WO2023027185A1 - 亜鉛電池用電解液、及び、亜鉛電池 - Google Patents

亜鉛電池用電解液、及び、亜鉛電池 Download PDF

Info

Publication number
WO2023027185A1
WO2023027185A1 PCT/JP2022/032286 JP2022032286W WO2023027185A1 WO 2023027185 A1 WO2023027185 A1 WO 2023027185A1 JP 2022032286 W JP2022032286 W JP 2022032286W WO 2023027185 A1 WO2023027185 A1 WO 2023027185A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
zinc
group
ether
Prior art date
Application number
PCT/JP2022/032286
Other languages
English (en)
French (fr)
Inventor
有広 櫛部
Original Assignee
エナジーウィズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エナジーウィズ株式会社 filed Critical エナジーウィズ株式会社
Priority to JP2023544010A priority Critical patent/JPWO2023027185A1/ja
Priority to CN202280057697.9A priority patent/CN117897850A/zh
Publication of WO2023027185A1 publication Critical patent/WO2023027185A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to zinc battery electrolytes and zinc batteries.
  • Nickel-zinc batteries, air-zinc batteries, silver-zinc batteries, etc. are known as zinc batteries.
  • a nickel-zinc battery is an aqueous battery that uses an aqueous electrolyte such as an aqueous potassium hydroxide solution, so it has a high level of safety, and the combination of a zinc electrode and a nickel electrode produces a high electromotive force as an aqueous battery.
  • nickel-zinc batteries have excellent input/output performance and low cost, so they can be applied to industrial applications (e.g., backup power supplies) and automotive applications (e.g., hybrid vehicles). gender is being considered.
  • the charge/discharge reaction of a nickel-zinc battery proceeds, for example, according to the following formula (discharge reaction: rightward, charge reaction: leftward).
  • Zinc hydroxide As shown in the above formula, zinc hydroxide (Zn(OH) 2 ) is produced by the discharge reaction in zinc batteries.
  • Zinc hydroxide is soluble in the electrolyte, and when zinc hydroxide dissolves in the electrolyte, tetrahydroxide zincate ions ([Zn(OH) 4 ] 2 ⁇ ) diffuse into the electrolyte.
  • tetrahydroxide zincate ions [Zn(OH) 4 ] 2 ⁇
  • the shape change (deformation) of the negative electrode progresses and the distribution of the charging current becomes uneven.
  • Patent Literature 1 discloses a nickel-zinc battery characterized by having an electrolytic solution containing sugars.
  • Zinc batteries are sometimes used in low-temperature environments such as 0°C to -30°C, and it is required to improve life performance and suppress deterioration of low-temperature discharge performance.
  • the surfactant contains at least one selected from the group consisting of a cationic surfactant, a nonionic surfactant and an anionic surfactant. liquid.
  • ⁇ 4> The zinc battery electrolytic solution according to any one of ⁇ 1> to ⁇ 3>, wherein the zinc battery electrolytic solution contains an oxygen atom-containing organic compound.
  • the organic compound containing an oxygen atom has at least one selected from the group consisting of a carboxy group, a carboxylic acid group, a hydroxyl group, an epoxy group and an ether group.
  • the organic compound containing an oxygen atom includes an ether compound having a heterocyclic ring containing an ether group.
  • ⁇ 7> The zinc battery electrolytic solution according to any one of ⁇ 4> to ⁇ 6>, wherein the organic compound containing an oxygen atom includes an ether compound represented by the following general formula (3).
  • n represents an integer of 1 to 10
  • R 1 and R 2 represent an organic group.
  • ⁇ 8> The zinc battery electrolytic solution according to ⁇ 7>, wherein the organic group in the general formula (3) is an alkyl group or an aryl group.
  • ⁇ 9> The zinc battery electrolytic solution according to ⁇ 7> or ⁇ 8>, wherein the ether compound represented by the general formula (3) contains a glyme compound.
  • glyme compound contains at least one selected from the group consisting of monoglyme, diglyme, triglyme and tetraglyme.
  • a zinc battery comprising a positive electrode, a negative electrode, and the electrolytic solution for a zinc battery according to any one of ⁇ 1> to ⁇ 10>.
  • an electrolytic solution for zinc batteries capable of suppressing deterioration in low-temperature discharge performance of zinc batteries.
  • a zinc battery comprising the electrolyte for zinc batteries.
  • a numerical range indicated using "-" indicates a range that includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper or lower limit of the numerical range in one step can be arbitrarily combined with the upper or lower limit of the numerical range in another step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in Experimental Examples.
  • “A or B” may include either A or B, or may include both. Materials exemplified in the present disclosure may be used singly or in combination of two or more unless otherwise specified.
  • the amount of each component used in the composition is the total amount of the multiple substances present in the composition unless otherwise specified. means.
  • the term “film” or “layer” includes not only a shape structure formed over the entire surface but also a shape structure formed partially when observed as a plan view.
  • the term “process” includes not only an independent process, but also a process that cannot be clearly distinguished from other processes, as long as the intended action of the process is achieved.
  • the electrolytic solution for zinc batteries according to the present embodiment (hereinafter simply referred to as "electrolytic solution” in some cases) is used as an electrolytic solution for zinc batteries (for example, zinc secondary batteries).
  • a zinc battery according to this embodiment includes a positive electrode, a negative electrode, and an electrolytic solution according to this embodiment.
  • a zinc battery can comprise a zinc electrode as the negative electrode.
  • the zinc batteries include nickel-zinc batteries whose positive electrode is a nickel electrode (for example, nickel-zinc secondary batteries); air-zinc batteries whose positive electrode is an air electrode (for example, zinc-air secondary batteries); and silver-zinc batteries whose positive electrode is a silver oxide electrode. batteries (for example, silver-zinc secondary batteries) and the like.
  • the electrolytic solution according to the present embodiment is a zinc battery electrolytic solution containing an alkali metal hydroxide and a surfactant, wherein the total mass of the surfactant is the total amount of the zinc battery electrolytic solution. It contains 0.01% by mass or more based on the mass. According to the electrolyte solution according to the present embodiment, it is possible to suppress the deterioration of the low-temperature discharge performance of the zinc battery. in some cases) can be reduced.
  • Factors that can achieve such effects include, but are not limited to, the following factors.
  • the electrolyte in a conventional zinc battery, it is difficult for the electrolyte to diffuse evenly on the surface of the active material (zinc component) of the zinc electrode, and the active material that does not come into contact with the electrolyte becomes inactive.
  • the surfactant improves the diffusion of the electrolytic solution to the surface of the active material, so it is speculated that the DC resistance during discharge is reduced. are doing.
  • alkali metal hydroxides examples include potassium hydroxide (KOH), sodium hydroxide (NaOH), lithium hydroxide (LiOH), and the like.
  • the alkali metal hydroxide may be ionized (dissociated) in the aqueous solution, or may exist as a salt.
  • Alkali metal hydroxide is selected from the group consisting of potassium hydroxide and lithium hydroxide from the viewpoint of easily suppressing the decrease in discharge capacity when zinc batteries are stored and from the viewpoint of easily obtaining excellent high-rate discharge performance. It preferably contains at least one kind of organic compound, and more preferably contains potassium hydroxide.
  • the content of alkali metal hydroxides in the electrolyte is from the viewpoint of easily suppressing the decrease in discharge capacity during storage of zinc batteries, and from the viewpoint of obtaining excellent high-rate discharge performance. From the viewpoint of ease of use, the following range is preferable based on the total mass of the electrolytic solution.
  • the content of the alkali metal hydroxide is preferably 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, or 30% by mass or more.
  • the content of alkali metal hydroxide is preferably 50% by mass or less, 45% by mass or less, 40% by mass or less, or 35% by mass or less. From these points of view, the content of alkali metal hydroxide is preferably 10 to 50% by mass.
  • the content of potassium hydroxide in the electrolyte is based on the total mass of the electrolyte, from the viewpoint of easily suppressing the decrease in discharge capacity during storage of the zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • the following ranges are preferred.
  • the content of potassium hydroxide is preferably 10% by mass or more, 15% by mass or more, 20% by mass or more, 25% by mass or more, or 30% by mass or more.
  • the content of potassium hydroxide is preferably 50% by mass or less, 45% by mass or less, 40% by mass or less, or 35% by mass or less. From these points of view, the content of potassium hydroxide is preferably 10 to 50% by mass.
  • the content of lithium hydroxide in the electrolyte is based on the total mass of the electrolyte, from the viewpoint of easily suppressing the decrease in discharge capacity during storage of the zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • the following ranges are preferred.
  • the content of lithium hydroxide is preferably 0.1% by mass or more, 0.3% by mass or more, 0.5% by mass or more, 0.8% by mass or more, or 1% by mass or more.
  • the content of lithium hydroxide is preferably 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or 1.2% by mass or less. From these points of view, the content of lithium hydroxide is preferably 0.1 to 3% by mass.
  • the electrolytic solution according to this embodiment contains a surfactant.
  • surfactants include cationic surfactants, nonionic surfactants (nonionic surfactants), anionic surfactants, amphoteric surfactants, and the like.
  • the surfactant contains at least one selected from the group consisting of cationic surfactants, nonionic surfactants, and anionic surfactants from the viewpoint of easily suppressing deterioration in low-temperature discharge performance of zinc batteries. is preferred.
  • the surfactant preferably contains a cationic surfactant, preferably a nonionic surfactant, and preferably an anionic surfactant.
  • a cationic surfactant has a cationic hydrophilic group and a hydrophobic group.
  • Cationic surfactants include aliphatic amines or salts thereof, alkylamidoamine salts, monoalkyltrimethylammonium salts, dialkyldimethylammonium salts, alkylbenzyldimethylammonium salts, alkylpyridinium salts, quaternary ammonium salts such as benzethonium chloride salts. type cationic surfactants.
  • the cationic surfactant preferably contains at least one selected from the group consisting of monoalkyltrimethylammonium salts and dialkyldimethylammonium salts, from the viewpoint of easily suppressing deterioration in low-temperature discharge performance of zinc batteries. It is more preferable to contain salt.
  • a monoalkyltrimethylammonium salt and a dialkyldimethylammonium salt have, for example, a structure represented by the following general formula (2).
  • n is 1 or 2
  • R 2a and R 2b are each independently a hydrocarbon group having 1 to 20 carbon atoms
  • X - is an anion.
  • multiple R 2a may be the same or different.
  • a plurality of R 2b may be the same or different from each other.
  • the hydrocarbon group of R 2a may be linear or branched, saturated or unsaturated, and contains a cyclic structure such as an alicyclic structure. good too.
  • the hydrocarbon group for R 2a is preferably an alkyl group.
  • the number of carbon atoms in the hydrocarbon group of R 2a is preferably 12-18, more preferably 14-16.
  • the hydrocarbon group of R 2b may be linear or branched and either saturated or unsaturated.
  • the hydrocarbon group for R 2b is preferably an alkyl group.
  • the number of carbon atoms in the hydrocarbon group of R 2b is preferably 1 to 4, more preferably 1, 2 or 3.
  • X - may be any anion capable of forming a salt with the quaternary ammonium ion of formula (2), for example, halide ions such as F - , Cl - , Br - and I - ; It may be a carboxylate ion; a sulfate ion; a phosphate ion;
  • monoalkyltrimethylammonium salts include dodecyltrimethylammonium bromide, dodecyltrimethylammonium chloride, tridecyltrimethylammonium bromide, tridecyltrimethylammonium chloride, tetradecyltrimethylammonium bromide, tetradecyltrimethylammonium chloride, and pentadecyltrimethylammonium bromide.
  • pentadecyltrimethylammonium chloride hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride, heptadecyltrimethylammonium bromide, heptadecyltrimethylammonium chloride, octadecyltrimethylammonium bromide, octadecyltrimethylammonium chloride and the like.
  • dialkyldimethylammonium salts include didodecyldimethylammonium bromide, didodecyldimethylammonium chloride, ditridecyldimethylammonium bromide, ditridecyldimethylammonium chloride, ditetradecyldimethylammonium bromide, ditetradecyldimethylammonium chloride, dipenta Decyldimethylammonium bromide, dipentadecyldimethylammonium chloride, dihexadecyldimethylammonium bromide, dihexadecyldimethylammonium chloride, diheptadecyldimethylammonium bromide, diheptadecyldimethylammonium chloride, dioctadecyldimethylammonium bromide, dioctadecyldimethylammonium chloride and the like.
  • a nonionic surfactant has a nonionic hydrophilic group and a hydrophobic group.
  • nonionic surfactants include polyoxyethylene-containing ester compounds such as polyoxyethylene fatty acid esters, polyoxyethylene sorbitan fatty acid esters, and polyoxyethylene sorbitol fatty acid esters; Examples include polyoxyethylene-containing ether compounds.
  • the nonionic surfactant preferably contains at least one selected from the group consisting of polyoxyethylene alkyl ethers and polyoxyethylene alkylphenyl ethers, from the viewpoint of easily suppressing deterioration in low-temperature discharge performance of zinc batteries. More preferably, it contains ethylene alkylphenyl ether.
  • Polyoxyethylene alkyl ether has, for example, a structure represented by the following general formula (1a).
  • R 1a O(CH 2 CH 2 O) m1 H (1a) [In formula (1a), m1 is an integer of 2 to 60, and R 1a is a hydrocarbon group having 1 to 30 carbon atoms. ]
  • Polyoxyethylene alkylphenyl ether has, for example, a structure represented by the following general formula (1b).
  • m2 is an integer of 2 to 60
  • R 1b is a hydrocarbon group having 1 to 30 carbon atoms.
  • the hydrocarbon groups of R 1a and R 1b may be linear or branched, saturated or unsaturated.
  • the hydrocarbon groups of R 1a and R 1b are preferably alkyl groups.
  • the number of carbon atoms in the hydrocarbon group of R 1a is preferably 10-18.
  • the number of carbon atoms in the hydrocarbon group of R 1b is preferably 4-12, more preferably 6-10, and still more preferably 8.
  • m1 and m2 are average degrees of polymerization, preferably 5 to 12, more preferably 7 to 10.
  • polyoxyethylene alkyl ethers include polyoxyethylene decyl ether, polyoxyethylene undecyl ether, polyoxyethylene dodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene tetradecyl ether, and polyoxyethylene pentadecyl ether. , polyoxyethylene hexadecyl ether, polyoxyethylene heptadecyl ether and polyoxyethylene octadecyl ether.
  • polyoxyethylene alkylphenyl ether examples include polyoxyethylene octylphenyl ether and polyoxyethylene nonylphenyl ether.
  • anionic surfactant has an anionic hydrophilic group and a hydrophobic group.
  • anionic surfactants include polyoxyalkylene alkyl ether phosphate (eg, polyoxyethylene alkyl ether phosphate), polyoxyethylene alkyl ether sulfate, sodium dodecylbenzene sulfonate, styrene-acrylic acid copolymer.
  • the anionic surfactant preferably contains a polyoxyalkylene alkyl ether phosphate, and more preferably contains a polyoxyethylene alkyl ether phosphate, from the viewpoint of easily suppressing deterioration in the low-temperature discharge performance of zinc batteries. .
  • the surfactant contains a cationic surfactant, a nonionic surfactant, or an anionic surfactant
  • the cationic surfactant, nonionic surfactant, or anionic surfactant in the surfactant The content of is 50% by mass or more, 70% by mass or more, 90% by mass, based on the content of the surfactant (total mass of surfactants), from the viewpoint of easily suppressing the deterioration of the charge acceptance of the zinc battery. % or more, 95 mass % or more, 97 mass % or more, or 99 mass % or more is preferable.
  • Surfactants are substantially nonionic surfactants, anionic surfactants, or embodiments consisting of cationic surfactants (substantially 100% by mass of surfactants are nonionic surfactants, anionic It may be a surfactant or a cationic surfactant).
  • the content of the surfactant in the electrolytic solution is preferably 0.01% by mass or more based on the total mass of the electrolytic solution.
  • the content of the surfactant is 0.05% by mass or more, 0.06% by mass or more, 0.07% by mass or more, 0.08% by mass or more, or 0.1 mass % or more is preferable.
  • the content of the surfactant is 5% by mass or less, 2.5% by mass or less, 1% by mass or less, 0.7% by mass or less, or 0.5% by mass from the viewpoint of suppressing deterioration of the discharge performance of the zinc battery. % or less is preferable. From these points of view, the content of the surfactant is preferably 0.01 to 5% by mass.
  • the content of the surfactant is particularly preferably 0.1 to 5% by mass from the viewpoint of suppressing deterioration of the discharge performance of the zinc battery.
  • the content of the cationic surfactant in the electrolytic solution, the content of the nonionic surfactant, or The content of the anionic surfactant is preferably in the following range based on the total amount of the electrolytic solution, from the viewpoint of easily suppressing the deterioration of the discharge performance of the zinc battery.
  • the content is preferably 0.01% by mass or more, 0.05% by mass or more, 0.06% by mass or more, 0.07% by mass or more, 0.08% by mass or more, or 0.1% by mass or more.
  • the content is preferably 5% by mass or less, 2.5% by mass or less, 1% by mass or less, 0.7% by mass or less, or 0.5% by mass or less. From these points of view, the content is particularly preferably 0.1 to 5% by mass.
  • the electrolytic solution according to the present embodiment may contain organic compounds containing oxygen atoms (excluding compounds corresponding to alkali metal hydroxides or surfactants; hereinafter sometimes referred to as "oxygen-containing compounds").
  • the oxygen-containing compound may have a functional group containing an oxygen atom.
  • functional groups containing an oxygen atom include carboxyl groups, carboxylic groups, hydroxyl groups (excluding OH structures contained in carboxyl groups), epoxy groups, ether groups, alkoxide groups, ester groups, ketone groups, aldehyde groups, and the like. be done.
  • the oxygen-containing compound is a carboxy group, a carboxylic acid group, a hydroxyl group, an epoxy group, and an ether group from the viewpoint of easily suppressing a decrease in discharge capacity during storage of a zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance. It is preferable to have at least one selected from the group consisting of
  • the ratio of the number of OH structures to the number of carbon atoms in the oxygen-containing compound is from the viewpoint of easily suppressing a decrease in discharge capacity when storing a zinc battery. , and from the viewpoint of easily obtaining excellent high-rate discharge performance, the following range is preferable.
  • the ratio is 0.01 or more, 0.03 or more, 0.05 or more, 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, 0.6 or more, 0.6 or more. 7 or more, 0.8 or more, or 5/6 or more is preferable.
  • the ratio is preferably 2 or less, 1.5 or less, 1.2 or less, 1 or less, 0.9 or less, or 5/6 or less. From these points of view, the ratio (number of OH structures/number of carbon atoms) is preferably 0.01-2.
  • the oxygen-containing compound does not have to have an OH structure.
  • Oxygen-containing compounds include sugars, carboxylic acids (excluding compounds corresponding to sugars), Carboxylate (excluding compounds corresponding to sugars), epoxy compounds (compounds having an epoxy group, excluding compounds corresponding to sugars, carboxylic acids or carboxylates), and ether compounds (compounds having an ether group; sugars , carboxylic acid, carboxylic acid salt, or epoxy compound).
  • Monosaccharides include glucose, fructose, galactose, arabinose, ribose, mannose, xylose, sorbose, rhamnose, fucose, ribodesose, and hydrates thereof.
  • Disaccharides include sucrose, maltose, trehalose, cellobiose, gentiobiose, lactose, melibiose, and hydrates thereof.
  • Trisaccharides include kestose, melezitose, gentianose, raffinose, gentianose, and hydrates thereof.
  • Polysaccharides include cyclodextrin (eg, ⁇ -cyclodextrin), stachyose, and the like.
  • the sugar preferably contains a non-reducing sugar from the viewpoint of easily suppressing a decrease in discharge capacity during storage of the zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • a non-reducing sugar means a sugar that does not have a free reducing group with respect to a reducing sugar (a sugar that has a free aldehyde group or ketone group, or a hemiacetal-bonded aldehyde group or ketone group) (chemical Daijiten 1st Edition, published by Tokyo Kagaku Doujin Co., Ltd.). That is, a non-reducing sugar means a sugar that has neither a free aldehyde group nor a ketone group, nor a hemiacetal-bonded aldehyde group or ketone group.
  • a non-reducing sugar may be a hydrate.
  • Non-reducing sugars include disaccharides such as sucrose, trehalose and their hydrates; trisaccharides such as kestose, melezitose, gentianose and their hydrates; tetrasaccharides such as fungitetraose and their hydrates; -Cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, and polysaccharides such as hydrates thereof.
  • the non-reducing sugar may contain a disaccharide, and is selected from the group consisting of sucrose, trehalose, and hydrates thereof, from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity. may contain at least one
  • the content of the disaccharide in the non-reducing sugar is the content of the non-reducing sugar ( 50% by mass or more, 70% by mass or more, 90% by mass or more, 95% by mass or more, 97% by mass or more, or 99% by mass or more, based on the total mass of non-reducing sugars contained in the electrolytic solution) good.
  • the non-reducing sugar may be in an embodiment consisting essentially of disaccharides (an embodiment in which substantially 100% by mass of the non-reducing sugars are disaccharides).
  • the non-reducing sugar contains sucrose
  • the content of sucrose in the non-reducing sugar may be within the above range from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity.
  • the content of trehalose in the non-reducing sugar may be within the above range from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity.
  • the number of methylol groups (--CH 2 OH) in the non-reducing sugar may be within the following range from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity.
  • the number of methylol groups may be 8 or less, 6 or less, 4 or less, 3 or less, or 2 or less.
  • the number of methylol groups may be two or more, or three or more. From these points of view, the number of methylol groups may be 2-8.
  • the number of ether groups possessed by the non-reducing sugar may be within the following range from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity.
  • the number of ether groups may be 16 or less, 12 or less, 8 or less, 6 or less, or 4 or less.
  • the number of ether groups may be 3 or more. From these points of view, the number of ether groups may be from 3 to 16.
  • the number of hydroxy groups (excluding the OH structure included in the methylol group) possessed by the non-reducing sugar is in the following range from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity.
  • the number of hydroxy groups may be 16 or less, 12 or less, 8 or less, or 6 or less.
  • the number of hydroxy groups may be 5 or more, or 6 or more. From these points of view, the number of hydroxy groups may be from 5 to 16.
  • the number of carbon atoms in the non-reducing sugar may be within the following range from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity.
  • the carbon number may be 48 or less, 42 or less, 36 or less, 30 or less, 24 or less, or 18 or less.
  • the carbon number may be 12 or more. From these viewpoints, the number of carbon atoms may be 12-48.
  • the number of five-membered ring structures possessed by the non-reducing sugar may be within the following range from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity.
  • the number of five-membered ring structures may be 5 or less, 4 or less, 3 or less, 2 or less, 1 or less, or 0.
  • the number of five-membered ring structures may be 0, or 1 or more. From these points of view, the number of five-membered ring structures may be 0-5.
  • the number of six-membered ring structures possessed by the non-reducing sugar may be within the following range from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity.
  • the number of six-membered ring structures may be 8 or less, 4 or less, 3 or less, 2 or less, or 1.
  • the number of six-membered ring structures may be one or more, or two or more. From these viewpoints, the number of six-membered ring structures may be 1-8.
  • the content of non-reducing sugars in the electrolytic solution is the total amount of the electrolytic solution, from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity. It may be in the following range on the basis of mass.
  • the content of non-reducing sugar is 0.01% by mass or more, 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, 2% by mass or more, 3% by mass or more , or 4% by mass or more.
  • the content of non-reducing sugars is 20% by mass or less, 10% by mass or less, 8% by mass or less, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, or 1% by mass or less. It's okay. From these viewpoints, the content of non-reducing sugars is 0.01 to 20% by mass, 0.1 to 10% by mass, 1 to 8% by mass, 1 to 5% by mass, or 1 to 4% by mass. you can
  • the content of the non-reducing sugar may be within the following range relative to 100 parts by mass of the alkali metal hydroxide, from the viewpoint of easily obtaining excellent cycle characteristics and from the viewpoint of easily suppressing a decrease in discharge capacity.
  • the content of the non-reducing sugar may be 1 part by mass or more, 2 parts by mass or more, 3 parts by mass or more, 6 parts by mass or more, 9 parts by mass or more, or 13 parts by mass or more.
  • the non-reducing sugar content may be 30 parts by mass or less, 20 parts by mass or less, 16 parts by mass or less, 14 parts by mass or less, 12 parts by mass or less, 10 parts by mass or less, or 7 parts by mass or less. From these points of view, the content of non-reducing sugars may be 1 to 30 parts by mass.
  • Carboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, benzoic acid, salicylic acid, 3,4,5-trihydroxybenzoic acid, benzenehexacarboxylic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, aconitic acid, pyruvic acid, oxaloacetic acid, glycidyl formate, glycidyl acetate, glycidyl benzoate and the like.
  • Examples of carboxylic acid salts include salts of these carboxylic acids.
  • carboxylates examples include sodium salts (eg, disodium terephthalate), alkali metal salts such as potassium salts, and the like.
  • the carboxylate preferably contains an alkali metal salt from the viewpoint of easily suppressing a decrease in discharge capacity when a zinc battery is stored and from the viewpoint of easily obtaining excellent high-rate discharge performance, and preferably contains a sodium salt. is more preferred.
  • the oxygen-containing compound is a carboxylic acid having an aromatic ring and a carboxylic acid having an aromatic ring from the viewpoint of easily suppressing a decrease in discharge capacity during storage of a zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • It preferably contains at least one selected from the group consisting of acid salts, more preferably contains at least one selected from the group consisting of terephthalic acid and terephthalic acid salts, and terephthalic acid and sodium salt of terephthalic acid It is more preferable to include at least one selected from the group consisting of:
  • the number of carboxyl groups in the carboxylic acid or the number of carboxylic acid groups in the carboxylate is 1 or more, and from the viewpoint of easily suppressing a decrease in discharge capacity during storage of a zinc battery, and excellent high-rate discharge From the viewpoint of easily obtaining performance, the following range is preferable.
  • the number of carboxyl groups or carboxylic acid groups is preferably two or more.
  • the number of carboxyl groups or carboxylic acid groups is preferably 4 or less, 3 or less, or 2 or less.
  • the number of carboxyl groups or carboxylic acid groups is preferably 1-4.
  • Epoxy compounds include monofunctional epoxy compounds and polyfunctional epoxy compounds.
  • Monofunctional epoxy compounds include 1,2-epoxyethane, 1,2-epoxypropane, 1,2-epoxybutane, 1,2-epoxy-2-methylpropane, 1-phenyl-1,2-epoxyethane, epichlorohydrin, epibromohydrin, glycidyl methyl ether, allyl glycidyl ether, polyethylene oxide glycidyl ether, glycidylamide, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, stearyl glycidyl ether, lauryl glycidyl ether, butoxypolyethylene glycol glycidyl ether, phenol polyethylene glycol glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, p-methylphenyl glycidy
  • polyfunctional epoxy compounds examples include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, phenol novolak type epoxy compounds, cresol novolak type epoxy compounds, polyphenol type epoxy compounds, cycloaliphatic epoxy compounds, aliphatic glycidyl ether type epoxy compounds, Examples include glycidyl ester-based epoxy compounds, glycidyl diamine-based epoxy compounds, heterocyclic epoxy compounds, and the like.
  • the oxygen-containing compound preferably contains a monofunctional epoxy compound from the viewpoint of easily suppressing a decrease in discharge capacity when a zinc battery is stored and from the viewpoint of easily obtaining excellent high-rate discharge performance. More preferably, it contains epoxy-2-methylpropane.
  • Ether compounds include 18-crown-6, 15-crown-5, 12-crown-4, dibenzo-18-crown-6, dicyclohexano-18-crown-6, dibenzo-24-crown-8 and the like.
  • crown ether compounds ; polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and glycerin.
  • a polyether compound can be used as the ether compound.
  • the oxygen-containing compound may contain an ether compound having a heterocyclic ring containing an ether group from the viewpoint of easily suppressing a decrease in discharge capacity during storage of a zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance. More preferably, it contains 18-crown-6.
  • the number of ether groups in the ether compound is 1 or more, and from the viewpoint of easily suppressing a decrease in discharge capacity during storage of a zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance, the following range is preferable. .
  • the number of ether groups is preferably 2 or more, 3 or more, 4 or more, 5 or more, or 6 or more.
  • the number of ether groups is preferably 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • the number of ether groups is preferably 1-10.
  • the oxygen-containing compound may contain an ether compound represented by the following general formula (3).
  • n an integer of 1 to 10
  • R 1 and R 2 represent organic groups.
  • n may be in the following range from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance. n may be 8 or less, 6 or less, 4 or less, 3 or less, or 2 or less. n may be 2 or more, 3 or more, or 4 or more. From these points of view, n may be 1-8, 1-6, or 1-4.
  • the number of ether groups in the ether compound represented by the general formula (3) may be within the following range from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • the number of ether groups may be 9 or less, 7 or less, 5 or less, 4 or less, or 3 or less.
  • the number of ether groups may be 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more. From these points of view, the number of ether groups may be 1-9, 2-7, or 2-5.
  • Both R 1 and R 2 in the general formula (3) may be organic groups from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • organic groups include alkyl groups, aryl groups, ester groups, carboxyl groups, and carboxylic acid groups (sodium salts, potassium salts, etc.).
  • the organic group may be an alkyl group or an aryl group, or may be an alkyl group, from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • the organic group may have a substituent.
  • substituents include halogen atoms, carboxyl groups, carboxylic acid groups, ether groups, alkoxide groups, ester groups, ketone groups, and aldehyde groups.
  • the organic group may be an organic group having no substituent, an alkyl group having no substituent, or , may be an unsubstituted aryl group or an unsubstituted alkyl group.
  • the number of carbon atoms of the organic group (including the carbon atoms of the substituents of the organic group) is 8 or less, 6 or less, 4 or less from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance. , 3 or less, 2 or less, or 1.
  • the number of carbon atoms in the organic group may be 1 or more. From these points of view, the number of carbon atoms in the organic group may be 1-8.
  • the alkyl group may be linear or branched.
  • the alkyl group may be a linear alkyl group from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance, and may be a methyl group, an ethyl group, an n-propyl group, or an n -It may be a butyl group, or it may be a methyl group.
  • R 1 and R 2 may be the same organic group, the same alkyl group, or a methyl group from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • Examples of the ether compound represented by the general formula (3) include polyoxyethylene dialkyl ethers (hereinafter sometimes referred to as glyme compounds) and polyoxyethylene alkyl ether compounds such as polyoxyethylene alkylphenyl ethers. .
  • the ether compound represented by the general formula (3) may contain a polyoxyethylene alkyl ether compound from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance, and a glyme compound. may contain.
  • Glyme compounds include polyoxyethylene dimethyl ether, polyoxyethylene diethyl ether, polyoxyethylene dipropyl ether, polyoxyethylene dibutyl ether, polyoxyethylene dipentyl ether, polyoxyethylene dihexyl ether, polyoxyethylene diheptyl ether, Examples include polyoxyethylene dioctyl ether, polyoxyethylene methyl ethyl ether, and the like.
  • Glyme compounds include monoglyme compounds such as monoglyme (ethylene glycol dimethyl ether), ethylene glycol diethyl ether, ethylene glycol dipropyl ether, and ethylene glycol dibutyl ether; diglyme (diethylene glycol dimethyl ether), diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, etc.
  • Triglyme compounds such as triglyme (triethylene glycol dimethyl ether), triethylene glycol diethyl ether, triethylene glycol dipropyl ether, triethylene glycol dibutyl ether; tetraglyme (tetraethylene glycol dimethyl ether), tetraethylene glycol diethyl ether, It may be a tetraglyme compound such as tetraethylene glycol dipropyl ether, tetraethylene glycol dibutyl ether, and the like.
  • the ether compound represented by the general formula (3) consists of a monoglyme compound, a diglyme compound, a triglyme compound, and a tetraglyme compound from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance. It may contain at least one selected from the group, may contain at least one selected from the group consisting of monoglyme, diglyme, triglyme and tetraglyme, may contain at least one selected from the group consisting of diglyme and triglyme, and may contain diglyme may contain.
  • Polyoxyethylene alkylphenyl ethers include polyoxyethylene methyl phenyl ether, polyoxyethylene ethyl phenyl ether, polyoxyethylene propyl phenyl ether, polyoxyethylene butyl phenyl ether, polyoxyethylene pentyl phenyl ether, polyoxyethylene hexyl phenyl ether. ether, polyoxyethylene heptylphenyl ether, polyoxyethylene nonylphenyl ether and the like.
  • the content of the glyme compound in the ether compound represented by the general formula (3) is from the viewpoint of easily obtaining excellent life performance and excellent From the viewpoint of easily obtaining high-rate discharge performance, based on the content of the ether compound represented by general formula (3) (total amount of ether compounds represented by general formula (3)), 50% by mass or more, 70 % by mass or more, 90% by mass or more, 95% by mass or more, 97% by mass or more, or 99% by mass or more.
  • the ether compound represented by the general formula (3) may be in an aspect substantially consisting of a glyme compound (100% by mass of the ether compound substantially represented by the general formula (3) is a glyme compound).
  • the content of the ether compound represented by the general formula (3) is based on 100 parts by mass of the alkali metal hydroxide from the viewpoint of easily obtaining excellent life performance and from the viewpoint of easily obtaining excellent high-rate discharge performance. It may be in the following range.
  • the content of the ether compound represented by general formula (3) may be 1 part by mass or more, 3 parts by mass or more, 5 parts by mass or more, 5.5 parts by mass or more, or 6 parts by mass or more.
  • the ether compound represented by the general formula (3) is 30 parts by mass or less, 20 parts by mass or less, 15 parts by mass or less, 12 parts by mass or less, 10 parts by mass or less, 8 parts by mass or less, 7 parts by mass or less, or It may be 6.5 parts by mass or less. From these points of view, the content of the ether compound represented by formula (3) may be 1 to 30 parts by mass.
  • the molecular weight of the oxygen-containing compound is 50 or more, 70 or more, 80 or more, 100 or more, from the viewpoint of easily suppressing the decrease in discharge capacity during storage of the zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance. 120 or more, 150 or more, 160 or more, 170 or more, or 180 or more is preferable.
  • the molecular weight of the oxygen-containing compound is 2000 or less, 1500 or less, 1300 or less, 1200 or less, from the viewpoint of easily suppressing the decrease in discharge capacity during storage of the zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance. 1000 or less, 800 or less, or 600 or less is preferable. From these points of view, the molecular weight of the oxygen-containing compound is preferably 50-2000.
  • the molecular weight of the oxygen-containing compound may be 190 or greater, 200 or greater, 210 or greater, 220 or greater, 240 or greater, 260 or greater, 300 or greater, 340 or greater, 350 or greater, 400 or greater, 450 or greater, or 500 or greater.
  • the molecular weight of the oxygen-containing compound is 500 or less, 400 or less, 350 or less, 340 or less, 320 or less, 300 or less, 280 or less, 270 or less, 260 or less, 250 or less, 230 or less, 220 or less, 210 or less, 200 or less, 190 or less, or 185 or less.
  • the molecular weight is a value measured by GPC (Gel Permeation Chromatography) method.
  • GPC Gel Permeation Chromatography
  • the oxygen-containing compound it is preferable to use a compound that is highly soluble in the electrolytic solution. Even compounds that are not highly soluble can be used after removing the residue by filtration or the like.
  • the electrolytic solution according to this embodiment may not contain alcohol.
  • the content of the oxygen-containing compound in the electrolytic solution is preferably within the following ranges based on the total mass of the electrolytic solution.
  • the content of the oxygen-containing compound is 0.1% by mass or more and 0.3% by mass from the viewpoint of easily suppressing a decrease in discharge capacity during storage of a zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance. % or more, 0.5 mass % or more, 0.8 mass % or more, or 1 mass % or more is preferable.
  • the content of the oxygen-containing compound is 5% by mass or less and 4.5% by mass or less from the viewpoint of easily suppressing a decrease in discharge capacity when storing a zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • the content of the oxygen-containing compound is preferably 0.1 to 5% by mass.
  • the content of the oxygen-containing compound is 1.2% by mass or more, 1.5% by mass or more, 1.8% by mass or more, 2% by mass, from the viewpoint of further suppressing the decrease in discharge capacity during storage of the zinc battery. % or more, 2.2 mass % or more, 2.5 mass % or more, 2.7 mass % or more, or 3 mass % or more.
  • the content of the oxygen-containing compound may be 3.5% by mass or more, 4% by mass or more, 4.5% by mass or more, or 5% by mass or more.
  • the content of the oxygen-containing compound is 2.7% by mass or less, 2.5% by mass or less, 2.2% by mass or less, 2% by mass or less, 1.7% by mass or less, from the viewpoint of easily obtaining excellent high-rate discharge performance. % by mass or less, 1.5% by mass or less, 1.2% by mass or less, or 1% by mass or less is preferable.
  • the content of the oxygen-containing compound may be less than 0.5 mol/L based on the total amount of the electrolyte.
  • the content of the oxygen-containing compound is preferably in the following range with respect to 1 part by mass of the surfactant.
  • the content of the oxygen-containing compound is 2 parts by mass or more, 3 parts by mass or more, It is preferably at least 10 parts by mass, at least 10 parts by mass, at least 50 parts by mass, at least 80 parts by mass, or at least 100 parts by mass.
  • the content of the oxygen-containing compound is 1000 parts by mass or less, 800 parts by mass or less, 600 parts by mass or less, from the viewpoint of easily suppressing the decrease in discharge capacity during storage of the zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • the content of the oxygen-containing compound may be 2 to 1000 parts by mass, preferably 10 to 1000 parts by mass.
  • the content of the oxygen-containing compound is preferably 150 parts by mass or more, 200 parts by mass or more, 250 parts by mass or more, or 300 parts by mass or more from the viewpoint of easily suppressing a decrease in discharge capacity during storage of the zinc battery.
  • the content of the oxygen-containing compound may be 350 parts by mass or more, 400 parts by mass or more, 450 parts by mass or more, or 500 parts by mass or more.
  • the content of the oxygen-containing compound is preferably 250 parts by mass or less, 200 parts by mass or less, 150 parts by mass or less, or 100 parts by mass or less.
  • the content of the oxygen-containing compound is preferably in the following range with respect to 100 parts by mass of the alkali metal hydroxide.
  • the content of the oxygen-containing compound is 1 part by mass or more and 1.5 parts by mass or more from the viewpoint of easily suppressing a decrease in discharge capacity during storage of a zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance. , 2 parts by mass or more, 2.5 parts by mass or more, or 3 parts by mass or more.
  • the content of the oxygen-containing compound is 30 parts by mass or less, 25 parts by mass or less, 20 parts by mass or less, from the viewpoint of easily suppressing a decrease in discharge capacity during storage of a zinc battery and from the viewpoint of easily obtaining excellent high-rate discharge performance.
  • the content of the oxygen-containing compound is preferably 1 to 30 parts by mass.
  • the content of the oxygen-containing compound is 4 parts by mass or more, 5 parts by mass or more, 6 parts by mass or more, 7 parts by mass or more, and 8 parts by mass from the viewpoint of further suppressing the decrease in discharge capacity during storage of the zinc battery. or more, or 9 parts by mass or more is preferable.
  • the content of the oxygen-containing compound may be 10 parts by mass or more, 12 parts by mass or more, 13 parts by mass or more, 15 parts by mass or more, or 16 parts by mass or more.
  • the content of the oxygen-containing compound is 9 parts by mass or less, 8 parts by mass or less, 7 parts by mass or less, 6 parts by mass or less, 5 parts by mass or less, or 4 parts by mass from the viewpoint of easily obtaining excellent high-rate discharge performance. Part or less is preferred.
  • the electrolytic solution according to this embodiment can contain a liquid medium such as water (eg, ion-exchanged water).
  • a liquid medium such as water (eg, ion-exchanged water).
  • a nickel-zinc battery will be described below as an example of a zinc battery using the electrolytic solution according to the above embodiment.
  • a zinc battery according to this embodiment includes, for example, a battery case, an electrode group (for example, an electrode plate group) and an electrolytic solution housed in the battery case.
  • the zinc battery according to this embodiment may be either after formation or unformed.
  • the electrode group includes, for example, a positive electrode (eg, positive electrode plate), a negative electrode (eg, negative electrode plate), and a separator.
  • the positive electrode and the negative electrode are adjacent to each other with one or more separators interposed therebetween. That is, one or more separators are provided between the adjacent positive electrode and negative electrode.
  • the electrode group may comprise a plurality of positive electrodes, negative electrodes and separators. When the electrode group includes a plurality of positive electrodes and/or a plurality of negative electrodes, the positive electrodes and the negative electrodes may be alternately laminated with separators interposed therebetween.
  • the plurality of positive electrodes and the plurality of negative electrodes may be connected by straps, for example.
  • the negative electrode has a negative electrode current collector and a negative electrode material (electrode material) supported by the current collector.
  • the negative electrode may be formed before or after chemical conversion.
  • the negative electrode current collector constitutes a conductive path for current from the negative electrode material.
  • the negative electrode current collector has, for example, a plate shape, a sheet shape, or the like.
  • the negative electrode current collector may be a current collector having a three-dimensional mesh structure made of foamed metal, expanded metal, punched metal, metal fiber felt, or the like.
  • the negative electrode current collector is made of a material having electrical conductivity and alkali resistance.
  • Such materials include materials that are stable even at the reaction potential of the negative electrode (materials that have a nobler oxidation-reduction potential than the reaction potential of the negative electrode, materials that form a protective film such as an oxide film on the substrate surface in an alkaline aqueous solution, and (such as a material that stabilizes by In the negative electrode, a decomposition reaction of the electrolytic solution progresses as a side reaction to generate hydrogen gas, and a material having a high hydrogen overvoltage is preferable in that the progress of such a side reaction can be suppressed.
  • Specific examples of materials constituting the negative electrode current collector include zinc; lead; tin; metal materials plated with metal such as tin (copper, brass, steel, nickel, etc.).
  • the negative electrode material is, for example, layered. That is, the negative electrode may have a negative electrode material layer.
  • the negative electrode material layer may be formed on the negative electrode current collector.
  • the negative electrode material may be filled between the meshes of the current collector to form a negative electrode material layer.
  • the negative electrode material contains a negative electrode active material (electrode active material) containing zinc.
  • negative electrode active materials include metal zinc, zinc oxide, and zinc hydroxide.
  • the negative electrode active material may contain one of these components alone, or may contain a plurality of them.
  • the negative electrode material contains, for example, metallic zinc in a fully charged state, and zinc oxide and zinc hydroxide in a discharged state.
  • the end-of-discharge state refers to a state in which the battery is discharged to a final voltage of 1.1V.
  • the negative electrode active material is, for example, particulate. That is, the negative electrode material may contain at least one selected from the group consisting of metallic zinc particles, zinc oxide particles and zinc hydroxide particles.
  • the content of the negative electrode active material may be, for example, 50 to 95% by mass based on the total mass of the negative electrode material.
  • the negative electrode material may contain additives.
  • a binder etc. are mentioned as an additive. Binders include polytetrafluoroethylene, hydroxyethyl cellulose, polyethylene oxide, polyethylene, polypropylene and the like. The content of the binder may be, for example, 0.5 to 10 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode material supported by the positive electrode current collector.
  • the positive electrode may be formed before or after formation.
  • the positive electrode current collector constitutes a conductive path for current from the positive electrode material.
  • the positive electrode current collector has, for example, a plate shape, a sheet shape, or the like.
  • the positive electrode current collector may be a current collector having a three-dimensional mesh structure made of foamed metal, expanded metal, punched metal, metal fiber felt, or the like.
  • the positive electrode current collector is made of a material having electrical conductivity and alkali resistance.
  • Such materials include materials that are stable even at the reaction potential of the positive electrode (materials that have a nobler oxidation-reduction potential than the reaction potential of the positive electrode, materials that form a protective film such as an oxide film on the substrate surface in an alkaline aqueous solution, and (such as a material that stabilizes by In the positive electrode, a decomposition reaction of the electrolyte progresses as a side reaction to generate oxygen gas, and a material having a high oxygen overvoltage is preferable in that it can suppress the progress of such a side reaction.
  • Specific examples of materials constituting the positive electrode current collector include platinum; nickel (foamed nickel, etc.); metal materials plated with metal such as nickel (copper, brass, steel, etc.).
  • a positive electrode current collector made of foamed nickel is preferably used. From the viewpoint of further improving the high-rate discharge performance, it is preferable that at least the portion of the positive electrode current collector that supports the positive electrode material (positive electrode material supporting portion) is made of foamed nickel.
  • the positive electrode material is, for example, layered. That is, the positive electrode may have a positive electrode material layer.
  • the positive electrode material layer may be formed on the positive electrode current collector.
  • the positive electrode material supporting portion of the positive electrode current collector has a three-dimensional mesh structure, the positive electrode material may be filled between the meshes of the current collector to form a positive electrode material layer.
  • the positive electrode material contains a positive electrode active material (electrode active material) containing nickel.
  • the positive electrode active material include nickel oxyhydroxide (NiOOH) and nickel hydroxide.
  • the positive electrode material contains, for example, nickel oxyhydroxide in a fully charged state and nickel hydroxide in a discharged state.
  • the content of the positive electrode active material may be, for example, 50 to 95% by mass based on the total mass of the positive electrode material.
  • the positive electrode material may further contain other components other than the positive electrode active material as additives.
  • Additives include binders (binding agents), conductive agents, expansion inhibitors, and the like.
  • Binders include hydrophilic or hydrophobic polymers. Specifically, for example, carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), hydroxypropyl methyl cellulose (HPMC), sodium polyacrylate (SPA), fluorine-based polymers (polytetrafluoroethylene (PTFE), etc.) and the like are used as binders. can be used as The content of the binder may be, for example, 0.01 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • Examples of conductive agents include cobalt compounds (metallic cobalt, cobalt oxide, cobalt hydroxide, etc.).
  • the content of the conductive agent may be, for example, 1 to 20 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • Expansion inhibitors include zinc oxide and the like.
  • the content of the expansion inhibitor may be, for example, 0.01 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the separator may be, for example, a separator having a plate shape, sheet shape, or the like.
  • separators include polyolefin microporous membranes, nylon microporous membranes, oxidation-resistant ion-exchange resin membranes, regenerated cellophane resin membranes, microporous membranes containing inorganic particles, and polyolefin nonwoven fabrics.
  • the separator may be processed into a bag shape so as to accommodate the positive electrode and/or the negative electrode. In this case, the positive electrode and/or the negative electrode may be housed in a separator.
  • One type of separator may be used alone, or two or more types may be used in combination.
  • the manufacturing method of the nickel-zinc battery described above includes, for example, a component manufacturing process for obtaining the component members of the zinc battery, and an assembly process for assembling the component members to obtain the zinc battery.
  • a component manufacturing process for obtaining the component members of the zinc battery
  • an assembly process for assembling the component members to obtain the zinc battery.
  • at least electrodes are obtained.
  • an electrode material paste (paste-like electrode material) is obtained by adding a solvent (e.g., water) to the raw materials of the electrode materials (positive electrode material and negative electrode material) and kneading, and then the electrode material paste is obtained.
  • a solvent e.g., water
  • the electrode material paste is obtained by forming an electrode material layer using
  • Raw materials for positive electrode materials include raw materials for positive electrode active materials (for example, nickel hydroxide), additives (for example, the binder described above), and the like.
  • Raw materials for negative electrode materials include raw materials for negative electrode active materials (eg, metallic zinc, zinc oxide, and zinc hydroxide), additives (eg, binders), and the like.
  • the electrode material layer for example, a method of applying or filling an electrode material paste to a current collector and then drying it can be used to obtain the electrode material layer. If necessary, the electrode material layer may be densified by pressing with a roller or the like.
  • the positive electrodes and the negative electrodes are connected with straps to produce an electrode group.
  • a cover is adhered to the upper surface of the container to obtain an unformed zinc battery (nickel-zinc battery).
  • the battery is charged under predetermined conditions and chemically formed to obtain a zinc battery (nickel-zinc battery). Formation conditions can be adjusted according to the properties of the electrode active materials (positive electrode active material and negative electrode active material). For example, by charging at 32 mA for 12 hours, a nickel-zinc battery after chemical conversion can be produced.
  • a nickel-zinc battery for example, a nickel-zinc secondary battery
  • the positive electrode is a nickel electrode
  • it may be a silver-zinc battery (for example, a silver-zinc secondary battery) in which the positive electrode is a silver oxide electrode.
  • the direct current resistance (DCR) per total electrode area at -30 ° C. is ideally most preferably 0 ⁇ cm 2 , but practically is difficult, and at least 20 ⁇ cm 2 or less, 15 ⁇ cm 2 or less, 10 ⁇ cm 2 or less, 5 ⁇ cm 2 or less, or 1 ⁇ cm 2 or less is preferable.
  • the air electrode of the zinc-air battery a known air electrode used for zinc-air batteries can be used.
  • the cathode includes, for example, a cathode catalyst, an electronically conductive material, and the like.
  • an air electrode catalyst that also functions as an electronically conductive material can be used.
  • the air electrode catalyst it is possible to use one that functions as a positive electrode in a zinc-air battery, and various air electrode catalysts that can use oxygen as a positive electrode active material can be used.
  • the air electrode catalyst carbon-based materials (graphite, etc.) having redox catalytic function, metal materials (platinum, nickel, etc.) having redox catalytic function, inorganic oxide materials (perovskite oxide, etc.) having redox catalytic function , manganese dioxide, nickel oxide, cobalt oxide, spinel oxide, etc.).
  • the shape of the air electrode catalyst is not particularly limited, it may be particulate, for example.
  • the amount of the air electrode catalyst used in the air electrode may be 5 to 70% by volume, 5 to 60% by volume, or 5 to 50% by volume relative to the total volume of the air electrode. good too.
  • the electronically conductive material a material that has electrical conductivity and enables electronic conduction between the air electrode catalyst and the separator can be used.
  • electron conductive materials include carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black, and thermal black; graphites such as natural graphite such as flake graphite, artificial graphite, and expanded graphite; conductive fibers such as carbon fibers and metal fibers; metal powders such as copper, silver, nickel and aluminum; organic electronic conductive materials such as polyphenylene derivatives;
  • the shape of the electron conductive material may be particulate or other shapes.
  • the electronically conductive material is preferably used in a form that provides a continuous phase in the thickness direction in the air electrode.
  • the electronically conductive material may be a porous material.
  • the electronically conductive material may be in the form of a mixture or composite with the air electrode catalyst, and as described above, may be the air electrode catalyst that also functions as an electronically conductive material.
  • the amount of the electronically conductive material used in the air electrode may be 10 to 80% by volume, 15 to 80% by volume, or 20 to 80% by volume relative to the total volume of the air electrode.
  • the silver oxide electrode of the silver-zinc battery a known silver oxide electrode used for silver-zinc batteries can be used.
  • the silver oxide electrode contains, for example, silver (I) oxide.
  • tetradecyltrimethylammonium bromide (special grade reagent, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used.
  • ⁇ Preparation of positive electrode> A grid body made of foamed nickel with a porosity of 95% was prepared, and the grid body was pressure-molded to obtain a positive electrode current collector. Next, cobalt-coated nickel hydroxide powder (Gold Shine Energy Material Co., Ltd., Y6 (trade name)), metallic cobalt (manufactured by Nikkoshi Co., Ltd., EXTRA FINE (trade name)), cobalt hydroxide (Ise Chemical Co., Ltd.
  • yttrium oxide manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., reagent special grade
  • carboxymethyl cellulose CMC, manufactured by Weiyi Chemicals (Suzhou) Co., Ltd., BH90-3 (trade name)
  • polytetrafluoroethylene PTFE
  • D210-C trade name manufactured by Daikin Industries, Ltd.
  • the water content of the positive electrode material paste was adjusted to 27.5% by mass based on the total mass of the positive electrode material paste.
  • the positive electrode material paste was applied to the positive electrode material supporting portion of the positive electrode current collector, and then dried at 80° C. for 30 minutes. After that, pressure molding was performed using a roll press to obtain an unformed positive electrode having a positive electrode material layer.
  • a negative electrode current collector As a negative electrode current collector, a tin-plated steel plate perforated metal having a porosity of 50% was prepared. Next, zinc oxide (manufactured by Mitsui Mining & Smelting Co., Ltd., general product), metallic zinc (manufactured by Mitsui Kinzoku Mining Co., Ltd., MA-ZB (trade name)), bismuth oxide (manufactured by Corefront Co., Ltd., 4115CB (trade name)) , hydroxyethyl cellulose (HEC, manufactured by Sumitomo Seika Co., Ltd., AV-15F (trade name)) and ion-exchanged water were weighed and mixed in predetermined amounts, and the resulting mixture was stirred to prepare a negative electrode material paste.
  • zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd., general product
  • metallic zinc manufactured by Mitsui Kinzoku Mining Co., Ltd., MA-ZB (trade name)
  • the water content of the negative electrode material paste was adjusted to 22.5% by mass based on the total mass of the negative electrode material paste.
  • the negative electrode material paste was applied onto the negative electrode current collector and then dried at 80° C. for 30 minutes. After that, pressure molding was performed using a roll press to obtain an unformed negative electrode having a negative electrode material (negative electrode material layer).
  • UP3355 manufactured by Ube Industries, Ltd., trade name, air permeability: 440 sec/100 mL
  • nonwoven fabric manufactured by Nippon Kodoshi Kogyo Co., Ltd., trade name: VL-100, permeability
  • Atmosphere 0.3 sec/100 mL
  • the microporous membrane was hydrophilized with a surfactant Triton-X100 (manufactured by Sigma-Aldrich Japan LLC) before battery assembly.
  • Hydrophilization was performed by immersing the microporous membrane in an aqueous solution containing 1% by mass of Triton-X100 for 24 hours and then drying at room temperature for 1 hour.
  • the air permeability of the microporous membrane indicates the value after hydrophilization treatment. Further, the microporous membrane was cut into a predetermined size, folded in half, and the sides were heat-sealed with the folded portion as the bottom to form a bag.
  • the nonwoven fabric was cut into a predetermined size and used.
  • the air permeability referred to here is a value measured by a method according to JIS P 8117:2009.
  • a positive electrode (unformed positive electrode) and a negative electrode (unformed negative electrode) were placed one by one in a bag-shaped microporous film. After stacking the positive electrode housed in the bag-shaped microporous film, the negative electrode housed in the bag-shaped microporous film, and the non-woven fabric, the electrode plates of the same polarity are connected with a strap to form an electrode group (electrode group). plate group) were produced.
  • the electrode group consisted of two positive electrodes and three negative electrodes, and one non-woven fabric was arranged between the positive electrode and the negative electrode (between the microporous film on the positive electrode side and the microporous film on the negative electrode side).
  • the unit “C” relatively represents the magnitude of the current when the rated capacity is discharged at a constant current from the fully charged state.
  • the unit “C” means “discharge current value (A)/battery capacity (Ah)".
  • A discharge current value
  • Ah battery capacity
  • the current that can completely discharge the rated capacity in 1 hour is defined as “1C”
  • the current value that can be discharged in 2 hours is defined as "0.5C”.
  • DCR ⁇ ( ⁇ V 0.5C ⁇ V)(I 0.5C ⁇ I)+( ⁇ V 1.0C ⁇ V)(I 1.0C ⁇ I)+( ⁇ V 2.0C ⁇ V)(I 2.0C ⁇ I) + ( ⁇ V 3.0C ⁇ V)(I 3.0C ⁇ I) ⁇ / ⁇ (I 0.5C ⁇ I) 2 +(I 1.0C ⁇ I) 2 +(I 2.0C ⁇ I ) 2 + (I 3.0C -I) 2 ⁇ A E
  • I (I 0.5C + I 1.0C + I 2.0C + I 3.0C )/4
  • V ⁇ V 0.5C + ⁇ V 1.0C + ⁇ V 2.0C + ⁇ V 3.0C )/4
  • I 0.5C , I 1.0C , I 2.0C and I 3.0C denote discharge current values corresponding to discharge rates of 0.5C, 1.0C, 2.0C and 3.0C, respectively, and ⁇ V 0.5C , ⁇ V 1.0C ,
  • each compound name A to G is as follows.
  • G Tetraglyme
  • the DCR of the zinc batteries of Examples 1-2 containing no oxygen-containing compound is lower than the DCR of the zinc batteries of Comparative Examples 1-2.
  • the cycle life performance of the zinc batteries of Examples 4-20 and Comparative Examples 1-2 are equivalent, and the DCR of the zinc batteries of Examples 4-20 is greater than the DCR of the zinc batteries of Comparative Examples 1-2. reduced. This is probably because the diffusibility of the electrolytic solution to the surface of the active material was further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

亜鉛電池用電解液は、アルカリ金属水酸化物と、界面活性剤と、を含有し、前記界面活性剤の含有量が、前記亜鉛電池用電解液の全質量に対して0.01質量%以上とされたものである。亜鉛電池は、正極と、負極と、前記亜鉛電池用電解液と、を備える。

Description

亜鉛電池用電解液、及び、亜鉛電池
 本発明は、亜鉛電池用電解液、及び、亜鉛電池に関する。
 亜鉛電池としては、ニッケル亜鉛電池、空気亜鉛電池、銀亜鉛電池等が知られている。例えば、ニッケル亜鉛電池は、水酸化カリウム水溶液等の水系電解液を用いる水系電池であることから、高い安全性を有すると共に、亜鉛電極とニッケル電極との組み合わせにより、水系電池としては高い起電力を有することが知られている。さらに、ニッケル亜鉛電池は、優れた入出力性能に加えて低コストであることから、産業用途(例えば、バックアップ電源等の用途)及び自動車用途(例えば、ハイブリッド自動車等の用途)等への適用可能性が検討されている。
 ニッケル亜鉛電池の充放電反応は、例えば、下記式に従って進行する(放電反応:右向き、充電反応:左向き)。
 (正極)2NiOOH+2HO+2e → 2Ni(OH)+2OH
 (負極)Zn+2OH → Zn(OH)+2e
 上記式に示されるように、亜鉛電池では、放電反応により水酸化亜鉛(Zn(OH))が生成する。水酸化亜鉛は電解液に可溶であり、水酸化亜鉛が電解液に溶解すると、テトラヒドロキシド亜鉛酸イオン([Zn(OH)2-)が電解液中に拡散する。その結果、負極の形態変化(変形)が進行すると共に充電電流の分布が不均一となること等により、負極上の局所で亜鉛の析出が起こり、デンドライト(樹枝状結晶)が発生する。従来の亜鉛電池では、充放電の繰り返しによりデンドライトが成長した場合、デンドライトがセパレータを貫通し短絡が発生する場合がある。そのため、このようなデンドライトによる短絡を防止し、寿命性能を向上させる種々の試みがなされている。例えば、下記特許文献1には、糖類を含む電解液を備えたことを特徴とするニッケル亜鉛電池が開示されている。
特開2021-77594号公報
 亜鉛電池は、0℃~-30℃のような低温環境下で使用されることがあり、寿命性能を向上させるとともに、低温放電性能の低下を抑制することが求められる。
 本発明の一側面は、亜鉛電池の低温放電性能の低下を抑制することが可能な亜鉛電池用電解液を提供することを目的とする。本発明の他の一側面は、当該亜鉛電池用電解液を備える亜鉛電池を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
<1> アルカリ金属水酸化物と、界面活性剤と、を含有する、亜鉛電池用電解液であって、前記界面活性剤の含有量が、前記亜鉛電池用電解液の全質量に対して0.01質量%以上である亜鉛電池用電解液。
<2> 前記アルカリ金属水酸化物が水酸化カリウムを含む、<1>に記載の亜鉛電池用電解液。
<3> 前記界面活性剤がカチオン性界面活性剤、ノニオン性界面活性剤及びアニオン性界面活性剤からなる群より選ばれる少なくとも一種を含む、<1>又は<2>に記載の亜鉛電池用電解液。
<4> 前記亜鉛電池用電解液が酸素原子を含む有機化合物を含有する<1>~<3>のいずれか一項に記載の亜鉛電池用電解液。
<5> 前記酸素原子を含む有機化合物が、カルボキシ基、カルボン酸塩基、水酸基、エポキシ基及びエーテル基からなる群より選ばれる少なくとも一種を有する、<4>に記載の亜鉛電池用電解液。
<6> 前記酸素原子を含む有機化合物が、エーテル基を含む複素環を有するエーテル化合物を含む、<4>又は<5>に記載の亜鉛電池用電解液。
<7> 前記酸素原子を含む有機化合物が、下記一般式(3)で表されるエーテル化合物を含む、<4>~<6>のいずれか一項に記載の亜鉛電池用電解液。
Figure JPOXMLDOC01-appb-C000002
[式(3)において、nは、1~10の整数を示し、R及びRは、有機基を示す。]
<8> 前記一般式(3)における有機基が、アルキル基又はアリール基である、<7>に記載の亜鉛電池用電解液。
<9> 前記一般式(3)で表されるエーテル化合物が、グライム化合物を含む、<7>又は<8>に記載の亜鉛電池用電解液。
<10> 前記グライム化合物が、モノグライム、ジグライム、トリグライム及びテトラグライムからなる群より選ばれる少なくとも一種を含む、<9>に記載の亜鉛電池用電解液。
<11> 正極と、負極と、<1>~<10>のいずれか一項に記載の亜鉛電池用電解液と、を備える、亜鉛電池。
 本発明の一側面によれば、亜鉛電池の低温放電性能の低下を抑制することが可能な亜鉛電池用電解液を提供することができる。本発明の他の一側面によれば、当該亜鉛電池用電解液を備える亜鉛電池を提供することができる。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本開示に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実験例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本開示に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本開示において、組成物中の各成分の使用量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本開示において「膜」又は「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 以下、本発明の実施形態について詳細に説明する。但し、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態に係る亜鉛電池用電解液(以下、場合により、単に「電解液」という)は、亜鉛電池(例えば亜鉛二次電池)の電解液として用いられる。本実施形態に係る亜鉛電池は、正極と、負極と、本実施形態に係る電解液と、を備える。亜鉛電池は、負極として亜鉛電極を備えることができる。亜鉛電池としては、正極がニッケル電極であるニッケル亜鉛電池(例えばニッケル亜鉛二次電池);正極が空気極である空気亜鉛電池(例えば空気亜鉛二次電池);正極が酸化銀極である銀亜鉛電池(例えば銀亜鉛二次電池)等が挙げられる。
 本実施形態に係る電解液は、アルカリ金属水酸化物と、界面活性剤と、を含有する、亜鉛電池用電解液であって、上記界面活性剤の合計質量が上記亜鉛電池用電解液の全質量に対して0.01質量%以上を含有する。本実施形態に係る電解液によれば、亜鉛電池の低温放電性能の低下を抑制可能であり、例えば、亜鉛電池を-30℃の環境下で放電を行った際の直流抵抗(以下、DCRという場合もある)を低減できる。
 このような効果が得られる要因としては、例えば下記の要因が挙げられるが、下記要因に限定されない。すなわち、従来の亜鉛電池においては、電解液が亜鉛極の活物質(亜鉛成分)の表面に均一に拡散し難く、電解液と接触しない活物質が不活性化することが原因で放電時の直流抵抗が増加すると考えられるところ、本実施形態の電解液を用いる場合、上記の界面活性剤により活物質表面への電解液の拡散性が向上するため、放電時の直流抵抗が低減されると推察している。
 アルカリ金属水酸化物としては、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、水酸化リチウム(LiOH)等が挙げられる。アルカリ金属水酸化物は、水溶液中で電離(解離)していてよく、塩として存在していてもよい。アルカリ金属水酸化物は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、水酸化カリウム及び水酸化リチウムからなる群より選ばれる少なくとも一種を含むことが好ましく、水酸化カリウムを含むことがより好ましい。
 電解液におけるアルカリ金属水酸化物の含有量(アルカリ金属水酸化物の合計質量)は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、電解液の全質量を基準として下記の範囲が好ましい。アルカリ金属水酸化物の含有量は、10質量%以上、15質量%以上、20質量%以上、25質量%以上、又は、30質量%以上が好ましい。アルカリ金属水酸化物の含有量は、50質量%以下、45質量%以下、40質量%以下、又は、35質量%以下が好ましい。これらの観点から、アルカリ金属水酸化物の含有量は、10~50質量%が好ましい。
 電解液における水酸化カリウムの含有量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、電解液の全質量を基準として下記の範囲が好ましい。水酸化カリウムの含有量は、10質量%以上、15質量%以上、20質量%以上、25質量%以上、又は、30質量%以上が好ましい。水酸化カリウムの含有量は、50質量%以下、45質量%以下、40質量%以下、又は、35質量%以下が好ましい。これらの観点から、水酸化カリウムの含有量は、10~50質量%が好ましい。
 電解液における水酸化リチウムの含有量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、電解液の全質量を基準として下記の範囲が好ましい。水酸化リチウムの含有量は、0.1質量%以上、0.3質量%以上、0.5質量%以上、0.8質量%以上、又は、1質量%以上が好ましい。水酸化リチウムの含有量は、3質量%以下、2質量%以下、1.5質量%以下、又は、1.2質量%以下が好ましい。これらの観点から、水酸化リチウムの含有量は、0.1~3質量%が好ましい。
 本実施形態に係る電解液は、界面活性剤を含有する。界面活性剤としては、カチオン性界面活性剤、ノニオン性界面活性剤(非イオン性界面活性剤)、アニオン性界面活性剤、両性界面活性剤等が挙げられる。界面活性剤は、亜鉛電池の低温放電性能の低下を抑制しやすい観点から、カチオン性界面活性剤、ノニオン性界面活性剤、及び、アニオン性界面活性剤からなる群より選ばれる少なくとも一種を含むことが好ましい。界面活性剤は、カチオン性界面活性剤を含む態様であることが好ましく、ノニオン性界面活性剤を含む態様であることが好ましく、アニオン性界面活性剤を含む態様であることが好ましい。
 カチオン性界面活性剤は、カチオン性の親水基と、疎水基とを有している。カチオン性界面活性剤としては、脂肪族アミン又はその塩、アルキルアミドアミン塩、モノアルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルピリジニウム塩、塩化ベンゼトニウム塩等の第4級アンモニウム塩型カチオン性界面活性剤などが挙げられる。カチオン性界面活性剤は、亜鉛電池の低温放電性能の低下を抑制しやすい観点から、モノアルキルトリメチルアンモニウム塩及びジアルキルジメチルアンモニウム塩からなる群より選ばれる少なくとも一種を含むことが好ましく、モノアルキルトリメチルアンモニウム塩を含むことがより好ましい。
 モノアルキルトリメチルアンモニウム塩及びジアルキルジメチルアンモニウム塩は、例えば、下記一般式(2)で表される構造を有する。
  (R2a(R2b4-n X ・・・(2)
[式(2)中、nは1又は2であり、R2a及びR2bは、それぞれ独立に、炭素数1~20の炭化水素基であり、Xは、アニオンである。nが2である場合、複数のR2aは互いに同一であっても異なっていてもよい。複数のR2bは、互いに同一であっても異なっていてもよい。]
 R2aの炭化水素基は、直鎖状であってもよく、分枝状であってもよく、飽和又は不飽和のいずれであってもよく、脂環式構造等の環状構造を含んでいてもよい。R2aの炭化水素基は、アルキル基であることが好ましい。R2aの炭化水素基の炭素数は、12~18が好ましく、14~16がより好ましい。R2bの炭化水素基は、直鎖状であってもよく、分枝状であってもよく、飽和又は不飽和のいずれであってもよい。R2bの炭化水素基は、アルキル基であることが好ましい。R2bの炭化水素基の炭素数は、1~4が好ましく、1、2又は3がより好ましい。Xは、式(2)の第4級アンモニウムイオンと塩を形成できるアニオンであればよく、例えば、F、Cl、Br、I等のハロゲン化物イオン;CHCOO等のカルボキシレートイオン;スルフェートイオン;ホスフェートイオンなどであってよい。
 モノアルキルトリメチルアンモニウム塩の具体例としては、ドデシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムクロライド、トリデシルトリメチルアンモニウムブロミド、トリデシルトリメチルアンモニウムクロライド、テトラデシルトリメチルアンモニウムブロミド、テトラデシルトリメチルアンモニウムクロライド、ペンタデシルトリメチルアンモニウムブロミド、ペンタデシルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムクロライド、ヘプタデシルトリメチルアンモニウムブロミド、ヘプタデシルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムブロミド、オクタデシルトリメチルアンモニウムクロライド等が挙げられる。
 ジアルキルジメチルアンモニウム塩の具体例としては、ジドデシルジメチルアンモニウムブロミド、ジドデシルジメチルアンモニウムクロライド、ジトリデシルジメチルアンモニウムブロミド、ジトリデシルジメチルアンモニウムクロライド、ジテトラデシルジメチルアンモニウムブロミド、ジテトラデシルジメチルアンモニウムクロライド、ジペンタデシルジメチルアンモニウムブロミド、ジペンタデシルジメチルアンモニウムクロライド、ジヘキサデシルジメチルアンモニウムブロミド、ジヘキサデシルジメチルアンモニウムクロライド、ジヘプタデシルジメチルアンモニウムブロミド、ジヘプタデシルジメチルアンモニウムクロライド、ジオクタデシルジメチルアンモニウムブロミド、ジオクタデシルジメチルアンモニウムクロライド等が挙げられる。
 ノニオン性界面活性剤は、ノニオン性の親水基と、疎水基とを有している。ノニオン性界面活性剤としては、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル等のポリオキシエチレン含有エステル化合物;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等のポリオキシエチレン含有エーテル化合物などが挙げられる。
 ノニオン性界面活性剤は、亜鉛電池の低温放電性能の低下を抑制しやすい観点から、ポリオキシエチレンアルキルエーテル及びポリオキシエチレンアルキルフェニルエーテルからなる群より選ばれる少なくとも一種を含むことが好ましく、ポリオキシエチレンアルキルフェニルエーテルを含むことがより好ましい。
 ポリオキシエチレンアルキルエーテルは、例えば、下記一般式(1a)で表される構造を有する。
  R1aO(CHCHO)m1H ・・・(1a)
[式(1a)中、m1は、2~60の整数であり、R1aは、炭素数1~30の炭化水素基である。]
 ポリオキシエチレンアルキルフェニルエーテルは、例えば、下記一般式(1b)で表される構造を有する。
  R1bO(CHCHO)m2H ・・・(1b)
[式(1b)中、m2は、2~60の整数であり、R1bは、炭素数1~30の炭化水素基である。]
 R1a及びR1bの炭化水素基は、直鎖状であってもよく、分枝状であってもよく、飽和又は不飽和のいずれであってもよい。R1a及びR1bの炭化水素基は、アルキル基であることが好ましい。R1aの炭化水素基の炭素数は、10~18であることが好ましい。R1bの炭化水素基の炭素数は、4~12が好ましく、6~10がより好ましく、8が更に好ましい。m1及びm2は平均重合度であり、5~12が好ましく、7~10がより好ましい。
 ポリオキシエチレンアルキルエーテルの具体例としては、ポリオキシエチレンデシルエーテル、ポリオキシエチレンウンデシルエーテル、ポリオキシエチレンドデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンテトラデシルエーテル、ポリオキシエチレンペンタデシルエーテル、ポリオキシエチレンヘキサデシルエーテル、ポリオキシエチレンヘプタデシルエーテル及びポリオキシエチレンオクタデシルエーテルが挙げられる。
 ポリオキシエチレンアルキルフェニルエーテルの具体例としては、ポリオキシエチレンオクチルフェニルエーテル及びポリオキシエチレンノニルフェニルエーテル等が挙げられる。
 アニオン性界面活性剤は、アニオン性の親水基と、疎水基とを有している。アニオン性界面活性剤としては、ポリオキシアルキレンアルキルエーテルリン酸エステル(例えばポリオキシエチレンアルキルエーテルリン酸エステル)、ポリオキシエチレンアルキルエーテル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム、スチレン-アクリル酸共重合体のアルカリ塩、アルキルナフタレンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ラウリル硫酸モノエタノールアミン、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ステアリン酸モノエタノールアミン、ステアリン酸ナトリウム、ラウリル硫酸ナトリウム、スチレン-アクリル酸共重合体のモノエタノールアミン等が挙げられる。アニオン性界面活性剤は、亜鉛電池の低温放電性能の低下を抑制しやすい観点から、ポリオキシアルキレンアルキルエーテルリン酸エステルを含むことが好ましく、ポリオキシエチレンアルキルエーテルリン酸エステルを含むことがより好ましい。
 界面活性剤がカチオン性界面活性剤、ノニオン性界面活性剤、又は、アニオン性界面活性剤を含む場合、界面活性剤におけるカチオン性界面活性剤、ノニオン性界面活性剤、又は、アニオン性界面活性剤の含有量は、亜鉛電池の充電受入性の低下を抑制しやすい観点から、界面活性剤の含有量(界面活性剤の合計質量)を基準として、50質量%以上、70質量%以上、90質量%以上、95質量%以上、97質量%以上、又は、99質量%以上が好ましい。界面活性剤は、実質的にノニオン性界面活性剤、アニオン性界面活性剤、又は、カチオン性界面活性剤からなる態様(実質的に界面活性剤の100質量%がノニオン性界面活性剤、アニオン性界面活性剤、又は、カチオン性界面活性剤である態様)であってもよい。
 電解液における界面活性剤の含有量(界面活性剤の合計質量)は、電解液の全質量を基準として0.01質量%以上が好ましい。界面活性剤の含有量は、亜鉛電池の放電性能の低下抑制の観点から、0.05質量%以上、0.06質量%以上、0.07質量%以上、0.08質量%以上、又は、0.1質量%以上が好ましい。界面活性剤の含有量は、亜鉛電池の放電性能の低下抑制の観点から、5質量%以下、2.5質量%以下、1質量%以下、0.7質量%以下、又は、0.5質量%以下が好ましい。これらの観点から、界面活性剤の含有量は、0.01~5質量%が好ましい。界面活性剤の含有量は、更に亜鉛電池の放電性能の低下抑制の観点から、0.1~5質量%が特に好ましい。
 界面活性剤がカチオン性界面活性剤、ノニオン性界面活性剤、又は、アニオン性界面活性剤を含む場合、電解液におけるカチオン性界面活性剤の含有量、ノニオン性界面活性剤の含有量、又は、アニオン性界面活性剤の含有量は、亜鉛電池の放電性能低下を抑制しやすい観点から、電解液の全量を基準として下記の範囲が好ましい。含有量は、0.01質量%以上、0.05質量%以上、0.06質量%以上、0.07質量%以上、0.08質量%以上又は、0.1質量%以上が好ましい。含有量は、5質量%以下、2.5質量%以下、1質量%以下、0.7質量%以下、又は、0.5質量%以下が好ましい。これらの観点から、含有量は、0.1~5質量%が特に好ましい。
 本実施形態に係る電解液は、酸素原子を含む有機化合物(アルカリ金属水酸化物又は界面活性剤に該当する化合物を除く。以下、場合により「酸素含有化合物」という)を含有してもよい。酸素含有化合物は、酸素原子を含む官能基を有してよい。酸素原子を含む官能基としては、カルボキシル基、カルボン酸塩基、水酸基(カルボキシル基に包含されるOH構造を除く)、エポキシ基、エーテル基、アルコキシド基、エステル基、ケトン基、アルデヒド基等が挙げられる。酸素含有化合物は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、カルボキシ基、カルボン酸塩基、水酸基、エポキシ基及びエーテル基からなる群より選ばれる少なくとも一種を有することが好ましい。
 酸素含有化合物がOH構造を有する場合、酸素含有化合物において炭素数に対するOH構造の数の比率(OH構造の数/炭素数)は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、下記の範囲が好ましい。比率は、0.01以上、0.03以上、0.05以上、0.1以上、0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、又は、5/6以上が好ましい。比率は、2以下、1.5以下、1.2以下、1以下、0.9以下、又は、5/6以下が好ましい。これらの観点から、比率(OH構造の数/炭素数)は、0.01~2が好ましい。酸素含有化合物は、OH構造を有していなくてもよい。
 酸素含有化合物は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、糖類、カルボン酸(糖類に該当する化合物を除く)、カルボン酸塩(糖類に該当する化合物を除く)、エポキシ化合物(エポキシ基を有する化合物。糖類、カルボン酸又はカルボン酸塩に該当する化合物を除く)、及び、エーテル化合物(エーテル基を有する化合物。糖類、カルボン酸、カルボン酸塩又はエポキシ化合物に該当する化合物を除く)からなる群より選ばれる少なくとも一種を含むことが好ましい。
 糖質は、単糖類、二糖類、三糖類、多糖類(二糖類又は三糖類に該当する糖類を除く)等を用いることができる。単糖類としては、グルコース、フルクトース、ガラクトース、アラビノース、リボース、マンノース、キシロース、ソルボース、ラムノース、フコース、リボデソース、及び、これらの水和物等が挙げられる。二糖類としては、スクロース、マルトース、トレハロース、セロビオース、ゲンチオビオース、ラクトース、メリビオース、及び、これらの水和物等が挙げられる。三糖類としては、ケストース、メレチトース、ゲンチアノース、ラフィノース、ゲンチアノース、及び、これらの水和物等が挙げられる。多糖類としては、シクロデキストリン(例えばγ-シクロデキストリン)、スタキオース等が挙げられる。また、糖質は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、非還元糖を含むことが好ましい。
 非還元糖とは、還元糖(遊離したアルデヒド基又はケトン基、若しくは、ヘミアセタール結合したアルデヒド基又はケトン基をもつ糖)に対して、遊離の還元基をもたない糖類を意味する(化学大辞典第1版、株式会社東京化学同人発行)。すなわち、非還元糖とは、遊離したアルデヒド基及びケトン基、並びに、ヘミアセタール結合したアルデヒド基及びケトン基のうちいずれももたない糖類を意味する。非還元糖は、水和物であってもよい。
 非還元糖としては、スクロース、トレハロース、これらの水和物等の二糖類;ケストース、メレチトース、ゲンチアノース、これらの水和物等の三糖類;フンギテトラオース、その水和物等の四糖類;α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、これらの水和物等の多糖類が挙げられる。非還元糖は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、二糖類を含んでよく、スクロース、トレハロース、及び、これらの水和物からなる群より選ばれる少なくとも一種を含んでよい。
 非還元糖が二糖類を含む場合、非還元糖における二糖類の含有量は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、非還元糖の含有量(電解液に含まれる非還元糖の合計質量)を基準として、50質量%以上、70質量%以上、90質量%以上、95質量%以上、97質量%以上、又は、99質量%以上であってよい。非還元糖は、実質的に二糖類からなる態様(実質的に非還元糖の100質量%が二糖類である態様)であってもよい。非還元糖がスクロースを含む場合、非還元糖におけるスクロースの含有量は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、上記の範囲内であってよい。非還元糖がトレハロースを含む場合、非還元糖におけるトレハロースの含有量は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、上記の範囲内であってよい。
 非還元糖が有するメチロール基(-CHOH)の数は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、下記の範囲であってよい。メチロール基の数は、8以下、6以下、4以下、3以下、又は、2以下であってよい。メチロール基の数は、2以上、又は、3以上であってよい。これらの観点から、メチロール基の数は、2~8であってよい。
 非還元糖が有するエーテル基の数は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、下記の範囲であってよい。エーテル基の数は、16以下、12以下、8以下、6以下、又は、4以下であってよい。エーテル基の数は、3以上であってよい。これらの観点から、エーテル基の数は、3~16であってよい。
 非還元糖が有するヒドロキシ基(但し、メチロール基に包含されるOH構造を除く)の数は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、下記の範囲であってよい。ヒドロキシ基の数は、16以下、12以下、8以下、又は、6以下であってよい。ヒドロキシ基の数は、5以上、又は、6以上であってよい。これらの観点から、ヒドロキシ基の数は、5~16であってよい。
 非還元糖の炭素数は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、下記の範囲であってよい。炭素数は、48以下、42以下、36以下、30以下、24以下、又は、18以下であってよい。炭素数は、12以上であってよい。これらの観点から、炭素数は、12~48であってよい。
 非還元糖が有する五員環構造の数は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、下記の範囲であってよい。五員環構造の数は、5以下、4以下、3以下、2以下、1以下、又は、0であってよい。五員環構造の数は、0、又は、1以上であってよい。これらの観点から、五員環構造の数は、0~5であってよい。
 非還元糖が有する六員環構造の数は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、下記の範囲であってよい。六員環構造の数は、8以下、4以下、3以下、2以下、又は、1であってよい。六員環構造の数は、1以上、又は、2以上であってよい。これらの観点から、六員環構造の数は、1~8であってよい。
 電解液における非還元糖の含有量(電解液に含まれる非還元糖の合計質量)は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、電解液の全質量を基準として下記の範囲であってよい。非還元糖の含有量は、0.01質量%以上、0.1質量%以上、0.5質量%以上、1質量%以上、1.5質量%以上、2質量%以上、3質量%以上、又は、4質量%以上であってよい。非還元糖の含有量は、20質量%以下、10質量%以下、8質量%以下、5質量%以下、4質量%以下、3質量%以下、2質量%以下、又は、1質量%以下であってよい。これらの観点から、非還元糖の含有量は、0.01~20質量%、0.1~10質量%、1~8質量%、1~5質量%、又は、1~4質量%であってよい。
 非還元糖の含有量は、優れたサイクル特性を得やすい観点、及び、放電容量の低下を抑制しやすい観点から、アルカリ金属水酸化物100質量部に対して下記の範囲であってよい。非還元糖の含有量は、1質量部以上、2質量部以上、3質量部以上、6質量部以上、9質量部以上、又は、13質量部以上であってよい。非還元糖の含有量は、30質量部以下、20質量部以下、16質量部以下、14質量部以下、12質量部以下、10質量部以下、又は、7質量部以下であってよい。これらの観点から、非還元糖の含有量は、1~30質量部であってよい。
 カルボン酸としては、テレフタル酸、イソフタル酸、フタル酸、安息香酸、サリチル酸、3,4,5-トリヒドロキシ安息香酸、ベンゼンヘキサカルボン酸、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、アコニット酸、ピルビン酸、オキサロ酢酸、ギ酸グリシジル、酢酸グリシジル、安息香酸グリシジル等が挙げられる。カルボン酸塩としては、これらのカルボン酸の塩等が挙げられる。カルボン酸塩としては、ナトリウム塩(例えば、テレフタル酸二ナトリウム)、カリウム塩等のアルカリ金属塩などが挙げられる。カルボン酸塩は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、アルカリ金属塩を含むことが好ましく、ナトリウム塩を含むことがより好ましい。酸素含有化合物は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、芳香環を有するカルボン酸、及び、芳香環を有するカルボン酸塩からなる群より選ばれる少なくとも一種を含むことが好ましく、テレフタル酸、及び、テレフタル酸塩からなる群より選ばれる少なくとも一種を含むことがより好ましく、テレフタル酸、及び、テレフタル酸のナトリウム塩からなる群より選ばれる少なくとも一種を含むことが更に好ましい。
 カルボン酸におけるカルボキシル基の数、又は、カルボン酸塩におけるカルボン酸塩基の数は、1以上であり、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、下記の範囲が好ましい。カルボキシル基又はカルボン酸塩基の数は、2以上が好ましい。カルボキシル基又はカルボン酸塩基の数は、4以下、3以下又は2以下が好ましい。カルボキシル基又はカルボン酸塩基の数は、1~4が好ましい。
 エポキシ化合物としては、単官能エポキシ化合物、多官能エポキシ化合物等が挙げられる。単官能エポキシ化合物としては、1,2-エポキシエタン、1,2-エポキシプロパン、1,2-エポキシブタン、1,2-エポキシ-2-メチルプロパン、1-フェニル-1,2-エポキシエタン、エピクロロヒドリン、エピブロモヒドリン、グリシジルメチルエーテル、アリルグリシジルエーテル、ポリエチレンオキシドグリシジルエーテル、グリシジルアミド、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ステアリルグリシジルエーテル、ラウリルグリシジルエーテル、ブトキシポリエチレングリコールグリシジルエーテル、フェノールポリエチレングリコールグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、p-メチルフェニルグリシジルエーテル、p-エチルフェニルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテル、p-tert-ブチルフェニルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジル等が挙げられる。多官能エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ポリフェノール型エポキシ化合物、環状脂肪族エポキシ化合物、脂肪族グリシジルエーテル系エポキシ化合物、グリシジルエステル系エポキシ化合物、グリシジルジアミン系エポキシ化合物、複素環式エポキシ化合物等が挙げられる。酸素含有化合物は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、単官能エポキシ化合物を含むことが好ましく、1,2-エポキシ-2-メチルプロパンを含むことがより好ましい。
 エーテル化合物としては、18-クラウン-6、15-クラウン-5、12-クラウン-4、ジベンゾ-18-クラウン-6、ジシクロヘキサノ-18-クラウン-6、ジベンゾ-24-クラウン-8等のクラウンエーテル化合物;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール;グリセリンなどが挙げられる。エーテル化合物としては、ポリエーテル化合物を用いることができる。酸素含有化合物は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、エーテル基を含む複素環を有するエーテル化合物を含むことが好ましく、18-クラウン-6を含むことがより好ましい。
 エーテル化合物におけるエーテル基の数は、1以上であり、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、下記の範囲が好ましい。エーテル基の数は、2以上、3以上、4以上、5以上又は6以上が好ましい。エーテル基の数は、10以下、9以下、8以下、7以下又は6以下が好ましい。エーテル基の数は、1~10が好ましい。
 酸素含有化合物は、下記一般式(3)で表されるエーテル化合物を含んでもよい。
Figure JPOXMLDOC01-appb-C000003
 式(3)において、nは、1~10の整数を示し、R及びRは、有機基を示す。
 一般式(3)中のnは、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、下記の範囲であってよい。nは、8以下、6以下、4以下、3以下、又は2以下であってよい。nは、2以上、3以上、又は、4以上であってよい。これらの観点から、nは、1~8、1~6、又は、1~4であってよい。
 一般式(3)で表されるエーテル化合物におけるエーテル基の数は、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、下記の範囲であってよい。エーテル基の数は、9以下、7以下、5以下、4以下、又は3以下であってよい。エーテル基の数は、1以上、2以上、3以上、4以上、又は、5以上であってよい。これらの観点から、エーテル基の数は、1~9、2~7、又は、2~5であってよい。
 一般式(3)中のR及びRは、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、いずれも有機基であってよい。有機基としては、アルキル基、アリール基、エステル基、カルボキシル基、カルボン酸塩基(ナトリウム塩、カリウム塩等)などが挙げられる。有機基は、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、アルキル基又はアリール基であってよく、アルキル基であってよい。
 有機基は、置換基を有してよい。置換基としては、ハロゲン原子、カルボキシル基、カルボン酸塩基、エーテル基、アルコキシド基、エステル基、ケトン基、アルデヒド基等が挙げられる。有機基は、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、置換基を有さない有機基であってよく、置換基を有さないアルキル基、又は、置換基を有さないアリール基であってよく、置換基を有さないアルキル基であってよい。
 有機基の炭素数(有機基が有する置換基の炭素を含む)は、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、8以下、6以下、4以下、3以下、2以下、又は、1であってよい。有機基の炭素数は、1以上であってよい。これらの観点から、有機基の炭素数は、1~8であってよい。
 アルキル基は、直鎖状又は分枝状であってよい。アルキル基は、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、直鎖アルキル基であってよく、メチル基、エチル基、n-プロピル基、又は、n-ブチル基であってよく、メチル基であってよい。
 R及びRは、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、同一の有機基であってよく、同一のアルキル基であってよく、メチル基であってよい。
 一般式(3)で表されるエーテル化合物としては、ポリオキシエチレンジアルキルエーテル(以下、グライム化合物と称することがある。)、ポリオキシエチレンアルキルフェニルエーテル等のポリオキシエチレンアルキルエーテル化合物などが挙げられる。一般式(3)で表されるエーテル化合物は、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、ポリオキシエチレンアルキルエーテル化合物を含んでよく、グライム化合物を含んでよい。
 グライム化合物としては、ポリオキシエチレンジメチルエーテル、ポリオキシエチレンジエチルエーテル、ポリオキシエチレンジプロピルエーテル、ポリオキシエチレンジブチルエーテル、ポリオキシエチレンジペンチルエーテル、ポリオキシエチレンジへキシルエーテル、ポリオキシエチレンジヘプチルエーテル、ポリオキシエチレンジオクチルエーテル、ポリオキシエチレンメチルエチルエーテル等が挙げられる。
 グライム化合物は、モノグライム(エチレングリコールジメチルエーテル)、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル等のモノグライム化合物;ジグライム(ジエチレングリコールジメチルエーテル)、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジグライム化合物;トリグライム(トリエチレングリコールジメチルエーテル)、トリエチレングリコールジエチルエーテル、トリエチレングリコールジプロピルエーテル、トリエチレングリコールジブチルエーテル等のトリグライム化合物;テトラグライム(テトラエチレングリコールジメチルエーテル)、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールジプロピルエーテル、テトラエチレングリコールジブチルエーテル等のテトラグライム化合物などであってよい。一般式(3)で表されるエーテル化合物は、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、モノグライム化合物、ジグライム化合物、トリグライム化合物及びテトラグライム化合物からなる群より選ばれる少なくとも一種を含んでよく、モノグライム、ジグライム、トリグライム及びテトラグライムからなる群より選ばれる少なくとも一種を含んでよく、ジグライム及びトリグライムからなる群より選ばれる少なくとも一種を含んでよく、ジグライムを含んでよい。
 ポリオキシエチレンアルキルフェニルエーテルとしては、ポリオキシエチレンメチルフェニルエーテル、ポリオキシエチレンエチルフェニルエーテル、ポリオキシエチレンプロピルフェニルエーテル、ポリオキシエチレンブチルフェニルエーテル、ポリオキシエチレンペンチルフェニルエーテル、ポリオキシエチレンへキシルフェニルエーテル、ポリオキシエチレンヘプチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等が挙げられる。
 一般式(3)で表されるエーテル化合物がグライム化合物を含む場合、一般式(3)で表されるエーテル化合物におけるグライム化合物の含有量は、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、一般式(3)で表されるエーテル化合物の含有量(一般式(3)で表されるエーテル化合物の合計量)を基準として、50質量%以上、70質量%以上、90質量%以上、95質量%以上、97質量%以上、又は、99質量%以上であってよい。一般式(3)で表されるエーテル化合物は、実質的にグライム化合物からなる態様(実質的に一般式(3)で表されるエーテル化合物の100質量%がグライム化合物)であってもよい。
 一般式(3)で表されるエーテル化合物の含有量は、優れた寿命性能を得やすい観点、及び、優れた高率放電性能を得やすい観点から、アルカリ金属水酸化物100質量部に対して下記の範囲であってよい。一般式(3)で表されるエーテル化合物の含有量は、1質量部以上、3質量部以上、5質量部以上、5.5質量部以上、又は、6質量部以上であってよい。一般式(3)で表されるエーテル化合物は、30質量部以下、20質量部以下、15質量部以下、12質量部以下、10質量部以下、8質量部以下、7質量部以下、又は、6.5質量部以下であってよい。これらの観点から、一般式(3)で表されるエーテル化合物の含有量は、1~30質量部であってよい。
 酸素含有化合物の分子量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、50以上、70以上、80以上、100以上、120以上、150以上、160以上、170以上、又は、180以上が好ましい。酸素含有化合物の分子量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、2000以下、1500以下、1300以下、1200以下、1000以下、800以下、又は、600以下が好ましい。これらの観点から、酸素含有化合物の分子量は、50~2000が好ましい。酸素含有化合物の分子量は、190以上、200以上、210以上、220以上、240以上、260以上、300以上、340以上、350以上、400以上、450以上、又は、500以上であってよい。酸素含有化合物の分子量は、500以下、400以下、350以下、340以下、320以下、300以下、280以下、270以下、260以下、250以下、230以下、220以下、210以下、200以下、190以下、又は、185以下であってよい。尚、分子量は、GPC(Gel Permeation Chromatography)法により測定される値である。なお、酸素含有化合物が単糖類、二糖類、グライム化合物等の純物質である場合、酸素含有化合物の分子量は、これら化合物の化学式量をいう。
 酸素含有化合物としては、電解液に対する溶解性の高い化合物を用いることが好ましい。溶解性が高くない化合物であっても、濾過で残渣を除去する等して用いることができる。本実施形態に係る電解液は、アルコールを含有しなくてもよい。
 電解液における酸素含有化合物の含有量は、電解液の全質量を基準として下記の範囲が好ましい。酸素含有化合物の含有量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、0.1質量%以上、0.3質量%以上、0.5質量%以上、0.8質量%以上、又は、1質量%以上が好ましい。酸素含有化合物の含有量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、5質量%以下、4.5質量%以下、4質量%以下、3.5質量%以下、又は、3質量%以下が好ましい。これらの観点から、酸素含有化合物の含有量は、0.1~5質量%が好ましい。酸素含有化合物の含有量は、亜鉛電池を保存するときの放電容量の低下を更に抑制しやすい観点から、1.2質量%以上、1.5質量%以上、1.8質量%以上、2質量%以上、2.2質量%以上、2.5質量%以上、2.7質量%以上又は3質量%以上が好ましい。酸素含有化合物の含有量は、3.5質量%以上、4質量%以上、4.5質量%以上、又は、5質量%以上であってよい。
 酸素含有化合物の含有量は、更に優れた高率放電性能を得やすい観点から、2.7質量%以下、2.5質量%以下、2.2質量%以下、2質量%以下、1.7質量%以下、1.5質量%以下、1.2質量%以下、又は、1質量%以下が好ましい。酸素含有化合物の含有量は、電解液の全量を基準として0.5mol/L未満であってよい。
 酸素含有化合物の含有量は、界面活性剤1質量部に対して下記の範囲が好ましい。酸素含有化合物の含有量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、2質量部以上、3質量部以上、5質量部以上、10質量部以上、30質量部以上、50質量部以上、80質量部以上、又は、100質量部以上が好ましい。酸素含有化合物の含有量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、1000質量部以下、800質量部以下、600質量部以下、500質量部以下、450質量部以下、400質量部以下、350質量部以下、又は、300質量部以下が好ましい。これらの観点から、酸素含有化合物の含有量は、2~1000質量部であってもよく、10~1000質量部が好ましい。酸素含有化合物の含有量は、亜鉛電池を保存するときの放電容量の低下を更に抑制しやすい観点から、150質量部以上、200質量部以上、250質量部以上、又は、300質量部以上が好ましい。酸素含有化合物の含有量は、350質量部以上、400質量部以上、450質量部以上、又は、500質量部以上であってよい。酸素含有化合物の含有量は、250質量部以下、200質量部以下、150質量部以下、又は、100質量部以下が好ましい。
 酸素含有化合物の含有量は、アルカリ金属水酸化物100質量部に対して下記の範囲が好ましい。酸素含有化合物の含有量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、1質量部以上、1.5質量部以上、2質量部以上、2.5質量部以上、又は、3質量部以上が好ましい。酸素含有化合物の含有量は、亜鉛電池を保存するときの放電容量の低下を抑制しやすい観点、及び、優れた高率放電性能を得やすい観点から、30質量部以下、25質量部以下、20質量部以下、16質量部以下、15質量部以下、13質量部以下、12質量部以下、又は、10質量部以下が好ましい。これらの観点から、酸素含有化合物の含有量は、1~30質量部が好ましい。酸素含有化合物の含有量は、亜鉛電池を保存するときの放電容量の低下を更に抑制しやすい観点から、4質量部以上、5質量部以上、6質量部以上、7質量部以上、8質量部以上、又は、9質量部以上が好ましい。酸素含有化合物の含有量は、10質量部以上、12質量部以上、13質量部以上、15質量部以上、又は、16質量部以上であってよい。酸素含有化合物の含有量は、更に優れた高率放電性能を得やすい観点から、9質量部以下、8質量部以下、7質量部以下、6質量部以下、5質量部以下、又は、4質量部以下が好ましい。
 本実施形態に係る電解液は、水(例えばイオン交換水)等の液状媒体を含有できる。
 以下、上記実施形態に係る電解液が用いられる亜鉛電池の一例として、ニッケル亜鉛電池について説明する。
 本実施形態に係る亜鉛電池は、例えば、電槽と、電槽に収容された電極群(例えば極板群)及び電解液と、を備える。本実施形態に係る亜鉛電池は、化成後又は未化成のいずれであってもよい。
 電極群は、例えば、正極(例えば正極板)と、負極(例えば負極板)と、セパレータと、を備える。正極と負極とは、一又は複数のセパレータを介して隣り合っている。すなわち、隣り合う正極と負極との間には、一又は複数のセパレータが設けられている。電極群は、複数の正極、負極及びセパレータを備えていてよい。電極群が複数の正極及び/又は複数の負極を備える場合、正極と負極は、セパレータを介して交互に積層されてよい。複数の正極同士及び複数の負極同士は、例えば、ストラップで連結されていてよい。
 本実施形態に係る亜鉛電池において負極は、負極集電体と、当該集電体に支持された負極材(電極材)と、を有する。負極は、化成前及び化成後のいずれであってもよい。
 負極集電体は、負極材からの電流の導電路を構成する。負極集電体は、例えば、平板状、シート状等の形状を有している。負極集電体は、発泡金属、エキスパンドメタル、パンチングメタル、金属繊維のフェルト状物等によって構成された3次元網目構造の集電体などであってもよい。負極集電体は、導電性及び耐アルカリ性を有する材料で構成されている。このような材料としては、例えば、負極の反応電位でも安定である材料(負極の反応電位よりも貴な酸化還元電位を有する材料、アルカリ水溶液中で基材表面に酸化被膜等の保護被膜を形成して安定化する材料など)を用いることができる。また、負極においては、副反応として電解液の分解反応が進行し水素ガスが発生するが、水素過電圧の高い材料はこのような副反応の進行を抑制できる点で好ましい。負極集電体を構成する材料の具体例としては、亜鉛;鉛;スズ;スズ等の金属メッキを施した金属材料(銅、真鍮、鋼、ニッケル等)などが挙げられる。
 負極材は、例えば、層状を呈している。すなわち、負極は、負極材層を有していてよい。負極材層は、負極集電体上に形成されていてよい。負極集電体の負極材を支持する部分が3次元網目構造を有する場合、当該集電体の網目の間に負極材が充填されて負極材層が形成されていてもよい。
 負極材は、亜鉛を含む負極活物質(電極活物質)を含有する。負極活物質としては、例えば、金属亜鉛、酸化亜鉛及び水酸化亜鉛が挙げられる。負極活物質は、これらの成分のうちの一種を単独で含んでいてよく、複数種を含んでいてもよい。負極材は、例えば、満充電状態では金属亜鉛を含有し、放電末状態では酸化亜鉛及び水酸化亜鉛を含有する。放電末状態とは、終止電圧1.1Vまで放電した状態を指す。負極活物質は例えば粒子状である。すなわち、負極材は、金属亜鉛粒子、酸化亜鉛粒子及び水酸化亜鉛粒子からなる群より選択される少なくとも一種を含んでいてよい。負極活物質の含有量は、例えば、負極材の全質量を基準として50~95質量%であってよい。
 負極材は、添加剤を含有してよい。添加剤としては、結着剤等が挙げられる。結着剤としては、ポリテトラフルオロエチレン、ヒドロキシエチルセルロース、ポリエチレンオキシド、ポリエチレン、ポリプロピレン等が挙げられる。結着剤の含有量は、例えば、負極活物質100質量部に対して0.5~10質量部であってもよい。
 正極は、例えば、正極集電体と、当該正極集電体に支持された正極材と、を備えている。正極は、化成前及び化成後のいずれであってもよい。
 正極集電体は、正極材からの電流の導電路を構成する。正極集電体は、例えば、平板状、シート状等の形状を有している。正極集電体は、発泡金属、エキスパンドメタル、パンチングメタル、金属繊維のフェルト状物等によって構成された3次元網目構造の集電体などであってもよい。正極集電体は、導電性及び耐アルカリ性を有する材料で構成されている。このような材料としては、例えば、正極の反応電位でも安定である材料(正極の反応電位よりも貴な酸化還元電位を有する材料、アルカリ水溶液中で基材表面に酸化被膜等の保護被膜を形成して安定化する材料など)を用いることができる。また、正極においては、副反応として電解液の分解反応が進行し酸素ガスが発生するが、酸素過電圧の高い材料はこのような副反応の進行を抑制できる点で好ましい。正極集電体を構成する材料の具体例としては、白金;ニッケル(発泡ニッケル等);ニッケル等の金属メッキを施した金属材料(銅、真鍮、鋼等)などが挙げられる。これらの中でも、発泡ニッケルで構成される正極集電体が好ましく用いられる。高率放電性能を更に向上させることができる観点から、少なくとも正極集電体における正極材を支持する部分(正極材支持部)が発泡ニッケルで構成されていることが好ましい。
 正極材は、例えば、層状を呈している。すなわち、正極は、正極材層を有していてよい。正極材層は、正極集電体上に形成されていてよい。正極集電体の正極材支持部が3次元網目構造を有する場合、当該集電体の網目の間に正極材が充填されて正極材層が形成されていてもよい。
 正極材は、ニッケルを含む正極活物質(電極活物質)を含有する。正極活物質としては、オキシ水酸化ニッケル(NiOOH)、水酸化ニッケル等が挙げられる。正極材は、例えば、満充電状態ではオキシ水酸化ニッケルを含有し、放電末状態では水酸化ニッケルを含有する。正極活物質の含有量は、例えば、正極材の全質量を基準として50~95質量%であってもよい。
 正極材は、添加剤として、正極活物質以外の他の成分を更に含有してよい。添加剤としては、バインダー(結着剤)、導電剤、膨張抑制剤等が挙げられる。
 バインダーとしては、親水性又は疎水性のポリマー等が挙げられる。具体的には、例えば、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルメチルセルロース(HPMC)、ポリアクリル酸ナトリウム(SPA)、フッ素系ポリマー(ポリテトラフルオロエチレン(PTFE)等)などをバインダーとして用いることができる。バインダーの含有量は、例えば、正極活物質100質量部に対して0.01~5質量部であってよい。
 導電剤としては、コバルト化合物(金属コバルト、酸化コバルト、水酸化コバルト等)などが挙げられる。導電剤の含有量は、例えば、正極活物質100質量部に対して1~20質量部であってよい。
 膨張抑制剤としては、酸化亜鉛等が挙げられる。膨張抑制剤の含有量は、例えば、正極活物質100質量部に対して0.01~5質量部であってよい。
 セパレータは、例えば、平板状、シート状等の形状を有するセパレータであってもよい。セパレータとしては、ポリオレフィン系微多孔膜、ナイロン系微多孔膜、耐酸化性のイオン交換樹脂膜、セロハン系再生樹脂膜、無機粒子を含む微多孔膜、ポリオレフィン系不織布等が挙げられる。セパレータは、正極及び/又は負極を収容可能なように、袋状に加工されていてもよい。この場合、正極及び/又は負極はセパレータに収容されていてよい。セパレータは一種を単独で、又は二種以上を組み合わせて用いてよい。
 以上説明したニッケル亜鉛電池の製造方法は、例えば、亜鉛電池の構成部材を得る構成部材製造工程と、構成部材を組み立てて亜鉛電池を得る組立工程と、を備える。構成部材製造工程では、少なくとも電極(正極及び負極)を得る。
 電極は、例えば、電極材(正極材及び負極材)の原料に対して溶媒(例えば水)を加えて混練することにより電極材ペースト(ペースト状の電極材)を得た後、電極材ペーストを用いて電極材層を形成することにより得ることができる。
 正極材の原料としては、正極活物質の原料(例えば水酸化ニッケル)、添加剤(例えば上記結着剤)等が挙げられる。負極材の原料としては、負極活物質の原料(例えば金属亜鉛、酸化亜鉛及び水酸化亜鉛)、添加剤(例えば結着剤)等が挙げられる。
 電極材層を形成する方法としては、例えば、電極材ペーストを集電体に塗布又は充填した後に乾燥することで電極材層を得る方法が挙げられる。電極材層は、必要に応じて、ローラーを用いたプレス等によって密度を高めてもよい。
 組立工程では、例えば、構成部材製造工程で得られた正極及び負極を、セパレータを介して交互に積層した後、正極同士及び負極同士をストラップで連結させて電極群を作製する。次いで、この電極群を電槽内に配置した後、電槽の上面に蓋体を接着して未化成の亜鉛電池(ニッケル亜鉛電池)を得る。
 続いて、本実施形態に係る電解液を未化成の亜鉛電池の電槽内に注入した後、一定時間放置する。次いで、所定の条件にて充電を行い、化成することにより亜鉛電池(ニッケル亜鉛電池)を得る。化成条件は、電極活物質(正極活物質及び負極活物質)の性状に応じて調整することができる。例えば、32mA、12時間の条件で充電を行うことにより、化成後のニッケル亜鉛電池を作製できる。
 以上、正極がニッケル電極であるニッケル亜鉛電池(例えばニッケル亜鉛二次電池)の例を説明したが、亜鉛電池は、正極が空気極である空気亜鉛電池(例えば空気亜鉛二次電池)であってもよく、正極が酸化銀極である銀亜鉛電池(例えば銀亜鉛二次電池)であってもよい。
 上記亜鉛電池は、低温での放電性能の低下抑制の観点から、―30℃での総電極面積あたりの直流抵抗(DCR)は、理想的には、0Ω・cmが最も好ましいが、実用上は困難であり、少なくとも20Ω・cm以下、15Ω・cm以下、10Ω・cm以下、5Ω・cm以下、又は、1Ω・cm以下が好ましい。
空気亜鉛電池の空気極としては、空気亜鉛電池に使用される公知の空気極を用いることができる。空気極は、例えば、空気極触媒、電子伝導性材料等を含む。空気極触媒としては、電子伝導性材料としても機能する空気極触媒を用いることができる。
 空気極触媒としては、空気亜鉛電池における正極として機能するものを用いることが可能であり、酸素を正極活物質として利用可能な種々の空気極触媒が使用できる。空気極触媒としては、酸化還元触媒機能を有するカーボン系材料(黒鉛等)、酸化還元触媒機能を有する金属材料(白金、ニッケル等)、酸化還元触媒機能を有する無機酸化物材料(ペロブスカイト型酸化物、二酸化マンガン、酸化ニッケル、酸化コバルト、スピネル酸化物等)などが挙げられる。空気極触媒の形状は、特に限定されないが、例えば粒子状であってもよい。空気極における空気極触媒の使用量は、空気極の合計体積に対して、5~70体積%であってもよく、5~60体積%であってもよく、5~50体積%であってもよい。
 電子伝導性材料としては、導電性を有し、かつ、空気極触媒とセパレータとの間の電子伝導を可能とするものを用いることができる。電子伝導性材料としては、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類;鱗片状黒鉛のような天然黒鉛、人造黒鉛、膨張黒鉛等のグラファイト類;炭素繊維、金属繊維等の導電性繊維類;銅、銀、ニッケル、アルミニウム等の金属粉末類;ポリフェニレン誘導体等の有機電子伝導性材料;これらの任意の混合物などが挙げられる。電子伝導性材料の形状は、粒子状であってもよく、その他の形状であってもよい。電子伝導性材料は、空気極において厚さ方向に連続した相をもたらす形態で用いられることが好ましい。例えば、電子伝導性材料は、多孔質材料であってもよい。また、電子伝導性材料は、空気極触媒との混合物又は複合体の形態であってもよく、前述したように、電子伝導性材料としても機能する空気極触媒であってもよい。空気極における電子伝導性材料の使用量は、空気極の合計体積に対して、10~80体積%であってもよく、15~80体積%であってもよく、20~80体積%であってもよい。
 銀亜鉛電池の酸化銀極としては、銀亜鉛電池に使用される公知の酸化銀極を用いることができる。酸化銀極は、例えば酸化銀(I)を含む。
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例に限定されるものではない。
<電解液の調製>
(実施例1~20及び比較例1~2)
 イオン交換水、水酸化カリウム(KOH)、水酸化リチウム(LiOH)、及び、下記表1に示す添加剤(界面活性剤及び/又は酸素含有化合物)を混合することにより電解液(電解液全質量に対し、水酸化カリウム:30質量%、水酸化リチウム:1質量%、添加剤:表1に示す含有量)を調製した。
 カチオン性界面活性剤としては、テトラデシルトリメチルアンモニウムブロミド(特級試薬、富士フィルム和光純薬株式会社製)を用いた。
<正極の作製>
 空隙率95%の発泡ニッケルからなる格子体を用意し、格子体を加圧成形することで正極集電体を得た。次いで、コバルトコート水酸化ニッケル粉末(Gold Shine Energy Material Co.,Ltd製、Y6(商品名))、金属コバルト(ニッコーシ株式会社製、EXTRA FINE(商品名))、水酸化コバルト(伊勢化学工業株式会社製)、酸化イットリウム(富士フィルム和光純薬株式会社製、試薬特級)、カルボキシメチルセルロース(CMC、威怡化工(蘇州)有限公司製、BH90―3(商品名))、ポリテトラフルオロエチレン(PTFE、ダイキン工業株式会社製、D210-C(商品名))、イオン交換水を所定量秤量して混合し、混合液を攪拌することにより、正極材ペーストを作製した。この際、固形分の質量比を、「水酸化ニッケル:金属コバルト:酸化イットリウム:水酸化コバルト:CMC:PTFE=88.0:10.3:1.0:0.3:0.3:0.1」に調整した。正極材ペーストの水分量は、正極材ペーストの全質量基準で27.5質量%に調整した。次いで、正極材ペーストを正極集電体の正極材支持部に塗布した後、80℃で30分乾燥した。その後、ロールプレスにて加圧成形し、正極材層を有する未化成の正極を得た。
<負極の作製>
 負極集電体として開孔率50%のスズメッキを施した鋼板パンチングメタルを用意した。次いで、酸化亜鉛(三井金属鉱業株式会社製、一般品)、金属亜鉛(三井金属鉱業株式会社製、MA-ZB(商品名))、酸化ビスマス(コアフロント株式会社製、4115CB(商品名))、ヒドロキシエチルセルロース(HEC、住友精化株式会社製、AV-15F(商品名))及びイオン交換水を所定量秤量して混合し、得られた混合液を攪拌することにより負極材ペーストを作製した。この際、固形分の質量比を「酸化亜鉛:金属亜鉛:酸化ビスマス:HEC=73.0:20.5:5.0:1.5」に調整した。負極材ペーストの水分量は、負極材ペーストの全質量基準で22.5質量%に調整した。次いで、負極材ペーストを負極集電体上に塗布した後、80℃で30分乾燥した。その後、ロールプレスにて加圧成形し、負極材(負極材層)を有する未化成の負極を得た。
<セパレータの準備>
 セパレータには、微多孔膜として、UP3355(宇部興産株式会社製、商品名、透気度:440sec/100mL)、不織布として、不織布(ニッポン高度紙工業株式会社製、商品名:VL-100、透気度:0.3sec/100mL)を、それぞれ用いた。微多孔膜は、電池組立て前に、界面活性剤Triton-X100(シグマアルドリッチジャパン合同会社製)で、親水化処理した。親水化処理は、Triton-X100が1質量%の量で含まれる水溶液に微多孔膜を24時間浸漬した後、室温で1時間乾燥する方法で行った。なお、微多孔膜の透気度は親水化処理後の値を示す。さらに、微多孔膜は、所定の大きさに裁断し、それを半分に折り、折り部を底部として側面を熱溶着することで袋状に加工した。不織布は、所定の大きさに裁断したものを使用した。尚、ここでいう透気度は、JIS P 8117:2009に準ずる方法で測定される値である。
<ニッケル亜鉛電池の作製>
 袋状に加工した微多孔膜に、正極(未化成の正極)及び負極(未化成の負極)を1枚ずつ収納した。袋状の微多孔膜に収納された正極と、袋状の微多孔膜に収納された負極と、不織布と、を積層した後、同極性の極板同士をストラップで連結させて電極群(極板群)を作製した。電極群は、正極2枚及び負極3枚で、正極と負極の間(正極側の微多孔膜と負極側の微多孔膜との間)に不織布を1枚ずつ配置した構成とした。この電極群を電槽内に配置した後、電槽の上面に蓋体を接着し、上記電解液を電槽内に注入することにより、未化成のニッケル亜鉛電池を得た。その後、雰囲気温度25℃、32mA、12時間の条件で充電を行い、公称容量が320mAhのニッケル亜鉛電池を作製した。
<直流抵抗の評価>
 上述の実施例及び比較例のニッケル亜鉛電池を用いて、25℃の環境下において、1.9Vの定電圧充電(電流値16mA(0.05C))まで減衰した時点で充電終止)を行った後に、-30℃の環境下において、160mA(0.5C)、320mA(1C)、640mA(2C)、及び960mA(3C)の電流値でそれぞれ定電流放電を1秒行い、下記の式により総電極面積あたりの直流抵抗(DCR)を算出した。定電流放電後はそれぞれ-30℃の環境下で1Cの定電流充電(電流値320mA)で放電容量=充電容量となるように充電した。なお、単位「C」とは、満充電状態から定格容量を定電流放電するときの電流の大きさを相対的に表したものである。単位「C」は、「放電電流値(A)/電池容量(Ah)」を意味する。例えば、定格容量を1時間で完全放電させることができる電流を「1C」、2時間で放電させることができる電流値を「0.5C」と定義する。
 DCR={(ΔV0.5C-V)(I0.5C-I)+(ΔV1.0C-V)(I1.0C-I)+(ΔV2.0C-V)(I2.0C―I)+(ΔV3.0C-V)(I3.0C―I)}/{(I0.5C-I)2+(I1.0C-I)+(I2.0C-I)+(I3.0C-I)}・A
 ここで、I=(I0.5C+I1.0C+I2.0C+I3.0C)/4、V=ΔV0.5C+ΔV1.0C+ΔV2.0C+ΔV3.0C)/4であり、I0.5C、I1.0C、I2.0C及びI3.0Cは、それぞれ放電レート、0.5C、1.0C、2.0C及び3.0Cに相当する放電電流値を示し、ΔV0.5C、ΔV1.0C、ΔV2.0C及びΔV3.0Cは、それぞれの放電電流値における1秒後の電圧変化を示す。Aは総電極面積を示す。
<サイクル寿命性能の評価>
 70℃において、電流値が16mA(0.05C)に減衰するまで105.7mA(0.33C)、1.88Vの定電圧でニッケル亜鉛電池の充電を行った後、電池電圧が1.1Vに到達するまで105.7mA(0.33C)の定電流でニッケル亜鉛電池の放電を行うことを1サイクルとする試験を行った。1サイクル目の放電容量に対する放電容量維持率が70%に達したサイクル回数をサイクル寿命性能とした。
Figure JPOXMLDOC01-appb-T000004
 表1中、各化合物名A~Gは、以下のとおりである。
A:テトラデシルトリメチルアンモニウムブロミド
B:スクロース
C:ジグライム
D:グルコース
E:モノグライム
F:トリグライム
G:テトラグライム
 酸素含有化合物を含まない実施例1~2の亜鉛電池のDCRは、比較例1~2の亜鉛電池のDCRと比較して低い。
 実施例4~20及び比較例1~2の亜鉛電池のサイクル寿命性能は同等で、実施例4~20の亜鉛電池のDCRは、比較例1~2の亜鉛電池のDCRと比較して、大きく低減した。活物質表面への電解液の拡散性がより向上したためと考えられる。
 2021年8月27日に出願された日本国特許出願2021-138859号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (11)

  1.  アルカリ金属水酸化物と、界面活性剤と、を含有する、亜鉛電池用電解液であって、前記界面活性剤の含有量が、前記亜鉛電池用電解液の全質量に対して0.01質量%以上である亜鉛電池用電解液。
  2.  前記アルカリ金属水酸化物が水酸化カリウムを含む、請求項1に記載の亜鉛電池用電解液。
  3.  前記界面活性剤がカチオン性界面活性剤、ノニオン性界面活性剤及びアニオン性界面活性剤からなる群より選ばれる少なくとも一種を含む、請求項1に記載の亜鉛電池用電解液。
  4.  前記亜鉛電池用電解液が酸素原子を含む有機化合物を含有する請求項1に記載の亜鉛電池用電解液。
  5.  前記酸素原子を含む有機化合物が、カルボキシ基、カルボン酸塩基、水酸基、エポキシ基及びエーテル基からなる群より選ばれる少なくとも一種を有する、請求項4に記載の亜鉛電池用電解液。
  6.  前記酸素原子を含む有機化合物が、エーテル基を含む複素環を有するエーテル化合物を含む、請求項4に記載の亜鉛電池用電解液。
  7.  前記酸素原子を含む有機化合物が、下記一般式(3)で表されるエーテル化合物を含む、請求項4に記載の亜鉛電池用電解液。
    Figure JPOXMLDOC01-appb-C000001

    [式(3)において、nは、1~10の整数を示し、R及びRは、有機基を示す。]
  8.  前記一般式(3)における有機基が、アルキル基又はアリール基である、請求項7に記載の亜鉛電池用電解液。
  9.  前記一般式(3)で表されるエーテル化合物が、グライム化合物を含む、請求項7に記載の亜鉛電池用電解液。
  10.  前記グライム化合物が、モノグライム、ジグライム、トリグライム及びテトラグライムからなる群より選ばれる少なくとも一種を含む、請求項9に記載の亜鉛電池用電解液。
  11.  正極と、負極と、請求項1~請求項10のいずれか一項に記載の亜鉛電池用電解液と、を備える、亜鉛電池。
PCT/JP2022/032286 2021-08-27 2022-08-26 亜鉛電池用電解液、及び、亜鉛電池 WO2023027185A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023544010A JPWO2023027185A1 (ja) 2021-08-27 2022-08-26
CN202280057697.9A CN117897850A (zh) 2021-08-27 2022-08-26 一种锌电池用电解液及锌电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021138859 2021-08-27
JP2021-138859 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023027185A1 true WO2023027185A1 (ja) 2023-03-02

Family

ID=85321680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032286 WO2023027185A1 (ja) 2021-08-27 2022-08-26 亜鉛電池用電解液、及び、亜鉛電池

Country Status (4)

Country Link
JP (1) JPWO2023027185A1 (ja)
CN (1) CN117897850A (ja)
TW (1) TW202315207A (ja)
WO (1) WO2023027185A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765854A (ja) * 1993-08-26 1995-03-10 Sanyo Electric Co Ltd アルカリ亜鉛蓄電池
JP2019160669A (ja) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 アルカリ蓄電池
JP2020155266A (ja) * 2019-03-19 2020-09-24 日立化成株式会社 亜鉛電池用電解液及び亜鉛電池
JP2021077594A (ja) * 2019-11-13 2021-05-20 昭和電工マテリアルズ株式会社 亜鉛電池用電解液、及び、亜鉛電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765854A (ja) * 1993-08-26 1995-03-10 Sanyo Electric Co Ltd アルカリ亜鉛蓄電池
JP2019160669A (ja) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 アルカリ蓄電池
JP2020155266A (ja) * 2019-03-19 2020-09-24 日立化成株式会社 亜鉛電池用電解液及び亜鉛電池
JP2021077594A (ja) * 2019-11-13 2021-05-20 昭和電工マテリアルズ株式会社 亜鉛電池用電解液、及び、亜鉛電池

Also Published As

Publication number Publication date
CN117897850A (zh) 2024-04-16
JPWO2023027185A1 (ja) 2023-03-02
TW202315207A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
JP5638058B2 (ja) 改善されたカソード
JP7260349B2 (ja) 亜鉛電池用電解液及び亜鉛電池
JP2023133607A (ja) 亜鉛電池用電解液及び亜鉛電池
JP7319174B2 (ja) 亜鉛電池用電解液、及び、亜鉛電池
JP6819402B2 (ja) 電解液及び亜鉛電池
JP7467213B2 (ja) 亜鉛電池用の負極及び亜鉛電池
JP4672985B2 (ja) リチウムイオン二次電池
JP6944994B2 (ja) アルカリ二次電池
JP2021180116A (ja) 亜鉛電池用電解液、及び、亜鉛電池
WO2023027185A1 (ja) 亜鉛電池用電解液、及び、亜鉛電池
JP2012253072A (ja) リチウムイオンキャパシタ
JP2019139986A (ja) 亜鉛電池用負極及び亜鉛電池
JP2023032617A (ja) 亜鉛電池用電解液及び亜鉛電池
JP2023035067A (ja) 亜鉛電池用電解液、及び、亜鉛電池
US20240356081A1 (en) Electrolytic solution for zinc battery and zinc battery
JP2021180119A (ja) 亜鉛電池用の負極、及び、亜鉛電池
JP2021180118A (ja) 亜鉛電池用の電解液、及び、亜鉛電池
JP2021180117A (ja) 亜鉛電池用の電解液、及び、亜鉛電池
JP2019106284A (ja) 亜鉛電池用負極及び亜鉛電池
JP2020061222A (ja) ニッケル亜鉛電池用負極及びニッケル亜鉛電池
JP7166705B2 (ja) 亜鉛電池用負極の製造方法及び亜鉛電池の製造方法
JP2019216059A (ja) 多孔膜、電池部材及び亜鉛電池
CN117397060A (zh) 锌电池
JP2022108077A (ja) 亜鉛電池用電解液及び亜鉛電池
JP2022154484A (ja) 亜鉛電池用電解液及び亜鉛電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544010

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18685455

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280057697.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22861473

Country of ref document: EP

Kind code of ref document: A1