WO2018164056A1 - ポリオレフィン微多孔膜 - Google Patents

ポリオレフィン微多孔膜 Download PDF

Info

Publication number
WO2018164056A1
WO2018164056A1 PCT/JP2018/008334 JP2018008334W WO2018164056A1 WO 2018164056 A1 WO2018164056 A1 WO 2018164056A1 JP 2018008334 W JP2018008334 W JP 2018008334W WO 2018164056 A1 WO2018164056 A1 WO 2018164056A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin microporous
microporous membrane
film
stretching
polyolefin
Prior art date
Application number
PCT/JP2018/008334
Other languages
English (en)
French (fr)
Inventor
燕仔 陳
敏彦 金田
直哉 西村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019504575A priority Critical patent/JP6988881B2/ja
Priority to CN201880005332.5A priority patent/CN110114397A/zh
Priority to US16/489,496 priority patent/US20210005860A1/en
Priority to EP18763354.0A priority patent/EP3594278B1/en
Priority to CN202210832885.6A priority patent/CN115149204B/zh
Priority to KR1020197016789A priority patent/KR102533841B1/ko
Publication of WO2018164056A1 publication Critical patent/WO2018164056A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin microporous membrane.
  • Microporous membranes are used in various fields such as filters such as filtration membranes and dialysis membranes, separators for batteries and separators for electrolytic capacitors.
  • filters such as filtration membranes and dialysis membranes
  • separators for batteries and separators for electrolytic capacitors.
  • a microporous film using polyolefin as a resin material is excellent in chemical resistance, insulation, mechanical strength, and the like, and has shutdown characteristics. Therefore, in recent years, it is widely used as a separator for secondary batteries.
  • Secondary batteries such as lithium ion secondary batteries, are widely used as batteries for personal computers, mobile phones and the like because of their high energy density. Secondary batteries are also expected as a power source for driving motors of electric vehicles and hybrid vehicles.
  • Patent Document 1 is a method of forming a polyolefin microporous film by mixing a polyolefin resin and a solvent, in a stretching step (secondary stretching: dry stretching) after extracting a plasticizer (solvent) and the like.
  • a polyolefin microporous membrane is disclosed in which self-discharge is suppressed when the stretching speed is in a specific range to obtain a separator for a lithium ion secondary battery.
  • the heat shrinkage rate at 150 ° C. in the width direction is less than 30%
  • the tensile strength in the length direction and the width direction is 30 MPa or more
  • the resin contains 90% by mass or more of polyolefin.
  • a polyolefin microporous membrane comprising the composition is disclosed. And it is described that this polyolefin microporous film is excellent in a self-discharge characteristic.
  • Patent Document 3 discloses a microporous film containing polyolefin, having a shutdown temperature of 133.0 ° C. or lower and a self-discharge capacity of 110.0 mAh or lower.
  • Patent Document 4 discloses a porous polypropylene film in which the number of portions where the transmitted light amount is 5 times or more with respect to the average transmitted light amount is 0.5 or less per 1 m 2 . And it is described that this porous polypropylene film is excellent in a self-discharge characteristic.
  • the separator has a function of preventing a short circuit between the positive electrode and the negative electrode while maintaining ion permeability.
  • the separator due to the influence of the expansion / contraction of the electrodes accompanying the charging / discharging of the battery, the separator is repeatedly pressed and released by a force load in the thickness direction, resulting in deformation of the separator or ion permeability. It has been pointed out that there is a possibility that the battery characteristics may be deteriorated due to the change. Therefore, in order to suppress such deterioration of battery characteristics, it is required to suppress the deformation of the separator or the change in ion permeability due to the above-described compression.
  • the positive electrode and the negative electrode are laminated and wound through a separator to produce an electrode laminate.
  • an electrode and a separator may be pressurized and compressed.
  • the film thickness and the air permeability may decrease, the rate characteristics may decrease, or the leakage current may increase and the self-discharge characteristics may decrease.
  • the pressure applied to the separator during battery production tends to increase due to the increase in the volume of the electrode accompanying the recent increase in capacity and density of the secondary battery. Therefore, the separator is required to have improved compression resistance along with the thinning due to the increase in the volume of the electrode.
  • Patent Document 5 when a polyolefin microporous film is compressed by a press machine at 90 ° C. for 5 minutes under a pressure of 2.2 MPa, the film thickness variation rate before compression exceeds 15%. It is described that when used as a separator, a short circuit may occur or battery productivity may decrease due to a decrease in yield.
  • Patent Documents 1 to 4 describe that self-discharge is reduced, but in each Patent Document, the film thickness used in Examples is about 20 ⁇ m. When the film thickness is reduced, further improvement in self-discharge characteristics is required.
  • a test for evaluating the compression resistance of a conventional film is generally performed when a short-time pressure treatment (for example, treatment at 2.2 MPa, 90 ° C., 5 minutes) is performed on the film. It was performed by evaluating the variation in thickness, and the smaller this variation, the higher the compression resistance was evaluated (for example, Patent Document 5).
  • the electrodes and separator are produced by compressing the electrodes and separators for a long period of time, so that the creep characteristics of the microporous membrane under the conventional test conditions for evaluating compression resistance. Thus, it was not sufficient as an evaluation condition of compression resistance required at the time of battery production.
  • a test for evaluating the compression resistance of a conventional film a film that has been elastically restored after the film has been subjected to pressure treatment is measured, and a value that reflects the permanent distortion of the film is measured.
  • the present inventors accurately analyzed a membrane that can be suitably used for a battery by using a compression resistance test of the membrane that reflects a state that occurs in an actual membrane, such as pressurization during manufacturing.
  • the present invention has been completed.
  • an object of the present invention is to provide a polyolefin microporous membrane that is excellent in compression resistance even when thinned, and has excellent self-discharge characteristics when used as a battery separator.
  • the polyolefin microporous membrane of the first aspect of the present invention has a rate of change in thickness when heated and compressed at a temperature of 80 ° C. and a pressure of 1 MPa for 60 minutes with respect to 100% of the thickness of the polyolefin microporous membrane before heating and compression. Thus, it is 0% or more and 15% or less.
  • the polyolefin microporous membrane may satisfy at least one of a basis weight of less than 3.4 g / m 2 and a porosity of 40% or more.
  • the polyolefin microporous film may have a tensile strength in the MD direction of 230 MPa or more. Further, the polyolefin microporous membrane may have a tensile elongation in the TD direction of 100% or more.
  • the multilayer polyolefin microporous membrane according to the second aspect of the present invention has at least one polyolefin microporous membrane.
  • the coated polyolefin microporous membrane according to the third aspect of the present invention comprises one or more coating layers on at least one surface of the polyolefin microporous membrane.
  • the battery according to the fourth aspect of the present invention uses a separator including the polyolefin microporous film.
  • the polyolefin microporous membrane of the present invention is excellent in compression resistance and excellent in self-discharge characteristics when used as a battery separator.
  • polyolefin microporous membrane refers to a microporous membrane containing polyolefin as a main component, for example, a microporous membrane containing 90% by mass or more of polyolefin with respect to the total amount of the microporous membrane.
  • a microporous membrane containing 90% by mass or more of polyolefin with respect to the total amount of the microporous membrane.
  • the compression resistance in the battery manufacturing process is also referred to as “thickness change rate when heated and compressed at a temperature of 80 ° C. and a pressure of 1 MPa for 60 minutes” (hereinafter referred to as “thickness change rate during heat compression”).
  • Thickness change rate during heat compression For example, in Patent Document 5, as a method for measuring a thickness change after thermal compression of a multilayer microporous membrane, thermal compression is performed by a compression machine under a pressure of 2.2 MPa (22 kgf / cm 2 ) at 90 ° C. for 5 minutes. The determination of the average thickness is described. However, the actual measurement conditions did not reflect the actual battery manufacturing conditions. Therefore, the inventors evaluated the compression resistance under the above conditions so as to correspond to the conditions in the actual battery manufacturing process.
  • the rate of change in thickness when heated and compressed at a temperature of 80 ° C. and a pressure of 1 MPa for 60 minutes is 0% with respect to 100% of the thickness of the polyolefin microporous membrane before heating and compression. It is 15% or less, preferably 0% or more and 14% or less.
  • the compression resistance of the polyolefin microporous membrane is within the above range, the self-discharge characteristic of a secondary battery using the polyolefin microporous membrane as a separator is improved. The reason for this is not particularly limited, but it is presumed that when the compression resistance is in the above range, the separator has sufficient film strength, so that self-discharge is suppressed.
  • the film thickness change rate (%) at the time of the heat compression is such that a polyolefin microporous film in which at least 10 layers are laminated is placed between a pair of highly horizontal plates, and is compressed for 60 minutes at 80 ° C. under a pressure of 1 MPa.
  • CYPT-20 manufactured by Shinto Kogyo Co., Ltd.
  • the average film thickness per sheet in the compressed state is measured, and the value calculated by the following formula (1).
  • the film thickness change rate at the time of the heat compression is, for example, containing ultra-high molecular weight polyethylene and / or a nucleating agent, or a weight average molecular weight Mw or a draw ratio (especially after drying described later).
  • the above range can be achieved by adjusting the stretching ratio of the film.
  • the lower limit of the tensile strength (tensile breaking strength) in the MD direction of the polyolefin microporous membrane is, for example, 100 MPa or more, preferably 230 MPa or more, more preferably 250 MPa or more, and further preferably 280 MPa or more.
  • the upper limit of the tensile strength of MD direction is not specifically limited, For example, it is 600 MPa or less.
  • the separator when a microporous membrane with excellent strength as described above is used as a separator, the separator can be wound with high tension while suppressing short-circuiting during battery production and use, and the capacity of the battery is increased. Can be achieved.
  • a coating layer is formed on at least one surface of a thinned polyolefin microporous film, higher tensile strength in the MD direction is required. Therefore, from the viewpoint of improving the coating property of the coating layer, the tensile strength in the MD direction of the polyolefin microporous membrane is preferably 230 MPa or more, more preferably 250 MPa or more, and further preferably 280 MPa or more. .
  • the tensile strength in the MD direction is in the above range, it can be suitably used as a substrate for coating.
  • the lower limit of the tensile strength in the TD direction of the polyolefin microporous membrane is not particularly limited, but is, for example, 100 MPa or more, preferably 150 MPa or more, and more preferably 170 MPa or more.
  • the upper limit of the tensile strength in the TD direction is not particularly limited, but is, for example, 300 MPa or less.
  • the ratio of MD tensile strength to TD tensile strength is preferably more than 1.0 and more than 1.0 to 1.8 or less. Preferably, it is 1.2 or more and 1.7 or less.
  • the tensile strength of the microporous polyolefin membrane and the ratio of the MD tensile strength to the TD tensile strength is in the above range, the tensile strength is excellent, so that high strength and durability are required. Can be suitably used. Further, since the winding direction of the separator is usually the MD direction, the ratio of the MD tensile strength to the TD tensile strength is preferably within the above range.
  • MD tensile strength and TD tensile strength it is the value measured by the method based on ASTMD882.
  • the tensile elongation (tensile elongation at break) in the MD direction of the polyolefin microporous membrane is not particularly limited, but is, for example, 50% or more and 300% or less, and preferably 50% or more and 100% or less.
  • breaking elongation in the MD direction is in the above range, even when a high tension is applied during coating, it is difficult to deform and wrinkles are not easily generated, so coating defects are suppressed and the flatness of the coating surface is good. Therefore, it is preferable.
  • the tensile elongation (tensile elongation at break) in the TD direction of the polyolefin microporous membrane is not particularly limited, but is, for example, 50% or more and 300% or less, and preferably 100% or more.
  • breaking elongation in the TD direction is in the above range, it has excellent impact resistance that can be evaluated by an impact test or the like, and when a polyolefin microporous film is used as a separator, electrode irregularities, battery deformation, battery heat generation This is preferable because the separator can follow the generation of internal stress caused by.
  • the MD tensile elongation and the TD tensile elongation are values measured by a method based on ASTM D-882A.
  • the lower limit of the puncture strength of the polyolefin microporous membrane is preferably 1.96 N or more, more preferably 2.00 N or more.
  • the upper limit of the puncture strength is not particularly limited, but is, for example, 7.00 N or less.
  • the membrane strength of the polyolefin microporous membrane is excellent.
  • the occurrence of electrode short circuit and self-discharge are suppressed.
  • the puncture strength is determined by, for example, adding ultrahigh molecular weight polyethylene and / or a nucleating agent to the polyolefin microporous film, or the weight average molecular weight (Mw) of the polyolefin resin constituting the polyolefin microporous film and the draw ratio (particularly By adjusting the stretching ratio of the film after drying described later, the above range can be obtained.
  • Mw weight average molecular weight
  • the microporous polyolefin membrane preferably has a puncture strength in terms of a film thickness of 5 ⁇ m of 1.96 N or more, more preferably 2.00 N or more, and further preferably 2.50 N or more.
  • the upper limit of the puncture strength in terms of a film thickness of 5 ⁇ m is not particularly limited, but is, for example, 4.00 N or less.
  • the puncture strength is the maximum load (N when a polyolefin microporous film having a film thickness T 1 ( ⁇ m) is punctured at a speed of 2 mm / sec with a needle having a spherical surface (curvature radius R: 0.5 mm) and a diameter of 1 mm. ) Is a measured value. Further, the puncture strength (N / 5 ⁇ m) in terms of a film thickness of 5 ⁇ m is a value that can be obtained by the following equation.
  • the air permeability (Gurley value) of the polyolefin microporous membrane is not particularly limited, but is, for example, 50 seconds / 100 cm 3 or more and 300 seconds / 100 cm 3 or less.
  • the air permeability of the polyolefin microporous membrane is preferably 250 seconds / 100 cm 3 or less, more preferably 200 seconds / 100 cm 3 or less, and even more preferably 150 seconds / 100 cm 3. It is as follows.
  • the air permeability when used as a separator for a secondary battery, the ion permeability is excellent, the impedance of the secondary battery is lowered, and the battery output is improved.
  • the air permeability can be adjusted to the above range by adjusting the stretching conditions when producing the polyolefin microporous membrane.
  • air permeability of the polyolefin microporous membrane (Gurley value), it is preferable air permeability in terms with thickness 5 [mu] m is not more than 150 seconds / 100cm 3 / 5 ⁇ m.
  • the upper limit of the film thickness of the polyolefin microporous membrane is not particularly limited, but is, for example, 30 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 7 ⁇ m or less.
  • the minimum of a film thickness is not specifically limited, For example, it is 1 micrometer or more, Preferably it is 3 micrometers or more.
  • the battery capacity is improved when the polyolefin microporous film is used as a battery separator.
  • the polyolefin microporous film of this embodiment has high puncture strength and the like, and has high self-discharge characteristics and rate characteristics even when it is thinned.
  • the lower limit of the porosity of the microporous polyolefin membrane is not particularly limited, but is, for example, 10% or more, preferably 20% or more, and more preferably 40% or more. Although the minimum of a porosity is not specifically limited, For example, it is 70% or less, it is preferable that it is 60% or less, and it is more preferable that it is 50% or less. .
  • the porosity of the polyolefin microporous membrane is preferably 20% or more and 60% or less, more preferably 20% or more and 50% or less.
  • the porosity When the porosity is in the above range, it is possible to increase the amount of electrolyte retained and to ensure high ion permeability. Moreover, a rate characteristic improves that a porosity is the said range. Moreover, it is preferable that a porosity is 40% or more from a viewpoint of improving ion permeability and a rate characteristic more.
  • the porosity can be adjusted to the above range by adjusting the blending ratio of the constituent components of the polyolefin resin, the draw ratio, the heat setting conditions, and the like in the production process.
  • the upper limit of the basis weight of the polyolefin microporous membrane is, for example, 4.0 g / m 2 or less, and preferably less than 3.4 g / m 2 .
  • the minimum of a fabric weight is not specifically limited, For example, it is 1.0 g / m ⁇ 2 > or more, and it is more preferable that it is 1.5 g / m ⁇ 2 > or more.
  • the basis weight of the polyolefin microporous membrane can be adjusted to the above range by adjusting the blending ratio of the constituent components of the polyolefin resin, the draw ratio, and the like in the production process.
  • the basis weight of the polyolefin microporous membrane is the weight of the 1 m 2 polyolefin microporous membrane.
  • the polyolefin microporous membrane preferably satisfies at least one of the conditions of a basis weight of less than 3.4 g / m 2 and a porosity of 40% or more.
  • a basis weight or porosity of the polyolefin microporous membrane is in the above range, when the polyolefin microporous membrane is used as a separator, the amount of electrolyte solution retained per unit volume can be increased, and the battery characteristics are improved. be able to.
  • the film thickness of the thinned polyolefin microporous film is superior in self-discharge characteristics, rate characteristics, and cycle characteristics when used as a battery separator.
  • the heat shrinkage rate in the MD direction of the polyolefin microporous membrane at 105 ° C. for 8 hours is, for example, 10% or less, preferably 6% or less, and more preferably 4% or less.
  • the heat shrinkage rate in the TD direction at 105 ° C. of the polyolefin microporous membrane is, for example, 10% or less, preferably 8% or less, and more preferably 6% or less.
  • the lower limit of the thermal shrinkage rate in the MD direction and the lower limit of the thermal shrinkage rate in the TD direction are not particularly limited, but are preferably 0.5% or more, for example.
  • the thermal shrinkage rate in the MD direction and the thermal shrinkage rate in the TD direction are within the above ranges, the thermal shrinkage is excellent, and when the polyolefin microporous membrane is used as a separator, expansion / shrinkage due to heat can be suppressed. it can.
  • the polyolefin microporous membrane contains a polyolefin resin as a main component.
  • the polyolefin resin that can be used include polyethylene and polypropylene.
  • 50 mass% or more of polyethylene can be contained with respect to the polyolefin microporous film whole quantity.
  • the polyethylene is not particularly limited, and various polyethylenes can be used. For example, high density polyethylene, medium density polyethylene, branched low density polyethylene, linear low density polyethylene and the like are used.
  • the polyethylene may be a homopolymer of ethylene or a copolymer of ethylene and another ⁇ -olefin.
  • ⁇ -olefin examples include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene and the like.
  • the polyolefin microporous film contains high-density polyethylene (density: 0.920 g / m 3 or more and 0.970 g / m 3 or less), the polyolefin microporous film is excellent in melt-extrusion characteristics and uniform stretch processing characteristics.
  • the weight average molecular weight (Mw) of the high-density polyethylene used as a raw material is, for example, about 1 ⁇ 10 4 or more and less than 1 ⁇ 10 6 . Mw is a value measured by gel permeation chromatography (GPC).
  • the content of the high-density polyethylene is, for example, 50% by mass or more with respect to 100% by mass of the entire polyolefin resin.
  • the upper limit of the content of the high-density polyethylene is, for example, 100% by mass or less, and when it contains other components, it is, for example, 90% by mass or less.
  • the polyolefin microporous membrane can also contain ultra high molecular weight polyethylene (UHMwPE).
  • UHMwPE ultra high molecular weight polyethylene
  • the ultra high molecular weight polyethylene used as a raw material has a weight average molecular weight (Mw) of 1 ⁇ 10 6 or more (100,000 or more), preferably 1 ⁇ 10 6 or more and 8 ⁇ 10 6 or less. When Mw is in the above range, the moldability is good. Mw is a value measured by gel permeation chromatography (GPC).
  • Ultra high molecular weight polyethylene can be used singly or in combination of two or more. For example, two or more types of ultra high molecular weight polyethylene having different Mw may be mixed and used.
  • the ultra high molecular weight polyethylene can be contained in an amount of, for example, 0% by mass to 70% by mass with respect to 100% by mass of the entire polyolefin resin.
  • the content of ultrahigh molecular weight polyethylene is 10% by mass or more and 60% by mass or less, the Mw of the resulting polyolefin microporous film can be easily controlled within a specific range described later, and production such as extrusion kneadability can be achieved. There is a tendency to be superior.
  • ultrahigh molecular weight polyethylene when ultrahigh molecular weight polyethylene is contained, high mechanical strength can be obtained even when the polyolefin microporous membrane is thinned.
  • the polyolefin microporous membrane may contain polypropylene.
  • the type of polypropylene is not particularly limited, and may be any of a homopolymer of propylene, a copolymer of propylene and other ⁇ -olefin and / or diolefin (propylene copolymer), or a mixture thereof. From the viewpoint of mechanical strength and miniaturization of the through-hole diameter, it is preferable to use a propylene homopolymer.
  • the content of the whole polyolefin resin polypropylene is, for example, 0% by mass to 15% by mass, and preferably 2.5% by mass to 15% by mass from the viewpoint of heat resistance.
  • the polyolefin microporous membrane can contain other resin components other than polyethylene and polypropylene, if necessary.
  • resin components for example, a heat resistant resin or the like can be used.
  • the polyolefin microporous membrane is an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, an antiblocking agent and a filler, a crystal nucleating agent, and a crystallization retarder as long as the effects of the present invention are not impaired.
  • Various additives such as these may be contained.
  • the production method of the polyolefin microporous membrane is not particularly limited as long as the polyolefin microporous membrane having the above-described characteristics can be obtained, and known production methods of polyolefin microporous membrane can be used.
  • Examples of the method for producing a polyolefin microporous film include a dry film forming method and a wet film forming method.
  • a wet film forming method is preferable from the viewpoint of easy control of the structure and physical properties of the film.
  • a wet film forming method for example, the methods described in the specifications of Japanese Patent No. 2132327 and Japanese Patent No. 3347835, International Publication No. 2006/137540, and the like can be used.
  • a resin solution is prepared by melting and kneading a polyolefin resin and a film-forming solvent (solvent).
  • a melt-kneading method for example, a method using a twin-screw extruder described in the specifications of Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is known, the description thereof is omitted.
  • the polyolefin resin preferably contains high density polyethylene. When high-density polyethylene is contained, it has excellent melt extrusion characteristics and excellent uniform stretch processing characteristics.
  • the polyolefin resin can also contain ultra high molecular weight polyethylene. When ultra high molecular weight polyethylene is included, it tends to be easy to control Mw of the polyolefin fine porous film obtained to the specific range mentioned later, and to be excellent in productivity, such as extrusion kneading
  • the details of the types and blending amounts that can be used as the polyolefin resin are the same as described above, and thus the description thereof is omitted.
  • the resin solution may contain components other than the polyolefin resin and the film-forming solvent (solvent), and may contain, for example, a crystal nucleating agent (nucleating agent), an antioxidant, and the like.
  • a crystal nucleating agent nucleating agent
  • the nucleating agent is not particularly limited, and a known compound-based or fine particle-based crystal nucleating agent can be used.
  • the nucleating agent may be a master batch in which the nucleating agent is previously mixed and dispersed in the polyolefin resin.
  • the polyolefin resin preferably contains the ultra high molecular weight polyethylene and the high density polyethylene.
  • the polyolefin microporous membrane may contain high-density polyethylene, ultrahigh molecular weight polyethylene, and a nucleating agent. By including these, the puncture strength can be further improved.
  • the molten resin is extruded and cooled to form a gel sheet.
  • the resin solution adjusted as described above is fed from an extruder to one die and extruded into a sheet shape to obtain a formed body.
  • a gel-like sheet is formed by cooling the obtained molded object.
  • Cooling is preferably performed at a rate of 50 ° C./min or more at least up to the gelation temperature. Cooling is preferably performed to 25 ° C. or lower.
  • the polyolefin microphase separated by the film-forming solvent can be immobilized.
  • the cooling rate is within the above range, the crystallization degree is maintained in an appropriate range, and a gel-like sheet suitable for stretching is obtained.
  • a method of contacting with a cooling medium such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but it is preferable that the cooling is performed by contacting with a roll cooled with a cooling medium.
  • the stretching of the gel sheet (first stretching) is also referred to as wet stretching. Wet stretching is performed at least in the uniaxial direction. Since the gel-like sheet contains a solvent, it can be stretched uniformly.
  • the gel-like sheet is preferably stretched at a predetermined ratio after heating by a tenter method, a roll method, an inflation method, or a combination thereof.
  • the stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.
  • the final area stretching ratio (surface ratio) in wet stretching is preferably 3 times or more, and more preferably 4 times or more and 30 times or less.
  • 9 times or more is preferable, 16 times or more is more preferable, and 25 times or more is more preferable.
  • the upper limit is preferably 100 times or less, and more preferably 64 times or less.
  • it is preferably 3 times or more in both the longitudinal direction (machine direction: MD direction) and the transverse direction (width direction: TD direction), and the draw ratios in the MD direction and the TD direction may be the same or different from each other.
  • MD direction machine direction
  • TD direction width direction
  • the draw ratios in the MD direction and the TD direction may be the same or different from each other.
  • the draw ratio in this step means the draw ratio of the gel-like sheet immediately before being used for the next step on the basis of the gel-like sheet immediately before this step.
  • the TD direction is a direction orthogonal to the MD direction when the microporous film is viewed in a plane.
  • the stretching temperature is preferably in the range of the crystal dispersion temperature (Tcd) to Tcd + 30 ° C. of the polyolefin resin, more preferably in the range of crystal dispersion temperature (Tcd) + 5 ° C. to crystal dispersion temperature (Tcd) + 28 ° C. It is preferable that the temperature is within the range of Tcd + 10 ° C. to Tcd + 26 ° C.
  • the stretching temperature is within the above range, film breakage due to stretching of the polyolefin resin is suppressed, and stretching at a high magnification can be performed.
  • the crystal dispersion temperature (Tcd) refers to a value obtained by measuring temperature characteristics of dynamic viscoelasticity based on ASTM D4065.
  • the above ultrahigh molecular weight polyethylene, polyethylenes other than ultrahigh molecular weight polyethylene, and polyethylene compositions have a crystal dispersion temperature of about 90-100 ° C.
  • the stretching temperature can be, for example, 90 ° C. or higher and 130 ° C. or lower.
  • the stretching as described above causes cleavage between polyethylene lamellae, the polyethylene phase becomes finer, and a large number of fibrils are formed. Fibrils form a three-dimensional irregularly connected network structure. Stretching improves the mechanical strength and enlarges the pores. When stretching is performed under appropriate conditions, the through-hole diameter can be controlled, and even with a thinner film thickness, a high porosity can be obtained. For this reason, it is suitable for a safer and higher performance battery separator.
  • the film-forming solvent is removed from the stretched gel-like sheet to form a microporous film (film).
  • the film-forming solvent is removed by washing with a washing solvent. Since the polyolefin phase is phase-separated from the film-forming solvent phase, removing the film-forming solvent consists of fibrils that form a fine three-dimensional network structure, and pores (voids) that communicate irregularly in three dimensions. A porous membrane having the following is obtained. Since the cleaning solvent and the method for removing the film-forming solvent using the same are known, the description thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
  • the microporous film from which the film-forming solvent has been removed is dried by a heat drying method or an air drying method.
  • the drying temperature is preferably not higher than the crystal dispersion temperature (Tcd) of the polyolefin resin, and particularly preferably 5 ° C. or lower than Tcd. Drying is preferably performed until the residual cleaning solvent is 5% by mass or less, more preferably 3% by mass or less, with the microporous membrane film being 100% by mass (dry weight).
  • Tcd crystal dispersion temperature
  • the microporous membrane after drying is stretched. Stretching of the microporous membrane after drying (second stretching, third stretching) is also referred to as dry stretching.
  • the microporous membrane film after drying is dry-stretched at least in the uniaxial direction.
  • the dry stretching of the microporous membrane film can be performed by the tenter method or the like in the same manner as described above while heating.
  • the stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, any of simultaneous biaxial stretching and sequential stretching may be used, but sequential stretching is preferred. In the case of sequential stretching, after stretching in the MD direction (second stretching), it is preferable to continuously stretch in the TD direction (third stretching).
  • the surface magnification (area stretching ratio) of the dry stretching is preferably 1.2 times or more, and more preferably 1.2 times or more and 9.0 times or less.
  • the puncture strength and the like can be easily controlled within a desired range.
  • uniaxial stretching for example, 1.2 times or more in the MD direction or TD direction, preferably 1.2 times or more and 3.0 times or less.
  • the stretching ratio in the MD direction and the TD direction is 1.0 to 3.0 times, and the stretching ratios in the MD direction and the TD direction may be the same or different from each other. It is preferable that the draw ratios are substantially the same.
  • the film is stretched by more than 1 to 3 times in the MD direction (second stretching) and then continuously stretched by more than 1 to 3 times in the TD direction (third stretching).
  • the draw ratio in this step refers to the draw ratio of the microporous membrane immediately before being subjected to the next step on the basis of the microporous membrane (film) immediately before this step.
  • the stretching temperature in this step is not particularly limited, but is usually 90 to 135 ° C.
  • roll-stretching the second stretching it is preferable to perform multi-stage stretching. When stretching at high magnification, the stretching point is not fixed due to slippage on the roll, and stretching unevenness is likely to occur. By increasing the number of stretching steps, stretching unevenness can be reduced. In particular, when the stretching ratio is 1.5 or more, it is preferable to stretch 4 or more stages, and more preferably 5 or more stages.
  • the microporous membrane after drying may be subjected to heat treatment.
  • the crystal is stabilized by heat treatment, and the lamella is made uniform.
  • heat setting treatment and / or heat relaxation treatment can be used.
  • the heat setting treatment is a heat treatment in which heating is performed while keeping the dimension of the film in the TD direction unchanged.
  • the thermal relaxation treatment is a heat treatment that heat-shrinks the film in the MD direction or the TD direction during heating.
  • the heat setting treatment is preferably performed by a tenter method or a roll method.
  • a thermal relaxation treatment method a method disclosed in Japanese Patent Laid-Open No. 2002-256099 can be cited.
  • the heat treatment temperature is preferably within the range of Tcd to Tm of the second polyolefin resin, more preferably within the range of the stretching temperature ⁇ 5 ° C. of the microporous membrane, and within the range of the second stretching temperature ⁇ 3 ° C. of the microporous membrane. Particularly preferred.
  • heat treatment and thermal relaxation treatment may be performed after the third stretching.
  • the relaxation temperature is, for example, 80 ° C. or higher and 135 ° C. or lower, preferably 90 ° C. or higher and 133 ° C. or lower.
  • the final dry stretching ratio is, for example, 1.0 to 9.0 times, preferably 1.2 to 4.0 times.
  • the relaxation rate can be 0% or more and 70% or less.
  • the polyolefin microporous membrane after dry stretching can be further subjected to a crosslinking treatment and a hydrophilization treatment.
  • the microporous membrane is subjected to a crosslinking treatment by irradiation with ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • electron beam irradiation an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable.
  • the meltdown temperature of the microporous membrane is increased by the crosslinking treatment.
  • the hydrophilic treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like. Monomer grafting is preferably performed after the crosslinking treatment.
  • the polyolefin microporous membrane may be a single layer, or one or more layers made of a polyolefin microporous membrane may be laminated.
  • the multilayer polyolefin microporous membrane can have a layer composed of two or more polyolefin microporous membranes.
  • the composition of the polyolefin resin constituting each layer may be the same or different.
  • the polyolefin microporous membrane may be a laminated polyolefin porous membrane by laminating other porous layers other than the polyolefin resin. Although it does not specifically limit as another porous layer, For example, you may laminate
  • the binder component constituting the inorganic particle layer is not particularly limited, and known components can be used. For example, acrylic resin, polyvinylidene fluoride resin, polyamideimide resin, polyamide resin, aromatic polyamide resin, polyimide resin, etc. Can be used.
  • the inorganic particles constituting the inorganic particle layer are not particularly limited, and known materials can be used.
  • the laminated polyolefin porous film may be one in which the porous binder resin is laminated on at least one surface of the polyolefin microporous film.
  • Measurement method and evaluation method [Film thickness] The film thickness at 5 points in the range of 95 mm ⁇ 95 mm of the microporous membrane was measured with a contact thickness meter (Lightmatic manufactured by Mitutoyo Corporation), and the average value was obtained.
  • the MD heat shrinkage and TD heat shrinkage at 105 ° C. for 8 hours were measured as follows. (1) The size of the test piece of the polyolefin microporous membrane at room temperature (25 ° C.) is measured for both MD and TD. (2) Equilibrate a test piece of polyolefin microporous membrane at a temperature of 105 ° C. for 8 hours without applying a load. (3) The size of the polyolefin microporous membrane is measured for both MD and TD. (4) The thermal shrinkage in the MD direction and the TD direction was calculated by dividing the measurement result (3) by the measurement result (1), subtracting the obtained value from 1, and expressing the value as a percentage (%).
  • the compression resistance was evaluated by the rate of change in the thickness of the polyolefin microporous membrane when heated and compressed at a temperature of 80 ° C. and a pressure of 1 MPa for 60 minutes.
  • a polyolefin microporous membrane laminated with 10 sheets is placed between a pair of highly horizontal plates and heated by a compression machine (made by Shinto Kogyo Co., Ltd., CYPT-20) for 60 minutes under a pressure of 1 MPa at 80 ° C.
  • a compression machine made by Shinto Kogyo Co., Ltd., CYPT-20
  • the transmitted light amount was measured at a distance of 300 mm between the light and received light and at the center (150 mm) of the polyolefin microporous film.
  • the amount of transmitted light was measured for 20 m at 6.7 cm / point sampling, and the average transmittance (Ave) and standard deviation ( ⁇ ) were calculated.
  • Transmission coefficient of variation standard deviation ⁇ / average value Ave.
  • Transmission coefficient of variation is less than 0.03.
  • the weight average molecular weight (Mw) of the polyolefin resin was determined by gel permeation chromatography (GPC) method under the following conditions.
  • GPC gel permeation chromatography
  • ⁇ Measurement device GPC-150C manufactured by Waters Corporation Column: Shodex UT806M manufactured by Showa Denko KK -Column temperature: 135 ° C
  • Injection volume 500 ⁇ l
  • Detector Differential refractometer (RI detector) manufactured by Waters Corporation -Calibration curve: Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample, using a predetermined conversion constant (0.468).
  • the rate characteristics were evaluated by the following method.
  • a secondary battery for test produced by the following (Production Method of Battery for Evaluation) was used. After constant current charging at a current value of 1.0 C to a battery voltage of 4.2 V, after performing constant voltage charging until a current value of 0.05 C at a battery voltage of 4.2 V, the battery at a current value of 0.2 C Discharge (constant current discharge) was performed until the voltage reached 3.0 V, and the discharge capacity was measured. Subsequently, the battery was charged again to 4.2 V by the above procedure, and then discharged (constant current discharge) until the battery voltage reached 3.0 V at a current value of 5 C, and the discharge capacity was measured.
  • the discharge capacity ratio was calculated by the following formula.
  • Discharge capacity ratio discharge capacity at 5 C ⁇ discharge capacity at 100 / 0.2 C ⁇ : discharge capacity ratio value less than 85%.
  • discharge capacity ratio value is 85% or more and less than 90%.
  • A The discharge capacity ratio value is 90% or more and less than 100%.
  • the battery used for evaluation was a lithium cobalt composite oxide LiCoO 2 as a positive electrode active material, graphite as a negative electrode active material, and 1 mol / L LiPF 6 prepared in a mixed solvent of EC / EMC / DMC as an electrolytic solution.
  • a separator made of a polyolefin microporous membrane, and a negative electrode a wound electrode body is prepared by a conventional method, inserted into a battery can, impregnated with an electrolytic solution, and sealed. did. Below, the detail of the manufacturing method of the battery for evaluation is demonstrated.
  • Lithium cobalt composite oxide LiCoO 2 as a positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder are mixed at a mass ratio of 93.5: 4.0: 2.5, and a solvent N
  • a slurry was prepared by mixing and dispersing in methylpyrrolidone (NMP). This slurry was applied to both surfaces of a 12 ⁇ m thick aluminum foil serving as a positive electrode current collector, dried, and then rolled with a roll press. The rolled product was slit into a width of 30 mm to obtain a positive electrode.
  • a slurry was prepared by mixing and dispersing artificial graphite as a negative electrode active material, carboxymethyl cellulose as a binder, and styrene-butadiene copolymer latex in purified water so as to have a mass ratio of 98: 1: 1.
  • This slurry was applied to both sides of a 10 ⁇ m thick copper foil serving as a negative electrode current collector, dried, and then rolled with a roll press. The rolled product was slit to a width of 33 mm to obtain a negative electrode.
  • a flat wound electrode body (height 2.2 mm ⁇ width 36 mm ⁇ depth 29 mm) was produced. A tab with a sealant was welded to each electrode of the flat wound electrode body to obtain a positive electrode lead and a negative electrode lead.
  • the flat wound electrode body part is sandwiched between aluminum laminate films and sealed, leaving a part of the opening, and dried in a vacuum oven at 80 ° C. for 6 hours. Liquid was sealed with a vacuum sealer, and press molded at 80 ° C. and 1 MPa for 1 hour. Subsequently, charging and discharging were performed.
  • the charge / discharge conditions were a 300 mA current value, and after constant current charging to a battery voltage of 4.2 V, constant voltage charging was performed until the battery voltage was 4.2 V and reached 15 mA. After a pause of 10 minutes, a constant current discharge was performed to a battery voltage of 3.0 V at a current value of 300 mA, and the suspension was carried out for 10 minutes. The above charging / discharging was performed 3 cycles, and the secondary battery for a test with a battery capacity of 300 mAh was produced.
  • Examples 1 to 12 Polyolefin resin and liquid paraffin having the compositions shown in Tables 1 and 2 were melt-kneaded with a twin-screw extruder to prepare a polyolefin solution.
  • the polyolefin solution was fed from a twin screw extruder to a T die and extruded.
  • the extruded product was cooled while being taken up by a cooling roll to form a gel-like sheet.
  • the gel-like sheet was simultaneously biaxially stretched or sequentially biaxially stretched (first stretching) by a tenter stretching machine at 106 ° C. or higher and 112 ° C. or lower in both the MD direction and the TD direction.
  • the stretched gel sheet was immersed in a methylene chloride bath to remove liquid paraffin and then dried to obtain a dry film.
  • the dry film was stretched (second stretching) by a roll stretching method in the MD direction at 90 ° C. or higher and 113 ° C. or lower using a batch type stretching machine. Then, it extended
  • the obtained film was relaxed by a tenter method at a relaxation rate of 2% or more and 10% or less in a range of 129.0 ° C or more and 133.1 ° C or less.
  • the stretching ratio in the TD direction after relaxation was 1.32 times or more and 2.03 times or less.
  • the production conditions and evaluation results of the resulting polyolefin microporous membrane are shown in Tables 1 and 2.
  • the polyolefin microporous membranes of Examples 1 to 12 have a film thickness change rate (1 MPa, 80 ° C., 1 hr) during heat compression of 0% or more and 15% or less at a film thickness of 3.2 ⁇ m or more and 7.1 ⁇ m or less. It was shown to be excellent in compression resistance and self-discharge characteristics. Among these, when the basis weight is less than 3.4 g / m 2 or the porosity is 40% or more, it is confirmed that the rate characteristics and the cycle characteristics are excellent.
  • the polyolefin microporous membranes of Comparative Examples 1 to 5 have a rate of change in film thickness (1 MPa, 80 ° C., 1 hr) during thermal compression of more than 15%, and have poor self-discharge characteristics or self-discharge characteristics. And the rate characteristics were both poor.
  • the polyolefin microporous membrane of the present invention is excellent in self-discharge characteristics when incorporated into a secondary battery as a separator. Therefore, it can be suitably used for a secondary battery separator that requires a thin film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、セパレータとして電池に組み入れた際の自己放電特性に優れたポリオレフィン微多孔膜を提供することを課題とする。本発明は、温度80℃、圧力1MPaで60分間加熱圧縮した時の膜厚変化率が、加熱圧縮前のポリオレフィン微多孔質膜の膜厚100%に対して、0%以上15%以下であるポリオレフィン微多孔膜などによる。

Description

ポリオレフィン微多孔膜
 本発明は、ポリオレフィン微多孔膜に関するものである。
 微多孔膜は、ろ過膜、透析膜などのフィルター、電池用セパレータや電解コンデンサー用のセパレータなどの種々の分野に用いられる。これらの中でも、ポリオレフィンを樹脂材料とする微多孔膜は、耐薬品性、絶縁性、機械的強度などに優れ、シャットダウン特性を有するため、近年、二次電池用セパレータとして広く用いられる。
 二次電池、例えばリチウムイオン二次電池は、エネルギー密度が高いため、パーソナルコンピュータ、携帯電話などに用いる電池として広く使用されている。また、二次電池は、電気自動車やハイブリッド自動車のモータ駆動用電源としても期待されている。
 近年、二次電池のエネルギー密度の高密度化による電極の体積の増加に伴い、セパレータとして用いられる微多孔膜の薄膜化が要求されている。しかしながら、セパレータの薄膜化により、セパレータの膜強度の低下とともに、電池の自己放電が大きくなる場合があり、膜強度の向上及び自己放電特性の向上が求められている。
 例えば、特許文献1では、ポリオレフィン樹脂と溶剤とを混合してポリオレフィン微多孔膜を形成する方法であって、可塑剤(溶剤)等を抽出した後の延伸工程(二次延伸:乾式延伸)における延伸速度を特定の範囲にすることで、リチウムイオン二次電池用セパレータとしたときに、自己放電が抑制されるポリオレフィン微多孔膜が開示されている。
 また、例えば、特許文献2では、幅方向の150℃での熱収縮率が30%未満であり、長さ方向及び幅方向の引張り強度が30MPa以上であって、ポリオレフィンを90質量%以上含む樹脂組成物からなるポリオレフィン微多孔膜が開示されている。そして、このポリオレフィン微多孔膜は、自己放電特性に優れることが記載されている。
 また、例えば、特許文献3では、ポリオレフィンを含み、133.0℃以下のシャットダウン温度および110.0mAh以下の自己放電容量を有する微多孔膜が開示されている。また、例えば、特許文献4では、平均透過光量に対し透過光量が5倍以上となる部分が1mあたり0.5個以下である多孔性ポリプロピレンフィルムが開示されている。そして、この多孔性ポリプロピレンフィルムは、自己放電特性に優れることが記載されている。
 ところで、二次電池において、セパレータはイオンの透過性を維持しながら、正極と負極との間の短絡を防止する機能を担っている。しかし、電池の充放電に伴う電極の膨張/収縮の影響により、セパレータは厚さ方向に対して力の負荷などによる圧迫と解放とが繰り返され、その結果、セパレータの変形あるいはイオンの透過性に変化が生じて、電池特性の低下を招くおそれがあることが指摘されていた。そこで、このような電池特性の低下を抑制するため、上記の圧迫によるセパレータの変形あるいはイオンの透過性の変化を抑制することが求められている。
 また、二次電池の製造工程においては、例えば、正極と負極とがセパレータを介して積層巻回されて、電極積層体が作製される。このような電極積層体の作製時、電極及びセパレータが加圧されて、圧縮されることがある。圧縮されたセパレータは、膜厚や透気度が低下して、レート特性が低下したり、漏れ電流が増加して自己放電特性が低下したりすることがある。特に、近年の二次電池の高容量化や高密度化に伴う電極の体積の増加により、電池作製時におけるセパレータに加わる圧力は大きくなる傾向がある。よって、セパレータには、電極の体積の増加による、薄膜化と併せて、耐圧縮性の向上が求められている。
 例えば、特許文献5では、ポリオレフィン微多孔膜において、プレス機により、2.2MPaの圧力下、90℃で5分間圧縮した際の、圧縮前に対する膜厚変動率が、15%を超えると、バッテリーセパレータとして用いた場合に短絡が発生したり、歩留まりの低下によってバッテリー生産性が低下したりするおそれがあることが記載されている。
特開2014-162851号公報 特開2013-256606号公報 国際公開2010/027065号 国際公開2010/107023号 国際公開2010/058789号
 上記特許文献1~4に記載のポリオレフィン微多孔膜は、自己放電が低減されることが記載されているが、それぞれの特許文献において、実施例中で用いられる膜厚は約20μmであり、より薄膜化した場合、さらなる自己放電特性の向上が求められる。
 また、従来の膜の耐圧縮性を評価する試験は、一般的に、膜に対して短時間の加圧処理(例えば、2.2MPa、90℃、5分間の処理)を行った際の膜厚の変動を評価することにより行われ、この変動が小さいほど、耐圧縮性が高いと評価していた(例えば、上記特許文献5)。しかしながら、実際の電池の製造においては、電極及びセパレータを長時間の加圧処理により圧縮することにより電池を製造するため、従来の耐圧縮性を評価する試験の条件では、微多孔膜のクリープ特性などを考慮したものとなっておらず、電池作製時に要求される耐圧縮性の評価条件としては十分でなかった。また、従来の膜の耐圧縮性を評価する試験においては、膜を加圧処理した後、弾性復元した膜を測定しており、膜の永久歪みなどを反映する値を測定している。
 そこで、本発明者らは、製造時の加圧などの実際の膜に生じる状態を反映させた、膜の耐圧縮性の試験を用いて、電池に好適に使用可能な膜を精度よく解析し、本発明を完成した。
 本発明は、上記事情に鑑みて、薄膜化した際も、耐圧縮性に優れ、電池用セパレータとして用いた場合、自己放電特性に優れるポリオレフィン微多孔膜を提供することを目的とする。
 本発明の第1の態様のポリオレフィン微多孔膜は、温度80℃、圧力1MPaで60分間加熱圧縮した時の膜厚変化率が、加熱圧縮前のポリオレフィン微多孔質膜の膜厚100%に対して、0%以上15%以下である。
 また、上記ポリオレフィン微多孔膜は、目付が3.4g/m未満、及び、空孔率が40%以上の少なくとも一方の条件を満たしてもよい。また、上記ポリオレフィン微多孔膜は、MD方向の引張強度が230MPa以上であってもよい。また、上記ポリオレフィン微多孔膜は、TD方向の引張伸度が100%以上であってもよい。
 本発明の第2の態様の多層ポリオレフィン微多孔膜は、上記ポリオレフィン微多孔膜を少なくとも1層有する。
 本発明の第3の態様のコート付ポリオレフィン微多孔膜は、上記ポリオレフィン微多孔膜の少なくとも一方の表面に、1層以上のコーティング層を備える。
 本発明の第4の態様の電池は、上記ポリオレフィン微多孔膜を含むセパレータを用いてなる。
 本発明のポリオレフィン微多孔膜は、耐圧縮性に優れ、電池用セパレータとして用いた場合、自己放電特性に優れる。
 以下、本発明の本実施形態について説明する。なお、本発明は以下説明する実施形態に限定されるものではない。
 1.ポリオレフィン微多孔膜
 本明細書において、ポリオレフィン微多孔膜とは、ポリオレフィンを主成分として含む微多孔膜をいい、例えば、ポリオレフィンを微多孔膜全量に対して90質量%以上含む微多孔膜をいう。以下、本実施形態のポリオレフィン微多孔膜の物性について説明する。
 (耐圧縮性)
 本明細書において、電池の製造工程における耐圧縮性は、「温度80℃、圧力1MPaで60分間加熱圧縮した時の膜厚変化率」(以下、「加熱圧縮時の膜厚変化率」ともいう。)で評価する。例えば、特許文献5では、多層微小孔性膜の熱圧縮の後厚み変化の測定方法として、5分間、90℃で2.2MPa(22kgf/cm)の圧力下で圧縮機械により熱圧縮して、平均の厚みを決定することが記載されている。しなしながら、従来の測定条件では、実際の電池の製造条件が反映されていなかった。そこで、発明者らは、実際の電池の製造工程における条件に対応するように、上記の条件で耐圧縮性の評価を行った。
 本実施形態のポリオレフィン微多孔膜は、温度80℃、圧力1MPaで60分間加熱圧縮した時の膜厚変化率が、加熱圧縮前のポリオレフィン微多孔質膜の膜厚100%に対して、0%以上15%以下、好ましくは0%以上14%以下である。ポリオレフィン微多孔膜の耐圧縮性が、上記範囲である場合、このポリオレフィン微多孔膜をセパレータとして用いた二次電池の自己放電特性が向上する。この理由は特に限定されないが、耐圧縮性が上記範囲である場合、セパレータが十分な膜強度を有するため、自己放電が抑制されるためと推定される。
 上記加熱圧縮時の膜厚変化率(%)は、少なくとも10枚を積層したポリオレフィン微多孔膜を、一組の高度に水平な板の間に置き、60分間、80℃で1MPaの圧力下で圧縮機械(新東工業株式会社製、CYPT-20特)により加熱圧縮した際、圧縮した状態における、一枚あたりの膜厚の平均を測定し、下記式(1)により、算出された値をいう。
式(1):
[(圧縮前の平均厚さ-圧縮した状態の平均厚さ)/(圧縮前の平均厚さ)]×100
 なお、上記の加熱圧縮時の膜厚変化率は、上述のように、圧縮時(圧縮した状態)での膜厚を測定するので、膜が弾性復元する前に膜厚を測定することができ、膜の弾性復元、膜の温度履歴などによる測定値のばらつきがなく、上記した製造時の加圧などの実際の膜に生じる状態を反映した値となる。
 上記加熱圧縮時の膜厚変化率は、ポリオレフィン微多孔膜を製造する際、例えば、超高分子量ポリエチレン及び/又は核剤を含有させたり、重量平均分子量Mwや延伸倍率(特に、後述する乾燥後のフィルムの延伸倍率)を調整したりすることなどにより、上記範囲とすることができる。
 (引張強度)
 ポリオレフィン微多孔膜のMD方向の引張強度(引張破断強度)の下限は、例えば、100MPa以上であり、好ましくは230MPa以上であり、より好ましくは250MPa以上であり、さらに好ましくは、280MPa以上である。MD方向の引張強度の上限は、特に限定されないが、例えば、600MPa以下である。MD方向の引張強度が上記範囲である場合、高い張力が掛かった場合も膜が破断しにくく、高い耐久性が要求される用途に用いることができる。例えば、上記のような強度に優れた微多孔膜をセパレータとして用いた場合、電池作製時や使用時における短絡を抑制するとともに、高い張力をかけてセパレータを巻回可能となり、電池の高容量化を図ることができる。また、薄膜化したポリオレフィン微多孔膜の少なくとも一方の表面にコーティング層を形成する場合、より高いMD方向の引張強度が要求される。よって、コーティング層の塗工性を向上させるという観点から、ポリオレフィン微多孔膜のMD方向の引張強度は、好ましくは230MPa以上であり、より好ましくは250MPa以上であり、さらに好ましくは、280MPa以上である。MD方向の引張強度が上記範囲である場合、塗工用の基材として好適に用いることができる。
 ポリオレフィン微多孔膜のTD方向の引張強度の下限は、特に限定されないが、例えば、100MPa以上であり、好ましくは150MPa以上であり、より好ましくは170MPa以上である。TD方向の引張強度の上限は、特に限定されないが、例えば、300MPa以下である。また、ポリオレフィン微多孔膜において、TD引張強度に対するMD引張強度の比(MD引張強度/TD引張強度)は、1.0超であるのが好ましく、1.0超1.8以下であるのが好ましく、より好ましくは1.2以上1.7以下である。
 ポリオレフィン微多孔膜のTD引張強度、及びTD引張強度に対するMD引張強度の比のうち少なくとも1つが、上記の範囲である場合、引張強度が優れているため、高い強度や耐久性が要求される用途に好適に用いることができる。また、セパレータの捲回方向は、通常MD方向であることから、TD引張強度に対するMD引張強度の比は上記範囲内であることが好ましい。
 なお、MD引張強度およびTD引張強度については、ASTM D882に準拠した方法により測定した値である。
 (引張伸度)
 ポリオレフィン微多孔膜のMD方向の引張伸度(引張破断伸度)は、特に限定されないが、例えば、50%以上300%以下であり、50%以上100%以下であるのが好ましい。MD方向の破断伸度が、上記の範囲である場合、塗工する時に高い張力が掛かった場合も変形しにくく、シワも発生しにくいので塗工欠陥が抑制され塗工表面の平面性が良いので好ましい。
 ポリオレフィン微多孔膜のTD方向の引張伸度(引張破断伸度)は、特に限定されないが、例えば、50%以上300%以下であり、100%以上であるのが好ましい。TD方向の破断伸度が、上記の範囲である場合、衝撃試験などで評価できる耐衝突性に優れ、また、ポリオレフィン微多孔膜をセパレータとして用いた場合、電極の凹凸、電池の変形、電池発熱による内部応力発生等に対して、セパレータが追従できるので好ましい。
 なお、MD引張伸度およびTD引張伸度は、ASTM D-882Aに準拠した方法により測定した値である。
 (突刺強度)
 ポリオレフィン微多孔膜の突刺強度の下限は、好ましくは1.96N以上であり、より好ましくは2.00N以上である。突刺強度の上限は、特に限定されないが、例えば、7.00N以下である。突刺強度が上記範囲である場合、ポリオレフィン微多孔膜の膜強度に優れる。また、このポリオレフィン微多孔膜をセパレータとして用いた二次電池は、電極の短絡の発生や自己放電が抑制される。突刺強度は、ポリオレフィン微多孔膜を製造する際、例えば、超高分子量ポリエチレン及び/又は核剤を含有させたり、ポリオレフィン微多孔膜を構成するポリオレフィン樹脂の重量平均分子量(Mw)や延伸倍率(特に、後述する乾燥後のフィルムの延伸倍率)を調整したりすることにより、上記範囲とすることができる。
 また、ポリオレフィン微多孔膜は、膜厚5μm換算の突刺強度が、1.96N以上であることが好ましく、より好ましくは2.00N以上であり、更に好ましくは2.50N以上である。膜厚5μm換算の突刺強度の上限は、特に限定されないが、例えば、4.00N以下である。突刺強度が上記範囲である場合、ポリオレフィン微多孔膜を薄膜化した際も膜強度に優れ、このポリオレフィン微多孔膜をセパレータとして用いた二次電池は電極の短絡の発生及び自己放電が抑制される。
 突刺強度は、先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚T(μm)のポリオレフィン微多孔膜を2mm/秒の速度で突刺したときの最大荷重(N)を測定した値である。また、膜厚5μm換算の突刺強度(N/5μm)は、下記の式で求めることのできる値である。
式:突刺強度(5μm換算)=測定された突刺強度(N)×5(μm)/膜厚T(μm)
 (透気度)
 ポリオレフィン微多孔膜の透気度(ガーレー値)は、特に限定されないが、例えば、50秒/100cm以上300秒/100cm以下である。ポリオレフィン微多孔膜の透気度は、二次電池用セパレータとして用いる場合、好ましくは250秒/100cm以下であり、より好ましくは200秒/100cm以下であり、さらに好ましくは150秒/100cm以下である。透気度が上記範囲である場合、二次電池用セパレータとして用いた際、イオン透過性に優れ、二次電池のインピーダンスが低下し電池出力が向上する。透気度は、ポリオレフィン微多孔膜を製造する際の延伸条件などを調節することにより、上記範囲とすることができる。
 また、ポリオレフィン微多孔膜の透気度(ガーレー値)は、膜厚5μmで換算した透気度が150秒/100cm/5μm以下であることが好ましい。
 (膜厚)
 ポリオレフィン微多孔膜の膜厚の上限は、特に限定されないが、例えば、30μm以下であり、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは7μm以下である。膜厚の下限は、特に限定されないが、例えば、1μm以上であり、好ましくは3μm以上である。膜厚が上記範囲である場合、ポリオレフィン微多孔膜を電池用セパレータとして使用した際、電池容量が向上する。本実施形態のポリオレフィン微多孔膜は、高い突刺強度等を有し、薄膜化した際でも、高い自己放電特性及びレート特性を有する。
 (空孔率)
 ポリオレフィン微多孔膜の空孔率の下限は、特に限定されないが、例えば、10%以上であり、好ましくは20%以上であり、さらに好ましくは40%以上である。空孔率の下限は、特に限定されないが、例えば、70%以下であり、60%以下であることが好ましく、50%以下であることがさらに好ましい。。ポリオレフィン微多孔膜を二次電池用セパレータとして用いる場合、ポリオレフィン微多孔膜の空孔率は、好ましくは20%以上60%以下であり、より好ましくは20%以上50%以下である。空孔率が上記範囲であることにより、電解液の保持量を高め、高いイオン透過性を確保することができる。また、空孔率が上記範囲であると、レート特性が向上する。また、イオン透過性及びレート特性をより高めるという観点から、空孔率が40%以上であることが好ましい。空孔率は、製造過程において、ポリオレフィン樹脂の構成成分の配合割合や延伸倍率、熱固定条件などを調節することにより、上記範囲とできる。
 (目付)
 ポリオレフィン微多孔膜の目付の上限は、例えば、4.0g/m以下であり、3.4g/m未満であるのが好ましい。目付の下限は、特に限定されないが、例えば、1.0g/m以上であり、1.5g/m以上であることがより好ましい。ポリオレフィン微多孔膜の目付が上記範囲である場合、ポリオレフィン微多孔膜をセパレータとして用いたときに、単位体積当たりの電解液の保持量を高め、高いイオン透過性を確保することができ、また、ポリオレフィン微多孔膜の膜厚が薄い場合においても、自己放電特性に優れる。ポリオレフィン微多孔膜の目付は、製造過程において、ポリオレフィン樹脂の構成成分の配合割合や延伸倍率などを調節することにより、上記範囲とすることができる。なお、ポリオレフィン微多孔膜の目付は、1mのポリオレフィン微多孔膜の重量である。
 (目付・空孔率)
 ポリオレフィン微多孔膜は、目付が3.4g/m未満、及び、空孔率が40%以上、の少なくとも一方の条件を満たすことが好ましい。ポリオレフィン微多孔膜の目付または空孔率が上記範囲である場合、ポリオレフィン微多孔膜をセパレータとして用いたときに、単位体積当たりの電解液の保持量を増加させることができ、電池特性を向上させることができる。また、ポリオレフィン微多孔膜が上記条件を満たす場合、薄膜化したポリオレフィン微多孔膜の膜厚において、電池用セパレータとして用いた際に、自己放電特性、レート特性及びサイクル特性により優れる。
 (熱収縮率)
 ポリオレフィン微多孔膜の105℃8時間におけるMD方向の熱収縮率は、例えば、10%以下であり、6%以下であるのが好ましく、4%以下であるのがより好ましい。ポリオレフィン微多孔膜の105℃におけるTD方向の熱収縮率は、例えば、10%以下であり、8%以下であるのが好ましく、6%以下であるのがより好ましい。MD方向の熱収縮率の下限、及びTD方向の熱収縮率の下限は、特に限定されないが、例えば、0.5%以上であるのが好ましい。MD方向の熱収縮率、及びTD方向の熱収縮率が上記範囲である場合、耐熱収縮性に優れ、ポリオレフィン微多孔膜をセパレータとして用いたとき等に、熱による膨張・収縮を抑制することができる。
 (組成)
 ポリオレフィン微多孔膜は、ポリオレフィン樹脂を主成分として含む。ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレンなどを用いることができる。例えば、ポリオレフィン微多孔膜全量に対して、ポリエチレンを50質量%以上含むことができる。ポリエチレンとしては、特に限定されず、種々のポリエチレンを用いることができ、例えば、高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン等が用いられる。なお、ポリエチレンは、エチレンの単独重合体であってもよく、エチレンと他のα-オレフィンとの共重合体であってもよい。α-オレフィンとしては、プロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。
 ポリオレフィン微多孔膜は、高密度ポリエチレン(密度:0.920g/m以上0.970g/m以下)を含有する場合、溶融押出特性に優れ、均一な延伸加工特性に優れる。原料として用いられる高密度ポリエチレンの重量平均分子量(Mw)は、例えば1×10以上1×10未満程度である。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。高密度ポリエチレンの含有量は、例えば、ポリオレフィン樹脂全体100質量%に対して、50質量%以上である。高密度ポリエチレンの含有量は、その上限が、例えば100質量%以下であり、他の成分を含む場合は、例えば90質量%以下である。
 また、ポリオレフィン微多孔膜は、超高分子量ポリエチレン(UHMwPE)を含むことができる。原料として用いられる超高分子量ポリエチレンは、重量平均分子量(Mw)が1×10以上(10万以上)であり、好ましくは1×10以上8×10以下である。Mwが上記範囲である場合、成形性が良好となる。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。超高分子量ポリエチレンは1種を単独で、または2種以上を併用して用いることができ、例えばMwの異なる二種以上の超高分子量ポリエチレン同士を混合して用いてもよい。
 超高分子量ポリエチレンは、ポリオレフィン樹脂全体100質量%に対して、例えば0質量%以上70質量%以下含むことができる。例えば、超高分子量ポリエチレンの含有量が10質量%以上60質量%以下である場合、得られるポリオレフィン微多孔膜のMwを後述する特定の範囲に容易に制御しやすく、かつ押出し混練性などの生産性に優れる傾向がある。また、超高分子量ポリエチレンを含有した場合、ポリオレフィン微多孔膜を薄膜化した際にも高い機械的強度を得ることができる。
 ポリオレフィン微多孔膜は、ポリプロピレンを含んでもよい。ポリプロピレンの種類は、特に限定されず、プロピレンの単独重合体、プロピレンと他のα-オレフィン及び/又はジオレフィンとの共重合体(プロピレン共重合体)、あるいはこれらの混合物のいずれでも良いが、機械的強度及び貫通孔径の微小化等の観点から、プロピレンの単独重合体を用いることが好ましい。ポリオレフィン樹脂全体ポリプロピレンの含有量は、例えば0質量%以上15質量%以下であり、耐熱性の観点から、好ましくは2.5質量%以上15質量%以下である。
 また、ポリオレフィン微多孔膜は、必要に応じて、ポリエチレン及びポリプロピレン以外のその他の樹脂成分を含むことができる。その他の樹脂成分としては、例えば、耐熱性樹脂等を用いることができる。また、ポリオレフィン微多孔膜は、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、ブロッキング防止剤や充填剤、結晶造核剤、結晶化遅延剤等の各種添加剤を含有させてもよい。
 2.ポリオレフィン微多孔膜の製造方法
 ポリオレフィン微多孔膜の製造方法は、上記の特性を有するポリオレフィン微多孔膜が得られれば、特に限定されず、公知のポリオレフィン微多孔膜の製造方法を用いることができる。ポリオレフィン微多孔膜の製造方法としては、例えば、乾式の製膜方法及び湿式の製膜方法が挙げられる。本実施形態のポリオレフィン微多孔膜の製造方法としては、膜の構造及び物性の制御の容易性の観点から湿式の製膜方法が好ましい。湿式の製膜方法としては、例えば、日本国特許第2132327号および日本国特許第3347835号の明細書、国際公開2006/137540号等に記載された方法を用いることができる。
 以下、ポリオレフィン微多孔膜の製造方法(湿式の製膜方法)について説明する。なお、以下の説明は、製造方法の一例であって、この方法に限定されるものではない。
 まず、ポリオレフィン樹脂と成膜用溶剤(溶剤)とを溶融混練して樹脂溶液を調製する。溶融混練方法としては、例えば日本国特許第2132327号および日本国特許第3347835号の明細書に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
 ポリオレフィン樹脂は、好ましくは高密度ポリエチレンを含む。高密度ポリエチレンを含有した場合、溶融押出特性に優れ、均一な延伸加工特性に優れる。また、ポリオレフィン樹脂は、超高分子量ポリエチレンを含むことができる。超高分子量ポリエチレンを含む場合、得られるポリオレフィン微多孔膜のMwを後述する特定の範囲に容易に制御しやすく、かつ押出し混練性などの生産性に優れる傾向がある。ポリオレフィン樹脂として用いることのできる種類及び配合量の詳細については、上記と同様であるため説明を省略する。
 なお、樹脂溶液は、上記のポリオレフィン樹脂及び成膜用溶剤(溶剤)以外の成分を含んでもよく、例えば、結晶造核剤(核剤)、酸化防止剤などを含んでもよい。核剤としては、特に限定されず、公知の化合物系、微粒子系結晶造核剤などが使用できる。核剤としては、核剤を予めポリオレフィン樹脂に混合、分散したマスターバッチであってもよい。
 なお、樹脂溶液は、結晶造核剤を含有しない場合、ポリオレフィン樹脂は、上記の超高分子量ポリエチレンと高密度ポリエチレンとを含有することが好ましい。また、ポリオレフィン微多孔膜は、高密度ポリエチレン、超高分子量ポリエチレン及び核剤を含んでもよい。これらを含むことにより、突刺強度をより向上させることができる。
 次いで、溶融樹脂を押出し、冷却してゲル状シートを形成する。例えば、上記で調整した樹脂溶液を押出機から1つのダイに送給し、シート状に押し出し、形成体を得る。得られた成形体を冷却することにより、ゲル状シートを形成する。
 ゲル状シートの形成方法として、例えば日本国特許第2132327号公報および日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。
 次いで、ゲル状シートを延伸する。ゲル状シートの延伸(第一の延伸)は、湿式延伸ともいう。湿式延伸は、少なくとも一軸方向に行う。ゲル状シートは溶剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)のいずれでもよい。
 湿式延伸における、最終的な面積延伸倍率(面倍率)は、例えば、一軸延伸の場合、3倍以上が好ましく、4倍以上30倍以下がより好ましい。また、二軸延伸の場合、9倍以上が好ましく、16倍以上がより好ましく、25倍以上がさらに好ましい。上限は100倍以下が好ましく、64倍以下がより好ましい。また、長手方向(機械方向:MD方向)及び横手方向(幅方向:TD方向)のいずれでも3倍以上が好ましく、MD方向とTD方向での延伸倍率は、互いに同じでも異なってもよい。延伸倍率を5倍以上とすると、突刺強度の向上が期待できる。なお、本ステップにおける延伸倍率とは、本ステップ直前のゲル状シートを基準として、次ステップに供される直前のゲル状シートの延伸倍率のことをいう。また、TD方向は、微多孔膜を平面でみたときにMD方向に直交する方向である。
 延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)~Tcd+30℃の範囲内にするのが好ましく、結晶分散温度(Tcd)+5℃~結晶分散温度(Tcd)+28℃の範囲内にするのがより好ましく、Tcd+10℃~Tcd+26℃の範囲内にするのが特に好ましい。延伸温度が上記範囲内であるとポリオレフィン樹脂延伸による破膜が抑制され、高倍率の延伸ができる。ここで結晶分散温度(Tcd)とは、ASTM D4065に基づいて動的粘弾性の温度特性測定により求められる値をいう。上記の超高分子量ポリエチレン、超高分子量ポリエチレン以外のポリエチレン及びポリエチレン組成物は、約90~100℃の結晶分散温度を有する。延伸温度は、例えば、90℃以上130℃以下とすることができる。
 以上のような延伸によりポリエチレンラメラ間に開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに細孔が拡大するが、適切な条件で延伸を行うと、貫通孔径を制御し、さらに薄い膜厚でも高い空孔率を有することが可能となる。このため、より安全で高性能な電池用セパレータに好適である。
 次いで、上記延伸後のゲル状シートから成膜用溶剤を除去して微多孔膜(フィルム)とする。成膜用溶剤の除去は、洗浄溶媒を用いた洗浄により行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。洗浄溶媒およびこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。
 次いで、成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であるのが好ましく、特にTcdより5℃以上低いのが好ましい。乾燥は、微多孔膜フィルムを100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。残存洗浄溶媒が上記範囲内であると、後段の微多孔膜フィルムの延伸工程及び熱処理工程を行ったときにポリオレフィン微多孔膜の空孔率が維持され、透過性の悪化が抑制される。
 次いで、乾燥後の微多孔膜を延伸する。乾燥後の微多孔膜の延伸(第二の延伸、第三の延伸)は、乾式延伸ともいう。乾燥後の微多孔膜フィルムを、少なくとも一軸方向に乾式延伸する。微多孔膜フィルムの乾式延伸は、加熱しながら上記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸及び逐次延伸のいずれでもよいが、逐次延伸が好ましい。逐次延伸の場合、MD方向に延伸(第二の延伸)した後、連続して、TD方向に延伸(第三の延伸)することが好ましい。
 乾式延伸の面倍率(面積延伸倍率)は、1.2倍以上であることが好ましく、1.2倍以上9.0倍以下であることがより好ましい。面倍率を上記範囲とすることにより、突刺強度等を所望の範囲に容易に制御することができる。一軸延伸の場合、例えば、MD方向又はTD方向に1.2倍以上、好ましくは1.2倍以上3.0倍以下とする。二軸延伸の場合、MD方向及びTD方向に各々1.0倍以上3.0倍以下とし、MD方向とTD方向での延伸倍率が互いに同じでも異なってもよいが、MD方向とTD方向での延伸倍率がほぼ同じであることが好ましい。乾式延伸は、MD方向に1倍超3倍以下で延伸(第二の延伸)した後、連続して、TD方向に1倍超3倍以下で延伸(第三の延伸)することが好ましい。なお、本ステップにおける延伸倍率とは、本ステップ直前の微多孔膜(フィルム)を基準として、次ステップに供される直前の微多孔膜の延伸倍率のことをいう。本ステップ(乾式延伸)における延伸温度は、特に限定されないが、通常90~135℃である。
第二延伸をロール延伸する場合、多段延伸することが好ましい。高倍延伸する場合、ロール上ですべり発生により延伸点が定まらず延伸ムラが発生しやすい。延伸段数を増加させることで、延伸ムラが低減させることができる。特に延伸倍率1.5以上になる場合、4段以上延伸することが好ましく、5段以上延伸することがより好ましい。
 また、乾燥後の微多孔膜は、熱処理が行われてもよい。熱処理によって結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いることができる。熱固定処理とは、膜のTD方向の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中にMD方向やTD方向に熱収縮させる熱処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。例えば、熱緩和処理方法としては特開2002-256099号公報に開示の方法があげられる。熱処理温度は第2のポリオレフィン樹脂のTcd~Tmの範囲内が好ましく、微多孔膜の延伸温度±5℃の範囲内がより好ましく、微多孔膜の第二の延伸温度±3℃の範囲内が特に好ましい。
 例えば、第三の延伸後に、熱処理及び熱緩和処理をしてもよい。熱緩和処理において、緩和温度は、例えば、80℃以上135℃以下、好ましくは90℃以上133℃以下である。また、熱緩和処理を行った場合、最終乾式延伸倍率は、例えば、1.0倍以上9.0倍以下、好ましくは1.2倍以上4.0倍以下である。緩和率は、0%以上70%以下とすることができる。
 また、乾式延伸後のポリオレフィン微多孔膜に対して、さらに、架橋処理および親水化処理を行うこともできる。例えば、微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射することに、架橋処理を行う。電子線の照射の場合、0.1~100Mradの電子線量が好ましく、100~300kVの加速電圧が好ましい。架橋処理により微多孔膜のメルトダウン温度が上昇する。また、親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
 なお、ポリオレフィン微多孔膜は、単層であってもよいが、ポリオレフィン微多孔膜からなる層を1層以上積層してもよい。多層ポリオレフィン微多孔膜は、二層以上のポリオレフィン微多孔膜からなる層を有することができる。多層ポリオレフィン微多孔膜の場合、各層を構成するポリオレフィン樹脂の組成は、同一組成でもよく、異なる組成でもよい。
 なお、ポリオレフィン微多孔膜は、ポリオレフィン樹脂以外の他の多孔質層を積層して積層ポリオレフィン多孔質膜としてもよい。他の多孔質層としては、特に限定されないが、例えば、バインダーと無機粒子とを含む無機粒子層などのコーティング層を積層してもよい。無機粒子層を構成するバインダー成分としては、特に限定されず、公知の成分を用いることができ、例えば、アクリル樹脂、ポリフッ化ビニリデン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリイミド樹脂などを用いることができる。無機粒子層を構成する無機粒子としては、特に限定されず、公知の材料を用いることができ、例えば、アルミナ、ベーマイト、硫酸バリウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、ケイ素などを用いることができる。また、積層ポリオレフィン多孔質膜としては、多孔質化した前記バインダー樹脂がポリオレフィン微多孔質膜の少なくとも一方の表面に積層されたものであってもよい。
 以下、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの例に限定されるものではない。
 1.測定方法と評価方法
 [膜厚]
 微多孔膜の95mm×95mmの範囲内における5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック)により測定し、平均値を求めた。
 [空孔率]
 微多孔膜の重量wとそれと等価な空孔のないポリマーの重量w(幅、長さ、組成の同じポリマー)とを比較した、以下の式によって、測定した。
空孔率(%)=(w-w)/w×100
 [目付]
 目付は、1mの微多孔膜の重量により測定した。
 [引張強度]
 MD引張強度およびTD引張強度について、幅10mmの短冊状試験片を用いて、ASTM D882に準拠した方法により測定した。
 [引張伸度]
 MD引張強度およびTD引張強度について、ASTM D-882Aに準拠した方法により測定した。
 [突刺強度]
 先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚T(μm)の微多孔質膜を2mm/秒の速度で突刺したときの最大荷重L(N)を測定した。
 [透気度(透気抵抗度;ガーレー値)]
 膜厚T(μm)の微多孔膜に対して、JIS P-8117に準拠して、透気度計(旭精工株式会社製、EGO-1T)で測定した透気抵抗度P(sec/100cm)を測定した。また、式:P=(P×5)/Tにより、膜厚を5μmとしたときの透気抵抗度P(5μm換算)(sec/100cm/5μm)を算出した。
 [熱収縮]
 105℃8時間のMD熱収縮率およびTD熱収縮率は、次のようにして測定した。
(1)室温(25℃)におけるポリオレフィン微多孔膜の試験片の大きさをMDおよびTDの両方について測定する。
(2)ポリオレフィン微多孔膜の試験片を、荷重をかけずに8時間105℃の温度にて平衡化する。
(3)ポリオレフィン微多孔膜の大きさをMDおよびTDの両方について測定する。
(4)MD方向およびTD方向への熱収縮を、測定結果(3)を測定結果(1)で割り、得られた値を1から引き、その値を百分率(%)で表して算出した。
 [耐圧縮性]
 耐圧縮性は温度80℃、圧力1MPaで60分間、加熱圧縮した時のポリオレフィン微多孔膜の膜厚変化率で評価した。
10枚を積層したポリオレフィン微多孔膜を、一組の高度に水平な板の間に置き、60分間、80℃で1MPaの圧力下で圧縮機械(新東工業株式会社製、CYPT-20特)により加熱圧縮した際、圧縮した状態における膜厚を測定し、一枚あたりの平均厚さ(圧縮した状態の平均厚さ)を算出した。加熱圧縮したときのポリオレフィン微多孔膜の膜厚変化率は下記式により算出した。
[(圧縮前の平均厚さ-圧縮した状態の平均厚さ)/(圧縮前の平均厚さ)]×100
 [透過率]
 ポリオレフィン微多孔膜のMD方向における6.7cm/点サンプリングで20m分透過光量を測定し、平均透過率(Ave)とその標準偏差(σ)を求め、変動係数(σ/Ave)を平面性の指標とした。σ/Aveの値が小さいほど、延伸ムラが小さく、平面性が良好となる。次のようにして透過光量を測定した。
透過光量計(キーエンス社製、IB-30)を使用して、投受光間距離300mm、ポリオレフィン微多孔膜はその中央(150mm)で透過光量を測定した。6.7cm/点サンプリングで20m分透過光量を測定し、平均透過率(Ave)と標準偏差(σ)を算出した。
透過率変動係数=標準偏差σ/平均値Ave.
平面性(延伸ムラ)評価
×:透過率変動係数0.03以上。
○:透過率変動係数0.03未満。
 ポリオレフィン樹脂の重量平均分子量(Mw)は以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC-150C
・カラム:昭和電工株式会社製Shodex UT806M
・カラム温度:135℃
・溶媒(移動相):o-ジクロルベンゼン
・溶媒流速:1.0 ml/分
・試料濃度:0.1 wt%(溶解条件:135℃/1h)
・インジェクション量:500μl
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター(RI検出器)
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数(0.468)を用いて作成した。
 [自己放電特性]
 自己放電特性は以下の方法で評価を行った。下記の(評価用電池の作製方法)にて組み立てた試験用二次電池0.5Cの電流値で電池電圧3.85Vまで定電流充電した後、電池電圧3.85Vで0.05Cになるまで定電圧充電を行った。この電池を24時間放置した後の開回路電圧を計測し、この値をV1とした。この電池について、さらに24時間放置、つまり充電後計48時間放置した後の開回路電圧を計測し、この値をV2とした。得られたV1、V2の値からK値を下記の式により算出した。
式:K値(mV/h)=(V1-V2)/24
×:K値0.03以上。
○:K値0.02以上0.03未満。
◎:K値0.02未満。
 [レート特性]
 レート特性は以下の方法で評価を行った。レート特性の測定には下記の(評価用電池の作製方法)にて作製した試験用二次電池を用いた。電池電圧4.2Vまで1.0Cの電流値で定電流充電した後、電池電圧4.2Vで0.05Cの電流値になるまで定電圧充電を行った後、0.2Cの電流値で電池電圧が3.0Vになるまで放電(定電流放電)して放電容量を測定した。続いて、前述の手順にて再度4.2Vまで充電した後、5Cの電流値で電池電圧が3.0Vになるまで放電(定電流放電)して放電容量を測定した。下記の式により放電容量比を算出した。
式:放電容量比=5Cでの放電容量×100/0.2Cでの放電容量
×:放電容量比値85%未満。
○:放電容量比値85%以上90%未満。
◎:放電容量比値90%以上100%未満。
 [サイクル特性]
 サイクル特性は以下の方法で評価を行った。サイクル特性の測定には上記(電池の作製)にて作製した試験用二次電池を用いた。電池電圧4.2Vまで1.0Cの電流値で定電流充電した後、電池電圧4.2Vで0.05Cの電流値になるまで定電圧充電を行った。10分の休止後、1.0Cの電流値で電池電圧が3.0Vになるまで定電流放電を行い、10分休止した。この充放電を1サイクルとして、500回充放電を繰り返し行った。
下記の式により残存容量比を算出した。
式:残存容量比=500サイクル目放電容量×100/1サイクル目放電容量
×:残存容量比値80%以下。
○:残存容量比値80%超過100%以下。
 (評価用電池の作製方法)
 評価に用いた電池(評価用電池)は、正極活物質としてリチウムコバルト複合酸化物LiCoO、負極活物質として黒鉛、電解液としてEC/EMC/DMCの混合溶媒に調製した1mol/LのLiPFを使用し、正極、ポリオレフィン微多孔膜からなるセパレータ、及び、負極を積層した後、常法により巻回電極体を作製し、電池缶に挿入し、電解液を含浸させ、封口して、作製した。以下に、評価用電池の製造方法の詳細を説明する。
 (正極の作製)
 正極活物質としてリチウムコバルト複合酸化物LiCoO、導電材としてアセチレンブラック、バインダーであるポリフッ化ビニリデン(PVDF)とを93.5:4.0:2.5の質量比で混合して、溶媒N-メチルピロリドン(NMP)に混合分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ12μmのアルミニウム箔の両面に塗布し、乾燥後、ロールプレス機で圧延した。圧延後のものを30mm幅にスリットして正極とした。
 (負極の作製)
 負極活物質として人造黒鉛、バインダーとしてカルボキシメチルセルロース、スチレン-ブタジエン共重合体ラテックスとを98:1:1の質量比となるように、精製水に混合分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ10μmの銅箔の両面に塗布し、乾燥後、ロールプレス機で圧延した。圧延後のものを33mm幅にスリットして負極とした。
 (非水電解液)
 エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=3:5:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.15mol/リットルとなるように溶解させた。さらに、非水電解液100質量%に対して0.5質量%のビニレンカーボネートを添加し、非水電解液を調製した。
 (電池の作製)
 上記の正極、ポリオレフィン微多孔膜及び上記の負極を積層した後、扁平状の巻回電極体(高さ2.2mm×幅36mm×奥行29mm)を作製した。この扁平状の巻回電極体の各電極へ、シーラント付タブを溶接し、正極リード、負極リードとした。扁平状の巻回電極体部分をアルミラミネートフィルムで挟み、一部開口部を残してシールし、これを真空オーブンにて80℃で6時間乾燥、乾燥後は速やかに電解液を0.7mL注液し、真空シーラーでシールし、80℃、1MPaで1時間プレス成型した。続いて、充放電を実施した。充放電条件は300mA電流値で、電池電圧4.2Vまで定電流充電した後、電池電圧4.2Vで15mAになるまで定電圧充電を行った。10分の休止後、300mAの電流値で電池電圧3.0Vまで定電流放電を行い、10分休止した。以上の充放電を3サイクル実施し、電池容量300mAhの試験用二次電池を作製した。
 (実施例1~12)
 表1,2に示す組成でポリオレフィン樹脂と流動パラフィンとを二軸押出機にて、溶融混練し、ポリオレフィン溶液を調製した。ポリオレフィン溶液を、二軸押出機からTダイに供給し、押し出した。押出し成形体を、冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。ゲル状シートを、テンター延伸機により106℃以上112℃以下でMD方向及びTD方向ともに5倍で同時二軸延伸又は逐次二軸延伸(第一の延伸)した。延伸したゲル状シートを塩化メチレン浴中に浸漬し、流動パラフィンを除去した後、乾燥させ、乾燥膜を得た。乾燥膜をバッチ式延伸機を用いて、90℃以上113℃以下でMD方向に1.40倍以上1.90倍以下ロール延伸法で延伸(第二の延伸)した。その後、128.0℃以上133.0℃以下でTD方向に1.34倍以上2.11倍以下で延伸(第三の延伸)した。次に、得られた膜をテンター法により、129.0℃以上133.1℃以下の範囲で、2%以上10%以下の緩和率で緩和を行った。なお、緩和後におけるTD方向の延伸倍率は、1.32倍以上2.03倍以下であった。得られたポリオレフィン微多孔質膜の製造条件、評価結果等を表1,2に記載した。
 (比較例1~5)
 表3に示す組成でポリオレフィン樹脂と流動パラフィンとを二軸押出機にて、溶融混練し、表3に示す製造条件でポリオレフィン微多孔膜の製造を行った。得られたポリオレフィン微多孔質膜の評価結果等を表3に記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (評価)
 実施例1~12のポリオレフィン微多孔膜は、膜厚3.2μm以上7.1μm以下において、熱圧縮時の膜厚変化率(1MPa、80℃、1hr)が0%以上15%以下であり、耐圧縮に優れ、自己放電特性に優れることが示された。中でも、目付が3.4g/m未満、又は、空孔率が40%以上である場合、レート特性及びサイクル特性に優れることが確認される。一方、比較例1~5のポリオレフィン微多孔膜は、熱圧縮時の膜厚変化率(1MPa、80℃、1hr)が15%超であり、かつ、自己放電特性が不良、又は、自己放電特性及びレート特性の両方が不良であった。
  以上から、熱圧縮時の膜厚変化率(1MPa、80℃、1hr)を特定の範囲としたポリオレフィン微多孔膜をセパレータとして組み入れた二次電池は、優れた自己放電特性を有することが明らかとなった。
 本発明のポリオレフィン微多孔膜は、セパレータとして二次電池に組み入れた際、自己放電特性に優れる。よって、薄膜化が要求される二次電池用セパレータに好適に用いることができる。
 

Claims (7)

  1.  温度80℃、圧力1MPaで60分間加熱圧縮した時の膜厚変化率が、加熱圧縮前のポリオレフィン微多孔質膜の膜厚100%に対して、0%以上15%以下であるポリオレフィン微多孔膜。
  2.  目付が3.4g/m未満、及び、空孔率が40%以上の少なくとも一方の条件を満たす請求項1に記載のポリオレフィン微多孔膜。
  3.  MD方向の引張強度が230MPa以上である請求項1又は請求項2に記載のポリオレフィン微多孔膜。
  4.  TD方向の引張伸度が100%以上である請求項1~3のいずれか一項に記載のポリオレフィン微多孔膜。
  5.  請求項1~4のいずれか一項に記載のポリオレフィン微多孔膜を少なくとも1層有する多層ポリオレフィン微多孔膜。
  6.  請求項1~4のいずれか一項に記載のポリオレフィン微多孔膜の少なくとも一方の表面に、1層以上のコーティング層を備える、積層ポリオレフィン微多孔膜。
  7.  請求項1~4のいずれか一項に記載のポリオレフィン微多孔膜を含むセパレータを用いてなる電池。
     
PCT/JP2018/008334 2017-03-08 2018-03-05 ポリオレフィン微多孔膜 WO2018164056A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019504575A JP6988881B2 (ja) 2017-03-08 2018-03-05 ポリエチレン微多孔膜を含む二次電池用セパレータ
CN201880005332.5A CN110114397A (zh) 2017-03-08 2018-03-05 聚烯烃微多孔膜
US16/489,496 US20210005860A1 (en) 2017-03-08 2018-03-05 Polyolefin microporous film
EP18763354.0A EP3594278B1 (en) 2017-03-08 2018-03-05 Polyolefin microporous film
CN202210832885.6A CN115149204B (zh) 2017-03-08 2018-03-05 聚烯烃微多孔膜
KR1020197016789A KR102533841B1 (ko) 2017-03-08 2018-03-05 폴리올레핀 미세 다공막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-044210 2017-03-08
JP2017044210 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018164056A1 true WO2018164056A1 (ja) 2018-09-13

Family

ID=63448263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008334 WO2018164056A1 (ja) 2017-03-08 2018-03-05 ポリオレフィン微多孔膜

Country Status (7)

Country Link
US (1) US20210005860A1 (ja)
EP (1) EP3594278B1 (ja)
JP (1) JP6988881B2 (ja)
KR (1) KR102533841B1 (ja)
CN (2) CN115149204B (ja)
TW (1) TW201836852A (ja)
WO (1) WO2018164056A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067161A1 (ja) * 2018-09-25 2020-04-02 旭化成株式会社 高強度セパレータ
JP2020164791A (ja) * 2019-03-26 2020-10-08 東レ株式会社 ポリオレフィン微多孔膜およびその製造方法
WO2020203908A1 (ja) * 2019-03-29 2020-10-08 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
WO2022092300A1 (ja) 2020-10-30 2022-05-05 旭化成株式会社 ポリオレフィン微多孔膜
WO2022154069A1 (ja) 2021-01-18 2022-07-21 東レ株式会社 ポリオレフィン微多孔膜および積層ポリオレフィン微多孔膜
WO2023176876A1 (ja) * 2022-03-18 2023-09-21 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ、非水電解液二次電池およびフィルター

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116802225A (zh) * 2021-07-30 2023-09-22 宁德时代新能源科技股份有限公司 隔离膜及其制备方法、电化学装置、电化学设备和用电装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256099A (ja) 2001-03-02 2002-09-11 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP3347835B2 (ja) 1993-08-13 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法
JP2004149637A (ja) * 2002-10-29 2004-05-27 Tonen Chem Corp 微多孔膜及びその製造方法並びに用途
WO2006137540A1 (ja) 2005-06-24 2006-12-28 Tonen Chemical Corporation ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
WO2010027065A2 (en) 2008-09-02 2010-03-11 Tonen Chemical Corporation Microporous polymeric membranes, methods for making such membranes, and the use of such membranes as battery separator film
WO2010058789A1 (ja) 2008-11-19 2010-05-27 三井化学株式会社 ポリオレフィン樹脂組成物およびその用途
WO2010107023A1 (ja) 2009-03-17 2010-09-23 東レ株式会社 多孔性ポリプロピレンフィルムおよびその製造方法
JP2013256606A (ja) 2012-06-13 2013-12-26 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜及びその製造方法
JP2014162851A (ja) 2013-02-25 2014-09-08 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜の製造方法
WO2015029944A1 (ja) * 2013-08-30 2015-03-05 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法
JP2015228358A (ja) * 2014-05-09 2015-12-17 東レバッテリーセパレータフィルム株式会社 ポリオレフィン製積層多孔質膜、それを用いた電池用セパレータおよびそれらの製造方法
WO2015194504A1 (ja) * 2014-06-20 2015-12-23 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔質膜、電池用セパレータ及び電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247955B (zh) * 2005-08-25 2011-07-20 东燃化学株式会社 聚乙烯多层微多孔膜及使用其的电池用隔板及电池
JP5283383B2 (ja) * 2005-09-28 2013-09-04 東レバッテリーセパレータフィルム株式会社 ポリエチレン微多孔膜の製造方法及び電池用セパレータ
JP5202816B2 (ja) * 2006-04-07 2013-06-05 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜及びその製造方法
JP5312450B2 (ja) * 2007-08-31 2013-10-09 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
WO2009044227A1 (en) * 2007-10-05 2009-04-09 Tonen Chemical Corporation Microporous polymer membrane
US20090226814A1 (en) * 2008-03-07 2009-09-10 Kotaro Takita Microporous membrane, battery separator and battery
JP5297114B2 (ja) 2008-08-06 2013-09-25 三菱重工業株式会社 ガスタービン
EP2159311B1 (de) 2008-09-01 2011-10-19 Groz-Beckert KG Hakennadel mit schräggestelltem Ellipsenquerschnitt des Hakens
KR101013827B1 (ko) 2008-11-25 2011-02-14 주식회사 유니언스 열팽창성 난연 폴리올레핀수지 조성물을 이용한 난연성 복합패널
EP2604646B1 (en) * 2010-08-12 2016-01-20 Toray Battery Separator Film Co., Ltd. Microporous film, process for production of the film, and use of the film
CN103328552B (zh) * 2011-01-25 2014-12-10 东丽电池隔膜株式会社 微多孔膜、其制造方法及使用该微多孔膜的电池隔膜
KR101316995B1 (ko) * 2011-06-02 2013-10-11 미쓰비시 쥬시 가부시끼가이샤 적층 다공 필름, 전지용 세퍼레이터 및 전지
JP5337312B2 (ja) * 2011-09-17 2013-11-06 積水化学工業株式会社 プロピレン系樹脂微孔フィルムの製造方法及びプロピレン系樹脂微孔フィルム
KR102269114B1 (ko) * 2013-05-31 2021-06-23 도레이 카부시키가이샤 폴리올레핀 다층 미다공막 및 이의 제조 방법
WO2014192862A1 (ja) * 2013-05-31 2014-12-04 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜およびその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347835B2 (ja) 1993-08-13 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法
JP2002256099A (ja) 2001-03-02 2002-09-11 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP2004149637A (ja) * 2002-10-29 2004-05-27 Tonen Chem Corp 微多孔膜及びその製造方法並びに用途
WO2006137540A1 (ja) 2005-06-24 2006-12-28 Tonen Chemical Corporation ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP2012501357A (ja) * 2008-09-02 2012-01-19 東レ東燃機能膜合同会社 微多孔性高分子膜、かかる膜の作製方法、およびそれを用いたバッテリーセパレータフィルム
WO2010027065A2 (en) 2008-09-02 2010-03-11 Tonen Chemical Corporation Microporous polymeric membranes, methods for making such membranes, and the use of such membranes as battery separator film
WO2010058789A1 (ja) 2008-11-19 2010-05-27 三井化学株式会社 ポリオレフィン樹脂組成物およびその用途
WO2010107023A1 (ja) 2009-03-17 2010-09-23 東レ株式会社 多孔性ポリプロピレンフィルムおよびその製造方法
JP2013256606A (ja) 2012-06-13 2013-12-26 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜及びその製造方法
JP2014162851A (ja) 2013-02-25 2014-09-08 Asahi Kasei E-Materials Corp ポリオレフィン微多孔膜の製造方法
WO2015029944A1 (ja) * 2013-08-30 2015-03-05 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法
JP2015228358A (ja) * 2014-05-09 2015-12-17 東レバッテリーセパレータフィルム株式会社 ポリオレフィン製積層多孔質膜、それを用いた電池用セパレータおよびそれらの製造方法
WO2015194504A1 (ja) * 2014-06-20 2015-12-23 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔質膜、電池用セパレータ及び電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594278A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550429B1 (ko) * 2018-09-25 2023-07-04 아사히 가세이 가부시키가이샤 고강도 세퍼레이터
CN111727517A (zh) * 2018-09-25 2020-09-29 旭化成株式会社 高强度分隔件
KR20220084445A (ko) * 2018-09-25 2022-06-21 아사히 가세이 가부시키가이샤 고강도 세퍼레이터
CN111727517B (zh) * 2018-09-25 2023-12-19 旭化成株式会社 高强度分隔件
JP7351943B2 (ja) 2018-09-25 2023-09-27 旭化成株式会社 高強度セパレータ
WO2020067161A1 (ja) * 2018-09-25 2020-04-02 旭化成株式会社 高強度セパレータ
JPWO2020067161A1 (ja) * 2018-09-25 2021-02-25 旭化成株式会社 高強度セパレータ
JP2022058637A (ja) * 2018-09-25 2022-04-12 旭化成株式会社 高強度セパレータ
KR102476944B1 (ko) * 2018-09-25 2022-12-14 아사히 가세이 가부시키가이샤 고강도 세퍼레이터
KR20200108476A (ko) * 2018-09-25 2020-09-18 아사히 가세이 가부시키가이샤 고강도 세퍼레이터
JP7470297B2 (ja) 2019-03-26 2024-04-18 東レ株式会社 ポリオレフィン微多孔膜およびその製造方法
JP2020164791A (ja) * 2019-03-26 2020-10-08 東レ株式会社 ポリオレフィン微多孔膜およびその製造方法
KR20210148126A (ko) * 2019-03-29 2021-12-07 도레이 카부시키가이샤 폴리올레핀 미다공막, 전지용 세퍼레이터 및 이차 전지
KR102520879B1 (ko) 2019-03-29 2023-04-12 도레이 카부시키가이샤 폴리올레핀 미다공막, 전지용 세퍼레이터 및 이차 전지
JPWO2020203908A1 (ja) * 2019-03-29 2020-10-08
WO2020203908A1 (ja) * 2019-03-29 2020-10-08 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
JP7380553B2 (ja) 2019-03-29 2023-11-15 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
WO2022092300A1 (ja) 2020-10-30 2022-05-05 旭化成株式会社 ポリオレフィン微多孔膜
KR20230065291A (ko) 2020-10-30 2023-05-11 아사히 가세이 가부시키가이샤 폴리올레핀 미다공막
KR20230135044A (ko) 2021-01-18 2023-09-22 도레이 카부시키가이샤 폴리올레핀 미다공막 및 적층 폴리올레핀 미다공막
WO2022154069A1 (ja) 2021-01-18 2022-07-21 東レ株式会社 ポリオレフィン微多孔膜および積層ポリオレフィン微多孔膜
WO2023176876A1 (ja) * 2022-03-18 2023-09-21 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ、非水電解液二次電池およびフィルター

Also Published As

Publication number Publication date
KR20190124199A (ko) 2019-11-04
CN115149204B (zh) 2024-05-24
KR102533841B1 (ko) 2023-05-18
JPWO2018164056A1 (ja) 2020-01-16
EP3594278A4 (en) 2020-11-25
EP3594278A1 (en) 2020-01-15
CN115149204A (zh) 2022-10-04
JP6988881B2 (ja) 2022-01-05
CN110114397A (zh) 2019-08-09
EP3594278B1 (en) 2024-06-12
TW201836852A (zh) 2018-10-16
US20210005860A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6988881B2 (ja) ポリエチレン微多孔膜を含む二次電池用セパレータ
CN110431176B (zh) 聚烯烃微多孔膜、非水电解液系二次电池用隔膜及非水电解液系二次电池
JP5572334B2 (ja) ポリオレフィン製微多孔膜
CN107925036B (zh) 电池用隔膜
CN110249449B (zh) 电池用隔膜、电极体和非水电解质二次电池
WO2015194504A1 (ja) ポリオレフィン微多孔質膜、電池用セパレータ及び電池
JP7088162B2 (ja) ポリオレフィン微多孔膜
WO2018179810A1 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
CN109661736B (zh) 电池用隔膜、电极体和非水电解质二次电池
WO2020137336A1 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP2019102126A (ja) 電池用セパレータ及び非水電解液二次電池
JP6988880B2 (ja) ポリオレフィン微多孔膜
JP2022048518A (ja) ポリオレフィン微多孔膜、それを用いたコーティングフィルム及び二次電池
WO2019151220A1 (ja) ポリオレフィン微多孔膜、コーティングフィルム及び電池、並びにポリオレフィン微多孔膜の製造方法
JP6741884B1 (ja) ポリオレフィン微多孔膜
JP2022053727A (ja) 電池用セパレータ、電極体、非水電解質二次電池、及び電池用セパレータの製造方法
KR101103125B1 (ko) 폴리올레핀제 미다공막
JP2021082481A (ja) 電池用セパレータ、電極体、非水電解質二次電池、及び電池用セパレータの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019504575

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016789

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018763354

Country of ref document: EP

Effective date: 20191008