WO2018173453A1 - 電池缶および円筒形電池 - Google Patents

電池缶および円筒形電池 Download PDF

Info

Publication number
WO2018173453A1
WO2018173453A1 PCT/JP2018/001861 JP2018001861W WO2018173453A1 WO 2018173453 A1 WO2018173453 A1 WO 2018173453A1 JP 2018001861 W JP2018001861 W JP 2018001861W WO 2018173453 A1 WO2018173453 A1 WO 2018173453A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
groove
thickness
insulating plate
opening
Prior art date
Application number
PCT/JP2018/001861
Other languages
English (en)
French (fr)
Inventor
仰 奥谷
武史 榎本
政幹 吉田
曉 高野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019507384A priority Critical patent/JP6994650B2/ja
Priority to CN201880008787.2A priority patent/CN110226243B/zh
Publication of WO2018173453A1 publication Critical patent/WO2018173453A1/ja
Priority to US16/577,219 priority patent/US11621450B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery can and a cylindrical battery having the same.
  • a general cylindrical battery includes a power generation element and a bottomed cylindrical battery can that stores the power generation element.
  • An annular groove projecting inward is formed in the vicinity of the opening end of the opening of the battery can. The opening is sealed by supporting the sealing body in the groove.
  • annular groove in a battery can have been proposed. For example, by pushing a rib provided on the circumferential surface of the roller into the vicinity of the opening end of the battery can, an annular groove portion protruding inward is formed.
  • the deformation in the annular groove is a plastic deformation that stretches the can wall, and the thickness of the groove is generally thinner than before the deformation. From the viewpoint of improving the processability of the battery can and stabilizing the groove shape, the thickness of the region to be processed is reduced in advance to reduce the hardness. However, when the groove is thinned, the strength of the groove is reduced.
  • Patent Document 1 discloses a battery can with respect to the pushing speed of the grooving roller in a state where pressure is applied upward from the bottom surface of the battery can from the viewpoint of stabilizing the shape and suppressing the thinning of the annular groove. It is proposed that the ratio of the number of rotations is 2.0 or more and 5.5 or less.
  • gas may be rapidly generated in the battery and the battery safety mechanism may be activated.
  • the battery safety mechanism In the case of a cylindrical battery, a part of the gas generated in the battery moves along the boundary between the battery can and the power generation element (that is, the inner surface of the battery can). It may be damaged. In order to operate the safety mechanism normally, it is desirable to avoid the damage of the groove as much as possible.
  • a battery can includes a cylindrical body, an opening provided at one end of the body, and a bottom that closes the other end of the body And.
  • An annular groove is formed by a reduced diameter in the vicinity of the opening end of the opening, and the groove has a groove upper part closer to the opening end than the innermost reduced diameter part and the most reduced diameter part.
  • a thickness T1 of the lower portion of the groove is larger than a thickness T2 of the trunk portion.
  • a cylindrical battery according to another aspect of the present disclosure includes an electrode group, an electrolyte, the battery can containing the electrode group and the electrolyte, the annular groove, and an end surface on the opening side of the electrode group.
  • the safety of the cylindrical battery can be improved.
  • the battery can according to the embodiment of the present invention includes a cylindrical body, an opening provided at one end of the body, and a bottom that closes the other end of the body.
  • An annular groove is formed in the vicinity of the opening end of the opening due to the reduced diameter.
  • the opening means not only the opening end but also a region including an annular groove in the vicinity thereof.
  • the annular groove portion has an innermost contracted diameter portion located on the innermost side, an upper groove portion closer to the opening end than the most contracted diameter portion, and a lower groove portion on the bottom side relative to the most contracted diameter portion.
  • the diameter reduction means for example, a process in which a jig is pressed against the can wall of the battery can from the outside, the can wall is pushed inward along the peripheral surface of the battery can, and the inner surface of the can wall is protruded inward.
  • the absolute amount of can wall material forming the groove is limited. Therefore, the thickness of the groove is generally thinner than before the deformation due to the reduced diameter.
  • the wall thickness T1 of the lower part of the groove is larger than the wall thickness T2 of the trunk by changing the processing conditions of the reduced diameter. For example, by controlling the coefficient of friction between the jig and the upper part of the groove in the middle of processing to be larger than the coefficient of friction between the jig and the lower part of the groove during processing, more can wall material can be placed in the lower part of the groove than in the upper part of the groove. Can be supplied.
  • the thickness T1 at the lower portion of the groove is larger than the thickness T2 of the trunk portion and larger than the thickness T3 of the upper portion of the groove.
  • the gas flow When gas is suddenly generated in the battery due to battery misuse and the gas flow moving along the boundary between the battery can and the power generation element collides with the groove, the gas flow first collides with the lower part of the groove. Therefore, as the wall thickness T1 at the lower portion of the groove increases, the durability of the groove portion against the collision of the gas flow is improved, and the damage to the groove portion is suppressed. Moreover, the overall strength of the annular groove portion is also improved by making the thickness T1 of the lower portion of the groove larger than the thickness T2 of the trunk portion.
  • the thickness T3 of the upper portion of the groove shielded from the gas flow by the lower portion of the groove does not need to be larger than the thickness T2 of the trunk portion.
  • the thickness T1 of the lower part of the groove is, for example, 1.01 times or more the thickness T2 of the body part, the durability and strength of the groove part are improved, and the effect of improving the safety of the battery is obtained.
  • T1 is more preferably 1.15 times or more of T2, and further preferably 1.3 times or more.
  • the thickness T1 of the lower part of the groove is the thickness of the thickest part in the lower part of the groove observed in an arbitrary cross section (longitudinal cross section) along the axial direction of the battery can.
  • the thickness T3 of the upper portion of the groove is the thickness of the thickest portion of the upper portion of the groove observed in the same longitudinal section of the battery can.
  • the thickness T2 of the trunk portion is an average value of thicknesses measured at a plurality of locations of the trunk portion observed in the same longitudinal section. For example, when the height of the body portion is H, the thickness of the body portion at heights of 0.25H, 0.5H, and 0.75H from the bottom of the battery can can be measured to obtain an average value.
  • the can wall bends with a larger curvature (forming a smaller radius of curvature).
  • the minimum radius of curvature r1 at the boundary between the inner surface of the groove lower portion and the inner surface of the trunk portion can be, for example, 0.2 mm or less. The smaller the minimum curvature radius r1, the smaller the inclination of the groove lower part.
  • FIG. 1 shows an example of an annular groove portion of a battery can in an enlarged cross-sectional view.
  • FIG. 2 is an enlarged cross-sectional view of an annular groove portion of the battery can.
  • the battery can 100 includes a cylindrical body 110, an opening 120 provided at one end of the body 110, and a bottom 130 that closes the other end of the body 110. In the vicinity of the opening end of the opening 120, an annular groove 120G is formed by a reduced diameter.
  • the annular groove 120G includes a most contracted diameter part 121G, a groove upper part 122G on the opening end side with respect to the most contracted diameter part 121G, and a groove lower part 123G on the bottom side with respect to the most contracted diameter part 121G.
  • the thickness T1 of the groove lower portion 123G is larger than the thickness T2 of the trunk portion 110 and the thickness T3 of the groove upper portion 122G.
  • the shape of the groove lower portion 123G is almost flat compared to the groove upper portion 122G, and the minimum curvature radius r1 at the boundary between the inner surface of the groove lower portion 123G and the inner surface of the trunk portion 110 is the inner radius of the groove upper portion 122G and the trunk portion 110. It is smaller than the minimum radius of curvature r3 at the boundary with the inner surface.
  • the cross-sectional shape of the battery can body is typically a circle or a shape approximate to a circle, but is not limited thereto.
  • the length of the trunk is not particularly limited, but is, for example, 60 mm to 80 mm.
  • the inner diameter of the body portion is not particularly limited, but is, for example, ⁇ 18 mm to 22 mm.
  • the protrusion width (groove depth) to the inner side of the groove is determined according to the battery size, and is, for example, 0.9 mm to 2.5 mm if the inner diameter of the body is within the above range.
  • the thickness of the barrel is determined according to the material of the battery can, the battery size, etc. If the length of the barrel is in the above range, it is, for example, 0.15 mm to 0.4 mm. At this time, the thickness of the bottom is, for example, 0.3 mm to 0.5 mm.
  • the material of the battery can is, for example, iron, iron alloy, stainless steel, aluminum, aluminum alloy or the like, but is not particularly limited.
  • the type of battery is not particularly limited, but the battery can is suitable as a battery case for a non-aqueous electrolyte battery such as a lithium ion secondary battery that requires high safety.
  • a cylindrical battery includes an electrode group, an electrolyte, and a battery can that houses the electrode group and the electrolyte.
  • a first insulating plate is disposed between the annular groove of the battery can and the end face on the opening side of the electrode group in order to suppress an internal short circuit.
  • a second insulating plate is disposed between the bottom of the battery can and the end surface on the bottom side of the electrode group.
  • the minimum radius of curvature r1 at the boundary between the inner surface of the lower part of the groove and the inner surface of the body part is reduced and the inclination of the lower part of the groove is reduced, the outermost edge of the first insulating plate is not easily pressed by the lower part of the groove. Therefore, even if the maximum diameter d of the first insulating plate is brought close to the inner diameter D of the body portion, damage due to the pressure on the first insulating plate is suppressed. As the maximum diameter d of the first insulating plate is increased, the effect of suppressing the internal short circuit by the first insulating plate is enhanced.
  • the material of the first insulating plate and the second insulating plate is a material mainly composed of an insulating resin such as phenol resin, and preferably includes an insulating fibrous material as a core material.
  • the maximum diameter d of the first insulating plate and the inner diameter D of the body portion satisfy 0.98 ⁇ d / D ⁇ 1. In this case, almost no gap is formed between the outermost edge of the first insulating plate and the inner surface of the body portion, and the gap can be reduced to, for example, 100 ⁇ m or less. Therefore, even if the electrode group is deformed by a large impact, for example, contact between the electrode and the battery can hardly occurs near the outermost periphery of the electrode group.
  • the inclination of the lower portion of the groove is preferably as small as possible.
  • the distance L1 in the axial direction of the electrode group from the outermost edge of the first insulating plate to the inner surface of the lower portion of the groove is 1 ⁇ 2 of the protruding width of the groove portion from the outermost edge of the first insulating plate. It is preferable that the distance L2 in the coaxial direction from the position on the center side to the inner surface of the groove lower portion is almost the same distance. More specifically, it is preferable that 0.97 ⁇ L2 / L1 ⁇ 1.5 is satisfied, and it is more preferable that 1.05 ⁇ L2 / L1 ⁇ 1.45 is satisfied.
  • the wall thicknesses T1 to T3, the minimum curvature radii r1 to r3, the projecting width to the inside of the groove, the maximum diameter d of the first insulating plate, the inner diameter D of the body, L2 / L1, etc. are measured from CT photographs. Alternatively, it may be measured from a cross section obtained by embedding in a resin or the like and then cutting the battery or battery can so as not to deform.
  • FIG. 3 is a longitudinal sectional view of the lithium ion secondary battery.
  • the lithium ion secondary battery (hereinafter referred to as a battery) 10 includes an electrode group 18, an electrolyte (not shown), and a battery can 100 that houses them.
  • the electrode group 18 is formed by winding a positive electrode plate 15 and a negative electrode plate 16 with a separator 17 interposed therebetween.
  • An annular groove 120 ⁇ / b> G is formed in the vicinity of the opening end of the battery can 100.
  • a first insulating plate 23 is disposed between one end face of the electrode group 18 and the annular groove 120G.
  • a second insulating plate 24 is disposed between the other end face of the electrode group 18 and the bottom 130 of the battery can 100.
  • the outermost edge of the first insulating plate 23 is held between the end face of the electrode group 18 and the annular groove 120G.
  • the maximum diameter d of the first insulating plate 23 and the inner diameter D of the body portion 110 are almost the same and satisfy 0.98 ⁇ d / D ⁇ 1.
  • the distance L2 in the coaxial direction from the position on the side to the inner surface of the groove lower portion 123G is almost the same distance, and 0.97 ⁇ L2 / L1 ⁇ 1.5 is satisfied (see FIG. 2A).
  • the opening of the battery can 100 is sealed with a sealing body 11 having a gasket 21 at the periphery.
  • the sealing body 11 includes a valve body 12, a metal plate 13, and an annular insulating member 14 interposed between the outer periphery of the valve body 12 and the outer periphery of the metal plate 13.
  • the valve body 12 and the metal plate 13 are connected to each other at the center.
  • the positive electrode lead 15 a led out from the positive electrode plate 15 is connected to the metal plate 13. Therefore, the valve body 12 functions as a positive external terminal.
  • the negative electrode lead 16 a led out from the negative electrode plate 16 is connected to the bottom inner surface of the battery can 100.
  • the positive electrode plate 15 includes a foil-shaped positive electrode current collector and a positive electrode active material layer formed on the surface thereof.
  • a material for the positive electrode current collector aluminum, aluminum alloy, stainless steel, titanium, titanium alloy, or the like can be used.
  • a lithium-containing transition metal composite oxide is preferably used.
  • a composite oxide containing lithium and at least one selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium is used.
  • the negative electrode plate 16 includes a foil-like negative electrode current collector and a negative electrode active material layer formed on the surface thereof.
  • a material for the negative electrode current collector copper, copper alloy, nickel, nickel alloy, stainless steel, or the like can be used.
  • the negative electrode active material a carbon material capable of reversibly occluding and releasing lithium ions, for example, natural graphite, artificial graphite, hard carbon, soft carbon, tin oxide, silicon oxide, or the like can be used.
  • a microporous film formed of polyolefin can be used as the separator 17, for example.
  • the polyolefin include polyethylene, polypropylene, and ethylene-propylene copolymer.
  • the electrolyte includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, carboxylic acid esters, and chain ethers.
  • the lithium salt LiPF 6 , LiBF 4 , LiClO 4 or the like is used.
  • FIG. 4 shows an outline of a grooving device for forming an annular groove in a battery can.
  • the grooving device holds the bottom 130 of the battery can 100 and pushes the battery can 100 along the axial direction toward the opening 120, and the opening 120 of the battery can 100 holds the battery can 100.
  • the jig (grooving roller 2) is pressed against the can wall of the battery can 100 from the outside at a predetermined moving speed, and the can wall is pushed inward along the peripheral surface of the battery can 100.
  • the grooving roller 2 is a flat columnar rotating body having an annular rib 2a having a shape corresponding to the groove shape on the peripheral surface.
  • the battery can 100 moves in the direction (upward) indicated by an arrow A, with the bottom 130 held by the lower mold mechanism 3 that can move up and down.
  • the upper mold mechanism 4 is pressed against the opening 120 of the battery can 100.
  • the battery can 100 rotates.
  • the grooving roller 2 is translated in the direction of arrow D at a constant speed with a predetermined pushing width.
  • the annular rib 2a of the grooving roller 2 contacts the vicinity of the opening end of the rotating battery can 100, the grooving roller 2 also rotates in the direction indicated by the arrow C.
  • the grooving roller 2 moves in parallel, the can wall is pushed inward along the peripheral surface of the battery can 100 to form the annular groove 120G.
  • channel lower part in the middle of a process is controllable to a desired range, respectively.
  • Example 1 Production of positive electrode plate 100 parts by mass of a positive electrode active material (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), 1.7 parts by mass of a binder (polyvinylidene fluoride), and 2.5% by weight of a conductive agent (acetylene black) Were mixed in a dispersion medium and kneaded to prepare a positive electrode mixture slurry. The positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil, dried, rolled to form a positive electrode active material layer, and cut into predetermined dimensions to obtain a positive electrode plate. An exposed portion was provided in a part of the positive electrode current collector, and an aluminum positive electrode lead was connected.
  • a positive electrode active material LiNi 0.8 Co 0.15 Al 0.05 O 2
  • a binder polyvinylidene fluoride
  • a conductive agent acetylene black
  • negative electrode plate 100 parts by mass of a negative electrode active material (graphite), 0.6 part by mass of a binder (styrene butadiene rubber), and 1 part by weight of a thickener (carboxymethyl cellulose) are put into a dispersion medium. And kneaded to prepare a negative electrode mixture slurry. The negative electrode mixture slurry was applied to both sides of a negative electrode current collector made of copper foil, dried, rolled to form a negative electrode active material layer, and cut into predetermined dimensions to obtain a negative electrode. An exposed part was provided in a part of the negative electrode current collector, and a negative electrode lead made of nickel was connected.
  • a negative electrode active material graphite
  • binder styrene butadiene rubber
  • a thickener carboxymethyl cellulose
  • Ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) were mixed to prepare a non-aqueous solvent.
  • LiPF 6 was dissolved in a non-aqueous solvent at a concentration of 1 mol / L to obtain a non-aqueous electrolyte.
  • the positive electrode plate and the negative electrode plate were wound through a polyolefin microporous film (separator) to produce an electrode group.
  • a second insulating plate was placed on the lower end surface of the electrode group, inserted into the battery can, and the negative electrode lead was resistance welded to the bottom of the battery can.
  • an iron can having an inner diameter D of 20.4 mm and a height H of 70 mm and nickel plating on the inner and outer surfaces was used.
  • the annular groove satisfies the following conditions.
  • a positive electrode lead is connected to a metal plate provided in a sealing body having a safety mechanism, and is supported by an annular groove formed in the battery can via a gasket, and the open end of the battery can is caulked to the periphery of the sealing body.
  • a lithium ion secondary battery was completed.
  • Comparative Example 1 A lithium ion secondary battery was completed in the same manner as in Example 1 except that the conditions of the annular groove were changed as follows. In addition, T3 and r1 also changed with the change of T1 and T2. L2 / L1 exceeded 1.5, and the deformation of the outermost edge of the first insulating plate was larger than that in Example 1.
  • the cylindrical battery including the battery can according to the present invention is particularly useful in a non-aqueous electrolyte secondary battery having a high energy density because of its high safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

電池缶は、筒状の胴部と、胴部の一方の端部に設けられた開口部と、胴部の他方の端部を閉じている底部と、を具備する。開口部の開口端の近傍には、縮径により環状溝部が形成されており、環状溝部は、最も内側に位置する最縮径部よりも開口端側の溝上部と、最縮径部よりも底部側の溝下部と、を有し、溝下部の肉厚T1が、胴部の肉厚T2よりも大きい。

Description

電池缶および円筒形電池
 本発明は、電池缶およびこれを具備する円筒形電池に関する。
 一般的な円筒形電池は、発電要素と、発電要素を収納する有底円筒形の電池缶とを具備する。電池缶の開口部の開口端の近傍には、内側に突出する環状溝部が形成される。溝部に封口体を支持させることで開口部が封口される。
 電池缶に環状溝部を形成する方法は種々提案されている。例えば、ローラの周面に設けられたリブを電池缶の開口端の近傍に押し込むことで、内側に突出する環状溝部が形成される。環状溝部における変形は、缶壁を引き伸ばす塑性変形であり、溝部の肉厚は変形前に比べて薄くなることが一般的である。電池缶の加工性を向上させて溝形状を安定化させる観点から、被加工領域の肉厚を予め薄くして硬度を下げることも行われている。ただし溝部が薄肉化すると溝部の強度が低下する。
 そこで、特許文献1は、形状を安定化させるとともに、環状溝部の薄肉化の抑制を図る観点から、電池缶の底面から上向きに加圧を加えた状態で、溝入れローラの押し込み速度に対する電池缶の回転数の比率を2.0以上5.5以下とすることを提案している。
特開2009-176551号公報
 電池が誤用されると、電池内で急激にガスが発生し、電池の安全機構が作動することがある。円筒形電池の場合、電池内で発生したガスの一部は、電池缶と発電要素との境界(すなわち電池缶の内面)に沿って移動するため、環状溝部にガス流が衝突して溝部を破損させることがある。安全機構を正常に作動させるために、溝部の破損をできるだけ回避することが望まれる。
 上記に鑑み、本開示の一側面の電池缶は、筒状の胴部と、前記胴部の一方の端部に設けられた開口部と、前記胴部の他方の端部を閉じている底部と、を具備する。前記開口部の開口端の近傍に、縮径により環状溝部が形成されており、前記溝部は、最も内側に位置する最縮径部よりも前記開口端側の溝上部と、前記最縮径部よりも前記底部側の溝下部と、を有し、前記溝下部の肉厚T1が、前記胴部の肉厚T2よりも大きい。
 本開示の別の側面の円筒形電池は、電極群と、電解質と、前記電極群と前記電解質とを収容する上記電池缶と、前記環状溝部と前記電極群の前記開口部側の端面との間に配置された第1絶縁板と、前記底部と前記電極群の前記底部側の端面との間に配置された第2絶縁板と、を具備する。
 本開示によれば、円筒形電池の安全性を高めることができる。
本発明の一実施形態に係る電池缶の縦断面図である。 同電池缶の環状溝部の拡大断面図であり、環状溝部と第1絶縁板との位置関係および溝部各部の構成を示す図(a)と、溝部各部の肉厚と最小曲率半径を形成する部位を示す図(b)である。 本発明の一実施形態に係る円筒形電池の縦断面図である。 電池缶に環状溝部を形成する工程の説明図である。
 本発明の実施形態に係る電池缶は、筒状の胴部と、胴部の一方の端部に設けられた開口部と、胴部の他方の端部を閉じている底部とを具備する。開口部の開口端の近傍には、縮径により環状溝部が形成されている。ここでは、開口部とは、開口端だけでなく、その近傍の環状溝部を含む領域をいう。環状溝部は、最も内側に位置する最縮径部と、最縮径部よりも開口端側の溝上部と、最縮径部よりも底部側の溝下部とを有する。
 縮径とは、例えば、電池缶の缶壁に外側から冶具を押し当て、電池缶の周面に沿って缶壁を内側に押し込み、缶壁の内面を内側に突出させる加工をいう。溝部を構成する缶壁材料の絶対量は限られている。そのため、溝部の肉厚は、縮径による変形前に比べて薄くなることが一般的である。
 一方、縮径の加工条件を変更することにより、溝下部の肉厚T1を、胴部の肉厚T2よりも大きくすることが可能である。例えば、冶具と加工途中の溝上部との摩擦係数が、冶具と加工途中の溝下部との摩擦係数よりも大きくなるように制御して、溝上部よりも溝下部に、より多くの缶壁材料を供給すればよい。このような加工を行うと、溝下部の肉厚T1は、胴部の肉厚T2よりも大きく、かつ溝上部の肉厚T3よりも大きくなる。
 電池の誤用により電池内で急激にガスが発生し、電池缶と発電要素との境界に沿って移動するガス流が溝部に衝突する場合、ガス流は、最初に溝下部に衝突する。よって、溝下部の肉厚T1が大きいほど、ガス流の衝突に対する溝部の耐久性が向上し、溝部の破損が抑制される。また、溝下部の肉厚T1を胴部の肉厚T2よりも大きくすることで、環状溝部の全体的な強度も向上する。
 なお、溝下部によってガス流から遮蔽されている溝上部の厚さT3は、胴部の厚さT2よりも大きくする必要はない。
 溝下部の肉厚T1は、例えば、胴部の肉厚T2の1.01倍以上であれば、溝部の耐久性や強度が向上し、電池の安全性を向上させる効果が得られる。ただし、より顕著な効果を得る観点から、T1はT2の1.15倍以上がより好ましく、1.3倍以上が更に好ましい。ただし、溝下部の肉厚T1を胴部の肉厚T2に対して過度に大きくすることは困難である。最大でT1をT2の1.6倍程度まで大きくすることが可能である。
 ここで、溝下部の肉厚T1とは、電池缶の軸方向に沿った任意の断面(縦断面)において観測される溝下部のうち、最も厚い部分の厚さである。同様に、溝上部の肉厚T3は、電池缶の同縦断面において観測される溝上部のうち、最も厚い部分の厚さである。
 胴部の厚さT2は、同縦断面において観測される胴部の複数個所で測定された厚さの平均値である。例えば、胴部の高さをHとするとき、電池缶の底部から0.25H、0.5Hおよび0.75Hの高さにおける胴部の厚さを測定して、平均値を求めればよい。
 溝下部の肉厚T1を胴部の肉厚T2よりも大きくする場合、加工途中における溝下部の湾曲が抑制され、よりフラットに近い形状になる。このような溝下部と胴部との境界では、缶壁がより大きい曲率をもって(より小さい曲率半径を形成して)屈曲する。溝下部の内面と胴部の内面との境界における、最小曲率半径r1は、例えば0.2mm以下になり得る。最小曲率半径r1が小さいほど、溝下部の傾斜も小さくなる。
 図1に、電池缶の環状溝部の一例を拡大断面図で示す。図2は、同電池缶の環状溝部の拡大断面図である。電池缶100は、筒状の胴部110と、胴部110の一方の端部に設けられた開口部120と、胴部110の他方の端部を閉じている底部130とを具備する。開口部120の開口端の近傍には、縮径により環状溝部120Gが形成されている。環状溝部120Gは、最縮径部121Gと、最縮径部121Gよりも開口端側の溝上部122Gと、最縮径部121Gよりも底部側の溝下部123Gとを有する。溝下部123Gの肉厚T1は、胴部110の肉厚T2および溝上部122Gの肉厚T3よりも大きくなっている。溝下部123Gの形状は、溝上部122Gに比べるとフラットに近い形状であり、溝下部123Gの内面と胴部110の内面との境界における最小曲率半径r1は、溝上部122Gの内面と胴部110の内面との境界における最小曲率半径r3よりも小さくなっている。
 電池缶の胴部の横断面形状は、典型的には、円形または円形に近似した形状であるが、これに限定されるものではない。胴部の長さも特に限定されないが、例えば60mm~80mmである。胴部の内径も特に限定されないが、例えばφ18mm~22mmである。
 溝部の内側への突出幅(溝深さ)は、電池サイズに応じて決定されるが、胴部の内径が上記範囲であれば、例えば0.9mm~2.5mmである。
 胴部の肉厚は、電池缶の材質、電池サイズなどに応じて決定されるが、胴部の長さが上記範囲であれば、例えば0.15mm~0.4mmである。このとき、底部の肉厚は、例えば0.3mm~0.5mmである。
 電池缶の材質には、例えば、鉄、鉄合金、ステンレス鋼、アルミニウム、アルミニウム合金などが用いられるが、特に限定されない。
 電池の種類は、特に限定されないが、上記電池缶は、高度な安全性が求められるリチウムイオン二次電池のような非水電解質電池の電池ケースとして適している。
 次に、上記電池缶を用いた円筒形電池の一例について説明する。
 円筒形電池は、電極群と、電解質と、電極群と電解質とを収容する電池缶とを具備する。電池缶の環状溝部と電極群の開口部側の端面との間には、内部短絡を抑制するために第1絶縁板が配置される。同様に、電池缶の底部と電極群の底部側の端面との間には、第2絶縁板が配置される。
 溝下部の内面と胴部の内面との境界における最小曲率半径r1が小さくなり、溝下部の傾斜が小さくなると、第1絶縁板の最外縁は、溝下部による圧迫を受けにくくなる。よって、第1絶縁板の最大径dを胴部の内径Dに、ぎりぎりまで近づけても、第1絶縁板が圧迫されることによる破損が抑制される。第1絶縁板の最大径dを大きくするほど、第1絶縁板による内部短絡を抑制する効果は高められる。
 第1絶縁板および第2絶縁板の材質は、例えばフェノール樹脂のような絶縁性樹脂を主成分とする材料であり、絶縁性の繊維状材料を芯材に含むものが好ましい。
 第1絶縁板の最大径dと、胴部の内径Dとは、0.98≦d/D<1を満たすことが好ましい。この場合、第1絶縁板の最外縁と胴部の内面との間には、ほとんど隙間が形成されず、当該隙間を例えば100μm以下にまで低減することが可能である。よって、仮に大きな衝撃によって電極群が捲きずれなどの変形を生じたとしても、電極群の最外周付近において電極と電池缶との接触は生じにくくなる。
 溝下部の傾斜は小さいほど好ましく、第1絶縁板の最外縁から溝下部の内面までの電極群の軸方向における距離L1と、第1絶縁板の最外縁から溝部の突出幅の1/2の距離だけ中心側の位置から溝下部の内面までの同軸方向における距離L2とは、ほとんど同じ距離であることが好ましい。より具体的には、0.97<L2/L1<1.5が満たされることが好ましく、1.05<L2/L1<1.45が満たされることがより好ましい。
 なお、肉厚T1~T3、最小曲率半径r1~r3、溝部の内側への突出幅、第1絶縁板の最大径d、胴部の内径D、L2/L1などは、CT写真から測定してもよく、電池もしくは電池缶を変形しないように樹脂などに埋設してから切断して得られる断面から測定してもよい。
 以下、図3を参照しながら、本発明の一実施形態に係る円筒形電池について、リチウムイオン二次電池を例にとって説明する。図3は、リチウムイオン二次電池の縦断面図である。
 リチウムイオン二次電池(以下、電池)10は、電極群18と、電解質(図示せず)と、これらを収容する電池缶100とを具備する。電極群18は、正極板15と負極板16とをセパレータ17を介して捲回して形成されている。電池缶100の開口端の近傍には環状溝部120Gが形成されている。電極群18の一方の端面と環状溝部120Gとの間には、第1絶縁板23が配置されている。電極群18の他方の端面と電池缶100の底部130との間には、第2絶縁板24が配置されている。
 第1絶縁板23の最外縁は、電極群18の当該端面と環状溝部120Gとの間に保持されている。第1絶縁板23の最大径dと、胴部110の内径Dとは、ほとんど同じであり、0.98≦d/D<1を満たしている。また、第1絶縁板23の最外縁から溝下部123Gの内面までの電極群18の軸方向における距離L1と、第1絶縁板23の最外縁から溝部の突出幅の1/2の距離だけ中心側の位置から溝下部123Gの内面までの同軸方向における距離L2とは、ほとんど同じ距離であり、0.97<L2/L1<1.5が満たされている(図2(a)参照)。
 電池缶100の開口部は、周縁部にガスケット21を具備する封口体11で封口されている。封口体11は、弁体12と、金属板13と、弁体12の外周部と金属板13の外周部との間に介在する環状の絶縁部材14とを具備する。弁体12と金属板13は、それぞれの中心部において互いに接続されている。正極板15から導出された正極リード15aは、金属板13に接続されている。よって、弁体12は、正極の外部端子として機能する。負極板16から導出された負極リード16aは、電池缶100の底部内面に接続されている。
 正極板15は、箔状の正極集電体と、その表面に形成された正極活物質層とを具備する。正極集電体の材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、チタン、チタン合金等を用いることができる。正極活物質としては、リチウム含有遷移金属複合酸化物が好ましく用いられる。例えばコバルト、マンガン、ニッケル、クロム、鉄およびバナジウムよりなる群から選択される少なくとも1種と、リチウムとを含む複合酸化物が使用される。
 負極板16は、箔状の負極集電体と、その表面に形成された負極活物質層とを具備する。負極集電体の材料としては、銅、銅合金、ニッケル、ニッケル合金、ステンレス鋼等を用いることができる。負極活物質としては、リチウムイオンを可逆的に吸蔵し、放出し得る炭素材料、例えば、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボンや、酸化錫、酸化珪素等を用いることができる。
 セパレータ17としては、例えば、ポリオレフィンで形成された微多孔膜を用いることができる。ポリオレフィンとしては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などが例示できる。
 電解質は、非水溶媒と、非水溶媒に溶解させたリチウム塩とを具備する。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、カルボン酸エステル、鎖状エーテルなどが用いられる。リチウム塩としては、LiPF6、LiBF4、LiClO4などが使用される。
 次に、電池缶に環状溝部を形成する方法について説明する。
 図4には、電池缶に環状溝部を形成する溝入れ装置の概略が示されている。溝入れ装置は、電池缶100の底部130を保持して電池缶100を軸方向に沿って開口部120側へ押し上げる下型機構3と、電池缶100の開口部120を保持して電池缶100を回転させる上型機構4と、電池缶100の缶壁に外側から所定の移動速度で冶具(溝入れローラ2)を押し当て、電池缶100の周面に沿って缶壁を内側に押し込み、缶壁の内面を内側に突出させる押圧機構と、を具備する。溝入れローラ2は、溝形状に応じた形状の環状リブ2aを周面に有する平坦な柱状回転体である。下型機構3による電池缶100の押し上げにより、溝下部123Gの肉厚T1を厚くするのに必要な電池缶材料が、胴部110および底部130側から補給される。
 電池缶100は、その底部130が上下動可能な下型機構3に保持されて、矢印Aで示される方向(上方)に移動する。電池缶100の開口部120には、上型機構4が押し当てられる。上型機構4が、矢印Bで示される方向に回転することにより、電池缶100が回転する。溝入れローラ2は、一定速度で矢印Dの方向に、所定の押し込み幅で平行移動させる。回転している電池缶100の開口端の近傍に溝入れローラ2の環状リブ2aが接触すると、溝入れローラ2も矢印Cで示される方向に回転する。溝入れローラ2が平行移動する際に、電池缶100の周面に沿って缶壁が内側に押し込まれ、環状溝部120Gが形成される。
 下型機構3による電池缶100の押し上げ速度、上型機構4による電池缶100の回転数、押圧機構による溝入れローラ2の押し込み速度、環状リブ2aの形状等を制御することにより、溝入れローラと、加工途中の溝上部もしくは溝下部との摩擦係数を、それぞれ所望の範囲に制御することができる。
 次に、本発明の実施形態について実施例に基づいて更に説明する。
 《実施例1》
 (1)正極板の作製
 正極活物質(LiNi0.8Co0.15Al0.052)100質量部と、結着剤(ポリフッ化ビニリデン)1.7質量部と、導電剤(アセチレンブラック)2.5重量部とを分散媒中に投入し、混練して正極合剤スラリーを調製した。正極合剤スラリーをアルミニウム箔製の正極集電体の両面に塗布し、乾燥し、圧延して正極活物質層を形成し、所定寸法に切断して正極板を得た。正極集電体の一部に露出部を設け、アルミニウム製の正極リードを接続した。
 (2)負極板の作製
 負極活物質(黒鉛)100質量部と、結着剤(スチレンブタジエンゴム)0.6質量部と、増粘剤(カルボキシメチルセルロース)1重量部とを分散媒中に投入し、混練して負極合剤スラリーを調製した。負極合剤スラリーを銅箔製の負極集電体の両面に塗布し、乾燥し、圧延して負極活物質層を形成し、所定寸法に切断して負極を得た。負極集電体の一部に露出部を設け、ニッケル製の負極リードを接続した。
 (3)非水電解質の調製
 エチレンカーボネート(EC)、ジメチルカーボネート(DMC)およびエチルメチルカーボネート(EMC)を混合して非水溶媒を調製した。非水溶媒にLiPFを1mol/Lの濃度で溶解して非水電解質を得た。
 (4)電池の作製
 正極板と負極板とをポリオレフィン製の微多孔製膜(セパレータ)を介して捲回して電極群を作製した。電極群の下端面に第2絶縁板を配置し、電池缶に挿入し、負極リードを電池缶の底部に抵抗溶接した。電池缶には、胴部の内径D=20.4mm、高さH=70mmで、内外面にニッケルめっきを施した鉄缶を用いた。
 電極群の上端面に、直径d=20.2mm(d/D=0.99)の円盤状の第1絶縁板を配置した後、図4に示されるような装置を用いて、電池缶の開口端の近傍に、環状溝部を形成した。溝入れローラの押し込み幅(溝部の突出幅)は1.7mmとした。
 環状溝部は以下の条件を満たす。
 溝下部の肉厚T1=0.34mm
 胴部の肉厚T2=0.30mm(T1/T2=1.13)
 溝上部の肉厚T3=0.22mm
 溝下部の内面と胴部の内面との境界の最小曲率半径r1=0.1mm
 次に、安全機構を具備する封口体が具備する金属板に正極リードを接続し、電池缶に形成された環状溝部にガスケットを介して支持させ、電池缶の開口端を封口体の周縁にかしめ、リチウムイオン二次電池を完成させた。L2=0.5mm、L2/L1=1.45であった。溝下部からの圧迫による第1絶縁板の最外縁の底部側への変形は僅かであった。
 《比較例1》
 環状溝部の条件を以下に変更したこと以外、実施例1と同様にリチウムイオン二次電池を完成させた。なお、T1、T2の変更に伴い、T3およびr1も変化した。L2/L1は1.5を超えており、第1絶縁板の最外縁の変形は実施例1よりも大きくなっていた。
 溝下部の肉厚T1=0.30mm
 胴部の肉厚T2=0.30mm(T1/T2=1)
 《比較例2》
 環状溝部の条件を以下に変更したこと以外、実施例1と同様にリチウムイオン二次電池を完成させた。なお、T1、T2の変更に伴い、T3およびr1も変化した。L2/L1は1.6を超えており、第1絶縁板の最外縁の変形は比較例1よりも更に大きくなっていた。
 溝下部の肉厚T1=0.28mmmm
 胴部の肉厚T2=0.30mm(T1/T2<1)
 なお、T1/T2>1を満たす実施例1の電池は、比較例1、2の電池に比べて、誤用により電池内で急激にガスが発生した場合の安全性が大きく向上しているものと考えられる。
 本発明に係る電池缶を具備する円筒形電池は、安全性が高いため、高エネルギー密度を有する非水電解質二次電池において特に有用である。
10:リチウムイオン二次電池
11:封口体
12:弁体
13:金属板
14:絶縁部材
15:正極板
15a:正極リード
16:負極板
16a:負極リード
17:セパレータ
18:電極群
21:ガスケット
23:第1絶縁板
24:第2絶縁板
100:電池缶
110:胴部
120:開口部
120G:環状溝部
121G:最縮径部
122G:溝上部
123G:溝下部
130:底部

Claims (7)

  1.  筒状の胴部と、
     前記胴部の一方の端部に設けられた開口部と、
     前記胴部の他方の端部を閉じている底部と、を具備し、
     前記開口部の開口端の近傍には、縮径により環状溝部が形成されており、
     前記環状溝部は、最も内側に位置する最縮径部よりも前記開口端側の溝上部と、前記最縮径部よりも前記底部側の溝下部と、を有し、
     前記溝下部の肉厚T1が、前記胴部の肉厚T2よりも大きい、電池缶。
  2.  前記溝下部の肉厚T1が、前記溝上部の肉厚T3よりも大きい、請求項1に記載の電池缶。
  3.  前記溝下部の肉厚T1が、前記胴部の肉厚T2の1.01倍以上、1.6倍以下である、請求項1または2に記載の電池缶。
  4.  前記溝下部の内面と前記胴部の内面との境界の最小曲率半径r1が0.2mm以下である、請求項1~3のいずれか1項に記載の電池缶。
  5.  電極群と、
     電解質と、
     前記電極群と前記電解質とを収容する請求項1に記載の電池缶と、
     前記環状溝部と前記電極群の前記開口部側の端面との間に配置された第1絶縁板と、
     前記底部と前記電極群の前記底部側の端面との間に配置された第2絶縁板と、
    を具備する円筒形電池。
  6.  前記第1絶縁板の最大径dと、前記胴部の内径Dとが、0.98≦d/D<1を満たす、請求項5に記載の円筒形電池。
  7.  前記第1絶縁板の最外縁から前記溝下部の内面までの前記電極群の軸方向における距離L1と、
     前記第1絶縁板の前記最外縁から前記環状溝部の突出幅の1/2の距離だけ中心側の位置から前記溝下部の内面までの前記軸方向における距離L2とが、
     0.97<L2/L1<1.5を満たす、請求項6に記載の円筒形電池。
PCT/JP2018/001861 2017-03-24 2018-01-23 電池缶および円筒形電池 WO2018173453A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019507384A JP6994650B2 (ja) 2017-03-24 2018-01-23 電池缶および円筒形電池
CN201880008787.2A CN110226243B (zh) 2017-03-24 2018-01-23 电池罐及圆筒形电池
US16/577,219 US11621450B2 (en) 2017-03-24 2019-09-20 Battery can and cylindrical battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017060093 2017-03-24
JP2017-060093 2017-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/577,219 Continuation US11621450B2 (en) 2017-03-24 2019-09-20 Battery can and cylindrical battery

Publications (1)

Publication Number Publication Date
WO2018173453A1 true WO2018173453A1 (ja) 2018-09-27

Family

ID=63584327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001861 WO2018173453A1 (ja) 2017-03-24 2018-01-23 電池缶および円筒形電池

Country Status (4)

Country Link
US (1) US11621450B2 (ja)
JP (1) JP6994650B2 (ja)
CN (1) CN110226243B (ja)
WO (1) WO2018173453A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115051085B (zh) * 2022-06-30 2024-04-02 东莞新能安科技有限公司 电池及其制造方法、电池模组以及用电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241251A (ja) * 2003-02-05 2004-08-26 Sony Corp 電池用インシュレータ及び非水電解液電池
JP2005190688A (ja) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd 密閉形電池
JP2005293922A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd 電池およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845513A (ja) * 1994-07-29 1996-02-16 Fuji Photo Film Co Ltd 電池の製造方法および装置
JP3968790B2 (ja) * 1995-08-21 2007-08-29 宇部興産株式会社 円筒形電池の製造方法および装置
JP3671551B2 (ja) 1996-09-10 2005-07-13 東洋製罐株式会社 電池缶とこの缶を用いた乾電池の製造方法
US20030219649A1 (en) * 2002-05-24 2003-11-27 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2005150073A (ja) * 2003-08-28 2005-06-09 Matsushita Electric Ind Co Ltd 電池およびその製造方法
KR100659881B1 (ko) * 2004-10-28 2006-12-20 삼성에스디아이 주식회사 원통형 리튬 이온 전지
JP5007048B2 (ja) 2005-06-16 2012-08-22 パナソニック株式会社 円筒形電池の製造方法及び円筒形電池の溝入れ加工装置
JP2007172967A (ja) * 2005-12-21 2007-07-05 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2007329080A (ja) * 2006-06-09 2007-12-20 Matsushita Electric Ind Co Ltd 電池缶及びその製造方法
JP4254881B2 (ja) 2007-04-18 2009-04-15 宇部興産株式会社 円筒形電池の製造方法および装置
JP2009043584A (ja) * 2007-08-09 2009-02-26 Panasonic Corp 有底円筒形状の電池およびその製造方法とその製造装置
JP2009176551A (ja) 2008-01-24 2009-08-06 Panasonic Corp 非水系二次電池の製造方法および製造装置
WO2013099295A1 (ja) * 2011-12-28 2013-07-04 パナソニック株式会社 円筒形リチウムイオン電池
EP2800162B1 (en) * 2012-02-24 2015-09-16 Panasonic Intellectual Property Management Co., Ltd. Cylindrical alkaline storage battery
WO2014119309A1 (ja) * 2013-01-31 2014-08-07 三洋電機株式会社 密閉型電池
JP2018018575A (ja) * 2014-12-03 2018-02-01 パナソニックIpマネジメント株式会社 密閉型電池の製造方法及び密閉型電池
JP6729575B2 (ja) * 2015-06-16 2020-07-22 株式会社村田製作所 電池、電池缶、電池パック、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241251A (ja) * 2003-02-05 2004-08-26 Sony Corp 電池用インシュレータ及び非水電解液電池
JP2005190688A (ja) * 2003-12-24 2005-07-14 Sanyo Electric Co Ltd 密閉形電池
JP2005293922A (ja) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd 電池およびその製造方法

Also Published As

Publication number Publication date
US11621450B2 (en) 2023-04-04
CN110226243A (zh) 2019-09-10
JPWO2018173453A1 (ja) 2020-01-23
JP6994650B2 (ja) 2022-01-14
US20200013994A1 (en) 2020-01-09
CN110226243B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
JP6567280B2 (ja) 非水電解質二次電池及び製造方法
JP6531652B2 (ja) 非水電解質二次電池用負極
WO2016204147A1 (ja) 電池及び電池パック
WO2016157749A1 (ja) 円筒形電池
JP7236645B2 (ja) 非水電解質二次電池及びその製造方法
JP7320738B2 (ja) 円筒型二次電池
JP7395676B2 (ja) 二次電池用絶縁板およびそれを備える二次電池
JP5708934B2 (ja) 二次電池
JP7382569B2 (ja) 電池用電極、電池、および電池用電極の製造方法
WO2016116971A1 (ja) 非水電解質二次電池用正極板及び非水電解質二次電池
JP2007172880A (ja) 電池およびその製造方法
JP2024054421A (ja) 巻回型非水電解質二次電池
JP4892842B2 (ja) リチウム二次電池
JP2013114797A (ja) 非水電解質電池の製造方法
WO2018173453A1 (ja) 電池缶および円筒形電池
CN108701856B (zh) 二次电池
JP2007258084A (ja) リチウム二次電池
JP2009123529A (ja) 密閉型電池
JP4873862B2 (ja) 非水電解液二次電池およびその製造方法
JP2013073873A (ja) 非水電解質二次電池
JP2010055753A (ja) 巻回状電極体を備えた電池の製造方法
JP2005190786A (ja) 非水電解質二次電池
CN111052490A (zh) 非水电解质二次电池
WO2023189790A1 (ja) 円筒形電池
WO2023054582A1 (ja) 二次電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771270

Country of ref document: EP

Kind code of ref document: A1