WO2022154069A1 - ポリオレフィン微多孔膜および積層ポリオレフィン微多孔膜 - Google Patents

ポリオレフィン微多孔膜および積層ポリオレフィン微多孔膜 Download PDF

Info

Publication number
WO2022154069A1
WO2022154069A1 PCT/JP2022/001026 JP2022001026W WO2022154069A1 WO 2022154069 A1 WO2022154069 A1 WO 2022154069A1 JP 2022001026 W JP2022001026 W JP 2022001026W WO 2022154069 A1 WO2022154069 A1 WO 2022154069A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polyolefin
polyolefin microporous
molecular weight
less
Prior art date
Application number
PCT/JP2022/001026
Other languages
English (en)
French (fr)
Inventor
中嶋木乃美
陳燕仔
金子慧
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP22739474.9A priority Critical patent/EP4265404A1/en
Priority to JP2022503847A priority patent/JPWO2022154069A1/ja
Priority to KR1020237012785A priority patent/KR20230135044A/ko
Publication of WO2022154069A1 publication Critical patent/WO2022154069A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • B29C44/06Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin microporous membrane suitable for use as a battery separator.
  • the polyolefin microporous membrane is widely used as a battery separator, and is interposed between the positive electrode and the negative electrode to prevent a short circuit due to contact between the bipolar active materials and to form an ion conduction passage through the electrolytic solution held in the pores. can do.
  • the separator is required to have shutdown characteristics, meltdown characteristics, transparency, mechanical characteristics, impedance characteristics and the like from the viewpoint of battery safety and battery performance. Further, in recent years, there is a concern that the increase in the volume of the electrode due to the high density of the battery and the compression of the separator due to the generation of gas cause a decrease in the permeability, which affects the battery performance, particularly the impact resistance and the cycle characteristics.
  • Patent Document 1 discloses that by increasing the draw ratio and increasing the strength, the compression resistance is improved and the self-discharge characteristics are improved when the battery is used.
  • fine particles having a particle size of 0.5 to 4 ⁇ m are dispersed in a polyolefin microporous membrane to improve compression resistance and permeability, and when used as a battery, the capacity is increased, the cycle characteristics and safety are increased. It is disclosed that the sex is improved.
  • Patent Document 3 states that in a polyolefin multilayer microporous membrane, polypropylene is contained in more surface layers than in the inner layer, and the component having a molecular weight of 30,000 or less is 3.0% or less, which is obtained by heat pressing during the battery process. It is disclosed that the deterioration of battery characteristics due to the deterioration of the permeability of the separator can be suppressed.
  • Patent Document 4 the strength and permeability are improved by stretching a gel-like sheet having a crystallization rate t 1/2 of 10 to 35 minutes in the mechanical direction (MD) and the width direction (TD), respectively. Is disclosed.
  • Patent Documents 1 to 4 cannot achieve sufficient compression resistance, and further, low temperature shutdown characteristics related to battery safety, that is, shutdown at the lowest possible temperature, and high temperature meltdown characteristics. That is, it is difficult to achieve both, that is, meltdown at the highest possible temperature.
  • the present invention provides a polyolefin microporous membrane that can be suitably used as a battery separator, which has both excellent compression resistance, low-temperature shutdown characteristics, and high-temperature meltdown characteristics.
  • the present inventor has a fine pore structure by forming a fibril network three-dimensionally densely, and as a result, excellent puncture strength and higher compression resistance.
  • a microporous polyolefin film that achieves properties, shutdown characteristics, and meltdown characteristics can be formed, and have completed the present invention.
  • the present invention mainly comprises the following configurations. That is, The polyolefin microporous membrane of the present invention has the following properties (1) to (9).
  • (1) In the differential molecular weight distribution curve obtained by the gel permeation chromatography (GPC) method using a polyolefin resin as the main component, the area ratio of the component having a molecular weight of 30,000 or less is 10% or less, and the molecular weight is 500,000 or more and 1.5 million or less.
  • GPC gel permeation chromatography
  • ⁇ H ( ⁇ H1- ⁇ H2) / ⁇ H2 (3)
  • DSC differential scanning calorimeter
  • the present invention can provide a polyolefin multilayer microporous membrane that can be suitably used as a battery separator, which has both excellent compression resistance, low-temperature shutdown characteristics, and high-temperature meltdown characteristics.
  • the polyolefin microporous film of the present invention contains a polyolefin resin as a main component, and has an area ratio of 10% or less and a molecular weight of 50 for components having a molecular weight of 30,000 or less in a differential molecular weight distribution curve obtained by a gel permeation chromatography (GPC) method.
  • the area ratio of the components of 10,000 or more and 1.5 million or less is 25% or more, and the Raman orientation ratio is less than 0.8.
  • the polyolefin microporous membrane of the present invention can have two or more layers containing two or more polyolefins as main components. That is, in that case, a microporous film in which layers containing polyolefin as a main component are laminated can be regarded as one microporous film.
  • the polyolefin microporous membrane will be described below.
  • the polyolefin microporous film of the present invention contains a polyolefin resin as a main component, and covers the entire area of the region surrounded by the distribution curve and the baseline in the differential molecular weight distribution curve obtained by the gel permeation chromatography (GPC) method.
  • GPC gel permeation chromatography
  • mainly composed of a polyolefin resin means that the polyolefin resin is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98 when the mass of the polyolefin microporous film is 100% by mass. Indicates that it is contained in an amount of mass% or more.
  • a fine fibril network of the polyolefin resin is three-dimensionally densely formed to form a fine pore structure, and the resistance to impact and pressure from a direction perpendicular to the film surface is increased.
  • a coarse fibril network is formed when the area ratio of the component having a molecular weight of 30,000 or less exceeds 10%, or when the area ratio of the component having a molecular weight of 500,000 or more and 1.5 million or less is less than 25%. Therefore, it becomes difficult to form a fine pore structure, the uniformity of the in-plane fibril structure is lowered, and the compression resistance is lowered. Further, when the Raman orientation ratio is 0.8 or more, it becomes difficult to form a fine pore structure due to a decrease in the degree of orientation of the crystal molecular chains, and the compression resistance is lowered.
  • the area ratio of the component having a molecular weight of 30,000 or less is 10% or less, preferably 8% or less, more preferably 6% or less, and the lower limit is preferably 5% or more. When it is within the above range, good shutdown characteristics can be obtained.
  • the area ratio of the component having a molecular weight of 500,000 or more and 1.5 million or less is 25% or more, preferably 27% or more, more preferably 30% or more, and the upper limit is preferably 40% or less.
  • the area ratio can be determined by the gel permeation chromatography (GPC) method, and specifically, it refers to a value determined by the measuring method described in Examples. Further, in the case of a microporous film composed of a plurality of layers, further adjustment can be made by adjusting the thickness or basis weight ratio of each layer.
  • GPC gel permeation chromatography
  • the Raman orientation ratio is less than 0.8, preferably 0.6 or less, and the lower limit is preferably 0.4 or more. Within the above range, it means that the crystal molecular chains are highly oriented, and a uniform fibril network of the polyolefin resin is three-dimensionally densely formed to form a fine pore structure with respect to the film surface. Therefore, the resistance to impact and pressure from the vertical direction is increased, and good compression resistance can be obtained.
  • the Raman orientation ratio is 0.4 or more, it has good heat shrinkage and shutdown characteristics, and a fine pore structure can be formed.
  • MD machine direction
  • TD transverse direction
  • the Raman orientation ratio can be set within the above range by appropriately adjusting the first stretching step, the second stretching step, and the heat treatment step described later. Further, the Raman orientation ratio can be obtained by microscopic Raman spectroscopy, and specifically refers to a value obtained by the measurement method described in Examples.
  • the polyolefin microporous film of the present invention has a melting heat absorption amount in the temperature range of 0 to 157 ° C. in the first run of ⁇ H1 and a second run.
  • the value of ⁇ H obtained by the following formula is preferably 0.2 or more.
  • ⁇ H ( ⁇ H1- ⁇ H2) / ⁇ H2
  • the meltdown characteristic can be obtained.
  • the melting peak preferably exists at 163 ° C. or higher, and the upper limit preferably exists at 170 ° C. or lower.
  • the melting peak can be set in the above range by using polypropylene as the polyolefin resin and adjusting its Mw, content, melting point, ratio of each layer and the like.
  • the temperature of the melting peak can be obtained by a differential scanning calorimeter, and specifically, it means a value obtained by the measuring method described in the examples.
  • the polyolefin microporous membrane of the present invention may have two or more polyolefin resin layers.
  • Each layer may be composed of polyolefin resins having different compositions, for example, three or more layers composed of two types of polyolefin resin layers (for convenience, these layers are referred to as "A layer” and "B layer", respectively). It may have a layered structure of.
  • the stacking order is not particularly limited, and may be A layer / B layer / A layer or B layer / A layer / B layer.
  • the microporous polyolefin membrane of the present invention has a standard deviation of 1 for the rate of change in film thickness after heating and compression for 10 seconds at a temperature of 70 ° C. and a pressure of 7.8 MPa (hereinafter, also referred to as “rate of change in film thickness after heating and compression”). It is preferably less than%.
  • the standard deviation of the film thickness change rate after heat compression is preferably 0.7% or less, more preferably 0.6% or less. The smaller the standard deviation of the film thickness change rate of heat compression, the smaller the structural variation of the porous film, and the compression resistance is improved by setting it within the above preferable range.
  • the standard deviation of the film thickness change rate after heat compression can be set within the above range by appropriately adjusting the Mw and Mw / Mn content of polyethylene, the first stretching step, the second stretching step, and the like, which will be described later. can. Further, the standard deviation of the film thickness change rate after heat compression can be specifically obtained by the measuring method described in the examples.
  • the polyolefin microporous membrane of the present invention preferably has a film thickness change rate of less than 10% after heating and compression for 10 seconds at a temperature of 70 ° C. and a pressure of 7.8 MPa with respect to 100% of the film thickness before heating and compression. It is more preferably 8% or less, still more preferably 7% or less.
  • the rate of change in film thickness after heat compression can be set within the above range by appropriately adjusting the Mw and Mw / Mn content of polyethylene, the first stretching step, the second stretching step, and the like, which will be described later.
  • the rate of change in film thickness after heat compression can be obtained by calculating the rate of change in film thickness after heat compression with respect to 100% of the film thickness before heat compression. Specifically, the measurement method described in Examples can be used. The value to be calculated.
  • the polyolefin microporous membrane of the present invention preferably has a thickness of 7 ⁇ m and a puncture strength equivalent to a porosity of 40% of 294 cN or more.
  • the converted puncture strength is preferably 314 cN or more, more preferably 343 cN or more.
  • the puncture strength can be set within the above range by appropriately adjusting Mw and Mw / Mn of polyethylene, the content rate, each layer ratio, the first stretching step, the second stretching step, and the like, which will be described later.
  • the converted puncture strength can be specifically obtained by the measuring method described in the examples.
  • the polyolefin microporous membrane of the present invention preferably has a shutdown temperature of 140 ° C. or lower and a meltdown temperature of 165 ° C. or higher. Within the above range, safety is improved when used as a battery separator.
  • the shutdown temperature is more preferably 138 ° C. or lower, still more preferably 136 ° C. or lower.
  • the lower limit is not particularly limited, but it is preferably 125 ° C. or higher because the decrease in ion permeability can be suppressed.
  • the meltdown temperature is more preferably 170 ° C. or higher, still more preferably 175 ° C. or higher.
  • the upper limit is not particularly limited, but is preferably 190 ° C. or lower.
  • the shutdown temperature and the meltdown temperature can be obtained by measuring the air permeation resistance at the time of temperature rise, and specifically, the values obtained by the measurement method described in the examples.
  • Polyolefin resin composition A The polyethylene A layer is a porous membrane formed of a polyolefin resin composition (hereinafter, also referred to as “polyolefin resin composition A”) containing an ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 8.0 ⁇ 105 or more. It is preferably a layer.
  • polyolefin resin composition A containing an ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 8.0 ⁇ 105 or more. It is preferably a layer.
  • ultra-high molecular weight polyethylene refers to polyethylene having an Mw of 8.0 ⁇ 105 or more.
  • the type of ultra-high molecular weight polyethylene may be a copolymer in which a small amount of ⁇ -olefin other than ethylene is copolymerized or a mixture in which a small amount of other ⁇ -olefin polymer is mixed. It is preferable to use an ultra-high molecular weight polyethylene homopolymer.
  • ⁇ -olefin other than ethylene propylene, butene-1, penten-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate and styrene are preferable.
  • the content of the ⁇ -olefin other than ethylene is preferably 5 mol% or less, with the polyolefin resin as 100 mol%. From the viewpoint of the uniformity of the pore structure of the polyolefin microporous membrane, an ethylene homopolymer is preferable.
  • the weight average molecular weight (Mw) of the ultra-high molecular weight polyethylene is preferably 8.0 ⁇ 105 or more and less than 2.0 ⁇ 106 , and 1.0 ⁇ 10 6 or more and 1.8 ⁇ 106 or less. Is more preferable.
  • the molecular weight distribution (Mw / Mn) of the ultra-high molecular weight polyethylene is preferably 10 or less, more preferably 5 or less. Within the above range means that the spread of the molecular weight is small and the molecular weight distribution is uniform, and the smaller the value, the higher the uniformity. Mw and Mw / Mn are values measured by the GPC method described later.
  • the content of the ultra-high molecular weight polyethylene contained in the polyolefin resin composition A is preferably 65% by mass or more, more preferably 70% by mass or more, still more preferably 80, based on 100% by mass of the polyolefin resin composition A. It is mass% or more.
  • the polyolefin resin composition of the A layer preferably contains substantially no polyethylene other than ultra-high molecular weight polyethylene, but is 0% by mass or more and 15% by mass or less with respect to 100% by mass of the entire polyolefin resin composition of the A layer. It may be included in the range.
  • the Mw of polyethylene other than ultra-high molecular weight polyethylene is preferably less than 3.0 ⁇ 105 , and more preferably less than 2.0 ⁇ 105 . Further, from the viewpoint of film strength, the lower limit of Mw is preferably 5.0 ⁇ 104 or more. It is preferably at least one selected from the group consisting of high density polyethylene, medium density polyethylene, branched low density polyethylene and linear low density polyethylene.
  • the polypropylene polyolefin resin composition A preferably contains polypropylene.
  • the type of polypropylene is not particularly limited, and is a copolymer of propylene, a copolymer of propylene and other ⁇ -olefins and / or diolefins (propylene copolymer), or a mixture of two or more selected from these. Either may be used, but it is more preferable to use the propylene homopolymer alone.
  • the propylene copolymer either a random copolymer or a block copolymer can be used.
  • the ⁇ -olefin in the propylene copolymer an ⁇ -olefin having 8 or less carbon atoms is preferable.
  • the ⁇ -olefin having 8 or less carbon atoms include ethylene, butene-1, pentene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate, styrene, and combinations thereof.
  • the diolefin in the propylene copolymer a diolefin having 4 to 14 carbon atoms is preferable.
  • Examples of the diolefin having 4 to 14 carbon atoms include butadiene, 1,5-hexadiene, 1,7-octadien, 1,9-decadien and the like.
  • the content of other ⁇ -olefins and diolefins in the propylene copolymer is preferably less than 10 mol% with the propylene copolymer as 100 mol%.
  • the weight average molecular weight (Mw) of polypropylene is preferably 1 ⁇ 10 6 or more, more preferably 1.2 ⁇ 10 6 or more, and particularly preferably 1.2 ⁇ 10 6 to 4 ⁇ 10 6 .
  • the melting point of polypropylene is preferably 155 to 170 ° C, more preferably 160 ° C to 165 ° C. The melting point is a value measured by a scanning differential calorimeter (DSC) described later.
  • the polypropylene content of the polyolefin resin composition A is preferably 10% by mass or more and 30% by mass or less, and more preferably 10% by mass or more and 20% by mass or less, based on 100% by mass of the polyolefin resin composition A.
  • the polyethylene B layer is a porous layer formed of a polyolefin resin composition (hereinafter, also referred to as “polyolefin resin composition B”) containing an ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 8.0 ⁇ 105 or more. It is preferable to have. Since the type, Mw, Mw / Mn, and content of the ultra-high molecular weight polyethylene of the polyolefin resin composition B are the same as those of the ultra-high molecular weight polyethylene described in the above section of the polyolefin resin composition A, the description thereof will be omitted.
  • polyolefin resin composition B containing an ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 8.0 ⁇ 105 or more. It is preferable to have. Since the type, Mw, Mw / Mn, and content of the ultra-high molecular weight polyethylene of the polyolefin resin composition B are the
  • the polyolefin resin composition B preferably contains polyethylene other than ultra - high molecular weight polyethylene having a weight average molecular weight (Mw) of 8.0 ⁇ 105 or more.
  • the content of polyethylene other than the ultra-high molecular weight polyethylene is preferably 10% by mass or more and 30% by mass or less, and more preferably 10% by mass or more and 20% by mass or less, based on 100% by mass of the polyolefin resin composition B. ..
  • the Mw and type of polyethylene other than the ultra-high molecular weight polyethylene of the polyolefin resin composition B are the same as the description of the polyethylene other than the ultra high molecular weight polyethylene described in the section of the polyolefin resin composition A, the description thereof will be omitted.
  • the polypropylene polyolefin resin composition B preferably contains substantially no polypropylene, but may contain in the range of 0% by mass or more and 15% by mass or less with respect to 100% by mass of the polyolefin resin composition B. Since the type, Mw, and melting point of polypropylene are the same as those of polypropylene described in the section of polyolefin resin composition A, the description thereof will be omitted.
  • the ultra-high molecular weight polyethylene of the above-mentioned polyolefin resin composition A and the above-mentioned polyolefin resin composition B polyethylene other than the ultra-high molecular weight polyethylene, and polypropylene within the above preferable range
  • the molecular weight in the differential molecular weight distribution curve obtained by the GPC method Since the area ratio of the component of 30,000 or less is 10% or less and the area ratio of the component having a molecular weight of 500,000 or more and 1.5 million or less is 25% or more, a uniform fibril network of the polyolefin resin is formed three-dimensionally and densely. , There is a tendency to obtain a polyethylene microporous film having a fine pore structure.
  • one of the melting peaks obtained by DSC tends to be 160 ° C. or higher, there is a tendency to obtain a polyolefin microporous membrane having shape-retaining characteristics at high temperatures.
  • a polyolefin microporous film having a small standard deviation of the film thickness change rate after heat compression, a good film thickness change rate after heat compression, and both low temperature shutdown characteristics and high temperature meltdown characteristics can be obtained.
  • each layer of the polyolefin microporous membrane is preferably 10/90 to 40/60, more preferably 20/80 to 30/70, as the ratio of the A layer / B layer.
  • it is calculated as the sum of the layer thicknesses of the plurality of A layers or B layers.
  • microporous membrane composed of two types of layers, A layer and B layer is described, but it goes without saying that a microporous membrane composed of three or more types of layers can be used.
  • a polyolefin microporous membrane having a layer structure of A layer / B layer / A layer or B layer / A layer / B layer is taken as an example of the present invention.
  • a method for producing a polyolefin microporous membrane will be described.
  • this method for producing a polyolefin microporous membrane includes the following steps.
  • the concentration of the polyolefin resin composition within the above range, swelling and neck-in can be prevented at the die outlet when the polyolefin solution is extruded, and the moldability and self-supporting property of the extruded molded product can be improved.
  • the plasticizer that can be used is not particularly limited as long as it is a non-volatile solvent that can form a uniform solution above the melting point of the polyolefin resin when mixed with the polyolefin resin.
  • hydrocarbons such as liquid paraffin and paraffin wax, etc.
  • esters such as dioctyl phthalate and dibutyl phthalate.
  • the solutions for forming the A layer and the B layer are each fed from the extruder to one die, and both solutions are extruded into a layered sheet to obtain an extruded molded product.
  • the extrusion method may be either a flat die method or an inflation method. In either method, the solution is supplied to separate manifolds and laminated in layers at the lip inlet of the multi-layer die (multi-manifold method), or the solution is previously made into a layered flow and supplied to the die (block method). Can be used. As for the multi-manifold method and the block method, ordinary methods can be applied.
  • the gap of the multi-layer flat die can be set to 0.1 mm or more and 5 mm or less.
  • the extrusion temperature is preferably 140 ° C. or higher and 250 ° C. or lower, and the extrusion speed is preferably 0.2 to 15 m / min.
  • the film thickness ratio of the layers can be adjusted by adjusting the extrusion amount of the solution of each layer.
  • (B) Molding of Gel-like Multilayer Sheet A gel-like multilayer sheet is formed by cooling the obtained extruded body. By cooling, the microphase of the polyolefin separated by the film-forming solvent can be immobilized. When the cooling rate is within the above range, the crystallinity is maintained in an appropriate range, and a gel-like sheet suitable for stretching is obtained.
  • a cooling method a method of contacting with a refrigerant such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but it is preferable to contact with a roll cooled with the refrigerant for cooling. Cooling is preferably performed at a rate of 50 ° C./min or higher, at least up to the gelation temperature.
  • Cooling is preferably performed up to 25 ° C. or lower.
  • the microphases of the first and second polyolefins separated by the film-forming solvent can be immobilized.
  • the cooling rate is within the above range, the crystallinity is maintained in an appropriate range, and a gel-like multilayer sheet suitable for stretching is obtained.
  • the gel-like sheet is stretched. Stretching of a gel-like sheet is also referred to as wet stretching. Since the gel-like sheet contains a solvent, it can be uniformly stretched. After heating, the gel-like sheet is preferably stretched at a predetermined magnification by a tenter method, a roll method, an inflation method, or a combination thereof.
  • the stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferable. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multi-stage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.
  • the stretching ratio is preferably 2 times or more, more preferably 3 times or more and 30 times or less. In the case of biaxial stretching, 9 times or more is preferable, 16 times or more is more preferable, and 25 times or more is particularly preferable. Further, the draw ratio of both MD and TD is preferably 3 times or more, and the draw ratios of MD and TD may be the same or different from each other.
  • the draw ratio in this step refers to the area stretch ratio of the microporous membrane immediately before being subjected to the next step, based on the microporous membrane immediately before this step.
  • the lower limit of the stretching temperature is preferably 90 ° C. or higher, more preferably 110 ° C. or higher.
  • the upper limit of the stretching temperature is preferably 120 ° C. or lower.
  • the microporous polyolefin membrane from which the plasticizer has been removed is dried by a heat drying method or an air drying method. Any method capable of removing the cleaning solvent may be used, including conventional methods such as heat drying and air drying (moving air).
  • the treatment conditions for removing volatile species such as a cleaning solvent may be the same as those disclosed in, for example, WO 2008/016174 and WO 2007/132942.
  • the stretching of the microporous membrane after drying is called the second stretching.
  • the dried microporous membrane film is stretched at least in the uniaxial direction.
  • the second stretching of the polyolefin microporous membrane can be carried out by the tenter method or the like in the same manner as described above while heating. Since the same layer contains two types of polyolefin resins, polyethylene and polypropylene, the second stretching is preferably uniaxial stretching from the viewpoint of uniformity of the lamellar structure.
  • the draw ratio is preferably 1.5 times or more, more preferably 2.0 times or more for MD or TD.
  • the second stretching is performed at a magnification of 1.5 times or more, the crystal molecular chains are highly oriented in MD or TD, so that the Raman orientation ratio can be adjusted to less than 0.8.
  • the Raman orientation ratio can be adjusted to be smaller as the drawing is performed at a higher magnification.
  • the upper limit is preferably 3.5 times in consideration of the balance.
  • the draw ratio in the second stretching is the length of the MD or TD of the polyolefin microporous film after the second stretching, based on the length of the MD or TD of the polyolefin microporous film before the second stretching. The magnification of.
  • (G) Heat treatment It is preferable to heat-treat the microporous polyolefin membrane after the second stretching. For example, in a state where the microporous polyolefin membrane is gripped by a clip, heat treatment is performed with the width fixed (TD heat fixing treatment step). The heat treatment is preferably 115 ° C. or higher and 135 ° C. or lower.
  • the Raman orientation ratio can be set to less than 0.8, and the polyolefin resin is uniform.
  • the fibril network is densely formed three-dimensionally, and there is a tendency to obtain a polyolefin microporous film having a fine pore structure.
  • a polyolefin microporous film having a small standard deviation of the film thickness change rate after heat compression, a good film thickness change rate after heat compression, and low-temperature shutdown characteristics can be obtained.
  • the polyolefin microporous membrane of the present invention may be a laminated polyolefin porous membrane by laminating another porous layer on one surface or both surfaces thereof.
  • the other porous layer is not particularly limited, and examples thereof include an inorganic particle layer containing a binder and inorganic particles.
  • the binder component used for the inorganic particle layer is not particularly limited, and known materials can be used.
  • acrylic resin, polyvinylidene fluoride resin, polyamideimide resin, polyamide resin, aromatic polyamide resin, polyimide resin and the like can be used.
  • the inorganic particles constituting the inorganic particle layer are not particularly limited, and known materials can be used.
  • alumina, boehmite, barium sulfate, magnesium oxide, magnesium hydroxide, magnesium carbonate, silicon and the like can be used. can.
  • Pore ratio A polyolefin microporous film is cut into a size of 95 mm ⁇ 95 mm, its volume (cm 3 ) and weight (g) are determined, and the following formula is used from them and the film density (g / cm 3 ). Calculated.
  • Formula: Porosity (%) ((volume-weight / film density) / volume) x 100
  • the film density was set to 0.99 (g / cm 3 ).
  • the film thickness measured in (1) above was used for calculating the volume.
  • Air permeation resistance For the polyolefin microporous membrane, the air permeation resistance (sec / 100 cm 3 ) was measured.
  • Converted puncture strength (cN) ⁇ S ⁇ 7 ⁇ 60 ⁇ / ⁇ T ⁇ (100-P) ⁇ (5) Rate of change in film thickness after heat compression
  • the microporous polyolefin membrane was cut out at 25 locations at equal intervals on the TD to a size of 40 mm ⁇ 40 mm, and the thickness of each of the 5 points was measured and the average was calculated. Then, five cut-out samples were laminated, and the set of samples was allowed to stand between horizontal plates for 10 seconds at 70 ° C. under a pressure of 7.8 MPa, and a compression device (manufactured by Shinto Kogyo Co., Ltd.). It was heated and compressed by CYPT-20 special).
  • Rate of change in film thickness after heat compression (%) [(Average thickness before heat compression-Average thickness after heat compression release) / (Average thickness before heat compression)] ⁇ 100
  • the thickness was measured according to the method (1) described above.
  • shuttdown temperature and meltdown temperature The microporous polyolefin membrane is exposed to an atmosphere of 30 ° C., and the air permeation resistance is measured while raising the temperature at a rate of 5 ° C./min.
  • the temperature at which the air permeation resistance of the polyolefin microporous membrane reached 100,000 seconds / 100 cm 3 was defined as the shutdown temperature.
  • the meltdown temperature was set to a temperature at which the air permeation resistance was less than 100,000 seconds / 100 cm 3 by continuing to raise the temperature after reaching the shutdown temperature.
  • the air permeation resistance was measured using an air permeation resistance meter (made by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P8117: 2009.
  • the melting point of the polyolefin resin and the melting peak of the polyolefin microporous film were determined by a differential scanning calorimeter (PYRIS DIAMOND DSC manufactured by PARKING ELMER). Each of the polyolefin resin and the polyolefin microporous film was allowed to stand in the sample holder, and the temperature was raised to 10 ° C./min under a nitrogen atmosphere (20 mL / min), and the temperature was raised to 230 ° C. to completely melt the mixture. It was held at 230 ° C. for 3 minutes and cooled to 30 ° C. at a rate of 10 ° C./min (first run).
  • the temperature is raised to 10 ° C./min under a nitrogen atmosphere (20 mL / min), the temperature is raised to 230 ° C. again to completely melt the mixture, and then the temperature is maintained at 230 ° C. for 3 minutes at 10 ° C./min.
  • the temperature was lowered to 30 ° C. (second run). Using the straight line connecting 0 ° C and 157 ° C as the baseline from the obtained DSC curve, the melting point (Tm) of the polyolefin resin was obtained from the temperature-melt heat absorption curve in the second run, and the melting peak of the polyolefin microporous film was obtained. The temperature was calculated.
  • ⁇ H was calculated by the following formula, where the amount of heat absorption for melting in the first run was ⁇ H1 and the amount of heat absorption for melting in the second run was ⁇ H2.
  • peaks with a heat absorption of 70 J / g or more were regarded as melting peaks
  • peaks with a heat absorption of melt of 3.0 J / g or more were regarded as melting peaks.
  • ⁇ H ( ⁇ H1- ⁇ H2) / ⁇ H2.
  • the baseline of the elution curve is set to start from the retention time at the rise of the peak and end from the retention time at the peak end, and the peak detection interval is 0.017 minutes.
  • the intensity area was determined when the total area ratio of the elution curve was 100%, and the concentration fraction of each molecular weight was determined. The concentration fractions were sequentially integrated, and the integrated molecular weight curve was obtained by plotting the logarithmic value (log (M)) of the molecular weight on the horizontal axis and the integrated value of the concentration fraction (w) on the vertical axis.
  • the area of each region is obtained as the actual area from the differential molecular weight distribution curve graph.
  • Measurement conditions ⁇ Measuring device: High temperature GPC device PL-GPC220 (manufactured by Agilent) -Column: Agilent PL1110-6200 (20 ⁇ m MIXED-A) x 2-Column temperature: 160 ° C -Solvent (mobile phase): 1,2,4-trichlorobenzene-Solvent flow rate: 1.0 mL / min-Sample concentration: 0.1 wt% (dissolution condition: 160 ° C / 3.5H) ⁇ Injection amount: 500 ⁇ L -Detector: Agilent differential refractive index detector (RI detector) ⁇ Viscometer: Viscosity detector manufactured by Agilent ⁇ Calibration curve: Prepared by the universal calibration curve method using monodisperse polystyrene standard sample.
  • 1130 cm -1 belongs to the CC expansion and contraction vibration of the polyolefin molecular chain in the crystal phase
  • 1060 cm -1 is the band belonging to the CC reverse expansion and contraction vibration, and the direction of the ramantensol of the vibration coincides with the molecular chain axis. Therefore, the orientation state of the molecular chain can be known. The larger the orientation value, the higher the orientation of the crystal molecular chains.
  • (B) The measurement of (A) was repeated every 10 degrees by rotating the polyolefin microporous film of the sample table, and the measurement of the Raman band in the direction showing the largest Raman band ratio (I1130 / I1060) was performed.
  • the ratio (I1130 / I1060) was Sa
  • the ratio of Raman bands in the direction orthogonal to the direction (I1130 / I1060) was Sb
  • the Raman orientation ratio was calculated by the following formula.
  • the polyolefin microporous membrane can be determined by focusing on the components contained in the layer and analyzing the distribution in the thickness direction thereof.
  • a catalyst is used in the polymerization of polyolefins, but analysis can be performed by focusing on the catalyst remaining in the porous film.
  • the thickness direction of the microporous film (MD / ZD or TD / ZD).
  • Surface is analyzed by secondary ion mass spectrometry (SIMS), and the concentration distribution of trace metal elements caused by the catalyst is measured. If the metal elements are uniformly distributed on the TD / ZD plane, it can be judged as a single layer, and if the metal species are different or the concentration distribution is observed, it can be judged as a multi-layer.
  • Measurement conditions-Sample preparation A microporous polyolefin membrane is cross-sectioned into a TD / ZD surface with an ultramicrotom.
  • the microporous polyolefin membrane is edged and separated into a surface layer and an inner layer component.
  • the molecular weight distribution, melting point, and absorption spectrum of each part are measured, and if the analysis results of the surface layer and the inner layer are the same, it can be judged as a single layer, and if there is a difference, it can be judged as a multi-layer.
  • the molecular weight distribution and melting point are obtained by the above GPC and DSC analysis, and the absorption spectrum is obtained by the following method.
  • the absorption spectrum of the polyolefin microporous membrane was determined using infrared absorption spectroscopy (IR) analysis. Measurement conditions ⁇ Measuring device: ⁇ Measurement mode: ⁇ Detector: MCT ⁇ Scan speed: 5kHz ⁇ Number of integrations: 64 times ⁇ Resolution: 4 cm -1 -Measurement wavelength: 4000-700 cm -1 (12) Layer ratio The layer ratio of each layer of the polyolefin microporous film was observed using a transmission electron microscope (TEM) under the following measurement conditions.
  • TEM transmission electron microscope
  • Measurement conditions-Sample preparation The microporous polyolefin membrane is stained with ruthenium tetroxide and cross-sectioned with an ultramicrotom.
  • -Measuring device Transmission electron microscope (JEM1400Plus type manufactured by JEOL Ltd.) -Observation conditions: Acceleration voltage 100 kV -Observation direction: TD / ZD.
  • a layer solution A polyolefin resin composition composed of 30% by mass of isotactic polypropylene (melting point 162 ° C.) of Mw2.0 ⁇ 106 and 70% by mass of ultrahigh molecular weight polyethylene of Mw1.5 ⁇ 106 and liquid paraffin are used as a biaxial extruder. And melt-kneaded to prepare a solution for forming the A layer.
  • B layer solution A polyolefin resin composition consisting of 80% by mass of ultra-high molecular weight polyethylene of Mw 1.5 ⁇ 10 6 and 20% by mass of polyethylene of Mw 1.0 ⁇ 105 and liquid paraffin are melt-kneaded by a biaxial extruder to form a B layer. A solution for composition was prepared. (3) Molding of gel-like multilayer sheet Each solution is supplied from a twin-screw extruder to a trilayer T-die, and the layer B solution / A layer solution / B layer solution has a layer thickness ratio of 35/30/35. Extruded to be.
  • the extruded product was cooled while being taken up by a cooling roll whose temperature was adjusted to 25 ° C. at a taking-up speed of 4 m / min to form a gel-like three-layer sheet.
  • (4) First stretching, removal of film-forming agent, and drying The gel-like three-layer sheet is simultaneously biaxially stretched 5 times in both MD and TD at 113 ° C. by a tenter stretching machine, and the sheet width is directly stretched in the tenter stretching machine. was fixed and heat-fixed at a temperature of 110 ° C. Then, the stretched gel-like three-layer sheet was immersed in a methylene chloride bath in a washing tank to remove liquid paraffin and air-dried at room temperature.
  • Example 2 The layer structure and layer thickness ratio of the gel-like multilayer sheet were supplied so that the solution of the A layer / the solution of the B layer / the solution of the A layer had a layer thickness ratio of 15/70/15, and the polyolefin resin of the A layer was supplied.
  • a porous film was obtained.
  • Example 3 In the preparation of the solution for forming the A layer, 10 % by mass of Mw2.0 ⁇ 106 isotactic polypropylene (melting point 162 ° C.) and Mw8.0 ⁇ 105 ultrahigh molecular weight polyethylene in the polyolefin resin composition were added. Was 90% by mass, and a polyolefin microporous film of A layer / B layer / A layer was obtained in the same manner as in Example 2 except that the second stretching condition was changed.
  • Example 4 In the preparation of the solution for forming the B layer, 70% by mass of ultra-high molecular weight polyethylene of Mw1.5 ⁇ 106 and 30% by mass of polyethylene of Mw1.0 ⁇ 105 in the polyolefin resin composition were used. A microporous polyolefin film of A layer / B layer / A layer was obtained in the same manner as in Example 2 except that the second stretching condition was changed.
  • Example 5 In the preparation of the solution for forming the B layer, 90% by mass of ultra-high molecular weight polyethylene of Mw1.5 ⁇ 106 and 10 % by mass of polyethylene of Mw1.0 ⁇ 105 in the polyolefin resin composition were used. A microporous polyolefin film of A layer / B layer / A layer was obtained in the same manner as in Example 2 except that the second stretching condition was changed.
  • Example 6 In the preparation of the solution for forming the B layer, except that the ultra-high molecular weight polyethylene of Mw 1.5 ⁇ 106 in the polyolefin resin composition was changed to the ultra high molecular weight polyethylene of Mw 1.8 ⁇ 106 , as in Example 2. In the same manner, a polyolefin microporous film of A layer / B layer / A layer was obtained.
  • Example 7 In the second stretching, a polyolefin microporous film of A layer / B layer / A layer was obtained in the same manner as in Example 2 except that the stretching ratio was set to 3.0 times the TD.
  • Example 8 A was supplied in the same manner as in Example 2 except that the layer thickness ratio of the gel-like multilayer sheet was such that the solution of the B layer / the solution of the A layer / the solution of the B layer had a layer thickness ratio of 15/70/15. A layer / B layer / A layer polyolefin microporous film was obtained.
  • Example 9 In the preparation of the solution for forming the A layer, 7% by mass of isotactic polypropylene (melting point 162 ° C.) of Mw2.0 ⁇ 106 , 70% by mass of ultrahigh molecular weight polyethylene of Mw1.5 ⁇ 106 , Mw1.0.
  • a polyolefin resin composition composed of 23% by mass of polyethylene of ⁇ 105 and liquid paraffin were melt - kneaded with a twin-screw extruder to prepare a solution of layer A.
  • the solution of layer A was supplied from a twin-screw extruder to a single-layer T-die, and after cooling, a gel-like single-layer sheet was obtained.
  • a polyolefin microporous film composed of layer A was obtained in the same manner as in Example 2.
  • the polyolefin resin composition of the A layer was 20% by mass of isotactic polypropylene (melting point 162 ° C.) of Mw2.0 ⁇ 106 and 80% by mass of polyethylene of Mw3.5 ⁇ 105, and the polyolefin resin composition of the B layer was set. Except that the material was replaced with 40% by mass of ultra-high molecular weight polyethylene of Mw 2.3 ⁇ 10 6 and 60% by mass of polyethylene of Mw 3.5 ⁇ 105, and the draw ratio of the second stretching was set to 2.0 times to TD.
  • a polyolefin microporous film of A layer / B layer / A layer was obtained in the same manner as in Example 2.
  • the polyolefin resin composition was mixed with 10 % by mass of isotactic polypropylene (melting point 162 ° C.) of Mw2.0 ⁇ 106 , 70% by mass of ultrahigh molecular weight polyethylene of Mw1.5 ⁇ 106, and polyethylene terephthalate (polyethylene terephthalate).
  • a microporous polyolefin film of A layer / B layer / A layer was obtained in the same manner as in Example 2 except that the non-polyolefin resin) was 20% by mass.
  • UHPE stands for "ultra high molecular weight polyethylene
  • PP stands for “polypropylene”
  • other PE stands for “polyethylene other than ultra high molecular weight polyethylene”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明は、高いエネルギー密度が要求される電池用セパレータに用いるに好適であり、優れたシャットダウン特性とメルトダウン特性を有し、かつ、耐衝撃性とサイクル特性が良好なポリオレフィン微多孔膜を提供することを課題とし、ポリオレフィンを主成分とし、ゲルパーエミーションクロマトグラフィー(GPC)法により得られる微分分子量分布曲線において分子量3万以下の成分の面積率が10%以下、分子量50万以上150万以下の成分の面積率が25%以上であり、かつ、ラマン配向比が0.8未満であるポリオレフィン微多孔膜であることを本旨とする。

Description

ポリオレフィン微多孔膜および積層ポリオレフィン微多孔膜
 本発明は、電池用セパレータとして用いるに好適な、ポリオレフィン微多孔膜に関する。
 ポリオレフィン微多孔膜は、電池用セパレータとして広く用いられ、正極と負極の間に介在することで両極活物質の接触による短絡を防ぐと共に、空孔内に保持した電解液を通じてイオン伝導の通路を形成することができる。また、セパレータには電池安全性や電池性能の観点から、シャットダウン特性、メルトダウン特性、透過性、機械的特性、インピーダンス特性等を要求されている。さらに近年では、電池の高密度化による電極の体積増加やガス発生によるセパレータの圧縮が透過性の低下を引き起こし、電池性能、特に耐衝撃性やサイクル特性に影響を与えることが懸念されている。
 特許文献1には、延伸倍率を高くし、高強度とすることで、耐圧縮性が良好となり、電池とした際に自己放電特性が向上することが開示されている。
 特許文献2には、粒径0.5~4μmの微粒子をポリオレフィン微多孔膜に分散させることで、耐圧縮性と透過性が良好となり、電池とした際に、高容量化、サイクル特性や安全性が向上することが開示されている。
 特許文献3には、ポリオレフィン多層微多孔膜において、内層よりも表層に多くのにポリプロピレンを含有し、分子量3万以下の成分を3.0%以下とすることで、電池工程時の熱プレスによるセパレータの透過性悪化による電池特性の低下を抑制できることが開示されている。
 特許文献4には、結晶化速度t1/2が10~35分のゲル状シートを、機械方向(MD)と幅方向(TD)にそれぞれ延伸することで、強度と透過性が良好となることが開示されている。
国際公開第2018/164056号 特開2004-161899号公報 国際公開第2019/074122号 国際公開第2015/182691号
 近年は高容量化に向けた負極のシリコン比率を高める開発が進んでおり、これに伴って負極が膨張しやすくなることにより、セパレータが圧縮応力を受け、セパレータにおける被透過物の透過性の悪化が課題として挙げられる。そのため、セパレータにはより高度な耐圧縮性が必要とされている。しかしながら、上記特許文献1ないし4に記載の従来技術では十分な耐圧縮性を達成できず、さらに電池の安全性に関わる低温シャットダウン特性、すなわち、できるだけ低い温度でシャットダウンすること、と高温メルトダウン特性、すなわち、できるだけ高い温度でメルトダウンすること、を両立することが難しい。
 本発明は、優れた耐圧縮性と、低温シャットダウン特性と高温メルトダウン特性を両立する、電池用セパレータとして好適に用いることができるポリオレフィン微多孔膜を提供する。
 本発明者は、上記課題に鑑み鋭意検討した結果、フィブリルネットワークを三次元的に密に形成することで、微細な細孔構造を有し、その結果、優れた突刺強度とより高度な耐圧縮性、シャットダウン特性、メルトダウン特性を達成するポリオレフィン微多孔膜をなし得ることを見出し、本発明を完成させるに至った。
 本発明は主として次の構成からなる。すなわち、
本発明のポリオレフィン微多孔膜は、下記の特性(1)~(9)を有する。
(1)ポリオレフィン樹脂を主成分とし、ゲルパーエミーションクロマトグラフィー(GPC)法により得られる微分分子量分布曲線において、分子量3万以下の成分の面積率が10%以下、分子量50万以上150万以下の成分の面積率が25%以上であり、かつ、ラマン配向比が0.8未満であるポリオレフィン微多孔膜。
(2)示差走査熱量計(DSC)により得られる温度-融解吸熱量曲線において、ファースト・ランでの0~157℃の範囲の融解吸熱量をΔH1、セカンド・ランでの0~157℃の範囲の融解吸熱量をΔH2とすると、下式で求められるΔHの値が0.2以上である、前記(1)に記載のポリオレフィン微多孔膜。
   ΔH=(ΔH1-ΔH2)/ΔH2
(3)示差走査熱量計(DSC)により得られる温度-融解吸熱量曲線において、融解ピークの1つが160℃以上に観測される、前記(1)または(2)に記載のポリオレフィン微多孔膜。
(4)前記ポリオレフィン微多孔膜は、ポリオレフィン樹脂を主成分とする層を2層以上有してなる前記(1)~(3)のいずれかに記載のポリオレフィン微多孔膜。
(5)加熱圧縮後の膜厚変化率の標準偏差が1%未満である、前記(1)~(4)のいずれかに記載のポリオレフィン微多孔膜。
(6)加熱圧縮後の膜厚変化率が10%未満である、前記(1)~(5)のいずれかに記載のポリオレフィン微多孔膜。
(7)厚み7μm、空孔率40%換算での突刺強度が294cN以上である、前記(1)~(6)のいずれかに記載のポリオレフィン微多孔膜。
(8)シャットダウン温度が140℃以下、かつ、メルトダウン温度が165℃以上である、前記(1)~(7)のいずれかに記載のポリオレフィン微多孔膜。
(9)前記(1)~(8)のいずれかに記載のポリオレフィン微多孔膜の少なくとも一方の表面に、さらに1層以上のコーティング層を備える、積層ポリオレフィン微多孔膜。
 本発明は、優れた耐圧縮性と、低温シャットダウン特性と高温メルトダウン特性を両立する、電池用セパレータとして好適に用いることができるポリオレフィン多層微多孔膜を提供することができる。
 以下、本発明の本実施形態について説明する。なお、本発明は以下説明する実施形態に限定して解釈されるものではない。
 本発明のポリオレフィン微多孔膜は、ポリオレフィン樹脂を主成分とし、ゲルパーエミーションクロマトグラフィー(GPC)法により得られる微分分子量分布曲線において分子量3万以下の成分の面積率が10%以下、分子量50万以上150万以下の成分の面積率が25%以上、ラマン配向比が0.8未満である。
 また、本発明のポリオレフィン微多孔膜は2以上のポリオレフィンを主成分とする層を二層以上有した態様であることができる。すなわち、その場合、ポリオレフィンを主成分とする層が積層された微多孔膜をひとつの微多孔膜としてみることができる。
 以下に、ポリオレフィン微多孔質膜について説明する。
 本発明のポリオレフィン微多孔膜は、ポリオレフィン樹脂を主成分とし、ゲルパーエミーションクロマトグラフィー(GPC)法により得られる微分分子量分布曲線において、分布曲線とベースラインとで囲まれた領域全部の面積を100%としたとき、分子量3万以下の成分の面積率は10%以下であり、分子量50万以上150万以下の成分の面積率が25%以上であり、ラマン配向比が0.8未満である。ここで、「ポリオレフィン樹脂を主成分とし」とは、ポリオレフィン微多孔膜の質量を100質量%としたとき、ポリオレフィン樹脂が好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上含有されていることを示す。これによりポリオレフィン樹脂の微細なフィブリルネットワークが三次元的に密に形成され、微細な細孔構造となり、フィルム面に対して垂直方向からの衝撃や圧力に対する耐性が高くなる。
 前記分子量3万以下の成分の面積率が10%を超える場合、または、前記分子量50万以上150万以下の成分の面積率が25%未満である場合には、粗なフィブリルネットワークが形成されるため、微細な細孔構造の形成が困難となり、面内のフィブリル構造の均一性が低下し、耐圧縮性が低下する。また、前記ラマン配向比が0.8以上であると、結晶分子鎖の配向度の低下により微細な細孔構造を形成することが困難となり、耐圧縮性が低下する。
 前記分子量3万以下の成分の面積率は、10%以下であり、好ましくは8%以下、より好ましくは6%以下であり、下限は5%以上であることが好ましい。前記範囲内とすることで良好なシャットダウン特性を得ることができる。
 前記分子量50万以上150万以下の成分の面積率は、25%以上であり、好ましくは27%以上、より好ましくは30%以上であり、上限は40%以下であることが好ましい。前記範囲内であると、延伸時にかかる応力や熱処理後の残留応力が均一となることで微細な細孔構造が形成される。
 前記面積率は、用いるポリオレフィンとして、後述するポリエチレンとポリプロピレンの重量平均分子量(Mw)や分子量分布(Mw/Mn)、含有率の調整により上記範囲とすることが簡便である。また、面積率はゲルパーエミーションクロマトグラフィー(GPC)法により求めることができ、具体的には実施例に記載の測定方法により求める値をいう。また、複数の層によって構成された微多孔膜の場合には、各層の厚みまたは目付の比の調整による調整をさらにとることができる。
 また、ラマン配向比は、0.8未満であり、0.6以下が好ましく、下限は0.4以上が好ましい。前記範囲内であると、結晶分子鎖が高度に配向していることを意味し、ポリオレフィン樹脂の均一なフィブリルネットワークが三次元的に密に形成され、微細な細孔構造となり、フィルム面に対して垂直方向からの衝撃や圧力に対する耐性が高くなり、良好な耐圧縮性を得ることができる。ラマン配向比が0.4以上であると、良好な熱収縮とシャットダウン特性を有し、微細な細孔構造を形成することができる。なお、本明細書においてMD(machine direction)は機械方向、TD(transverse direction)は幅方向を表す。
 ラマン配向比は後述する第一の延伸工程、第二の延伸工程、熱処理工程を適宜調整することにより上記範囲とすることができる。また、ラマン配向比は顕微ラマン分光法により求めることができ、具体的には実施例に記載の測定方法により求める値をいう。
 本発明のポリオレフィン微多孔膜は、示差走査熱量計(DSC)により得られる温度-融解吸熱量曲線において、ファースト・ランでの0~157℃の温度範囲の融解吸熱量をΔH1、セカンド・ランでの0~157℃の温度範囲の融解吸熱量をΔH2とすると、下式で求められるΔHの値が0.2以上であることが好ましい。前記範囲内であると、結晶分子鎖が高度に配向していることを意味し、フィルム面に対して垂直方向からの衝撃や圧力に対する耐性が高くなり、良好な耐圧縮性を得ることができる。
   ΔH=(ΔH1-ΔH2)/ΔH2
 ポリオレフィン微多孔膜の融解吸熱量を上記範囲内とするためには、後述する第二の延伸工程、熱処理工程を適宜調整することにより上記範囲とすることができる。また、融解吸熱量は、具体的には実施例に記載の測定方法により求められる。
 本発明のポリオレフィン微多孔膜は、示差走査熱量計(DSC)により得られる温度-融解吸熱量曲線において、融解ピークの1つが160℃以上に観測されることが好ましい。これによりメルトダウン特性を得ることができる。前記融解ピークは好ましくは163℃以上に存在し、上限は170℃以下に存在することが好ましい。前記範囲内で融解ピークが観測されるものとすることで、高温時の形状を保持することができる。前記融解ピークは、ポリオレフィン樹脂としてポリプロピレンを用い、そのMwや含有量、融点、各層比などを調整することにより上記範囲とすることができる。また、融解ピークの温度は示差走査熱量計により求めることができ、具体的には実施例に記載の測定方法により求める値をいう。
 本発明のポリオレフィン微多孔膜は、2層以上のポリオレフィン樹脂層を有してなるものであってもよい。各層は異なる組成のポリオレフィン樹脂から構成されてもよく、例えば、2種類のポリオレフィン樹脂層(便宜的に、これらの層をそれぞれ「A層」と「B層」と表記する)とによる3層以上の層構成でもよい。積層順は特に限定されず、A層/B層/A層またはB層/A層/B層であってもよい。
 本発明のポリオレフィン微多孔膜は、温度70℃、圧力7.8MPaで10秒間加熱圧縮後の膜厚変化率(以下、「加熱圧縮後の膜厚変化率」ともいう。)の標準偏差が1%未満であることが好ましい。加熱圧縮後の膜厚変化率の標準偏差は、好ましくは0.7%以下であり、より好ましくは0.6%以下である。加熱圧縮の膜厚変化率の標準偏差が小さいほど多孔質膜の構造的なバラツキが小さいことを意味し、前記好ましい範囲内とすることで、耐圧縮性が向上する。加熱圧縮後の膜厚変化率の標準偏差は、後述するポリエチレンのMwやMw/Mn、含有率、第一の延伸工程、第二の延伸工程などを適宜調整することにより上記範囲とすることができる。また、加熱圧縮後の膜厚変化率の標準偏差は、具体的には実施例に記載の測定方法により求めることができる。
 本発明のポリオレフィン微多孔膜は、温度70℃、圧力7.8MPaで10秒間加熱圧縮後の膜厚変化率が、加熱圧縮前の膜厚100%に対して10%未満であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。前記好ましい範囲内とすることで、電池セパレータとして用いた場合、電極の膨張にも耐えることができ、繰り返し使用する場合にもセパレータ本来の機能を発現することができるため耐衝撃性やサイクル特性が向上する。加熱圧縮後の膜厚変化率は、後述するポリエチレンのMwやMw/Mn、含有率、第一の延伸工程、第二の延伸工程などを適宜調整することにより上記範囲とすることができる。加熱圧縮後の膜厚変化率は、加熱圧縮前の膜厚100%に対する加熱圧縮後の膜厚の変化率を算出することにより求めることができ、具体的には実施例に記載の測定方法により求める値をいう。
 本発明のポリオレフィン微多孔膜は、厚み7μm、空孔率40%換算の突刺強度が294cN以上であることが好ましい。換算した突刺強度は、好ましくは314cN以上、より好ましくは343cN以上である。前記好ましい範囲内とすることで、フィルム面に対して垂直方向からの衝撃や圧力に対する耐性が高くなるため、より良い耐圧縮性が得られ、電池セパレータとして用いた場合、耐衝撃性やサイクル特性に優れる。突刺強度は、後述するポリエチレンのMwやMw/Mn、含有率、各層比、第一の延伸工程、第二の延伸の延伸工程などを適宜調整することにより上記範囲とすることができる。なお、換算突刺強度は、具体的には実施例に記載の測定方法により求めることができる。
 本発明のポリオレフィン微多孔膜は、シャットダウン温度が140℃以下であり、かつメルトダウン温度が165℃以上であることが好ましい。前記範囲内であると、電池セパレータとして用いた場合に安全性が向上する。シャットダウン温度はより好ましくは138℃以下であり、さらに好ましくは136℃以下である。下限は特に限定されないが、イオン透過性の低下を抑制できることから125℃以上であることが好ましい。メルトダウン温度はより好ましくは170℃以上であり、さらに好ましくは175℃以上である。上限は特に限定されないが、190℃以下であることが好ましい。シャットダウン温度及びメルトダウン温度は、昇温時の透気抵抗度を測定することにより求めることができ、具体的には実施例に記載の測定方法により求める値をいう。
 次に、A層/B層/A層、または、B層/A層/B層の層構成を有するポリオレフィン微多孔膜を例に挙げて本発明をさらに具体的に説明する。
 (1)ポリオレフィン樹脂組成物A
 ポリエチレン
 A層は重量平均分子量(Mw)が8.0×10以上の超高分子量ポリエチレンを含むポリオレフィン樹脂組成物(以下、「ポリオレフィン樹脂組成物A」ともいう)により形成される多孔質膜の層であることが好ましい。ここで、「超高分子量ポリエチレン」とはMwが8.0×10以上のポリエチレンを示す。超高分子量ポリエチレンの種類は、エチレン以外の他のα-オレフィンが少量共重合された共重合体や他のα-オレフィン重合体が少量混合された混合物の態様であってもよい。超高分子量ポリエチレンホモポリマーを用いることが好ましい。
 エチレン以外のα-オレフィンとしては、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、酢酸ビニル、メタクリル酸メチル及びスチレンが好ましい。エチレン以外のα-オレフィンの含有率は、ポリオレフィン樹脂を100mol%として5mol%以下が好ましい。ポリオレフィン微多孔膜の細孔構造均一性の観点から、エチレンの単重合体であることが好ましい。
 超高分子量ポリエチレンの重量平均分子量(Mw)としては、8.0×10以上2.0×10未満であることが好ましく、1.0×10以上1.8×10以下であることがより好ましい。
 超高分子量ポリエチレンの分子量分布(Mw/Mn)としては、10以下であることが好ましく、さらに好ましくは5以下である。上記範囲内であることは、分子量の広がりが少なく、分子量分布が均一であることを意味し、数値が小さいほど均一性が高いことを示す。なお、Mw及びMw/Mnは、後述するGPC法により測定される値である。
 ポリオレフィン樹脂組成物Aに含まれる超高分子量ポリエチレンの含有率は、ポリオレフィン樹脂組成物A100質量%に対して、65質量%以上であることが好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。
 A層のポリオレフィン樹脂組成物は、超高分子量ポリエチレン以外のポリエチレンは実質的に含まないことが好ましいが、A層のポリオレフィン樹脂組成物全体100質量%に対して0質量%以上15質量%以下の範囲で含んでもよい。超高分子量ポリエチレン以外のポリエチレンのMwは、3.0×10未満であることが好ましく、2.0×10未満であることがより好ましい。さらに膜強度の観点から、Mwの下限は5.0×10以上であることが好ましい。高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレン及び線状低密度ポリエチレンからなる群から選ばれる少なくとも一種であることが好ましい。
 ポリプロピレン
 ポリオレフィン樹脂組成物Aはポリプロピレンを含むことが好ましい。ポリプロピレンの種類は特に限定されず、プロピレンの単重合体、プロピレンと他のα-オレフィン及び/又はジオレフィンとの共重合体(プロピレン共重合体)、あるいはこれらから選ばれる2種以上の混合物のいずれでも良いが、プロピレンの単重合体を単独で用いることがより好ましい。
 プロピレン共重合体としてはランダム共重合体又はブロック共重合体のいずれも用いることができる。プロピレン共重合体中のα-オレフィンとしては、炭素数が8以下であるα-オレフィンが好ましい。炭素数が8以下のα-オレフィンとして、エチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、オクテン-1、酢酸ビニル、メタクリル酸メチル、スチレン及びこれらの組合せ等が挙げられる。プロピレンの共重合体中のジオレフィンとしては、炭素数は4~14のジオレフィンが好ましい。炭素数が4~14のジオレフィンとして、例えばブタジエン、1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエン等が挙げられる。プロピレン共重合体中の他のα-オレフィン及びジオレフィンの含有率は、プロピレン共重合体を100mol%として10mol%未満であることが好ましい。
 ポリプロピレンの重量平均分子量(Mw)は1×10以上が好ましく、1.2×10以上がより好ましく、1.2×10~4×10が特に好ましい。またポリプロピレンの融点は、155~170℃が好ましく、160℃~165℃がより好ましい。なお、融点は後述する走査型示差熱量計(DSC)により測定される値である。
 ポリオレフィン樹脂組成物Aのポリプロピレンの含有率は、ポリオレフィン樹脂組成物A100質量%に対して、好ましくは10質量%以上30質量%以下、より好ましくは10質量%以上20質量%以下である。
 (2)ポリオレフィン樹脂組成物B
 ポリエチレン
 B層は重量平均分子量(Mw)が8.0×10以上の超高分子量ポリエチレンを含むポリオレフィン樹脂組成物(以下、「ポリオレフィン樹脂組成物B」ともいう)により形成される多孔質層であることが好ましい。ポリオレフィン樹脂組成物Bの超高分子量ポリエチレンの種類やMw、Mw/Mn、含有率は、上記ポリオレフィン樹脂組成物Aの項において説明した超高分子量ポリエチレンの説明と同じであるため説明を省略する。
 ポリオレフィン樹脂組成物Bは、重量平均分子量(Mw)が8.0×10以上の超高分子量ポリエチレン以外のポリエチレンを含むことが好ましい。前記超高分子量ポリエチレン以外のポリエチレンの含有率は、ポリオレフィン樹脂組成物B100質量%に対して、好ましくは10質量%以上30質量%以下であり、より好ましくは10質量%以上20質量%以下である。ポリオレフィン樹脂組成物Bの超高分子量ポリエチレン以外のポリエチレンのMwと種類は、ポリオレフィン樹脂組成物Aの項において説明した超高分子量ポリエチレン以外のポリエチレンの説明と同じであるため説明を省略する。
 ポリプロピレン
 ポリオレフィン樹脂組成物Bはポリプロピレンを実質的に含まないことが好ましいが、ポリオレフィン樹脂組成物B100質量%に対して、0質量%以上15質量%以下の範囲で含んでもよい。ポリプロピレンの種類、Mw、融点は、ポリオレフィン樹脂組成物Aの項において説明したポリプロピレンの説明と同じであるため説明を省略する。
 上記のポリオレフィン樹脂組成物A及びポリオレフィン樹脂組成物Bの超高分子量ポリエチレン、超高分子量ポリエチレン以外のポリエチレン、ポリプロピレンを上記好ましい範囲で適宜調整することで、GPC法により得られる微分分子量分布曲線において分子量3万以下の成分の面積率が10%以下、分子量50万以上150万以下の成分の面積率が25%以上になりやすいため、ポリオレフィン樹脂の均一なフィブリルネットワークが三次元的に密に形成され、微細な細孔構造を有するポリオレフィン微多孔膜を得られる傾向にある。さらに、DSCにより得られる融解ピークの1つが160℃以上となりやすいため、高温下での形状保持特性を有するポリオレフィン微多孔膜を得られる傾向にある。その結果、加熱圧縮後の膜厚変化率の標準偏差が小さく、加熱圧縮後の膜厚変化率が良好で、低温シャットダウン特性、高温メルトダウン特性を併せ持つポリオレフィン微多孔膜が得られる。
 ポリオレフィン微多孔膜の各層の厚さは、A層/B層の比として、好ましくは10/90~40/60、より好ましくは20/80~30/70である。なお、複数のA層またはB層が設けられた場合は当該複数のA層またはB層の層厚みの和として求める。
 なお、この例では、A層とB層の2種類の層による微多孔膜を説明しているが、3種類以上の層による微多孔膜とすることもできることはいうまでもない。
 (3)ポリオレフィン微多孔膜の製造方法
 次に、A層/B層/A層、または、B層/A層/B層の層構成を有するポリオレフィン微多孔膜を例に挙げて、本発明のポリオレフィン微多孔膜の製造方法について説明する。例えば、このポリオレフィン微多孔膜の製造方法は以下の工程を含む。
(a)A層およびB層を構成するための溶液の調製
(b)ゲル状多層シートの成形
(c)第一の延伸
(d)可塑剤の除去
(e)乾燥
(f)第二の延伸
(g)熱処理
 (a)A層およびB層を構成するための溶液の調製
 二軸押出し機中にてポリオレフィン樹脂組成物に可塑剤を添加し、溶融混練し、A層およびB層を構成するための溶液をそれぞれ調製する。A層及びB層のポリオレフィン樹脂組成物と可塑剤との配合割合は、ポリオレフィン樹脂組成物と可塑剤との合計を100質量%として、ポリオレフィン樹脂組成物の含有率を20質量%以上30質量%以下とすることが好ましい。ポリオレフィン樹脂組成物の濃度を上記の範囲内にすることで、ポリオレフィン溶液を押出す際に、ダイ出口でスウェルやネックインが防止でき、押出し成形体の成形性及び自己支持性を良好にできる。
 用いうる可塑剤としては、ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒であれば特に制限はなく、例えば、流動パラフィンやパラフィンワックス等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類を挙げることができる。
 A層およびB層を構成するための溶液をそれぞれ押出機から1つのダイに送給し、そこで両溶液を層状シート状に押し出し押出し成形体を得る。押出方法はフラットダイ法及びインフレーション法のいずれでもよい。いずれの方法でも、溶液を別々のマニホールドに供給して多層用ダイのリップ入口で層状に積層する方法(多数マニホールド法)、又は溶液を予め層状の流れにしてダイに供給する方法(ブロック法)を用いることができる。多数マニホールド法及びブロック法は通常の方法を適用できる。多層用フラットダイのギャップは0.1mm以上5mm以下に設定できる。押出し温度は140℃以上250℃以下が好ましく、押出速度は0.2~15m/分が好ましい。各層の溶液の押出量を調節することにより、層の膜厚比を調節することができる。
 (b)ゲル状多層シートの成形
 得られた押出し成形体を冷却することによりゲル状多層シートを成形する。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離された第一及び第二のポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状多層シートとなる。
 (c)第一の延伸
 次いで、ゲル状シートを延伸する。ゲル状シートの延伸は、湿式延伸ともいう。ゲル状シートは溶剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)のいずれでもよい。
 延伸倍率(面延伸倍率)は、一軸延伸の場合、2倍以上が好ましく、3倍以上30倍以下がより好ましい。二軸延伸の場合は、9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい。また、MD及びTDのいずれも延伸倍率は3倍以上が好ましく、MDおよびTDでの延伸倍率は互いに同じでも異なってもよい。なお、本工程における延伸倍率とは、本工程直前の微多孔膜を基準として、次工程に供される直前の微多孔膜の面積延伸倍率のことをいう。
 延伸温度の下限は、好ましくは90℃以上であり、より好ましくは110℃以上である。また、この延伸温度の上限は、好ましくは120℃以下である。延伸温度が上記範囲内であると、低融点成分のポリオレフィン樹脂の延伸による破膜が抑制され、高倍率の延伸ができる。
 (d)可塑剤の除去
 洗浄溶媒を用いて、可塑剤の除去を行う。洗浄溶媒およびこれを用いた可塑剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。
 (e)乾燥
 可塑剤を除去したポリオレフィン微多孔膜を、加熱乾燥法又は風乾法により乾燥する。加熱乾燥、風乾(空気を動かすこと)等の従来の方法を含む、洗浄溶媒を除去することが可能ないずれの方法を用いてもよい。洗浄溶媒等の揮発性種を除去するための処理条件は、例えば国際公開第WO2008/016174号および同第WO2007/132942号に開示されているものと同じであってもよい。
 (f)第二の延伸
 次いで、乾燥後のポリオレフィン微多孔膜を延伸する。乾燥後の微多孔膜の延伸は、第二の延伸という。乾燥後の微多孔膜フィルムを、少なくとも一軸方向に延伸する。ポリオレフィン微多孔膜の第二の延伸は、加熱しながら上記と同様にテンター法等により行うことができる。本願は同層にポリエチレンとポリプロピレンの2種のポリオレフィン樹脂を含有しているため、ラメラ構造の均一性の観点から第二の延伸は一軸延伸が好ましい。
 延伸倍率は、MDまたはTDに1.5倍以上であることが好ましく、2.0倍以上であることがより好ましい。第二の延伸を1.5倍以上で行うと、MDまたはTDに結晶分子鎖が高度に配向するため、ラマン配向比を0.8未満に調整することができる。より高い倍率で延伸するほどラマン配向比を小さく調整することができる。ただしシャットダウン温度や熱収縮が上昇するためそのバランスを考慮して、上限は3.5倍であることが好ましい。ここで第二の延伸における延伸倍率とは、第二の延伸前のポリオレフィン微多孔膜のMDまたはTDの長さを基準として、第二の延伸後のポリオレフィン微多孔膜のMDまたはTDの長さの倍率をいう。
 (g)熱処理
 第二の延伸後のポリオレフィン微多孔膜には熱処理を施すことが好ましい。例えば、ポリオレフィン微多孔膜をクリップで把持した状態で、幅を固定したまま熱処理を施す(TD熱固定処理工程)。熱処理は115℃以上135℃以下とすることが好ましい。
 ポリオレフィン樹脂組成物、前記の第一の延伸工程、第二の延伸工程、熱処理工程を上記好ましい範囲で適宜調整することで、ラマン配向比が0.8未満とすることができ、ポリオレフィン樹脂の均一なフィブリルネットワークが三次元的に密に形成され、微細な細孔構造を有するポリオレフィン微多孔膜を得られる傾向にある。その結果、加熱圧縮後の膜厚変化率の標準偏差が小さく、加熱圧縮後の膜厚変化率が良好で、低温シャットダウン特性を有するポリオレフィン微多孔膜が得られる。
 また、本発明のポリオレフィン微多孔膜は、その表面の一面または両面に他の多孔質層を積層して積層ポリオレフィン多孔質膜としてもよい。他の多孔質層としては、特に限定されないが、例えば、バインダーと無機粒子とを含む無機粒子層を挙げることができる。無機粒子層に用いられるバインダー成分としては、特に限定されず、公知の材料を用いることができ、例えば、アクリル樹脂、ポリフッ化ビニリデン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリイミド樹脂などを用いることができる。無機粒子層を構成する無機粒子としては、特に限定されず、公知の材料を用いることができ、例えば、アルミナ、ベーマイト、硫酸バリウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、ケイ素などを用いることができる。
 以下、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの例に限定して解釈されるものではない。
[測定方法]
 (1)膜厚
 ポリオレフィン微多孔膜の95mm×95mmの範囲内における5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック、接触圧0.01N、10.5mmφプローブを用いた)により測定し、平均値を膜厚(μm)とした。
 (2)空孔率
 ポリオレフィン微多孔膜を95mm×95mmの大きさに切り出し、その体積(cm)と重量(g)を求め、それらと膜密度(g/cm)より、次式を用いて計算した。
式:空孔率(%)=((体積-重量/膜密度)/体積)×100
ここで、膜密度は0.99(g/cm)とした。また、体積の算出には、前述の(1)で測定した膜厚を使用した。
 (3)透気抵抗度
 ポリオレフィン微多孔膜について、JIS P-8117:2009に準拠して、透気抵抗度計(旭精工株式会社製、EGO-1T)を用いて透気抵抗度(sec/100cm)を測定した。
 (4)突刺強度
 直径1mm(先端は0.5mmR)の針を用い、速度2mm/秒で膜厚T(μm)、空孔率P(%)のポリオレフィン微多孔膜を突刺したときの最大荷重値S(cN)を測定した。さらに下記の式により、膜厚7μm、空孔率40%の換算突刺強度を算出した。
式:換算突刺強度(cN)={S×7×60}/{T×(100-P)}
 (5)加熱圧縮後の膜厚変化率
 ポリオレフィン微多孔膜をTDに等間隔に25か所、40mm×40mmに切り出し、一枚あたり5点の厚みを測定し平均を算出した。ついで、切り出された試料5枚を積層し、一組としたサンプルを、水平な板の間に静置し、10秒間、70℃で7.8MPaの圧力下で圧縮装置(新東工業株式会社製、CYPT-20特)により加熱圧縮した。加熱圧縮を解放してから3時間後のポリオレフィン微多孔膜について、一枚あたり5点の厚みを測定し平均(平均厚さ)を算出し、下記式により算出した。
式:加熱圧縮後の膜厚変化率(%)=[(加熱圧縮前の平均厚さ-加熱圧縮解放後の平均厚さ)/(加熱圧縮前の平均厚さ)]×100
ここで、厚さの測定は、前述の(1)の方法に準じて行った。
 (6)標準偏差
 (5)の方法で算出した25点の加熱圧縮後の膜厚変化率の測定結果から標準偏差を算出した。
 (7)シャットダウン温度およびメルトダウン温度
 ポリオレフィン微多孔膜を30℃の雰囲気中にさらして、5℃/分の速度で昇温しながら透気抵抗度を測定する。ポリオレフィン微多孔膜の透気抵抗度が100,000秒/100cmに到達した時の温度をシャットダウン温度とした。メルトダウン温度は、前記シャットダウン温度に到達後さらに昇温を継続し、透気抵抗度が100,000秒/100cm未満となる温度とした。透気抵抗度は、JIS P8117:2009に準拠して、透気抵抗度計(旭精工株式会社製、EGO-1T)を用いて測定した。
 (8)融点、融解ピーク、融解吸熱量
 ポリオレフィン樹脂の融点及びポリオレフィン微多孔膜の融解ピークは示差走査熱量計(PARKING ELMER製 PYRIS DIAMOND DSC)により求めた。ポリオレフィン樹脂とポリオレフィン微多孔膜をそれぞれサンプルホルダー内に静置し、窒素雰囲気下(20mL/min)にて昇温速度10℃/minとし、230℃まで昇温して完全に溶融させたのち、230℃で3分間保持し、10℃/minの速度で30℃まで降温させた(ファースト・ラン)。この降温後、窒素雰囲気下(20mL/min)にて昇温速度10℃/minとし、再び230℃まで昇温して完全に溶融させたのち、230℃で3分間保持し、10℃/minの速度で30℃まで降温させた(セカンド・ラン)。得られたDSC曲線から0℃と157℃を結ぶ直線をベースラインとし、セカンド・ランでの温度-融解吸熱量曲線からポリオレフィン樹脂の融点(Tm)を求め、また、ポリオレフィン微多孔膜の融解ピーク温度を求めた。また、ファースト・ランでの融解吸熱量をΔH1、セカンド・ランでの融解吸熱量をΔH2として、下式によりΔHを算出した。なお、ポリオレフィン樹脂については、融解吸熱量が70J/g以上のピークを融解ピークとみなし、ポリオレフィン微多孔膜については、融解吸熱量が3.0J/g以上のピークを融解ピークとみなした。
   ΔH=(ΔH1-ΔH2)/ΔH2   。
 (9)重量平均分子量、分子量分布および微分分子量分布曲線におけるピーク面積
 ポリオレフィン樹脂の重量平均分子量(Mw)および分子量分布(Mw/Mn)は以下の測定条件を用いてゲルパーミエーションクロマトグラフィー(GPC)法により求めた。また、ポリオレフィン微多孔膜の微分分子量分布曲線は次の手順で算出した。
(A)GPCの示差屈折率検出器(RI検出器)から、溶出時間に対する検出強度(溶出曲線)を算出し、溶出時間を分子量に変換した。ここで、溶出曲線のベースラインは、ピークの立ち上がりの保持時間を起点、ピークエンドの保持時間を終点とし、ピーク検出の間隔は0.017分とした。
(B)溶出曲線の全体の面積率を100%としたときの強度面積を求め、それぞれの分子量の濃度分率を求めた。濃度分率を順次積算し、横軸に分子量の対数値(log(M))、縦軸に濃度分率(w)の積算値をプロットすることにより積分分子量曲線を得た。
(C)各分子量の対数値における曲線の微分値を求め、横軸に分子量の対数値(log(M))、縦軸に濃度分率を分子量の対数値で微分した値(dw/dlog(M))をプロットすることで微分分子量分布曲線を得た。得られた微分分子量分布曲線とベースライン(通常は、横軸である)とで囲まれた領域の面積を100%としたときの分子量3万以下の成分の面積率および、分子量50万以上150万以下の成分の面積率を算出した。なお、各領域の面積は微分分子量分布曲線グラフからの実面積として求められる。
測定条件
 ・測定装置:高温GPC装置PL-GPC220(Agilent製)
 ・カラム:Agilent製PL1110-6200(20μm MIXED-A)×2本
 ・カラム温度:160℃
 ・溶媒(移動相):1,2,4-トリクロロベンゼン
 ・溶媒流速:1.0mL/分
 ・試料濃度:0.1wt%(溶解条件:160℃/3.5H)
 ・インジェクション量:500μL
 ・検出器:Agilent製示差屈折率検出器(RI検出器)
 ・粘度計:Agilent製粘度検出器
 ・検量線:単分散ポリスチレン標準試料を用いたユニバーサル検量線法にて作成した。
 (10)ラマン配向比
 ポリオレフィン微多孔膜の偏光ラマンスペクトルを顕微ラマン分光法inVia(Renishaw社製)により次のように測定し、結晶分子鎖のラマン配向比を算出した。
(A)試料とするポリオレフィン微多孔膜に一軸の偏光子をとおしてレーザー光を入射し、ラマン散乱光について前記偏光子と同じ光軸を持つ検光子を通じて集光した。得られたラマンスペクトルの1130cm-1と1060cm-1のラマンバンドの比(I1130/I1060)を算出した。1130cm-1は結晶相中ポリオレフィン分子鎖のC-C伸縮振動に帰属し、1060cm-1はC-C逆伸縮振動に帰属するバンドであり、振動のラマンテンソルの方向が分子鎖軸と一致しているため分子鎖の配向状態を知ることができる。配向値が大きいほど結晶分子鎖が高度に配向していることを意味する。
(B)前記(A)の測定を試料台のポリオレフィン微多孔膜を回転させて、10度おきに繰り返して測定を行い、最も大きなラマンバンドの比(I1130/I1060)を示す方向のラマンバンドの比(I1130/I1060)をSa、当該方向に直交する方向におけるラマンバンドの比(I1130/I1060)をSbとし、下式によってラマン配向比を求めた。
  ラマン配向比=Sb/Sa     。
 (11)単層または多層ポリオレフィン微多孔膜の分析
 ポリオレフィン微多孔膜は、層に含まれている成分に着眼し、その厚み方向での分布を分析することで判断することができる。
 例えば、ポリオレフィンの重合においては触媒が使用されるが、多孔質膜中に残存する触媒に着眼することで分析が可能であり、この場合、微多孔膜の厚み方向(MD/ZDまたはTD/ZD)面を二次イオン質量分析法(Secondary Ion Mass Spectrometry:SIMS)により分析し、触媒に起因する微量金属元素の濃度分布を測定する。TD/ZD面で金属元素が均一に分布していれば単層と判断し、金属種が異なっていたり、濃度分布が見られれば多層と判断できる。
測定条件
 ・試料調整:ポリオレフィン微多孔膜をウルトラマイクロトームでTD/ZD面に断面切断する。
 ・測定装置:NanoSIMS50L(CAMEKA製)
 ・真空度:1.33×10-Pa
 ・一次イオン:O
 ・一次イオン加速電圧:25kV
 ・二次イオン極性:正
 ・二次イオン検出エリア:300×300μm
 また、他の方法として、ポリオレフィン微多孔膜をエッジングし表層と内層成分に分ける。各箇所の分子量分布や融点、吸収スペクトルを測定し、表層と内層の分析結果が同等であれば単層と判断でき、違いが見られれば多層と判断できる。なお、分子量分布と融点は上記のGPCおよびDSC分析によって得られ、吸収スペクトルは下記の手法により得られる。
 吸収スペクトル
 ポリオレフィン微多孔膜の吸収スペクトルは赤外吸収分光法(Infrared  absorption spectrometry:IR)分析を用いて求めた。
測定条件
 ・測定装置:
 ・測定モード:
 ・検出器:MCT
 ・スキャンスピード:5kHz
 ・積算回数:64回
 ・分解能:4cm-1
 ・測定波長:4000~700cm-1
 (12)層比
 ポリオレフィン微多孔膜が有する各層の層比は、以下の測定条件で透過型電子顕微鏡(TEM)を用いて観察した。
 測定条件
 ・試料調整:ポリオレフィン微多孔膜を四酸化ルテニウムにより染色し、ウルトラマイクロトームで断面切断する。
 ・測定装置:透過型電子顕微鏡(日本電子製JEM1400Plus型)
 ・観察条件:加速電圧100kV
 ・観察方向:TD/ZD   。
 [実施例1]
(1)A層を構成するための溶液の調製(以下、「A層の溶液」と表記することがある)
 Mw2.0×10のアイソタクチックポリプロピレン(融点162℃)30質量%、Mw1.5×10の超高分子量ポリエチレン70質量%からなるポリオレフィン樹脂組成物と流動パラフィンとを二軸押し出し機にて溶融混練しA層を構成するための溶液を調製した。
(2)B層を構成するための溶液の調製(以下、「B層の溶液」と表記することがある)
 Mw1.5×10の超高分子量ポリエチレン80質量%と、Mw1.0×10のポリエチレン20質量%からなるポリオレフィン樹脂組成物と流動パラフィンとを二軸押し出し機にて溶融混練しB層を構成するための溶液を調製した。
(3)ゲル状多層シートの成形
 各溶液を二軸押出機から三層用Tダイに供給し、B層の溶液/A層の溶液/B層の溶液が層厚比35/30/35となるように押し出した。押出し成形体を、25℃に温調した冷却ロールで引き取り速度4m/分で引き取りながら冷却し、ゲル状三層シートを形成した。
(4)第一の延伸、成膜用剤の除去、乾燥
 ゲル状三層シートを、テンター延伸機により113℃でMD及びTDともに5倍に同時二軸延伸し、そのままテンター延伸機内でシート幅を固定し、110℃の温度で熱固定した。次いで延伸したゲル状三層シートを洗浄槽で塩化メチレン浴中に浸漬し、流動パラフィンを除去し、室温で風乾した。
(5)第二の延伸、熱処理
 その後、127℃で予熱してからテンター延伸機によりTDに1.8倍延伸をした後、TDに4%の緩和を施し、テンターに保持しながら127℃で熱固定し、B層/A層/B層のポリオレフィン微多孔膜を得た。得られたポリオレフィン微多孔膜の各特性を表1に示す。
 [実施例2]
 ゲル状多層シートの層構成及び層厚比を、A層の溶液/B層の溶液/A層の溶液が層厚比で15/70/15となるようにして供給し、A層のポリオレフィン樹脂組成物中のMw1.5×10の超高分子量ポリエチレンをMw8.0×10の超高分子量ポリエチレンとした以外は、実施例1と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [実施例3]
 A層を構成するための溶液の調製において、ポリオレフィン樹脂組成物中のMw2.0×10のアイソタクチックポリプロピレン(融点162℃)を10質量%、Mw8.0×10の超高分子量ポリエチレンを90質量%とし、また、第二の延伸条件を変更した以外は、実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [実施例4]
 B層を構成するための溶液の調製において、ポリオレフィン樹脂組成物中のMw1.5×10の超高分子量ポリエチレンを70質量%、Mw1.0×10のポリエチレンを30質量%とし、また、第二の延伸条件を変更した以外は、実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [実施例5]
 B層を構成するための溶液の調製において、ポリオレフィン樹脂組成物中のMw1.5×10の超高分子量ポリエチレンを90質量%、Mw1.0×10のポリエチレンを10質量%とし、また、第二の延伸条件を変更した以外は、実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [実施例6]
 B層を構成するための溶液の調製において、ポリオレフィン樹脂組成物中のMw1.5×10の超高分子量ポリエチレンをMw1.8×10の超高分子量ポリエチレンとした以外は、実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [実施例7]
 第二の延伸において、延伸倍率をTDに3.0倍とした以外は実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [実施例8]
 ゲル状多層シートの層厚比をB層の溶液/A層の溶液/B層の溶液が層厚比で15/70/15となるようにして供給した以外は実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [実施例9]
 A層を構成するための溶液の調製において、Mw2.0×10のアイソタクチックポリプロピレン(融点162℃)7質量%、Mw1.5×10の超高分子量ポリエチレン70質量%、Mw1.0×10のポリエチレン23質量%からなるポリオレフィン樹脂組成物と流動パラフィンとを二軸押し出し機にて溶融混練しA層の溶液を調整した。A層の溶液を二軸押出機から単層用Tダイに供給し、冷却後にゲル状単層シートを得た。その後の工程は実施例2と同様にしてA層からなるポリオレフィン微多孔膜を得た。
 [比較例1]
 溶液調整において、A層のポリオレフィン樹脂組成物中のMw8.0×10の超高分子量ポリエチレンと、B層のポリオレフィン樹脂組成物中のMw1.5×10の超高分子量ポリエチレンをMw2.3×10の超高分子量ポリエチレンとした以外は、実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [比較例2]
 溶液調整において、A層のポリオレフィン樹脂組成物中のMw8.0×10の超高分子量ポリエチレンと、B層のポリオレフィン樹脂組成物中のMw1.5×10の超高分子量ポリエチレンをMw6.0×10のポリエチレンとした以外は、実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [比較例3]
 第二の延伸において、延伸倍率をTDに1.2倍とした以外は実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [比較例4]
 第二の延伸において、延伸倍率をTDに4.0倍とした以外は実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [比較例5]
 溶液調整において、A層のポリオレフィン樹脂組成物をMw2.0×10のアイソタクチックポリプロピレン(融点162℃)20質量%、Mw3.5×10のポリエチレン80質量%とし、B層ポリオレフィン樹脂組成物をMw2.3×10の超高分子量ポリエチレン40質量%、Mw3.5×10のポリエチレン60質量%に替え、第二の延伸の延伸倍率をTDに2.0倍とした以外は実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
 [比較例6]
 A層の溶液調整において、ポリオレフィン樹脂組成物をMw2.0×10のアイソタクチックポリプロピレン(融点162℃)10質量%、Mw1.5×10の超高分子量ポリエチレン70質量%、ポリエチレンテレフタレート(非ポリオレフィン樹脂)20質量%とした以外は実施例2と同様にしてA層/B層/A層のポリオレフィン微多孔膜を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表中、「UHPE」は「超高分子量ポリエチレン」の、「PP」は「ポリプロピレン」の、「その他のPE」は「超高分子量ポリエチレン以外のポリエチレン」を表す。

Claims (9)

  1. ポリオレフィン樹脂を主成分とし、ゲルパーエミーションクロマトグラフィー(GPC)法により得られる微分分子量分布曲線において、分子量3万以下の成分の面積率が10%以下、分子量50万以上150万以下の成分の面積率が25%以上であり、かつ、ラマン配向比が0.8未満であるポリオレフィン微多孔膜。
  2. 示差走査熱量計(DSC)により得られる温度-融解吸熱量曲線において、ファースト・ランでの0~157℃の温度範囲の融解吸熱量をΔH1、セカンド・ランでの0~157℃の温度範囲の融解吸熱量をΔH2とすると、下式で求められるΔHの値が0.2以上である、請求項1に記載のポリオレフィン微多孔膜。
       ΔH=(ΔH1-ΔH2)/ΔH2
  3.  示差走査熱量計(DSC)により得られる温度-融解吸熱量曲線において、融解ピークの1つが160℃以上に観測される、請求項1または2に記載のポリオレフィン微多孔膜。
  4. 前記ポリオレフィン微多孔膜は、ポリオレフィン樹脂を主成分とする層を2層以上有してなる請求項1~3のいずれかに記載のポリオレフィン微多孔膜。
  5. 加熱圧縮後の膜厚変化率の標準偏差が1%未満である、請求項1~4のいずれかに記載のポリオレフィン微多孔膜。
  6. 加熱圧縮後の膜厚変化率が10%未満である、請求項1~5のいずれかに記載のポリオレフィン微多孔膜。
  7. 厚み7μm、空孔率40%換算での突刺強度が294cN以上である、請求項1~6のいずれかに記載のポリオレフィン微多孔膜。
  8. シャットダウン温度が140℃以下、かつ、メルトダウン温度が165℃以上である、請求項1~7のいずれかに記載のポリオレフィン微多孔膜。
  9. 請求項1~8のいずれかに記載のポリオレフィン微多孔膜の少なくとも一方の表面に、さらに1層以上のコーティング層を備える、積層ポリオレフィン微多孔膜。
PCT/JP2022/001026 2021-01-18 2022-01-14 ポリオレフィン微多孔膜および積層ポリオレフィン微多孔膜 WO2022154069A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22739474.9A EP4265404A1 (en) 2021-01-18 2022-01-14 Polyolefin microporous film and laminated polyolefin microporous film
JP2022503847A JPWO2022154069A1 (ja) 2021-01-18 2022-01-14
KR1020237012785A KR20230135044A (ko) 2021-01-18 2022-01-14 폴리올레핀 미다공막 및 적층 폴리올레핀 미다공막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-005519 2021-01-18
JP2021005519 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022154069A1 true WO2022154069A1 (ja) 2022-07-21

Family

ID=82448162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001026 WO2022154069A1 (ja) 2021-01-18 2022-01-14 ポリオレフィン微多孔膜および積層ポリオレフィン微多孔膜

Country Status (4)

Country Link
EP (1) EP4265404A1 (ja)
JP (1) JPWO2022154069A1 (ja)
KR (1) KR20230135044A (ja)
WO (1) WO2022154069A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145319A1 (ja) * 2022-01-28 2023-08-03 東レ株式会社 ポリオレフィン微多孔膜およびその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256099A (ja) 2001-03-02 2002-09-11 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP2004161899A (ja) 2002-11-13 2004-06-10 Tonen Chem Corp 微多孔膜及びその製造方法並びに用途
WO2007132942A1 (en) 2006-05-15 2007-11-22 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, battery separator and battery
WO2008016174A1 (en) 2006-08-01 2008-02-07 Tonen Chemical Corporation Polyolefin composition, its production method, and a battery separator made therefrom
WO2008026782A1 (en) * 2006-08-31 2008-03-06 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator and battery
WO2008026780A1 (en) * 2006-08-31 2008-03-06 Tonen Chemical Corporation Microporous membrane, battery separator and battery
JP2008255306A (ja) * 2007-04-09 2008-10-23 Tonen Chem Corp ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
WO2015182691A1 (ja) 2014-05-28 2015-12-03 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜およびその製造方法
WO2018164056A1 (ja) 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜
WO2019074122A1 (ja) 2017-10-13 2019-04-18 旭化成株式会社 ポリオレフィン微多孔膜及びこれを用いたリチウムイオン二次電池
JP2020095950A (ja) * 2018-12-10 2020-06-18 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及びポリオレフィン微多孔膜の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256099A (ja) 2001-03-02 2002-09-11 Tonen Chem Corp 熱可塑性樹脂微多孔膜の製造方法
JP2004161899A (ja) 2002-11-13 2004-06-10 Tonen Chem Corp 微多孔膜及びその製造方法並びに用途
WO2007132942A1 (en) 2006-05-15 2007-11-22 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, battery separator and battery
WO2008016174A1 (en) 2006-08-01 2008-02-07 Tonen Chemical Corporation Polyolefin composition, its production method, and a battery separator made therefrom
WO2008026782A1 (en) * 2006-08-31 2008-03-06 Tonen Chemical Corporation Multi-layer, microporous membrane, battery separator and battery
WO2008026780A1 (en) * 2006-08-31 2008-03-06 Tonen Chemical Corporation Microporous membrane, battery separator and battery
JP2008255306A (ja) * 2007-04-09 2008-10-23 Tonen Chem Corp ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
WO2015182691A1 (ja) 2014-05-28 2015-12-03 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜およびその製造方法
WO2018164056A1 (ja) 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜
WO2019074122A1 (ja) 2017-10-13 2019-04-18 旭化成株式会社 ポリオレフィン微多孔膜及びこれを用いたリチウムイオン二次電池
JP2020095950A (ja) * 2018-12-10 2020-06-18 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及びポリオレフィン微多孔膜の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145319A1 (ja) * 2022-01-28 2023-08-03 東レ株式会社 ポリオレフィン微多孔膜およびその製造方法

Also Published As

Publication number Publication date
JPWO2022154069A1 (ja) 2022-07-21
KR20230135044A (ko) 2023-09-22
EP4265404A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
JP4902455B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP5422562B2 (ja) ポリマー微多孔膜
JP5453272B2 (ja) 微多孔膜およびそのような膜を製造し使用する方法
JP5403633B2 (ja) 微多孔膜、電池セパレーターおよび電池
TWI406891B (zh) 聚烯烴多層微多孔膜之製法
JP5403634B2 (ja) 微多孔膜、電池セパレーターおよび電池
TWI413657B (zh) 聚烯烴多層微多孔膜、其製法、電池用隔離材及電池
EP1870430B1 (en) Microporous polyolefin film and process for producing the same
US20090008816A1 (en) Method for producing microporous polyolefin membrane and microporous membrane
JP7088163B2 (ja) ポリオレフィン微多孔膜、多層ポリオレフィン微多孔膜、積層ポリオレフィン微多孔膜、及び、セパレータ
CA2623574A1 (en) Multi-layer, microporous polyethylene membrane, its production method, and battery separator
US20090146334A1 (en) Method for producing microporous polyolefin membrane and microporous membrane
JPWO2006137535A1 (ja) ポリオレフィン微多孔膜の製造方法
JP2012530619A (ja) 多層微多孔フィルム
JP5554445B1 (ja) 電池用セパレータ及び電池用セパレータの製造方法
JP2008255306A (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP2002128943A (ja) ポリオレフィン微多孔膜及びその製造方法
CN113614993A (zh) 聚烯烃微多孔膜、二次电池用隔板及二次电池
JP5450944B2 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び電池
WO2022154069A1 (ja) ポリオレフィン微多孔膜および積層ポリオレフィン微多孔膜
TW201819198A (zh) 積層聚烯烴微多孔膜、電池用隔膜及其製造方法以及積層聚烯烴微多孔膜捲繞體之製造方法
WO2021033736A1 (ja) ポリオレフィン微多孔膜
JPWO2019189522A1 (ja) ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜
JP2023117573A (ja) ポリオレフィン多層微多孔膜
WO2020148946A1 (ja) ポリオレフィン微多孔膜の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022503847

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022739474

Country of ref document: EP

Effective date: 20230717

NENP Non-entry into the national phase

Ref country code: DE