WO2018180854A1 - 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法 - Google Patents

1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法 Download PDF

Info

Publication number
WO2018180854A1
WO2018180854A1 PCT/JP2018/011331 JP2018011331W WO2018180854A1 WO 2018180854 A1 WO2018180854 A1 WO 2018180854A1 JP 2018011331 W JP2018011331 W JP 2018011331W WO 2018180854 A1 WO2018180854 A1 WO 2018180854A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
cyclohexanetetracarboxylic
cyclohexanetetracarboxylic acid
production method
mass
Prior art date
Application number
PCT/JP2018/011331
Other languages
English (en)
French (fr)
Inventor
慎洋 白井
達之 熊野
伸弥 齋藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2019509646A priority Critical patent/JP7196835B2/ja
Priority to CN201880018816.3A priority patent/CN110461851A/zh
Priority to KR1020197027646A priority patent/KR102609305B1/ko
Priority to EP18774234.1A priority patent/EP3604313A4/en
Priority to US16/496,697 priority patent/US11174269B2/en
Publication of WO2018180854A1 publication Critical patent/WO2018180854A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/54Preparation of carboxylic acid anhydrides
    • C07C51/56Preparation of carboxylic acid anhydrides from organic acids, their salts, their esters or their halides, e.g. by carboxylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/08Saturated compounds having a carboxyl group bound to a six-membered ring

Definitions

  • the present invention relates to a method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • Alicyclic acid anhydrides have been used as raw materials for functional polyimides and functional epoxy resins.
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride is used as a raw material for polyimide resins exhibiting particularly good heat resistance, solvent solubility, thermoplasticity, low water absorption, dimensional stability, and the like.
  • the same ratio of acid anhydride to diamine is desirable. This is because when the molar balance between the acid anhydride and the diamine is lost, the molecular weight of the polyimide does not increase sufficiently. Moreover, when impurities are contained in the diamine and the acid anhydride, the molar balance is lost. Therefore, high purity is required for the acid anhydride as a raw material.
  • an acid anhydride can be obtained by dehydrating a hydrogenated aromatic polycarboxylic acid.
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride is produced by dehydrating and cyclizing 1,2,4,5-cyclohexanetetracarboxylic acid.
  • a heat treatment method or a method using a dehydrating agent is generally used.
  • acid anhydrides such as acetic anhydride and propionic anhydride are used.
  • a method for dehydrating and cyclizing 1,2,4,5-cyclohexanetetracarboxylic acid a method of heating to reflux using acetic anhydride is known (see Patent Document 1).
  • Patent Document 1 discloses that hydrogenated aromatic polycarboxylic acid was dehydrated by a method using acetic anhydride as a dehydrating agent. However, depending on conditions, the high dehydration rate described in Patent Document 1 is disclosed. There was a problem that could not be reproduced. Moreover, in the manufacturing method of the hydrogenated aromatic polycarboxylic acid anhydride described in Patent Document 1, the particle size of the hydrogenated aromatic polycarboxylic acid anhydride is not studied.
  • An object of the present invention is to provide a process for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride that can stably achieve a high dehydration rate.
  • the inventor of the present invention uses a 1,2,4,5-cyclohexanetetracarboxylic acid having a specific average particle size as a raw material, so that a stable high dehydration rate can be obtained. It has been found that 1,2,4,5-cyclohexanetetracarboxylic dianhydride can be obtained, and the present invention has been completed.
  • the present invention provides the following [1] to [13].
  • the average particle diameter of the 1,2,4,5-cyclohexanetetracarboxylic acid is 20 ⁇ m or more (preferably 25 ⁇ m or more, more preferably 30 ⁇ m, 1,000 ⁇ m or less, 500 ⁇ m or less, or 300 ⁇ m or less.
  • a process for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride [2] The proportion of particles having a particle diameter of 10 ⁇ m or less in 1,2,4,5-cyclohexanetetracarboxylic acid is 20% by number or less (preferably 15% by number or less, more preferably 10% by number or less). The production method according to [1]. [3] The proportion of particles having a particle diameter of 40 ⁇ m or more in 1,2,4,5-cyclohexanetetracarboxylic acid is 20 number% or more (preferably 25 number% or more), [1] or [ 2].
  • the proportion of particles having a particle size of 20 ⁇ m or more is 35% by number or more (preferably 45% by number or more, more preferably 55% by number, The production method according to any one of [1] to [3], which is preferably 65% by number or more, and more preferably 75% by number or more. [5] The production method according to any one of [1] to [4], wherein the anhydrous rate of 1,2,4,5-cyclohexanetetracarboxylic acid is 98% or more. [6] The reaction temperature of the dehydration reaction is 80 to 150 ° C. (preferably 90 ° C. or higher, more preferably 95 ° C.
  • Step 1 Step of concentrating an aqueous solution containing 1,2,4,5-cyclohexanetetracarboxylic acid to obtain a concentrate
  • Step 2 Step of cooling the concentrate
  • [12] 1,2,4,5-cyclohexane
  • [13] The production method according to [11] or [12], wherein in step 1, concentration is performed until 1,2,4,5-cyclohexanetetracarboxylic acid crystals are precipitated.
  • the process for producing cyclohexanetetracarboxylic dianhydride according to the present invention comprises 1,2,4,5-cyclohexanetetracarboxylic acid (hereinafter also simply referred to as “cyclohexanetetracarboxylic acid”) in a slurry state in the presence of a dehydrating agent.
  • cyclohexanetetracarboxylic acid in a slurry state in the presence of a dehydrating agent.
  • 5-cyclohexanetetracarboxylic acid has an average particle diameter of 20 ⁇ m or more.
  • a raw material having a small particle size having a larger contact area with the solvent is advantageous, and therefore the particle size of the raw material is also used for the overall speed of this reaction. Is considered to be more advantageous.
  • the reaction proceeds at a higher dehydration rate when a raw material having a larger particle size is used.
  • cyclohexanetetracarboxylic acid which is a raw material
  • cyclohexanetetracarboxylic dianhydride which is a product after a dehydration reaction (also called a dehydration reaction)
  • the dehydration reaction proceeds in a slurry state. More specifically, a part of cyclohexanetetracarboxylic acid dissolves in the solution, and the dehydration reaction proceeds to become cyclohexanetetracarboxylic dianhydride.
  • the generated cyclohexanetetracarboxylic dianhydride also dissolves in the solution.
  • 1,2,4,5-cyclohexanetetracarboxylic acid may be purchased as a commercially available product, or may be produced by nuclear hydrogenation (nuclear hydrogenation) of pyromellitic acid. There is no particular limitation.
  • a method for producing 1,2,4,5-cyclohexanetetracarboxylic acid by nuclear hydrogenation of pyromellitic acid is not particularly limited.
  • pyromellitic acid is used. Is dissolved or suspended in a reaction solvent and hydrogenated in the presence of a catalyst at a hydrogen partial pressure of 1.0 to 15 MPa and a reaction temperature of 30 to 80 ° C., and rhodium and palladium and / or platinum are used as a carbon support as the catalyst.
  • the catalyst is filtered off at a temperature similar to the reaction temperature, the filtrate is cooled to room temperature, the precipitated solid is filtered off, and the filtered solid is dried to obtain 1 2,4,5-cyclohexanetetracarboxylic acid can be obtained.
  • reaction solvent is distilled off from the filtrate and concentrated, and the precipitated solid is filtered off, and then pyromellitic acid hydride is crystallized by cooling or concentration, and the crystals are separated into solid and liquid.
  • pyromellitic acid hydride is crystallized by cooling or concentration, and the crystals are separated into solid and liquid.
  • 1,2,4,5-cyclohexanetetracarboxylic acid crystal (1,2,4,5-cyclohexanetetracarboxylic acid crystal) used as a raw material is 1,2,4,5-cyclohexanetetracarboxylic acid. It is preferable to manufacture from the aqueous solution containing an acid by the following method. That is, in the present invention, the method for producing 1,2,4,5-cyclohexanetetracarboxylic acid crystal has the following steps 1 and 2 in this order, and the concentration of the concentrate obtained in step 1 is 29. It is preferable that they are mass% or more and 34 mass% or less. Step 1: Step of concentrating an aqueous solution containing 1,2,4,5-cyclohexanetetracarboxylic acid to obtain a concentrate Step 2: Step of cooling the concentrate
  • the aqueous solution containing 1,2,4,5-cyclohexanetetracarboxylic acid used in the above step 1 is preferably a reaction solution obtained by a nuclear hydrogenation reaction of pyromellitic acid, but is not limited thereto. It is not a thing.
  • concentration of the concentrate obtained at the process 1 is 29 mass% or more and 34 mass% or less.
  • concentration of the concentrated solution is a value (mass%) obtained by dividing the mass of 1,2,4,5-cyclohexanetetracarboxylic acid contained in the concentrated solution by the total mass of the concentrated solution.
  • a part of 1,2,4,5-cyclohexanetetracarboxylic acid in the concentrated liquid may exist in a solid state by precipitation or the like.
  • the concentration of the concentrate obtained in step 1 is preferably 29.5% by mass or more, more preferably 30% by mass or more.
  • Step 1 it is preferable to perform concentration until a part of 1,2,4,5-cyclohexanetetracarboxylic acid is precipitated. That is, it is preferable to make the concentration of the concentrate higher than the saturation solubility at the concentration temperature (the concentration (mass%) of the saturated aqueous solution).
  • saturated solubility means the concentration (% by mass) of a saturated aqueous solution of 1,2,4,5-cyclohexanetetracarboxylic acid. That is, it means the amount (g) of 1,2,4,5-cyclohexanetetracarboxylic acid contained in 100 g of a saturated aqueous solution of 1,2,4,5-cyclohexanetetracarboxylic acid.
  • the temperature of the concentrated liquid at the time of concentration in Step 1 is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, from the viewpoint of facilitating the concentration and increasing the difference in saturation solubility from when cooled.
  • the temperature is preferably 90 ° C. or higher, and preferably 100 ° C. or lower from the viewpoint that concentration at normal pressure is possible.
  • the concentration may be performed under reduced pressure, and is not particularly limited. When concentration (distilling off the solvent) is performed under reduced pressure, the pressure is preferably 30 to 450 hPa, more preferably 70 to 300 hPa, and still more preferably 100 to 200 hPa.
  • the stirring speed at the time of concentration is not particularly limited as long as the liquid is sufficiently stirred, but is preferably 50 rpm to 1,000 rpm, more preferably 100 rpm to 800 rpm, and still more preferably 200 rpm to 600 rpm.
  • the cooling temperature in the step 2 is preferably 40 ° C. or less, more preferably 30 ° C. or less, still more preferably 20 ° C. or less from the viewpoint of obtaining a good yield, and preferably 0 ° C. from the viewpoint of handleability. As mentioned above, More preferably, it is 3 degreeC or more, More preferably, it is 5 degreeC or more. Further, the cooling rate in step 2 is preferably 1 ° C./h or more, more preferably 5 ° C./h or more, further preferably 10 ° C./h or more, and preferably 40 ° C./h or less, more preferably 30 ° C./h or less, more preferably 20 ° C./h or less.
  • cooling may be performed in a stationary state or in a stirring state, but from the viewpoint of obtaining large crystals, it is preferable to cool in a stationary state, from the viewpoint of productivity. It is preferable to cool in a stirring state.
  • the stirring speed is not particularly limited as long as the liquid is sufficiently stirred during cooling and holding, but is preferably 50 rpm to 1,000 rpm, more preferably 100 rpm to 800 rpm, and still more preferably 200 rpm to 600 rpm. It is.
  • the 1,2,4,5-cyclohexanetetracarboxylic acid crystals precipitated through step 2 may be separated by a usual method such as filtration.
  • the obtained 1,2,4,5-tetracarboxylic acid crystal was converted to 1,2,4,5-cyclohexanetetracarboxylic acid at low temperature water or 1,2,4,5-cyclohexanetetracarboxylic acid. You may wash
  • the obtained 1,2,4,5-cyclohexanetetracarboxylic acid crystal is preferably dried.
  • the purity of the 1,2,4,5-cyclohexanetetracarboxylic acid crystals produced by the above-described Step 1 and Step 2 is preferably 98% by mass or more, more preferably 98.5% by mass or more, and further preferably 99% by mass. % Or more, more preferably 99.5% by mass or more.
  • the upper limit of purity is not particularly limited.
  • the yield of 1,2,4,5-cyclohexanetetracarboxylic acid is preferably 50% by mass, more preferably 60% by mass or more, still more preferably 65% by mass or more, and still more preferably 70% by mass or more. is there. Although an upper limit is not specifically limited, From a viewpoint on manufacture, Preferably it is 95 mass% or less.
  • the average particle size of 1,2,4,5-cyclohexanetetracarboxylic acid as a raw material is 20 ⁇ m or more.
  • cyclohexanetetracarboxylic acid having an average particle diameter of 20 ⁇ m or more a good dehydration rate can be obtained.
  • the average particle size of cyclohexanetetracarboxylic acid is preferably 25 ⁇ m or more, more preferably 30 ⁇ m or more.
  • the upper limit of the average particle diameter of cyclohexanetetracarboxylic acid is not particularly limited, but may be, for example, 1,000 ⁇ m or less, 500 ⁇ m or less, or 300 ⁇ m or less from the viewpoint of ease of charging the raw material into the reaction vessel.
  • the average particle diameter of cyclohexanetetracarboxylic acid is the major axis of each particle in a 100-fold or 1,000-fold image taken by a field emission scanning electron microscope (FE-SEM). The diameter is measured on 100 particles using image processing software image J. Let the average value of the major axis length of each obtained particle be the average particle diameter of cyclohexanetetracarboxylic acid.
  • the ratio of particles having a small particle diameter is small in the raw material cyclohexanetetracarboxylic acid.
  • the proportion of particles having a particle size of 10 ⁇ m or less is preferably 20% by number or less, more preferably 15% by number or less, and even more preferably 10% by number or less.
  • the ratio of cyclohexanetetracarboxylic acid particles having a particle diameter of 10 ⁇ m or less is a 100 ⁇ or 1,000 ⁇ image taken with a field emission scanning electron microscope (FE-SEM). The major axis diameter of each particle is measured for 100 particles using image processing software image J. Obtained from the long axis length of each particle obtained.
  • the raw material cyclohexanetetracarboxylic acid has a large proportion of particles having a large particle size.
  • the proportion of particles having a particle size of 40 ⁇ m or more is preferably 10% by number or more, more preferably 15% by number or more, still more preferably 20% by number or more, and even more preferably 25% by number or more.
  • the ratio of particles having a particle diameter of 40 ⁇ m or more is within the above range, a production method with a more excellent dehydration rate can be obtained.
  • the ratio of cyclohexanetetracarboxylic acid particles having a particle diameter of 40 ⁇ m or more is a 100 ⁇ or 1,000 ⁇ image taken with a field emission scanning electron microscope (FE-SEM).
  • the major axis diameter of each particle is measured for 100 particles using image processing software image J. Obtained from the long axis length of each particle obtained.
  • the raw material cyclohexanetetracarboxylic acid has a large proportion of particles having a large particle size.
  • the ratio of particles having a particle size of 20 ⁇ m or more is preferably 35% by number or more, more preferably 45% by number or more, still more preferably 55% by number or more, and even more preferably 65% by number or more. More preferably, it is 75% by number or more.
  • the ratio of particles having a particle diameter of 20 ⁇ m or more is within the above range, a production method with a more excellent dehydration rate can be obtained.
  • the ratio of cyclohexanetetracarboxylic acid particles having a particle diameter of 20 ⁇ m or more is a 100 ⁇ or 1,000 ⁇ image taken with a field emission scanning electron microscope (FE-SEM).
  • the major axis diameter of each particle is measured for 100 particles using image processing software image J. Obtained from the long axis length of each particle obtained.
  • cyclohexanetetracarboxylic acid there is no particular limitation on the method of making cyclohexanetetracarboxylic acid the above-described average particle size, or the proportion of particles having a particle size of 20 ⁇ m or more, 40 ⁇ m or more, or 10 ⁇ m or less, and a known method can be selected and used as appropriate. Good. Specifically, a method of sieving and using cyclohexanetetracarboxylic acid having a desired particle size range is exemplified. In addition, when producing cyclohexanetetracarboxylic acid by a nuclear hydrogenation reaction of pyromellitic acid, the average particle size can be increased by drying under mild conditions, and the particle size is 10 ⁇ m or less. Can be reduced.
  • mild drying conditions mean mere heat drying, drying under a small amount of nitrogen stream, and the like.
  • a flash jet dryer made by Seishin Enterprise Co., Ltd.
  • a dry meister Hosokawa Micron Co., Ltd.
  • the particle size becomes small, and therefore it is preferable to avoid the use of such a drying apparatus in the present invention.
  • cyclohexanetetracarboxylic acid having a large average particle diameter and a small particle ratio of 10 ⁇ m or less may be obtained.
  • the target crystal is obtained by preferably using acetic acid as a solvent, cooling after heating and stirring, and solid-liquid separation.
  • cyclohexanetetracarboxylic acid mixed with various particle sizes cyclohexanetetracarboxylic acid having a larger average particle size can be obtained by dissolving only small particles using solid-liquid separation by utilizing the difference in dissolution rate depending on the particle size. An acid can be obtained.
  • a solvent preferably acetic acid
  • the dehydrating agent used in the present invention is not particularly limited as long as it is appropriately selected from known dehydrating agents.
  • known dehydrating agents include acetic anhydride, propionic anhydride, trifluoroacetic anhydride, succinic anhydride, maleic anhydride, benzoic anhydride, phthalic anhydride, acetyl chloride, phosphate chloride, thionyl chloride, phosgene and the like. It is done.
  • acetic anhydride is preferable as the dehydrating agent from the viewpoints of economy and ease of use.
  • the amount of acetic anhydride used is preferably 2.0 to 100 mole times the number of moles of the 1,2,4,5-cyclohexanetetracarboxylic acid.
  • the amount of acetic anhydride used is preferably 2.0 mol times or more, more preferably 2.5 mol times or more, still more preferably 3 mol times or more, and still more preferably, from the viewpoint of obtaining a sufficient dehydration rate. Is 4 mol times or more, and from the viewpoint of economy and removing the dehydrating agent after the reaction, it is preferably 100 mol times or less, more preferably 75 mol times or less, still more preferably 50 mol times or less, More preferably, it is 25 mol times or less.
  • acetic anhydride when acetic anhydride is used as the dehydrating agent, since acetic anhydride is a liquid, it also has a function as a solvent.
  • cyclohexanetetracarboxylic acid is subjected to a dehydration reaction (also referred to as a dehydration reaction) in a slurry state in the presence of a dehydrating agent.
  • the slurry state means that the raw material cyclohexanetetracarboxylic acid does not completely dissolve in the dehydrating agent and the solvent added as necessary, but exists in a solid state, and the product is an acid anhydride.
  • the reaction temperature in the dehydration reaction is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, and still more preferably 95 from the viewpoint of promoting the dissolution of cyclohexanetetracarboxylic acid in a solvent and promoting the dehydration reaction of cyclohexanetetracarboxylic acid. °C or more.
  • it is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, further Preferably it is 130 degrees C or less, More preferably, it is 120 degrees C or less.
  • the dehydration reaction only the slurry of cyclohexanetetracarboxylic acid and the dehydrating agent may be heated, or the dehydrating agent may be heated to reflux.
  • the dehydration reaction is preferably performed in an inert gas atmosphere such as nitrogen gas.
  • the dehydration reaction is also preferably performed in the presence of a dehydrating agent and a solvent.
  • the solvent is not particularly limited, but acetic acid (also referred to as glacial acetic acid) is preferably used as the solvent.
  • the amount of acetic acid to be used is preferably 0.5 to 10 times by volume, more preferably 1 to 5 times by volume with respect to the dehydrating agent.
  • hydrocarbons, halogenated hydrocarbons, esters, ketones, ethers, fatty acids and the like having a boiling point of 50 ° C. or more may be added as a solvent.
  • the anhydride ratio of the raw material 1,2,4,5-cyclohexanetetracarboxylic acid is preferably 98.0% or more, more preferably 98.5% or more, and 99.99. It is more preferably 0% or more, and particularly preferably 99.3% or more.
  • the dehydration rate is measured by the method described in the examples.
  • it is preferable to further include a step of recovering cyclohexanetetracarboxylic dianhydride (hereinafter also simply referred to as a recovery step).
  • a recovery step After the dehydration reaction of cyclohexanetetracarboxylic acid, the reaction solution is cooled to room temperature, crystal of cyclohexanetetracarboxylic dianhydride is precipitated, and solid-liquid separation is performed to obtain cyclohexanetetracarboxylic dianhydride. Can do.
  • the amount of crystals deposited is large, which is industrially advantageous.
  • the solid-liquid separated crystals of cyclohexanetetracarboxylic dianhydride are preferably dried appropriately.
  • the mother liquor from which the crystals have been separated may be recycled. It is only necessary to select whether to return the mother liquor to the reaction tank for the dehydration reaction according to the degree of accumulation of impurities in the system.
  • the hydrogenation reaction was continued until hydrogen was supplied up to 8 MPa, the temperature was raised to 50 ° C., and the hydrogen absorption amount of 3 mol times the amount of pyromellitic acid charged was supplied while maintaining the pressure and temperature.
  • the obtained reaction liquid was extracted, and the catalyst was filtered to obtain a colorless and transparent filtrate. Thereafter, the obtained filtrate was concentrated until the nuclear hydrogenated pyromellitic acid concentration became 33% by mass, and then cooled to 20 ° C. to precipitate 1,2,4,5-cyclohexanetetracarboxylic acid crystals. It was. The precipitated crystals were separated by filtration.
  • a 2.5 m 3 SUS316 conical dryer was charged with the obtained 1,2,4,5-cyclohexanetetracarboxylic acid crystals, dried at 40 ° C. for 16 hours, and then at 90 ° C. for 29 hours (total 45 hours). ) Drying gave white crystals.
  • the obtained 1,2,4,5-cyclohexanetetracarboxylic acid was measured for particle size by SEM observation. The average particle size was 33.4 ⁇ m.
  • the proportion of particles having a particle size of 10 ⁇ m or less was 5% by number, the proportion of particles having a particle size of 20 ⁇ m or more was 82% by number, and the proportion of particles having a particle size of 40 ⁇ m or more was 28% by number.
  • the ratio of particles having a particle diameter (major axis length) of 10 ⁇ m or less, the ratio of particles having a particle diameter of 20 ⁇ m or more, and the ratio of particles having a particle diameter (major axis length) of 40 ⁇ m or more were calculated.
  • Preparation Example 1-2 100 g of 1,2,4,5-cyclohexanetetracarboxylic acid (average particle size: 33.4 ⁇ m) obtained in Preparation Example 1-1 in a glass 500 mL four-necked flask equipped with a thermocouple, stirrer, and temperature controller Then, 283.37 g of acetic acid was charged, and the temperature was raised to 100 ° C. while stirring, and stirring was continued at 100 ° C. for 5 hours after completion of the heating. The obtained slurry was subjected to solid-liquid separation by suction filtration using quantitative filter paper No. 5B (manufactured by ADVANTEC) at a temperature close to 100 ° C. without cooling.
  • quantitative filter paper No. 5B manufactured by ADVANTEC
  • the obtained wet crystal of 1,2,4,5-cyclohexanetetracarboxylic acid was dried at 130 ° C. for 3 hours under a nitrogen stream while supplying nitrogen at 1 L / min with a dryer. , 4,5-Cyclohexanetetracarboxylic acid white crystals were obtained.
  • the average particle size was 46.0 ⁇ m.
  • the ratio of particles having a particle diameter of 10 ⁇ m or less was 2% by number, the ratio of particles having a particle diameter of 20 ⁇ m or more was 81% by number, and the ratio of particles having a particle diameter of 40 ⁇ m or more was 45% by number.
  • the hydrogenation reaction was continued until hydrogen was supplied up to 8 MPa, the temperature was raised to 50 ° C., and the hydrogen absorption amount of 3 mol times the amount of pyromellitic acid charged was supplied while maintaining the pressure and temperature.
  • the obtained reaction liquid was extracted, and the catalyst was filtered to obtain a colorless and transparent filtrate. Thereafter, the obtained filtrate was concentrated until the nuclear hydrogenated pyromellitic acid concentration became 33% by mass, and then cooled to 20 ° C. to precipitate 1,2,4,5-cyclohexanetetracarboxylic acid crystals. It was. The precipitated crystals were separated by filtration.
  • the obtained crystals of 1,2,4,5-cyclohexanetetracarboxylic acid were charged into a flash jet dryer (manufactured by Seishin Enterprise Co., Ltd.), the raw material supply rate was 55 kg / h, the inlet temperature was 170 ° C., the outlet temperature was 110 ° C., Drying was performed under conditions of a raw material temperature of 12.4 ° C., a discharge air flow rate of 6.8 Nm 3 / min, and a discharge pressure of 53 kPa, thereby obtaining white crystals of 1,2,4,5-cyclohexanetetracarboxylic acid.
  • the obtained white crystals of 1,2,4,5-cyclohexanetetracarboxylic acid were measured for particle size by SEM observation.
  • the average particle size was 6.9 ⁇ m.
  • the ratio of particles having a particle diameter of 10 ⁇ m or less was 81% by number, the ratio of particles having a particle diameter of 20 ⁇ m or more was 3.2%, and the ratio of particles having a particle diameter of 40 ⁇ m or more was 0%.
  • Preparation Example 1-4 100 g of 1,2,4,5-cyclohexanetetracarboxylic acid (average particle size: 6.9 ⁇ m) obtained in Preparation Example 1-3 in a glass 500 mL four-necked flask equipped with a thermocouple, stirrer, and temperature controller Then, 283.37 g of acetic acid was charged, and the temperature was raised to 100 ° C. while stirring, and stirring was continued at 100 ° C. for 5 hours after completion of the heating. The obtained slurry liquid was subjected to quantitative filter paper No. 1 at a temperature close to 100 ° C. without cooling. Solid-liquid separation was performed by suction filtration using 5B (manufactured by ADVANTEC).
  • the obtained wet crystals of 1,2,4,5-cyclohexanetetracarboxylic acid are dried at 130 ° C. for 3 hours while supplying 1 L / min under a nitrogen stream in a dryer.
  • -White crystals of cyclohexanetetracarboxylic acid were obtained.
  • the average particle size was 17.3 ⁇ m.
  • the ratio of particles having a particle diameter of 10 ⁇ m or less was 24% by number, the ratio of particles having a particle diameter of 20 ⁇ m or more was 32%, and the ratio of particles having a particle diameter of 40 ⁇ m or more was 3%.
  • the hydrogenation reaction was continued until hydrogen was supplied up to 8 MPa, the temperature was raised to 50 ° C., and the hydrogen absorption amount of 3 mol times the amount of pyromellitic acid charged was supplied while maintaining the pressure and temperature.
  • the obtained reaction liquid was extracted, and the catalyst was filtered to obtain a colorless and transparent filtrate. Thereafter, the obtained filtrate was concentrated at 100 ° C. until the concentration of nuclear hydrogenated pyromellitic acid reached 27.2% by mass, and then cooled to 20 ° C. to obtain 1,2,4,5-cyclohexanetetracarboxylic acid. Crystal was precipitated. The precipitated crystals were separated by filtration.
  • H-PMA purity 1,2,4,5-cyclohexanetetracarboxylic acid (hereinafter also referred to as H-PMA) in the obtained crystal was measured as follows. Specifically, 0.10 g of the obtained crystal was collected in a test tube, 3.0 g of triethylammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd.), and 10 ml of trimethyl phosphate (manufactured by Kishida Chemical Co., Ltd.). In addition, it was heated at 180 ° C. for 90 minutes with a block heater to carry out esterification treatment.
  • Step 2 The combined yield of Step 1 and Step 2 is the value obtained by multiplying the mass of the crystal obtained by crystallization (Step 2) by the H-PMA purity, and the mass of the charged H-PMA aqueous solution (used in Step 1). (Mass of aqueous solution containing H-PMA) divided by the value obtained by multiplying the concentration of H-PMA in the aqueous solution by a factor of 100. That is, it is expressed by the following formula.
  • a method for analyzing the concentration of H-PMA in the aqueous solution containing H-PMA used in Step 1 is shown below. Specifically, 0.60 g of an aqueous solution (concentration 5 to 30% by mass) containing H-PMA was collected in a test tube, 3.0 g of triethylammonium chloride (Wako Pure Chemical Industries, Ltd.), trimethyl phosphate ( 10 ml of Kishida Chemical Co., Ltd.) was added, heated at 180 ° C. for 45 minutes with a block heater, and taken out once.
  • Example 1 In a glass 500 mL four-necked flask equipped with a thermocouple, a Dimroth condenser, and a stirrer, 1,2,4,5-cyclohexanetetracarboxylic having an average particle size of 33.4 ⁇ m obtained in Preparation Example 1-1 47.5 g (0.18 mol) of acid, 55.4 g of acetic anhydride (0.542 mol, 3.0 mol times with respect to cyclohexanetetracarboxylic acid to be added), 134.6 g of acetic acid (2.5 volume times of acetic anhydride) The system was replaced with nitrogen gas while stirring. Subsequently, the temperature was raised to 100 ° C.
  • Example 2 and Comparative Examples 1 and 2 Dehydration reaction of cyclohexanetetracarboxylic acid in the same manner as in Example 1 except that the cyclohexanetetracarboxylic acid used was changed to the cyclohexanetetracarboxylic acid obtained in Preparation Example 1-2, 1-3, or 1-4, respectively. The dehydration rate was measured. The results are shown in Table 3 below.
  • Pretreatment conditions for liquid chromatography A sample of 2 g was precisely weighed, 100 ml of dehydrated methanol was added, heated, refluxed for 1 hour to conduct a methyl esterification reaction, and prepared as a sample for liquid chromatography. In this pretreatment, only cyclohexanetetracarboxylic dianhydride in the sample is esterified, and 1,2,4,5-cyclohexanetetracarboxylic acid that is a reaction raw material in the sample is not esterified.
  • cyclohexanetetracarboxylic acid is measured, the amount of cyclohexanetetracarboxylic acid in the sample is quantified by an absolute calibration method, and the mass ratio of the cyclohexanetetracarboxylic acid in the sample is determined. This was subtracted from 100 to obtain the dehydration rate. That is, when 2 g of unreacted cyclohexanetetracarboxylic acid is contained in 100 g of the sample, the dehydration rate is 98%.
  • cyclohexanetetracarboxylic dianhydride can be stably obtained at a high dehydration rate by the production method of the present invention. Further, the cyclohexanetetracarboxylic dianhydride obtained by the present invention is high in purity, and is expected to be used as a raw material for polyimide, epoxy resin curing agent, solder resist and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本発明は、安定して高い無水化率を達成できる1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法を提供することを目的とする。 本発明の1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法は、1,2,4,5-シクロヘキサンテトラカルボン酸を脱水剤の存在下、スラリー状態で脱水反応を行い、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を製造する方法において、前記1,2,4,5-シクロヘキサンテトラカルボン酸の平均粒子径が20μm以上であることを特徴とする。

Description

1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法
 本発明は、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法に関する。
 脂環式酸無水物は機能性ポリイミドや機能性エポキシ樹脂の原料として用いられてきた。その中で1,2,4,5-シクロヘキサンテトラカルボン酸二無水物は特に良好な耐熱性、溶媒可溶性、及び熱可塑性と低吸水性、寸法安定性等を示すポリイミド樹脂の原料として用いられている。
 ポリイミドの合成には酸無水物とジアミンの比率は等量が望ましい。酸無水物とジアミンのモルバランスが崩れると、ポリイミドの分子量が十分に上がらないためである。また、ジアミンと酸無水物に不純物が含まれると、モルバランスが崩れる原因となる。そのため原料である酸無水物には高い純度が要求される。
 水素化芳香族ポリカルボン酸を脱水反応させることにより、酸無水物を得られることが知られている。例えば1,2,4,5-シクロヘキサンテトラカルボン酸二無水物は、1,2,4,5-シクロヘキサンテトラカルボン酸を脱水閉環させて製造する。水素化芳香族ポリカルボン酸の6員環に隣り合って結合したカルボキシ基を脱水、閉環して環状酸無水物を合成するには、加熱処理する方法又は脱水剤を用いる方法が一般的である。脱水剤として無水酢酸、無水プロピオン酸などの酸無水物が用いられる。
 1,2,4,5-シクロヘキサンテトラカルボン酸を脱水閉環させる方法としては、無水酢酸を用いて加熱還流させる方法が知られている(特許文献1参照)。
特開2003-286222号公報
 特許文献1には、脱水剤として無水酢酸を用いた方法で、水素化芳香族ポリカルボン酸を脱水させたことが開示されているが、条件によっては特許文献1に記載された高い無水化率が再現できないという課題があった。
 また、特許文献1に記載の水素化芳香族ポリカルボン酸無水物の製造方法においては、水素化芳香族ポリカルボン酸無水物の粒径については、検討されていない。
 本発明は、安定して高い無水化率を達成できる1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法を提供することを目的とする。
 本発明者は、上記課題に鑑みて鋭意検討した結果、特定の平均粒子径を有する1,2,4,5-シクロヘキサンテトラカルボン酸を原料として使用することにより、安定して高い無水化率の1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が得られることを見出し、本発明を完成させるに至った。本発明は、以下の〔1〕~〔13〕を提供する。
 〔1〕 1,2,4,5-シクロヘキサンテトラカルボン酸を脱水剤の存在下、スラリー状態で脱水反応を行い、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を製造する方法において、前記1,2,4,5-シクロヘキサンテトラカルボン酸の平均粒子径が20μm以上(好ましくは25μm以上、より好ましくは30μmであり、1,000μm以下でもよく、500μm以下でもよく、300μm以下でもよく、100μm以下でもよい。)であることを特徴とする、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法。
 〔2〕 1,2,4,5-シクロヘキサンテトラカルボン酸の中で、粒子径が10μm以下である粒子の割合が20個数%以下(好ましくは15個数%以下、より好ましくは10個数%以下)である、〔1〕に記載の製造方法。
 〔3〕 1,2,4,5-シクロヘキサンテトラカルボン酸の中で、粒子径が40μm以上である粒子の割合が20個数%以上(好ましくは25個数%以上)である、〔1〕又は〔2〕に記載の製造方法。
 〔4〕 1,2,4,5-シクロヘキサンテトラカルボン酸の中で、粒子径が20μm以上である粒子の割合が35個数%以上(好ましくは45個数%以上、より好ましくは55個数%、更に好ましくは65個数%以上、より更に好ましくは75個数%以上)である、〔1〕~〔3〕のいずれかに記載の製造方法。
 〔5〕 1,2,4,5-シクロヘキサンテトラカルボン酸の無水化率が98%以上である、〔1〕~〔4〕のいずれかに記載の製造方法。
 〔6〕 脱水反応の反応温度が80~150℃(好ましくは90℃以上、より好ましくは95℃以上、好ましくは140℃以下、より好ましくは130℃以下、更に好ましくは120℃以下)である、〔1〕~〔5〕のいずれかに記載の製造方法。
 〔7〕 脱水剤が、無水酢酸である、〔1〕~〔6〕のいずれかに記載の製造方法。
 〔8〕 無水酢酸の使用量が、1,2,4,5-シクロヘキサンテトラカルボン酸のモル数に対して、2.0~100モル倍量(好ましくは2.5モル倍量以上、より好ましくは3モル倍量以上、更に好ましくは4モル倍量以上、好ましくは75モル倍量以下、より好ましくは50モル倍量以下、更に好ましくは25モル倍量以下)である、〔7〕に記載の製造方法。
 〔9〕 前記1,2,4,5-シクロヘキサンテトラカルボン酸の脱水反応を脱水剤及び溶媒の存在下に行う、〔1〕~〔8〕のいずれかに記載の製造方法。
 〔10〕 前記溶媒が、酢酸である、〔9〕に記載の製造方法。
 〔11〕 以下の工程1及び工程2をこの順で有し、工程1で得られた濃縮液の濃度が29質量%以上34質量%以下であることを特徴とする、1,2,4,5-シクロヘキサンテトラカルボン酸結晶の製造方法。
 工程1:1,2,4,5-シクロヘキサンテトラカルボン酸を含有する水溶液を濃縮し、濃縮液を得る工程
 工程2:該濃縮液を冷却する工程
 〔12〕 1,2,4,5-シクロヘキサンテトラカルボン酸結晶の純度が99%以上である、〔11〕に記載の製造方法。
 〔13〕 工程1において、1,2,4,5-シクロヘキサンテトラカルボン酸結晶が析出するまで濃縮を行う、〔11〕又は〔12〕に記載の製造方法。
 本発明によれば、安定して高い無水化率を達成できる1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法を提供することができる。
 以下、本発明を実施形態を用いて説明する。なお、以下の説明において、数値範囲を示す「A~B」の記載は、「A以上B以下」(A<Bの場合)、又は、「A以下B以上」(A>Bの場合)を表す。すなわち、端点であるA及びBを含む数値範囲を表す。
 また、質量部及び質量%は、それぞれ、重量部及び重量%と同義である。
 本発明のシクロヘキサンテトラカルボン酸二無水物の製造方法は、1,2,4,5-シクロヘキサンテトラカルボン酸(以下、単に「シクロヘキサンテトラカルボン酸」ともいう。)を脱水剤の存在下、スラリー状態で脱水反応を行い、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(以下、単に「シクロヘキサンテトラカルボン酸二無水物」ともいう。)を製造する方法において、前記1,2,4,5-シクロヘキサンテトラカルボン酸の平均粒子径が20μm以上であることを特徴とする。
 特許文献1では、原料であるシクロヘキサンテトラカルボン酸の粒子径については検討されていなかった。
 本発明者等は原料として、平均粒子径が20μm以上であるシクロヘキサンテトラカルボン酸を使用することにより、安定して高い無水化率の1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が得られることを見出した。
 なお、以下の説明において、脱水剤及び必要に応じて使用される溶媒を総称して、「溶液」ともいう。
 本反応系では原料であるシクロヘキサンテトラカルボン酸及び生成物であるシクロヘキサンテトラカルボン酸二無水物はそれぞれ完全溶解しない。そのため本反応系は終始、スラリー状態で進行する。
 上記に示した本反応系において、シクロヘキサンテトラカルボン酸と無水酢酸の水交換反応は主として、部分的に溶液に溶解したシクロヘキサンテトラカルボン酸と脱水剤が反応することにより進行していると推測される。
 その場合、シクロヘキサンテトラカルボン酸の溶解段階を速やかに進行させるためには、溶媒との接触面積がより大きい小粒子径原料の方が有利であるため、本反応全体の速度についても原料の粒子径は小さい方がより有利であると考えられる。
 しかし、本発明者等が鋭意検討した結果、本反応では驚くべきことに、より大きな粒子径の原料を用いた場合に、より高い無水化率で反応が進行することが分かった。
 上記の効果が得られる詳細な機構は不明であるが、一部は以下のように推定される。
 先に述べたように原料であるシクロヘキサンテトラカルボン酸と、脱水反応(無水化反応ともいう。)後の生成物であるシクロヘキサンテトラカルボン酸二無水物とは、共に脱水剤や溶媒への溶解性が低く、脱水反応はスラリー状態で進行する。より詳細には、シクロヘキサンテトラカルボン酸の一部が溶液に溶解して、脱水反応が進行し、シクロヘキサンテトラカルボン酸二無水物となるが、生成したシクロヘキサンテトラカルボン酸二無水物も溶液への溶解性が低いため、生成と同時に析出すると考えられる。シクロヘキサンテトラカルボン酸二無水物が析出する際に、原料であるシクロヘキサンテトラカルボン酸の粒子径が小さい場合には、生成物のシクロヘキサンテトラカルボン酸二無水物が析出する際に取り込まれ易く、結果として無水化率が低下するものと推定される。
 これに対して、原料であるシクロヘキサンテトラカルボン酸として、平均粒子径が20μm以上と、大きい粒子径のものを使用することにより、生成物であるシクロヘキサンテトラカルボン酸二無水物が析出する際に取り込まれるシクロヘキサンテトラカルボン酸の量が抑制され、結果として無水化率が高くなるものと推定される。このように、原料として、特定の粒子径を有するシクロヘキサンテトラカルボン酸を使用することにより、安定して高い無水化率が得られる。
 このような反応機構は、溶液への溶解度が低く、スラリー状態で脱水反応が進行する、シクロヘキサンテトラカルボン酸に特有の現象であり、溶液への溶解度が高く、均一系で脱水反応が進行する、他のポリカルボン酸の脱水反応では生じない、特有の課題である。
 本発明のシクロヘキサンテトラカルボン酸無水物の製造方法では、以下の無水化反応が生じる。
Figure JPOXMLDOC01-appb-C000001
<1,2,4,5-シクロヘキサンテトラカルボン酸>
 本発明において、1,2,4,5-シクロヘキサンテトラカルボン酸は、市販されている製品を購入してもよく、また、ピロメリット酸の核水添(核水素化)によって製造してもよく、特に限定されない。
(ピロメリット酸の核水添による1,2,4,5-シクロヘキサンテトラカルボン酸の製造方法)
 ピロメリット酸の核水添によって1,2,4,5-シクロヘキサンテトラカルボン酸を製造する方法は特に限定されないが、例えば、国際公開第2010/010869号に記載されているように、ピロメリット酸を反応溶媒に溶解又は懸濁させ、水素分圧1.0~15MPa、反応温度30~80℃において、触媒の存在下で水素化し、該触媒としてロジウム、及び、パラジウム及び/又は白金をカーボン担体に担持した担持触媒を特定量使用する方法や、特許文献1に記載されているように、ピロメリット酸100質量部に対して、ロジウム又はパラジウムあるいはその両方からなる貴金属を0.5~10質量部の割合で含む触媒の存在下、水素分圧1MPa以上でピロメリット酸を水素化する方法が例示されるが、これらに限定されるものではない。
 なお、核水素化反応後に、例えば、反応温度と同程度の温度で触媒を濾別し、濾液を室温まで冷却し、析出した固体を濾別し、濾別した固体を乾燥することにより、1,2,4,5-シクロヘキサンテトラカルボン酸を得ることができる。また、前記濾液から反応溶媒を留去して濃縮し、析出した固体を濾別し、次に冷却又は濃縮などにより、ピロメリット酸の水素化物を結晶化させ、その結晶を固液分離することにより、高純度の1,2,4,5-シクロヘキサンテトラカルボン酸を得ることができる。
 本発明において、原料として使用する1,2,4,5-シクロヘキサンテトラカルボン酸の結晶(1,2,4,5-シクロヘキサンテトラカルボン酸結晶)は、1,2,4,5-シクロヘキサンテトラカルボン酸を含有する水溶液から、以下の方法で製造することが好ましい。
 すなわち、本発明において、1,2,4,5-シクロヘキサンテトラカルボン酸結晶の製造方法は、以下の工程1及び工程2をこの順で有し、工程1で得られた濃縮液の濃度が29質量%以上34質量%以下であることが好ましい。
 工程1:1,2,4,5-シクロヘキサンテトラカルボン酸を含有する水溶液を濃縮し、濃縮液を得る工程
 工程2:該濃縮液を冷却する工程
 バッチ式晶析における手法として、一定濃度まで濃縮した濃縮液を冷却することにより、結晶を析出させ、精製する方法が従来より用いられている。
 その際に、収率を向上させる観点から、濃縮率を高くすることが望まれる一方、得られる結晶の純度の観点からは、濃縮率を上げすぎないことが志向されている。
 本発明者等は、鋭意検討した結果、1,2,4,5-シクロヘキサンテトラカルボン酸を含有する水溶液から、1,2,4,5-シクロヘキサンテトラカルボン酸結晶を晶析するにあたり、驚くべきことに、濃縮率を高めても、品質(純度)の低下を招くことなく、収率が向上することを見出した。
 上記工程1で使用する1,2,4,5-シクロヘキサンテトラカルボン酸を含有する水溶液としては、ピロメリット酸の核水添反応により得られた反応液が好適であるが、これに限定されるものではない。
 本発明において、工程1で得られる濃縮液の濃度は、29質量%以上34質量%以下である。ここで、「濃縮液の濃度」とは、濃縮液に含まれる1,2,4,5-シクロヘキサンテトラカルボン酸の質量を、濃縮液の全質量で除した値(質量%)である。濃縮液中の1,2,4,5-シクロヘキサンテトラカルボン酸の一部は、析出等により、固体状態で存在していてもよい。
 工程1で得られる濃縮液の濃度は、好ましくは29.5質量%以上、より好ましくは30質量%以上である。
 また、工程1において、1,2,4,5-シクロヘキサンテトラカルボン酸の一部が析出するまで、濃縮を行うことが好ましい。すなわち、濃縮温度における飽和溶解度(飽和水溶液の濃度(質量%))よりも、濃縮液の濃度を高くすることが好ましい。1,2,4,5-シクロヘキサンテトラカルボン酸の一部が析出するまで濃縮を行っても、品質(純度)の低下を生じることなく、収率よく1,2,4,5-シクロヘキサンテトラカルボン酸結晶が得られるので好ましい。ただし、工程1における濃縮液の濃度が34質量%を超えると、品質の低下を生じやすい。
 ここで、1,2,4,5-シクロヘキサンテトラカルボン酸の水への飽和溶解度は、以下の通りである。
Figure JPOXMLDOC01-appb-T000002
 *:表1中、「飽和溶解度」は、1,2,4,5-シクロヘキサンテトラカルボン酸の飽和水溶液の濃度(質量%)を意味する。すなわち、1,2,4,5-シクロヘキサンテトラカルボン酸の飽和水溶液100gに含まれる、1,2,4,5-シクロヘキサンテトラカルボン酸の量(g)を意味する。
 工程1において濃縮する際の濃縮液の温度は、濃縮を容易とする観点、及び冷却した際との飽和溶解度の差を大きくする観点から、好ましくは50℃以上、より好ましくは80℃以上、更に好ましくは90℃以上であり、そして、常圧での濃縮が可能である観点から、好ましくは100℃以下である。
 また、前記濃縮は減圧下で行ってもよく、特に限定されない。減圧下で濃縮(溶媒の留去)を行う場合、圧力は、好ましくは30~450hPa、より好ましくは70~300hPa、更に好ましくは100~200hPaである。
 濃縮の際には、濃縮液の温度分布を抑制し、突沸を防ぐ観点から、撹拌しながら濃縮を行うことが好ましい。
 濃縮の際の撹拌速度は液が十分に撹拌されていれば、特に限定されていないが、好ましくは50rpm~1,000rpm、より好ましくは100rpm~800rpm、更に好ましくは200rpm~600rpmである。
 工程2における冷却温度は、良好な収率を得る観点から、好ましくは40℃以下、より好ましくは30℃以下、更に好ましくは20℃以下であり、そして、取扱い性の観点から、好ましくは0℃以上、より好ましくは3℃以上、更に好ましくは5℃以上である。
 また、工程2における冷却速度は、好ましくは1℃/h以上、より好ましくは5℃/h以上、更に好ましくは10℃/h以上であり、そして、好ましくは40℃/h以下、更に好ましくは30℃/h以下、更に好ましくは20℃/h以下である。
 なお、工程2において、冷却は静置状態で行ってもよく、撹拌状態で行ってもよいが、大きな結晶を得る観点からは、静置状態で冷却することが好ましく、生産性の観点からは、撹拌状態で冷却することが好ましい。
 なお、撹拌速度に関しては、冷却中及び保持中において、液が十分に撹拌されていれば、特に限定されないが、好ましくは50rpm~1,000rpm、より好ましくは100rpm~800rpm、更に好ましくは200rpm~600rpmである。
 工程2を経て析出した1,2,4,5-シクロヘキサンテトラカルボン酸結晶は、濾過等の通常の方法により分離すればよい。また、得られた1,2,4,5-テトラカルボン酸結晶を、1,2,4,5-シクロヘキサンテトラカルボン酸を低温の水、又は1,2,4,5-シクロヘキサンテトラカルボン酸が不溶若しくは難溶である有機溶媒等により洗浄してもよい。
 更に、得られた1,2,4,5-シクロヘキサンテトラカルボン酸結晶は、乾燥することが好ましい。
 上述の工程1及び工程2により製造された1,2,4,5-シクロヘキサンテトラカルボン酸結晶の純度は、好ましくは98質量%以上、より好ましくは98.5質量%以上、更に好ましくは99質量%以上、より更に好ましくは99.5質量%以上である。純度の上限は特に限定されない。
 また、1,2,4,5-シクロヘキサンテトラカルボン酸の収率は、好ましくは50質量%、より好ましくは60質量%以上、更に好ましくは65質量%以上、より更に好ましくは70質量%以上である。上限は特に限定されないが、製造上の観点から、好ましくは95質量%以下である。
 本発明において、原料である1,2,4,5-シクロヘキサンテトラカルボン酸の平均粒子径は、20μm以上である。平均粒子径が20μm以上のシクロヘキサンテトラカルボン酸を使用することにより、良好な無水化率が得られる。
 シクロヘキサンテトラカルボン酸の平均粒子径は、好ましくは25μm以上、より好ましくは30μm以上である。また、シクロヘキサンテトラカルボン酸の平均粒子径の上限値に特に制限はないが、原料の反応槽への仕込みやすさの観点から、例えば1,000μm以下でもよく、500μm以下でもよく、300μm以下でもよく、100μm以下でもよい。
 ここで、シクロヘキサンテトラカルボン酸の平均粒子径は、電界放射型走査型電子顕微鏡(FE-SEM、Field Emission-Scanning Electron Microscope)により撮影された100倍又は1,000倍画像における各粒子の長軸径を画像処理ソフトウェア イメージJを用いて100個の粒子について測定する。得られた各粒子の長軸長の平均値を、シクロヘキサンテトラカルボン酸の平均粒子径とする。
 本発明において、原料であるシクロヘキサンテトラカルボン酸において、粒子径の小さな粒子の割合が少ないことが好ましい。具体的には、粒子径が10μm以下である粒子の割合は、好ましくは20個数%以下、より好ましくは15個数%以下、更に好ましくは10個数%以下である。
 粒子径が10μm以下の粒子の割合が上記範囲内であることにより、より無水化率に優れる製造方法とすることができる。
 なお、粒子径が10μm以下であるシクロヘキサンテトラカルボン酸の粒子の割合は、電界放射型走査型電子顕微鏡(FE-SEM、Field Emission-Scanning Electron Microscope)により撮影された100倍又は1,000倍画像における各粒子の長軸径を画像処理ソフトウェア イメージJを用いて100個の粒子について測定する。得られた各粒子の長軸長から求める。
 本発明において、原料であるシクロヘキサンテトラカルボン酸において、粒子径の大きな粒子の割合が多いことが好ましい。具体的には、粒子径が40μm以上である粒子の割合は、好ましくは10個数%以上、より好ましくは15個数%以上、更に好ましくは20個数%以上、より更に好ましくは25個数%以上である。
 粒子径が40μm以上の粒子の割合が上記範囲内であることにより、より無水化率に優れる製造方法とすることができる。
 なお、粒子径が40μm以上であるシクロヘキサンテトラカルボン酸の粒子の割合は、電界放射型走査型電子顕微鏡(FE-SEM、Field Emission-Scanning Electron Microscope)により撮影された100倍又は1,000倍画像における各粒子の長軸径を画像処理ソフトウェア イメージJを用いて100個の粒子について測定する。得られた各粒子の長軸長から求める。
 本発明において、原料であるシクロヘキサンテトラカルボン酸において、粒子径の大きな粒子の割合が多いことが好ましい。具体的には、粒子径が20μm以上である粒子の割合は、好ましくは35個数%以上、より好ましくは45個数%以上、更に好ましくは55個数%以上、より更に好ましくは65個数%以上、より更に好ましくは75個数%以上である。
 粒子径が20μm以上の粒子の割合が上記範囲内であることにより、より無水化率に優れる製造方法とすることができる。
 なお、粒子径が20μm以上であるシクロヘキサンテトラカルボン酸の粒子の割合は、電界放射型走査型電子顕微鏡(FE-SEM、Field Emission-Scanning Electron Microscope)により撮影された100倍又は1,000倍画像における各粒子の長軸径を画像処理ソフトウェア イメージJを用いて100個の粒子について測定する。得られた各粒子の長軸長から求める。
 シクロヘキサンテトラカルボン酸を、上述した平均粒子径や、粒子径が20μm以上、40μm以上、又は10μm以下である粒子の割合とする方法は特に限定されず、公知の方法を適宜選択して使用すればよい。
 具体的には、篩い分けを行い、所望の粒子径範囲のシクロヘキサンテトラカルボン酸を使用する方法が例示される。また、ピロメリット酸の核水添反応によりシクロヘキサンテトラカルボン酸を製造する場合、穏和な条件で乾燥を行うことにより、平均粒子径を大きくすることができ、更に、粒子径が10μm以下である粒子の割合を少なくすることができる。なお、穏和な乾燥条件とは、単なる加熱乾燥や、少量の窒素気流下での乾燥等を意味する。これに対して、高温・高速の気流中で瞬間的に乾燥を行うフラッシュジェットドライヤー((株)セイシン企業製)や、直接加熱型気流式乾燥機であるドライマイスタ(ホソカワミクロン(株)製)を使用すると、粒子径が小さくなるため、本発明ではこのような乾燥装置の使用を避けることが好ましい。
 シクロヘキサンテトラカルボン酸に対して再結晶化処理を行うことで、平均粒子径が大きく、かつ粒子径が10μm以下である粒子の割合の小さなシクロヘキサンテトラカルボン酸を得てもよい。具体的には、溶媒として、好ましくは酢酸を使用し、加熱撹拌後に冷却し、固液分離することによって、目的の結晶が得られる。
 また、種々の粒子径が混在したシクロヘキサンテトラカルボン酸について、粒子径による溶解速度の差を利用して、小さい粒子のみを溶解させ、固液分離することにより、より大きな平均粒子径のシクロヘキサンテトラカルボン酸を得ることができる。具体的には、溶媒(好ましくは酢酸)中で加熱撹拌して小さい粒子のシクロヘキサンテトラカルボン酸を溶解させたスラリー液とし、これを高温状態のままで固液分離することにより、より大きな平均粒子径のシクロヘキサンテトラカルボン酸を得ることができる。
<脱水剤>
 本発明に使用する脱水剤として、公知の脱水剤の中から適宜選択して使用すればよく特に限定されない。公知の脱水剤としては、無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸、無水コハク酸、無水マレイン酸、無水安息香酸、無水フタル酸、塩化アセチル、リン酸塩化物、塩化チオニル、ホスゲン等が挙げられる。これらの中でも、経済性や使用の容易性の観点から、脱水剤としては無水酢酸が好ましい。
 本発明において、前記1,2,4,5-シクロヘキサンテトラカルボン酸のモル数に対して、無水酢酸の使用量は、好ましくは2.0~100モル倍量である。
 無水酢酸の使用量は、十分な無水化率を得る観点から、好ましくは2.0モル倍量以上、より好ましくは2.5モル倍量以上、更に好ましくは3モル倍量以上、より更に好ましくは4モル倍量以上であり、経済性の観点及び反応後に脱水剤を除去する観点から、好ましくは100モル倍量以下、より好ましくは75モル倍量以下、更に好ましくは50モル倍量以下、より更に好ましくは25モル倍量以下である。
 なお、本発明において、脱水剤として無水酢酸を使用する場合、無水酢酸は液体であることから、溶媒としての機能をも有する。
<脱水反応条件>
 本発明において、シクロヘキサンテトラカルボン酸を脱水剤の存在下、スラリー状態で脱水反応(無水化反応ともいう。)を行う。スラリー状態であるとは、原料であるシクロヘキサンテトラカルボン酸が脱水剤及び必要に応じて添加される溶媒に完全には溶解せず、固体状態で存在するものがあり、また生成物である酸無水物も脱水剤及び必要に応じて添加される溶媒に完全には溶解せず、固体状態で存在するものがあることを意味する。従って、原料又は生成物のいずれか又は両方に、反応系中で固体状態で存在するものがあれば、スラリー状態である。
 脱水反応における反応温度は、シクロヘキサンテトラカルボン酸の溶媒への溶解を促進し、シクロヘキサンテトラカルボン酸の脱水反応を促進する観点から、好ましくは80℃以上、より好ましくは90℃以上、更に好ましくは95℃以上である。また、原料や生成物の分解や、脱水剤及び後述する溶媒の揮発を抑制し、降温後における生成物の固結を防止する観点から、好ましくは150℃以下、より好ましくは140℃以下、更に好ましくは130℃以下、より更に好ましくは120℃以下である。
 脱水反応は、シクロヘキサンテトラカルボン酸と脱水剤のスラリーを加熱するのみでもよく、脱水剤を加熱還流させてもよい。
 前記脱水反応は、窒素ガス等の不活性ガス雰囲気下で行うことが好ましい。
<溶媒>
 本発明において、脱水反応は、脱水剤及び溶媒の存在下に行うことも好ましい。
 前記溶媒としては、特に限定されないが、溶媒としては酢酸(氷酢酸ともいう。)を使用することが好ましい。使用する酢酸の量は、脱水剤に対して、0.5~10体積倍であることが好ましく、1~5体積倍であることがより好ましい。
 また、前記酢酸に加えて、溶媒として、沸点50℃以上の炭化水素、ハロゲン化炭化水素、エステル、ケトン、エーテル、脂肪酸等を添加してもよい。
<無水化率>
 本発明において、原料である1,2,4,5-シクロヘキサンテトラカルボン酸の無水化率は、98.0%以上であることが好ましく、98.5%以上であることがより好ましく、99.0%以上であることが更に好ましく、99.3%以上であることが特に好ましい。
 無水化率を上記範囲内とすることにより、純度に優れたシクロヘキサンテトラカルボン酸二無水物を得ることができる。
 無水化率は、実施例に記載の方法により測定される。
<シクロヘキサンテトラカルボン酸二無水物の回収工程>
 本発明において、更にシクロヘキサンテトラカルボン酸二無水物を回収する工程(以下、単に回収工程ともいう。)を有することが好ましい。
 シクロヘキサンテトラカルボン酸の脱水反応の後、反応液を室温まで冷却し、シクロヘキサンテトラカルボン酸二無水物の結晶を析出させ、これを固液分離することにより、シクロヘキサンテトラカルボン酸二無水物を得ることができる。脱水剤として無水酢酸を使用し、溶媒として酢酸を使用した場合には、結晶の析出量が多く、工業的に有利である。また、固液分離したシクロヘキサンテトラカルボン酸二無水物の結晶は、適宜乾燥することが好ましい。
 結晶を分離した母液は、循環使用してもよい。不純物の系内蓄積の度合いに応じて、母液を脱水反応の反応槽に戻すかを選択すればよい。
 以下、実施例及び比較例を用いて本発明をより具体的に説明するが、本発明は、これらの実施例に制限されるものではない。
[調製例1-1]
 熱電対、撹拌機、温度制御装置等を備えた3.86mのSUS316L製反応釜にピロメリット酸390.1kg、水2340.9kg、5質量%Pd-カーボン粉末触媒(エヌ・イーケムキャット製、含水品、PEタイプ、水分含有率55質量%)131.0kg及び5質量%Rh-カーボン粉末触媒(エヌ・イーケムキャット製、含水品、水分含有率50質量%)56.2kgを仕込み、撹拌下、水素を8MPaまで供給すると共に50℃まで昇温し、圧力、温度を保持しながら仕込みピロメリット酸の3モル倍量の水素吸収量を供給するまで水添反応を継続した。得られた反応液を抜き出し、触媒を濾過して無色透明の濾液を得た。
 その後、得られた濾液を核水添ピロメリット酸濃度が33質量%となるまで濃縮を行い、続いて20℃まで冷却し、1,2,4,5-シクロヘキサンテトラカルボン酸の結晶を析出させた。析出した結晶を濾別した。
 2.5mのSUS316製コニカルドライヤーに、得られた1,2,4,5-シクロヘキサンテトラカルボン酸の結晶を仕込み、40℃で16時間乾燥した後、更に90℃で29時間(合計45時間)乾燥を行い、白色結晶を得た。
 得られた1,2,4,5-シクロヘキサンテトラカルボン酸について、SEM観察による粒子径を測定したところ、平均粒子径は33.4μmであった。また、粒子径が10μm以下の粒子の割合は5個数%、粒子径が20μm以上の粒子の割合は82個数%、粒子径が40μm以上の粒子の割合は28個数%であった。
<平均粒子径、粒子径が10μm以下の粒子の割合、粒子径が40μm以上の粒子の割合、及び粒子径が20μm以上の粒子の割合の測定>
 FE-SEM((株)日立ハイテクノロジーズ製、S-3000N、電圧10kV)で撮影した100倍又は1,000倍画像における各粒子の長軸長を、画像処理ソフトウェア イメージJを用いて測定した。100個の粒子について測定し、得られた結果の平均値をシクロヘキサンテトラカルボン酸の平均粒子径とした。また、粒子径(長軸長)が10μm以下の粒子の割合、粒子径が20μm以上の粒子の割合、及び粒子径(長軸長)が40μm以上の粒子の割合を算出した。
[調製例1-2]
 熱電対、撹拌機、温度制御装置を備えたガラス製500mL四つ口フラスコに調製例1-1で得た1,2,4,5-シクロヘキサンテトラカルボン酸(平均粒子径:33.4μm)100g、酢酸283.37gを仕込み、撹拌しながら、100℃まで昇温し、昇温完了後100℃で5時間撹拌を継続した。
 得られたスラリー液について、冷却することなく、100℃に近い温度で定量濾紙No.5B(ADVANTEC社製)を用いて吸引ろ過により固液分離を実施した。得られた1,2,4,5-シクロヘキサンテトラカルボン酸の湿結晶を乾燥機にて、窒素を1L/minで供給しながら、窒素気流下で130℃で3時間乾燥することにより1,2,4,5-シクロヘキサンテトラカルボン酸の白色結晶を得た。
 得られた白色結晶のSEMによる観察を行ったところ、平均粒子径は46.0μmであった。また、粒子径が10μm以下の粒子の割合は2個数%、粒子径が20μm以上の粒子の割合は81個数%、粒子径が40μm以上の粒子の割合は45個数%であった。
[調製例1-3]
 熱電対、撹拌機、温度制御装置等を備えた3.86mのSUS316L製反応釜にピロメリット酸390.1kg、水2340.9kg、5質量%Pd-カーボン粉末触媒(エヌ・イーケムキャット製、含水品、PEタイプ、水分含有率55質量%)131.0kg及び5質量%Rh-カーボン粉末触媒(エヌ・イーケムキャット製、含水品、水分含有率50質量%)56.2kgを仕込み、撹拌下、水素を8MPaまで供給すると共に50℃まで昇温し、圧力、温度を保持しながら仕込みピロメリット酸の3モル倍量の水素吸収量を供給するまで水添反応を継続した。得られた反応液を抜き出し、触媒を濾過して無色透明の濾液を得た。
 その後、得られた濾液を核水添ピロメリット酸濃度が33質量%となるまで濃縮を行い、続いて20℃まで冷却し、1,2,4,5-シクロヘキサンテトラカルボン酸の結晶を析出させた。析出した結晶を濾別した。
 得られた1,2,4,5-シクロヘキサンテトラカルボン酸の結晶を、フラッシュジェットドライヤー((株)セイシン企業製)に仕込み、原料供給速度55kg/h、入り口温度170℃、出口温度110℃、原料温度12.4℃、吐出風量6.8Nm/min、吐出圧力53kPa、の条件で乾燥を実施し、1,2,4,5-シクロヘキサンテトラカルボン酸の白色結晶を得た。
 得られた1,2,4,5-シクロヘキサンテトラカルボン酸の白色結晶について、SEM観察により粒子径を測定したところ、平均粒子径は6.9μmであった。また、粒子径が10μm以下の粒子の割合は81個数%、粒子径が20μm以上の粒子の割合は3.2個数%、粒子径が40μm以上の粒子の割合は0個数%であった。
[調製例1-4]
 熱電対、撹拌機、温度制御装置を備えたガラス製500mL四つ口フラスコに調製例1-3で得た1,2,4,5-シクロヘキサンテトラカルボン酸(平均粒子径:6.9μm)100g、酢酸283.37gを仕込み、撹拌しながら、100℃まで昇温し、昇温完了後100℃で5時間撹拌を継続した。
 得られたスラリー液について、冷却することなく、100℃に近い温度で定量濾紙No.5B(ADVANTEC社製)を用いて吸引ろ過により固液分離を実施した。得られた1,2,4,5-シクロヘキサンテトラカルボン酸の湿結晶を乾燥機にて窒素気流下で1L/minを供給しながら130℃で3時間乾燥することにより1,2,4,5-シクロヘキサンテトラカルボン酸の白色結晶を得た。
 得られた白色結晶のSEMによる観察を行ったところ、平均粒子径は17.3μmであった。また、粒子径が10μm以下の粒子の割合は24個数%、粒子径が20μm以上の粒子の割合は32個数%、粒子径が40μm以上の粒子の割合は3個数%であった。
[調製例2-1]
 熱電対、撹拌機、温度制御装置等を備えた3.86mのSUS316L製反応釜にピロメリット酸390.1kg、水2340.9kg、5質量%Pd-カーボン粉末触媒(エヌ・イーケムキャット製、含水品、PEタイプ、水分含有率55質量%)131.0kg及び5質量%Rh-カーボン粉末触媒(エヌ・イーケムキャット製、含水品、水分含有率50質量%)56.2kgを仕込み、撹拌下、水素を8MPaまで供給すると共に50℃まで昇温し、圧力、温度を保持しながら仕込みピロメリット酸の3モル倍量の水素吸収量を供給するまで水添反応を継続した。得られた反応液を抜き出し、触媒を濾過して無色透明の濾液を得た。
 その後、得られた濾液を核水添ピロメリット酸濃度が27.2質量%となるまで100℃で濃縮を行い、続いて20℃まで冷却し、1,2,4,5-シクロヘキサンテトラカルボン酸の結晶を析出させた。析出した結晶を濾別した。
 2.5mのSUS316製コニカルドライヤーに、得られた1,2,4,5-シクロヘキサンテトラカルボン酸の結晶を仕込み、40℃で16時間乾燥した後、更に90℃で29時間(合計45時間)乾燥を行い、白色結晶を得た。
 得られた1,2,4,5-シクロヘキサンテトラカルボン酸について、以下の評価を行った。
<H-PMA純度の測定(リン酸トリメチル法)>
 得られた結晶中の1,2,4,5-シクロヘキサンテトラカルボン酸(以下、H-PMAともいう。)の純度(H-PMA純度)は、以下のようにして測定した。
 具体的には、得られた結晶を試験管に0.10g採取し、トリエチルアンモニウムクロリド(和光純薬工業(株)製)を3.0g、トリメチルホスファート(キシダ化学(株)製)を10ml加え、ブロックヒーターにて180℃で90分間加熱して、エステル化処理を行った。
 室温まで冷却後、クロロホルム15mlに完全溶解させ、更にイオン交換水を加えて分液処理を行い、得られたクロロホルム溶液をガスクロマトグラフィー分析に供した。H-PMA純度は単純面積法により算出した。
(ガスクロマトグラフィー分析条件)
 ガスクロマトグラフィー分析装置:6890N(Agilent Technologies製)
 キャピラリーカラム:DB-1(Agilent Technologies製)
 インジェクション温度:300℃
 検出温度:290℃
 初期カラム温度、保持時間:200℃、10分
 昇温速度:7℃/分
 最終カラム温度、保持時間:280℃、15分
 キャリアガス:ヘリウム
 キャリアガス線速:41cm/秒
 検出器:FID
<収率の算出方法>
 工程1及び工程2を合わせた収率は、晶析(工程2)により得られた結晶の質量にH-PMA純度を乗じた値を、仕込んだH-PMA水溶液の質量(工程1で使用したH-PMAを含有する水溶液の質量)に該水溶液中のH-PMA濃度を乗じた値で除し、それを100倍することで得た。すなわち、以下の式で表される。
 収率(%)={(晶析により得られた結晶の質量(g))×(結晶中のH-PMA純度(%))}÷{(仕込んだH-PMA水溶液の質量(g))×(前記水溶液中のH-PMA濃度(%))}×100
 工程1で使用したH-PMAを含有する水溶液(仕込んだH-PMA水溶液)中のH-PMA濃度を分析する方法を下記に示す。
 具体的には、H-PMAを含む水溶液(濃度5~30質量%)を試験管に0.60g採取し、トリエチルアンモニウムクロリド(和光純薬工業(株))を3.0g、トリメチルホスファート(キシダ化学(株)製)を10ml加え、ブロックヒーターにて180℃で45分間加熱し、一度取り出した。その後、トリメチルホスファート(キシダ化学(株)製)を再度10ml加え、ブロックヒーターにて180℃で更に90分間加熱することにより、エステル化処理を行った。
 その後、内標としてトリフェニルメタン(東京化成工業(株)製)を0.10g加え、クロロホルム15mlに完全溶解させ、更にイオン交換水を加えて分液処理を行い、得られたクロロホルム溶液をガスクロマトグラフィー分析に供した。H-PMA濃度は内標トリフェニルメタンにより、内標法により算出した。
(ガスクロマトグラフィー分析条件)
 ガスクロマトグラフィー分析装置:6890N(Agilent Technologies製)
 キャピラリーカラム:DB-1(Agilent Technologies製)
 インジェクション温度:300℃
 検出温度:290℃
 初期カラム温度、保持時間:160℃、20分
 昇温速度:10℃/分
 最終カラム温度、保持時間:280℃、15分
 キャリアガス:ヘリウム
 キャリアガス圧力:33.1kPa
 検出器:FID
[調製例2-2~2-4]
 濾液を核水添ピロメリット酸濃度が表2に示す濃度となるまで100℃で濾液の濃縮を行った以外は、調製例2-1と同様にして、1,2,4,5-シクロヘキサンテトラカルボン酸の結晶を得た。
 得られた1,2,4,5-シクロヘキサンテトラカルボン酸結晶について、調製例2-1と同様にして、純度及び収率を測定した。
 結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示すとおり、1,2,4,5-シクロヘキサンテトラカルボン酸を含有する水溶液を、濃縮液の濃度が29質量%以上34質量%以下となるように濃縮後、該濃縮液を冷却して1,2,4,5-シクロヘキサンテトラカルボン酸結晶を得ることにより、純度に優れる1,2,4,5-シクロヘキサンテトラカルボン酸を高収率で回収することができた。一方、濃縮液の濃度が29質量%未満である調製例2-1では、得られた1,2,4,5-シクロヘキサンの収率が低かった。
[実施例1]
 熱電対、ジムロート冷却管、及び撹拌機を備えたガラス製500mL四つ口フラスコに、調製例1-1で得られた平均粒子径が33.4μmの1,2,4,5-シクロヘキサンテトラカルボン酸47.5g(0.18mol)、無水酢酸55.4g(0.542mol、添加するシクロヘキサンテトラカルボン酸に対して3.0モル倍)、酢酸134.6g(無水酢酸の2.5体積倍)を仕込み、撹拌しながら系内を窒素ガスで置換した。続いて100mL/minで窒素ガスを流しながら100℃まで昇温し、100℃で2時間シクロヘキサンテトラカルボン酸の脱水反応を行った。反応後、室温まで冷却して結晶を析出させたのち、結晶を分離した。得られた結晶を無水酢酸13.1gでリンスを行ったのち、乾燥し、無水化率を測定した。
 実施例で行った脱水反応は、以下の通りである。また、結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-C000004
[実施例2、並びに比較例1及び2]
 使用したシクロヘキサンテトラカルボン酸を、調製例1-2、1-3又は1-4で得られたシクロヘキサンテトラカルボン酸にそれぞれ変更した以外は、実施例1と同様にしてシクロヘキサンテトラカルボン酸の脱水反応を行い、無水化率を測定した。結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000005
<無水化率の測定>
 シクロヘキサンテトラカルボン酸の無水化率は、試料を液体クロマトグラフィーにより分析を行い、原料の1,2,4,5-シクロヘキサンテトラカルボン酸を定量化し、更に以下の式1により定義される無水化率(%)を算出した。
 無水化率(%)
 =100-試料中のシクロヘキサンテトラカルボン酸の量(質量%)  式1
(液体クロマトグラフィー用の前処理条件)
 試料2gを精秤し、脱水メタノール100mlを加えて加熱し、1時間還流させてメチルエステル化反応を行い、液体クロマトグラフィー用試料として調製した。
 なお、この前処理では、試料中のシクロヘキサンテトラカルボン酸二無水物のみがエステル化され、試料中の反応原料である1,2,4,5-シクロヘキサンテトラカルボン酸はエステル化されない。
(液体クロマトグラフィー分析条件)
 液体クロマトグラフィー分析条件は、以下の通りである。
 液体クロマトグラフィー分析装置:LC-6AD(送液ユニット)、CTO-10A(恒温槽)、SCL-10A(UV)、SPD-10AV(UV-VIS検出器)、SPD-M20A(PDA検出器)
 カラム:Shodex RSpak DE-413L
 検出器:UV(210nm)
 溶離液組成:A液=アセトニトリル、B液=0.5%リン酸水溶液
 モード:Binary gradient
 流速:1.0ml/min
 恒温槽温度:35℃
 溶離液の条件は、以下の通りである。分析時間0~15分は、A液:B液=10:90(体積比)とし、15~20分で、A液:B液=10:90(体積比)~50:50(体積比)にグラジエントをかけた。更に、分析時間20~25分で、A液:B液=50:50(体積比)~80:20(体積比)にグラジエントをかけた。そのまま、A液:B液=80:20(体積比)で40分まで保持した後、分析時間40分~50分で、A液:B液=80:20(体積比)~10:90(体積比)にグラジエントをかけ、A液:B液=10:90にて、70分まで保持した。
 なお、上記液体クロマトグラフィーでは、シクロヘキサンテトラカルボン酸を測定しており、絶対検量法により、試料中のシクロヘキサンテトラカルボン酸の量を定量し、該シクロヘキサンテトラカルボン酸の試料中の質量割合を求め、これを100から差し引き、無水化率とした。
 すなわち、試料100gに未反応のシクロヘキサンテトラカルボン酸が2g含有されている場合には、無水化率は98%である。
 以上のように、本発明の製造方法により、安定して高い無水化率でシクロヘキサンテトラカルボン酸二無水物を得ることができる。
 また、本発明により得られたシクロヘキサンテトラカルボン酸二無水物は、その純度が高く、ポリイミド、エポキシ樹脂硬化剤、ソルダーレジスト等の原料として利用することが期待される。
 

Claims (13)

  1.  1,2,4,5-シクロヘキサンテトラカルボン酸を脱水剤の存在下、スラリー状態で脱水反応を行い、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を製造する方法において、
     前記1,2,4,5-シクロヘキサンテトラカルボン酸の平均粒子径が20μm以上であることを特徴とする、
     1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法。
  2.  1,2,4,5-シクロヘキサンテトラカルボン酸の中で、粒子径が10μm以下である粒子の割合が20個数%以下である、請求項1に記載の製造方法。
  3.  1,2,4,5-シクロヘキサンテトラカルボン酸の中で、粒子径が40μm以上である粒子の割合が20個数%以上である、請求項1又は2に記載の製造方法。
  4.  1,2,4,5-シクロヘキサンテトラカルボン酸の中で、粒子径が20μm以上である粒子の割合が35個数%以上である、請求項1~3のいずれかに記載の製造方法。
  5.  1,2,4,5-シクロヘキサンテトラカルボン酸の無水化率が98%以上である、請求項1~4のいずれかに記載の製造方法。
  6.  脱水反応の反応温度が80~150℃である、請求項1~5のいずれかに記載の製造方法。
  7.  脱水剤が、無水酢酸である、請求項1~6のいずれかに記載の製造方法。
  8.  無水酢酸の使用量が、1,2,4,5-シクロヘキサンテトラカルボン酸のモル数に対して、2.0~100モル倍量である、請求項7に記載の製造方法。
  9.  前記1,2,4,5-シクロヘキサンテトラカルボン酸の脱水反応を脱水剤及び溶媒の存在下に行う、請求項1~8のいずれかに記載の製造方法。
  10.  前記溶媒が、酢酸である、請求項9に記載の製造方法。
  11.  以下の工程1及び工程2をこの順で有し、工程1で得られた濃縮液の濃度が29質量%以上34質量%以下であることを特徴とする、1,2,4,5-シクロヘキサンテトラカルボン酸結晶の製造方法。
     工程1:1,2,4,5-シクロヘキサンテトラカルボン酸を含有する水溶液を濃縮し、濃縮液を得る工程
     工程2:該濃縮液を冷却する工程
  12.  1,2,4,5-シクロヘキサンテトラカルボン酸結晶の純度が99%以上である、請求項11に記載の製造方法。
  13.  工程1において、1,2,4,5-シクロヘキサンテトラカルボン酸結晶が析出するまで濃縮を行う、請求項11又は12に記載の製造方法。
     
PCT/JP2018/011331 2017-03-29 2018-03-22 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法 WO2018180854A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019509646A JP7196835B2 (ja) 2017-03-29 2018-03-22 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法
CN201880018816.3A CN110461851A (zh) 2017-03-29 2018-03-22 1,2,4,5-环己烷四羧酸二酐的制造方法
KR1020197027646A KR102609305B1 (ko) 2017-03-29 2018-03-22 1,2,4,5-시클로헥산테트라카르본산이무수물의 제조방법
EP18774234.1A EP3604313A4 (en) 2017-03-29 2018-03-22 PROCESS FOR PRODUCING 1,2,4,5-CYCLOHEXANETETTRACARBOXYL DIANHYDRIDE
US16/496,697 US11174269B2 (en) 2017-03-29 2018-03-22 Method for producing 1,2,4,5-cyclohexanetetracarboxylic dianhydride

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-065899 2017-03-29
JP2017-065907 2017-03-29
JP2017065907 2017-03-29
JP2017065899 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018180854A1 true WO2018180854A1 (ja) 2018-10-04

Family

ID=63675817

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/011333 WO2018180855A1 (ja) 2017-03-29 2018-03-22 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法
PCT/JP2018/011331 WO2018180854A1 (ja) 2017-03-29 2018-03-22 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011333 WO2018180855A1 (ja) 2017-03-29 2018-03-22 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法

Country Status (7)

Country Link
US (2) US20200039999A1 (ja)
EP (2) EP3604314B1 (ja)
JP (2) JPWO2018180855A1 (ja)
KR (2) KR102609305B1 (ja)
CN (2) CN110494437A (ja)
TW (2) TWI785025B (ja)
WO (2) WO2018180855A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018180855A1 (ja) * 2017-03-29 2020-02-06 三菱瓦斯化学株式会社 1,2,4,5−シクロヘキサンテトラカルボン酸二無水物の製造方法
CN114163449B (zh) * 2021-12-20 2023-03-17 大连奇凯医药科技有限公司 1,2,4,5-环己烷四羧酸二酐的制备及表征方法
TWI800442B (zh) * 2022-08-15 2023-04-21 中國石油化學工業開發股份有限公司 1,2,4,5-環己烷四甲酸之純化方法
CN115894512A (zh) * 2022-12-21 2023-04-04 大连奇凯医药科技有限公司 一种1,2,4,5-环己烷四羧酸二酐的合成及检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286222A (ja) 2001-12-28 2003-10-10 Mitsubishi Gas Chem Co Inc 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法
JP2006083080A (ja) * 2004-09-15 2006-03-30 New Japan Chem Co Ltd 水素化芳香族ポリカルボン酸の製造方法
JP2006124313A (ja) * 2004-10-28 2006-05-18 Nippon Steel Chem Co Ltd 脂環式多価カルボン酸及びその無水物の製造方法
WO2010010869A1 (ja) 2008-07-23 2010-01-28 三菱瓦斯化学株式会社 芳香族ポリカルボン酸の水素化物の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103437A (en) * 1977-02-21 1978-09-08 Mitsubishi Rayon Co Ltd Continuous feed of slurry
JP3523419B2 (ja) * 1996-06-12 2004-04-26 株式会社クラレ 微粒子分散性に優れたポリエステルの製造方法
JP4633400B2 (ja) * 2004-08-09 2011-02-16 新日鐵化学株式会社 脂環式多価カルボン酸及びその酸無水物の製造方法
CN103992330B (zh) * 2014-05-23 2016-09-21 常州市阳光药业有限公司 电子级氢化均苯四甲酸二酐的制备方法
CN104926649B (zh) * 2015-05-20 2016-08-24 大连奇凯医药科技有限公司 氢化均苯四甲酸四丙酯和1,2,4,5-环己烷四甲酸二酐的制备方法
JPWO2018180855A1 (ja) * 2017-03-29 2020-02-06 三菱瓦斯化学株式会社 1,2,4,5−シクロヘキサンテトラカルボン酸二無水物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286222A (ja) 2001-12-28 2003-10-10 Mitsubishi Gas Chem Co Inc 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法
JP2006083080A (ja) * 2004-09-15 2006-03-30 New Japan Chem Co Ltd 水素化芳香族ポリカルボン酸の製造方法
JP2006124313A (ja) * 2004-10-28 2006-05-18 Nippon Steel Chem Co Ltd 脂環式多価カルボン酸及びその無水物の製造方法
WO2010010869A1 (ja) 2008-07-23 2010-01-28 三菱瓦斯化学株式会社 芳香族ポリカルボン酸の水素化物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604313A4

Also Published As

Publication number Publication date
KR20190133676A (ko) 2019-12-03
US20200039999A1 (en) 2020-02-06
US20200031841A1 (en) 2020-01-30
EP3604314A1 (en) 2020-02-05
CN110461851A (zh) 2019-11-15
CN110494437A (zh) 2019-11-22
KR102609305B1 (ko) 2023-12-05
EP3604314B1 (en) 2022-02-23
TW201840524A (zh) 2018-11-16
US11174269B2 (en) 2021-11-16
JPWO2018180854A1 (ja) 2020-02-06
TW201840523A (zh) 2018-11-16
TWI785025B (zh) 2022-12-01
JP7196835B2 (ja) 2022-12-27
WO2018180855A1 (ja) 2018-10-04
JPWO2018180855A1 (ja) 2020-02-06
TWI786098B (zh) 2022-12-11
KR20190136000A (ko) 2019-12-09
EP3604313A4 (en) 2020-02-26
EP3604314A4 (en) 2020-02-05
EP3604313A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP7196835B2 (ja) 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法
US6927306B2 (en) Process for producing hydrogenated aromatic polycarboxylic acid and process for producing hydrogenated aromatic polycarboxylic anhydride
KR20070012238A (ko) 고순도 피로멜리트산 2 무수물의 제조 방법
US20080214841A1 (en) High-purity biphenyltetracarboxylic dianhydride and process for producing the same
JP4977989B2 (ja) 2,3,3’,4’−ビフェニルテトラカルボン酸二無水物の製造方法
TWI785021B (zh) cis,cis-1,2,4-環己烷三羧酸結晶之製造方法
JPH07118200A (ja) ナフタレンジカルボン酸の製造方法
JP2001122858A (ja) フタルイミド化合物の製造方法
JP3608354B2 (ja) ジシクロヘキシル−2,3,3’,4’−テトラカルボン酸化合物
JP2000281682A (ja) 脂環式テトラカルボン酸二無水物及びその製造法
JPH08134057A (ja) 高純度ビフェニルテトラカルボン酸二無水物の製造方法
JP4665431B2 (ja) ビフェニルテトラカルボン酸加熱無水化生成物結晶の製造方法
JP6812112B2 (ja) 4−ヒドロキシ安息香酸長鎖エステルの精製方法
JP5109372B2 (ja) 晶析方法
JP2002069073A (ja) 高純度無水ピロメリット酸の製造方法
JP2003261558A (ja) 高純度ビフェニルテトラカルボン酸二無水物の製造法
JP2001011014A (ja) 高純度2,6−ナフタレンジカルボン酸の製造方法
JP2008297226A (ja) ピロメリット酸二無水物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509646

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027646

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018774234

Country of ref document: EP

Effective date: 20191029