of improving processability and recyclability.
  • Patent Document 1 and Patent Document 2 a hard and highly crystalline thermoplastic resin is injection molded by performing a surface roughening process having a specific surface shape parameter on the bonding surface of a metal member
  • a technique for improving the adhesive strength between a metal member and CFRP by providing an epoxy resin adhesive layer on the member is disclosed.
  • strength is expressed by filling a rough surface of a metal member surface that has been chemically etched so as to have a special surface fine structure with a hard, highly crystalline thermoplastic resin.
  • special treatments for roughening and rust prevention must be performed, and in the case of compounding, a high temperature process is required due to problems of melt viscosity and high melting point, and thus there is a problem in productivity and cost.
  • Patent Document 3 a composite of a reinforced fiber base material and a metal that is made by impregnating a bonding surface of a carbon fiber base material with a metal member with an epoxy resin or the like and impregnating a thermoplastic resin on the other surface to form a prepreg.
  • the body is disclosed.
  • an integrated molded product having strong bonding strength can be provided even when different members such as a fiber reinforced resin material and a metal member are bonded.
  • this technique uses an epoxy-based thermosetting resin as the adhesive layer, and maintains the bondability between the fiber reinforced sheet and the metal layer by allowing the reinforcing fiber to penetrate into the adhesive layer. Yes. Therefore, the nonwoven fabric which consists of a fiber of specific length must be used as a reinforced fiber base material, and a reinforcement effect will be restrict
  • Patent Document 4 discloses a method for manufacturing a sandwich structure with a steel plate using a CFRP molding material using a polyurethane resin matrix.
  • the material of this document uses the good moldability of a thermoplastic polyurethane resin, and attains high strength by using a thermosetting resin by causing a crosslinking reaction to the polyurethane resin by after-curing.
  • the polyurethane resin is inferior in heat resistance, it is difficult to apply it to a member exposed to high temperature, and the use is limited.
  • Patent Document 5 a powder of a resin composition in which a phenoxy resin or a phenoxy resin is blended with a crystalline epoxy resin and an acid anhydride as a crosslinking agent is applied to a reinforcing fiber base by a powder coating method.
  • a prepreg is produced and molded and cured by a hot press to form CFRP.
  • Patent Document 5 also suggests that aluminum foil or stainless steel foil can be laminated on CFRP.
  • Patent Document 5 since there is no example regarding a composite of CFRP and a metal member, mechanical strength such as bending strength related to the composite is not examined.
  • Patent Document 6 a composite material composed of a flat carrier material made of a metal and fiber reinforced thermoplastic material and a support material made of a thermoplastic material is heated, and a rib structure is formed on the support material. And a method of manufacturing a structural part for a vehicle body in which a carrier material is molded into a three-dimensional part.
  • Patent Document 7 a fiber-reinforced resin intermediate material used by being heated and pressed in a laminated state, the reinforcing fiber base has a void opened on the outer surface, and the resin in the form of powder is semi-finished. What has been impregnated has been proposed.
  • a composite material of a metal member and a fiber reinforced resin material in order to sufficiently secure the mechanical strength and durability, firstly, the strength of the fiber reinforced resin material itself is increased, and secondly, the metal member The two points of strengthening the adhesive strength between the fiber reinforced resin material and the fiber reinforced resin material are particularly important.
  • Patent Document 7 discusses resin impregnation into a reinforcing fiber substrate. That is, in Patent Document 7, the fiber reinforced resin intermediate material in a semi-impregnated state increases the resin impregnation property to the reinforced fiber substrate even when using a thermoplastic resin having a higher viscosity than the thermosetting resin, It is said that a fiber-reinforced resin material that is less prone to defects such as voids and has a high formability can be obtained.
  • the second point that is, the adhesion between the metal member and the fiber reinforced resin material has not been studied in the prior art including the above-mentioned Patent Document 7.
  • the metal member and the prepreg of the fiber reinforced resin material are joined simultaneously with the molding process of the metal member. It is considered effective to do so. Even when performing such batch processing, it is important to secure the strength of the fiber reinforced resin material itself as the first point and the adhesive strength between the metal member and the fiber reinforced resin material as the second point. It becomes.
  • the present invention uses a thermoplastic resin as a matrix resin of a fiber reinforced resin material, and the fiber reinforced resin material itself has sufficient mechanical strength, and the metal member and the fiber reinforced resin material are firmly bonded to each other, resulting in durability. And a method for producing a metal-fiber reinforced resin material composite that can be molded simultaneously with the production of the metal-fiber reinforced resin material composite. The purpose is to provide.
  • the method for producing a metal-fiber reinforced resin material composite according to the present invention comprises a metal member, and a reinforcing fiber base material and a thermoplastic resin impregnated in the reinforcing fiber base material, laminated on at least one surface of the metal member. And a fiber-reinforced resin material having a resin contained therein as a matrix resin.
  • the method for producing a metal-fiber reinforced resin material composite of the present invention includes the following step A and step B; A) forming a prepreg in which a partial fusion structure of a resin containing the thermoplastic resin is formed on at least one surface of the reinforcing fiber base; B) Heat-pressing the surface of the prepreg on which the partial fusion structure is formed in contact with the surface of the metal member to completely melt the resin containing the thermoplastic resin.
  • the step A for forming the prepreg comprises the following step a and step b; a) A step of forming a resin-attached fiber base material by adhering a fine powder of a resin containing a thermoplastic resin that is solid at room temperature to a surface of at least one side of a reinforcing fiber base material forming a sheet shape by a powder coating method , b) Heat-treating the resin-adhered fiber base material to incompletely melt the resin fine powder containing the thermoplastic resin, followed by solidification to form a prepreg having the partially fused structure. Process, May be included.
  • the heat treatment in the step b may be performed at a temperature in the range of 100 to 400 ° C. for 30 seconds or more and less than 3 minutes.
  • a resin containing the thermoplastic resin that is solid at room temperature with respect to at least one surface of a reinforced fiber base material that forms a sheet heated to a predetermined temperature.
  • the fine powder may be attached by a powder coating method, and the fine powder of the resin containing the thermoplastic resin may be incompletely melted and then solidified to form the prepreg having the partial fusion structure.
  • the average particle diameter of the fine powder of the thermoplastic resin may be in the range of 10 to 100 ⁇ m.
  • the prepreg is formed on the basis of an end face of the reinforced fiber substrate on which a partial fusion structure is formed by a thermoplastic resin. 10% by weight or more of the thermoplastic resin may adhere within a range of 0 to 50% in the thickness direction with respect to the thickness.
  • the prepreg may have a permeability in a thickness direction of 500 to 1000 cc / cm 2 / sec when the thickness is 40 to 200 ⁇ m. .
  • the method for producing a metal-fiber reinforced resin material composite of the present invention is a part of the fiber reinforced resin material in the step B, and is 20 ⁇ m or less between the surface of the metal member and the reinforced fiber substrate.
  • a resin layer made of the thermoplastic resin having a fiber content of 5% by weight or less may be formed.
  • the heat and pressure treatment in the step B is performed at a temperature in the range of 100 to 400 ° C. and a pressure in the range of 3 MPa or more for 3 minutes or more. May be.
  • the metal member and the prepreg may be three-dimensionally formed simultaneously with the heat and pressure treatment.
  • the heating temperature in the heat and pressure treatment may be in the range of 180 to 240 ° C., and at the same time as the heat and pressure treatment, the thermoplastic resin It is also possible to form a crosslinked cured product by crosslinking the resin containing.
  • the glass transition temperature (Tg) of the resin before the cross-linking formation is 150 ° C. or lower, whereas the glass transition temperature (Tg) of the cross-linked cured product. May be 160 ° C. or higher.
  • the metal-fiber reinforced resin material composite of the present invention includes a metal member, a fiber reinforced resin material having a reinforcing fiber base material and a matrix resin that covers the reinforcing fiber base material, laminated on at least one surface of the metal member. , With.
  • the metal-fiber reinforced resin material composite of the present invention is a part of the fiber reinforced resin material, and contains a fiber at a thickness of 20 ⁇ m or less between the surface of the metal member and the reinforcing fiber substrate. It has the resin layer by the resin containing the said thermoplastic resin whose rate is 5 weight% or less, It is characterized by the above-mentioned.
  • the metal member and the fiber-reinforced resin material having sufficient mechanical strength are firmly bonded with high adhesive strength, and the metal-fiber reinforced resin material composite having excellent mechanical strength and durability.
  • the body can be manufactured in a simple process. Further, when the metal member and the fiber reinforced resin material are combined, the metal member can be simultaneously formed by hot pressing, so that the number of manufacturing steps can be reduced and the cost is excellent. Therefore, the metal-fiber reinforced resin material composite of the present invention is suitable not only as a housing for electric and electronic equipment but also as a structural member in applications such as automobile members and aircraft members as a lightweight and high-strength material. Can be used.
  • FIG. 1 is a drawing schematically showing a manufacturing process of a metal-CFRP composite according to an embodiment of the present invention. It is drawing which shows the manufacturing process following FIG. 1 typically. It is drawing which expands and schematically shows the A section in FIG. 3 is a drawing schematically showing a manufacturing process of a metal-CFRP composite by a three-dimensional integral molding process. It is explanatory drawing which shows the structure of the sample of the metal-FRP composite for bending tests in an Example and a comparative example. It is explanatory drawing which shows the structure of the sample of the metal-FRP composite for shear tests in an Example and a comparative example.
  • FIG. 3 is an enlarged view of a portion A surrounded by a broken line in FIG.
  • the metal-CFRP composite 100 obtained by the manufacturing method of the present embodiment includes a metal member 110 and a CFRP layer 120 as a fiber reinforced resin material.
  • the CFRP layer 120 includes a matrix resin 105 and carbon fibers 101a that are composite fibers and are included in the matrix resin 105. And have.
  • a resin layer 120 a is formed in the vicinity of the boundary where the CRPP layer 120 is in contact with the metal member 110.
  • the CFRP layer 120 is not limited to a single layer, and a plurality of layers may be stacked, and may be formed on both sides of the metal member 110 instead of only on one side. Further, the metal members 110 may be provided on both surfaces of the CFRP layer 120, respectively.
  • Step A is a step of forming a prepreg 104 in which a partially fused structure 102A of a resin containing a thermoplastic resin is formed on at least one surface of a reinforcing fiber base 101 made of carbon fibers 101a.
  • This process A can be implemented by the following method 1 or method 2, for example.
  • Method 1 includes the following steps a and b.
  • Step a In step a, as shown in FIGS. 1A and 1B, a resin containing a thermoplastic resin that is solid at room temperature (hereinafter, “raw material resin”) is formed by adhering a fine powder 102 (which may be referred to as “raw material resin”) by a powder coating method.
  • the raw material resin is fine particles, it is easily melted and has an appropriate gap in the coated film, so that it becomes an air escape route and voids are not easily generated.
  • the resin melted on the surface of the prepreg quickly wets and spreads on the surface of the metal member 110 and then enters the reinforcing fiber substrate 101. And impregnate. Therefore, compared to the conventional melt impregnation method and film stacking method, defects due to insufficient wettability of the molten resin to the surface of the metal member 110 are less likely to occur.
  • the powder coating method examples include an electrostatic coating method, a fluidized bed method, and a suspension method, and among these, the electrostatic coating method and the fluidized bed method are methods suitable for thermoplastic resins. It is preferable because the process is simple and the productivity is good. In particular, the electrostatic coating method is most preferable because the adhesion of the fine powder 102 of the raw material resin to the reinforcing fiber base 101 is good. It is a technique.
  • 1B shows a state in which the fine powder 102 of the raw material resin is attached to one surface of the resin-attached fiber base material 103, but the fine powder 102 is provided on both sides of the resin-attached fiber base material 103. May be attached.
  • thermoplastic resin is not particularly limited in its properties such as crystallinity and non-crystallinity.
  • phenoxy resin thermoplastic epoxy resin, polyolefin and acid-modified products thereof, polystyrene, polymethyl methacrylate, AS resin, ABS resin, Thermoplastic aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate, polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, polyphenylene ether and modified products thereof, polyphenylene sulfide, polyoxymethylene, polyarylate, polyether
  • thermoplastic resins such as ketone, polyetheretherketone, polyetherketoneketone can be used.
  • thermoplastic resin includes a resin in the form of a crosslinked cured product described later.
  • the “resin containing a thermoplastic resin” can contain a thermosetting resin as a resin component in addition to the thermoplastic resin, but even in this case, the thermoplastic resin may be a main component. preferable.
  • the “main component” means a component contained in 50 parts by weight or more out of 100 parts by weight of the resin component.
  • the “resin component” includes thermoplastic resins and thermosetting resins, but does not include non-resin components such as a crosslinking agent.
  • a thermosetting resin 1 or more types chosen from an epoxy resin, vinyl ester resin, a phenol resin, a urethane resin etc. can be used preferably, for example.
  • the thermoplastic resin preferably has a melt viscosity of 3,000 Pa ⁇ s or less in any temperature range of 160 to 400 ° C., and a melt viscosity of 90 to 2,900 Pa ⁇ s. Are more preferable, and those having a melt viscosity in the range of 100 to 2,800 Pa ⁇ s are more preferable. If the melt viscosity in the temperature range of 160 to 400 ° C. exceeds 3,000 Pa ⁇ s, the fluidity at the time of melting deteriorates, and defects such as voids tend to occur in the CFRP layer 120.
  • thermoplastic resins phenoxy resin has good moldability and excellent adhesion to carbon fiber 101a and metal member 110.
  • acid anhydride, isocyanate compound, caprolactam, etc. as a cross-linking agent, Is particularly preferably used because it can exhibit the same properties as the thermosetting resin with high heat resistance. Therefore, as a resin constituting the matrix resin 105 and the resin layer 120a in the CFRP layer 120, a solidified product of a phenoxy resin, or a solidified product of a resin composition containing 50 parts by weight or more of a phenoxy resin out of 100 parts by weight of a resin component, A cured product is preferred.
  • the metal member 110 and the CFRP layer 120 can be firmly bonded. More preferably, the composition of the raw resin contains 55 parts by weight or more of phenoxy resin out of 100 parts by weight of the resin component.
  • the phenoxy resin is a thermoplastic resin obtained from a condensation reaction of a dihydric phenol compound and an epihalohydrin or a polyaddition reaction of a dihydric phenol compound and a bifunctional epoxy resin, and is a conventionally known method in a solvent or without a solvent.
  • a resin that is solid at room temperature and has a melt viscosity at 200 ° C. of 10,000 Pa ⁇ s or less is suitable.
  • the melt viscosity is preferably 1,000 Pa ⁇ s or less, more preferably 500 Pa ⁇ s or less.
  • the average molecular weight of the phenoxy resin is usually 10,000 to 200,000 as a mass average molecular weight (Mw), preferably 20,000 to 100,000, more preferably 30,000 to 80. , 000. If the Mw of the phenoxy resin is too low, the strength of the molded product is inferior, and if it is too high, the workability and workability tend to be inferior. Mw represents a value measured by gel permeation chromatography and converted using a standard polystyrene calibration curve.
  • the hydroxyl equivalent (g / eq) of the phenoxy resin is usually 1000 or less, preferably 750 or less, and particularly preferably 500 or less. If the hydroxyl equivalent is too high, there is a concern that the crosslinking density is insufficient and the heat resistance is lowered, which is not preferable.
  • the glass transition temperature (Tg) of the phenoxy resin is suitably in the range of 65 ° C. to 200 ° C., preferably in the range of 70 ° C. to 200 ° C., more preferably in the range of 80 ° C. to 180 ° C. is there.
  • Tg glass transition temperature
  • the Tg of the phenoxy resin is lower than 65 ° C., the moldability is improved, but the Tg when a crosslinked cured product is obtained is less likely to be 180 ° C. or higher.
  • the Tg of the phenoxy resin is higher than 200 ° C., the melt viscosity becomes high, and it becomes difficult to impregnate the reinforcing fiber base material without defects such as voids.
  • the Tg of phenoxy resin is a numerical value calculated from the peak value of the second scan, measured using a differential scanning calorimeter (DSC) under the temperature rising condition of 10 ° C./min in the range of 20 to 280 ° C. is there.
  • DSC differential scanning calorimeter
  • the phenoxy resin is not particularly limited as long as it satisfies the above physical properties.
  • bisphenol A type phenoxy resin for example, phenototo YP-50, phenototo YP-50S, phenototo YP-manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. 55U
  • bisphenol F type phenoxy resin for example, phenototox FX-316 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • copolymer type phenoxy resin of bisphenol A and bisphenol F for example, YP-70 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Other special phenoxy resins such as brominated phenoxy resin, phosphorus-containing phenoxy resin, and sulfone group-containing phenoxy resin (for example, phenototo YPB-43C, phenototox FX293, YPS-007, etc. manufactured by N
  • the phenoxy resin may be used as a phenoxy resin composition (X) having a crosslinkability utilizing a secondary hydroxyl group of a phenoxy resin side chain by blending an acid anhydride, isocyanate, caprolactam or the like as a crosslinking agent. it can.
  • the phenoxy resin composition (X) that is solid at room temperature and that has a minimum melt viscosity at 100 to 350 ° C. of 3,000 Pa ⁇ s or less is suitable.
  • the minimum melt viscosity is preferably 2,900 Pa ⁇ s or less, more preferably 2,800 Pa ⁇ s or less. If the minimum melt viscosity at 100 to 350 ° C. exceeds 3,000 Pa ⁇ s, the fluidity of the resin during the molding process decreases, and the resin does not spread sufficiently, causing voids, which is not preferable.
  • the phenoxy resin composition (X) contains the above phenoxy resin (in the present composition, expressed as “phenoxy resin (A)”) and a crosslinking agent (C) composed of an epoxy resin (B) and an acid anhydride. Is preferred.
  • the epoxy resin (B) coexists, the melt viscosity is reduced to improve the moldability, and the physical properties (strength and heat resistance) of the crosslinked cured product can be improved.
  • the phenoxy resin composition (X) preferably contains 50 parts by weight or more of the phenoxy resin (A) out of 100 parts by weight of the resin component.
  • the amount of the epoxy resin (B) is preferably in the range of 10 to 85 parts by weight with respect to 100 parts by weight of the phenoxy resin (A). That is, the compounding ratio (A: B) of the epoxy resin (B) and the phenoxy resin (A) is preferably 100: 10 to 100: 85.
  • the compounding amount of the epoxy resin (B) exceeds 85 parts by weight, the Tg of the crosslinked cured product becomes difficult to be 180 ° C.
  • the process time for curing B) is increased, which is not preferable.
  • the compounding quantity of an epoxy resin (B) will be less than 10 weight part, the viscosity reduction effect by the compounding of an epoxy resin (B) will not be acquired, and it will become difficult for a crosslinked hardened
  • the compounding amount of the epoxy resin (B) is more preferably in the range of 20 to 83 parts by weight and most preferably in the range of 30 to 80 parts by weight with respect to 100 parts by weight of the phenoxy resin (A).
  • epoxy resin (B) any conventionally known epoxy resin can be used as long as it is a bifunctional or higher functional epoxy resin, but a solid epoxy resin having a softening point is suitable.
  • an epoxy resin (B) bisphenol type epoxy resin (for example, Epototo YD-011, YDF-2001, YSLV-80XY, etc.
  • an epoxy resin exhibiting crystallinity is not only advantageous for high filling with a filler because it can be handled as a powder, but also exhibits high fluidity at a temperature above its melting point.
  • the crystalline epoxy resin preferably has a low chlorine content, a melting point in the range of 75 ° C. to 145 ° C., and a melt viscosity at 150 ° C. of 2.0 Pa ⁇ s or less. When the melt viscosity exceeds 2.0 Pa ⁇ s, the moldability of the phenoxy resin composition (X) decreases, and the homogeneity of the matrix resin 105 when the metal-CFRP composite 100 is obtained is not preferable.
  • crystalline epoxy resins for example, Epototo YSLV-80XY, YSLV-70XY, YSLV-120TE, YDC-1312, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., YX-4000, YX-4000H, YX-8800, manufactured by Mitsubishi Chemical Corporation, Examples thereof include YL-6121H and YL-6640, HP-4032, HP-4032D, and HP-4700 manufactured by DIC Corporation, and NC-3000 manufactured by Nippon Kayaku Co., Ltd.
  • the acid anhydride as the crosslinking agent (C) is not particularly limited as long as it is solid at room temperature and does not have much sublimation property, but it is phenoxy from the viewpoint of imparting heat resistance and reactivity of the FRP molded product.
  • An aromatic acid anhydride having two or more acid anhydrides that react with the hydroxyl group of the resin (A) is preferable.
  • an aromatic compound having two acid anhydride groups such as pyromellitic acid anhydride is preferably used because it has a higher crosslink density and improved heat resistance than the hydroxyl group of trimellitic acid anhydride.
  • Aromatic dianhydrides such as phenoxy resins such as 4,4′-oxydiphthalic acid, ethylene glycol bisanhydro trimellitate, 4,4 ′-(4,4′-isopropylidenediphenoxy) diphthalic anhydride and
  • An aromatic acid dianhydride having compatibility with the epoxy resin is more preferable because it has a large effect of improving Tg.
  • an aromatic acid dianhydride having two acid anhydride groups such as pyromellitic acid anhydride, has improved cross-linking density and heat resistance compared to, for example, phthalic anhydride having only one acid anhydride group. Since the property is improved, it is preferably used.
  • the aromatic dianhydride has good reactivity due to two acid anhydride groups, and a crosslinked cured product having sufficient strength for demolding can be obtained in a short molding time, and the phenoxy resin (A) Since the four carboxyl groups are generated by the esterification reaction with the secondary secondary hydroxyl group, the final crosslink density can be increased.
  • the compounding amount of the crosslinking agent (C) is usually an amount in the range of 0.9 to 1.4 mol of acid anhydride groups with respect to 1 mol of the secondary hydroxyl group of the phenoxy resin (A). It is in the range of 0 to 1.3 mol. If the amount of the acid anhydride group is too small, the acid anhydride group reactive to the secondary hydroxyl group of the phenoxy resin (A) will be insufficient, so that the crosslink density will be low and the cured product will have poor rigidity and too much. The acid anhydride is excessive with respect to the secondary hydroxyl group of the phenoxy resin (A), and the unreacted acid anhydride adversely affects the curing characteristics and the crosslinking density.
  • the reaction of the phenoxy resin (A), the epoxy resin (B) and the cross-linking agent (C) includes an esterification reaction between the secondary hydroxyl group in the phenoxy resin (A) and the acid anhydride group of the cross-linking agent (C). It is crosslinked and cured by the reaction between the carboxyl group generated by this esterification reaction and the epoxy group of the epoxy resin (B).
  • a cross-linked phenoxy resin can also be obtained by the reaction of the phenoxy resin (A) and the cross-linking agent (C), but molding is performed by reducing the melt viscosity of the phenoxy resin composition (X) by coexistence of the epoxy resin (B).
  • a crosslinked cured product having excellent characteristics such as acceleration of crosslinking reaction, improvement of crosslinking density, and improvement of mechanical strength can be obtained.
  • the epoxy resin (B) coexists, but the phenoxy resin (A) which is a thermoplastic resin is a main component, and the secondary hydroxyl group and the crosslinking agent (C). It is considered that the esterification reaction with an acid anhydride group has priority. That is, since the reaction between the acid anhydride used as the crosslinking agent (C) and the epoxy resin (B) takes time, the reaction between the crosslinking agent (C) and the secondary hydroxyl group of the phenoxy resin (A) occurs first.
  • the crosslinking agent (C) remaining in the previous reaction or the residual carboxyl group derived from the crosslinking agent (C) reacts with the epoxy resin (B) to further improve the crosslinking density. Therefore, unlike a resin composition mainly composed of an epoxy resin, which is a thermosetting resin, a cross-linked cured product obtained from the cross-linkable phenoxy resin composition (X) is used as a thermoplastic resin because of its cross-linking curing mechanism. In addition, the storage stability is superior to an epoxy resin composition using an acid anhydride as a curing agent.
  • the average particle diameter of the fine powder 102 of the raw material resin used in the powder coating method is preferably in the range of 10 to 100 ⁇ m, more preferably in the range of 40 to 80 ⁇ m, and most preferably in the range of 40 to 50 ⁇ m. preferable.
  • the average particle diameter of the fine powder 102 exceeds 100 ⁇ m, the energy when the fine powder 102 collides with the fiber increases in the powder coating in the electrostatic field, and the adhesion rate to the reinforcing fiber base 101 decreases. .
  • a pulverizer / mixer such as a low-temperature dry pulverizer (centridry mill) is suitable for pulverizing the raw material resin, but is not limited thereto. Further, when the raw material resin is pulverized, a plurality of components as raw materials may be pulverized and mixed, or may be pulverized after a plurality of components are mixed in advance.
  • the adhesion amount (resin ratio: RC) of the fine powder 102 of the raw material resin to the reinforcing fiber base 101 is within a range of 20 to 50%, for example. It is more preferably within a range of ⁇ 45%, and further preferably within a range of 25-40%. If RC exceeds 50%, mechanical properties such as tensile / bending elastic modulus of CFRP will decrease, and if it is less than 20%, the amount of raw material resin will be extremely small. There is a concern that the impregnation of the resin will be insufficient, and both the thermal and mechanical properties will be lowered.
  • the carbon fiber 101a constituting the reinforcing fiber substrate 101 for example, a nonwoven fabric substrate using chopped fibers, a cloth material using continuous fibers, a unidirectional reinforcing fiber substrate (UD material), or the like can be used. However, from the viewpoint of the reinforcing effect, it is preferable to use a cloth material or a UD material.
  • a cloth material or a UD material for example, both PAN type and pitch type can be used, and these may be used alone or in combination depending on the purpose and application.
  • a carbon fiber is a fiber bundle composed of many thousands to tens of thousands of short fibers, and the cross section thereof has a circular shape or a slightly flat elliptical shape. For this reason, it is difficult to reliably impregnate the resin into the fiber bundle.
  • the fiber opening treatment is a thinned carbon fiber bundle that has been widened and thinned in the width direction by a known mechanical method. Since the resin impregnation property is greatly improved over the non-open fiber product, the physical properties of the molded product are also improved.
  • the basis weight of the reinforcing fiber base 101 is preferably in the range of 40 to 250 g / m 2 . If the basis weight is less than 40 g / m 2 , the desired mechanical properties cannot be obtained because the number of reinforcing fibers in the molded product is small. Moreover, when it exceeds 250 g / m ⁇ 2 >, since it becomes difficult to fully impregnate the inside of the reinforced fiber base material 101, it is unpreferable.
  • Step b In step b, as shown in FIGS. 1B and 1C, by subjecting the resin-attached fiber base material 103 to heat treatment, the raw material resin fine powder 102 is incompletely melted and then solidified, A prepreg 104 having a partially fused structure 102A made of a resin including a thermoplastic resin is formed.
  • “incompletely melting” does not mean that the entire fine powder 102 of the raw material resin is dropletized and melted until it flows, but a part of the fine powder 102 is completely dropletized.
  • the fine powder 102 is in a state where only the surface is formed into droplets and the central portion is kept solid.
  • the fine powder 102 in the vicinity of the surface layer portion of the reinforcing fiber base 101, the fine powder 102 is partially melted by heat treatment, and the melt of the adjacent fine powder 102 is fused to form a network. It is solidified in cooperation with The partial fusion structure 102A increases the adhesion to the reinforcing fiber base 101, prevents the fine powder 102 from falling off, and ensures a certain air permeability in the thickness direction of the reinforcing fiber base 101. In the heat and pressure treatment in step B, an air escape path in the reinforcing fiber base 101 is secured, and generation of voids can be avoided.
  • the partially fused structure 102A is preferably formed uniformly over the entire surface of the prepreg 104, but may be unevenly distributed microscopically.
  • FIG. 1C shows a state in which the partial fusion structure 102A is formed on one surface of the prepreg 104. However, even if the partial fusion structure 102A is formed on both sides of the prepreg 104, FIG. Good.
  • the heat treatment is based on the melting point and glass transition temperature (Tg) of the raw material resin to be used in order to allow the partial fusion structure 102A to be formed by incompletely melting the fine powder 102 of the raw material resin.
  • Tg glass transition temperature
  • the temperature is preferably within a range of 400 ° C., a temperature near the melting point (MP) is preferable for a crystalline resin, and a temperature within Tg + 150 ° C. is more preferable for an amorphous resin.
  • MP melting point
  • Tg + 150 ° C. is more preferable for an amorphous resin.
  • the heat treatment time is not particularly limited as long as the raw resin adhered to the reinforcing fiber base 101 can be fixed to the reinforcing fiber base 101, but it is preferably 30 seconds or more and less than 3 minutes, preferably 30 seconds or more and less than 2 minutes. . That is, by performing heat treatment in a much shorter time than at the time of molding, the resin is fixed to the reinforcing fiber base 101 in the state of the partially fused structure 102A to prevent powder falling.
  • the raw material resin (the one with the partially fused structure 102A and the fine powder 102) is concentrated in the vicinity of the surface of the reinforcing fiber base 101. It does not reach the inside of the reinforcing fiber base 101 like the molded body.
  • the heat treatment may be performed in a state where the resin-attached fiber base material 103 and the metal member 110 are in contact with each other.
  • Method 2 is a method in which the above steps a and b are performed collectively. That is, although illustration is omitted, fine powder 102 of a raw material resin that is solid at room temperature is attached to at least one surface of a reinforcing fiber base 101 in the form of a sheet heated to a predetermined temperature by a powder coating method. The powder 102 is incompletely melted and then solidified to form the prepreg 104 in which the partially fused structure 102A is formed. In the method 1, the powder-coated fine powder 102 is fixed to the reinforcing fiber base 101 by heat treatment. In the method 2, the fine powder 102 is powder-coated on the pre-heated reinforcing fiber base 101. Then, it is fused simultaneously with the application to the reinforcing fiber base 101 to form the partial fused structure 102A.
  • Method 2 The conditions in Method 2 are the same as in Method 1 above, so they are omitted.
  • the prepreg 104 obtained in the step A preferably has a thickness in the range of 40 to 200 ⁇ m, and more preferably in the range of 50 to 150 ⁇ m. If the thickness of the prepreg 104 is less than 40 ⁇ m, poor handling due to deterioration in handling properties and insufficient resin will occur. When the thickness of the prepreg 104 exceeds 200 ⁇ m, impregnation of the molten resin into the reinforcing fiber base 101 is insufficient in step B, and mechanical strength may be lowered.
  • the prepreg 104 preferably has an air permeability in the thickness direction in the range of 500 to 1000 cc / cm 2 / sec when the thickness is 40 to 200 ⁇ m, and preferably in the range of 700 to 900 cc / cm 2 / sec. More preferred. When the air permeability is less than 500 cc / cm 2 / sec, the escape path of air in the prepreg 104 is reduced in the heat and pressure treatment of step B described later, and voids are likely to occur.
  • the air permeability is 500 cc / cm 2 / sec.
  • the air permeability exceeds 1000 cc / cm 2 / sec, the fine powder 102 of the raw material resin tends to drop off, and the handling property may be lowered.
  • the surface roughness of the prepreg 104 is preferably 0.010 to 0.100 mm, more preferably 0.015 to 0.075 mm, in terms of arithmetic average roughness (Ra).
  • Ra arithmetic average roughness
  • the air in the prepreg 104 can escape from the side surfaces in the heat and pressure treatment of step B described later. For this reason, even when the prepreg 104 is sandwiched between the dense metal members 110, the prepreg 104 and the metal member 110 are firmly bonded, and a metal-CFRP composite having excellent mechanical strength is obtained.
  • Ra is less than 0.010 mm, the prepregs 104 are easily fused with each other by heat and pressure treatment, causing air to escape and causing voids.
  • Ra exceeds 0.100 mm, It is not suitable because voids are left behind.
  • the prepreg 104 is in the range of 0 to 50% in the thickness direction with respect to the thickness of the reinforcing fiber base 101 with reference to the end face of the reinforcing fiber base 101 on which the partial fusion structure 102A made of the raw material resin is formed. It is preferable that 10% by weight or more of the raw material resin adheres, and more preferably 10 to 40% by weight adheres. In this way, by providing a gradient in the adhesion concentration of the raw material resin, in the next step B, the surface of the prepreg 104 on which the partial fusion structure 102A is formed is brought into contact with the metal member 110 and heated and pressed.
  • the molten resin can be sufficiently spread at the boundary between the metal member 104 and the metal member 110. That is, by utilizing the property of the metal member 110 that has high thermal conductivity and is easily heated, the melting of the resin is promoted by contacting the surface with a high-concentration solid raw material resin containing the partial fusion structure 102A. Thus, a large amount of molten resin can be supplied to the bonding boundary. Therefore, even a raw material resin having a relatively high melt viscosity can be permeated into the entire prepreg 104 in a short time, and a resin layer 120a described later can be formed.
  • the air present in the prepreg 104 in step B can be obtained by controlling the air permeability within the above range. Can be released to the opposite side of the adhesive surface in the thickness direction of the prepreg 104, so that generation of voids can be avoided.
  • step B the surface of the prepreg 104 obtained in step A on which the partial fusion structure 102A is formed is in contact with the surface of the metal member 110.
  • Heat and pressure treatment is performed.
  • the raw material resin adhering to the prepreg 104 is completely melted and spreads on the surface of the metal member 110, and at the same time, the reinforcing fiber base 101 is impregnated.
  • the matrix resin 105 is formed, and a CFRP layer 120 as a fiber reinforced resin material is formed, and the CFRP layer 120 adheres to the metal member 110.
  • step B the fine powder 102 of the raw material resin adhering to the surface of the prepreg 104 on which the partial fusion structure 102A is formed is applied to the metal member 110 in the heat and pressure treatment.
  • the resin layer 120a made of only a resin containing almost a thermoplastic resin, in which the carbon fibers 101a are hardly present by contacting and spreading in a thin film shape. The structure of the resin layer 120a will be described later. In this way, the metal-CFRP composite 100 in which the CFRP layer 120 and the metal member 110 are firmly bonded can be formed.
  • the material of the metal member 110 used in the metal-CFRP composite 100 is not particularly limited as long as it can be molded by a press or the like, and examples thereof include iron, titanium, aluminum, magnesium, and alloys thereof. Can be mentioned.
  • the alloy means, for example, an iron-based alloy (including stainless steel), a Ti-based alloy, an Al-based alloy, an Mg alloy, or the like.
  • Preferred examples of the metal member 110 are steel materials standardized by Japanese Industrial Standards (JIS) and the like, and include carbon steel, alloy steel, high-tensile steel, etc. used for general structures and mechanical structures. .
  • the shape and thickness of the metal member 110 are not particularly limited as long as the metal member 110 can be formed by a press or the like. For example, a plate shape is preferable.
  • the surface may be subjected to any surface treatment.
  • the surface treatment means, for example, various surface treatments such as various plating treatments such as zinc plating and aluminum plating, chemical treatment such as chromate treatment and non-chromate treatment, and physical or chemical etching such as sandblasting.
  • the present invention is not limited to these.
  • multiple types of surface treatment may be performed.
  • at least rust prevention treatment is preferably performed.
  • a primer for the purpose of improving the adhesion between the metal member 110 and the CFRP layer 120.
  • a primer for example, a silane coupling agent or a triazine thiol derivative is preferable.
  • silane coupling agents include epoxy silane coupling agents, amino silane coupling agents, and imidazole silane compounds.
  • triazine thiol derivatives examples include 6-diallylamino-2,4-dithiol-1,3,5-triazine, 6-methoxy-2,4-dithiol-1,3,5-triazine monosodium, 6-propyl-2 , 4-dithiolamino-1,3,5-triazine monosodium, 2,4,6-trithiol-1,3,5-triazine and the like.
  • the raw resin fine powder 102 is completely melted and impregnated throughout the reinforcing fiber base 101, it depends on the melting point and glass transition temperature of the thermoplastic resin used, but is approximately 100 ° C. to 400 ° C. It is preferable to carry out at a temperature within the above range, and within this temperature range, a temperature of melting point (MP) + 30 ° C. or more is used for a crystalline resin, and a glass transition temperature (Tg) + 100 ° C. or more for an amorphous resin The temperature is more preferable. If the upper limit temperature is exceeded, excessive heat may be applied to cause decomposition of the resin.
  • MP melting point
  • Tg glass transition temperature
  • the resin has a high melt viscosity, so the impregnation property to the reinforcing fiber base 101 is deteriorated.
  • the pressure when the metal member 110 and the prepreg 104 are pressure-bonded is preferably 3 MPa or more, and more preferably in the range of 3 to 5 MPa. If the upper limit is exceeded, excessive pressure is applied, and therefore deformation or damage may occur. If the lower limit is exceeded, the impregnation property to the reinforcing fiber base 101 is deteriorated.
  • the heat pressure bonding is sufficient if it is at least 3 minutes or more. In the range of 3 to 10 minutes, it is preferable.
  • the metal member 110 and the prepreg 104 may be formed into an arbitrary three-dimensional shape simultaneously with the heat and pressure treatment.
  • the pressure when the metal member 110 and the prepreg 104 are pressure-bonded and formed is based on the pressure required for press-forming the metal member 110.
  • Step B it is preferable to create a composite having a three-dimensional shape by collectively forming the metal member 110 and the prepreg 104, but in Step B, the composite was previously formed into an arbitrary three-dimensional shape.
  • the composite batch molding of the metal member 110 and the CFRP layer 120 by the pressure molding machine is preferably performed by hot pressing. However, the material heated to a predetermined temperature in advance is quickly set in a low-temperature pressure molding machine. Can also be done.
  • the metal member 110 and the prepreg 104 may be temporarily fixed. The temporary fixing condition is not particularly limited as long as the partially fused structure 102A of the prepreg 104 is maintained and air permeability is ensured.
  • the obtained metal-CFRP composite 100 is provided with a metal member 110 and a CFRP layer 120 as a fiber reinforced resin material, as shown in FIG. 2 (b).
  • the CFRP layer 120 includes a matrix resin 105 and carbon fibers 101a that are composite fibers and are contained in the matrix resin 105. Also, as shown in FIG. 3, the CFRP layer 120 is a part of the CFRP layer 120 and has a thickness of 20 ⁇ m or less between the surface of the metal member 110 and the carbon fiber 101a closest to the surface.
  • the resin layer 120a is preferably formed of a resin containing a thermoplastic resin that does not contain fibers, preferably 5% by weight or less.
  • the fine powder 102 of the raw material resin adhering to the surface of the prepreg 104 on which the partial fusion structure 102A is formed abuts on the metal member 110 in the heat and pressure treatment and spreads in a thin film shape.
  • the resin layer 120a is a resin layer that is not strengthened by fibers, and the mechanical strength such as the bending strength and the bending elastic modulus of the resin layer 120a is the mechanical property of the resin itself containing the solidified thermoplastic resin. It is the same as the target strength.
  • Such a resin layer 120a is uniformly formed with a substantially uniform thickness on the bonding surface between the metal member 110 and the CFRP layer 120, and since there is no void, the adhesion between the metal member 110 and the CFRP layer 120 is Will become even stronger.
  • the resin layer 120 a is a thin layer of only a resin (matrix resin 105) containing a thermoplastic resin that is not fiber reinforced, the mechanical strength of the resin layer 120 a in the matrix resin 105 is as follows. It is inferior to the part where there is. Therefore, if the thickness of the resin layer 120a is too large, the mechanical strength and durability of the metal-CFRP composite 100 are impaired. From this viewpoint, the thickness of the resin layer 120a is, for example, preferably 15 ⁇ m or less, more preferably in the range of 1 to 10 ⁇ m, and most preferably in the range of 5 to 10 ⁇ m.
  • the thickness of the resin layer 120a is determined by, for example, cutting a metal-CFRP composite 100 with a diamond cutter and polishing and polishing a cross section with a CP (cross section polisher) or the like using a scanning electron microscope (SEM). It can be measured by observing.
  • SEM scanning electron microscope
  • the metal-CFRP composite 100 only needs to include the metal member 110 and at least one CFRP layer 120 as a layer in contact with the metal member 110.
  • CFRP layer 120 one or more layers laminated on the CFRP layer 120
  • Optional CFRP layers may be provided.
  • the thickness and the number of layers of an arbitrary CFRP layer can be appropriately set according to the purpose of use. When a plurality of arbitrary CFRP layers are provided, each CFRP layer may have the same configuration or may be different.
  • a flat prepreg 104 and two flat metal members 110 are prepared. Then, metal members 110 are arranged on both sides of the prepreg 104, respectively.
  • the prepreg 104 may be a single layer or a laminated body in which a plurality of prepregs are stacked.
  • the prepreg 104 is sandwiched between the two metal members 110 and temporarily bonded to form a laminate 130.
  • the prepreg 104 and the metal member 110 are bonded and temporarily fixed. Since the partially fused structure 102A is formed on the surface of the prepreg 104 and the resin amount is abundant, the prepreg 104 and the prepreg 104 are bonded and cooled while applying heat to such an extent that the resin component melts.
  • the laminated body 130 which has moderate adhesiveness between the metal members 110 can be manufactured.
  • This laminated body 130 is an intermediate body (semi-finished product) of the metal-CFRP composite 100A processed into a three-dimensional shape, and is formed into a product by performing shaping and complete impregnation of the resin component in the next step. .
  • the temporary bonding is preferably performed at a temperature of, for example, 160 ° C. or less, preferably about 120 to 150 ° C. Moreover, you may pressurize simultaneously with a heating.
  • the laminated body 130 may be in a state where the reinforcing fiber base material is substantially impregnated with the raw material resin or the uncrosslinked resin composition, but the partially fused structure 102A of the prepreg 104 is maintained. It is preferable that air permeability is ensured.
  • the laminated body 130 is set in a mold 200 that can be processed into a predetermined shape, and a heating and pressing process is performed.
  • the raw resin melts and penetrates into the reinforcing fiber base 101 to form the matrix resin 105, and the resin layer 120 a is formed at the interface with the metal member 110.
  • the fine powder 102 of the raw material resin is completely melted and impregnated in the entire reinforcing fiber base 101, and therefore, depending on the melting point and glass transition temperature of the thermoplastic resin used, it is approximately 100 ° C. to 400 ° C. It is preferable to carry out at a temperature within the range of ° C.
  • molding process should be 3 Mpa or more, for example, and the pressure which can shape
  • a metal-CFRP composite 100A integrally molded into a three-dimensional shape as shown in FIG. 4D can be manufactured.
  • a phenoxy resin composition (X) having crosslinkability can also be used as a raw material resin for the matrix resin 105. Since the phenoxy resin composition (X) having crosslinkability hardly undergoes crosslink formation under the temperature condition of temporary bonding, only melting of the resin occurs. As it is, the state in which the metal member 110 and the prepreg 104 are fixed can be maintained. By using such a laminated body 130 as an intermediate body (semi-finished product), it can be stored in a smaller space than a shaped product, and the shapeability and reactivity remain, so according to demand. A flexible production system is possible by processing semi-finished products.
  • the resin changes from an uncrosslinked state to a crosslinked cured product in the heat and pressure molding treatment.
  • the Tg of the layer 120a is greatly improved as compared with the phenoxy resin (A) alone, and the heat resistance is increased. That is, before and after the heat and pressure molding treatment for the intermediate body (semi-finished product) shown in FIG. 4, the resin is solidified but not cross-linked, and is changed from an uncrosslinked solidified product to a cross-linked cured product. Therefore, Tg changes.
  • the Tg of the resin before cross-linking formation in the intermediate (semi-finished product) is, for example, 150 ° C.
  • the Tg of the resin formed by cross-linking after heat-pressure molding is, for example, 160 ° C.
  • the temperature is preferably improved within the range of 170 to 220 ° C.
  • excellent heat resistance can be imparted to the metal-CFRP composite 100A.
  • the temperature in the range of, for example, 180 to 240 ° C. is used in order to change the uncrosslinked resin to a crosslinked cured product in the heat and pressure molding treatment. It is preferable to carry out the heat and pressure forming process for about 10 to 30 minutes.
  • the pressure at the time of press-bonding the metal member 110 and the CFRP layer 120 in the heat and pressure forming process may be 3 MPa or more, for example, as long as the metal member 110 can be formed.
  • the metal-CFRP composite 100, 100A after the integral molding is preferably subjected to any treatment such as post-cure, for example, depending on the type of the raw material resin.
  • Post-curing is preferably performed at 200 to 250 ° C. for 30 to 60 minutes. In addition, it can replace with post-cure and can use the heat history in the post-process such as painting.
  • a post-process for the metal-CFRP composites 100, 100A in addition to painting, drilling for mechanical joining by bolts or riveting with other members, application of an adhesive for adhesive joining, Assembly is performed.
  • the metal-CFRP composite was cut with a diamond cutter, and the obtained cross section was polished with abrasive paper and diamond abrasive grains, and then observed with an optical microscope. The case where no void was confirmed was evaluated as ⁇ (good), and the case where void was confirmed was evaluated as ⁇ (defective).
  • Glass transition temperature (Tg) Using a dynamic viscoelasticity measuring apparatus (DMA 7e manufactured by Perkin Elmer), measurement was performed at a temperature rising condition of 5 ° C./min and in the range of 25 to 250 ° C., and the maximum peak of tan ⁇ obtained was defined as Tg.
  • DMA 7e dynamic viscoelasticity measuring apparatus
  • Average particle diameter (D50) The average particle size was measured with a laser diffraction / scattering particle size distribution measuring device (Microtrack MT3300EX, manufactured by Nikkiso Co., Ltd.) when the cumulative volume reached 50% on a volume basis.
  • melt viscosity Using a rheometer (manufactured by Anton Paar), a sample size of 4.3 cm 3 was sandwiched between parallel plates, and the temperature was increased at 20 ° C./min, while the frequency was 1 Hz and the load strain was 5%. The melt viscosity was measured. However, for the crosslinkable resin composition, the minimum viscosity at 160 ° C. to 250 ° C. was taken as the melt viscosity.
  • the metal-CFRP composite was cut using a diamond cutter, and the resulting cross-section was polished with abrasive paper and diamond abrasive grains, then polished using a CP (cross section polisher) process, and a scanning electron microscope (SEM). ).
  • phenoxy resin CFRP prepreg A As a phenoxy resin (A), a powder obtained by crushing and classifying A-1 and having an average particle diameter D50 of 80 ⁇ m is opened in one direction by opening carbon fiber (UD material: Pyrofil TR50S 15L, manufactured by Mitsubishi Rayon Co., Ltd.). Powder coating was performed under the conditions of an electric charge of 70 kV and a spraying air pressure of 0.32 MPa in an electrostatic field using the aligned substrate as a base material. Thereafter, the resin is heat-melted in an oven at 170 ° C. for 1 minute to thermally fuse the resin to form a partially fused structure.
  • UD material Pyrofil TR50S 15L, manufactured by Mitsubishi Rayon Co., Ltd.
  • the thickness is 0.13 mm
  • the air permeability is 814 cc / cm 2 / sec
  • phenoxy resin CFRP prepreg B As a phenoxy resin (A), a powder obtained by grinding and classifying A-1 and having an average particle diameter D50 of 80 ⁇ m is spread on a plain-woven reinforcing fiber substrate made of carbon fiber (cross material: IMS60 manufactured by Toho Tenax Co., Ltd.). Powder coating was performed under the conditions of a charge of 70 kV and a spraying air pressure of 0.32 MPa in an electrostatic field, using a product (Sakai Obex, SA-3203) as a base material. Thereafter, the resin is heat-melted in an oven at 170 ° C. for 1 minute to thermally fuse the resin to form a partially fused structure.
  • a phenoxy resin (A) a powder obtained by grinding and classifying A-1 and having an average particle diameter D50 of 80 ⁇ m is spread on a plain-woven reinforcing fiber substrate made of carbon fiber (cross material: IMS60 manufactured by Toho Tenax Co., Ltd.). Powder coating was performed under
  • the thickness is 0.24 mm
  • the air permeability is 527 cc / cm 2 / sec
  • the surface roughness A unidirectional fiber-reinforced phenoxy resin CFRP prepreg B having a Ra) of 0.052 mm and a resin ratio (RC) of 48% was produced.
  • phenoxy resin CFRP prepreg C As a phenoxy resin (A), a powder obtained by crushing and classifying A-1 and having an average particle diameter D50 of 80 ⁇ m is opened in one direction by opening carbon fiber (UD material: Pyrofil TR50S 15L, manufactured by Mitsubishi Rayon Co., Ltd.). Powder coating was performed by using a fluidized bed method using the aligned material as a base material. Thereafter, the resin is heat-melted in an oven at 170 ° C.
  • the thickness is 0.15 mm
  • the air permeability is 712 cc / cm 2 / sec
  • the surface roughness (Ra ) was 0.052 mm
  • the resin ratio (RC) was 48% of unidirectional fiber reinforced phenoxy resin CFRP prepreg C.
  • the thickness is 0.15 mm
  • the air permeability is 788 cc / cm 2 / sec
  • the surface roughness (Ra ) Produced a unidirectional fiber-reinforced polyamide resin CFRP prepreg D of 0.038 mm and a resin ratio (RC) of 44%.
  • powder coating was performed in an electrostatic field under conditions of an electric charge of 70 kV and a spraying air pressure of 0.32 MPa. Thereafter, the resin is heat-melted in an oven at 170 ° C. for 1 minute to thermally fuse the resin to form a partially fused structure, the thickness is 0.16 mm, the air permeability is 800 cc / cm 2 / sec, the surface roughness (Ra ) Produced a cross-linked phenoxy resin CFRP prepreg E having a thickness of 0.048 mm and a resin ratio (RC) of 48%.
  • the melt viscosity at 250 ° C. of the crosslinkable phenoxy resin composition was 250 Pa ⁇ s.
  • a CFRP laminate having a thickness of 2 mm was produced by laminating a plurality of produced prepregs and pressing at 3 MPa for 3 minutes with a press machine heated to 200 ° C. at 170 ° C. After 30 minutes post-cure, a test piece having a width of 10 mm and a length of 10 mm was cut out with a diamond cutter, and the temperature rising condition was 5 ° C./min using a dynamic viscoelasticity measuring device (DMA 7e manufactured by Perkin Elmer). The maximum peak of tan ⁇ obtained was measured as Tg.
  • DMA 7e dynamic viscoelasticity measuring device
  • the reinforcing fiber base material is melt-impregnated with phenoxy resin, the thickness is 0.08 mm, the air permeability is 0 cc / cm 2 / sec, the surface roughness (Ra) is 0.014 mm, and the resin ratio (RC) is 44%.
  • phenoxy resin CFRP prepreg F was produced.
  • Metal member (M-1) EG Nippon Steel & Sumitomo Metal Co., Ltd. electrogalvanized steel sheet NSECC, thickness 0.4mm, metal member without chemical conversion treatment (M-2): TFS Tin-free steel sheet made by Nippon Steel & Sumikin Co., thickness 0.2mm
  • Metal member (M-3) Aluminum manufactured by Hikari Co., Ltd. BACS plate series, aluminum (A1050P), thickness 1mm
  • Example 1 Using M-1 as the metal member 110 and a plurality of the phenoxy resin CFRP prepreg A of Production Example 1, a sample of a bending test metal-CFRP composite having a structure shown in FIG. 6 were prepared by pressing a sample of a shear test metal-CFRP composite with a CFRP layer 120 having a thickness of 0.2 mm in the structure shown in FIG. 6 at 3 MPa for 3 minutes with a press machine heated to 200 ° C., respectively. The thickness of the resin layer 120a at the metal CFRP interface was 8 ⁇ m. The obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • Example 2 Using M-1 as the metal member 110 and a plurality of the phenoxy resin CFRP prepreg A of Preparation Example 1, a sample of a bending test metal-CFRP composite having a structure shown in FIG. A sample of a metal-CFRP composite for shear test with a CFRP layer 120 having a thickness of 0.4 mm having the structure shown in FIG. 6 was produced by pressing each sample at 3 MPa for 3 minutes with a press machine heated to 200 ° C. The thickness of the resin layer 120a at the metal CFRP interface was 8 ⁇ m. The obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • Example 3 Samples of two types of metal-CFRP composites were prepared in the same manner as in Example 1 except that a plurality of the phenoxy resin CFRP prepregs B of Preparation Example 2 were used and the thickness of the CFRP layer 120 was 0.4 mm. The thickness of the resin layer 120a at the metal CFRP interface was 7 ⁇ m. The obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • Example 4 Two types of metal-CFRP composite samples were produced in the same manner as in Example 1 except that M-2 was used as the metal member 110 and the thickness of the CFRP layer 120 was 0.4 mm. The thickness of the resin layer 120a at the metal CFRP interface was 7 ⁇ m. The obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • Example 5 Two types of metal-CFRP composite samples were produced in the same manner as in Example 1 except that M-3 was used as the metal member 110 and the thickness of the CFRP layer 120 was 0.4 mm. The thickness of the resin layer 120a at the metal CFRP interface was 8 ⁇ m. The obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • Example 6 Samples of two types of metal-CFRP composites were prepared in the same manner as in Example 1 except that a plurality of the phenoxy resin CFRP prepregs C of Preparation Example 3 were used and the thickness of the CFRP layer 120 was 0.4 mm. The thickness of the resin layer 120a at the metal CFRP interface was 9 ⁇ m. The obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • Example 7 A sample of a metal-CFRP composite for bending test using M-1 as a metal member 110 and a plurality of polyamide resin CFRP prepregs D of Preparation Example 4 and having a structure shown in FIG.
  • a sample of a metal-CFRP composite for shear test with a CFRP layer 120 having a thickness of 0.4 mm having the structure shown in FIG. 6 was produced by pressing each sample at 3 MPa for 3 minutes with a press machine heated to 230 ° C.
  • the thickness of the resin layer 120a at the metal CFRP interface was 6 ⁇ m.
  • the obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • Example 8 Samples of two types of metal-CFRP composites were produced in the same manner as in Example 1 except that a plurality of the crosslinked phenoxy resins CFRP prepreg E of Production Example 5 were used and the thickness of the CFRP layer 120 was 0.4 mm. . The thickness of the resin layer 120a at the metal CFRP interface was 7 ⁇ m. The obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • Example 9 Using a plurality of M-1 as the metal member 110 roughened by sandpaper (# 400) (10-point average roughness [Rz]: 3 ⁇ m) and the phenoxy resin CFRP prepreg A of Preparation Example 1, A sample of a bending test metal-CFRP composite having the structure shown in FIG. 5 and a shear test metal-CFRP composite having the structure shown in FIG. Each sample was prepared by pressing at 3 MPa for 3 minutes with a press machine heated to 200 ° C. The resin layer thickness 120a at the metal CFRP interface was 5 ⁇ m. The obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • Example 10 Using M-1 as the metal member 110 and the crosslinked phenoxy resin CFRP prepreg E of Preparation Example 5 and pressing at 3 MPa for 5 minutes with a press machine heated at 120 ° C., the structure similar to FIG. A flat laminate A of metal-fiber reinforced resin material was produced. In this laminate A, the partially fused structure of the cross-linked phenoxy resin CFRP prepreg E was maintained. Next, a sample of the metal-CFRP composite formed into the same shape as in FIG. 4D is manufactured by pressing the laminate A at 5 MPa for 5 minutes using a mold with a press machine heated at 200 ° C. did.
  • the thickness of the CFRP layer 120 was 0.4 mm, and the thickness of the resin layer 120a at the metal CFRP interface at the portion indicated by symbol a in FIG. 4D was 7 ⁇ m. After cooling, a test piece was cut out from the location a and subjected to a bending test.
  • a CFRP molded body having a thickness of 0.4 mm was produced by laminating a plurality of phenoxy resin CFRP prepregs F of Production Example 6 and hot pressing them at a pressure of 5 MPa for 5 minutes with a press machine heated to 200 ° C. This is used as a CFRP layer 120 for a bending test of a structure according to FIG. 5 by pressing for 3 minutes at 3-5 MPa with a press machine heated to 200 ° C. together with a metal member 110 using M-1 directly.
  • a sample of a metal-CFRP composite and a sample of a metal-CFRP composite for a shear test having a structure according to FIG. 6 were prepared.
  • the thickness of the resin layer 120a at the metal CFRP interface was 0.8 ⁇ m. The obtained two types of samples were subjected to a bending test and a shearing test after cooling.
  • the metal member 110 has the structure shown in FIG. 5 in the same manner as in Comparative Example 1 except that M-1 roughened with sandpaper (# 400) (10-point average roughness [Rz]: 3 ⁇ m) was used.
  • a sample of a metal-CFRP composite for bending test and a sample of metal-CFRP composite for shear test having a structure shown in FIG. 6 were prepared. The prepared two types of samples were subjected to a bending test and a shear test after cooling, but the metal member 110 and the CFRP layer 120 were easily separated.
  • a sample of a metal-CFRP composite for shear test with a CFRP layer 120 having a thickness of 0.4 mm having the structure shown in FIG. 6 was produced by pressing each sample at 3 MPa for 3 minutes with a press machine heated to 230 ° C.
  • the resin layer thickness 120a at the metal CFRP interface was 0.5 ⁇ m.
  • the obtained two kinds of samples were subjected to a bending test and a shearing test after cooling.
  • a CFRP molded body having a thickness of 0.4 mm was produced by laminating a plurality of phenoxy resin CFRP prepregs B of Production Example 2 and hot pressing them at a pressure of 5 MPa for 5 minutes with a press machine heated to 200 ° C.
  • the CFRP layer 120 is used as a CFRP layer 120 together with the metal member 110 using M-1 and pressed at 3 MPa for 5 minutes with a press machine heated to 120 ° C., thereby reinforcing the metal-fiber structure having the same structure as FIG.
  • a flat laminate A ′ of resin material was produced.
  • the laminate A ′ was preheated with a press heated at 200 ° C. for 1 minute, and then pressed with a metal mold at 5 MPa for 5 minutes, so that the metal shaped into the same shape as FIG.
  • a sample of CFRP composite was prepared. Since the sample was subjected to a bending test, when the test piece was cut out from the site indicated by symbol a in FIG. 4D after cooling, the metal member 110 and the CFRP layer 120 were separated, and measurement was not possible.
  • Tables 1 to 3 show the results of Examples 1 to 10 and Comparative Examples 1 to 4.
  • Examples 1 to 10 which are metal-fiber reinforced resin material composites prepared by the production method of the present invention, have higher mechanical strength and shear adhesion than Comparative Examples 1 to 4. It was excellent in both strengths.
  • the peeling of the metal member 110 and the CFRP layer 120 does not occur as in the comparative example, and no voids are generated in the CFRP layer 120 even when the number of layers is increased. This is a notable phenomenon, and the results were significantly different from those of Comparative Examples 1 and 2 using the prepreg F produced by the conventional method.
  • the metal-fiber reinforced resin material composites of Examples 1 to 10 have a thickness of 5 to 10 ⁇ m at the interface between the metal member 110 and the carbon fiber substrate, based on cross-sectional observation using a scanning electron microscope (SEM). It was confirmed that the resin layer 120a containing no carbon fiber was formed, and defects such as voids could not be confirmed at the interface and inside of the reinforcing fiber base material due to the carbon fiber.
  • SEM scanning electron microscope
  • the CFRP in which the reinforcing fiber base 101 is the carbon fiber 101a has been described as an example.
  • the reinforcing fiber base 101 for example, boron fiber, silicon carbide fiber, glass fiber, aramid fiber, etc.
  • the present invention can also be applied to FRP using any of the fiber materials.
  • SYMBOLS 100,100A ... Metal-CFRP composite 101 ... Reinforced fiber base material, 101a ... Carbon fiber, 102 ... Fine powder, 102A ... Partially fused structure, 103 ... Resin adhesion fiber base material, 104 ... Prepreg, 105 ... Matrix resin , 110 ... Metal member, 120 ... CFRP layer, 120a ... Resin layer, 130 ... Laminated body, 200 ... Mold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

プリプレグ(104)の部分融着構造(102A)が形成された面を、金属部材(110)の表面に当接させた状態で加熱加圧処理を施す。プリプレグ(104)に付着している熱可塑性樹脂を含有する樹脂を完全に溶融させて強化繊維基材(101)に含浸させた後、硬化させてマトリックス樹脂(105)となし、繊維強化樹脂材料としてのCFRP層(120)を形成するとともに、金属部材(110)に圧着させることにより、CFRP層(120)と金属部材(110)とが強固に接着してなる金属-CFRP複合体(100)を形成する。

Description

金属-繊維強化樹脂材料複合体及びその製造方法
 本発明は、金属部材と繊維強化樹脂材料とが積層された金属-繊維強化樹脂材料複合体、及び、その製造方法に関するものである。
 ガラス繊維や炭素繊維などの強化繊維とマトリックス樹脂からなる繊維強化プラスチック(FRP)は、軽量で力学特性に優れることから、民生分野から産業用途まで広く利用されている。特に自動車産業においては、車体重量の軽量化が性能および燃費の向上に最も寄与するため、これまで主に使用されていた鉄鋼材料から、炭素繊維強化プラスチック(CFRP)や、金属部材とCFRPとの複合材料などへの置き換えが積極的に検討されている。
 CFRPと金属部材が複合化した部品や構造体の製造においては、複数の部材を一体化するために、部材ないし材料同士を接合する工程が必要であり、エポキシ樹脂系の熱硬化性接着剤を使用する接合方法が一般に知られている。
 また、近年では、加工性やリサイクル性の向上を目的に、熱可塑性樹脂も繊維強化樹脂材料のマトリックス樹脂として検討が行われている。
 例えば、特許文献1及び特許文献2では、金属部材の接着面に、特定の表面形状パラメータを持つような表面粗化処理を行って硬質で高結晶性の熱可塑性樹脂を射出成形したり、金属部材にエポキシ樹脂の接着層を設けることによって金属部材とCFRPとの接着強度を向上させる技術が開示されている。しかしながら、これらの技術は、特殊な表面微細構造をとるようにケミカルエッチング加工をした金属部材表面の粗化面を硬質の高結晶性の熱可塑性樹脂で埋めることによって強度を発現させている。そのため、粗化や防錆に特別な処理を行わなければならないほか、複合化に際しては、溶融粘度や高い融点の問題から高温プロセスが必要であるために、生産性やコストに問題がある。
 特許文献3では、炭素繊維基材の金属部材との貼合面にエポキシ系等の接着樹脂を含浸させ、他面に熱可塑性樹脂を含浸させてプリプレグとした強化繊維基材と金属との複合体が開示されている。本方法によれば、繊維強化樹脂材料と金属部材という、異なる部材の接合においても、強固な接合強度を有する一体化成形品を提供することができるとしている。しかしながら、本手法は、接着剤層としてエポキシ系の熱硬化性樹脂を使用しているほか、前記接着剤層内に強化繊維を貫入させることにより繊維強化シートと金属層との接合性を保っている。そのため、強化繊維基材として特定の長さの繊維からなる不織布を用いなければならず、一方向繊維強化材やクロス材よりも補強効果が限られてしまう。
 また、特許文献4では、ポリウレタン樹脂マトリックスを使用したCFRP成形材料を使用した鋼板とのサンドイッチ構造体の製造方法が開示されている。本文献の材料は、熱可塑性ポリウレタン樹脂の良成形性を利用するとともに、アフターキュアでポリウレタン樹脂に架橋反応を起こすことによって熱硬化性樹脂とすることにより高強度化を図っている。しかし、ポリウレタン樹脂は耐熱性に劣るため、高温に曝される部材への適用が難しく、用途が限定されてしまうことが問題である。
 さらに、特許文献5には、フェノキシ樹脂又はフェノキシ樹脂に結晶性エポキシ樹脂と架橋剤としての酸無水物を配合した樹脂組成物の粉体を、粉体塗装法により強化繊維基材に塗工してプリプレグを作製し、これを熱プレスにて成形硬化してCFRPとすることが開示されている。また、特許文献5には、アルミ箔やステンレス箔をCFRPに積層できることも示唆されている。しかし、特許文献5では、CFRPと金属部材との複合体に関する実施例がないため、該複合体に関する曲げ強度などの機械強度については検討されていない。
 また、特許文献6には、金属及び繊維強化された熱可塑性材料などからなる平板状の担体材料と、熱可塑性材料からなる支持材料とによって構成される複合材料を加熱し、支持材料にリブ構造を形成するとともに、担体材料を三次元の部品に成形する車体用構造部品の製造方法が提案されている。
 さらに、特許文献7では、積層状態で加熱及び加圧されて使用される繊維強化樹脂中間材であって、強化繊維基材が外面に開口した空隙を有し、粉体の形態の樹脂が半含浸状態にあるものが提案されている。
国際公開WO2009/116484号 特開2011-240620号公報 特開2016-3257号公報 特開2015-212085号公報 国際公開WO2016/152856号 特表2015-536850号公報 特許第5999721号公報
 金属部材と繊維強化樹脂材料との複合材料において、その機械的強度や耐久性を十分に確保するためには、第1に、繊維強化樹脂材料自体の強度を高めること、第2に、金属部材と繊維強化樹脂材料との接着力を強固なものとすること、の2つのポイントが特に重要である。
 上記第1のポイントについて、強化繊維基材への樹脂の含浸が不十分であると、ボイドなどが発生し、繊維強化樹脂材料の機械的強度が不十分となりやすい。この点に関し、上記特許文献7では、強化繊維基材への樹脂の含浸性について検討されている。すなわち、特許文献7では、半含浸状態にある繊維強化樹脂中間材によって、熱硬化性樹脂と比べて粘度の高い熱可塑性樹脂を用いる場合でも、強化繊維基材への樹脂の含浸性を高め、ボイドなどの欠陥が生じ難く賦形性に富んだ繊維強化樹脂材料が得られるとされている。しかしながら、第2のポイント、つまり、金属部材と繊維強化樹脂材料との接着性について、上記特許文献7を含め、従来技術では検討がなされていない。
 また、金属-繊維強化樹脂材料複合体の製造工程数を削減し、スループットを向上させるためには、金属部材と繊維強化樹脂材料のプリプレグとの接合と同時に、金属部材の成形加工を一括して行うことが有効であると考えられる。このような一括処理を行う場合においても、上記第1のポイントである繊維強化樹脂材料自体の強度、及び第2のポイントである金属部材と繊維強化樹脂材料との接着力を確保することが重要となる。
 本発明は、繊維強化樹脂材料のマトリックス樹脂として熱可塑性樹脂を使用し、繊維強化樹脂材料自体が十分な機械的強度を有するとともに、金属部材と繊維強化樹脂材料とが強固に接合し、耐久性に優れた金属-繊維強化樹脂材料複合体を提供すること、さらには、該金属-繊維強化樹脂材料複合体の製造と同時に成形をも可能にする金属-繊維強化樹脂材料複合体の製造方法を提供することを目的とする。
 本発明の金属-繊維強化樹脂材料複合体の製造方法は、金属部材と、前記金属部材の少なくとも1つの面に積層され、強化繊維基材及び該強化繊維基材に含浸された熱可塑性樹脂を含有する樹脂をマトリックス樹脂とする繊維強化樹脂材料と、を備える金属-繊維強化樹脂材料複合体の製造方法である。
 本発明の金属-繊維強化樹脂材料複合体の製造方法は、以下の工程A及び工程B;
 A)前記強化繊維基材の少なくとも片側の面に、前記熱可塑性樹脂を含有する樹脂の部分融着構造が形成されたプリプレグを形成する工程、
 B)前記プリプレグの前記部分融着構造が形成された面を、前記金属部材の表面に当接させた状態で加熱加圧処理を施し、前記熱可塑性樹脂を含有する樹脂を完全に溶融させて前記金属部材の表面に濡れ広げると同時に、前記強化繊維基材へ含浸させることによって、前記繊維強化樹脂材料と前記金属部材とが接着してなる金属-繊維強化樹脂材料複合体を形成する工程、
を含むことを特徴とする。
 本発明の金属-繊維強化樹脂材料複合体の製造方法は、前記プリプレグを形成する工程Aが、以下の工程a及び工程b;
 a)シート状をなす強化繊維基材の少なくとも片側の面に対し、常温で固体の熱可塑性樹脂を含有する樹脂の微粉末を粉体塗装法によって付着させて樹脂付着繊維基材を形成する工程、
 b)前記樹脂付着繊維基材に加熱処理を施し、前記熱可塑性樹脂を含有する樹脂の微粉末を不完全に溶融させた後、固化させることによって、前記部分融着構造を有するプリプレグを形成する工程、
を含んでいてもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法において、前記工程bにおける加熱処理は、100~400℃の範囲内の温度で、30秒間以上3分間未満行われてもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法は、所定温度まで加熱したシート状をなす強化繊維基材の少なくとも片側の面に対し、常温で固体の前記熱可塑性樹脂を含有する樹脂の微粉末を粉体塗装法によって付着させ、前記熱可塑性樹脂を含有する樹脂の微粉末を不完全に溶融させた後、固化させることによって前記部分融着構造を有するプリプレグを形成してもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法は、前記熱可塑性樹脂の微粉末の平均粒子径が、10~100μmの範囲内であってもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法において、前記プリプレグは、熱可塑性樹脂による部分融着構造が形成された前記強化繊維基材の端面を基準にして、該強化繊維基材の厚さに対して、厚み方向の0~50%の範囲内に、前記熱可塑性樹脂の10重量%以上が付着していてもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法において、前記プリプレグは、厚みが40~200μmのときの厚み方向の通気度が500~1000cc/cm/secの範囲内であってもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法は、前記工程Bにおいて、前記繊維強化樹脂材料の一部分であって、前記金属部材の表面と前記強化繊維基材との間に、20μm以下の厚さで、繊維の含有率が5重量%以下の、前記熱可塑性樹脂による樹脂層を形成してもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法において、前記工程Bにおける加熱加圧処理は、100~400℃の範囲内の温度、3MPa以上の範囲内の圧力で、3分間以上行われてもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法は、前記加熱加圧処理と同時に、前記金属部材及び前記プリプレグの3次元的成形加工を行ってもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法は、前記加熱加圧処理における加熱温度が180~240℃の範囲内であってもよく、前記加熱加圧処理と同時に、前記熱可塑性樹脂を含有する樹脂が架橋形成されて架橋硬化物となってもよい。
 本発明の金属-繊維強化樹脂材料複合体の製造方法は、前記架橋形成前の樹脂のガラス転移温度(Tg)が150℃以下であるのに対し、前記架橋硬化物のガラス転移温度(Tg)が160℃以上であってもよい。
 本発明の金属-繊維強化樹脂材料複合体は、金属部材と、前記金属部材の少なくとも1つの面に積層され、強化繊維基材及び該強化繊維基材を覆うマトリックス樹脂を有する繊維強化樹脂材料と、を備えたものである。
 本発明の金属-繊維強化樹脂材料複合体は、前記繊維強化樹脂材料の一部分であって、前記金属部材の表面と前記強化繊維基材との間に、20μm以下の厚さで、繊維の含有率が5重量%以下の、前記熱可塑性樹脂を含有する樹脂による樹脂層を有することを特徴とする。
 本発明によれば、金属部材と、十分な機械的強度を有する繊維強化樹脂材料とが高い接着強度で強固に接合されており、機械的強度と耐久性に優れた金属-繊維強化樹脂材料複合体を簡易な工程で製造できる。
 また、金属部材と繊維強化樹脂材料との複合化に際しては、同時に熱プレスによる金属部材の成形加工が可能であるため、製造工程数の削減が可能でコストにも優れている。
 従って、本発明の金属-繊維強化樹脂材料複合体は、軽量且つ高強度な材料として、電気・電子機器などの筐体のみならず、自動車部材、航空機部材などの用途における構造部材としても好適に使用することができる。
本発明の一実施の形態にかかる金属-CFRP複合体の製造工程を模式的に示す図面である。 図1に続く製造工程を模式的に示す図面である。 図2におけるA部を拡大して模式的に示す図面である。 3次元的一体成形加工による金属-CFRP複合体の製造工程を模式的に示す図面である。 実施例及び比較例における曲げ試験用金属-FRP複合体のサンプルの構成を示す説明図である。 実施例及び比較例におけるせん断試験用金属-FRP複合体のサンプルの構成を示す説明図である。
 以下、適宜図面を参照しながら、本発明の実施の形態を詳細に説明する。
[金属-CFRP複合体の製造方法]
 図1及び図2は、本発明の一実施の形態に係る金属-CFRP複合体の製造方法の主要な工程を示す模式的図面である。また、図3は図2において破線で囲むA部を拡大して示している。まず、本実施の形態の製造方法によって得られる金属-CFRP複合体100は、図2(b)に示すように、金属部材110と、繊維強化樹脂材料としてのCFRP層120と、を備えている。そして、図3に拡大して示すように、金属-CFRP複合体100において、CFRP層120は、マトリックス樹脂105と、該マトリックス樹脂105中に含有され、複合化された強化繊維である炭素繊維101aと、を有している。また、CRPP層120が金属部材110と接する境界付近には、樹脂層120aが形成されている。なお、CFRP層120は、単層に限らず複数層が積層されていてもよく、また、金属部材110の片側に限らず、両面のそれぞれに形成されていてもよい。また、CFRP層120の両面に、それぞれ金属部材110を備えていてもよい。
 本発明方法は、以下の工程A及び工程Bを含むものである。
<工程A>
 工程Aは、炭素繊維101aからなる強化繊維基材101の少なくとも片側の面に、熱可塑性樹脂を含有する樹脂の部分融着構造102Aが形成されたプリプレグ104を形成する工程である。この工程Aは、例えば、以下の方法1又は方法2により実施できる。
(方法1)
 方法1は、以下の工程a及び工程bを含んでいる。
 工程a:
 工程aでは、図1(a)、(b)に示すように、シート状をなす強化繊維基材101の少なくとも片側の面に対し、常温で固体の熱可塑性樹脂を含有する樹脂(以下、「原料樹脂」と記すことがある)の微粉末102を粉体塗装法によって付着させて樹脂付着繊維基材103を形成する。粉体塗装法は、原料樹脂が微粒子であるが故に溶融しやすく、かつ塗装後の塗膜内に適度な空隙を持つため、空気の逃げ道となり、ボイドが発生しにくい。後述する工程Bでプリプレグ104と金属部材110とを加熱圧着する際は、プリプレグ表面で溶融した樹脂が、まずはじめに、金属部材110の表面に速やかに濡れ広がってから強化繊維基材101の内部へと含浸する。そのため、従来技術の溶融含浸法やフィルムスタッキング法に比べ、金属部材110表面への溶融樹脂の濡れ性の不足に起因した不良が起こりにくい。すなわち、強化繊維基材101から押し出された樹脂により金属部材110と接着する溶融含浸法では、作製されたプリプレグにおいて、溶融樹脂による金属部材110表面への濡れ性が不十分となりやすく、フィルムスタッキング法では、強化繊維基材101の厚み方向への樹脂の含浸のし難さによるボイドの発生などが発生しやすくなるが、粉体塗装法では、これらの問題を回避できる。
 粉体塗装法としては、例えば、静電塗装法、流動床法、サスペンジョン法が主な工法として挙げられるが、これらの中でも、静電塗装法および流動床法は、熱可塑性樹脂に適した方法であり、工程が簡便で生産性が良好であることから好ましく、特に静電塗装法は、強化繊維基材101への原料樹脂の微粉末102の付着の均一性が良好であることから最も好適な手法である。
 なお、図1(b)では、樹脂付着繊維基材103の片側の面に原料樹脂の微粉末102が付着した状態を示しているが、樹脂付着繊維基材103の両側の面に微粉末102が付着していてもよい。
(熱可塑性樹脂)
 熱可塑性樹脂としては、結晶性、非結晶性などその性状は特に限定されないが、例えば、フェノキシ樹脂、熱可塑性エポキシ樹脂、ポリオレフィンおよびその酸変性物、ポリスチレン、ポリメチルメタクリレート、AS樹脂、ABS樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等の熱可塑性芳香族ポリエステル、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテルおよびその変性物、ポリフェニレンスルフィド、ポリオキシメチレン、ポリアリレート、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等の熱可塑性樹脂を1種以上使用することができる。
 これらの中でも、フェノキシ樹脂、熱可塑性エポキシ樹脂、ポリアミド、ポリカーボネートは、粉末の製造や入手が比較的容易であることから好ましく使用される。
 なお、「熱可塑性樹脂」には、後述する架橋硬化物の形態をとる樹脂も含まれる。また、「熱可塑性樹脂を含有する樹脂」には、熱可塑性樹脂のほかに、樹脂成分として熱硬化性樹脂を含有することができるが、この場合でも、熱可塑性樹脂を主成分とすることが好ましい。ここで、「主成分」とは、樹脂成分100重量部のうち、50重量部以上含まれる成分を意味する。また、「樹脂成分」には、熱可塑性樹脂や熱硬化性樹脂が含まれるが、架橋剤などの非樹脂成分は含まれない。熱硬化性樹脂としては、例えば、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、ウレタン樹脂等から選ばれる1種以上を好ましく使用することができる。
 また、熱可塑性樹脂は、160~400℃の範囲内の温度域のいずれかで、溶融粘度が3,000Pa・s以下になるものが好ましく、90~2,900Pa・sの範囲内の溶融粘度となるものがより好ましく、100~2,800Pa・sの範囲内の溶融粘度となるものがさらに好ましい。160~400℃の範囲内の温度域における溶融粘度が3,000Pa・sを超えると溶融時の流動性が悪くなり、CFRP層120にボイド等の欠陥が生じやすくなる。
 熱可塑性樹脂の中でもフェノキシ樹脂は、良成形性を備え、炭素繊維101aや金属部材110との接着性に優れる他、酸無水物やイソシアネート化合物、カプロラクタム等を架橋剤として使用することよって、成形後は高耐熱性の熱硬化性樹脂と同様の性質を発現させることもできることから特に好ましく使用される。
 従って、CFRP層120におけるマトリックス樹脂105及び樹脂層120aを構成する樹脂として、フェノキシ樹脂の固化物、又は、樹脂成分100重量部のうちフェノキシ樹脂を50重量部以上含有する樹脂組成物の固化物や硬化物が好ましい。樹脂成分100重量部のうちフェノキシ樹脂を50重量部以上含有する樹脂組成物を使用することによって、金属部材110とCFRP層120とを強固に接合することが可能になる。原料樹脂の組成物は、樹脂成分100重量部のうちフェノキシ樹脂を55重量部以上含むことがより好ましい。
 フェノキシ樹脂は、2価フェノール化合物とエピハロヒドリンとの縮合反応、あるいは2価フェノール化合物と2官能エポキシ樹脂との重付加反応から得られる熱可塑性樹脂であり、溶媒中あるいは無溶媒下に従来公知の方法で得ることができる。
 本発明において好ましく使用されるフェノキシ樹脂は、常温において固形であり、かつ200℃における溶融粘度が10,000Pa・s以下であるものが適する。溶融粘度は、好ましくは1,000Pa・s以下であり、より好ましくは500Pa・s以下である。溶融粘度が10,000Pa・sを超えると、成形加工時の樹脂の流動性が低下し、樹脂が十分行き渡らずにボイドの原因となるため好ましくない。また、フェノキシ樹脂の平均分子量は、質量平均分子量(Mw)として、通常10,000~200,000であるが、好ましくは、20,000~100,000であり、より好ましくは30,000~80,000である。フェノキシ樹脂のMwが低すぎると成形体の強度が劣り、高すぎると作業性や加工性に劣るものとなり易い。なお、Mwはゲルパーミエーションクロマトグラフィーで測定し、標準ポリスチレン検量線を用いて換算した値を示す。
 フェノキシ樹脂の水酸基当量(g/eq)は、通常1000以下であるが、好ましくは750以下であり、特に好ましくは500以下である。水酸基当量が高すぎると架橋密度が不足して耐熱性が低下する懸念があるため好ましくない。
 フェノキシ樹脂のガラス転移温度(Tg)は、65℃~200℃の範囲内のものが適するが、好ましくは70℃~200℃の範囲内であり、より好ましくは80℃~180℃の範囲内である。フェノキシ樹脂のTgが65℃よりも低いと、成形性は良くなるが、架橋硬化物としたときのTgが180℃以上になりにくくなる。フェノキシ樹脂のTgが200℃よりも高いと溶融粘度が高くなり、強化繊維基材にボイドなどの欠陥なく含浸させることが難しくなる。なお、フェノキシ樹脂のTgは、示差走査熱量測定装置(DSC)を用い、10℃/分の昇温条件で、20~280℃の範囲で測定し、セカンドスキャンのピーク値より計算された数値である。
 フェノキシ樹脂としては、上記の物性を満たしたものであれば特に限定されないが、ビスフェノールA型フェノキシ樹脂(例えば、新日鉄住金化学株式会社製フェノトートYP-50、フェノトートYP-50S、フェノトートYP-55U)、ビスフェノールF型フェノキシ樹脂(例えば、新日鉄住金化学株式会社製フェノトートFX-316)、ビスフェノールAとビスフェノールFの共重合型フェノキシ樹脂(例えば、新日鉄住金化学株式会社製YP-70)、前記以外の臭素化フェノキシ樹脂やリン含有フェノキシ樹脂、スルホン基含有フェノキシ樹脂などの特殊フェノキシ樹脂(例えば新日鉄住金化学株式会社製フェノトートYPB-43C、フェノトートFX293、YPS-007等)等を挙げることができる。これらは、単独で、又は2種以上を混合して使用することができる。
 また、フェノキシ樹脂は、酸無水物やイソシアネート、カプロラクタムなどを架橋剤として配合することにより、フェノキシ樹脂側鎖の2級水酸基を利用した架橋性を有するフェノキシ樹脂組成物(X)として使用することもできる。このとき、フェノキシ樹脂組成物(X)は、常温において固形であり、かつ100~350℃における最低溶融粘度が3,000Pa・s以下であるものが適する。なお、最低溶融粘度は、好ましくは2,900Pa・s以下であり、より好ましくは2,800Pa・s以下である。100~350℃における最低溶融粘度が3,000Pa・sを超えると、成形加工時の樹脂の流動性が低下し、樹脂が十分行き渡らずにボイドの原因となるため好ましくない。
 フェノキシ樹脂組成物(X)は、上記のフェノキシ樹脂(本組成物中で、「フェノキシ樹脂(A)」と表記する)と共にエポキシ樹脂(B)と酸無水物からなる架橋剤(C)を配合したものが好ましい。エポキシ樹脂(B)が併存することにより、溶融粘度を低減化して成形性を高める他、架橋硬化物の物性(強度、耐熱性)も高めることができる。
 フェノキシ樹脂組成物(X)は、樹脂成分100重量部のうちフェノキシ樹脂(A)を50重量部以上含むことが好ましい。また、フェノキシ樹脂組成物(X)において、エポキシ樹脂(B)の配合量は、フェノキシ樹脂(A)100重量部に対して、10~85重量部の範囲内が好ましい。つまり、エポキシ樹脂(B)とフェノキシ樹脂(A)との配合比(A:B)が、100:10~100:85であることが好ましい。エポキシ樹脂(B)の配合量が85重量部を超えると、架橋硬化物のTgが180℃以上になりにくくなるほか、フェノキシ樹脂(A)よりもエポキシ樹脂(B)が多くなると、エポキシ樹脂(B)を硬化させるためのプロセス時間が長くなり、好ましくない。また、エポキシ樹脂(B)の配合量が、10重量部未満になるとエポキシ樹脂(B)の配合による粘度低減効果が得られなくなるほか、架橋硬化物が180℃以上のTgを発現しにくくなる。エポキシ樹脂(B)の配合量は、フェノキシ樹脂(A)100重量部に対して、20~83重量部の範囲内がより好ましく、30~80重量部の範囲内が最も好ましい。
 エポキシ樹脂(B)は、2官能以上のエポキシ樹脂であれは従来公知のものを特に制限なく使用することができるが、軟化点を有する固形のエポキシ樹脂が適する。このようなエポキシ樹脂(B)として、ビスフェノールタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYD-011、YDF-2001、YSLV-80XY等)、ビフェニルタイプエポキシ樹脂(例えば、三菱化学株式会社製YX-4000等)、ビフェニルアラルキルタイプエポキシ樹脂(例えば、日本化薬株式会社製NC-3000等)、ジフェニルエーテルタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製YSLV-80DE等)、ビスフェノールスルフィドタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製YSLV-120TE等)、ハイドロキノンタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYDC-1312等)、チオエーテル型エポキシ樹脂(例えば、新日鉄住金化学社製YSLV120TE等)、フェノールノボラックタイプエポキシ樹脂、(例えば、新日鉄住金化学株式会社製エポトートYDPN-638等)、オルソクレゾールノボラックタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYDCN-701等)、アラルキルナフタレンジオールノボラックタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製ESN-355等)、トリフェニルメタンタイプエポキシ樹脂(例えば、日本化薬株式会社製EPPN-502H等)、ナフタレン型エポキシ樹脂(例えば、DIC株式会社製HP-4770、HP-5000等)、ジシクロペンタジエン型エポキシ樹脂(例えば、DIC株式会社製HP-7200等)等が挙げられるが、これらの限定されるものではなく、またこれらを2種類以上混合して使用しても良い。
 上記の固形エポキシ樹脂のなかでも結晶性を示すエポキシ樹脂は、粉体として取り扱いが可能であるためにフィラーの高充填に有利であるだけでなく、その融点以上の温度で高い流動性を示すことから、エポキシ樹脂(B)として特に好ましい。
 なお、結晶性エポキシ樹脂としては、低塩素含有量であって、融点が75℃~145℃の範囲内で、150℃における溶融粘度が2.0Pa・s以下であるものがより好ましい。溶融粘度が2.0Pa・sを超えると、フェノキシ樹脂組成物(X)の成形性が低下し、金属-CFRP複合体100としたときのマトリックス樹脂105の均質性に劣るため好ましくない。
 好ましい結晶性エポキシ樹脂としては、例えば、新日鉄住金化学株式会社製エポトートYSLV-80XY、YSLV-70XY、YSLV-120TE、YDC-1312、三菱化学株式会社製YX-4000、YX-4000H、YX-8800、YL-6121H、YL-6640等、DIC株式会社製HP-4032、HP-4032D、HP-4700等、日本化薬株式会社製NC-3000等を挙げることができる。
 架橋剤(C)としての酸無水物は、常温で固体であり、昇華性があまり無いものであれば特に限定されるものではないが、FRP成形体の耐熱性付与や反応性の点からフェノキシ樹脂(A)の水酸基と反応する酸無水物を2つ以上有する芳香族酸無水物が好ましい。特に、ピロメリット酸無水物のように2つの酸無水物基を有する芳香族化合物は、トリメリット酸無水物の水酸基と比べて架橋密度が高くなり、耐熱性が向上するので好ましく使用される。芳香族酸二無水物でも、例えば4,4’―オキシジフタル酸、エチレングリコールビスアンヒドロトリメリテート、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物といったフェノキシ樹脂およびエポキシ樹脂に対して相溶性を有する芳香族酸二無水物は、Tgを向上させる効果が大きくより好ましいものである。特に、ピロメリット酸無水物のように2つの酸無水物基を有する芳香族酸二無水物は、例えば酸無水物基を1つしか有しない無水フタル酸に比べて架橋密度が向上し、耐熱性が向上するので好ましく使用される。すなわち、芳香族酸二無水物は、酸無水物基が2つあるために反応性が良好で、短い成形時間で脱型に十分な強度の架橋硬化物が得られとともに、フェノキシ樹脂(A)中の2級水酸基とのエステル化反応により、4つのカルボキシル基を生成させるために、最終的な架橋密度を高くすることができる。
 架橋剤(C)の配合量は、通常、フェノキシ樹脂(A)の2級水酸基1モルに対して酸無水物基0.9~1.4モルの範囲内の量であり、好ましくは1.0~1.3モルの範囲内である。酸無水物基の量が少なすぎるとフェノキシ樹脂(A)の2級水酸基に対して反応性の酸無水物基が不足するため、架橋密度が低くなって硬化物の剛性が劣り、多すぎるとフェノキシ樹脂(A)の2級水酸基に対して酸無水物が過剰になり未反応の酸無水物が硬化特性や架橋密度に悪影響を与える。
 フェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)の反応は、フェノキシ樹脂(A)中の2級水酸基と架橋剤(C)の酸無水物基とのエステル化反応、更にはこのエステル化反応により生成したカルボキシル基とエポキシ樹脂(B)のエポキシ基との反応によって架橋、硬化される。フェノキシ樹脂(A)と架橋剤(C)との反応によってもフェノキシ樹脂架橋体を得ることができるが、エポキシ樹脂(B)の共存によってフェノキシ樹脂組成物(X)の溶融粘度を低減化して成形性を高められる他、架橋反応の促進や、架橋密度の向上、機械強度の向上など優れた特性を有する架橋硬化物を得ることができる。なお、フェノキシ樹脂組成物(X)では、エポキシ樹脂(B)を共存してはいるが、熱可塑性樹脂であるフェノキシ樹脂(A)を主成分としており、この2級水酸基と架橋剤(C)の酸無水物基とのエステル化反応が優先していると考えられる。すなわち、架橋剤(C)として使用される酸無水物とエポキシ樹脂(B)との反応は時間がかかるため、架橋剤(C)とフェノキシ樹脂(A)の2級水酸基との反応が先ず起こり、次いで、先の反応で残留した架橋剤(C)や、架橋剤(C)に由来する残存カルボキシル基とエポキシ樹脂(B)とが反応することで更なる架橋密度の向上が図られる。そのため、熱硬化性樹脂であるエポキシ樹脂を主成分とする樹脂組成物とは異なり、架橋性を有するフェノキシ樹脂組成物(X)によって得られる架橋硬化物はその架橋硬化の仕組みから熱可塑性樹脂としての性格が残るほか、硬化剤に酸無水物を使用したエポキシ樹脂組成物よりも貯蔵安定性にも優れる。
(粉体塗装法による塗装条件)
 粉体塗装法に用いる原料樹脂の微粉末102の平均粒子径は、例えば、10~100μmの範囲内が好ましく、40~80μmの範囲内であることがより好ましく、40~50μmの範囲内が最も好ましい。微粉末102の平均粒子径が100μmを超えると、静電場における粉体塗装において、微粉末102が繊維に衝突する際のエネルギーが大きくなり、強化繊維基材101への付着率が低下してしまう。また10μm未満であると、随伴気流によって粒子が飛散してしまい付着効率が低下するほか、大気中を浮遊する原料樹脂の微粉末102が作業環境の悪化を引き起こす可能性がある。原料樹脂の微粉末化は、低温乾燥粉砕機(セントリドライミル)等の粉砕混合機の使用が好適であるが、これらに制限されるものではない。また、原料樹脂の粉砕に際しては、原料となる複数の成分を粉砕してから混合してもよいし、あらかじめ複数の成分を配合した後に粉砕してもよい。
 粉体塗装では、強化繊維基材101への原料樹脂の微粉末102の付着量(樹脂割合:RC)が、例えば、20~50%の範囲内となるように塗工することが好ましく、25~45%の範囲内がより好ましく、25~40%の範囲内がさらに好ましい。RCが50%を超えるとCFRPの引張・曲げ弾性率等の機械物性が低下してしまい、20%を下回ると原料樹脂の付着量が極端に少ないことから強化繊維基材101の内部への原料樹脂の含浸が不十分になり、熱物性、機械物性ともに低くなる懸念がある。
(強化繊維基材に関する条件)
 強化繊維基材101を構成する炭素繊維101aとしては、例えば、チョップドファイバーを使用した不織布基材や連続繊維を使用したクロス材、一方向強化繊維基材(UD材)などを使用することができるが、補強効果の面から、クロス材やUD材の使用が好ましい。また、炭素繊維101aの種類については、例えば、PAN系、ピッチ系のいずれも使用可能であり、目的や用途に応じて、これらを単独で使用してもよいし、又は併用してもよい。
 炭素繊維101aからなる強化繊維基材101としてクロス材やUD材を使用する場合、フィラメントと呼称される炭素繊維が開繊処理されているものが好ましい。
 一般的に炭素繊維は、千~数万本もの多数の短繊維からなる繊維束であり、その断面は円形もしくはやや扁平な楕円形状となっている。このため、繊維束内部にまで樹脂を確実に含浸させることが難しい。開繊処理とは公知の力学的な手法によって、この炭素繊維束を巾方向に拡幅して薄くしたものであり、樹脂含浸性が非開繊品よりも大きく向上するため、成形品の物性も向上する。
 なお、強化繊維基材101の目付は、40~250g/mの範囲内であることが好ましい。40g/m未満の目付では、成形物における強化繊維数が少ないために所望の機械物性が得られない。また、250g/mを超えると強化繊維基材101の内部に樹脂を十分に含浸させることが困難になるため好ましくない。
 工程b:
 工程bでは、図1(b)、(c)に示すように、樹脂付着繊維基材103に加熱処理を施し、原料樹脂の微粉末102を不完全に溶融させた後、固化させることによって、熱可塑性樹脂を含む樹脂による部分融着構造102Aを有するプリプレグ104を形成する。ここで、「不完全に溶融」させるとは、原料樹脂の微粉末102の全部が液滴化し流動するまで溶融させるのではなく、微粉末102の一部分は完全に液滴化するが、大部分の微粉末102は表面のみが液滴化し、中心部分は固体状を保っている状態を意味する。また、「部分融着構造102A」は、強化繊維基材101の表層部近傍において、微粉末102が加熱処理によって部分的に溶融し、近接する微粉末102の溶融物が融着して網目状に連携した状態で固化したものである。部分融着構造102Aによって、強化繊維基材101への密着性が高まり、微粉末102の脱落を防止できるとともに、強化繊維基材101の厚み方向に一定の通気性が確保されるため、後述する工程Bの加熱加圧処理において、強化繊維基材101内の空気の逃げ道が確保され、ボイドの発生を回避できる。なお、部分融着構造102Aは、プリプレグ104の面全体に均等に形成されていることが好ましいが、微視的には偏在していてもよい。
 なお、図1(c)では、プリプレグ104の片側の面に部分融着構造102Aが形成された状態を示しているが、プリプレグ104の両側の面に部分融着構造102Aが形成されていてもよい。
(加熱処理条件)
 加熱処理は、原料樹脂の微粉末102を不完全に溶融させて部分融着構造102Aの形成を可能にするため、使用する原料樹脂の融点やガラス転移温度(Tg)によるものの、おおよそ100℃~400℃の範囲内の温度により行うことが好ましく、結晶性樹脂であれば融点(MP)付近の温度が、非結晶性樹脂であれば、Tg+150℃以内の温度がより好ましい。加熱処理が上限を超えると、微粉末102の熱融解が進み過ぎて部分融着構造102Aが形成されず、通気性が損なわれる可能性がある。また、加熱温度の下限を下回ると、部分融着構造102Aが形成されず、強化繊維基材101への熱融着が不十分となり、プリプレグ104の取扱作業時に、微粉末102の粉落ち、脱落等が発生する懸念がある。
 また、加熱処理時間については、強化繊維基材101に付着した原料樹脂を強化繊維基材101に固定できれば特に制限はされないが、30秒間以上3分間未満、好ましくは30秒間以上2分間未満が適する。すなわち、成形時よりも遥かに短時間で熱処理を行うことによって、強化繊維基材101に樹脂を部分融着構造102Aの状態で固定し、粉落ちを防止する。
 加熱処理後のプリプレグ104の段階では、原料樹脂(部分融着構造102A及び微粉末102のままのもの)は強化繊維基材101の表面付近に集中しており、工程Bの加熱加圧後の成形体のように強化繊維基材101の内部にまで行き渡っていない。なお、加熱処理は、樹脂付着繊維基材103と金属部材110とを接触させた状態で行ってもよい。
(方法2)
 方法2は、上記工程a及び工程bを一括して行う方法である。すなわち、図示は省略するが、所定温度まで加熱したシート状をなす強化繊維基材101の少なくとも片側の面に対し、常温で固体の原料樹脂の微粉末102を粉体塗装法によって付着させ、微粉末102を不完全に溶融させた後、固化させることによって、部分融着構造102Aが形成されたプリプレグ104を形成する。方法1では、粉体塗装された微粉末102を加熱処理により強化繊維基材101に固定したが、方法2では、あらかじめ加熱された強化繊維基材101に微粉末102を粉体塗装することにより、強化繊維基材101への塗工と同時に融着させて部分融着構造102Aを形成させる。
 方法2における諸条件は、上記方法1に準ずるため、省略する。
(プリプレグの厚み)
 工程Aで得られるプリプレグ104は、厚みが40~200μmの範囲内であることが好ましく、50~150μmの範囲内であることがより好ましい。プリプレグ104の厚みが40μm未満であると、ハンドリング性の悪化や樹脂不足による含浸不良を生じることとなる。プリプレグ104の厚みが200μmを超えると、工程Bで強化繊維基材101への溶融樹脂の含浸が不十分となって機械的強度の低下を招く可能性がある。
(プリプレグの通気度)
 プリプレグ104は、厚みが40~200μmのときの厚み方向における通気度が500~1000cc/cm/secの範囲内であることが好ましく、700~900cc/cm/secの範囲内であることがより好ましい。通気度が500cc/cm/sec未満であると、後述する工程Bの加熱加圧処理において、プリプレグ104内の空気の逃げ道が少なくなって、ボイドが発生しやすくなる。すなわち、緻密な金属部材110との接着においては、プリプレグ104中に存在する空気は、その厚み方向に、接着面と反対側へ逃がすことが重要であるため、通気度を500cc/cm/sec以上に制御することによって、プリプレグ104からの脱気を容易にすることができる。一方、通気度が1000cc/cm/secを超えると、原料樹脂の微粉末102が脱落しやすくなって、ハンドリング性が低下する可能性がある。
 プリプレグ104は、その表面の凹凸が表面粗さとして算術平均粗さ(Ra)で0.010~0.100mmであることが好ましく、0.015~0.075mmがより好ましい。Raが上記範囲内であることにより、後述する工程Bの加熱加圧処理において、プリプレグ104内の空気が側面からも抜けることができる。このため、プリプレグ104を緻密な金属部材110で挟み込むような接着においてもプリプレグ104と金属部材110が強固に接着し、機械強度の優れた金属‐CFRP複合体が得られる。
 なお、Raが0.010mm未満であると加熱加圧処理でプリプレグ104どうしが容易に融着してしまうために空気の逃げ道がなくなりボイド発生の原因となるほか、Raが0.100mmを超えるとボイドの抜け残りを生じたりするので適さない。
(プリプレグにおける樹脂濃度勾配)
 プリプレグ104は、原料樹脂による部分融着構造102Aが形成された強化繊維基材101の端面を基準にして、該強化繊維基材101の厚さに対して、厚み方向の0~50%の範囲内に原料樹脂の10重量%以上が付着していることが好ましく、10~40重量%が付着していることがより好ましい。このように、原料樹脂の付着濃度に勾配を設けることによって、次の工程Bで、プリプレグ104における部分融着構造102Aが形成された面を金属部材110と当接して加熱加圧する際に、プリプレグ104と金属部材110との境界に溶融樹脂を十分に展延させることができる。すなわち、熱伝導率が高く、加熱されやすい金属部材110の性質を利用し、その表面に、部分融着構造102Aを含む高濃度の固体状の原料樹脂を接触させることで、樹脂の溶融を促進し、接着境界に多量の溶融樹脂を供給できる。そのため、溶融粘度が比較的大きな原料樹脂についても、短時間でプリプレグ104の全体に浸透させ得るとともに、後述する樹脂層120aの形成も可能になる。なお、部分融着構造102Aが形成された接着面側の樹脂濃度を高くしておいても、通気度を上記範囲内に制御しておくことによって、工程Bにおいて、プリプレグ104中に存在する空気を、プリプレグ104の厚み方向に接着面とは反対側へ逃がすことができるので、ボイドの発生を回避できる。
<工程B>
 工程Bでは、図2(a)、(b)に示すように、工程Aで得たプリプレグ104の部分融着構造102Aが形成された面を、金属部材110の表面に当接させた状態で加熱加圧処理を施す。加熱加圧処理によって、プリプレグ104に付着している原料樹脂を完全に溶融させて金属部材110の表面に濡れ広げると同時に、強化繊維基材101に含浸させる。このように含浸させた原料樹脂が溶融状態から固化もしくは硬化することによって、マトリックス樹脂105となり、繊維強化樹脂材料としてのCFRP層120が形成されるとともに、このCFRP層120が金属部材110に接着する。また、工程Bでは、図3に示すように、プリプレグ104の部分融着構造102Aが形成された側の表面に付着していた原料樹脂の微粉末102が、加熱加圧処理において金属部材110に当接して薄膜状に濡れ広がることによって、炭素繊維101aがほとんど存在しない、ほぼ熱可塑性樹脂を含有する樹脂のみによる樹脂層120aを形成することが好ましい。この樹脂層120aの構造については後述する。このようにして、CFRP層120と金属部材110とが強固に接着してなる金属-CFRP複合体100を形成することができる。
(金属部材)
 金属-CFRP複合体100に使用される金属部材110の材質としては、プレス等による成形加工が可能であれば特に限定されるものではなく、例えば鉄、チタン、アルミニウム、マグネシウムおよびこれらの合金などを挙げることができる。ここで、合金とは、例えば、鉄系合金(ステンレス鋼含む)、Ti系合金、Al系合金、Mg合金などを意味する。金属部材110の好ましい例として、日本工業規格(JIS)等で規格された鉄鋼材料であり、一般構造用や機械構造用として使用される炭素鋼、合金鋼、高張力鋼などを挙げることができる。このような鉄鋼材料の具体例としては、冷間圧延鋼材、熱間圧延鋼材、自動車構造用熱間圧延鋼板材、自動車加工用熱間圧延高張力鋼板材などを挙げることができる。金属部材110の形状や厚みについては、プレス等による成形加工が可能であれば特に限定されるものではないが、例えば板状が好ましい。
 金属部材110が鉄鋼材料である場合、表面に任意の表面処理が施されていてもよい。ここで、表面処理とは、例えば、亜鉛めっきやアルミニウムめっきなどの各種めっき処理、クロメート処理、ノンクロメート処理などの化成処理や、サンドブラストのような物理的、又はケミカルエッチングなどによる化学的な表面粗化処理が挙げられるが、特にこれらに限られるものではない。また、複数種の表面処理が施されていてもよい。表面処理としては、少なくとも防錆処理が行われていることが好ましい。
 また、金属部材110とCFRP層120の接着性を高めることを目的に、金属部材110の表面をプライマーにて処理することも好ましい。プライマーとしては、例えばシランカップリング剤やトリアジンチオール誘導体が好ましい。シランカップリング剤としては、エポキシ系シランカップリング剤やアミノ系シランカップリング剤、イミダゾールシラン化合物が例示される。トリアジンチオール誘導体としては、6-ジアリルアミノ-2,4-ジチオール-1,3,5-トリアジン、6-メトキシ-2,4-ジチオール-1,3,5-トリアジンモノナトリウム、6-プロピル-2,4-ジチオールアミノ-1,3,5-トリアジンモノナトリウム及び2,4,6-トリチオール-1,3,5-トリアジンなどが例示される。
(加熱加圧処理条件)
 加熱加圧処理では、加熱によって原料樹脂が完全に溶融して液状となり、加圧によってプリプレグ104内に浸透していくが、所定の通気度に制御されたプリプレグ104内では、空気の逃げ道が確保されているため、溶融樹脂が空気を追い出しながら浸透していき、比較的低い圧力でも短時間で含浸が完了し、ボイドの発生も回避できる。
 加熱加圧処理は、原料樹脂の微粉末102を完全に溶融させて強化繊維基材101の全体に含浸させるため、使用する熱可塑性樹脂の融点やガラス転移温度によるものの、おおよそ100℃~400℃の範囲内の温度により行うことが好ましく、この温度範囲内において、結晶性樹脂であれば融点(MP)+30℃以上の温度が、非結晶性樹脂であればガラス転移温度(Tg)+100℃以上の温度がより好ましい。上限温度を超えると、過剰な熱を加えてしまうため樹脂の分解が起きる可能性があり、また下限温度を下回ると樹脂の溶融粘度が高いため、強化繊維基材101への含浸性が悪くなる。
 加熱加圧処理において、金属部材110とプリプレグ104とを圧着する際の圧力は、例えば3MPa以上が好ましく、3~5MPaの範囲内がより好ましい。上限を超えると、過剰な圧力を加えてしまうため、変形や損傷が発生する可能性があり、また下限を下回ると強化繊維基材101への含浸性が悪くなる。
 加熱加圧処理の時間については、上記の部分融着構造102A、樹脂の濃度勾配及び通気度の制御によって、例えばフィルムスタック法に比べて含浸時間を短縮できるため、少なくとも3分間以上あれば加熱圧着が可能であり、3~10分間の範囲内が好ましい。
 工程Bでは、加熱加圧処理と同時に、金属部材110及びプリプレグ104を任意の3次元的形状に成形加工してもよい。この場合、金属部材110とプリプレグ104とを圧着し、成形する際の圧力は、金属部材110のプレス成形に必要な圧力を基準とすることが好ましい。
 また、本実施の形態では、金属部材110とプリプレグ104を一括成形することによって3次元形状を有する複合体を作成することが好ましいが、工程Bにおいて、予め任意の3次元的形状に成形された金属部材110にプリプレグ104を圧着することにも、もちろん適するものである。
 加圧成形機による金属部材110とCFRP層120の複合一括成形は、ホットプレスで行われることが好ましいが、あらかじめ所定の温度まで加熱した材料を速やかに低温の加圧成形機にセットして加工を行うこともできる。
 なお、加圧成形機に部材をセットするときに、金属部材110とプリプレグ104を予め仮止めしていてもよい。仮止め条件は、プリプレグ104の部分融着構造102Aが保たれ、通気性が確保されている状態であるならば特に条件は問わない。
 得られた金属-CFRP複合体100は、図2(b)に示すように、金属部材110と、繊維強化樹脂材料としてのCFRP層120と、を備えたものとなる。CFRP層120は、マトリックス樹脂105と、該マトリックス樹脂105中に含有され、複合化された強化繊維である炭素繊維101aと、を有している。
 また、図3に示すように、CFRP層120には、その一部分であって、金属部材110の表面と、該表面に最も近接した炭素繊維101aとの間に、20μm以下の厚さで、繊維の含有率が5重量%以下、好ましくは繊維を含有しない、熱可塑性樹脂を含有する樹脂による樹脂層120aが形成されていることがよい。樹脂層120aは、プリプレグ104の部分融着構造102Aが形成された側の表面に付着していた原料樹脂の微粉末102が、加熱加圧処理において金属部材110に当接して薄膜状に濡れ広がり、それが固化して形成された炭素繊維101aがほとんど存在しない、ほぼ熱可塑性樹脂を含有する樹脂のみによる樹脂層である。つまり、樹脂層120aは、炭素繊維101aからの毛羽だった繊維が貫入する可能性は排除できないものの、樹脂を強化するという観点での繊維を含んでいない。従って、樹脂層120aは、繊維による強化作用が奏されていない樹脂層であり、樹脂層120aの曲げ強度や曲げ弾性率などの機械的強度は、固化した熱可塑性樹脂を含有する樹脂自体の機械的強度と同じである。このような樹脂層120aは、金属部材110とCFRP層120との接着面にほぼ均一な厚みで均等に形成されているとともに、ボイドが存在しないため、金属部材110とCFRP層120との接着性がより一層強固なものとなる。その一方で、樹脂層120aは、繊維強化されていない熱可塑性樹脂を含有する樹脂(マトリックス樹脂105)のみの薄層であるため、その機械的強度は、マトリックス樹脂105中に強化繊維基材101が存在する部分よりも劣ることになる。そのため、樹脂層120aの厚みが大きすぎると、金属-CFRP複合体100の機械的強度や耐久性が損なわれる。かかる観点から、樹脂層120aの厚みは、例えば、15μm以下が好ましく、1~10μmの範囲内であることがより好ましく、5~10μmの範囲内であることが最も好ましい。樹脂層120aの厚みは、例えば、金属-CFRP複合体100をダイヤモンドカッターなどを用いて切断し、CP(クロスセクションポリッシャ)などを用いて研磨・沢磨した断面を走査型電子顕微鏡(SEM)で観察することによって測定することができる。
 金属-CFRP複合体100は、金属部材110及び該金属部材110に接する層として少なくとも1層のCFRP層120を備えていればよく、CFRP層120以外に、CFRP層120に積層される1層以上の任意のCFRP層(図示省略)を備えていてもよい。任意のCFRP層の厚みや層数は、使用目的に応じて適宜設定できる。任意のCFRP層を複数層設ける場合、各CFRP層は、同一の構成であってもよいし、異なっていてもよい。
[3次元的一体成形加工]
 次に、加熱加圧処理と同時に、金属部材110及びプリプレグ104を任意の3次元的形状に成形加工する製造方法の一態様について、図4を参照しながら説明する。ここでは、図4(d)に例示する3次元的形状に加工された金属-CFRP複合体100Aを製造する。
 まず、図4(a)に示すように、平板状のプリプレグ104と、2枚の平板状の金属部材110を準備する。そして、プリプレグ104の両側に、それぞれ金属部材110を配置する。なお、プリプレグ104は、単層でもよいし、複数のプリプレグを重ね合わせた積層体であってもよい。
 次に、図4(b)に示すように、2枚の金属部材110の間に、サンドイッチ状にプリプレグ104を挟み込んで仮貼り合わせを行い、積層体130を形成する。仮貼り合わせは、プリプレグ104と金属部材110とを接着させ、仮止めを行うものである。プリプレグ104の表面には、部分融着構造102Aが形成されており、樹脂量が豊富な状態にあるため、樹脂成分が溶融する程度の熱を加えながら貼り合わせて冷却することで、プリプレグ104と金属部材110との間に適度な接着性を有する積層体130を製造できる。この積層体130は、3次元的形状に加工された金属-CFRP複合体100Aの中間体(半製品)であり、次工程で賦形と樹脂成分の完全な含浸が行われて製品化される。仮貼り合わせの条件は、例えば160℃以下、好ましくは120~150℃程度の温度で加熱することが好ましい。また、加熱と同時に加圧してもよい。積層体130は、このとき、原料樹脂や未架橋状態の樹脂組成物によって強化繊維基材がほぼ含浸されている状態となっていても構わないが、プリプレグ104の部分融着構造102Aが保たれ、通気性が確保されている状態であることが好ましい。
 次に、図4(c)に示すように、積層体130を所定形状に加工が可能な金型200にセットし、加熱加圧成形処理を行う。加熱加圧成形処理によって、原料樹脂が溶融して強化繊維基材101の内部まで浸透してマトリックス樹脂105を形成するとともに、金属部材110との界面に樹脂層120aが形成される。加熱加圧成形処理は、原料樹脂の微粉末102を完全に溶融させて強化繊維基材101の全体に含浸させるため、使用する熱可塑性樹脂の融点やガラス転移温度によるものの、おおよそ100℃~400℃の範囲内の温度により行うことが好ましい。また、加熱加圧成形処理において金属部材110とプリプレグ104とを圧着する際の圧力は、例えば3MPa以上であって、金属部材110の成形が可能な圧力であればよい。
 以上のようにして、例えば図4(d)示すような3次元的形状に一体成形加工された金属-CFRP複合体100Aを製造できる。
 以上の3次元的一体成形加工の好ましい態様として、マトリックス樹脂105の原料樹脂として、架橋性を有するフェノキシ樹脂組成物(X)を使用することもできる。架橋性を有するフェノキシ樹脂組成物(X)は、仮貼り合わせの温度条件では、ほとんど架橋形成されずに樹脂の溶融のみが生じるので、積層体130の段階では、潜在的な架橋反応性を保有したまま、金属部材110とプリプレグ104とが固定された状態を維持できる。このような積層体130を中間体(半製品)とすることによって、賦形された製品よりも省スペースでの保管が可能であり、賦形性と反応性が残っているので需要に応じて半製品を加工することで柔軟な生産体制が可能になる。
 そして、架橋性を有するフェノキシ樹脂組成物(X)を使用することによって、加熱加圧成形処理において、樹脂が未架橋状態から架橋硬化物へと変化するので、架橋硬化後のマトリックス樹脂105及び樹脂層120aのTgが、フェノキシ樹脂(A)単独よりも大きく向上し、耐熱性が高まる。
 すなわち、図4に示す中間体(半製品)に対して加熱加圧成形処理を行う前後で、樹脂が固化しているが架橋形成はしていない未架橋状態の固化物から架橋硬化物へ変化するため、Tgが変化する。具体的には、中間体(半製品)における架橋形成前の樹脂のTgは、例えば150℃以下であるのに対し、加熱加圧成形処理後の架橋形成された樹脂のTgは、例えば160℃以上、好ましくは170~220℃の範囲内に向上するので、金属-CFRP複合体100Aに優れた耐熱性を付与できる。
 原料樹脂として架橋性を有するフェノキシ樹脂組成物(X)を使用する場合は、加熱加圧成形処理において未架橋状態の樹脂を架橋硬化物へ変化させるため、例えば180~240℃の範囲内の温度で10~30分間程度の時間をかけて加熱加圧成形処理を行うことが好ましい。また、加熱加圧成形処理において金属部材110とCFRP層120とを圧着する際の圧力は、例えば3MPa以上であって、金属部材110の成形が可能な圧力であればよい。
<後工程>
 一体化成形後の金属-CFRP複合体100,100Aは、原料樹脂の種類に応じて、例えばポストキュアなどの任意の処理を行うことが好ましい。ポストキュアは、例えば200~250℃で30~60分間程度の時間をかけて行うことが好ましい。なお、ポストキュアに代えて、塗装などの後工程での熱履歴を利用することも可能である。
 また、金属-CFRP複合体100,100Aに対する後工程として、塗装の他、他の部材とのボルトやリベット留めなどによる機械的な接合のための穴あけ加工、接着接合のための接着剤の塗布、組立などが行われる。
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。なお、実施例における各種物性の試験及び測定方法は以下のとおりである。
[機械強度]
 JIS K 7074:1988 繊維強化プラスチックの曲げ試験方法に準拠して、実施例として得られた金属-CFRP複合体の機械強度(曲げ強度、曲げ弾性率)を測定した。図5に示すように、2枚の金属部材110の間に、総厚みが0.2mm厚または0.4mm厚となるように形成したCFRP層120を配置し、各実施例・比較例に示す条件で加熱圧着することによって、曲げ試験用金属-CFRP複合体のサンプルとした。図5における白矢印は、荷重の印加方向である。
 また、機械強度の測定時に、サンプルが破壊したときにCFRP層120から金属部材110が剥離したものを×(不良)、剥離しなかった場合を○(良)と評価した。
[せん断試験]
 JIS K 6850:1999 接着剤の引張りせん断接着強さ試験方法を参考にして測定を行った。
 図6に示すように、2枚の金属部材110を準備し、各金属部材110の端部からそれぞれ10mmの部分を、総厚みが0.2mm厚または0.4mm厚となるように形成したCFRP層120により接着して、せん断試験用金属-CFRP複合体のサンプルを作製した。つまり、せん断試験用金属-CFRP複合体のサンプルは、上下2枚の金属部材101の端部付近の間に、CFRP層120を挟み込み、各実施例・比較例に示す条件で加熱圧着することによって作製した。図6における2つの白矢印は、引張り荷重の印加方向である。
 [ボイド]
 金属-CFRP複合体を、ダイヤモンドカッターを用いて切断し、得られた断面を研磨紙およびダイヤモンド砥粒で研磨した後、光学顕微鏡により観察することによって観察した。ボイドが確認されなかったものを○(良)、確認されたものを×(不良)と評価した。
[ガラス転移温度(Tg)]
 動的粘弾性測定装置(Perkin Elmer社製 DMA 7e)を用いて、5℃/分の昇温条件、25~250℃の範囲で測定し、得られるtanδの極大ピークをTgとした。
[平均粒子径(D50)]
 平均粒子径は、レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3300EX、日機装社製)により、体積基準で累積体積が50%となるときの粒子径を測定した。
[溶融粘度]
 レオメータ(Anton Paar社製)を用いて、サンプルサイズ4.3cmをパラレルプレートに挟み、20℃/minで昇温しながら、周波数:1Hz、負荷ひずみ:5%の条件にて、250℃における溶融粘度を測定した。ただし、架橋性樹脂組成物については、160℃~250℃における粘度の最小値を溶融粘度とした。
[樹脂割合(RC:%)]
 マトリックス樹脂付着前の強化繊維基材の重量(W1)と、樹脂付着後のCFRP成形用材料の重量(W2)から下記の式を用いて算出した。
 樹脂割合(RC:%)=(W2-W1)/W2×100
   W1:樹脂付着前の強化繊維基材重量
   W2:樹脂付着後のCFRP成形用材料の重量
[通気度]
 JIS L1096:2010 A法 に準拠してフラジール型通気性試験機(カトーテック製通気性試験機 KES-F8)にて、実施例で作成した繊維強化プラスチック成形用プリプレグの通気度の測定をおこなった。
[表面粗度]
 三谷商事株式会社製 3D表面形状解析システムNAZCA-3Dを用いて、実施例で作製した繊維強化プラスチック成形用プリプレグの算術平均粗さ(Ra)を測定した。
[樹脂層の厚みの測定]
 金属-CFRP複合体を、ダイヤモンドカッターを用いて切断し、得られた断面を研磨紙およびダイヤモンド砥粒で研磨した後、CP(クロスセクションポリッシャ)処理を用いて琢磨し、走査型電子顕微鏡(SEM)で観察することによって測定した。
[FRPプリプレグ] 
・ポリアミド樹脂CFRPプリプレグ(市販プリプレグ)
 サカイオーベックス社製BHH-100GWODPT1/PA、Vf(繊維体積含有率):47%
[フェノキシ樹脂(A)]
 (A-1):フェノトートYP-50S(新日鉄住金化学株式会社製ビスフェノールA型、Mw=40,000、水酸基当量=284g/eq)、250℃における溶融粘度=90Pa・s、Tg=83℃
[エポキシ樹脂(B)]
 YSLV-80XY(新日鉄住金化学株式会社製テトラメチルビスフェノールF型、エポキシ当量=192g/eq、融点=72℃)
[架橋剤(C)]
 エチレングリコールビスアンヒドロトリメリテート:TMEG
(酸無水物当量:207、融点:160℃)
[ポリアミド樹脂(R-1)]
 CM1017(東レ社製、融点=225℃、250℃における溶融粘度=125Pa・s、Tg=55℃)
[作製例1] 
[フェノキシ樹脂CFRPプリプレグAの作製]
 フェノキシ樹脂(A)として、A-1を粉砕、分級した平均粒子径D50が80μmである粉体を、炭素繊維(UD材:三菱レイヨン社製、パイロフィル TR50S 15L)を開繊して一方向に引き揃えたものを基材として、静電場において、電荷70kV、吹き付け空気圧0.32MPaの条件で粉体塗装を行った。その後、オーブンで170℃、1分間加熱溶融して樹脂を熱融着させて部分融着構造を形成し、厚みが0.13mmであり、通気度が814cc/cm/sec、表面粗度(Ra)は0.040mm、樹脂割合(RC)は48%の一方向繊維強化フェノキシ樹脂CFRPプリプレグAを作製した。
[作製例2]
[フェノキシ樹脂CFRPプリプレグBの作製]
 フェノキシ樹脂(A)として、A-1を粉砕、分級した平均粒子径D50が80μmである粉体を、炭素繊維からなる平織の強化繊維基材(クロス材:東邦テナックス社製 IMS60)の開繊品(サカイオーベックス社製、SA-3203)を基材として、静電場において、電荷70kV、吹き付け空気圧0.32MPaの条件で粉体塗装を行った。その後、オーブンで170℃、1分間加熱溶融して樹脂を熱融着させて部分融着構造を形成し、厚みが0.24mmであり、通気度が527cc/cm/sec、表面粗度(Ra)は0.052mm、樹脂割合(RC)は48%の一方向繊維強化フェノキシ樹脂CFRPプリプレグBを作製した。
[作製例3]
[フェノキシ樹脂CFRPプリプレグCの作製]
 フェノキシ樹脂(A)として、A-1を粉砕、分級した平均粒子径D50が80μmである粉体を、炭素繊維(UD材:三菱レイヨン社製、パイロフィル TR50S 15L)を開繊して一方向に引き揃えたものを基材として、流動床法を用いて粉体塗装を行った。その後、オーブンで170℃、1分間加熱溶融して樹脂を熱融着させて部分融着構造を形成し、厚みが0.15mmであり、通気度712cc/cm/sec、表面粗度(Ra)は0.052mm、樹脂割合(RC)は48%の一方向繊維強化フェノキシ樹脂CFRPプリプレグCを作製した。
[作製例4]
[ポリアミド樹脂CFRPプリプレグDの作製]
 ポリアミド樹脂R-1を粉砕、分級した平均粒子径D50が80μmである粉体を、炭素繊維(UD材:三菱レイヨン社製、パイロフィル TR50S 15L)を開繊して一方向に引き揃えたものを基材として、静電場において、電荷70kV、吹き付け空気圧0.32MPaの条件で粉体塗装を行った。その後、オーブンで170℃、1分間加熱溶融して樹脂を熱融着させて部分融着構造を形成し、厚みが0.15mmであり、通気度788cc/cm/sec、表面粗度(Ra)は0.038mm、樹脂割合(RC)は44%の一方向繊維強化ポリアミド樹脂CFRPプリプレグDを作製した。
[作製例5] 
[架橋フェノキシ樹脂CFRPプリプレグEの作製]
 フェノキシ樹脂(A)としてA-1を100重量部、エポキシ樹脂(B)を30重量部、架橋剤(C)を73重量部準備し、それぞれ粉砕、分級して平均粒子径D50が80μmである粉体にしたものを、乾式粉体混合機(愛知電気社製、ロッキングミキサー)によってドライブレンドした。得られた架橋性フェノキシ樹脂組成物を、炭素繊維からなる平織の強化繊維基材(クロス材:東邦テナックス社製 IMS60)の開繊品(サカイオーベックス社製、SA-3203)を強化繊維基材として、静電場において、電荷70kV、吹き付け空気圧0.32MPaの条件で粉体塗装を行った。その後、オーブンで170℃、1分間加熱溶融して樹脂を熱融着させて部分融着構造を形成し、厚みが0.16mmであり、通気度800cc/cm/sec、表面粗度(Ra)は0.048mm、樹脂割合(RC)は48%の架橋フェノキシ樹脂CFRPプリプレグEを作製した。
 なお、架橋性フェノキシ樹脂組成物の250℃における溶融粘度は、250Pa・sであった。また架橋硬化後のフェノキシ樹脂のTgについては、作製したプリプレグを複数枚積層して200℃に加熱したプレス機で3MPa、3分間プレスして厚さ2mmのCFRP積層体を作製し、170℃で30分間ポストキュアを行った後にダイヤモンドカッターで幅10mm、長さ10mmの試験片を切り出して、動的粘弾性測定装置(Perkin Elmer社製 DMA 7e)を用いて、5℃/分の昇温条件、25~250℃の範囲で測定し、得られるtanδの極大ピークをTgとした。
[作製例6] 
[フェノキシ樹脂CFRPプリプレグFの作製]
 フェノキシ樹脂(A)としてA-1を使用し、200~230℃に加熱した押出し機にてフェノキシ樹脂を溶融し、インフレーション法にて厚さ0.02mmのフェノキシ樹脂シートを作製した。次に、このフェノキシ樹脂シートに炭素繊維(UD材:三菱レイヨン社製、パイロフィル TR50S 15L)を開繊して一方向に引き揃えたものを積層し、熱プレス機を用いて240℃、5MPaでフェノキシ樹脂を強化繊維基材に溶融含浸させて、厚みが0.08mmであり、通気度0cc/cm/sec、表面粗度(Ra)0.014mm、樹脂割合(RC)は44%の一方向繊維強化フェノキシ樹脂CFRPプリプレグFを作製した。
[金属部材]
金属部材(M-1):EG
  新日鐵住金社製電気亜鉛メッキ鋼板 NSECC、厚み0.4mm、化成処理なし
金属部材(M-2):TFS
  新日鐵住金社製 ティンフリースチール鋼板、厚み0.2mm
金属部材(M-3):アルミニウム
  株式会社光社製 BACS厚板シリーズ、アルミ(A1050P)、厚み1mm
[実施例1] 
 金属部材110としてM-1と、作製例1のフェノキシ樹脂CFRPプリプレグAを複数枚使用し、図5に示す構造でCFRP層120の厚み0.2mmの曲げ試験用金属-CFRP複合体のサンプルと、図6に示す構造でCFRP層120の厚み0.2mmのせん断試験用金属-CFRP複合体のサンプルを、それぞれ、200℃に加熱したプレス機で、3MPaで3分間プレスすることで作製した。金属CFRP界面の樹脂層120aの厚みは8μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[実施例2]
 金属部材110としてM-1と、作製例1のフェノキシ樹脂CFRPプリプレグAを複数枚使用し、図5に示す構造でCFRP層120の厚み0.4mmの曲げ試験用金属-CFRP複合体のサンプルと、図6に示す構造でCFRP層120の厚み0.4mmのせん断試験用金属-CFRP複合体のサンプルを、それぞれ、200℃に加熱したプレス機で、3MPaで3分間プレスすることで作製した。金属CFRP界面の樹脂層120aの厚みは8μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[実施例3]
 作製例2のフェノキシ樹脂CFRPプリプレグBを複数枚使用し、CFRP層120の厚みを0.4mmとした以外は実施例1と同様にして、2種類の金属-CFRP複合体のサンプルを作製した。金属CFRP界面の樹脂層120aの厚みは7μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[実施例4]
 金属部材110としてM-2を使用し、CFRP層120の厚みを0.4mmとした以外は実施例1と同様にして、2種類の金属-CFRP複合体のサンプルを作製した。金属CFRP界面の樹脂層120aの厚みは7μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[実施例5]
 金属部材110としてM-3を使用し、CFRP層120の厚みを0.4mmとした以外は実施例1と同様にして、2種類の金属-CFRP複合体のサンプルを作製した。金属CFRP界面の樹脂層120aの厚みは8μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[実施例6]
 作製例3のフェノキシ樹脂CFRPプリプレグCを複数枚使用し、CFRP層120の厚みを0.4mmとした以外は実施例1と同様にして、2種類の金属-CFRP複合体のサンプルを作製した。金属CFRP界面の樹脂層120aの厚みは9μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[実施例7]
 金属部材110としてM-1と、作製例4のポリアミド樹脂CFRPプリプレグDを複数枚使用し、図5に示す構造でCFRP層120の厚み0.4mmの曲げ試験用金属-CFRP複合体のサンプルと、図6に示す構造でCFRP層120の厚み0.4mmのせん断試験用金属-CFRP複合体のサンプルを、それぞれ、230℃に加熱したプレス機で、3MPaで3分間プレスすることで作製した。金属CFRP界面の樹脂層120aの厚みは6μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[実施例8]
 作製例5の架橋フェノキシ樹脂CFRPプリプレグEを複数枚使用し、CFRP層120の厚みを0.4mmとした以外は実施例1と同様にして、2種類の金属-CFRP複合体のサンプルを作製した。金属CFRP界面の樹脂層120aの厚みは7μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[実施例9]
 サンドペーパー(#400)により粗化(10点平均粗さ[Rz]:3μm)した金属部材110としてのM-1と、作製例1のフェノキシ樹脂CFRPプリプレグAを複数枚使用し、CFRP層120の厚みを0.4mmとした以外は実施例1と同様にして、図5に示す構造の曲げ試験用金属-CFRP複合体のサンプルと、図6に示す構造のせん断試験用金属-CFRP複合体のサンプルを、それぞれ、200℃に加熱したプレス機で、3MPaで3分間プレスすることで作製した。金属CFRP界面の樹脂層の厚み120aは5μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[実施例10]
 金属部材110としてM-1と、作製例5の架橋フェノキシ樹脂CFRPプリプレグEを使用し、120℃で加熱したプレス機で3MPa、5分間プレスすることにより、図4(b)と同様の構造の金属‐繊維強化樹脂材料の平板状の積層体Aを作製した。この積層体Aでは、架橋フェノキシ樹脂CFRPプリプレグEの部分融着構造が維持されていた。
 次いで、積層体Aを200℃で加熱したプレス機で金型を用いて5MPa、5分間プレスすることで図4(d)と同様の形状に賦形された金属‐CFRP複合体のサンプルを作製した。このとき、CFRP層120の厚みは0.4mmであり、図4(d)の符号aで示す部位における金属CFRP界面の樹脂層120aの厚みは7μmであった。冷却後、aの箇所から試験片を切り出し、曲げ試験を行った。
[比較例1]
 作製例6のフェノキシ樹脂CFRPプリプレグFを複数枚積層して200℃に加熱したプレス機で5MPaの圧力で5分間熱プレスすることにより厚み0.4mmのCFRP成形体を作製した。これをCFRP層120として、ダイレクトにM-1を用いた金属部材110とともに、200℃に加熱したプレス機で、3~5MPaで3分間プレスすることで、図5に準じた構造の曲げ試験用金属-CFRP複合体のサンプルと、図6に準じた構造のせん断試験用金属-CFRP複合体のサンプルを作製した。金属CFRP界面の樹脂層120aの厚みは0.8μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験およびせん断試験を行った。
[比較例2]
 金属部材110として、サンドペーパー(#400)で粗化(10点平均粗さ[Rz]:3μm)したM-1を使用したこと以外は、比較例1と同様にして図5に示す構造の曲げ試験用金属-CFRP複合体のサンプルと、図6に示す構造のせん断試験用金属-CFRP複合体のサンプルを作製した。作製した2種類のサンプルは、冷却後、曲げ試験及びせん断試験を行おうとしたが、金属部材110とCFRP層120が容易に分離してしまった。
[比較例3]
 金属部材110としてM-1と、市販の含浸型のポリアミド樹脂CFRPプリプレグを複数枚使用し、図5に示す構造でCFRP層120の厚み0.4mmの曲げ試験用金属-CFRP複合体のサンプルと、図6に示す構造でCFRP層120の厚み0.4mmのせん断試験用金属-CFRP複合体のサンプルを、それぞれ、230℃に加熱したプレス機で、3MPaで3分間プレスすることで作製した。金属CFRP界面の樹脂層の厚み120aは0.5μmであった。得られた2種類のサンプルに対し、冷却後、曲げ試験及びせん断試験を行った。
[比較例4]
 作製例2のフェノキシ樹脂CFRPプリプレグBを複数枚積層して200℃に加熱したプレス機で5MPaの圧力で5分間熱プレスすることにより厚み0.4mmのCFRP成形体を作製した。このCFRP成形体は、加熱により樹脂の部分融着構造が消失し、CFRPの内部に樹脂が完全に含浸した状態であった。これをCFRP層120として、M-1を用いた金属部材110とともに、120℃に加熱したプレス機で、3MPaで5分間プレスすることにより、図4(b)と同様の構造の金属‐繊維強化樹脂材料の平板状の積層体A’を作製した。
 次いで、積層体A’を200℃で加熱したプレス機で1分間予熱したのち、金型を用いて5MPa、5分間プレスすることで図4(d)と同様の形状に賦形された金属‐CFRP複合体のサンプルを作製した。なお、サンプルは曲げ試験を行うため、冷却後に図4(d)の符号aで示す部位から試験片を切り出したところ、金属部材110とCFRP層120が分離してしまい測定ができなかった。
 実施例1~10、比較例1~4の結果を表1~表3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3に示されるように、本発明の製造方法によって作成された金属-繊維強化樹脂材料複合体である実施例1~10は、比較例1~4に比べ、機械強度及びせん断接着強度のいずれにおいても優れていた。特に、実施例のサンプルは曲げ試験を行った際に金属部材110とCFRP層120の剥離が比較例のように発生しないことと、高多層化してもCFRP層120内にボイドを生じないことは特筆すべき現象であり、従来法により作製したプリプレグFを使用した比較例1、2とは大きく異なる結果であった。
 また、実施例1~10の金属-繊維強化樹脂材料複合体は、走査型電子顕微鏡(SEM)を用いた断面観察から、金属部材110と炭素繊維基材との界面に5~10μmの厚みで炭素繊維を含有しない樹脂層120aが形成されていることが確認されるとともに、界面および炭素繊維による強化繊維基材の内部にボイドなどの欠陥を確認することができなかった。
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。例えば、上記実施の形態では、強化繊維基材101が炭素繊維101aであるCFRPを例に挙げて説明したが、強化繊維基材101として、例えばボロン繊維、シリコンカーバイド繊維、ガラス繊維、アラミド繊維などの繊維材料を用いるFRPについても、本発明を適用することが可能である。
 本出願は、2017年3月31日に出願された日本国特許出願2017-073196号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。
 100,l00A…金属-CFRP複合体、101…強化繊維基材、101a…炭素繊維、102…微粉末、102A…部分融着構造、103…樹脂付着繊維基材、104…プリプレグ、105…マトリックス樹脂、110…金属部材、120…CFRP層、120a…樹脂層、130…積層体、200…金型

Claims (13)

  1.  金属部材と、
     前記金属部材の少なくとも1つの面に積層され、強化繊維基材及び該強化繊維基材に含浸された熱可塑性樹脂を含有する樹脂をマトリックス樹脂とする繊維強化樹脂材料と、
    を備える金属-繊維強化樹脂材料複合体の製造方法であって、以下の工程A及び工程B;
     A)前記強化繊維基材の少なくとも片側の面に、前記熱可塑性樹脂を含有する樹脂の部分融着構造が形成されたプリプレグを形成する工程、
     B)前記プリプレグの前記部分融着構造が形成された面を、前記金属部材の表面に当接させた状態で加熱加圧処理を施し、前記熱可塑性樹脂を含有する樹脂を完全に溶融させて前記金属部材の表面に濡れ広げると同時に、前記強化繊維基材へ含浸させることによって、前記繊維強化樹脂材料と前記金属部材とが接着してなる金属-繊維強化樹脂材料複合体を形成する工程、
    を含むことを特徴とする金属-繊維強化樹脂材料複合体の製造方法。
  2.  前記プリプレグを形成する工程Aが、以下の工程a及び工程b;
     a)シート状をなす強化繊維基材の少なくとも片側の面に対し、常温で固体の熱可塑性樹脂を含有する樹脂の微粉末を粉体塗装法によって付着させて樹脂付着繊維基材を形成する工程、
     b)前記樹脂付着繊維基材に加熱処理を施し、前記熱可塑性樹脂を含有する樹脂の微粉末を不完全に溶融させた後、固化させることによって、前記部分融着構造を有するプリプレグを形成する工程、
    を含んでいる請求項1に記載の金属-繊維強化樹脂材料複合体の製造方法。
  3.  前記工程bにおける加熱処理は、100~400℃の範囲内の温度で、30秒間以上3分間未満行われる請求項2に記載の金属-繊維強化樹脂材料複合体の製造方法。
  4.  所定温度まで加熱したシート状をなす強化繊維基材の少なくとも片側の面に対し、常温で固体の前記熱可塑性樹脂を含有する樹脂の微粉末を粉体塗装法によって付着させ、前記熱可塑性樹脂を含有する樹脂の微粉末を不完全に溶融させた後、固化させることによって前記部分融着構造を有するプリプレグを形成する請求項1に記載の金属-繊維強化樹脂材料複合体の製造方法。
  5.  前記熱可塑性樹脂を含有する樹脂の微粉末の平均粒子径が、10~100μmの範囲内である請求項2~4のいずれかに記載の金属-繊維強化樹脂材料複合体の製造方法。
  6.  前記プリプレグは、前記熱可塑性樹脂を含有する樹脂による部分融着構造が形成された前記強化繊維基材の端面を基準にして、該強化繊維基材の厚さに対して、厚み方向の0~50%の範囲内に、前記熱可塑性樹脂を含有する樹脂の10重量%以上が付着している請求項1に記載の金属-繊維強化樹脂材料複合体の製造方法。
  7.  前記プリプレグは、厚みが40~200μmのときの厚み方向の通気度が500~1000cc/cm/secの範囲内である請求項1に記載の金属-繊維強化樹脂材料複合体の製造方法。
  8.  前記工程Bにおいて、前記繊維強化樹脂材料の一部分であって、前記金属部材の表面と前記強化繊維基材との間に、20μm以下の厚さで、繊維の含有率が5重量%以下の、前記熱可塑性樹脂を含有する樹脂による樹脂層を形成する請求項1に記載の金属-繊維強化樹脂材料複合体の製造方法。
  9.  前記工程Bにおける加熱加圧処理は、100~400℃の範囲内の温度、3MPa以上の範囲内の圧力で、3分間以上行われる請求項1に記載の金属-繊維強化樹脂材料複合体の製造方法。
  10.  前記加熱加圧処理と同時に、前記金属部材及び前記プリプレグの3次元的成形加工を行う請求項1に記載の金属-繊維強化樹脂材料複合体の製造方法。
  11.  前記加熱加圧処理における加熱温度が180~240℃の範囲内であり、前記加熱加圧処理と同時に、前記熱可塑性樹脂を含有する樹脂が架橋形成されて架橋硬化物となる請求項10に記載の金属-繊維強化樹脂材料複合体の製造方法。
  12.  前記架橋形成前の樹脂のTgが150℃以下であるのに対し、前記架橋硬化物のTgが160℃以上である請求項11に記載の金属-繊維強化樹脂材料複合体の製造方法。
  13.  金属部材と、
     前記金属部材の少なくとも1つの面に積層され、強化繊維基材及び該強化繊維基材を覆うマトリックス樹脂を有する繊維強化樹脂材料と、
    を備えた金属-繊維強化樹脂材料複合体であって、
     前記繊維強化樹脂材料の一部分であって、前記金属部材の表面と前記強化繊維基材との間に、20μm以下の厚さで、繊維の含有率が5重量%以下の、熱可塑性樹脂を含有する樹脂による樹脂層を有することを特徴とする金属-繊維強化樹脂材料複合体。
PCT/JP2018/014021 2017-03-31 2018-03-31 金属-繊維強化樹脂材料複合体及びその製造方法 WO2018182038A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/498,383 US11135825B2 (en) 2017-03-31 2018-03-31 Metal/fiber-reinforced resin material composite body and method for producing same
JP2019509436A JP7069123B2 (ja) 2017-03-31 2018-03-31 金属-繊維強化樹脂材料複合体及びその製造方法
EP18775652.3A EP3603970A4 (en) 2017-03-31 2018-03-31 METAL / FIBER-REINFORCED RESIN MATERIAL COMPOSITE BODY AND METHOD FOR MANUFACTURING THEREOF
KR1020197028038A KR102511723B1 (ko) 2017-03-31 2018-03-31 금속-섬유 강화 수지 재료 복합체 및 그의 제조 방법
CN201880021891.5A CN110461605B (zh) 2017-03-31 2018-03-31 金属-纤维强化树脂材料复合体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073196 2017-03-31
JP2017-073196 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018182038A1 true WO2018182038A1 (ja) 2018-10-04

Family

ID=63676270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014021 WO2018182038A1 (ja) 2017-03-31 2018-03-31 金属-繊維強化樹脂材料複合体及びその製造方法

Country Status (7)

Country Link
US (1) US11135825B2 (ja)
EP (1) EP3603970A4 (ja)
JP (1) JP7069123B2 (ja)
KR (1) KR102511723B1 (ja)
CN (1) CN110461605B (ja)
TW (1) TW201903013A (ja)
WO (1) WO2018182038A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193457A (ja) * 2017-05-16 2018-12-06 小松精練株式会社 炭素繊維複合材および炭素繊維複合材を用いた部材
JP2020122137A (ja) * 2019-01-30 2020-08-13 タキロンシーアイ株式会社 樹脂フィルム、熱可塑性炭素繊維プリプレグ、およびその製造方法
WO2020166620A1 (ja) * 2019-02-13 2020-08-20 積水化学工業株式会社 積層シート
JP2020175511A (ja) * 2019-04-15 2020-10-29 フクビ化学工業株式会社 金属箔‐cfrp積層シート
CN111873575A (zh) * 2019-05-02 2020-11-03 现代自动车株式会社 不同种类材料的集成式结构以及集成不同种类材料的方法
CN113226737A (zh) * 2018-12-27 2021-08-06 日铁化学材料株式会社 金属纤维强化塑料复合材料
EP3733402A4 (en) * 2017-12-28 2021-09-22 Nippon Steel Corporation COMPOSITE OF METAL FIBER REINFORCED RESIN MATERIAL AND ITS PRODUCTION PROCESS
JP2022022762A (ja) * 2020-07-06 2022-02-07 株式会社イノアックコーポレーション 繊維強化樹脂成形体とその製造方法
WO2022054660A1 (ja) 2020-09-11 2022-03-17 日東紡績株式会社 ガラス繊維強化樹脂板
JP7419291B2 (ja) 2021-04-28 2024-01-22 株式会社イノアックコーポレーション 繊維強化成形体の製造方法、樹脂シート、及び樹脂シートの製造方法
JP7510765B2 (ja) 2020-02-10 2024-07-04 倉敷紡績株式会社 繊維強化金属成形体の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008972B1 (ko) * 2017-12-21 2019-08-08 주식회사 포스코 미세 플라스틱 입자가 도입된 플라스틱층과 강판의 복합 소재 및 그 제조방법
WO2020202242A1 (ja) 2019-03-29 2020-10-08 株式会社Ihi 金属樹脂接合方法
WO2020202457A1 (ja) * 2019-04-02 2020-10-08 日本製鉄株式会社 金属-炭素繊維強化樹脂材料複合体
WO2021064872A1 (ja) * 2019-10-01 2021-04-08 日本製鉄株式会社 パネル構造
JP2021088099A (ja) * 2019-12-03 2021-06-10 Jx金属株式会社 金属樹脂複合材料の成形方法、並びに金属樹脂複合部品及びその製造方法
CN111186146A (zh) * 2020-01-14 2020-05-22 上海交通大学 Cfrp/高强钢烘烤硬化热冲压共固化一体化成形方法
KR102213848B1 (ko) * 2020-02-17 2021-02-09 주식회사 휴비스 내구성이 향상된 섬유 보강 고분자 스트립 및 이를 이용한 격자 형상 지오그리드
CN114290790A (zh) * 2021-11-24 2022-04-08 歌尔光学科技有限公司 壳体结构的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220841A (ja) * 1989-02-23 1990-09-04 Sekisui Chem Co Ltd 長尺複合成形体及びその製造方法
JPH04272813A (ja) * 1991-02-27 1992-09-29 Mitsui Toatsu Chem Inc 繊維補強熱可塑性樹脂シートの製造方法及び装置
US5756206A (en) * 1995-03-15 1998-05-26 Custom Composite Materials, Inc. Flexible low bulk pre-impregnated tow
WO2009116484A1 (ja) 2008-03-17 2009-09-24 大成プラス株式会社 亜鉛系鍍金鋼板と被着材の接合体及びその製造方法
JP2011240620A (ja) 2010-05-19 2011-12-01 Taisei Plas Co Ltd 積層板及びその製造方法
JP2015020364A (ja) * 2013-07-19 2015-02-02 日新製鋼株式会社 複合体およびその製造方法、ならびに塗装金属素形材およびその製造方法
JP2015212085A (ja) 2014-05-06 2015-11-26 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG 鋼及びポリウレタンを基礎とする繊維複合部材の製造
JP2016003257A (ja) 2014-06-16 2016-01-12 東レ株式会社 繊維強化樹脂シート、一体化成形品およびそれらの製造方法
JP5999721B2 (ja) 2014-10-17 2016-09-28 株式会社日本製鋼所 繊維強化樹脂中間体及びその製造方法
WO2016152856A1 (ja) 2015-03-26 2016-09-29 新日鉄住金化学株式会社 繊維強化プラスチック成形用材料、その製造方法及び成形物
JP2017073196A (ja) 2015-10-05 2017-04-13 キヤノンファインテック株式会社 加熱装置、定着装置及び画像形成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305523A (ja) * 1997-03-06 1998-11-17 Tsutsunaka Plast Ind Co Ltd 金属・繊維強化樹脂複合体及びそれを用いた強化積層体
JP4802802B2 (ja) 2005-03-25 2011-10-26 東レ株式会社 電子機器用筐体
KR100968278B1 (ko) * 2008-03-28 2010-07-06 삼성전기주식회사 절연시트 및 그 제조방법과 이를 이용한 인쇄회로기판 및그 제조방법
KR101630219B1 (ko) * 2010-12-02 2016-06-14 도레이 카부시키가이샤 금속 복합체의 제조 방법 및 전자기기 하우징
KR20140144694A (ko) * 2012-04-09 2014-12-19 데이진 가부시키가이샤 접합 부재의 제조 방법, 및 접합 부재
DE102012111488A1 (de) 2012-11-27 2014-05-28 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines Strukturbauteils, insbesondere für eine Karosserie
DE102014104475A1 (de) * 2014-03-31 2015-10-01 Volkswagen Ag Kunststoff-Metall-Hybridbauteil und Verfahren zur Herstellung desselben

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220841A (ja) * 1989-02-23 1990-09-04 Sekisui Chem Co Ltd 長尺複合成形体及びその製造方法
JPH04272813A (ja) * 1991-02-27 1992-09-29 Mitsui Toatsu Chem Inc 繊維補強熱可塑性樹脂シートの製造方法及び装置
US5756206A (en) * 1995-03-15 1998-05-26 Custom Composite Materials, Inc. Flexible low bulk pre-impregnated tow
WO2009116484A1 (ja) 2008-03-17 2009-09-24 大成プラス株式会社 亜鉛系鍍金鋼板と被着材の接合体及びその製造方法
JP2011240620A (ja) 2010-05-19 2011-12-01 Taisei Plas Co Ltd 積層板及びその製造方法
JP2015020364A (ja) * 2013-07-19 2015-02-02 日新製鋼株式会社 複合体およびその製造方法、ならびに塗装金属素形材およびその製造方法
JP2015212085A (ja) 2014-05-06 2015-11-26 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG 鋼及びポリウレタンを基礎とする繊維複合部材の製造
JP2016003257A (ja) 2014-06-16 2016-01-12 東レ株式会社 繊維強化樹脂シート、一体化成形品およびそれらの製造方法
JP5999721B2 (ja) 2014-10-17 2016-09-28 株式会社日本製鋼所 繊維強化樹脂中間体及びその製造方法
WO2016152856A1 (ja) 2015-03-26 2016-09-29 新日鉄住金化学株式会社 繊維強化プラスチック成形用材料、その製造方法及び成形物
JP2017073196A (ja) 2015-10-05 2017-04-13 キヤノンファインテック株式会社 加熱装置、定着装置及び画像形成装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOLTY, D. W. ET AL.: "VARIABLES AFFECTING THE PHYSICAL PROPERTIES OF CONSOLIDATION FLEXIBLE POWDER-COATED TOWPREG", 38TH INTERNATIONAL SAMPE (SOCIETY FOR THE ADVANCEMENT OF MATERIAL AND PROCESS ENGINEERING) SYMPOSIUM, 10 May 1993 (1993-05-10), pages 1916 - 1929, XP009516335, ISBN: 0-938994-67-0 *
See also references of EP3603970A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193457A (ja) * 2017-05-16 2018-12-06 小松精練株式会社 炭素繊維複合材および炭素繊維複合材を用いた部材
US11623432B2 (en) 2017-12-28 2023-04-11 Nippon Steel Corporation Metal-fiber-reinforced resin material composite and production method thereof
EP3733402A4 (en) * 2017-12-28 2021-09-22 Nippon Steel Corporation COMPOSITE OF METAL FIBER REINFORCED RESIN MATERIAL AND ITS PRODUCTION PROCESS
CN113226737A (zh) * 2018-12-27 2021-08-06 日铁化学材料株式会社 金属纤维强化塑料复合材料
JP2020122137A (ja) * 2019-01-30 2020-08-13 タキロンシーアイ株式会社 樹脂フィルム、熱可塑性炭素繊維プリプレグ、およびその製造方法
JP7352462B2 (ja) 2019-01-30 2023-09-28 タキロンシーアイ株式会社 樹脂フィルム、熱可塑性炭素繊維プリプレグ、およびその製造方法
WO2020166620A1 (ja) * 2019-02-13 2020-08-20 積水化学工業株式会社 積層シート
JPWO2020166620A1 (ja) * 2019-02-13 2021-12-09 積水化学工業株式会社 積層シート
JP7291128B2 (ja) 2019-02-13 2023-06-14 積水化学工業株式会社 積層シート
EP3925773A4 (en) * 2019-02-13 2022-11-16 Sekisui Chemical Co., Ltd. LAMINATED SHEET
JP2020175511A (ja) * 2019-04-15 2020-10-29 フクビ化学工業株式会社 金属箔‐cfrp積層シート
JP7196006B2 (ja) 2019-04-15 2022-12-26 フクビ化学工業株式会社 金属箔‐cfrp積層シート
CN111873575A (zh) * 2019-05-02 2020-11-03 现代自动车株式会社 不同种类材料的集成式结构以及集成不同种类材料的方法
JP7510765B2 (ja) 2020-02-10 2024-07-04 倉敷紡績株式会社 繊維強化金属成形体の製造方法
JP7326228B2 (ja) 2020-07-06 2023-08-15 株式会社イノアックコーポレーション 繊維強化樹脂成形体とその製造方法
JP2022022762A (ja) * 2020-07-06 2022-02-07 株式会社イノアックコーポレーション 繊維強化樹脂成形体とその製造方法
WO2022054660A1 (ja) 2020-09-11 2022-03-17 日東紡績株式会社 ガラス繊維強化樹脂板
JP7419291B2 (ja) 2021-04-28 2024-01-22 株式会社イノアックコーポレーション 繊維強化成形体の製造方法、樹脂シート、及び樹脂シートの製造方法

Also Published As

Publication number Publication date
EP3603970A1 (en) 2020-02-05
JPWO2018182038A1 (ja) 2020-02-06
KR20190134621A (ko) 2019-12-04
TW201903013A (zh) 2019-01-16
US11135825B2 (en) 2021-10-05
US20210107269A1 (en) 2021-04-15
JP7069123B2 (ja) 2022-05-17
CN110461605A (zh) 2019-11-15
EP3603970A4 (en) 2020-12-30
CN110461605B (zh) 2021-08-17
KR102511723B1 (ko) 2023-03-20

Similar Documents

Publication Publication Date Title
WO2018182038A1 (ja) 金属-繊維強化樹脂材料複合体及びその製造方法
JP6953438B2 (ja) 金属−繊維強化樹脂材料複合体、その製造方法及び接着シート
JP7295376B2 (ja) 金属-繊維強化樹脂材料複合体及びその製造方法
JP6731986B2 (ja) 繊維強化プラスチック成形材料用フェノキシ樹脂粉末
US11331882B2 (en) Metal/fiber-reinforced resin material composite
JP7352059B2 (ja) 金属-繊維強化樹脂材料複合体及び金属-繊維強化樹脂材料複合体の製造方法
JP6888740B2 (ja) 金属−炭素繊維強化樹脂材料複合体及び金属−炭素繊維強化樹脂材料複合体の製造方法
JP7207510B2 (ja) 金属―熱可塑性繊維強化樹脂材料複合部材の加工方法
JP2023124489A (ja) 積層成形体の製造方法及び積層成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509436

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197028038

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018775652

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018775652

Country of ref document: EP

Effective date: 20191031