WO2018180615A1 - 電子線固着用繊維処理剤 - Google Patents

電子線固着用繊維処理剤 Download PDF

Info

Publication number
WO2018180615A1
WO2018180615A1 PCT/JP2018/010518 JP2018010518W WO2018180615A1 WO 2018180615 A1 WO2018180615 A1 WO 2018180615A1 JP 2018010518 W JP2018010518 W JP 2018010518W WO 2018180615 A1 WO2018180615 A1 WO 2018180615A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
electron beam
integer
modified organopolysiloxane
general formula
Prior art date
Application number
PCT/JP2018/010518
Other languages
English (en)
French (fr)
Inventor
入船真治
金井那矢
田中正喜
杉山稔
大島邦裕
Original Assignee
信越化学工業株式会社
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017151912A external-priority patent/JP6909671B2/ja
Application filed by 信越化学工業株式会社, 倉敷紡績株式会社 filed Critical 信越化学工業株式会社
Priority to US16/499,120 priority Critical patent/US11214920B2/en
Priority to CN201880021904.9A priority patent/CN110462128B/zh
Priority to EP18775316.5A priority patent/EP3604665A4/en
Publication of WO2018180615A1 publication Critical patent/WO2018180615A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/26Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6433Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing carboxylic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups

Definitions

  • the present invention relates to an electron beam fixing fiber treatment agent in which silicone is fixed to a fiber by electron beam irradiation.
  • organopolysiloxanes such as dimethylpolysiloxane, epoxy group-containing organopolysiloxane, and amino group-containing organopolysiloxane are used as fiber treatment agents to impart flexibility and smoothness to various fibers and textile products.
  • amino group-containing organopolysiloxanes that give particularly good flexibility are most used.
  • an emulsion type using water as a dispersion medium is often used as the form, and as the treatment, a method of applying or impregnating the emulsion to fibers and then drying by heating is the most common. in use.
  • the fibers treated with silicone in this way have a very excellent texture immediately after the treatment, but when washing is performed several times, the active ingredient (silicone) of the treatment agent is washed away from the fibers, and the texture is lowered. This is because the silicone-based treatment agent cannot react with the fiber, the silicone is present on the fiber surface due to the weak adsorption effect of the amino group on the fiber, and the silicone is not fixed to the fiber surface. It is thought to be the cause.
  • Patent Document 1 proposes a silicone emulsion composition comprising an anionically stabilized hydroxylated diorganopolysiloxane, colloidal silica, and an organic tin compound or an organic amine compound and having a pH of 9 to 11.5.
  • Patent Document 2 describes a silicone latex composition comprising a siloxane block copolymer comprising dimethylsiloxane units and monophenylsiloxane units, water, a cationic surfactant, a filler, and aminosilane.
  • Patent Document 3 proposes a silicone emulsion composition comprising a hydroxyl group-containing organopolysiloxane, a Si—H group-containing organopolysiloxane, colloidal silica, an amide group and carboxyl group-containing silane, an epoxy group-containing silane, and a curing catalyst.
  • Patent Document 4 proposes a silicone emulsion composition comprising an alkenyl group-containing organopolysiloxane, an Si—H group-containing organopolysiloxane, colloidal silica, a reaction product of aminosilane and acid anhydride, epoxysilane, and an addition reaction catalyst. ing.
  • Patent Document 5 proposes a silicone emulsion composition composed of hydrogensiloxane having molecular ends blocked with hydroxyl groups, an emulsifier, water, and a curing catalyst.
  • Patent Documents 6 to 8 propose a silicone emulsion composition comprising a colloidal silica-silicone core shell, a curing catalyst, an emulsifier, and water.
  • Patent Document 9 proposes a silicone emulsion composition comprising a hydroxyl group-containing organopolysiloxane, colloidal silica, an amide group and carboxyl group-containing silane, an epoxy group-containing silane, a curing catalyst, and a photocatalytic oxide.
  • Patent Document 10 proposes a silicone emulsion composition comprising a hydroxyl group-containing organopolysiloxane, colloidal silica, an amide group and carboxyl group-containing silane, and an epoxy group-containing silane.
  • JP 56-16553 A U.S. Pat. No. 3,817,894 JP-A-8-85760 JP-A-9-208826 JP-A-9-208900 JP-A-9-208901 JP-A-9-208902 Japanese Patent Laid-Open No. 9-208903 JP 2002-363494 A JP 2008-231276 A
  • organotin compounds are generally used as curing catalysts.
  • organotin compounds are being restricted or regulated by their uses, fields, and countries due to their toxicity problems.
  • An alternative to metal compounds has been proposed, but there is still no effective catalyst system. Therefore, there is still a demand for a treatment agent and a treatment method that can maintain the efficacy of the silicone treatment agent even after washing without using a harmful metal catalyst.
  • the present invention provides a fiber treatment agent for fixing an electron beam, in which silicone is firmly fixed to a fiber by irradiation with an electron beam, and a good texture can be imparted to the fiber even after washing.
  • the present invention relates to a fiber treating agent for fixing an electron beam, characterized by containing an acrylic-modified organopolysiloxane (A) having two or more acrylic groups in one molecule represented by the following general formula (I).
  • A acrylic-modified organopolysiloxane
  • M R 1 R 2 R 3 SiO 1/2
  • M A R 4 R 5 R 6 SiO 1/2
  • D R 7 R 8 SiO 2/2
  • D A R 9 R 10 SiO 2/2
  • T R 11 SiO 3/2
  • R 1 , R 2 , R 3 , R 5 , R 6 , R 7 , R 8 , R 10 and R 11 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group
  • R 4 and R 9 are each independently a monovalent hydrocarbon group represented by the following general formula (II)
  • a, b, c and d are each independently 0 or a positive integer.
  • E is an integer of 0 to 3
  • c + d is an integer of 10 to 1000
  • b + d is an integer of 2 or more
  • a + b is an integer equal to e + 2.
  • n is an integer of 1 to 3
  • the fiber treatment agent for fixing an electron beam further comprises an amino-modified organopolysiloxane (B) having one or more amino groups in one molecule represented by the following general formula (III). It is preferable to include.
  • R 12 is a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 13 is a monovalent hydrocarbon group represented by —R 14 — (NH—R 15 ) h—NH 2
  • X is a monovalent group represented by R 12 , R 13 or —OR 16
  • R 14 is a divalent hydrocarbon group having 1 to 8 carbon atoms
  • R 15 is 1 to 4 carbon atoms.
  • (b + d) / (a + b + c + d) ⁇ 100 is preferably 0.5 to 40.
  • the compounding quantity of the said acrylic modified organopolysiloxane (A) Is 10 to 95% by mass
  • the amount of the amino-modified organopolysiloxane (B) is preferably 5 to 90% by mass.
  • the form of the electron beam fixing fiber treatment agent is preferably an emulsion.
  • silicone is firmly fixed to the fiber by electron beam irradiation, and a good texture can be imparted to the fiber even after washing.
  • the inventors of the present invention have repeatedly studied to improve the washing durability of the silicone-treated fibers.
  • the fiber is treated with a fiber treatment agent containing an acrylic-modified organopolysiloxane (A) having two or more acrylic groups in one molecule represented by the general formula (I) described later, and then irradiated with an electron beam.
  • the silicone can be firmly fixed to the fiber, and that the soft texture of the silicone can be imparted to the fiber even after washing, and the present invention has been completed.
  • the “fiber treatment agent for fixing an electron beam” means a fiber treatment agent that is fixed to a fiber by electron beam treatment.
  • sicone refers to a compound having a main skeleton with a siloxane bond composed of silicon and oxygen and having an organic group bonded to silicon.
  • the acrylic modified organopolysiloxane (A) is an acrylic modified organopolysiloxane having two or more acrylic groups in one molecule represented by the following general formula (I).
  • R 1 , R 2 , R 3 , R 5 , R 6 , R 7 , R 8 , R 10 and R 11 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • R 1 , R 2 , R 3 , R 5 , R 6 , R 7 , R 8 , R 10 and R 11 are all preferably methyl groups.
  • R 4 and R 9 are each independently a monovalent hydrocarbon group represented by the following general formula (II).
  • the acrylic groups represented by the following general formula (II) may be the same or different.
  • (b + d) / (a + b + c + d) ⁇ 100 is preferably 0.5 to 40, more preferably 1 to 20, and still more preferably 1 to 15.
  • (b + d) / (a + b + c + d) ⁇ 100 is 0.5 or more, the adhesiveness of silicone by electron beam irradiation becomes good.
  • R 1 , R 2 , R 3 , R 5 , R 6 , R 7 , R 8 , R 10 and R 11 are selected from the viewpoint of ease of production and the texture imparted to the fibers. Any of them is preferably a methyl group.
  • n is an integer of 1 to 3.
  • n is preferably 3 from the viewpoint of enhancing the adhesion of silicone to fibers and enhancing flexibility.
  • the acrylic-modified organopolysiloxane (A) preferably has a viscosity at 25 ° C. in the range of 50 to 5000 mPa ⁇ s. When the viscosity at 25 ° C.
  • a, b, c, d and e in the general formula (I) are appropriately adjusted so that the viscosity of the acrylic-modified organopolysiloxane (A) at 25 ° C. is in the range of 50 to 5000 mPa ⁇ s. .
  • the viscosity of the acrylic-modified organopolysiloxane (A) at 25 ° C. is more preferably 100 to 1000 mPa ⁇ s.
  • the acrylic-modified organopolysiloxane (A) may be a single acrylic-modified organopolysiloxane or a mixture of a plurality of acrylic-modified organopolysiloxanes having different degrees of polymerization and functional groups.
  • the fiber treatment agent for fixing an electron beam further has an amino modification having one or more amino groups in one molecule represented by the following general formula (III) from the viewpoint of enhancing flexibility. It is preferable that organopolysiloxane (B) is included.
  • R 12 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • the substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms include, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, and decyl group.
  • Alkyl groups such as vinyl, alkenyl groups such as vinyl and allyl groups, cycloalkyl groups such as cyclopentyl and cyclohexyl groups, aryl groups such as phenyl, tolyl and naphthyl groups, or hydrogen bonded to the carbon atoms of these groups
  • a group in which atoms are partially substituted with a halogen atom can be exemplified, and among these, a methyl group is particularly preferable from the viewpoint of water repellency, smoothness and flexibility.
  • the plurality of R 12 present may be the same or different.
  • R 13 is This is a monovalent group represented by —R 14 — (NH—R 15 ) h—NH 2 .
  • R 14 is a divalent hydrocarbon group having 1 to 8 carbon atoms, and specific examples thereof include a methylene group, a dimethylene group, a trimethylene group, a tetramethylene group, etc., among which a trimethylene group is preferable.
  • R 15 is a divalent hydrocarbon group having 1 to 4 carbon atoms. Specific examples thereof include a methylene group, a dimethylene group, a trimethylene group, a tetramethylene group, etc. Among them, a dimethylene group is preferable.
  • h is an integer of 0-4.
  • X is a monovalent group represented by R 12 , R 13 or —OR 16 .
  • R 12 and R 13 are as described above.
  • R 16 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • Specific examples of the monovalent hydrocarbon group having 1 to 8 carbon atoms include, for example, a methyl group, an ethyl group, a propyl group, and a butyl group. , Pentyl group, hexyl group, octyl group, phenyl group and the like.
  • X is particularly preferably a methyl group and / or a methoxy group.
  • f represents an integer of 5 to 500, and preferably an integer of 10 to 200.
  • f represents an integer of 5 to 500, and preferably an integer of 10 to 200.
  • f represents an integer of 5 to 500, and preferably an integer of 10 to 200.
  • g is an integer of 0 to 100, preferably an integer of 0 to 50.
  • g exceeds 100, there are too many amino groups, and stickiness may increase or water repellency may be lost.
  • at least one of the two Xs is adjusted to be R 13 .
  • the amino-modified organopolysiloxane (B) preferably has a viscosity at 25 ° C. in the range of 50 to 5000 mPa ⁇ s.
  • the viscosity of the amino-modified organopolysiloxane (B) at 25 ° C. is more preferably 100 to 1000 mPa ⁇ s.
  • the total mass of the acrylic-modified organopolysiloxane (A) and the amino-modified organopolysiloxane (B) is determined from the viewpoint of enhancing the adhesiveness and texture of silicone to the fiber.
  • the amount of the acrylic-modified organopolysiloxane (A) is 10 to 95% by mass
  • the amount of the amino-modified organopolysiloxane (B) is 5 to 90% by mass. More preferably, the amount of the acrylic-modified organopolysiloxane (A) is 30 to 90% by mass
  • the amount of the amino-modified organopolysiloxane (B) is 10 to 70% by mass.
  • the silicone component that is, the acrylic modified organopolysiloxane (A) or the mixture of the acrylic modified organopolysiloxane (A) and the amino modified organopolysiloxane (B) is directly used as an electron beam. It may be used as a fiber treatment agent for fixing.
  • a silicone component diluted with an organic solvent to form a solution may be used as the electron beam fixing fiber treatment agent.
  • the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, aliphatic hydrocarbon solvents such as hexane, octane and isoparaffin, ether solvents such as diisopropyl ether and 1,4-dioxane, or the like. Examples thereof include mixed solvents. Aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as hexane, octane and isoparaffin are particularly preferred.
  • the dilution concentration of the silicone component is not particularly limited, but the silicone component, that is, the concentration of the acrylic modified organopolysiloxane (A), or the acrylic modified organopolysiloxane (A) and the amino modified organopolysiloxane (B).
  • the total concentration may be 1 to 60% by mass, more preferably 1 to 20% by mass.
  • a material in which a silicone component is made into an emulsion state using water as a dispersion medium may be used as a fiber treatment agent for fixing an electron beam.
  • a nonionic surfactant an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and the like can be used.
  • the nonionic surfactant is not particularly limited, and examples thereof include polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, sorbitan alkylate, and polyoxyethylene sorbitan alkylate.
  • the anionic surfactant is not particularly limited, and examples thereof include alkylbenzene sulfonate and alkyl phosphate.
  • a cationic surfactant For example, a quaternary ammonium salt, an alkylamine salt, etc. are mentioned.
  • the amphoteric surfactant is not particularly limited, and examples thereof include alkylbetaines and alkylimidazolines. These surfactants may be used individually by 1 type, and may use 2 or more types together.
  • the surfactant is not particularly limited, but from the viewpoint of easily emulsifying silicone, the HLB (Hydrophilic-Lipophilic Balance) is preferably 11 to 18, and more preferably 13 to 16. .
  • the surfactant is used in an amount of 100 parts by mass of the silicone component, that is, the acrylic modified organopolysiloxane (A), or a mixture of the acrylic modified organopolysiloxane (A) and the amino modified organopolysiloxane (B).
  • the amount is preferably 5 to 50 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass.
  • the amount of water used for emulsification may be any amount, but the concentration of the acrylic modified organopolysiloxane (A) or the acrylic modified organopolysiloxane (A) and the amino modified organopolysiloxane (B).
  • the amount is generally such that the total concentration is 1 to 60% by mass, preferably 1 to 20% by mass.
  • a surfactant is mixed, and this is mixed with a homomixer, a homogenizer, What is necessary is just to emulsify with emulsifiers, such as a colloid mill and a line mixer.
  • the respective components are mixed in advance to form a solution state or an emulsion state.
  • the respective components are mixed in advance to form a solution state or an emulsion state.
  • the fiber treatment agent for fixing an electron beam is added with other fiber agents, for example, an anti-wrinkle agent, a flame retardant, an antistatic agent, and a heat-resistant agent, as long as the properties thereof are not impaired. May be.
  • the silicone can be fixed to the fiber by applying or impregnating the fiber treatment agent for fixing the electron beam to the fiber and then irradiating it with an electron beam.
  • the acrylic modified organopolysiloxane (A) in the fiber and the electron beam fixing fiber treatment agent is graft-polymerized, and the silicone components As the crosslinking proceeds, the silicone is cured and the silicone is firmly fixed to the fiber.
  • the fiber to be treated with the electron beam fixing fiber treatment agent is not particularly limited.
  • synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, and spandex are used. Examples thereof include fibers and fiber products using these.
  • the coating amount or impregnation amount may be 0.01 to 20.0 g / m 2 , more preferably 0.01 to 5 g / m 2 .
  • the electron beam fixing fiber treatment agent when the electron beam fixing fiber treatment agent is in the form of a solution obtained by diluting silicone with an organic solvent or an emulsion dispersed in water, the electron beam fixing fiber treatment agent is applied to the fiber. Or after making it impregnate, you may perform a drying process in order to volatilize the water which is a dispersion medium of an organic solvent or an emulsion. Drying may be performed with hot air blowing, a heating furnace, etc., and the drying temperature and time may be arbitrarily set within a range not affecting the fiber. For example, the drying temperature is 100 to 150 ° C., and the drying time is 10 seconds to What is necessary is just to perform in the range for 5 minutes.
  • the electron beam irradiation apparatus that irradiates the fiber coated with or impregnated with the electron beam fixing fiber treatment agent with an electron beam is not particularly limited, and may be a curtain method, a scan method, or a double scan method.
  • the acceleration voltage of the electron beam by this electron beam irradiation is not particularly limited, but may be in the range of 100 to 1000 kV, for example. If the acceleration voltage is less than 100 kV, the amount of transmitted energy may be insufficient, and if it exceeds 1000 kV, the economy is inferior. Further, the irradiation amount of the electron beam is not particularly limited, but may be in the range of 5 to 100 kGy, for example.
  • the fiber may deteriorate.
  • the electron beam fixing fiber treatment agent is in a solution state in which silicone is diluted with an organic solvent, the fiber is immersed (washed) with the organic solvent used to dilute the silicone after irradiation with the electron beam, thereby unreacted. Silicone may be removed.
  • the electron beam fixing fiber treatment agent is an emulsion in which silicone is dispersed in water, unreacted silicone may be removed by washing the fiber with water after irradiation with the electron beam.
  • Example 1 First, a fiber treating agent (a) in which the acrylic modified organopolysiloxane (A1) represented by the following average molecular formula (IV) is diluted with toluene, and the concentration of the acrylic modified organopolysiloxane (A1) is 10% by mass. Prepared. Next, after 100% cotton broad cloth (made by Kurabo Industries) was immersed in the fiber treatment agent (a), it was squeezed using a mangle roll under the condition of a squeezing rate of 60% and dried at 110 ° C. for 90 seconds.
  • the acrylic modified organopolysiloxane (A1) represented by the following average molecular formula (IV) is diluted with toluene, and the concentration of the acrylic modified organopolysiloxane (A1) is 10% by mass.
  • 100% cotton broad cloth made by Kurabo Industries
  • an electron beam of 40 kGy was irradiated at an acceleration voltage of 200 kV in a nitrogen atmosphere.
  • the fiber (100% cotton broad cloth) after the electron beam treatment was immersed in toluene for 1 minute, then squeezed with a mangle roll under the condition of a squeezing rate of 60%, and further immersed again in new toluene for 1 minute. Thereafter, the fiber was squeezed with mangle roll under a squeezing ratio of 60% and dried at 110 ° C. for 90 seconds to produce a fiber with silicone fixed thereto.
  • Example 2 An acrylic modified organopolysiloxane (A2) represented by the following average molecular formula (VI) was diluted with toluene to prepare a fiber treating agent (b) having a concentration of 10% by mass of the acrylic modified organopolysiloxane (A2).
  • a 100% cotton broad cloth manufactured by Kurabo Industries is dipped in the resulting fiber treating agent (b), squeezed with a mangle roll under the condition of a squeezing rate of 60%, dried at 110 ° C.
  • the fiber (100% cotton broad cloth) after the electron beam treatment was immersed in toluene for 1 minute, then squeezed with a mangle roll under the condition of a squeezing rate of 60%, and further immersed again in new toluene for 1 minute. Thereafter, the fiber was squeezed with mangle roll under a squeezing ratio of 60% and dried at 110 ° C. for 90 seconds to produce a fiber with silicone fixed thereto.
  • Example 3 300 g of the acrylic-modified organopolysiloxane (A2) used in Example 2 and polyoxyethylene (4) lauryl ether (manufactured by Kao Corporation, product name “Emulgen 104P”, nonionic surfactant, HLB value 9.6) 7.8 g and 22.2 g of polyoxyethylene (23) lauryl ether (manufactured by Kao Corporation, product name “Emulgen 123P”, nonionic surfactant, HLB value 16.9) were charged into a 2-liter poly mug, Mix well at high speed using a homomixer, add 18 g of phase inversion water (ion exchange water) and knead, then add 280 g of ion exchange water and mix for 20 minutes at 2500 rpm with a homomixer.
  • phase inversion water ion exchange water
  • An oil-in-water emulsion (I) having an acrylic-modified organopolysiloxane (A2) concentration of 50% by mass was obtained.
  • the obtained oil-in-water emulsion (I) was further diluted with ion-exchanged water to prepare a fiber treatment agent (c) in which the concentration of the acrylic-modified organopolysiloxane (A2) was 10% by mass.
  • a fiber treatment agent (c) in which the concentration of the acrylic-modified organopolysiloxane (A2) was 10% by mass.
  • Example 4 300 g of amino-modified organopolysiloxane (B1) represented by the following average molecular formula (VII), polyoxyethylene (4) lauryl ether (product name “Emulgen 104P”, nonionic surfactant, HLB value, manufactured by Kao Corporation) 9.6) 1.8 g of polyoxyethylene (23) lauryl ether (product name “Emulgen 123P”, nonionic surfactant, HLB value 16.9) manufactured by Kao Corporation) and 4.2 g of 2 liters of poly Charge into a mug, mix well at high speed using a homomixer, add 18 g of phase inversion water (ion exchange water), knead, add 280 g of ion exchange water, and homomix at 2,500 rpm for 20 minutes.
  • VII average molecular formula
  • oil-in-water emulsion (II) having a concentration of amino-modified organopolysiloxane (B1) of 50% by mass was obtained.
  • the oil-in-water emulsion (III) was prepared by mixing in part.
  • the obtained oil-in-water emulsion (III) was diluted with ion-exchanged water, and the concentration of organopolysiloxane (total concentration of acrylic-modified organopolysiloxane (A2) and amino-modified organopolysiloxane (B1)) was 10% by mass.
  • a fiber treating agent (d) was prepared. A 100% cotton broad cloth (manufactured by Kurabo Industries) is dipped in the resulting fiber treatment agent (d), squeezed with a mangle roll under the condition of a squeezing rate of 60%, dried at 110 ° C.
  • an area beam electron beam irradiation apparatus EC250 / 30 / 90L (manufactured by Iwasaki Electric Co., Ltd.) was used and irradiated with an electron beam of 40 kGy at an acceleration voltage of 200 kV in a nitrogen atmosphere.
  • the fiber irradiated with electron beam (100% cotton broad cloth) was immersed in a toluene solution for 1 minute, then squeezed with a mangle roll under the condition of a squeezing rate of 60%, and then again immersed in a new toluene solution for 1 minute. Thereafter, the film was squeezed with mangle roll under a squeezing ratio of 60% and dried at 110 ° C. for 90 seconds.
  • a fiber treating agent (c) was prepared in the same manner as in Example 3.
  • a 100% cotton broad cloth manufactured by Kurabo Industries
  • the fiber (100% cotton broad cloth) treated with the fiber treating agent (c) was washed with water, it was squeezed using a mangle roll under a squeezing rate of 60% and dried at 110 ° C. for 90 seconds.
  • Example 3 In the same manner as in Example 4, an oil-in-water emulsion (II) having an amino-modified organopolysiloxane (B1) concentration of 50% by mass was prepared.
  • the oil-in-water emulsion (II) was diluted with ion-exchanged water to prepare a fiber treatment agent (Y) having a concentration of amino-modified organopolysiloxane (B1) of 10% by mass.
  • a 100% cotton broad cloth manufactured by Kurabo Industries
  • the fiber (100% cotton broad cloth) treated with the fiber treating agent (Y) was washed with water, then squeezed with a mangle roll under the condition of a squeezing rate of 60%, and dried at 110 ° C. for 90 seconds.
  • Polysiloxane (A) was adhered to the fiber. Since the acrylic-modified organopolysiloxane (A) used in Example 2 has a larger amount of acrylic groups as compared with the acrylic-modified organopolysiloxane (A) used in Example 1, the adhesiveness to the fiber is more improved. it was high.
  • Example 3 using a fiber treatment agent in which an acrylic-modified organopolysiloxane (A) having two or more acrylic groups in one molecule represented by the general formula (I) was emulsified, the flexibility was good. It was. Further, from the comparison of Examples 3 and 4, the acrylic modified organopolysiloxane (A) having two or more acrylic groups in one molecule represented by the above general formula (I) and the above general formula (III). When the amino-modified organopolysiloxane (B) having one or more amino groups in one molecule is used in combination, the initial silicone adhesion amount is increased and the flexibility is very good. It was also found that organopolysiloxane was sufficiently adhered.
  • Comparative Example 1 in which dimethylpolysiloxane having no acrylic group was used, it was found that the amount of dimethylpolysiloxane adhered was small from the beginning, and almost no dimethylpolysiloxane remained after 10 or 50 washes.
  • a fiber treatment agent in which an acrylic modified organopolysiloxane (A) having two or more acrylic groups in one molecule represented by the above general formula (I) is emulsified is used, but the electron beam irradiation is not performed.
  • Example 2 the amount of the acrylic-modified organopolysiloxane (A) attached to the fiber was small and lacked flexibility.
  • the fibers and the acrylic-modified organopolysiloxane (A) are graft-polymerized, and the crosslinking of the silicone components also proceeds, so that the silicone is firmly fixed to the fibers. While the flexibility was good, in the comparative example, it was found that silicone was not fixed to the fiber.

Abstract

本発明は、下記一般式(I)で表される1分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)を含む電子線固着用繊維処理剤に関する。 (前記一般式(I)中、 M=R1R2R3SiO1/2、 MA=R4R5R6SiO1/2、 D=R7R8SiO2/2、 DA=R9R10SiO2/2、 T=R11SiO3/2であり、 R1~R11は、それぞれ独立して、水素原子、炭素数1~4のアルキル基又はフェニル基であり、R4及びR9は、それぞれ独立して、下記一般式(II)で表される1価の炭化水素基であり、a~dは、それぞれ独立して、0もしくは正の整数であり、eは0~3の整数であり、c+dが10~1000の整数であり、b+dが少なくとも2の整数であり、かつa+bがe+2に等しい整数である。) (前記一般式(II)中、nは1~3の整数である。)

Description

電子線固着用繊維処理剤
 本発明は、電子線照射により繊維にシリコーンが固着する電子線固着用繊維処理剤に関するものである。
 各種繊維及び繊維製品に対して、柔軟性、平滑性などを付与するための繊維処理剤として、ジメチルポリシロキサン、エポキシ基含有オルガノポリシロキサン、アミノ基含有オルガノポリシロキサンなどの各種オルガノポリシロキサンが幅広く使用されており、特に良好な柔軟性を付与するアミノ基含有オルガノポリシロキサンが最も多量に使用されている。また、その形態としては水を分散媒としたエマルションタイプのものがよく使用され、その処理としては、このエマルションを、繊維に塗布又は含浸させた後、加熱乾燥させる方法が最も一般的で、広く使用されている。このようにシリコーン処理した繊維は、処理直後の風合いは非常に優れるが、洗濯を数回すると処理剤の効能成分(シリコーン)が繊維から洗い流されてしまい、風合いが低下してしまう。これは、前記シリコーン系の処理剤が繊維と反応することができず、アミノ基の繊維への弱い吸着効果で繊維表面にシリコーンが存在しており、繊維表面にシリコーンが固着されていないことが原因だと考えられる。
 そこで、ポリエステル繊維、ナイロン繊維、アクリル繊維などの合成繊維の場合は、繊維を構成する合成樹脂の中にシリコーンオイルを混ぜ、繊維化することなどが検討されているが、シリコーンとこれらの合成樹脂との相溶性が悪いことから、合成樹脂とシリコーンを混ぜた状態で均一な繊維化は非常に難しかった。このため、エポキシ基やアルコキシ基などの、繊維表面の官能基と反応が考えられる官能基が導入されたシリコーンの使用も検討されているが、このような官能基を持つシリコーンをエマルションとした場合、経時での安定性が悪く使用前に処理剤が増粘して使用できないなどの問題があった。
 その対策として、表面にシリコーンのゴム被膜を形成させる方法がある。このゴム皮膜を形成する硬化性シリコーンエマルション組成物については、従来から種々の組成のものが公知である。例えば、特許文献1には、アニオン的に安定化されたヒドロキシル化ジオルガノポリシロキサン、コロイダルシリカ及び有機スズ化合物又は有機アミン化合物からなり、pHが9~11.5のシリコーンエマルション組成物が提案されている。特許文献2には、ジメチルシロキサン単位とモノフェニルシロキサン単位とからなるシロキサンブロックコポリマー、水、カチオン系界面活性剤、充填剤及びアミノシランからなるシリコーンラテックス組成物が記載されている。特許文献3には、ヒドロキシル基含有オルガノポリシロキサン、Si-H基含有オルガノポリシロキサン、コロイダルシリカ、アミド基及びカルボキシル基含有シラン、エポキシ基含有シラン及び硬化用触媒からなるシリコーンエマルション組成物が提案されている。特許文献4には、アルケニル基含有オルガノポリシロキサン、Si-H基含有オルガノポリシロキサン、コロイダルシリカ、アミノシランと酸無水物の反応物、エポキシシラン、付加反応用触媒からなるシリコーンエマルション組成物が提案されている。特許文献5には、分子末端が水酸基で封鎖されたハイドロジェンシロキサン、乳化剤、水、硬化触媒からなるシリコーンエマルション組成物が提案されている。特許文献6~8には、コロイダルシリカ-シリコーンコアシェル体、硬化触媒、乳化剤、水からなるシリコーンエマルション組成物が提案されている。特許文献9には、ヒドロキシル基含有オルガノポリシロキサン、コロイダルシリカ、アミド基及びカルボキシル基含有シラン、エポキシ基含有シラン、硬化用触媒及び光触媒性酸化物からなるシリコーンエマルション組成物が提案されている。特許文献10には、ヒドロキシル基含有オルガノポリシロキサン、コロイダルシリカ、アミド基及びカルボキシル基含有シラン、エポキシ基含有シランからなるシリコーンエマルション組成物が提案されている。
特開昭56-16553号公報 米国特許第3817894号 特開平8-85760号公報 特開平9-208826号公報 特開平9-208900号公報 特開平9-208901号公報 特開平9-208902号公報 特開平9-208903号公報 特開2002-363494号公報 特開2008-231276号公報
 特許文献1~10において、硬化触媒としては一般的には有機スズ化合物が用いられる。しかしながら、有機スズ化合物は、その毒性の問題から、用途、分野、国により、使用の制限や規制がなされつつあり、ジブチルスズ化合物からオクチルスズ化合物への代替、更にはオクチルスズ化合物から無機スズ、あるいは他の金属化合物への代替が提案されているが効果的な触媒系がまだ無い現状である。このため、有害な金属触媒などを使用しないで、洗濯後もシリコーン処理剤の効能が維持できる処理剤や処理方法が依然として求められている。
 本発明は、上記問題を解決するため、電子線照射により繊維にシリコーンが強固に固着し、洗濯後においても繊維に良好な風合いを付与することができる電子線固着用繊維処理剤を提供する。
 本発明は、下記一般式(I)で表される1分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)を含むことを特徴とする電子線固着用繊維処理剤に関する。
Figure JPOXMLDOC01-appb-C000004
(前記一般式(I)中、M=RSiO1/2
=RSiO1/2
D=RSiO2/2
=R10SiO2/2
T=R11SiO3/2であり、
、R、R、R、R、R、R、R10およびR11は、それぞれ独立して、水素原子、炭素数1~4のアルキル基又はフェニル基であり、RおよびRは、それぞれ独立して、下記一般式(II)で表される1価の炭化水素基であり、a、b、cおよびdは、それぞれ独立して、0もしくは正の整数であり、eは0~3の整数であり、c+dが10~1000の整数であり、b+dが2以上の整数であり、かつa+bがe+2に等しい整数である。)
Figure JPOXMLDOC01-appb-C000005
(前記一般式(II)中、nは1~3の整数である。)
 本発明の一実施形態において、前記電子線固着用繊維処理剤は、さらに、下記一般式(III)で表される1分子中にアミノ基を1個以上持つアミノ変性オルガノポリシロキサン(B)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
(前記一般式(III)中、R12は炭素数1~20の1価炭化水素基であり、R13は-R14-(NH-R15)h-NH2で表される1価の基であり、XはR12、R13又は-OR16で示される1価の基であり、R14は炭素数1~8の2価炭化水素基であり、R15は炭素数1~4の2価炭化水素基であり、R16は水素原子又は炭素数1~8の1価炭化水素基であり、fは5~500の整数を表し、gは0~100の整数を表し、hは0~4の整数を表す。但し、g=0の場合、2個のXのうち、少なくとも1個はR13である。)
 前記一般式(I)において、(b+d)/(a+b+c+d)×100が0.5~40であることが好ましい。
 本発明の一実施形態において、前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の合計質量を100質量%とした場合、前記アクリル変性オルガノポリシロキサン(A)の配合量が10~95質量%であり、前記アミノ変性オルガノポリシロキサン(B)の配合量が5~90質量%であることが好ましい。
 本発明の一実施形態において、電子線固着用繊維処理剤の形態がエマルションであることが好ましい。
 本発明の電子線固着用繊維処理剤によれば、電子線照射により繊維にシリコーンが強固に固着し、洗濯後においても繊維に良好な風合いを付与することができる。
 本発明者らは、シリコーン処理された繊維の洗濯耐久性を向上させることについて検討を重ねた。その結果、後述する一般式(I)で表される1分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)を含む繊維処理剤で繊維を処理した後電子線を照射することで、シリコーンを繊維に強固に固着することができ、洗濯後もシリコーンの柔軟な風合いを繊維に付与し得ることを見出し、本発明を完成させた。本明細書において、「電子線固着用繊維処理剤」とは、電子線処理により、繊維に固着する繊維処理剤を意味する。また、本明細書において、「シリコーン」とは、ケイ素と酸素からなるシロキサン結合による主骨格を持ち、ケイ素に有機基が結合した化合物をいう。
 前記アクリル変性オルガノポリシロキサン(A)は、下記一般式(I)で表される1分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000007
前記一般式(I)中、
M=R123SiO1/2
A=R456SiO1/2
D=R78SiO2/2
A=R910SiO2/2
T=R11SiO3/2であり、
1、R2、R3、R5、R6、R7、R8、R10およびR11は、それぞれ独立して、水素原子、炭素数1~4のアルキル基又はフェニル基である。炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基などが挙げられる。前記一般式(I)中、R1、R2、R3、R5、R6、R7、R8、R10およびR11は、いずれもメチル基であることがより好ましい。
 前記一般式(I)中、R4およびR9は、それぞれ独立して、下記一般式(II)で表される1価の炭化水素基である。下記一般式(II)で表されるアクリル基は、互いに同一でもよく、異なっていてもよい。前記一般式(I)において、(b+d)/(a+b+c+d)×100は0.5~40であることが好ましく、1~20であることがより好ましく、1~15であることがさらに好ましい。(b+d)/(a+b+c+d)×100が0.5以上であると、電子線照射によるシリコーンの固着性が良好になる。また、(b+d)/(a+b+c+d)×100が40以下であると、繊維に固着したシリコーンが硬くなりすぎず柔軟性に優れる。前記一般式(I)中、R1、R2、R3、R5、R6、R7、R8、R10およびR11は、製造の容易さ及び繊維に対する付与される風合いの点からいずれもメチル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 前記一般式(II)中、nは1~3の整数である。シリコーンの繊維への固着性を高めるとともに、柔軟性を高める観点から、前記一般式(II)中、nは3であることが好ましい。
 前記一般式(I)中、a、b、cおよびdは、それぞれ独立して、0もしくは正の整数であり、eは0~3の整数であり、c+d=10~1000の整数である。但し、b+dが2以上の整数であり、a+bがe+2に等しい整数である。前記アクリル変性オルガノポリシロキサン(A)は、25℃における粘度が50~5000mPa・sの範囲であることが好ましい。25℃における粘度が50mPa・s未満であると繊維に付着しづらい傾向があり、5000mPa・sより大きくなると組成物としての粘度が高くなって繊維への処理が難しくなる傾向がある。前記一般式(I)におけるa、b、c、dおよびeを適宜に調整して、前記アクリル変性オルガノポリシロキサン(A)の25℃における粘度を50~5000mPa・sの範囲にすることが好ましい。前記アクリル変性オルガノポリシロキサン(A)の25℃における粘度は、100~1000mPa・sであることがより好ましい。また、eは0又は1であることが好ましい。前記アクリル変性オルガノポリシロキサン(A)は、単一のアクリル変性オルガノポリシロキサンであってもよいし、重合度や官能基量の異なる複数のアクリル変性オルガノポリシロキサンの混合物であってもよい。
 本発明の一実施形態において、前記電子線固着用繊維処理剤は、柔軟性を高める観点から、さらに、下記一般式(III)で表される1分子中にアミノ基を1個以上持つアミノ変性オルガノポリシロキサン(B)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
 前記一般式(III)中、R12は炭素数1~20の置換又は非置換の1価炭化水素基である。炭素数1~20の置換又は非置換の1価炭化水素基の具体例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基などのアルキル基、ビニル基、アリル基などのアルケニル基、シクロペンチル基、シクロヘキシル基などのシクロアルキル基、フェニル基、トリル基、ナフチル基などのアリール基、又はこれらの基の炭素原子に結合した水素原子が部分的にハロゲン原子で置換された基を挙げることができ、これらの中では、特にメチル基が、撥水性、平滑性、柔軟性の面から好ましい。前記複数存在するR12は、同一であってもよく、異なっていてもよい。
 前記一般式(III)中、R13 -R14-(NH-R15)h-NH2で表される1価の基である。R14は炭素数1~8の2価炭化水素基であり、具体例としては、例えば、メチレン基、ジメチレン基、トリメチレン基、テトラメチレン基などが挙げられ、中でもトリメチレン基が好ましい。R15は炭素数1~4の2価炭化水素基であり、具体例としては、例えば、メチレン基、ジメチレン基、トリメチレン基、テトラメチレン基などが挙げられ、中でもジメチレン基が好ましい。前記R13において、hは0~4の整数である。
 前記一般式(III)中、XはR12、R13又は-OR16で示される1価の基である。R12及びR13は前記のとおりである。R16は水素原子又は炭素数1~8の1価炭化水素基であり、炭素数1~8の1価炭化水素基の具体例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、フェニル基などが挙げられる。これらのうち、Xは特にメチル基及び/又はメトキシ基であることが好ましい。
 前記一般式(III)中、fは5~500の整数を表し、10~200の整数であることが好ましい。fが5より小さいと、平面滑性、撥水性が乏しくなり、500より大きいと、高粘性となり、アミノ基のアクリル基に対する反応性が低下する。前記一般式(III)中、gは0~100の整数であり、好ましくは0~50の整数である。gが100を超えるとアミノ基が多すぎて、べたつきが多くなる恐れや、撥水性が失われる恐れがある。但し、g=0の場合、前記一般式(III)において、2個のXのうち、少なくとも1個はR13となるように調整される。
 前記アミノ変性オルガノポリシロキサン(B)は、25℃における粘度が50~5000mPa・sの範囲であることが好ましい。25℃における粘度が50mPa・s未満であると繊維に付着しづらい傾向があり、5000mPa・sより大きくなると組成物としての粘度が高くなって繊維への処理が難しくなる傾向がある。アミノ変性オルガノポリシロキサン(B)の25℃における粘度は、100~1000mPa・sであることがより好ましい。
 本発明の一実施形態において、特に限定されないが、繊維へのシリコーンの固着性及び風合いを高める観点から、前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の合計質量を100質量%とした場合、前記アクリル変性オルガノポリシロキサン(A)の配合量が10~95質量%であり、前記アミノ変性オルガノポリシロキサン(B)の配合量が5~90質量%であることが好ましく、より好ましくは前記アクリル変性オルガノポリシロキサン(A)の配合量が30~90質量%であり、前記アミノ変性オルガノポリシロキサン(B)の配合量が10~70質量%である。
 本発明の一実施形態において、シリコーン成分、すなわち、前記アクリル変性オルガノポリシロキサン(A)、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の混合物は、そのまま電子線固着用繊維処理剤として用いてもよい。
 本発明の一実施形態において、取扱い性の観点から、シリコーン成分を有機溶剤で希釈して溶液状態にしたものを電子線固着用繊維処理剤として用いてもよい。前記有機溶剤としては、トルエン、キシレンなどの芳香族系炭化水素溶剤、へキサン、オクタン、イソパラフィンなどの脂肪族系炭化水素溶剤、ジイソプロピルエーテル、1,4-ジオキサンなどのエーテル系溶剤、又はこれらの混合溶剤などが挙げられる。トルエン、キシレンなどの芳香族炭化水素溶剤、へキサン、オクタン、イソパラフィンなどの脂肪族系炭化水素溶剤が特に好ましい。またシリコーン成分の希釈濃度に特に限定はないが、シリコーン成分、すなわち前記アクリル変性オルガノポリシロキサン(A)の濃度、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の合計濃度が1~60質量%であれば良く、より好ましくは1~20質量%であれば良い。
 本発明の一実施形態において、また、水を分散媒としてシリコーン成分をエマルション状態にしたものを電子線固着用繊維処理剤として用いてもよい。このエマルション化にはノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、及び両性界面活性剤などが使用できる。ノニオン性界面活性剤としては特に制限はないが、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタンアルキレート、ポリオキシエチレンソルビタンアルキレートなどが挙げられる。アニオン性界面活性剤としては特に制限はないが、例えば、アルキルベンゼンスルホン酸塩、アルキルリン酸塩などが挙げられる。カチオン性界面活性剤としては特に制限はないが、例えば第4級アンモニウム塩、アルキルアミン塩などが挙げられる。両性界面活性剤としては特に制限はないが、例えば、アルキルベタイン、アルキルイミダゾリンなどが挙げられる。これら界面活性剤は、一種を単独で用いても良く、二種以上を併用してもよい。前記界面活性剤は、特に限定されないが、シリコーンを乳化しやすい観点から、HLB(Hydrophilic-Lipophilic Balance,親水親油バランス)は11~18であることが好ましく、13~16であることがより好ましい。
 前記界面活性剤の使用量は、シリコーン成分、すなわち前記アクリル変性オルガノポリシロキサン(A)100質量部に対し、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の混合物100質量部に対し、5~50質量部が好ましく、より好ましくは10~30質量部である。また乳化の際の水の使用量は任意の量でよいが、前記アクリル変性オルガノポリシロキサン(A)の濃度、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の合計濃度が1~60質量%となるような量が一般的であり、好ましくは1~20質量%となるような量である。前記アクリル変性オルガノポリシロキサン(A)、又は前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)を乳化するには、界面活性剤を混合し、これをホモミキサー、ホモジナイザー、コロイドミル、ラインミキサーなどの乳化機で乳化すればよい。
 本発明の一実施形態において、シリコーン成分として、前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の両方を用いる場合、各成分をあらかじめ混合し、溶液状態やエマルション状態にしても良いし、それぞれの成分をあらかじめ個別に溶液状態やエマルション状態にしたものを混合しても良い。
 本発明の一実施形態において、前記電子線固着用繊維処理剤には、その特性を阻害しない範囲で、他の繊維用薬剤、例えば防しわ剤、難燃剤、帯電防止剤、耐熱剤などを添加してもよい。
 繊維に前記電子線固着用繊維処理剤を塗布又は含浸し、その後電子線照射することで、繊維にシリコーンを固着することができる。繊維に付着された前記電子線固着用繊維処理剤を電子線照射することで、繊維と前記電子線固着用繊維処理剤中のアクリル変性オルガノポリシロキサン(A)がグラフト重合するとともに、シリコーン成分同士の架橋も進行することでシリコーンが硬化し、繊維にシリコーンが強固に固着することになる。
 前記電子線固着用繊維処理剤で処理する繊維としては特に限定はなく、綿、絹、麻、ウール、アンゴラ、モヘアなどの天然繊維はもとより、ポリエステル繊維、ナイロン繊維、アクリル繊維、スパンデックスなどの合成繊維及びこれらを用いた繊維製品などが挙げられる。またその形態、形状にも制限はなく、ステープル、フィラメント、トウ、糸などの様な原材料形状に限らず、織物、編み物、詰め綿、不織布、紙、シート、フィルムなどの多様な加工形態のものも前記電子線固着用繊維処理剤の処理可能な対象となる。
 前記繊維に前記電子線固着用繊維処理剤を塗布又は含浸するには、ロール塗布、グラビア塗布、ワイヤードクター塗布、エアーナイフ塗布、ディッピング処理などの公知の方法を用いることができる。塗布量又は含浸量としては0.01~20.0g/m2とすればよく、より好ましくは0.01~5g/m2である。塗布量又は含浸量を上記範囲にすることで、繊維のシリコーンの固着を高めることができる。
 本発明の一実施形態において、前記電子線固着用繊維処理剤がシリコーンを有機溶剤で希釈した溶液状態又は水に分散させたエマルションの形態の場合、前記電子線固着用繊維処理剤を繊維に塗布又は含浸させた後、有機溶剤やエマルションの分散媒である水を揮発させるために乾燥工程を行っても良い。乾燥は、熱風吹き付け、加熱炉などで行えばよく、乾燥温度や時間は繊維に影響を与えない範囲で任意とすれば良いが、例えば、乾燥温度は100~150℃、乾燥時間は10秒~5分の範囲で行えばよい。
 前記電子線固着用繊維処理剤を塗布または含浸させた繊維に電子線を照射する電子線照射装置は、特に限定されず、カーテン方式、スキャン方式またはダブルスキャン方式のものとすればよい。この電子線照射による電子線の加速電圧は、特に限定されないが、例えば、100~1000kVの範囲のものとすればよい。加速電圧が100kV未満ではエネルギーの透過量が不足する恐れがあり、1000kVを超えると経済性に劣る。また、電子線の照射量は、特に限定されないが、例えば、5~100kGyの範囲とすればよい。電子線の照射量が5kGy未満では硬化不良が生じる恐れがあり、100kGy以上では繊維が劣化する恐れがある。前記電子線固着用繊維処理剤がシリコーンを有機溶剤で希釈した溶液状態の場合、電子線照射後に、シリコーンを希釈するのに用いた有機溶剤で繊維を浸漬(洗浄)することで、未反応のシリコーンを除去してもよい。一方、前記電子線固着用繊維処理剤がシリコーンを水に分散させたエマルションの場合、電子線照射後に、水で繊維を洗浄することで、未反応のシリコーンを除去してもよい。
 次に本発明の実施の形態を実施例に基づいて詳しく説明する。本発明は以下の実施例に限定されるものではない。下記実施例及び比較例中の部は質量部を示したものであり、下記実施例及び比較例中の物性値は下記の試験法による測定値を示したものである。
 (初期のSi量の測定)
 リガク製蛍光X線分析装置ZSX100eを用い、EZスキャン法にて洗濯前の試料に含まれる全元素の質量(W0t)及びSi原子の質量(W0s)を測定し、下記式で初期のSi量を算出した。
 初期のSi量(質量%)=(W0s)/(W0t)×100
 (洗濯後のSi量の測定)
 試料をJIS L 0217 103法に準拠して(洗剤はJAFET)で10回又は50回洗濯し、乾燥後リガク製蛍光X線分析装置ZSX100eを用い、EZスキャン法にて洗濯10回又は50回後の試料に含まれる全元素の質量(W10t又はW50t)及びSi原子の質量(W10s又はW50s)を測定し、下記式で10回洗濯後のSi量及び50回洗濯後のSi量を算出した。
 10回洗濯後のSi量(質量%)=(W10s)/(W10t)×100
 50回洗濯後のSi量(質量%)=(W50s)/(W50t)×100
 (初期風合い)
 試料の柔軟性について、三人のパネラーが手触にて確認し、以下の基準により評価した。
A: 非常に良好である。
B: 良好である。
C: 不良である。
 (洗濯後の風合い)
 試料をJIS L 0217 103法に準拠して(洗剤はJAFET)で10回又は50回洗濯し、洗濯後の試料の柔軟性について、三人のパネラーが手触にて確認し、以下の基準により評価した。
A: 非常に良好である。
B: 良好である。
C: 不良である。
 (実施例1)
 まず、下記平均分子式(IV)で表されるアクリル変性オルガノポリシロキサン(A1)をトルエンで希釈し、該アクリル変性オルガノポリシロキサン(A1)の濃度が10質量%となる繊維処理剤(a)を調製した。次に、繊維処理剤(a)に綿100質量%ブロード布(クラボウ製)を浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥した。次に、エリアビーム型電子線照射装置EC250/15/180L(岩崎電気社製)を用い、窒素雰囲気下で、加速電圧200kVで40kGyの電子線を照射した。次に、電子線処理後の繊維(綿100質量%ブロード布)をトルエンに1分間浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、さらにもう一度、新しいトルエンに1分間浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、シリコーンを固着させた繊維を作製した。
Figure JPOXMLDOC01-appb-C000010
(前記平均分子式(IV)中、
M=(CH33SiO1/2
D=(CH32SiO2/2
A=CH39SiO2/2
T=CH3SiO3/2
9は、下記式(V)で表される1価の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000011
 (実施例2)
 下記平均分子式(VI)で表されるアクリル変性オルガノポリシロキサン(A2)をトルエンで希釈し、該アクリル変性オルガノポリシロキサン(A2)濃度が10質量%となる繊維処理剤(b)を調製した。得られた線維処理剤(b)に綿100質量%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、エリアビーム型電子線照射装置EC250/30/90L(岩崎電気社製)を用い、窒素雰囲気下で、加速電圧200kVで40kGyの電子線を照射した。次に、電子線処理後の繊維(綿100質量%ブロード布)をトルエンに1分間浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、さらにもう一度、新しいトルエンに1分間浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、シリコーンを固着させた繊維を作製した。
Figure JPOXMLDOC01-appb-C000012
(前記平均分子式(VI)中、
M=(CH33SiO1/2
D=(CH32SiO2/2
A=CH39SiO2/2
T=CH3SiO3/2
9は、下記式(V)で表される1価の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000013
 (実施例3)
 実施例2で使用したアクリル変性オルガノポリシロキサン(A2)を300gと、ポリオキシエチレン(4)ラウリルエーテル(花王社製、製品名「エマルゲン104P」、ノニオン性界面活性剤、HLB値9.6)7.8g及びポリオキシエチレン(23)ラウリルエーテル(花王社製、製品名「エマルゲン123P」、ノニオン性界面活性剤、HLB値16.9)22.2gとを、2リットルのポリジョッキに仕込み、ホモミキサーを用いて高速で充分に混合して、転相水(イオン交換水)18gを添加して練り込んだ後、イオン交換水280gを加えてホモミキサーで2,500rpmで20分間混合し、アクリル変性オルガノポリシロキサン(A2)の濃度が50質量%の水中油型エマルション(I)を得た。得られた水中油型エマルション(I)を、さらにイオン交換水で希釈し、アクリル変性オルガノポリシロキサン(A2)の濃度が10質量%となる繊維処理剤(c)を調製した。得られた繊維処理剤(c)に綿100質量%ブロード布(クラボウ製)を浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥した。次に、エリアビーム型電子線照射装置EC250/30/90L(岩崎電気社製)を用い、窒素雰囲気下で、加速電圧200kVで40kGyの電子線を照射した。次に、電子線照射後の繊維(綿100質量%ブロード布)を水で洗浄した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、シリコーンを固着させた繊維を作製した。
 (実施例4)
 下記平均分子式(VII)で表されるアミノ変性オルガノポリシロキサン(B1)を300gと、ポリオキシエチレン(4)ラウリルエーテル(花王社製、製品名「エマルゲン104P」、ノニオン性界面活性剤、HLB値9.6)1.8g及びポリオキシエチレン(23)ラウリルエーテル(花王社製、製品名「エマルゲン123P」、ノニオン性界面活性剤、HLB値16.9)4.2gとを、2リットルのポリジョッキに仕込み、ホモミキサーを用いて高速で充分に混合して、転相水(イオン交換水)18g添加して練り込んだ後、イオン交換水280gを加えてホモミキサーで2,500rpmで20分間混合し、アミノ変性オルガノポリシロキサン(B1)の濃度が50質量%の水中油型エマルション(II)を得た。得られた水中油型エマルション(II)と実施例3と同様にして調製した水中油型エマルション(I)を水中油型エマルション(I)/水中油型エマルション(II)=50質量部/50質量部で混合し水中油型エマルション(III)を調製した。得られた水中油型エマルション(III)を、イオン交換水で希釈し、オルガノポリシロキサンの濃度(アクリル変性オルガノポリシロキサン(A2)及びアミノ変性オルガノポリシロキサン(B1)の合計濃度)が10質量%となる繊維処理剤(d)を調製した。得られた繊維処理剤(d)に綿100%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、エリアビーム型電子線照射装置EC250/30/90L(岩崎電気社製)を用い、窒素雰囲気下で、加速電圧200kVで40kGyの電子線を照射した。次に、電子線照射後の繊維(綿100質量%ブロード布)を水で洗浄した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、シリコーンを固着させた繊維を作製した。
Figure JPOXMLDOC01-appb-C000014
 (比較例1)
 メチル基以外に有機基を持たない、粘度が1000mm2/sであるジメチルポリシロキサンをトルエンで希釈し、ジメチルポリシロキサンの濃度が10質量%となる繊維処理剤(Z)を調製した。繊維処理剤(Z)に綿100%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥し、エリアビーム型電子線照射装置EC250/30/90L(岩崎電気社製)を用い、窒素雰囲気下で、加速電圧200kVで40kGyの電子線を照射した。次に、電子線照射した繊維(綿100%ブロード布)をトルエン溶液に1分間浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、さらにもう一度、新しいトルエン溶液に1分間浸漬した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥した。
 (比較例2)
 実施例3と同様にして繊維処理剤(c)を調製した。得られた繊維処理剤(c)に綿100%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥した。次に、繊維処理剤(c)で処理した繊維(綿100%ブロード布)を水で洗浄した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥した。
 (比較例3)
 実施例4と同様にしてアミノ変性オルガノポリシロキサン(B1)の濃度が50質量% の水中油型エマルション(II)を調製した。該水中油型エマルション(II)をイオン交換水で希釈し、アミノ変性オルガノポリシロキサン(B1)の濃度が10質量%となる繊維処理剤(Y)を調製した。得られた繊維処理剤(Y)に綿100%ブロード布(クラボウ製)を浸漬し、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥した。次に、繊維処理剤(Y)で処理した繊維(綿100%ブロード布)を水で洗浄した後、絞り率60%の条件でマングルロールを用いて絞り、110℃で90秒乾燥した。
 実施例1~4及び比較例1~3で得られた繊維(綿100%ブロード布)における初期のSi量(洗濯前のSi量)、10回洗濯後のSi量、50回洗濯後のSi量、初期風合い及び洗濯後の風合いを上述したとおりに測定し、その結果を下記表1に記載した。
Figure JPOXMLDOC01-appb-T000015
 前記一般式(I)で表される1分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)を有機溶剤で希釈した繊維処理剤に繊維を浸漬した後、電子線照射した実施例1及び2では、柔軟性が良好であり、洗濯後でも、アクリル変性オルガノポリシロキサン(A)が繊維に付着していた。具体的には、10回洗濯後でも、かなりの量のアクリル変性オルガノポリシロキサン(A)が繊維に付着しており、特に実施例2では、50回洗濯後でも、かなりの量のアクリル変性オルガノポリシロキサン(A)が繊維に付着していた。実施例2で用いたアクリル変性オルガノポリシロキサン(A)が、実施例1で用いたアクリル変性オルガノポリシロキサン(A)と対比してアクリル基の量が多いことから、繊維への固着性がより高かった。
 前記一般式(I)で表される1分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)をエマルション化した繊維処理剤を用いた実施例3でも、柔軟性が良好であった。また、実施例3及び4の対比から、上記一般式(I)で表される1分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)と上記一般式(III)で表される1分子中にアミノ基を1個以上持つアミノ変性オルガノポリシロキサン(B)を併用した場合、初期のシリコーン付着量が増え、柔軟性が非常に良好で、10回洗濯後も50回洗濯後もオルガノポリシロキサンが十分付着していることが分かった。
 一方、アクリル基を持たないジメチルポリシロキサンを使用した比較例1では、初期からジメチルポリシロキサンの付着量が少なく、10回又は50回洗濯後ではジメチルポリシロキサンがほとんど残っていないことが分かった。上記一般式(I)で表される1分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)をエマルション化した繊維処理剤を用いているが、電子線照射を行っていない比較例2では、繊維における前記アクリル変性オルガノポリシロキサン(A)の付着量が少なく、柔軟性に欠けていた。また、上記一般式(III)で表される1分子中にアミノ基を1個以上持つアミノ変性オルガノポリシロキサン(B)をエマルション化した繊維処理剤を用いた比較例3では、初期(洗濯)にはかなりの量の前記アミノ変性オルガノポリシロキサン(B)が繊維に付着していたが、洗濯後には格段に減少しており、柔軟性も悪くなった。
 実施例では、繊維とアクリル変性オルガノポリシロキサン(A)がグラフト重合するとともに、シリコーン成分同士の架橋も進行することで、シリコーンが繊維に強固に固着しており、それゆえ、洗濯後にも繊維の柔軟性が良好であるのに対し、比較例では、シリコーンが繊維に固着していないことが分かった。

Claims (5)

  1.  下記一般式(I)で表される1分子中にアクリル基を2個以上持つアクリル変性オルガノポリシロキサン(A)を含むことを特徴とする電子線固着用繊維処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (前記一般式(I)中、
    M=R123SiO1/2
    A=R456SiO1/2
    D=R78SiO2/2
    A=R910SiO2/2
    T=R11SiO3/2であり、
    1、R2、R3、R5、R6、R7、R8、R10およびR11は、それぞれ独立して、水素原子、炭素数1~4のアルキル基又はフェニル基であり、R4およびR9は、それぞれ独立して、下記一般式(II)で表される1価の炭化水素基であり、a、b、cおよびdは、それぞれ独立して、0もしくは正の整数であり、eは0~3の整数であり、c+dが10~1000の整数であり、b+dが少なくとも2の整数であり、かつa+bがe+2に等しい整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (前記一般式(II)中、nは1~3の整数である。)
  2.  さらに、下記一般式(III)で表される1分子中にアミノ基を1個以上持つアミノ変性オルガノポリシロキサン(B)を含む請求項1に記載の電子線固着用繊維処理剤。
    Figure JPOXMLDOC01-appb-C000003
    (前記一般式(III)中、R12は炭素数1~20の置換又は非置換の1価炭化水素基であり、R13は-R14-(NH-R15)h-NH2で表される1価の基であり、XはR12、R13又は-OR16で示される1価の基であり、R14は炭素数1~8の2価炭化水素基であり、R15は炭素数1~4の2価炭化水素基であり、R16は水素原子又は炭素数1~8の1価炭化水素基であり、fは5~500の整数を表し、gは0~100の整数を表し、hは0~4の整数を表す。但し、g=0の場合、2個のXのうち、少なくとも1個はR13である。)
  3.  前記一般式(I)において、(b+d)/(a+b+c+d)×100が0.5~40である請求項1又は2に記載の電子線固着用繊維処理剤。
  4.  前記アクリル変性オルガノポリシロキサン(A)及び前記アミノ変性オルガノポリシロキサン(B)の合計質量を100質量%とした場合、前記アクリル変性オルガノポリシロキサン(A)の配合量が10~95質量%であり、前記アミノ変性オルガノポリシロキサン(B)の配合量が5~90質量%である請求項2又は3に記載の電子線固着用繊維処理剤。
  5.  前記電子線固着用繊維処理剤の形態がエマルションである請求項1~4のいずれか1項に記載の電子線固着用繊維処理剤。
PCT/JP2018/010518 2017-03-31 2018-03-16 電子線固着用繊維処理剤 WO2018180615A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/499,120 US11214920B2 (en) 2017-03-31 2018-03-16 Fiber treatment agent for electron beam fixing
CN201880021904.9A CN110462128B (zh) 2017-03-31 2018-03-16 电子射线粘固用纤维处理剂
EP18775316.5A EP3604665A4 (en) 2017-03-31 2018-03-16 FIBER TREATMENT AGENT FOR ELECTRONIC HARNESS FIXING

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017072047 2017-03-31
JP2017-072047 2017-03-31
JP2017-151912 2017-08-04
JP2017151912A JP6909671B2 (ja) 2017-03-31 2017-08-04 電子線固着用繊維処理剤

Publications (1)

Publication Number Publication Date
WO2018180615A1 true WO2018180615A1 (ja) 2018-10-04

Family

ID=63675832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010518 WO2018180615A1 (ja) 2017-03-31 2018-03-16 電子線固着用繊維処理剤

Country Status (2)

Country Link
US (1) US11214920B2 (ja)
WO (1) WO2018180615A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817894A (en) 1972-08-10 1974-06-18 Dow Corning Silicone latex caulk
JPS52132171A (en) * 1976-04-30 1977-11-05 Johnson & Johnson Newly bonded unwoven fabric and its manufacture
JPS5616553A (en) 1979-07-18 1981-02-17 Dow Corning Silicone emulsion
JPS62269906A (ja) * 1986-05-19 1987-11-24 Mitsubishi Rayon Co Ltd 光伝送性繊維
JPS63128074A (ja) * 1986-11-04 1988-05-31 ダウ・コーニング・コーポレーシヨン 硬化性オルガノポリシロキサン組成物
JPH0885760A (ja) 1994-09-16 1996-04-02 Shin Etsu Chem Co Ltd シリコーン水性エマルジョン組成物
JPH09208901A (ja) 1996-02-01 1997-08-12 Toshiba Silicone Co Ltd エアバッグ用皮膜形成エマルジョン型シリコーン組成物及びエアバッグ
JPH09208826A (ja) 1995-11-29 1997-08-12 Shin Etsu Chem Co Ltd シリコーン水性エマルジョン組成物
JPH09208903A (ja) 1996-02-01 1997-08-12 Toshiba Silicone Co Ltd エアバッグ用皮膜形成エマルジョン型シリコーン組成物及びエアバッグ
JPH09208900A (ja) 1996-02-01 1997-08-12 Toshiba Silicone Co Ltd エアバッグ用皮膜形成エマルジョン型シリコーン組成物及びエアバッグ
JPH09208902A (ja) 1996-02-01 1997-08-12 Toshiba Silicone Co Ltd エアバッグ用皮膜形成エマルジョン型シリコーン組成物及びエアバッグ
JP2002363494A (ja) 2001-06-08 2002-12-18 Shin Etsu Chem Co Ltd 光触媒性酸化物含有コーティング用エマルジョン組成物
JP2008231276A (ja) 2007-03-22 2008-10-02 Shin Etsu Chem Co Ltd 木材用撥水剤エマルジョン組成物及び該組成物で処理された木材
JP2016102272A (ja) * 2014-11-28 2016-06-02 星光Pmc株式会社 繊維処理用撥油剤、その製造方法および繊維

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2618245A1 (de) 1976-04-26 1977-11-03 Johnson & Johnson Harzverklebter textilverbundstoff und dessen herstellungsverfahren
US4189546A (en) * 1977-07-25 1980-02-19 Bausch & Lomb Incorporated Polysiloxane shaped article for use in biomedical applications
CA1123530A (en) 1979-06-21 1982-05-11 John C. Saam Silicone emulsion which provides an elastomeric product and methods for preparation
DE3201205A1 (de) 1982-01-16 1983-07-28 Bayer Ag, 5090 Leverkusen Pfropfmodifizierte siloxandispersionen zur ausruestung von textilen materialien
JPH0627196B2 (ja) 1984-03-12 1994-04-13 大日本印刷株式会社 放射線硬化性有機珪素化合物の製造法
JPH01168971A (ja) 1987-12-23 1989-07-04 Nisshin Kagaku Kogyo Kk 繊維用弾性加工剤及び風合改良剤
JPH02657A (ja) 1988-11-28 1990-01-05 Dow Corning Corp シリコーンエマルジョンの製造方法
JP2960304B2 (ja) 1993-06-30 1999-10-06 信越化学工業株式会社 繊維用撥水処理剤
US5464801A (en) 1993-12-30 1995-11-07 Dow Corning Corporation Catalyst compositions comprising rhodium catalyst complexes
US5827921A (en) 1995-11-29 1998-10-27 Shin-Etsu Chemical Co., Ltd. Silicone-based aqueous emulsion composition
US6616980B2 (en) 2001-04-24 2003-09-09 Crompton Corporation Emulsion polymerized acrylated silicone copolymer for wrinkle reduction
EP1690885A1 (de) 2005-02-09 2006-08-16 Ciba Spezialitätenchemie Pfersee GmbH Acrylatofunktionelle Polysiloxane
EP1690886A1 (de) 2005-02-12 2006-08-16 Ciba Spezialitätenchemie Pfersee GmbH Kombination von aminofunktionellen und acrylatofunktionellen Polyorganosiloxanen
JP5160073B2 (ja) 2005-11-30 2013-03-13 ライオン株式会社 撥水剤組成物および撥水剤物品
JP5900253B2 (ja) 2011-09-29 2016-04-06 信越化学工業株式会社 (メタ)アクリル変性オルガノポリシロキサン、放射線硬化性シリコーン組成物及びシリコーン剥離紙並びにそれらの製造方法
JP6529318B2 (ja) 2015-04-13 2019-06-12 日華化学株式会社 非フッ素系ポリマー、撥水剤組成物、撥水性繊維製品及び撥水性繊維製品の製造方法
JP7008432B2 (ja) 2017-03-31 2022-01-25 信越化学工業株式会社 シリコーンが固着された繊維及びその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817894A (en) 1972-08-10 1974-06-18 Dow Corning Silicone latex caulk
JPS52132171A (en) * 1976-04-30 1977-11-05 Johnson & Johnson Newly bonded unwoven fabric and its manufacture
JPS5616553A (en) 1979-07-18 1981-02-17 Dow Corning Silicone emulsion
JPS62269906A (ja) * 1986-05-19 1987-11-24 Mitsubishi Rayon Co Ltd 光伝送性繊維
JPS63128074A (ja) * 1986-11-04 1988-05-31 ダウ・コーニング・コーポレーシヨン 硬化性オルガノポリシロキサン組成物
JPH0885760A (ja) 1994-09-16 1996-04-02 Shin Etsu Chem Co Ltd シリコーン水性エマルジョン組成物
JPH09208826A (ja) 1995-11-29 1997-08-12 Shin Etsu Chem Co Ltd シリコーン水性エマルジョン組成物
JPH09208901A (ja) 1996-02-01 1997-08-12 Toshiba Silicone Co Ltd エアバッグ用皮膜形成エマルジョン型シリコーン組成物及びエアバッグ
JPH09208903A (ja) 1996-02-01 1997-08-12 Toshiba Silicone Co Ltd エアバッグ用皮膜形成エマルジョン型シリコーン組成物及びエアバッグ
JPH09208900A (ja) 1996-02-01 1997-08-12 Toshiba Silicone Co Ltd エアバッグ用皮膜形成エマルジョン型シリコーン組成物及びエアバッグ
JPH09208902A (ja) 1996-02-01 1997-08-12 Toshiba Silicone Co Ltd エアバッグ用皮膜形成エマルジョン型シリコーン組成物及びエアバッグ
JP2002363494A (ja) 2001-06-08 2002-12-18 Shin Etsu Chem Co Ltd 光触媒性酸化物含有コーティング用エマルジョン組成物
JP2008231276A (ja) 2007-03-22 2008-10-02 Shin Etsu Chem Co Ltd 木材用撥水剤エマルジョン組成物及び該組成物で処理された木材
JP2016102272A (ja) * 2014-11-28 2016-06-02 星光Pmc株式会社 繊維処理用撥油剤、その製造方法および繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604665A4

Also Published As

Publication number Publication date
US20200040521A1 (en) 2020-02-06
US11214920B2 (en) 2022-01-04

Similar Documents

Publication Publication Date Title
KR950003850B1 (ko) 섬유 처리제
JP3787414B2 (ja) ヒンダード4−アミノ−3,3−ジメチルブチル基を有する新規アミノポリシロキサン
JPS5926707B2 (ja) 繊維質物用処理剤
TW552333B (en) Water based fiber treatment agent and method for treating fibers
US5102930A (en) Silicone-based fabric finishing agent and fabric material finished therewith
US5395549A (en) Fiber treatment composition containing organosilane, organopolysiloxane and colloidal silica
JPS5933713B2 (ja) 羊毛を収縮固定するための水性仕上加工剤の製造法
CN110475928B (zh) 粘固有有机硅的纤维及其制造方法
JPH07119043A (ja) 繊維の吸尽処理方法
JPH0593366A (ja) ポリエステル繊維処理剤
WO2018180615A1 (ja) 電子線固着用繊維処理剤
JP6909671B2 (ja) 電子線固着用繊維処理剤
WO2018180601A1 (ja) シリコーンが固着された繊維及びその製造方法
JP2001098155A (ja) 羊毛材料処理用シリコーン組成物
KR102502567B1 (ko) 기능제 함유 섬유 및 그 제조 방법
JPH1192665A (ja) エポキシ基含有ジオルガノポリシロキサンの製造方法および繊維用処理剤
JP3764224B2 (ja) 動物繊維処理剤組成物
JP4536752B2 (ja) 繊維処理剤
JPS5922822B2 (ja) 繊維処理用オルガノポリシロキサン組成物
JPH10195779A (ja) 繊維処理剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018775316

Country of ref document: EP

Effective date: 20191031