WO2018173837A1 - アルカリ二次電池 - Google Patents

アルカリ二次電池 Download PDF

Info

Publication number
WO2018173837A1
WO2018173837A1 PCT/JP2018/009540 JP2018009540W WO2018173837A1 WO 2018173837 A1 WO2018173837 A1 WO 2018173837A1 JP 2018009540 W JP2018009540 W JP 2018009540W WO 2018173837 A1 WO2018173837 A1 WO 2018173837A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
discharge
positive electrode
mass
silver
Prior art date
Application number
PCT/JP2018/009540
Other languages
English (en)
French (fr)
Inventor
井上雄介
渡辺光俊
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to EP18770292.3A priority Critical patent/EP3565039B1/en
Priority to US16/482,859 priority patent/US11127951B2/en
Priority to JP2019507564A priority patent/JP6944994B2/ja
Publication of WO2018173837A1 publication Critical patent/WO2018173837A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/34Silver oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/32Silver accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an alkaline secondary battery having excellent voltage flatness and easy detection of the discharge end time.
  • An alkaline battery (silver oxide battery) having a positive electrode containing silver oxide, a negative electrode containing zinc or a zinc alloy, and an alkaline electrolyte is widely used as a primary battery.
  • the silver oxide battery is highly useful as a power source for precision instruments such as watches because the discharge potential of silver oxide, which is a positive electrode active material, is constant and the discharge curve of the battery is flat.
  • Patent Document 1 it has been proposed to detect the battery life by forming a step in the discharge voltage at the end of discharge of the battery by adding bismuth oxide to silver oxide to form a positive electrode.
  • Patent Document 2 it has been proposed to use a composite oxide containing Ag and Bi as a positive electrode active material of an alkaline primary battery, and a battery having a step in the discharge curve is also obtained.
  • Patent Documents 2 and 3 By using these techniques, it becomes possible to detect in advance the end of discharge of a battery in a primary battery using silver oxide or a silver-containing compound as a positive electrode active material.
  • Patent Document 4 the use of silver oxide as a positive electrode active material for alkaline secondary batteries has also been studied for some time, and in some applications, such as hearing aids, commercialization is also possible. Has been made.
  • the present invention has been made in view of the above circumstances, and provides an alkaline secondary battery having excellent voltage flatness and easy detection of the discharge end time.
  • the alkaline secondary battery of the present invention includes a positive electrode containing a positive electrode active material, a negative electrode, and a separator, and the positive electrode active material includes a mixture of silver oxide and silver bismuth composite oxide, and the battery voltage is In the discharge curve obtained when the battery is discharged at a constant current until it decreases to 1.0 V, when the battery voltage at the time of discharging from the start of discharge to x (%) of the total discharge capacity is V x (V) In addition, V 10 ⁇ V 70 ⁇ 0.08 is satisfied, and there is a step in the range of 70 ⁇ x ⁇ 90, and the size: V 70 ⁇ V 90 is 0.04 or more and 0.15 or less. It is characterized by.
  • charging and discharging of the battery for obtaining the discharge curve may be performed under the following conditions.
  • Charging is performed at a constant current charge at C (mA) of 1.85 V, which takes about 4 hours from the start of charging until the battery voltage reaches 1.85 V for the battery discharged to 1.0 V.
  • the constant current-constant voltage charging which is a combination with the constant voltage charging, is performed under the condition that the charging is terminated when the current value decreases to C / 10 (mA).
  • the time required for the battery voltage to reach 1.85 V from the start of charging can be slightly deviated from 4 hours, and the current is within a range of 4 hours ⁇ 0.25 hours. You just have to decide the value.
  • the discharge is a constant current discharge at C / 2 (mA), and is performed under the condition that the discharge is terminated when the battery voltage drops to 1.0V.
  • the discharge capacity of the battery obtained under these discharge conditions is referred to as the “total discharge capacity”.
  • the discharge curve has a level difference means that the horizontal axis represents x (%) corresponding to the depth of discharge, and the vertical axis represents the battery voltage: V x (V). It means that an inflection point exists in the range of ⁇ x ⁇ 90.
  • the alkaline secondary battery of the present invention it is necessary to charge and discharge normally several cycles until the shape of the discharge curve becomes substantially constant after the battery is manufactured. It is desirable to carry out a battery that has been repeatedly charged and discharged for about 10 cycles.
  • an alkaline secondary battery having excellent voltage flatness and easy detection of the discharge end time.
  • FIG. 1 is a side view schematically showing an example of the alkaline secondary battery of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of the alkaline secondary battery shown in FIG.
  • FIG. 3 is a discharge curve of the alkaline secondary battery described in Example 1.
  • 4 is a discharge curve of the alkaline secondary battery described in Example 2.
  • FIG. 5 is a discharge curve of the alkaline secondary battery described in Comparative Example 1.
  • FIG. 6 is a discharge curve of the alkaline secondary battery described in Comparative Example 2.
  • the silver oxide constituting the positive electrode active material can be a silver oxide used as the positive electrode active material of the silver oxide primary battery, such as AgO or Ag 2 O, and can be used during discharge. From the viewpoint of the flatness of the voltage, Ag 2 O is preferably used.
  • the silver bismuth composite oxide constituting the positive electrode active material is, for example, a silver oxide such as Ag 2 O or AgO, Bi 2 O 3 , Bi 2 O 4 , or Bi 2.
  • Complex oxides based on bismuth oxides such as O 5 , preferably (Ag 2 O) 1-t (Bi 2 O 3 ) t or (Ag 2 O) 1-z (Bi 2 O 5 )
  • An example is a solid solution of silver oxide and bismuth oxide which is expressed in the form of z or the like.
  • the silver bismuth composite oxide examples include Ag 5 BiO 4 , Ag 3 BiO 3 , Ag 4 Bi 2 O 5 and the like as compounds in which the average valence of Bi is trivalent, and the average valence of Bi
  • the compound in which Ag is approximately tetravalent examples include Ag 25 Bi 3 O 18 and Ag 2 BiO 3
  • examples of the compound in which the average valence of Bi is pentavalent include AgBiO 3 and Ag 7 BiO 6. .
  • a compound having an average Bi valence of 3 is preferably used.
  • the silver bismuth composite oxide can be synthesized, for example, by the following method.
  • a sufficient amount of an alkaline aqueous solution (KOH aqueous solution, NaOH aqueous solution, etc.) having a concentration of about 40 to 50% by mass maintained at a temperature of about 90 to 100 ° C. is stirred, and a water-soluble salt of Ag and Bi therein.
  • a compound in which the average valence of Bi is trivalent can be obtained by a method of washing and drying the produced precipitate.
  • an aqueous solution of an oxidizing agent such as K 2 S 2 O 8 is added at the same time as the aqueous solution in which the water-soluble salts of Ag and Bi are dissolved, or after the neutralized product is precipitated.
  • a compound having a higher oxidation number such as a compound having an average Bi valence of 4 to 5 can be obtained.
  • a method of combining Ag 2 O and Bi 2 O 3 by mechanochemical reaction may be used.
  • silver oxide and the silver bismuth composite oxide may contain elements other than bismuth.
  • a mixture of the silver oxide and the silver bismuth composite oxide is used for the positive electrode active material of the alkaline secondary battery of the present invention.
  • the mixture may be simply a mixture of silver oxide particles and silver bismuth composite oxide particles, but a composite in which a silver oxide phase and a silver bismuth composite oxide phase are mixed in one particle.
  • the method for synthesizing the silver bismuth composite oxide when a product in which silver oxide is mixed with the silver bismuth composite oxide is obtained, it can be used as a positive electrode active material. it can.
  • the position where the step appears on the discharge curve changes, and generally the discharge rate increases as the ratio of the silver bismuth composite oxide increases.
  • a step is generated in the discharge curve at a position where the value of is smaller, that is, a position where the discharge depth is shallower, and the flatness of the discharge curve is lowered.
  • the discharge end time is detected when a large amount of capacity remains in the battery, the detection is meaningless and a problem arises in practicality.
  • the proportion of the silver bismuth composite oxide increases, the actual capacity of the positive electrode active material and the storability at high temperatures tend to decrease.
  • the ratio of the silver bismuth composite oxide in the mixture is preferably not more than a certain value so that the flatness of the discharge curve can be improved and the discharge end time can be detected after the discharge has progressed more than a certain value.
  • the ratio of the total amount of bismuth with respect to the total amount of silver contained in is preferably less than 9%, more preferably less than 7% in terms of mass ratio.
  • the ratio of silver bismuth composite oxide in the mixture of silver oxide and silver bismuth composite oxide is too small, it becomes difficult to generate a step in the discharge curve, and the discharge end time is detected by the step generated in the discharge curve. After that, the time from the end of battery discharge until the device stops is shortened. For this reason, the opportunity for the user to recognize that the device needs to be recharged is lost, and there is a high possibility that the operation of the device stops before the user notices it. Therefore, it is desirable that the ratio of the silver bismuth composite oxide in the mixture is a certain level or more, and it is desirable to have some time margin between the detection of the discharge end timing and the end of the discharge.
  • the ratio of the total amount of bismuth to the total amount of silver contained is preferably greater than 2%, more preferably greater than 3%, by mass ratio.
  • the flatness of the discharge curve is the difference between the battery voltage at 10% discharge: V 10 (V) and the battery voltage at 70% discharge: V 70 (V): V 10 -V 70.
  • V 10 -V 70 is preferably 0.05 or less, more preferably 0.04 or less, and particularly preferably 0.035 or less.
  • the difference between the battery voltage at the time of 70% discharge: V 70 (V) and the battery voltage at the time of 90% discharge: V 90 (V): V 70 ⁇ V 90 indicates the level difference in the discharge curve. Evaluate the size.
  • the level difference is, for example, the battery voltage when the discharge depth is xi-5 (%):
  • the magnitude of the step generated in the discharge curve due to the voltage difference is simply evaluated.
  • the value of V 70 -V 90 is preferably 0.04 or more, and more preferably 0.07 or more. preferable.
  • the value of V 70 -V 90 is It is preferably 0.15 or less, and more preferably 0.1 or less. In the present invention, the value of V 70 -V 90 can be changed depending on the composition of the silver bismuth composite oxide.
  • the particle size of the silver oxide and the silver bismuth composite oxide is not particularly limited, but from the viewpoint of charge / discharge cycle characteristics, the average particle diameter is preferably smaller, specifically, 15 ⁇ m or less. It is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and most preferably 3 ⁇ m or less.
  • the positive electrode active material of such a size When the positive electrode active material of such a size is used, the utilization factor at the time of charging is improved, and a large charge capacity is easily obtained even if the charge end voltage is relatively low. For this reason, the charge / discharge cycle characteristics of the battery can be further improved, and for example, it is possible to suppress the swelling of the battery that may be caused by increasing the charge end voltage.
  • the average particle size of the silver oxide and the silver bismuth composite oxide is preferably 0.1 ⁇ m or more. More preferably, it is 0.5 ⁇ m or more.
  • the average particle size of the positive electrode active material referred to in this specification was measured by dispersing these particles in a medium in which the particles were not dissolved, using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by Horiba, Ltd.).
  • the positive electrode active material is mixed together with a conductive additive, a binder, an alkaline electrolyte, and the like that are added as necessary to form a positive electrode mixture containing the positive electrode active material.
  • the positive electrode mixture is directly molded into a positive electrode made of a molded body, or is coated with a dispersion medium such as water or an organic solvent and applied in layers on one or both sides of the current collector.
  • the sheet-like positive electrode having a positive electrode mixture layer is used for the production of a battery.
  • carbonaceous materials such as carbon black and graphite are preferably used.
  • the content of silver oxide is preferably 60% by mass or more, for example, 80% by mass. % Or more is more preferable, and 90% by mass or more is particularly preferable.
  • the content of the conductive assistant is preferably 0.2% by mass or more from the viewpoint of conductivity, preferably 0.5% by mass or more, particularly preferably 1% by mass or more,
  • the content is preferably 7% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less.
  • the thickness is preferably 0.15 to 4 mm.
  • the thickness of the positive electrode mixture layer formed on the current collector is preferably 30 to 300 ⁇ m.
  • examples of the current collector include those made of stainless steel such as SUS316, SUS430, and SUS444; aluminum and aluminum alloys; Examples thereof include a metal net, an expanded metal, a lath net, a punching metal, a metal foam, and a foil (plate).
  • the thickness of the current collector is preferably 0.05 to 0.2 mm, for example. It is also desirable to apply a paste-like conductive material such as carbon paste or silver paste to the surface of such a current collector.
  • the negative electrode of the alkaline secondary battery of the present invention preferably contains zinc particles or zinc alloy particles (hereinafter, both may be collectively referred to as “zinc-based particles”). In such a negative electrode, zinc in the particles acts as an active material.
  • the alloy element added to the zinc alloy particles include indium, bismuth, aluminum, magnesium, and calcium. Depending on the element type and its content, the added element may not be uniformly dissolved in the zinc matrix but may be partially segregated in the particles.
  • the alloy element content is not necessarily limited.
  • 0.005 to 0.05 mass% (50 to 500 ppm) for indium 0.005 to 0.05 mass% (50 to 500 ppm) for bismuth
  • 0.0005 to 0.02 mass% (5 to 200 ppm) is preferable for aluminum
  • 0.0001 to 0.002 mass% (1 to 20 ppm) is preferable for magnesium.
  • One type of zinc-based particles possessed by the negative electrode may be used, or two or more types may be used.
  • zinc-based particles that do not contain mercury As an alloy component.
  • a battery using such zinc-based particles can suppress environmental pollution due to battery disposal.
  • zinc-based particles that do not contain lead As an alloy component.
  • the proportion of particles having a particle size of 75 ⁇ m or less in the total powder is preferably 50% by mass or less, more preferably 30% by mass or less, and the particle size is The proportion of the 100 to 200 ⁇ m powder is preferably 50% by mass or more, and more preferably 90% by mass or more.
  • the particle size of the zinc-based particles is a value obtained from a cumulative frequency on a volume basis, which is measured using a laser scattering particle size distribution meter, similarly to the average particle size of the positive electrode active material.
  • the shape of the negative electrode gradually changes, and sufficient electrical contact with the negative electrode can (sealing plate or exterior can) cannot be obtained, Zinc dendrite grows on the negative electrode and enters the separator, and problems such as short circuit are likely to occur. For this reason, it is desirable to apply the structure which can suppress the capacity
  • the alkaline secondary battery of the present invention from the above viewpoint, it is preferable to interpose a specific anion conductive membrane between the positive electrode and the negative electrode, so that the form of the negative electrode is maintained even after repeated charge and discharge. And generation
  • anion conductive membrane for example, a membrane in which a polymer is used as a matrix and metal compound particles are dispersed in the matrix is preferably used.
  • the polymer used as a matrix of the anion conductive membrane is not particularly limited, and polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), fluorine, and the like.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PVDF-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • fluorine and the like.
  • PVDF-CTFE Vinylidene fluoride-chlorotrifluoroethylene copolymer
  • PVDF-TFE vinylidene fluoride-tetrafluoroethylene copolymer
  • PVDF-HFP vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • polar polymers polymers having polar groups or polar bonds
  • the polar polymer examples include polymers containing amino groups such as polyalkyleneimines (polyethyleneimine and the like); polymers containing ester bonds (ester groups) such as (alkoxy) polyalkylene glycol mono (meth) acrylates; Alkali metal salt of meth) acrylic acid (sodium salt, etc.), Magnesium salt of poly (meth) acrylic acid, Alkaline earth metal salt of poly (meth) acrylic acid (calcium salt, etc.), Ammonium of poly (meth) acrylic acid Carboxylate groups (carboxyl group salts) such as salts, alkali metal salts of polymaleic acid (sodium salts, etc.), magnesium salts of polymaleic acid, alkaline earth metal salts of polymaleic acid (calcium salts, etc.), ammonium salts of polymaleic acid, etc. ) Containing polymers; poly Bromide; and the like [the above "(meth) acrylic acid” is an expression that summarizes the acrylic acid and me
  • the anion conductive membrane may contain only one kind of the above-mentioned various polymers as a matrix polymer, or may contain two or more kinds.
  • the anion conductive membrane more preferably contains the above-described fluororesin as a polymer to be a matrix, and more preferably contains a fluororesin and a polar polymer.
  • the metal compound particles dispersed in the anion conductive membrane are at least one selected from the group consisting of metal oxides, hydroxides, carbonates, sulfates, phosphates, borates and silicates. Examples include particles of certain compounds.
  • metal oxide examples include cerium oxide and zirconium oxide, and also hydrotalcite.
  • Hydrotalcite is a compound represented by the following general formula (1).
  • M 1 represents Mg, Fe, Zn, Ni, Co, Cu, Ca, Li or the like
  • M 2 represents Al, Fe, Mn, or the like
  • A represents CO 3 2- or the like.
  • M is an integer of 0 or more
  • n is 2 or 3, and 0.2 ⁇ x ⁇ 0.4.
  • examples of the metal hydroxide include cerium hydroxide and zirconium hydroxide.
  • examples of the metal sulfate include ethrin guide.
  • examples of the metal phosphate include hydroxyapatite.
  • an intercalation compound having anion exchange ability such as hydrotalcite is preferable.
  • the average particle size of the metal compound particles is preferably 5 nm or more, more preferably 10 nm or more, particularly preferably 100 nm or more, preferably 100 ⁇ m or less, and preferably 10 ⁇ m or less. Is more preferable, and it is especially preferable that it is 1 micrometer or less.
  • the average particle size of the metal compound particles is measured in the same manner as the average particle size of the positive electrode active material.
  • the ratio of the polymer (polymer to be a matrix) in the anion conductive membrane is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 10% by mass or more, It is particularly preferably 40% by mass or more, more preferably 90% by mass or less, more preferably 80% by mass or less, further preferably 70% by mass or less, and 60% by mass or less. It is particularly preferred.
  • the proportion of the metal compound particles in the anion conductive membrane is preferably 0.1% by mass or more, more preferably 1% by mass or more, and further preferably 5% by mass or more. It is particularly preferably 30% by mass or more, more preferably 90% by mass or less, more preferably 80% by mass or less, further preferably 60% by mass or less, and 50% by mass or less. It is particularly preferred.
  • the thickness of the anion conductive membrane is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and particularly preferably 40 ⁇ m or more, from the viewpoint of better securing the above-described effect by the anion conductive membrane. .
  • the thickness of the anion conductive membrane is preferably 500 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • the anion conductive membrane is prepared, for example, by dispersing the polymer or metal compound particles in water or an organic solvent such as N-methyl-2-pyrrolidone (the polymer may be dissolved).
  • the forming composition can be formed by a method in which the composition is applied to the substrate surface, dried and then peeled off. Moreover, you may give a press process after the said drying.
  • the anion conductive membrane does not contain an alkaline electrolyte at this stage, the electrolyte can be contained inside the battery by absorbing the alkaline electrolyte injected into the battery.
  • the anion conductive membrane after drying may be immersed in an alkaline electrolyte to absorb the alkaline electrolyte in advance and then used for battery assembly.
  • the anion conductive membrane may be used alone as a separator, but may be used together with a normal separator for holding an alkaline electrolyte. In this case, the function of the anion conductive membrane is easily exhibited by disposing the anion conductive membrane on the negative electrode side.
  • non-woven fabrics mainly composed of vinylon and rayon, vinylon / rayon nonwoven fabric (vinylon / rayon mixed paper), polyamide nonwoven fabric, polyolefin / rayon nonwoven fabric, vinylon paper, vinylon linter pulp paper, vinylon -Mercerized pulp paper can be used.
  • a hydrophilic microporous polyolefin film such as a microporous polyethylene film or a microporous polypropylene film
  • a cellophane film such as a cellophane film
  • a liquid absorption layer electrophilyte holding layer
  • the thickness of the separator is preferably 20 to 500 ⁇ m.
  • the negative electrode of the alkaline secondary battery of the present invention comprises, for example, a gelling agent (polyacrylic acid soda, carboxymethyl cellulose, etc.) added as necessary together with the zinc-based particles, and an alkaline electrolyte. It is formed using a negative electrode agent (gelled negative electrode).
  • the amount of the gelling agent in the negative electrode is preferably 0.5 to 1.5% by mass, for example.
  • the negative electrode can be a non-gelled negative electrode substantially not containing the gelling agent as described above.
  • the gelling agent suppresses the movement of ions in the electrolyte, and the load characteristics of the battery may be reduced. Therefore, the ionic conductivity of the alkaline electrolyte can be improved by adopting a “non-gelled” negative electrode structure that does not contain a gelling agent or contains a gelling agent to such an extent that the alkaline electrolyte does not thicken. It is conceivable to improve the load characteristics (particularly heavy load characteristics).
  • zinc dendrite is generated by the growth of zinc precipitates in the form of needles when the charging current is concentrated on a portion of the negative electrode.
  • the charging current is dispersed without concentrating on the surface of the zinc-based particles, so that the growth of zinc dendrite can be suppressed.
  • the negative electrode of the alkaline secondary battery of this invention contain polyalkylene glycol.
  • Examples of the method for containing polyalkylene glycols in the negative electrode include a method in which zinc-based particles and polyalkylene glycols are directly mixed, a method in which an electrolyte (electrolytic solution) containing polyalkylene glycols is mixed with zinc-based particles, and the like. Can be used.
  • Polyalkylene glycols used in alkaline secondary batteries are compounds having a structure in which an alkylene glycol such as ethylene glycol, propylene glycol, butylene glycol is polymerized or copolymerized, and may have a crosslinked structure or a branched structure. Alternatively, it may be a compound having a structure in which a terminal is substituted, and a compound having a weight average molecular weight of about 200 or more is preferably used.
  • the upper limit of the weight average molecular weight is not particularly defined, but in order to make the effect of addition more easily exhibited, the compound is preferably water-soluble, and usually 20000 or less is preferably used, and 5000 or less is preferred. More preferably used.
  • polyethylene glycols having a structure in which ethylene glycol is polymerized and polypropylene glycols having a structure in which propylene glycol is polymerized can be preferably used.
  • polyethylene glycol in addition to polyethylene glycol and polyethylene oxide, for example, a compound represented by the following general formula (2) is preferably used as a linear structure compound.
  • X represents an alkyl group, a hydroxyl group, a carboxyl group, an amino group, or a halogen atom
  • Y represents a hydrogen atom or an alkyl group
  • n represents an average of 4 or more.
  • n in the general formula (2) corresponds to the average number of moles of ethylene oxide added in polyethylene glycols. n is 4 or more on average, and the upper limit of n is not particularly limited, but a compound having a weight average molecular weight of about 200 to 20000 is preferably used.
  • polypropylene glycol in addition to polypropylene glycol and polypropylene oxide, for example, a compound represented by the following general formula (3) is preferably used as the linear structure compound.
  • Z represents an alkyl group, a hydroxyl group, a carboxyl group, an amino group, or a halogen atom
  • T represents a hydrogen atom or an alkyl group
  • m represents an average of 3 or more.
  • m in the said General formula (3) is corresponded to the average addition mole number of the propylene oxide in polypropylene glycol.
  • m is 3 or more on average, and the upper limit of m is not particularly limited, but a compound having a weight average molecular weight of about 200 to 20000 is preferably used.
  • the polyalkylene glycol may be a copolymer compound (such as polyoxyethylene polyoxypropylene glycol) containing an ethylene oxide unit and a propylene oxide unit.
  • the content of the polyalkylene glycols in the negative electrode is preferably 0.01 parts by mass or more with respect to 100 parts by mass of the zinc-based particles from the viewpoint of improving the charge / discharge cycle characteristics and storage characteristics of the battery. More preferably, it is 0.1 parts by mass or more. Further, from the viewpoint of further improving the discharge characteristics of the battery by limiting the amount of the polyalkylene glycols, the amount of the polyalkylene glycols with respect to 100 parts by mass of the zinc-based particles is preferably 5 parts by mass or less. More preferably, it is 1 part by mass or less.
  • the generation or growth of zinc dendrites can also be suppressed by including a calcium compound in the negative electrode.
  • the discharge product Zn (OH) 4 2 ⁇ is reacted with calcium hydroxide to form the insoluble compound CaZn (OH). 4 must be changed, it is necessary to relatively increase the content of calcium hydroxide to zinc, it is difficult to sufficiently suppress the generation of zinc dendrite without causing problems such as decrease the capacity of the battery is there.
  • the alkaline secondary battery of the present invention when an anion conductive membrane or a polyalkylene glycol is used and a calcium compound is further contained in the negative electrode, the calcium compound is converted into an anion conductive membrane or a polyalkylene glycol. Since it is considered that the effect of suppressing zinc dendrite is produced in cooperation with the above, the amount used can be relatively reduced. Therefore, the problem of deterioration of discharge characteristics due to the use of the calcium compound can be prevented.
  • Calcium compounds used in alkaline secondary batteries include calcium hydroxide, calcium oxide, calcium chloride, calcium sulfate, and other compounds such as CaZn (OH) 4 that react with Zn (OH) 4 2- produced during discharge.
  • generates a compound and the said complex compound itself can be illustrated, and calcium hydroxide and calcium oxide can be used preferably.
  • the content of the calcium compound in the negative electrode is preferably 5 parts by mass or more and more preferably 8 parts by mass or more with respect to 100 parts by mass of the zinc-based particles in order to improve the charge / discharge cycle characteristics of the battery. More preferred is 10 parts by mass or more.
  • the amount of the calcium compound with respect to 100 parts by mass of the zinc-based particles is preferably 40 parts by mass or less, and more preferably 30 parts by mass or less. The amount is particularly preferably 20 parts by mass or less.
  • the method for containing the polyalkylene glycol in the negative electrode and the method for containing the calcium compound are not particularly limited.
  • the polyalkylene glycol or the calcium compound and zinc-based particles are mixed as they are.
  • the composition obtained by dissolving or dispersing the polyalkylene glycols or the calcium compound in a solvent such as water and mixing it with zinc-based particles is used as it is for the preparation of the negative electrode, or Solvent is evaporated from the composition to produce zinc-based particles having the polyalkylene glycols or the calcium compound attached to the surface, and a negative electrode is prepared from the zinc-based particles surface-coated with the compound.
  • Solvent is evaporated from the composition to produce zinc-based particles having the polyalkylene glycols or the calcium compound attached to the surface, and a negative electrode is prepared from the zinc-based particles surface-coated with the compound.
  • the polyalkylene glycols and the calcium compound may be present in the negative electrode after the battery is assembled.
  • the polyalkylene glycols and the calcium compound may be contained in components other than the negative electrode such as an alkaline electrolyte and a separator.
  • part or all of the battery may move to the negative electrode side and be contained in the negative electrode.
  • the compound in the separator may be dissolved in the electrolytic solution and move into the negative electrode.
  • an indium compound may be contained in the negative electrode.
  • Examples of the indium compound include indium oxide and indium hydroxide.
  • the amount of the indium compound used for the negative electrode is preferably 0.003 to 1 with respect to 100 zinc-based particles in mass ratio.
  • the content of zinc-based particles in the negative electrode is, for example, preferably 60% by mass or more, more preferably 65% by mass or more, and preferably 75% by mass or less, 70% by mass. The following is more preferable.
  • alkaline electrolyte used in the alkaline secondary battery of the present invention one or more aqueous solutions of alkali metal hydroxides (sodium hydroxide, potassium hydroxide, lithium hydroxide, etc.) are preferably used.
  • potassium hydroxide is particularly preferably used.
  • the concentration of the alkaline electrolyte is preferably 20% by mass or more, more preferably 30% by mass or more, preferably 40% by mass or less, more preferably potassium hydroxide. It is 38 mass% or less.
  • various known additives may be added to the alkaline electrolyte as necessary within a range not impairing the effects of the present invention.
  • zinc oxide may be added to prevent corrosion (oxidation) of zinc-based particles used for the negative electrode of the alkaline secondary battery.
  • Zinc oxide can also be added to the negative electrode.
  • a tin compound or an indium compound can be dissolved in the alkaline electrolyte.
  • these compounds are dissolved in the alkaline electrolyte, further improvement in the charge / discharge cycle characteristics of the battery can be expected.
  • Examples of the tin compound to be dissolved in the alkaline electrolyte include tin chloride, tin acetate, tin sulfide, tin bromide, tin oxide, tin hydroxide, and tin sulfate.
  • Examples of the indium compound dissolved in the alkaline electrolyte include indium hydroxide, indium oxide, indium sulfate, indium sulfide, indium nitrate, indium bromide, and indium chloride.
  • the concentration of the tin compound and the indium compound in the alkaline electrolyte is preferably 0.005% by mass (50 ppm) or more when converted in terms of the ratio of tin and indium in the electrolyte, and 0.05% by mass. % (500 ppm) or more is more preferable.
  • the upper limit of the concentration of the compound is not particularly limited. However, when the concentration is too high, the compound tends to precipitate as an alkali metal salt or the like, which may block the pores of the separator. Therefore, the content is preferably 1% by mass (10000 ppm) or less, and more preferably 0.5% by mass (5000 ppm) or less.
  • the total concentration thereof is preferably in the range of the above concentration.
  • the polyalkylene glycols or the calcium compound can be added to an alkaline electrolyte as necessary and contained in the negative electrode through the electrolyte.
  • the form of the alkaline secondary battery of the present invention is not particularly limited, and has a battery case that seals the outer can and the sealing plate via a gasket or welds and seals the outer can and the sealing plate.
  • Flat shape including coin shape and button shape
  • Laminate shape with exterior body made of metal laminate film Bottomed cylindrical exterior can and sealing plate are caulked and sealed via gasket, outer can and sealing plate
  • a cylindrical shape (cylindrical shape, rectangular shape (square cylindrical shape)) having a battery case that is welded and sealed.
  • PP polyphenylene ether
  • PES polyarylate
  • PES polyethersulfone
  • PEEK PEEK
  • other heat-resistant resins having a melting point exceeding 240 ° C.
  • the inner surface of the outer can be plated with a corrosion-resistant metal such as gold.
  • Example 1 A mixed aqueous solution of AgNO 3 and Bi (NO 3 ) 3 adjusted so that the mass ratio of Ag and Bi is 100: 5 is prepared, and gradually added to a 50% by weight KOH aqueous solution maintained at 95 ° C. The positive precipitate was added and reacted, and the purified precipitate was washed with water and dried to obtain positive electrode active material particles in which Ag 2 O and Ag 5 BiO 4 were mixed.
  • the positive electrode active material particles had an average particle diameter of 5 ⁇ m, and the ratio of the total amount of bismuth to the total amount of silver was 5% by mass ratio.
  • acetylene black and graphite particles were mixed as conductive assistants, and mixed at a ratio of 94% by mass, 2% by mass, and 4% by mass, respectively, to prepare a positive electrode mixture. Further, 110 mg of this positive electrode mixture was filled in a mold, and the mixture was pressed into a disk shape having a filling density of 5.7 g / cm 3 , a diameter of 9.05 mm, and a height of 0.3 mm, thereby forming a positive electrode mixture.
  • the positive electrode which consists of a body (positive electrode mixture layer) was produced.
  • PTFE aqueous dispersion solid content: 60% by mass: 5 g
  • sodium polyacrylate aqueous solution concentration: 2% by mass
  • hydrotalcite particles average particle size: 0.4 ⁇ m
  • a film having a thickness of 100 ⁇ m was prepared by kneading 2.5 g and rolling, and further punched into a circle having a diameter of 9.2 mm was used as an anion conductive film for assembling the battery.
  • the average particle size (D50) was 120 ⁇ m, and the proportion of particles having a particle size of 75 ⁇ m or less was 25% by mass or less.
  • the zinc alloy particles and ZnO were mixed at a ratio (mass ratio) of 97: 3 to obtain a composition (a composition for a negative electrode) for constituting a negative electrode. 28 mg of this composition was weighed out and used to make a negative electrode.
  • an aqueous potassium hydroxide solution (concentration of potassium hydroxide: 35% by mass) in which zinc oxide was dissolved at a concentration of 3% by mass was used.
  • two graft films (thickness: 30 ⁇ m) composed of a graft copolymer having a structure in which acrylic acid is graft-copolymerized to a polyethylene main chain are arranged on both sides of a cellophane film (thickness: 20 ⁇ m). Further, a laminate of vinylon-rayon mixed paper (thickness: 100 ⁇ m) was used by punching into a circular shape with a diameter of 9.2 mm.
  • An outer can made of a steel plate in which the positive electrode (positive electrode mixture formed body), negative electrode (composition for negative electrode), alkaline electrolyte, anion conductive membrane and separator are plated with gold on the inner surface, and copper-stainless steel (SUS304) -Sealed in a battery container composed of a sealing plate made of nickel clad plate and an annular gasket made of nylon 66, and has the structure shown in Fig. 2 with the appearance shown in Fig. 1 and a diameter of 9.5 mm.
  • An alkaline secondary battery having a thickness of 1.4 mm was produced.
  • the anion conductive membrane was arranged so as to face the negative electrode, and the separator was arranged on the positive electrode side.
  • the alkaline secondary battery 1 shown in FIGS. 1 and 2 includes a sealing plate 3 having a negative electrode 5 embedded in an opening of an outer can 2 having a positive electrode 4, a separator 6, and an anion conductive film 7.
  • the ring-shaped and annular gasket (resin gasket) 8 is fitted, and the opening end of the outer can 2 is tightened inward, whereby the resin gasket 8 abuts against the sealing plate 3.
  • the opening of the outer can 2 is sealed so that the inside of the battery has a sealed structure. That is, in the battery shown in FIGS.
  • the positive electrode 4, the negative electrode 5, the separator 6, and the anion conductive membrane are formed in a space (sealed space) in the battery container including the outer can 2, the sealing plate 3, and the resin gasket 8. 7 is loaded, and an alkaline electrolyte (not shown) is further injected and held in the separator.
  • the outer can 2 also serves as a positive terminal
  • the sealing plate 3 also serves as a negative terminal.
  • Example 2 The positive electrode active material, acetylene black, and the ratio of the graphite particles were 95.6% by mass, 0.6% by mass, and 3.8% by mass, respectively, to form a positive electrode mixture, and 80 mg of this positive electrode mixture was added to the mold.
  • the positive electrode mixture molded body (positive electrode mixture) was filled in the same manner as in Example 1 by press molding into a disk shape having a packing density of 5.7 g / cm 3 , a diameter of 5.17 mm, and a height of 0.6 mm.
  • a positive electrode made of an agent layer was prepared.
  • the diameter of the anion conductive membrane and the separator was 5.7 mm each
  • the mass of the negative electrode composition was 19 mg, and the same as in Example 1 using the positive electrode, the anion conductive membrane, the separator, and the negative electrode composition.
  • the battery was assembled to produce an alkaline secondary battery having a diameter of 5.8 mm and a thickness of 2.7 mm.
  • Example 1 Ag 2 O particles having an average particle diameter of 5 ⁇ m and the positive electrode active material particles produced in Example 1 were mixed so that the ratio of the total amount of bismuth to the total amount of silver was 1% by mass ratio, and this mixture was used.
  • An alkaline secondary battery was produced in the same manner as in Example 1 except that the positive electrode was produced.
  • Example 2 (Comparative Example 2) Using a mixed aqueous solution of AgNO 3 and Bi (NO 3 ) 3 adjusted so that the mass ratio of Ag and Bi is 100: 10, the ratio of the total amount of bismuth to the total amount of silver is the same as in Example 1. Positive electrode active material particles having a mass ratio of 10% were prepared. An alkaline secondary battery was produced in the same manner as in Example 1 except that a positive electrode was produced using the positive electrode active material particles.
  • C (mA) the current value in constant current charging at the 11th cycle of each battery: C (mA) is estimated from the time required for the battery voltage to reach 1.85 V from the start of charging, and the battery voltage is 1 Constant current charging at C (mA) and constant voltage charging at 1.85 V until the voltage reaches .85 V (however, when the current value drops to C / 10 (mA)), C / 2 A constant current discharge (end voltage: 1.0 V) at (mA) was performed.
  • the alkaline secondary batteries of the present invention shown in Example 1 and Example 2 are excellent in the flatness of the discharge curve, as is clear from the shape of the discharge curve shown in FIGS. 3 and 4, and the depth of discharge. Since the step difference of a certain level or more is generated in the discharge curve while the value is 70% to 90%, the discharge end time can be easily detected in advance.
  • the discharge curve of the alkaline secondary battery of Comparative Example 1 is close to the shape of the discharge curve of the battery using only silver oxide (Ag 2 O) as the positive electrode active material, and has a step just before the end of discharge.
  • silver oxide Ag 2 O
  • the discharge curve of the alkaline secondary battery of Comparative Example 2 is inferior in flatness of the discharge curve because a step is generated when the discharge depth is shallower than 70%, and the discharge end time is detected. Since the time until the discharge is actually finished becomes too long, a problem arises in practicality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本願で開示するアルカリ二次電池は、正極活物質を含有する正極、負極およびセパレータを含み、前記正極活物質は、銀酸化物と銀ビスマス複合酸化物との混合物を含み、充電完了後に電池電圧が1.0Vに低下するまで定電流で電池を放電させたときに得られる放電曲線において、放電開始から全放電容量のx(%)まで放電した時点の電池電圧をVx(V)とした場合に、V10-V70≦0.08を満たし、かつ、70≦x≦90の範囲に段差を有し、その大きさ:V70-V90が0.04以上0.15以下である。

Description

アルカリ二次電池
 本発明は、電圧の平坦性に優れ、かつ放電終止時期の検知が容易なアルカリ二次電池に関するものである。
 銀酸化物を含有する正極と、亜鉛や亜鉛合金を含有する負極と、アルカリ電解液とを有するアルカリ電池(酸化銀電池)は、一次電池として、広く一般に使用されている。前記酸化銀電池は、正極活物質である銀酸化物の放電電位が一定であり、電池の放電曲線の平坦性が高いことから、時計など精密機器の電源として有用性が高いものである。
 ところが、放電中の電圧の変化が小さいことから、放電末期まで残存容量の検出を行うのが難しく、放電電圧が急激に低下し始めてから放電完了までの時間がわずかであるため、機器の作動が停止する前に時間的な余裕を持って電池の交換時期を検知することが困難であった。
 これに対し、酸化銀に酸化ビスマスを添加して正極を構成することにより、電池の放電末期に、放電電圧に段差を生じるようにして電池の寿命を検知することが提案されている(特許文献1)。また、電池の放電末期を検知するものではないが、AgとBiを含む複合酸化物をアルカリ一次電池の正極活物質として用いることが提案されており、放電曲線に段差を有する電池も得られている(特許文献2および3)。これらの技術を利用することにより、酸化銀あるいは銀含有化合物を正極活物質とする一次電池において、電池の放電末期を事前に検知することが可能となる。
 一方、特許文献4に記載されているように、酸化銀をアルカリ二次電池の正極活物質として利用することも以前から検討が進められており、補聴器などの用途において、一部で製品化もなされている。
特開昭52-142241号公報 特開2002-260653号公報 特表2009-543313号公報 特開2001-202958号公報
 この酸化銀を正極活物質とするアルカリ二次電池においても、前記一次電池と同様に、電池の放電末期の検知が困難であることが指摘されているが、特許文献1あるいは特許文献2の構成を二次電池に適用したとしても、正極の充放電の可逆性や放電電圧の平坦性などに問題を生じることになり、充分な特性の二次電池を構成することができない。
 本発明は、前記事情に鑑みてなされたものであり、電圧の平坦性に優れ、かつ放電終止時期の検知が容易なアルカリ二次電池を提供する。
 本発明のアルカリ二次電池は、正極活物質を含有する正極、負極およびセパレータを含み、前記正極活物質は、銀酸化物と銀ビスマス複合酸化物との混合物を含み、充電完了後に電池電圧が1.0Vに低下するまで定電流で電池を放電させたときに得られる放電曲線において、放電開始から全放電容量のx(%)まで放電した時点の電池電圧をVx(V)とした場合に、V10-V70≦0.08を満たし、かつ、70≦x≦90の範囲に段差を有し、その大きさ:V70-V90が0.04以上0.15以下であることを特徴とする。
 なお、前記放電曲線を得るための電池の充電および放電は、以下の条件で行えばよい。充電は、1.0Vまで放電させた電池に対し、充電開始から電池電圧が1.85Vに達するまでにおよそ4時間を要する電流値:C(mA)での定電流充電と、1.85Vでの定電圧充電との組み合わせとなる定電流-定電圧充電とし、電流値がC/10(mA)に低下した時点で充電を終了する条件で行う。前記電流値C(mA)を決めるにあたり、充電開始から電池電圧が1.85Vに達するまでに要する時間は、4時間から多少ずれても問題なく、4時間±0.25時間となる範囲で電流値を決めればよい。また、放電はC/2(mA)での定電流放電とし、電池電圧が1.0Vまで低下した時点で放電を終了する条件で行う。この放電条件により得られる電池の放電容量を、前記「全放電容量」とする。
 また、本発明において、「放電曲線が段差を有する」とは、横軸が放電深度に対応するx(%)、縦軸が電池電圧:Vx(V)で表される放電曲線において、70<x<90の範囲に変曲点が存在することを意味する。
 なお、本発明のアルカリ二次電池においては、電池の作製後、放電曲線の形状がほぼ一定になるまで通常数サイクルの充放電を経る必要があるため、前記放電曲線を得るための充放電は、10サイクル程度充放電を繰り返した電池に対し行うことが望ましい。
 本発明によれば、電圧の平坦性に優れ、かつ放電終止時期の検知が容易なアルカリ二次電池を提供することができる。
図1は、本発明のアルカリ二次電池の一例を模式的に表す側面図である。 図2は、図1に表すアルカリ二次電池の要部断面図である。 図3は、実施例1に記載されたアルカリ二次電池の放電曲線である。 図4は、実施例2に記載されたアルカリ二次電池の放電曲線である。 図5は、比較例1に記載されたアルカリ二次電池の放電曲線である。 図6は、比較例2に記載されたアルカリ二次電池の放電曲線である。
 本発明のアルカリ二次電池において、正極活物質を構成する銀酸化物は、AgOやAg2Oなど、酸化銀一次電池の正極活物質として用いられる銀の酸化物を用いることができ、放電時の電圧の平坦性の点から、Ag2Oが好ましく用いられる。
 また、本発明のアルカリ二次電池において、正極活物質を構成する銀ビスマス複合酸化物は、例えば、Ag2OやAgOなどの銀酸化物と、Bi23 やBi24、Bi25などのビスマス酸化物とを基にした複合酸化物であり、好ましくは(Ag2O)1-t(Bi23tや(Ag2O)1-z(Bi25zなどの形で表され、銀酸化物とビスマス酸化物との固溶体であるものが例示される。
 銀ビスマス複合酸化物の具体例としては、Biの平均価数が3価となる化合物として、Ag5BiO4、Ag3BiO3、Ag4Bi25などが例示され、Biの平均価数がおよそ4価となる化合物として、Ag25Bi318、Ag2BiO3などが例示され、Biの平均価数が5価となる化合物として、AgBiO3、Ag7BiO6などが例示される。中でも、充放電の可逆性などの点から、Biの平均価数が3価となる化合物が好ましく用いられる。
 銀ビスマス複合酸化物は、例えば以下の方法により合成することができる。およそ90~100℃程度の温度に保たれた40~50質量%程度の濃度の充分な量のアルカリ水溶液(KOH水溶液、NaOH水溶液など)を撹拌し、その中に、AgおよびBiの水溶性塩〔AgNO3、Ag2(SO4)、AgCl、Bi(NO33、Bi2(SO43、BiCl3など〕を所定の量比となるよう溶解した水溶液を添加し、中和生成物を沈殿させる。生成した沈殿物を水洗乾燥する方法により、Biの平均価数が3価となる化合物を得ることができる。また、前記AgおよびBiの水溶性塩を溶解した水溶液を添加するのと同時に、または、前記中和生成物を沈殿させた後に、更にK228などの酸化剤の水溶液を添加し、30分~1時間程度撹拌を続けることにより、Biの平均価数が4~5価となる化合物など、より高次の酸化数の化合物を得ることができる。また、Ag2OとBi23をメカノケミカル反応により複合化させる方法を用いてもよい。
 なお、前記銀酸化物および前記銀ビスマス複合酸化物は、ビスマス以外の元素を含んでいてもよい。
 本発明のアルカリ二次電池の正極活物質には、前記銀酸化物と、前記銀ビスマス複合酸化物との混合物が用いられる。前記混合物は、銀酸化物の粒子と銀ビスマス複合酸化物の粒子とを単に混合したものでもよいが、1つの粒子中に銀酸化物の相と銀ビスマス複合酸化物の相とが混在する複合体であってもよく、前記銀ビスマス複合酸化物を合成する方法において、銀ビスマス複合酸化物と共に銀酸化物が混在する生成物が得られた場合には、それを正極活物質として用いることができる。
 銀酸化物と銀ビスマス複合酸化物との混合物における銀ビスマス複合酸化物の割合により、放電曲線上で段差が表れる位置が変化し、一般に、銀ビスマス複合酸化物の割合が増加するほど、放電率の値がより小さい位置、すなわち、放電深度がより浅い位置で放電曲線に段差を生じることになり、放電曲線の平坦性が低下する。また、電池に多くの容量が残存している段階で放電終止時期を検知することになるので、検知することに意味がなくなり実用性に問題を生じることになる。さらに、銀ビスマス複合酸化物の割合が増加するに従って、正極活物質の実容量や高温での貯蔵性が低下しやすくなる。このため、放電曲線の平坦性を向上させ一定以上放電が進行してから放電終止時期が検知できるよう、前記混合物における銀ビスマス複合酸化物の割合を一定以下とすることが好ましく、例えば、前記混合物に含有される銀の総量に対するビスマスの総量の割合を、質量比で9%より少なくすることが好ましく、7%より少なくすることがより好ましい。
 一方、銀酸化物と銀ビスマス複合酸化物との混合物における銀ビスマス複合酸化物の割合が少なすぎる場合は、放電曲線に段差を生じ難くなり、放電曲線に生じる段差により放電終止時期の検知を行ってから、電池の放電が終了して機器が停止するまでの時間が短くなる。このため、機器が再充電を要する状況であることを使用者が認知する機会を逸してしまい、使用者が気付かないうちに機器の作動が停止してしまうおそれが大きくなる。従って、前記混合物における銀ビスマス複合酸化物の割合を一定以上とし、放電終止時期を検知してから放電が終了するまでの間にある程度時間的な余裕を持たせることが望ましく、例えば、前記混合物に含有される銀の総量に対するビスマスの総量の割合を、質量比で2%より多くすることが好ましく、3%より多くすることがより好ましい。
 なお、本発明では、前記放電曲線の平坦性は、10%放電時の電池電圧:V10(V)と70%放電時の電池電圧:V70(V)との差:V10-V70により評価し、前記の差が0.08V以下である場合に放電曲線の平坦性が良好であるとみなす。ここで、V10-V70の値は、0.05以下であることが好ましく、0.04以下であることがより好ましく、0.035以下であることが特に好ましい。
 また、本発明では、70%放電時の電池電圧:V70(V)と90%放電時の電池電圧:V90(V)との差:V70-V90により、放電曲線に生じる段差の大きさを評価する。なお、放電曲線上で変曲点が存在している放電深度をxi(%)とした場合には、段差の大きさは、例えば、放電深度がxi-5(%)の時の電池電圧:Vxi-5(V)と、放電深度がxi+5(%)の時の電池電圧:Vxi+5(V)との差:Vxi-5-Vxi+5などにより評価する方がより的確であるが、本発明では、簡易的に前記の電圧差により放電曲線に生じる段差の大小を評価する。
 放電曲線に生じる段差が小さすぎる場合は、放電電圧の変化を検知し難くなるため、V70-V90の値は、0.04以上であることが好ましく、0.07以上であることがより好ましい。一方、段差が大きすぎる場合は、2段目の放電曲線の電圧が低くなりすぎ、段差を生じた後の放電容量を機器の作動に利用しにくくなるため、V70-V90の値は、0.15以下であることが好ましく、0.1以下であることがより好ましい。本発明では、銀ビスマス複合酸化物の組成などにより、V70-V90の値を変えることができる。
 前記銀酸化物および前記銀ビスマス複合酸化物の粒度については、特に限定はされないが、充放電サイクル特性の点からは、それぞれの平均粒子径は小さい方が好ましく、具体的には、15μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが特に好ましく、3μm以下であることが最も好ましい。
 このようなサイズの正極活物質を用いた場合には、充電時の利用率が向上し、充電終止電圧を比較的低くしても大きな充電容量が得られやすくなる。このため、電池の充放電サイクル特性を更に高めることができ、また、例えば、充電終止電圧を高めることによって生じ得る電池の膨れを抑えることが可能となる。
 ただし、あまり粒径の小さい正極活物質は、製造やその後の取り扱いが困難となることから、前記銀酸化物および前記銀ビスマス複合酸化物の平均粒子径は、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましい。
 本明細書でいう正極活物質の平均粒子径は、レーザー散乱粒度分布計(例えば、堀場製作所製「LA-920」)を用い、粒子を溶解しない媒体に、これらの粒子を分散させて測定した体積基準での累積頻度50%における粒径(D50)である。
 前記正極活物質は、必要に応じて添加される導電助剤やバインダ、アルカリ電解液などと共に混合され、正極活物質を含有する正極合剤が形成される。前記正極合剤は、そのまま成形されて成形体よりなる正極とされるか、水や有機溶媒などの分散媒により塗料化されて集電体の片面または両面に層状に塗布され、集電体上に正極合剤層を有するシート状の正極とされて電池の作製に用いられる。
 前記正極の導電助剤としては、カーボンブラック、黒鉛などの炭素質材料などが好ましく用いられる。
 正極合剤(正極合剤の成形体や正極合剤層)の組成としては、容量を確保するために、銀酸化物の含有量は、例えば、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。また、導電助剤の含有量は、導電性の点から0.2質量%以上であることが好ましく、0.5質量%以上であることが好ましく、1質量%以上であることが特に好ましく、一方、容量低下や充電時のガス発生を防ぐため、7質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが特に好ましい。
 正極として前記正極合剤の成形体を用いる場合、その厚みは、0.15~4mmであることが好ましい。一方、前記シート状の正極を用いる場合には、集電体上に形成される正極合剤層の厚み(集電体の片面あたりの厚み)は、30~300μmであることが好ましい。
 正極に集電体を用いる場合には、その集電体としては、例えば、SUS316、SUS430、SUS444などのステンレス鋼;アルミニウムやアルミニウム合金;を素材とするものが挙げられ、その形態としては、平織り金網、エキスパンドメタル、ラス網、パンチングメタル、金属発泡体、箔(板)などが例示できる。集電体の厚みは、例えば、0.05~0.2mmであることが好ましい。このような集電体の表面には、カーボンペーストや銀ペーストなどのペースト状導電材を塗布しておくことも望ましい。
 また、本発明のアルカリ二次電池の負極には、亜鉛粒子または亜鉛合金粒子(以下、両者を纏めて「亜鉛系粒子」という場合がある)を含有するものが好ましく用いられる。このような負極では、前記粒子中の亜鉛が活物質として作用する。
 前記亜鉛合金粒子に添加される合金元素としては、例えば、インジウム、ビスマス、アルミニウム、マグネシウム、カルシウムなどが好ましく例示される。なお、元素種およびその含有量によっては、添加された元素が亜鉛の母相に均一に固溶せず、粒子内で部分的に偏析する場合がある。
 前記合金元素の含有量は、必ずしも限定はされないが、例えば、インジウムでは0.005~0.05質量%(50~500ppm)、ビスマスでは0.005~0.05質量%(50~500ppm)、アルミニウムでは0.0005~0.02質量%(5~200ppm)、マグネシウムでは0.0001~0.002質量%(1~20ppm)が好ましい。負極の有する亜鉛系粒子は、1種単独でもよく、2種以上であってもよい。
 ただし、亜鉛系粒子には、合金成分として水銀を含有しないものを使用することが好ましい。このような亜鉛系粒子を使用している電池であれば、電池の廃棄による環境汚染を抑制できる。また、水銀の場合と同じ理由から、亜鉛系粒子には、合金成分として鉛を含有しないものを使用することが好ましい。
 亜鉛系粒子の粒度としては、例えば、全粉末中、粒径が75μm以下の粒子の割合が50質量%以下であることが好ましく、30質量%以下であることがより好ましく、また、粒径が100~200μmの粉末の割合が、50質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 前記亜鉛系粒子の粒度は、前記正極活物質の平均粒子径と同様に、レーザー散乱粒度分布計を用いて測定される、体積基準での累積頻度から求められた値である。
 なお、前記負極活物質を有するアルカリ二次電池においては、充放電を繰り返すと、徐々に負極の形状が変化して負極缶(封口板または外装缶)との電気的接触が十分取れなくなるか、負極で亜鉛デンドライトが成長してセパレータ内に侵入し、短絡が生じるなどの問題を生じやすい。このため、充放電サイクルに伴う電池の容量低下を抑制できる構成を適用することが望ましい。
 本発明のアルカリ二次電池では、前記の観点から、特定のアニオン伝導性膜を正極と負極との間に介在させることが好ましく、これにより、充放電を繰り返しても、負極の形態を維持し、かつ負極での亜鉛デンドライトの発生あるいは成長を抑制することが可能となり、優れた充放電サイクル特性を有するアルカリ二次電池とすることができる。
 前記アニオン伝導性膜は、例えば、ポリマーをマトリクスとし、かつ前記マトリクス中に金属化合物の粒子を分散させた膜が好ましく用いられる。
 アニオン伝導性膜のマトリクスとなる前記ポリマーは、特に限定はされず、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、フッ化ビニリデン-クロロトリフルオロエチレン共重合体(PVDF-CTFE)、フッ化ビニリデン-テトラフルオロエチレン共重合体(PVDF-TFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体(PVDF-HFP-TFE)などのフッ素樹脂;ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;ポリスチレン;極性基または極性を有する結合を分子内に有するポリマー(以下、「極性ポリマー」という);などが例示される。
 前記の極性ポリマーとしては、ポリアルキレンイミン(ポリエチレンイミンなど)などのアミノ基を含有するポリマー;(アルコキシ)ポリアルキレングリコールモノ(メタ)アクリレートなどのエステル結合(エステル基)を含有するポリマー;ポリ(メタ)アクリル酸のアルカリ金属塩(ナトリウム塩など)、ポリ(メタ)アクリル酸のマグネシウム塩、ポリ(メタ)アクリル酸のアルカリ土類金属塩(カルシウム塩など)、ポリ(メタ)アクリル酸のアンモニウム塩、ポリマレイン酸のアルカリ金属塩(ナトリウム塩など)、ポリマレイン酸のマグネシウム塩、ポリマレイン酸のアルカリ土類金属塩(カルシウム塩など)、ポリマレイン酸のアンモニウム塩などの、カルボン酸塩基(カルボキシル基の塩)を含有するポリマー;ポリアミド;などが挙げられる〔前記の「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸とを纏めた表現である〕。
 アニオン伝導性膜は、マトリクスとなるポリマーとして、前記例示の各種ポリマーのうちの1種のみを含有していてもよく、2種以上を含有していてもよい。アニオン伝導性膜は、マトリクスとなるポリマーとして、前記例示のフッ素樹脂を含有していることがより好ましく、フッ素樹脂と極性ポリマーとを含有していることが更に好ましい。
 アニオン伝導性膜中に分散させる金属化合物の粒子としては、金属の酸化物、水酸化物、炭酸塩、硫酸塩、リン酸塩、ホウ酸塩およびケイ酸塩よりなる群から選択される少なくとも1種の化合物の粒子が挙げられる。
 金属の酸化物としては、酸化セリウム、酸化ジルコニウムなどが挙げられるほか、ハイドロタルサイトを例示することもできる。ハイドロタルサイトは、下記一般式(1)に代表される化合物である。
 {M1 1-x2 x(OH)2}(An-x/n・mH2O (1)
 前記一般式(1)中、M1はMg、Fe、Zn、Ni、Co、Cu、Ca、Liなどを表し、M2はAl、Fe、Mnなどを表し、AはCO3 2-などを表し、mは0以上の整数、nは2または3で、0.2≦x≦0.4である。
 また、金属の水酸化物としては、水酸化セリウム、水酸化ジルコニウムなどが挙げられる。更に、金属の硫酸塩としては、エトリンガイドなどが挙げられる。また、金属のリン酸塩としては、ハイドロキシアパタイトなどが挙げられる。
 前記金属化合物の粒子の中でも、ハイドロタルサイトなどの陰イオン交換能を有する層間化合物が好ましい。
 前記金属化合物の粒子の平均粒子径は、5nm以上であることが好ましく、10nm以上であることがより好ましく、100nm以上であることが特に好ましく、100μm以下であることが好ましく、10μm以下であることがより好ましく、1μm以下であることが特に好ましい。
 なお、前記金属化合物の粒子の平均粒子径は、正極活物質の平均粒子径と同様にして測定される。
 アニオン伝導性膜におけるポリマー(マトリクスとなるポリマー)の割合は、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、10質量%以上であることが更に好ましく、40質量%以上であることが特に好ましく、また、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましく、60質量%以下であることが特に好ましい。
 また、アニオン伝導性膜における前記金属化合物の粒子の割合は、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、30質量%以上であることが特に好ましく、また、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、60質量%以下であることが更に好ましく、50質量%以下であることが特に好ましい。
 アニオン伝導性膜の厚みは、アニオン伝導性膜による前記の効果をより良好に確保する観点から、10μm以上であることが好ましく、20μm以上であることがより好ましく、40μm以上であることが特に好ましい。ただし、アニオン伝導性膜が厚すぎると、電池内でのアニオン伝導性膜の占有体積が大きくなって、正極活物質や負極活物質の導入量が少なくなる虞がある。よって、電池の容量をより高める観点からは、アニオン伝導性膜の厚みは、500μm以下であることが好ましく、250μm以下であることがより好ましい。
 アニオン伝導性膜は、例えば、前記ポリマーや金属化合物の粒子などを水やN-メチル-2-ピロリドンなどの有機溶媒に分散(ポリマーは溶解していてもよい)させて調製したアニオン伝導性膜形成用組成物を、基材表面に塗布し、乾燥した後に剥離する方法によって形成することができる。また、前記の乾燥後にプレス処理を施してもよい。なお、アニオン伝導性膜は、この段階ではアルカリ電解液を含有していないが、電池内において、電池に注入されたアルカリ電解液を吸収させることにより、内部に電解液を含有させることができる。また、前記の乾燥後(またはプレス処理後)のアニオン伝導性膜をアルカリ電解液中に浸漬して、あらかじめアルカリ電解液を吸収させてから電池の組み立てに供してもよい。
 前記アニオン伝導性膜は、単独でセパレータとして用いてもよいが、アルカリ電解液を保持するための通常のセパレータと共に用いてもよい。この場合には、前記アニオン伝導性膜を負極側に配置することにより、アニオン伝導性膜の前記機能を発揮させやすくなる。
 前記アニオン伝導性膜以外のセパレータとしては、ビニロンとレーヨンを主体とする不織布、ビニロン・レーヨン不織布(ビニロン・レーヨン混抄紙)、ポリアミド不織布、ポリオレフィン・レーヨン不織布、ビニロン紙、ビニロン・リンターパルプ紙、ビニロン・マーセル化パルプ紙などを用いることができる。また、親水処理された微孔性ポリオレフィンフィルム(微孔性ポリエチレンフィルムや微孔性ポリプロピレンフィルムなど)と、セロファンフィルムと、ビニロン・レーヨン混抄紙のような吸液層(電解液保持層)とを積み重ねたものをセパレータとしてもよい。セパレータの厚みは、20~500μmであることが好ましい。
 なお、セパレータ中のアルカリ電解液量については特に制限はなく、可能な範囲で吸収できる量のアルカリ電解液を保持していればよい。
 本発明のアルカリ二次電池の負極は、例えば、前記の亜鉛系粒子と共に、必要に応じて添加されるゲル化剤(ポリアクリル酸ソーダ、カルボキシメチルセルロースなど)と、アルカリ電解液とで構成される負極剤(ゲル状負極)を用いて形成される。負極中のゲル化剤の量は、例えば、0.5~1.5質量%とすることが好ましい。
 また、負極は、前記のようなゲル化剤を実質的に含有しない非ゲル状の負極とすることもできる。ゲル化剤の作用によってアルカリ電解液が増粘している場合、ゲル化剤により電解液中のイオンの移動が抑制され、電池の負荷特性が低下するおそれを生じる。そのため、ゲル化剤を含有しないか、あるいはアルカリ電解液が増粘しない程度にゲル化剤を含有させた、「非ゲル状」の負極の構成とすることにより、アルカリ電解液のイオン伝導性を向上させ、負荷特性(特に重負荷特性)をより高めることが考えられる。
 なお、亜鉛系粒子を含有する負極において、亜鉛デンドライトは、負極のある部分に充電電流が集中した場合に、亜鉛析出物が針状に成長することで生成する。
 しかし、負極にポリアルキレングリコール類を含有させることにより、亜鉛系粒子の表面で、充電電流が一点に集中せずに分散するため、亜鉛デンドライトの成長を抑制することができる。また、亜鉛のデンドライト成長に起因するガス発生を抑制し、貯蔵特性を向上させる効果も期待できることから、本発明のアルカリ二次電池の負極には、ポリアルキレングリコール類を含有させることが好ましい。
 負極にポリアルキレングリコール類を含有させる方法としては、亜鉛系粒子とポリアルキレングリコール類とを直接混合する方法や、ポリアルキレングリコール類を含有する電解質(電解液)を亜鉛系粒子と混合する方法などを用いることができる。
 アルカリ二次電池に用いられるポリアルキレングリコール類は、エチレングリコール、プロピレングリコール、ブチレングリコールなどのアルキレングリコールが重合または共重合した構造を有する化合物であり、架橋構造や分岐構造を持つものであってもよく、また末端が置換された構造の化合物であってもよく、重量平均分子量としては、およそ200以上の化合物が好ましく用いられる。重量平均分子量の上限は特に規定はされないが、添加による効果をより発揮させやすくするためには化合物が水溶性である方が好ましく、通常は20000以下のものが好ましく用いられ、5000以下のものがより好ましく用いられる。
 より具体的には、エチレングリコールが重合した構造をもつポリエチレングリコール類や、プロピレングリコールが重合した構造をもつポリプロピレングリコール類などを好ましく用いることができる。
 前記ポリエチレングリコール類としては、ポリエチレングリコール、ポリエチレンオキシドのほか、直鎖構造の化合物としては、例えば、下記一般式(2)で表される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001
 前記一般式(2)中、Xはアルキル基、ヒドロキシル基、カルボキシル基、アミノ基、またはハロゲン原子、Yは水素原子またはアルキル基であり、nは平均で4以上を表す。
 なお、前記一般式(2)におけるnは、ポリエチレングリコール類における酸化エチレンの平均付加モル数に相当する。nは平均で4以上であり、nの上限は特に限定はされないが、重量平均分子量として、200~20000程度の化合物が好ましく用いられる。
 前記ポリプロピレングリコール類としては、ポリプロピレングリコール、ポリプロピレンオキシドのほか、直鎖構造の化合物としては、例えば、下記一般式(3)で表される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000002
 前記一般式(3)中、Zはアルキル基、ヒドロキシル基、カルボキシル基、アミノ基、またはハロゲン原子、Tは水素原子またはアルキル基であり、mは平均で3以上を表す。
 なお、前記一般式(3)におけるmは、ポリプロピレングリコール類における酸化プロピレンの平均付加モル数に相当する。mは平均で3以上であり、mの上限は特に限定はされないが、重量平均分子量として、200~20000程度の化合物が好ましく用いられる。
 ポリアルキレングリコール類は、酸化エチレンユニットと、酸化プロピレンユニットとを含むような共重合化合物(ポリオキシエチレンポリオキシプロピレングリコールなど)であってもよい。
 前記ポリアルキレングリコール類の負極中での含有量は、電池の充放電サイクル特性や貯蔵特性をより良好に高める観点から、亜鉛系粒子100質量部に対し0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましい。また、前記ポリアルキレングリコール類の量を制限して電池の放電特性をより高める観点からは、亜鉛系粒子100質量部に対する前記ポリアルキレングリコール類の量が、5質量部以下であることが好ましく、1質量部以下であることがより好ましい。
 また、本発明のアルカリ二次電池では、負極にカルシウム化合物を含有させることによっても、亜鉛デンドライトの発生あるいは成長を抑制することができる。
 すなわち、カルシウム化合物は、亜鉛の溶解時に、
 Ca(OH)2+Zn(OH)4 2-+H2O → CaZn(OH)4・H2O+2OH-
などの反応により、CaZn(OH)4などの沈殿物を形成するため、亜鉛のイオンが電解液中を拡散して移動するのを防止することができる。
 ただし、カルシウム化合物によって負極での亜鉛デンドライトの発生を抑制するには、放電生成物であるZn(OH)4 2-を水酸化カルシウムと反応させて、不溶解性の化合物であるCaZn(OH)4に変化させる必要があり、亜鉛に対する水酸化カルシウムの含有量を比較的多くする必要があるため、電池の容量低下などの問題を生じることなく亜鉛デンドライトの発生を充分に抑制することは困難である。
 一方、本発明のアルカリ二次電池において、アニオン伝導性膜あるいはポリアルキレングリコール類を用い、さらにカルシウム化合物を負極に含有させた場合には、このカルシウム化合物は、アニオン伝導性膜あるいはポリアルキレングリコール類と協調して亜鉛デンドライトの抑制効果を生じると考えられるので、その使用量を比較的少なくすることができる。そのため、カルシウム化合物の使用による放電特性の低下の問題を防ぐことができる。
 アルカリ二次電池に用いられるカルシウム化合物としては、水酸化カルシウム、酸化カルシウム、塩化カルシウム、硫酸カルシウムなど、放電時に生成するZn(OH)4 2-と反応して、CaZn(OH)4などの複合化合物を生成する化合物や、当該複合化合物自体を例示することができ、水酸化カルシウムおよび酸化カルシウムを好ましく用いることができる。
 前記カルシウム化合物の負極における含有量は、電池の充放電サイクル特性をより良好に高めるために、亜鉛系粒子100質量部に対し5質量部以上とすることが好ましく、8質量部以上とすることがより好ましく、10質量部以上とすることが特に好ましい。また、電池の放電容量や放電特性の低下を防ぐために、亜鉛系粒子100質量部に対する前記カルシウム化合物の量は、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であることが特に好ましい。
 負極に前記ポリアルキレングリコール類を含有させる方法、および前記カルシウム化合物を含有させる方法は、特に限定されるものではなく、例えば、前記ポリアルキレングリコール類もしくは前記カルシウム化合物と、亜鉛系粒子とをそのまま混合するか、前記ポリアルキレングリコール類もしくは前記カルシウム化合物を水などの溶媒に溶解または分散させ、これを亜鉛系粒子と混合することにより得られる組成物を、そのまま負極の調製に用いるか、または、前記組成物から溶媒を蒸発させて、表面に前記ポリアルキレングリコール類もしくは前記カルシウム化合物を付着させた亜鉛系粒子を作製し、前記化合物で表面被覆された亜鉛系粒子により負極を調製するなどの方法を用いることができる。
 なお、前記ポリアルキレングリコール類や前記カルシウム化合物で表面被覆された亜鉛系粒子を作製する場合の被覆量は、負極における前記化合物の含有量が前記範囲となるよう調整すればよい。
 また、前記ポリアルキレングリコール類および前記カルシウム化合物は、電池を組み立てた後に、負極内に存在していればよく、電池を組み立てる段階では、アルカリ電解液やセパレータなど負極以外の構成物に含有させておき、電池の組み立て後に、その一部または全部が負極側に移動し、負極内に含有される形態となるのであってもよい。
 例えば、前記化合物をセパレータ内に含有させ、電池を組み立てた後に、セパレータ内の前記化合物が電解液に溶解して負極内に移動するのであってもよい。
 また、負極における、亜鉛系粒子とアルカリ電解液との腐食反応によるガス発生をより効果的に防ぐために、負極にインジウム化合物を含有させてもよい。
 前記のインジウム化合物としては、例えば、酸化インジウム、水酸化インジウムなどが挙げられる。
 負極に使用するインジウム化合物の量は、質量比で、亜鉛系粒子:100に対し、0.003~1であることが好ましい。
 なお、負極における亜鉛系粒子の含有量は、例えば、60質量%以上であることが好ましく、65質量%以上であることがより好ましく、また、75質量%以下であることが好ましく、70質量%以下であることがより好ましい。
 また、本発明のアルカリ二次電池に使用するアルカリ電解液としては、アルカリ金属の水酸化物(水酸化ナトリウム、水酸化カリウム、水酸化リチウムなど)の1種または複数種の水溶液が好ましく用いられ、中でも水酸化カリウムが特に好ましく用いられる。アルカリ電解液の濃度は、例えば、水酸化カリウムの水溶液の場合、水酸化カリウムが、好ましくは20質量%以上、より好ましくは30質量%以上であって、好ましくは40質量%以下、より好ましくは38質量%以下である。水酸化カリウムの水溶液の濃度をこのような値に調整することで、導電性に優れたアルカリ電解液とすることができる。
 アルカリ電解液には、前記の各成分の他に、本発明の効果を損なわない範囲で、必要に応じて公知の各種添加剤を添加してもよい。例えば、アルカリ二次電池の負極に用いる亜鉛系粒子の腐食(酸化)を防止するために、酸化亜鉛を添加するなどしてもよい。なお、酸化亜鉛は、負極に添加することもできる。
 また、アルカリ電解液には、スズ化合物またはインジウム化合物を溶解させることもできる。アルカリ電解液中にこれらの化合物が溶解している場合には、電池の充放電サイクル特性のより一層の向上が期待できる。
 アルカリ電解液に溶解させるスズ化合物としては、塩化スズ、酢酸スズ、硫化スズ、臭化スズ、酸化スズ、水酸化スズ、硫酸スズなどが挙げられる。また、アルカリ電解液に溶解させるインジウム化合物としては、水酸化インジウム、酸化インジウム、硫酸インジウム、硫化インジウム、硝酸インジウム、臭化インジウム、塩化インジウムなどが挙げられる。
 スズ化合物およびインジウム化合物のアルカリ電解液中での濃度は、電解液中でのスズおよびインジウムの割合で換算した場合に、0.005質量%(50ppm)以上であることが好ましく、0.05質量%(500ppm)以上であることがより好ましい。
 なお、前記化合物の濃度(前記元素の割合)の上限は、特に制限されるものではないが、濃度が高すぎる場合はアルカリ金属塩などとして析出しやすくなり、セパレータの空孔を塞ぐ虞も生じることから、1質量%(10000ppm)以下であることが好ましく、0.5質量%(5000ppm)以下であることがより好ましい。
 また、アルカリ電解液に前記化合物の2種以上を溶解させる場合は、それらの合計濃度が前記濃度の範囲にあることが好ましい。
 また、前記の通り、前記ポリアルキレングリコール類もしくは前記カルシウム化合物を、必要に応じてアルカリ電解液に添加し、電解液を介して負極中に含有させることもできる。
 本発明のアルカリ二次電池の形態については特に制限はなく、外装缶と封口板とをガスケットを介してカシメ封口したり、外装缶と封口板とを溶接して封口したりする電池ケースを有する扁平形(コイン形、ボタン形を含む);金属ラミネートフィルムからなる外装体を有するラミネート形;有底筒形の外装缶と封口板とをガスケットを介してカシメ封口したり、外装缶と封口板とを溶接して封口したりする電池ケースを有する筒形〔円筒形、角形(角筒形)〕;など、いずれの形態とすることもできる。
 なお、カシメ封口を行う形態の外装体を使用する場合、外装缶と封口板との間に介在させるガスケットの素材には、PP、ナイロンなどを使用できるほか、電池の用途との関係で耐熱性が要求される場合には、テトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂;ポリフェニレンエーテル(PEE);ポリスルフォン(PSF);ポリアリレート(PAR);ポリエーテルスルフォン(PES);PPS;PEEKなどの融点が240℃を超える耐熱樹脂を使用することもできる。また、電池が耐熱性を要求される用途に適用される場合、その封口には、ガラスハーメチックシールを利用することもできる。
 また、充電時に外装缶を構成する鉄などの元素が溶出するのを防ぐため、外装缶の内面には、金などの耐食性の金属をメッキしておくことが望ましい。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
 (実施例1)
 AgとBiの質量比が100:5となるよう調整されたAgNO3とBi(NO33との混合水溶液を作製し、95℃に保たれた50質量%の濃度のKOH水溶液中に徐々に添加して反応させ、精製した沈殿物を水洗乾燥することにより、Ag2OとAg5BiO4とが混在する正極活物質粒子を得た。この正極活物質粒子は、平均粒子径が5μmであり、銀の総量に対するビスマスの総量の割合が質量比で5%であった。
 前記正極活物質を用い、導電助剤として、アセチレンブラックと黒鉛粒子とを用い、それぞれ94質量%、2質量%および4質量%となる割合で混合して正極合剤を作製した。さらに、この正極合剤110mgを金型に充填し、充填密度5.7g/cm3で、直径9.05mm、高さ0.3mmの円板状に加圧成形することによって、正極合剤成形体(正極合剤層)よりなる正極を作製した。
 PTFEの水系分散液(固形分:60質量%):5gと、ポリアクリル酸ナトリウムの水溶液(濃度:2質量%):2.5gと、ハイドロタルサイト粒子(平均粒子径:0.4μm):2.5gとを混練し、圧延して100μmの厚みの膜を作製し、更に直径9.2mmの円形に打ち抜いたものを、アニオン伝導性膜として電池の組み立てに用いた。
 負極活物質には、添加元素としてIn:500ppm、Bi:400ppmおよびAl:10ppmを含有する、アルカリ乾電池で汎用されている無水銀の亜鉛合金粒子を用いた。前述した方法により求めた前記亜鉛合金粒子の粒度は、平均粒子径(D50)が120μmであり、粒径が75μm以下の粒子の割合は25質量%以下であった。
 前記亜鉛合金粒子と、ZnOとを、97:3の割合(質量比)で混合し、負極を構成するための組成物(負極用組成物)を得た。この組成物:28mgを量り取って負極の作製に用いた。
 アルカリ電解液には、酸化亜鉛を3質量%の濃度で溶解させた水酸化カリウム水溶液(水酸化カリウムの濃度:35質量%)を用いた。
 セパレータには、ポリエチレン主鎖にアクリル酸をグラフト共重合させた構造を有するグラフト共重合体で構成された2枚のグラフトフィルム(厚み:30μm)を、セロハンフィルム(厚み:20μm)の両側に配置し、更にビニロン-レーヨン混抄紙(厚み:100μm)を積層したものを、直径9.2mmの円形に打ち抜いて用いた。
 前記の正極(正極合剤成形体)、負極(負極用組成物)、アルカリ電解液、アニオン伝導性膜およびセパレータを、内面に金メッキを施した鋼板よりなる外装缶と、銅-ステンレス鋼(SUS304)-ニッケルクラッド板よりなる封口板と、ナイロン66製の環状ガスケットとから構成された電池容器内に封止し、図1に示す外観で、図2に示す構造を有し、直径9.5mm、厚さ1.4mmのアルカリ二次電池を作製した。なお、前記アニオン伝導性膜は、負極に面するように配置し、前記セパレータを正極側に配置した。
 図1および図2に示すアルカリ二次電池1は、正極4、セパレータ6およびアニオン伝導性膜7を内填した外装缶2の開口部に、負極5を内填した封口板3が、断面L字状で環状のガスケット(樹脂製ガスケット)8を介して嵌合しており、外装缶2の開口端部が内方に締め付けられ、これにより樹脂製ガスケット8が封口板3に当接することで、外装缶2の開口部が封口されて電池内部が密閉構造となっている。すなわち、図1および図2に示す電池では、外装缶2、封口板3および樹脂製ガスケット8からなる電池容器内の空間(密閉空間)に、正極4、負極5、セパレータ6およびアニオン伝導性膜7を含む発電要素が装填されており、更にアルカリ電解液(図示しない)が注入され、セパレータに保持されている。そして、外装缶2は正極端子を兼ね、封口板3は負極端子を兼ねている。
 (実施例2)
 正極活物質とアセチレンブラックと黒鉛粒子との割合を、それぞれ、95.6質量%、0.6質量%および3.8質量%として正極合剤を構成し、この正極合剤80mgを金型に充填し、充填密度5.7g/cm3で、直径5.17mm、高さ0.6mmの円板状に加圧成形することによって、実施例1と同様にして正極合剤成形体(正極合剤層)よりなる正極を作製した。
 また、アニオン伝導性膜およびセパレータの直径を、それぞれ5.7mmとし、負極用組成物の質量を19mgとし、前記正極、アニオン伝導性膜、セパレータおよび負極用組成物を用いて実施例1と同様にして電池を組み立て、直径5.8mm、厚さ2.7mmのアルカリ二次電池を作製した。
 (比較例1)
 平均粒子径が5μmのAg2O粒子と、実施例1で作製した正極活物質粒子とを、銀の総量に対するビスマスの総量の割合が質量比で1%となるよう混合し、この混合物を用いて正極を作製した以外は、実施例1と同様にしてアルカリ二次電池を作製した。
 (比較例2)
 AgとBiの質量比が100:10となるよう調整されたAgNO3とBi(NO33との混合水溶液を用い、実施例1と同様にして、銀の総量に対するビスマスの総量の割合が質量比で10%の正極活物質粒子を作製した。この正極活物質粒子を用いて正極を作製した以外は、実施例1と同様にしてアルカリ二次電池を作製した。
 実施例1、実施例2、比較例1および比較例2の各電池に対し、電池電圧が1.85Vに達するまで4mAの定電流で充電する定電流充電と、1.85Vの定電圧充電(ただし、電流値が0.4mAに低下した時点で充電を終了)とからなる定電流-定電圧充電と、2mAの定電流で放電する定電流放電(終止電圧:1.0V)とを10サイクル繰り返した。10サイクル目の充電において、充電開始から電池電圧が1.85Vに達するまでに要した時間から、各電池の11サイクル目の定電流充電における電流値:C(mA)を見積もり、電池電圧が1.85Vに達するまで前記C(mA)での定電流充電および1.85Vでの定電圧充電〔ただし、電流値がC/10(mA)に低下した時点で充電を終了〕と、C/2(mA)での定電流放電(終止電圧:1.0V)とを行った。
 各電池の11サイクル目の定電流充電における充電時間が、それぞれ4時間±0.25時間の範囲であったことを確認し、それぞれの電池の放電曲線から、放電曲線の段の位置(変曲点が存在する放電深度x)、放電曲線の平坦性に相当するV10-V70の値、および、段差に相当するV70-V90の値を求めた。
 それぞれの電池の放電曲線を図3~6に示し、前記放電曲線から読み取った結果を表1に示す。なお、比較例1および比較例2の電池では、放電深度が70%から90%となる範囲において放電曲線が段を有していなかったため、V70-V90の値は、放電曲線の段差に対応していない。
Figure JPOXMLDOC01-appb-T000003
 実施例1および実施例2に示される本発明のアルカリ二次電池は、図3および図4に示す放電曲線の形状より明らかなように、放電曲線の平坦性に優れており、また、放電深度が70%から90%となる間で放電曲線に一定以上の大きさの段差が生じるため、放電終止時期を事前に容易に検知することが可能となる。
 一方、比較例1のアルカリ二次電池の放電曲線は、正極活物質として酸化銀(Ag2O)のみを用いた電池の放電曲線の形状に近く、放電終止の直前に段差を生じているため、放電終止時期を検知してから実際に放電が終了するまで時間的な余裕がなく、放電終止時期を事前に検知し充電などの対応を行うことが難しい。
 また、比較例2のアルカリ二次電池の放電曲線は、放電深度が70%よりも浅い段階で段差を生じているため放電曲線の平坦性が劣っており、また、放電終止時期を検知してから実際に放電が終了するまでの時間が長くなりすぎるため、実用性に問題を生じることになる。
 1  アルカリ二次電池
 2  外装缶
 3  封口板
 4  正極(正極合剤の成形体)
 5  負極
 6  セパレータ
 7  アニオン伝導性膜
 8  ガスケット

Claims (6)

  1.  正極活物質を含有する正極、負極およびセパレータを含むアルカリ二次電池であって、
     前記正極活物質は、銀酸化物と銀ビスマス複合酸化物との混合物を含み、
     充電完了後に電池電圧が1.0Vに低下するまで定電流で電池を放電させたときに得られる放電曲線において、放電開始から全放電容量のx(%)まで放電した時点の電池電圧をVx(V)とした場合に、V10-V70≦0.08を満たし、かつ、70≦x≦90の範囲に段差を有し、その大きさ:V70-V90が0.04以上0.15以下であることを特徴とするアルカリ二次電池。
  2.  前記全放電容量は、下記の充放電条件により得られる電池の放電容量である請求項1に記載のアルカリ二次電池。
     充電条件:1.0Vまで放電させた電池に対し、充電開始から電池電圧が1.85Vに達するまでに4時間±0.25時間を要する電流値:C(mA)での定電流充電と、1.85Vでの定電圧充電との組み合わせとなる定電流-定電圧充電とし、電流値がC/10(mA)に低下した時点で充電を終了する条件
     放電条件:放電はC/2(mA)での定電流放電とし、電池電圧が1.0Vまで低下した時点で放電を終了する条件
  3.  前記放電曲線において、横軸が放電深度に対応するx(%)を表し、縦軸が電池電圧:Vx(V)を表す場合、70<x<90の範囲に変曲点が存在する請求項1または2に記載のアルカリ二次電池。
  4.  前記混合物に含有される銀の総量に対するビスマスの総量の割合が、質量比で2%より多く9%より少ない請求項1~3のいずれか1項に記載のアルカリ二次電池。
  5.  前記銀ビスマス複合酸化物におけるビスマスの平均価数が3価である請求項1~4のいずれか1項に記載のアルカリ二次電池。
  6.  前記銀ビスマス複合酸化物が、(Ag2O)1-t(Bi23tの形で表される複合酸化物である請求項1~4のいずれか1項に記載のアルカリ二次電池。
PCT/JP2018/009540 2017-03-22 2018-03-12 アルカリ二次電池 WO2018173837A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18770292.3A EP3565039B1 (en) 2017-03-22 2018-03-12 Silver oxide secondary battery
US16/482,859 US11127951B2 (en) 2017-03-22 2018-03-12 Alkaline secondary battery
JP2019507564A JP6944994B2 (ja) 2017-03-22 2018-03-12 アルカリ二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-056466 2017-03-22
JP2017056466 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173837A1 true WO2018173837A1 (ja) 2018-09-27

Family

ID=63584396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009540 WO2018173837A1 (ja) 2017-03-22 2018-03-12 アルカリ二次電池

Country Status (4)

Country Link
US (1) US11127951B2 (ja)
EP (1) EP3565039B1 (ja)
JP (1) JP6944994B2 (ja)
WO (1) WO2018173837A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021106829A1 (ja) * 2019-11-28 2021-06-03
CN115566132B (zh) * 2022-10-24 2024-05-14 湖南大学 一种银铋双功能电极及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142241A (en) 1976-05-20 1977-11-28 Hitachi Maxell Silver oxide battery
US6001508A (en) * 1993-06-14 1999-12-14 Rayovac Corporation AgO cathode battery
JP2001202958A (ja) 2000-01-17 2001-07-27 Mitsubishi Materials Corp 酸化銀−炭素複合材料及び酸化銀2次電池用の正極活物質及び酸化銀−炭素複合材料の製造方法
WO2002023647A1 (en) * 2000-09-11 2002-03-21 Dowa Mining Co., Ltd. Positive electrode active material for alkaline cell
JP2002260653A (ja) 2000-12-27 2002-09-13 Dowa Mining Co Ltd 電池用正極活物質
JP2006185649A (ja) * 2004-12-27 2006-07-13 Dowa Mining Co Ltd 電池正極用材料
JP2009543313A (ja) 2006-07-10 2009-12-03 ザ ジレット カンパニー ビスマス金属酸化物を含有する一次アルカリ電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3154435A (en) * 1960-07-19 1964-10-27 Kabushii Kaisha Hitachi Seisak Alkaline dry cell
US5389469A (en) * 1993-06-14 1995-02-14 Rayovac Corporation AgO battery, and material
US7537863B2 (en) * 2003-09-16 2009-05-26 The Gillette Company Primary alkaline battery containing bismuth metal oxide
US7351499B2 (en) * 2004-01-28 2008-04-01 The Gillette Company Cathode material for battery
US20140302347A1 (en) * 2013-04-03 2014-10-09 The Gillette Company Electrochemical cell including an integrated circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142241A (en) 1976-05-20 1977-11-28 Hitachi Maxell Silver oxide battery
US6001508A (en) * 1993-06-14 1999-12-14 Rayovac Corporation AgO cathode battery
JP2001202958A (ja) 2000-01-17 2001-07-27 Mitsubishi Materials Corp 酸化銀−炭素複合材料及び酸化銀2次電池用の正極活物質及び酸化銀−炭素複合材料の製造方法
WO2002023647A1 (en) * 2000-09-11 2002-03-21 Dowa Mining Co., Ltd. Positive electrode active material for alkaline cell
JP2002260653A (ja) 2000-12-27 2002-09-13 Dowa Mining Co Ltd 電池用正極活物質
JP2006185649A (ja) * 2004-12-27 2006-07-13 Dowa Mining Co Ltd 電池正極用材料
JP2009543313A (ja) 2006-07-10 2009-12-03 ザ ジレット カンパニー ビスマス金属酸化物を含有する一次アルカリ電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAN, JUNQING ET AL.: "Analysis of electrochemical mechanism of coprecipitated nano-Ag4Bi2O5 as super high charge-discharge rate cathode materials for aqueous rechargeable battery", ELECTROCHIMICA ACTA, vol. 59, 1 January 2012 (2012-01-01), pages 515 - 521, XP028347568, Retrieved from the Internet <URL:https://doi.org/10.1016/j.electacta.2011.11.009> *

Also Published As

Publication number Publication date
JPWO2018173837A1 (ja) 2020-01-23
EP3565039A1 (en) 2019-11-06
US11127951B2 (en) 2021-09-21
EP3565039A4 (en) 2020-01-22
JP6944994B2 (ja) 2021-10-06
EP3565039B1 (en) 2023-10-11
US20190355990A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6284680B2 (ja) アルカリ二次電池およびその製造方法
CN104737357A (zh) 镍氢蓄电池以及电池组
WO2018173837A1 (ja) アルカリ二次電池
WO2013132818A1 (ja) アルカリ蓄電池用正極およびそれを用いたアルカリ蓄電池
JP6716298B2 (ja) 金属空気電池
JP7319174B2 (ja) 亜鉛電池用電解液、及び、亜鉛電池
JP6734155B2 (ja) アルカリ電池
JP2017069075A (ja) アルカリ二次電池
WO2021106829A1 (ja) アルカリ電池用正極、並びに、アルカリ電池およびその製造方法
JP7149079B2 (ja) アルカリ二次電池
JP7079107B2 (ja) 酸化銀二次電池の充電方法及び充電装置
JP2009146756A (ja) 水系リチウムイオン二次電池
JP5116139B2 (ja) 扁平形酸化銀電池
JP5116140B2 (ja) 扁平形酸化銀電池
JP6783612B2 (ja) アルカリ二次電池
JP6747793B2 (ja) アルカリ二次電池
JP2022162827A (ja) 正極活物質用銀酸化物およびその製造方法、ならびにそれを用いたアルカリ二次電池用正極およびアルカリ二次電池
JP4868566B2 (ja) 酸化銀電池
JP7071131B2 (ja) アルカリ二次電池
JP7121585B2 (ja) アルカリ電池
JP2020187849A (ja) 扁平形アルカリ二次電池
WO2019142915A1 (ja) アルカリ二次電池およびその充電方法ならびにアルカリ二次電池の充電装置
JP2017045683A (ja) アルカリ二次電池
WO2023027185A1 (ja) 亜鉛電池用電解液、及び、亜鉛電池
JP2021099976A (ja) アルカリ乾電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507564

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018770292

Country of ref document: EP

Effective date: 20190802

NENP Non-entry into the national phase

Ref country code: DE