WO2018179810A1 - ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 - Google Patents

ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 Download PDF

Info

Publication number
WO2018179810A1
WO2018179810A1 PCT/JP2018/003272 JP2018003272W WO2018179810A1 WO 2018179810 A1 WO2018179810 A1 WO 2018179810A1 JP 2018003272 W JP2018003272 W JP 2018003272W WO 2018179810 A1 WO2018179810 A1 WO 2018179810A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
less
polyolefin
rate
polyolefin microporous
Prior art date
Application number
PCT/JP2018/003272
Other languages
English (en)
French (fr)
Inventor
明久 山下
正己 片山
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201880021128.2A priority Critical patent/CN110461925B/zh
Priority to KR1020197027874A priority patent/KR102264032B1/ko
Priority to US16/498,076 priority patent/US11242440B2/en
Priority to EP18774533.6A priority patent/EP3587481B1/en
Priority to PL18774533T priority patent/PL3587481T3/pl
Priority to JP2019508661A priority patent/JP6756902B2/ja
Publication of WO2018179810A1 publication Critical patent/WO2018179810A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a microporous polyolefin membrane, a method for producing the same, and a separator for a secondary battery.
  • Polyolefin microporous membranes are used in battery separators, capacitor separators, fuel cell materials, microfiltration membranes, etc., because they exhibit excellent electrical insulation or ion permeability, especially for lithium ion secondary batteries. Used as a separator.
  • lithium ion secondary batteries have been applied not only to small electronic devices such as mobile phones and laptop computers, but also to electric vehicles such as electric cars and small electric motorcycles.
  • the separator for lithium ion secondary batteries not only has mechanical properties and ion permeability, but the micropores of the separator are blocked by heat melting etc. according to the heat generated by the secondary battery, thereby suppressing ionic conduction in the electrolyte.
  • a property of stopping the electrochemical reaction (shutdown property) and a property of melting the battery and discharging the battery (meltdown property) before reaching an abnormally high temperature state while maintaining energy are required.
  • the shutdown temperature corresponds to the lowest temperature at which the separator shuts down, and the meltdown temperature exceeds the shutdown temperature.
  • Patent Documents 1 and 2 In connection with the required characteristics of the separator, raw materials for polyolefin microporous membrane, porosity, tensile strength, tensile elongation, production conditions, etc. have been studied (Patent Documents 1 and 2).
  • Patent Document 1 discloses a viscosity average molecular weight (Mv) of 100,000 or more and less than 400,000 in order to provide a separator that is not easily deformed without impairing conventional physical properties, and that has excellent film resistance and stress relaxation properties.
  • a polyolefin microporous membrane comprising polyethylene (PE) or a copolymer thereof and PE or a copolymer thereof having an Mv of 400,000 or more and 10,000,000 or less as essential components has been proposed.
  • Patent Document 1 also examines the tensile strength and tensile elongation of a polyolefin microporous membrane, and the ratio (Q / N) between the discharge amount of the polyolefin composition at the time of production and the screw rotation speed.
  • Patent Document 2 discloses a weight average molecular weight (Mw) of 5 in order to balance separator air permeability, porosity, pore diameter, compressibility, mechanical strength, dimensional stability, shutdown characteristics, and meltdown characteristics.
  • Mw weight average molecular weight
  • a polyolefin microporous membrane comprising a polyolefin composition containing, as essential components, ⁇ 10 5 or more polyolefin and Mw 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 polyolefin produced using a Ziegler-Natta catalyst has been proposed. .
  • the conventional polyolefin microporous film as described in Patent Documents 1 and 2 has a high film strength, in the secondary battery using the same, the distortion of the secondary battery due to an impact such as dropping is the distortion of the film. May be directly connected to the surface, and may break and cause a short circuit. Therefore, the conventional secondary battery requires a mechanism that relaxes the distortion of the separator in the secondary battery.
  • the separator since the behavior of the separator with respect to the external temperature becomes important, the separator is stable in dimensions even at an external temperature within a range from 100 ° C. to about 120 ° C. when used in an on-vehicle application, and near the melting point of the separator. Insulating properties cannot be ensured unless the micropores are quickly closed.
  • the polyolefin microporous membrane is required not only to have low heat shrinkage but also to rapidly shrink near the melting point and to have good shutdown performance.
  • the problem to be solved by the present invention is that it has dimensional stability against temperatures in the range from 100 ° C. to 120 ° C. or external stress, and quickly closes at 130 ° C. Therefore, it is to provide a polyolefin microporous membrane capable of stopping thermal runaway of a battery at an initial stage, and a secondary battery separator using the same.
  • the present inventors have found that the above problems can be solved by specifying the heat shrinkability of the polyolefin microporous membrane or by specifying the production conditions of the polyolefin microporous membrane, and have completed the present invention.
  • the present invention is as follows.
  • the thermal contraction rate in the TD direction at 120 ° C. is 8% or less, and the thermal contraction rate in the TD direction at 130 ° C. is 3 to 5 times the thermal contraction rate in the TD direction at 120 ° C.
  • the polyolefin microporous membrane according to [1] which has a dynamic friction coefficient of 0.10 or more and 0.35 or less.
  • the polyolefin fine particle according to [1] or [2] which contains 15% or more of molecules having a molecular weight of 50,000 or less and 15% or more of molecules having a molecular weight of 500,000 or more.
  • Porous membrane [4]
  • the ratio of the thermal shrinkage rate in the MD direction to the thermal shrinkage rate in the TD direction is more than 1.0 at 120 ° C. and less than 1.0 at 130 ° C.
  • the ratio (Q / N) between the extrusion rate Q of the polyolefin composition and the screw rotation speed N of the extruder is 2.0 or more and 7.0 or less, according to [7].
  • a method for producing a polyolefin microporous membrane is 1.2 or more and 1.8 or less.
  • the polyolefin microporous film which has dimensional stability with respect to the temperature below a melting
  • the shrinkage of the separator can be suppressed up to an external temperature near 120 ° C., and the separator can be shut down quickly at a higher external temperature, thereby improving the safety of the secondary battery. it can.
  • One embodiment of the present invention is a polyolefin microporous membrane.
  • the polyolefin microporous membrane preferably has a small electron conductivity, an ionic conductivity, a high resistance to an organic solvent, and a fine pore size.
  • the polyolefin microporous membrane can be used as a separator for a secondary battery.
  • the polyolefin microporous membrane according to the first embodiment has a thermal shrinkage rate in the TD direction at 120 ° C. of 8.0% or less and a thermal shrinkage rate in the TD direction at 130 ° C. of TD at 120 ° C.
  • the thermal contraction rate is 3 to 5 times the thermal contraction rate in the direction, and is 12.0% or more larger than the thermal contraction rate in the TD direction at 120 ° C.
  • the MD direction means the machine direction of continuous microporous membrane molding
  • the TD direction means the direction crossing the MD direction of the microporous membrane at an angle of 90 °.
  • the thermal shrinkage in the TD direction at 120 ° C. of the polyolefin microporous membrane is within a range of 8.0% or less, the external temperature or the internal temperature of the secondary battery is It is considered that the polyolefin microporous membrane has dimensional stability even when the temperature is in the range from 100 ° C to 120 ° C.
  • the thermal shrinkage rate in the TD direction at 120 ° C. is preferably 3.0% to 7.5%, more preferably 3.5% to 7.0%, still more preferably 4.0% to It is within the range of 6.0%.
  • the thermal shrinkage in the TD direction at 130 ° C. of the polyolefin microporous membrane is in the range of 3 to 5 times the thermal shrinkage in the TD direction at 120 ° C.
  • the polyolefin microporous membrane has good heat resistance. And tend to have good shutdown characteristics.
  • the thermal shrinkage rate in the TD direction at 130 ° C. is in the range of 5 times or less of the thermal shrinkage rate in the TD direction at 120 ° C.
  • the microporous membrane Excessive shrinkage can be suppressed. From the same viewpoint, the thermal contraction rate in the TD direction at 130 ° C.
  • a polyolefin microporous membrane whose thermal shrinkage in the TD direction at 130 ° C is 12.0% or more larger than the thermal shrinkage in the TD direction at 120 ° C is instantly closed when heated, for example, at a temperature exceeding the melting point of the polyolefin resin. Tends to shut down with holes.
  • the melting point means the temperature at which the polyolefin resin or microporous film melts, and can be read from the temperature at which the maximum point is taken, for example, in the temperature rise measurement of a differential scanning thermometer. In terms of shutdown characteristics, the value (%) obtained by subtracting the thermal shrinkage rate (%) in the TD direction at 120 ° C. from the thermal shrinkage rate (%) in the TD direction at 130 ° C.
  • the thermal contraction rate (%) in the TD direction is within the above range. Separation of the separator can be suppressed at an external temperature in the range of 100 ° C. to 120 ° C., and the separator can be quickly shut down near 130 ° C.
  • the thermal contraction rate in the TD direction at 120 ° C. and 130 ° C. is, for example, selection of a catalyst during synthesis of a polyolefin raw material, control of strain rate during extrusion and stretching of a polyolefin composition, relaxation rate during heat setting of a microporous membrane Can be adjusted as described above, for example by control of.
  • the polyolefin microporous membrane according to the second embodiment has a dynamic friction coefficient of 0.10 or more and 0.35 or less.
  • the dynamic friction coefficient of the polyolefin microporous membrane is 0.10 or more, the grip force of the transport roll against the polyolefin microporous membrane is increased, so that it is easy to transport the web when making a secondary battery. It is thought that it can be made.
  • the coefficient of dynamic friction is 0.35 or less, when an impact is applied to a secondary battery including a polyolefin microporous membrane as a separator, the separator is slightly placed between a plurality of electrodes.
  • the dynamic friction coefficient is preferably 0.13 or more and 0.30 or less, more preferably 0.15 or more and 0.25 or less.
  • the dynamic friction coefficient of the polyolefin microporous membrane can be adjusted within a range of 0.10 or more and 0.35 or less, for example, by selecting a catalyst at the time of polyolefin raw material synthesis.
  • the ratio of the thermal shrinkage rate in the MD direction to the thermal shrinkage rate in the TD direction exceeds 1.0 at 120 ° C., and 130 It is less than 1.0 at ° C.
  • the structure of the microporous polyolefin membrane that does not shrink at high temperatures is specified by the fact that the thermal shrinkage ratio of MD / TD exceeds 1.0 at 120 ° C. and less than 1.0 at 130 ° C.
  • the thermal shrinkage ratio of MD / TD is preferably greater than 1.05 at 120 ° C. and less than 0.95 at 130 ° C., more preferably greater than 1.10 at 120 ° C. and less than 0.90 at 130 ° C.
  • the MD / TD thermal shrinkage ratio can be adjusted as described above, for example, by appropriately controlling the MD / TD strain rate ratio during extrusion and stretching of the polyolefin composition.
  • the polyolefin microporous membrane according to the fourth embodiment has an arbitrary combination of the thermal shrinkage and the dynamic friction coefficient of the polyolefin microporous membrane described above.
  • polyolefin microporous membranes include porous membranes containing polyolefin resin, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide amide, polyaramid, polycycloolefin, nylon, polytetrafluoroethylene, and other resins.
  • porous membranes include porous membranes, polyolefin fiber fabrics (woven fabrics), polyolefin fiber nonwoven fabrics, paper, and aggregates of insulating substance particles.
  • a multilayer porous membrane that is, a secondary battery separator is obtained through a coating process
  • the coating solution is excellent in coating properties
  • the separator film thickness is made thinner than that of a conventional separator, so that a secondary battery, etc.
  • a porous film containing a polyolefin resin hereinafter also referred to as “polyolefin resin porous film”.
  • the polyolefin resin porous membrane will be described.
  • the polyolefin resin porous membrane is a polyolefin resin composition in which the polyolefin resin accounts for 50% by mass or more and 100% by mass or less of the resin component constituting the porous membrane from the viewpoint of improving the shutdown performance when used as a separator for a secondary battery.
  • a porous film formed by a material is preferable.
  • the proportion of the polyolefin resin in the polyolefin resin composition is more preferably 60% by mass or more and 100% by mass or less, and further preferably 70% by mass or more and 100% by mass or less.
  • the polyolefin resin contained in the polyolefin resin composition is not particularly limited.
  • ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene are used as monomers. Examples thereof include a homopolymer, a copolymer, or a multistage polymer.
  • these polyolefin resins may be used independently or may be used in mixture of 2 or more types.
  • polyethylene, polypropylene, copolymers thereof, and mixtures thereof are preferable as the polyolefin resin from the viewpoint of shutdown characteristics when the polyolefin resin porous membrane is used as a separator for a secondary battery.
  • polyethylene examples include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene.
  • polypropylene examples include isotactic polypropylene, syndiotactic polypropylene, and atactic polypropylene.
  • copolymer examples include an ethylene-propylene random copolymer, an ethylene-propylene rubber, and the like.
  • the polyolefin resin is preferably polyethylene having a melting point in the range from 130 ° C. to 140 ° C. from the viewpoint of stopping the thermal runaway of the battery in the initial stage. 70 mass% or more is preferable, as for the ratio of polyethylene in polyolefin resin, 80 mass% or more is more preferable, and 90 mass% or more is further more preferable.
  • polyethylene particularly high-density polyethylene
  • polyolefin resin is preferably used as the polyolefin resin from the viewpoint of satisfying the required performance of a low melting point and high strength when the polyolefin resin porous membrane is used as a separator for a secondary battery.
  • the main component of a polyolefin resin porous film is polyethylene from a viewpoint of expressing a quick fuse behavior.
  • high density polyethylene means polyethylene having a density of 0.942 to 0.970 g / cm 3 .
  • the density of polyethylene refers to a value measured according to the D) density gradient tube method described in JIS K7112 (1999).
  • the proportion of the high-density polyethylene synthesized by the Ziegler-Natta catalyst is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass. preferable.
  • the molecular chain of polyethylene synthesized by the Ziegler-Natta catalyst has moderate linearity and does not have bulky side chains, so that the dynamic friction coefficient of the obtained microporous film is small. Therefore, when an impact is applied to a secondary battery including a polyolefin microporous membrane as a separator, the separator is slid slightly or deliberately between the electrodes, so that the distortion of the separator itself is reduced and the membrane is not broken. It is possible.
  • the polyolefin resin from the viewpoint of improving the heat resistance of the porous membrane, a mixture of polyethylene and polypropylene may be used as the polyolefin resin.
  • the ratio of polypropylene to the total polyolefin resin in the polyolefin resin composition is preferably 1 to 35% by mass, more preferably 3 to 20% by mass from the viewpoint of achieving both heat resistance and a good shutdown function. %, More preferably 4 to 10% by mass.
  • Arbitrary additives can be contained in the polyolefin resin composition.
  • additives include polymers other than polyolefin resins; inorganic fillers; phenol-based, phosphorus-based and sulfur-based antioxidants; metal soaps such as calcium stearate and zinc stearate; ultraviolet absorbers; light stabilizers An antistatic agent, an antifogging agent, a coloring pigment, and the like.
  • the total addition amount of these additives is preferably 20 parts by mass or less with respect to 100 parts by mass of the polyolefin resin from the viewpoint of improving shutdown performance and the like, more preferably 10 parts by mass or less, and still more preferably 5 parts. It is below mass parts.
  • Polyolefin microporous membrane has a porous structure in which a large number of very small pores are gathered to form dense communication holes, so it has excellent ionic conductivity, good withstand voltage characteristics, and high strength. It has the characteristic of being.
  • One or a plurality of different functional layers may be formed on one or both surfaces of the polyolefin microporous membrane described above.
  • the functional layer include a heat-resistant layer containing a heat-resistant resin such as inorganic particles or a crosslinkable polymer, and an adhesive layer containing an adhesive polymer.
  • the laminating method include a method of coating a functional layer on a polyolefin microporous film with a gravure coater or a die coater, or laminating by coextrusion.
  • the film thickness of the microporous membrane is preferably from 0.1 ⁇ m to 100 ⁇ m, more preferably from 1 ⁇ m to 50 ⁇ m, and even more preferably from 3 ⁇ m to 25 ⁇ m.
  • the thickness of the microporous membrane is preferably 0.1 ⁇ m or more from the viewpoint of mechanical strength, and preferably 100 ⁇ m or less from the viewpoint of increasing the capacity of the secondary battery.
  • the film thickness of the microporous film can be adjusted by controlling the die lip interval, the draw ratio in the drawing step, and the like.
  • the average pore diameter of the microporous membrane is preferably 0.03 ⁇ m or more and 0.70 ⁇ m or less, more preferably 0.04 ⁇ m or more and 0.20 ⁇ m or less, further preferably 0.05 ⁇ m or more and 0.10 ⁇ m or less, and still more preferably 0.06 ⁇ m. It is 0.09 ⁇ m or less. From the viewpoint of high ion conductivity and withstand voltage, the average pore size of the microporous membrane is preferably 0.03 ⁇ m or more and 0.70 ⁇ m or less.
  • the average pore diameter of the microporous membrane can be measured by a measuring method described in, for example, JP-A-2017-27945. The average pore diameter should be adjusted by controlling the composition ratio, extrusion sheet cooling rate, stretching temperature, stretching ratio, heat setting temperature, stretching ratio during heat setting, relaxation rate during heat setting, or a combination of these. Can do.
  • the porosity of the microporous membrane is preferably 25% to 95%, more preferably 30% to 65%, and still more preferably 35% to 55%.
  • the porosity is preferably 25% or more from the viewpoint of improving ionic conductivity, and preferably 95% or less from the viewpoint of withstand voltage characteristics.
  • the porosity of the microporous membrane is controlled by controlling the mixing ratio of the polyolefin resin composition and the plasticizer, the stretching temperature, the stretching ratio, the heat setting temperature, the stretching ratio at the time of heat fixing, the relaxation rate at the time of heat fixing, or It can be adjusted by combining.
  • the meltdown temperature of the microporous membrane is preferably 150 ° C. or higher and 200 ° C. or lower, more preferably 160 ° C. or higher and 190 ° C. or lower, and further preferably 170 ° C. or higher and 180 ° C. or lower.
  • a meltdown temperature of 150 ° C. or higher means that the microporous membrane does not break up to 150 ° C., so the safety of the secondary battery can be ensured.
  • the meltdown temperature above 150 ° C. and below 200 ° C. means that the secondary battery is gradually discharged even if the microporous membrane breaks, so the secondary battery has excessively high energy. In this way, safety can be ensured.
  • the meltdown temperature can be adjusted within a range of 150 ° C. or higher and 200 ° C. or lower depending on the molecular weight of the polyolefin, stretching, and heat setting conditions.
  • the viscosity average molecular weight (Mv) of the polyolefin resin used as a raw material is preferably 30,000 or more and 12,000,000 or less, more preferably 50,000 or more and 5 or less. Less than 1,000,000, more preferably 100,000 or more and less than 2,000,000.
  • a viscosity average molecular weight of 30,000 or more is preferable because the moldability during melt molding is good and the strength tends to increase due to the entanglement between the polymers.
  • a viscosity average molecular weight of 12,000,000 or less is preferable because uniform melt kneading is facilitated and the formability of the sheet, particularly thickness stability, tends to be excellent.
  • the polyolefin resin porous membrane is used as a separator for a secondary battery, if the viscosity average molecular weight is less than 1,000,000, the pores are likely to be blocked when the temperature rises, and a good shutdown function tends to be obtained. This is preferable.
  • the polyolefin resin porous membrane preferably has a ratio of weight average molecular weight to number average molecular weight (dispersion degree: Mw / Mn) of 3.0 or more and 10.0 or less. More preferably, it is 5.0 or more and 9.0 or less.
  • Mw / Mn weight average molecular weight to number average molecular weight
  • the dispersity (Mw / Mn) is 3.0 or more, the film has a certain amount of high molecular weight component and low molecular weight component, and the high molecular weight component ensures appropriate heat resistance and strength. Good shutdown performance can be exhibited at around 130 ° C. due to the presence of the components. It is preferable that the dispersity (Mw / Mn) is 10.0 or less because contamination due to bleedout of low molecular weight components can be prevented.
  • the microporous membrane In gel permeation chromatography (GPC) measurement of a microporous membrane, the microporous membrane preferably contains 15% or more of molecules having a molecular weight of 50,000 or less and 15% or more of molecules having a molecular weight of 500,000 or more.
  • the microporous film contains molecules having molecular weights of 50,000 or less and 500,000 or more, so that it has excellent friction resistance, has little dimensional change below the melting point, and near the melting point of the microporous film (for example, 130 ° C.). Both molecules can melt and shrink rapidly.
  • a low molecular weight component having a molecular weight of 50,000 or less ensures good kneadability, and a high molecular weight component having a molecular weight of 500,000 or more ensures strength and elongation.
  • the molecular weight obtained by GPC measurement is a polystyrene (PS) conversion molecular weight as a standard polymer.
  • PS polystyrene
  • the microporous membrane preferably contains 17% or more of molecules having a molecular weight of 50,000 or less, more preferably 17% or more of molecules having a molecular weight of 500,000 or more, and 19% of molecules having a molecular weight of 50,000 or less in GPC measurement. More preferably, it contains 19% or more of molecules having a molecular weight of 500,000 or more.
  • the ratio of the elastic modulus in the MD direction to the elastic modulus in the TD direction (MD / TD elastic modulus ratio) of the microporous membrane is preferably 1.7 or more and 3.0 or less.
  • the elastic modulus ratio of MD / TD is 1.7 or more
  • the end portion is not constrained and is not easily broken and deforms in the TD direction.
  • a roll obtained by winding a separator in the MD direction is limited in movement in the MD direction for winding and fixing, and is easy to tear in the MD direction.
  • the elastic modulus ratio of MD / TD is more preferably 1.9 or more and 2.8 or less, and further preferably 2.1 or more and 2.5 or less.
  • Another aspect of the present invention is a method for producing a polyolefin microporous membrane.
  • the method for producing a polyolefin microporous membrane according to the fifth embodiment includes the following steps: (A) A step of synthesizing polyethylene or an ethylene structural unit-containing copolymer using a monomer and a Ziegler-Natta catalyst to obtain a polyethylene raw material; (B) A step of forming a polyolefin composition containing a polyethylene raw material into a sheet and stretching the sheet; and (C) The sheet is extracted and heat-set, and the thermal shrinkage in the TD direction at 120 ° C. is 8. 0% or less, and the thermal contraction rate in the TD direction at 130 ° C. is 3 to 5 times the thermal contraction rate in the TD direction at 120 ° C., and the thermal contraction rate in the TD direction at 120 ° C. Forming a polyolefin microporous membrane that is 12.0% or greater than including.
  • the method for producing a polyolefin microporous membrane according to the sixth embodiment includes the following steps: (B-1) Simultaneous biaxial or sequential biaxial stretching process of a molded sheet made of a polyolefin composition, wherein the ratio of strain rate in MD direction to strain rate in TD direction (MD / TD strain rate ratio) is 1. A step of 2 or more and 1.8 or less; including.
  • the method for producing a polyolefin microporous membrane according to the seventh embodiment includes the following steps: (C-1) extracting the stretched sheet and subjecting the sheet to TD stretching at a strain rate in the transverse (TD) direction of 20% / second or more; and (C-2) 10% of the TD stretched sheet. Relaxing at a relaxation rate of less than 1 second / second; including.
  • steps (C-1) and (C-2) the molded sheet or microporous membrane made of the polyolefin composition can be gently relaxed after being rapidly stretched.
  • the method for producing a microporous polyolefin membrane according to the eighth embodiment includes any combination of all the steps described above.
  • step (A) the monomer is polymerized to synthesize polyethylene or an ethylene structural unit-containing copolymer.
  • step (A) the monomer is polymerized to synthesize polyethylene or an ethylene structural unit-containing copolymer.
  • Using a Ziegler-Natta catalyst during the synthesis of polyethylene raw material reduces the polarization by obtaining a polymer with moderate linearity, thereby lowering the friction of the polyethylene raw material and consequently improving the impact resistance of the secondary battery. Can do.
  • polyethylene synthesized with a Ziegler-Natta catalyst has an appropriate molecular weight distribution, the dimensional change of the microporous membrane containing the polyethylene raw material is suppressed below the melting point of the polyethylene raw material, and the fine melting point (eg, 130 ° C.) is small near the melting point.
  • the porous membrane can be rapidly contracted.
  • the low molecular weight component of the obtained polymer improves the kneadability of the polyethylene raw material, and the high molecular weight component of the obtained polymer guarantees strength and elongation.
  • the polyolefin composition is molded and stretched.
  • This step preferably includes step (B) or (B-1).
  • the polyolefin composition can be formed into a sheet, for example.
  • the molding of the polyolefin composition is, for example, (1) A method of melt-kneading a polyolefin composition and a pore-forming material to form a sheet, (2) A method in which a polyolefin composition is melt-kneaded and extruded at a high draw ratio, (3) A method in which a polyolefin composition and an inorganic filler are melt-kneaded and molded on a sheet, Can be performed by: As an example, the methods (1) and (3) will be described below.
  • the polyolefin resin composition and the pore-forming material are melt-kneaded.
  • the melt-kneading method for example, the polyolefin resin and, if necessary, other additives are put into a resin kneading apparatus such as an extruder, kneader, lab plast mill, kneading roll, Banbury mixer, etc., while the resin component is heated and melted.
  • a method of introducing and kneading the pore-forming material at an arbitrary ratio is mentioned.
  • a plasticizer As the hole forming material, a plasticizer, an inorganic material, or a combination thereof can be used.
  • the plasticizer is not particularly limited, but it is preferable to use a non-volatile solvent that can form a uniform solution at a temperature equal to or higher than the melting point of the polyolefin.
  • a non-volatile solvent include, for example, hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate; higher alcohols such as oleyl alcohol and stearyl alcohol. . Note that these plasticizers may be recovered and reused after extraction by an operation such as distillation.
  • the polyolefin resin, other additives and the plasticizer are previously kneaded at a predetermined ratio using a Henschel mixer or the like in advance. More preferably, in the pre-kneading, a part of the plasticizer to be used is charged, and the remaining plasticizer is appropriately heated in a resin kneader and kneaded while side-feeding.
  • a kneading method the dispersibility of the plasticizer is increased, and when the sheet-shaped molded body of the melt-kneaded product of the resin composition and the plasticizer is stretched in a later step, a high magnification is obtained without breaking the film. Tend to stretch.
  • liquid paraffin has high compatibility with the polyolefin resin when polyethylene or polypropylene is used, and even when the melt-kneaded product is stretched, the interface between the resin and the plasticizer hardly occurs, and uniform stretching is possible. This is preferable because it tends to be carried out easily.
  • the ratio of the polyolefin resin composition and the plasticizer is not particularly limited as long as they can be uniformly melt-kneaded and formed into a sheet shape.
  • the mass fraction of the plasticizer in the composition comprising the polyolefin resin composition and the plasticizer is preferably 20 to 90 mass%, more preferably 30 to 80 mass%.
  • the mass fraction of the plasticizer is 90% by mass or less, the melt tension at the time of melt molding tends to be sufficient for improving moldability.
  • the mass fraction of the plasticizer is 20% by mass or more, even when the mixture of the polyolefin resin composition and the plasticizer is stretched at a high magnification, the polyolefin molecular chain is not broken, and the pore structure is uniform and fine. Are easily formed, and the strength is also easily increased.
  • the inorganic material is not particularly limited.
  • oxide ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide; silicon nitride, titanium nitride, nitride Nitride ceramics such as boron; silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite , Ceramics such as asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand; and glass fiber. These may be used alone or in combination of two or more. Among these, silica, alumina, and titania are preferable from the viewpoint of electrochemical stability, and silica is more preferable from the viewpoint of easy extraction from the
  • the ratio of the inorganic material to the polyolefin resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and high strength with respect to the total mass from the viewpoint of obtaining good separability. From the viewpoint of ensuring the above, it is preferably 99% by mass or less, and more preferably 95% by mass or less.
  • the ratio (Q / N,) of the extrusion rate of the polyolefin composition (that is, the discharge amount Q of the extruder: kg / hour) and the screw rotation speed N (rpm) of the extruder (Unit: kg / (h ⁇ rpm)) is preferably 2.0 or more and 7.0 or less, more preferably 3.0 or more and 6.0 or less, and still more preferably 4.0 or more and 5.0 or less.
  • melt kneading is performed under a Q / N condition of 2.0 or more and less than 7.0, moderate unevenness can be formed on the surface of the melt kneaded product by controlling the bleed mode of the plasticizer such as liquid paraffin. Friction of the polyolefin microporous film is easily adjusted appropriately.
  • melt-kneaded product is formed into a sheet.
  • a melt-kneaded product is extruded into a sheet shape via a T-die or the like, and brought into contact with a heat conductor to cool to a temperature sufficiently lower than the crystallization temperature of the resin component. And then solidify.
  • the heat conductor used for cooling and solidifying include metals, water, air, and plasticizers. Among these, it is preferable to use a metal roll because of its high heat conduction efficiency.
  • the die lip interval when the melt-kneaded product is extruded from the T die into a sheet is preferably 200 ⁇ m or more and 3,000 ⁇ m or less, and more preferably 500 ⁇ m or more and 2,500 ⁇ m or less.
  • the die lip interval is 200 ⁇ m or more, the mess and the like are reduced, and there is little influence on the film quality such as streaks or defects, and the risk of film breakage or the like can be reduced in the subsequent stretching step.
  • the die lip interval is 3,000 ⁇ m or less, the cooling rate is high, cooling unevenness can be prevented, and the thickness stability of the sheet can be maintained.
  • the sheet-like molded body may be rolled. Rolling can be performed, for example, by a pressing method using a double belt press or the like.
  • the rolling surface magnification is preferably more than 1 and 3 or less, more preferably more than 1 and 2 or less.
  • the rolling ratio exceeds 1, the plane orientation increases and the film strength of the finally obtained porous film tends to increase.
  • the rolling ratio is 3 times or less, the orientation difference between the surface layer portion and the center is small, and a uniform porous structure tends to be formed in the thickness direction of the film.
  • the stretching process in which the sheet-shaped molded body or the porous membrane is stretched may be performed before the step (hole forming process) of extracting the hole forming material from the sheet-shaped molded body, or the hole forming material is extracted from the sheet-shaped molded body. You may carry out with respect to the porous membrane which was made. Furthermore, you may perform an extending process before and after extraction of the hole formation material from a sheet-like molded object.
  • biaxial stretching is preferable from the viewpoint of improving the strength and the like of the obtained porous film.
  • the stretching method include simultaneous biaxial stretching, sequential biaxial stretching, multistage stretching, and multiple stretching. Simultaneous biaxial stretching is preferred from the viewpoints of improvement of puncture strength, uniformity of stretching, and shutdown property. Further, sequential biaxial stretching is preferable from the viewpoint of easy control of the plane orientation.
  • simultaneous biaxial stretching is a stretching method in which stretching in the MD (machine direction of continuous microporous membrane) stretching and TD (in the direction crossing the MD of the microporous membrane at an angle of 90 °) are performed simultaneously.
  • the stretching ratio in each direction may be different.
  • Sequential biaxial stretching refers to a stretching method in which MD and TD are stretched independently. When MD or TD is stretched, the other direction is fixed in an unconstrained state or a constant length. State.
  • the stretching ratio is preferably in the range of 20 to 100 times in terms of surface magnification, and more preferably in the range of 25 to 70 times.
  • the draw ratio in each axial direction is preferably in the range of 4 to 10 times in MD, 4 to 10 times in TD, 5 to 8 times in MD, and 5 times or more in TD. More preferably, it is in the range of 8 times or less.
  • the total area magnification is 20 times or more, there is a tendency that sufficient strength can be imparted to the obtained porous film.
  • the total area magnification is 100 times or less, film breakage in the stretching process is prevented and high productivity tends to be obtained.
  • the ratio of the strain rate in the MD direction to the strain rate in the TD direction is preferably 1.2 or more and 1 0.8 or less, more preferably 1.3 or more and 1.7 or less, and still more preferably 1.4 or more and 1.6 or less.
  • the rate of thermal shrinkage in the TD direction at 130 ° C.
  • step (C) the hole forming material is removed from the sheet-like molded body to form a porous film. This step can be performed before and / or after the stretching step and can be included in step (C).
  • a method for removing the hole forming material for example, a method of extracting the hole forming material by immersing the sheet-like molded body in an extraction solvent and sufficiently drying it may be mentioned.
  • the method for extracting the hole forming material from the sheet-like molded body may be either a batch type or a continuous type.
  • the extraction solvent used when extracting the pore-forming material from the sheet-shaped molded body is a poor solvent for the polyolefin resin and a good solvent for the pore-forming material, and the boiling point is lower than the melting point of the polyolefin resin. Is preferred.
  • extraction solvents examples include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; non-chlorine such as hydrofluoroether and hydrofluorocarbon Halogenated solvents; alcohols such as ethanol and isopropanol; ethers such as diethyl ether and tetrahydrofuran; ketones such as acetone and methyl ethyl ketone.
  • hydrocarbons such as n-hexane and cyclohexane
  • halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane
  • non-chlorine such as hydrofluoroether and hydrofluorocarbon Halogenated solvents
  • alcohols such as ethanol and isopropanol
  • ethers such as diethyl ether and tetrahydrofuran
  • ketones such as acetone and
  • heat setting process In the heat setting process, heat treatment is performed for the purpose of heat setting after the stretching process or after the formation of the porous film in order to suppress the shrinkage of the porous film. This step can be included in step (C), (C-1) or (C-2). Further, the porous film may be subjected to a post-treatment such as a hydrophilic treatment with a surfactant or the like, or a crosslinking treatment with ionizing radiation or the like.
  • a stretching operation performed at a predetermined temperature atmosphere and a predetermined stretching rate and / or a reduction of stretching stress is performed at a predetermined temperature atmosphere and a predetermined relaxation rate.
  • a relaxation operation is mentioned.
  • the relaxation operation may be performed after the stretching operation.
  • the relaxation operation is an operation for reducing the film to MD and / or TD.
  • the relaxation rate is a value obtained by dividing the dimension of the film after the relaxation operation by the dimension of the film before the relaxation operation. When both MD and TD are relaxed, it is a value obtained by multiplying the MD relaxation rate and the TD relaxation rate.
  • the relaxation rate is preferably 1.0 or less, more preferably 0.97 or less, and even more preferably 0.95 or less.
  • the relaxation rate is preferably 0.5 or more from the viewpoint of film quality.
  • the relaxation operation may be performed in both directions of MD and TD, but only one of MD and TD may be performed.
  • the stretching and relaxation operations after this plasticizer extraction are preferably performed at TD.
  • the temperature in the stretching and relaxation operation is preferably lower than the melting point of the polyolefin resin, and more preferably in the range of 1 ° C. to 25 ° C. lower than the melting point of the polyolefin resin. When the temperature in the stretching and relaxation operation is within the above range, it is preferable from the viewpoint of the balance between the thermal shrinkage reduction and the porosity.
  • the strain rate in the TD stretching step is preferably 20% / second or more, more preferably 25% / second or more, 30% More preferably, it is more than / sec.
  • a microporous film excellent in heat shrinkability for example, a heat shrinkage rate in the TD direction at 120 ° C. is 8.0% or less
  • the thermal shrinkage rate in the TD direction at 130 ° C. is 3 to 5 times the thermal shrinkage rate in the TD direction at 120 ° C., and 12.0% or more than the thermal shrinkage rate in the TD direction at 120 ° C.
  • a large polyolefin microporous film tends to be obtained. This tendency is remarkable in the method for producing a polyolefin microporous membrane according to the fifth and seventh embodiments.
  • the relaxation rate is preferably 10% / second or less, more preferably 8% / second or less, and 6% / second or less. Is more preferable.
  • a microporous film excellent in heat shrinkability for example, a thermal shrinkage rate in the TD direction at 120 ° C. is 8.0% or less, and at 130 ° C.
  • the microporous polyolefin has a thermal contraction rate in the TD direction of 3 to 5 times the thermal contraction rate in the TD direction at 120 ° C. and 12.0% or more larger than the thermal contraction rate in the TD direction at 120 ° C.
  • a film tends to be obtained. This tendency is remarkable in the method for producing a polyolefin microporous membrane according to the fifth and seventh embodiments.
  • the polyolefin microporous membrane according to this embodiment can be used as a separator for a secondary battery. Since the separator including the polyolefin microporous membrane according to the present embodiment suppresses shrinkage to an external temperature near 120 ° C. and shuts down quickly at a higher external temperature, the safety of the secondary battery can be improved. .
  • the measured value of the various physical properties mentioned above is a value measured according to the measuring method in the Example mentioned later unless there is particular notice.
  • the molecular weight distribution index (Mw / Mn) was also obtained by calculating the weight average molecular weight (Mw) and the number average molecular weight (Mn) of each sample.
  • Porosity (%) (volume ⁇ mass / membrane density) / volume ⁇ 100
  • Air permeability (sec) In accordance with JIS P-8117, the air resistance of the polyolefin microporous membrane was measured using the Gurley type air permeability meter G-B2 (trademark) manufactured by Toyo Seiki Co., Ltd. It was.
  • MD direction thermal shrinkage (%) (100 ⁇ MD direction dimension after heating) / 100 ⁇ 100 (%)
  • TD direction thermal shrinkage rate (%) (100 ⁇ dimension in TD direction after heating) / 100 ⁇ 100 (%) From the obtained thermal contraction value, the ratio of the thermal contraction rate in the MD direction to the thermal contraction rate in the TD direction (MD / TD thermal contraction ratio) was calculated.
  • the coating layer is formed in an organic solvent that can dissolve the coating layer. The polyolefin microporous membrane is immersed, and the coating layer is removed, whereby the thermal shrinkage of the polyolefin microporous membrane can be measured.
  • the sample was set so that the distance between chucks was 50 mm, and the sample was stretched at a pulling speed of 200 mm / min until the distance between chucks was 60 mm, that is, the strain reached 20.0%.
  • the tensile modulus (MPa) was determined from the slope of 1.0% to 4.0% strain in the obtained stress-strain curve. From the obtained elastic modulus, the ratio of the elastic modulus in the MD direction to the elastic modulus in the TD direction (MD / TD elastic modulus ratio) was calculated.
  • FIG. 1 (A) shows a schematic view of an apparatus for measuring the meltdown temperature.
  • 1 is a microporous film
  • 2A and 2B are 10-micrometer-thick nickel foils
  • 3A and 3B are glass plates.
  • Reference numeral 4 denotes an electric resistance measuring device (LCR meter “AG-4411” (trademark) manufactured by Ando Electric Co., Ltd.), which is connected to the nickel foils 2A and 2B.
  • a thermocouple 5 is connected to the thermometer 6.
  • a data collector 7 is connected to the electric resistance device 4 and the thermometer 6. 8 is an oven that heats the microporous membrane. More specifically, as shown in FIG.
  • the microporous film 1 is overlaid on the nickel foil 2A, and the “Teflon” (registered trademark) tape (shaded portion in the figure) is vertically attached to the nickel foil 2A. Fix it.
  • “Teflon” (registered trademark) tape is pasted on the nickel foil 2B, and masking is performed by leaving a window portion of 15 mm ⁇ 10 mm in the central portion of the foil 2B. It is.
  • the nickel foil 2A and the nickel foil 2B are overlapped so as to sandwich the microporous film 1, and two nickel foils are sandwiched by the glass plates 3A and 3B from both sides thereof. At this time, the window portion of the foil 2 ⁇ / b> B and the porous film 1 come to face each other.
  • Two glass plates are fixed by pinching with a commercially available double clip.
  • the thermocouple 5 is fixed to the glass plate with “Teflon” (registered trademark) tape.
  • Temperature and electric resistance are continuously measured with such an apparatus.
  • the temperature is raised from 25 ° C. to 200 ° C. at a rate of 2 ° C./min, and the electric resistance value is measured at an alternating current of 1 kHz. After the electric resistance value exceeded 10 3 ⁇ , the temperature at which the electric resistance value again fell below 10 3 ⁇ was defined as the meltdown temperature.
  • a wound electrode body was produced by a conventional method. The number of windings was adjusted according to the thickness of the PO microporous film. The outermost peripheral end portion of the obtained wound electrode body was fixed by applying an insulating tape.
  • the negative electrode lead was welded to the battery can, the positive electrode lead was welded to the safety valve, and the wound electrode body was inserted into the battery can. Thereafter, 5 g of the nonaqueous electrolyte was poured into the battery can, and the lid was caulked to the battery can via a gasket to obtain a cylindrical secondary battery having an outer diameter of 18 mm and a height of 65 mm.
  • This cylindrical secondary battery was charged to a battery voltage of 4.2 V at a current value of 0.2 C (current that is 0.2 times the hourly rate (1 C) of the rated electric capacity) in an atmosphere of 25 ° C.
  • the battery was charged for a total of 3 hours by a method of starting to reduce the current value so as to hold 2 V. Subsequently, the battery was discharged to a battery voltage of 3.0 V at a current value of 0.2 C.
  • the percentage (%) of cells that maintained a capacity of 0% or more was calculated as self-discharge characteristics.
  • the charged secondary battery was heated from room temperature to 120 ° C. at a rate of 5 ° C./minute, and held in that state for 30 minutes. Thereafter, the secondary battery was further heated to 150 ° C. at 30 ° C./min, the time until ignition was measured, and evaluated according to the following criteria.
  • a (good) and B (acceptable) were used as acceptance criteria.
  • B (Acceptable) Fired at 150 ° C for 30 minutes or more and less than 45 minutes.
  • FIG. 2 is a schematic diagram of a crash test.
  • the impact of the impact on the sample is observed by dropping a 18.2 kg weight onto the top of the round bar.
  • the procedure of the collision test in an Example and a comparative example is demonstrated below. Under the environment of 25 ° C., the secondary battery obtained in the above item d was charged with a constant current of 1 C, and after reaching 4.2 V, it was charged with a constant voltage of 4.2 V for a total of 3 hours. Next, in a 25 ° C.
  • the secondary battery was placed sideways on a flat surface, and a stainless steel round bar having a diameter of 15.8 mm was arranged so as to cross the center of the secondary battery.
  • the round bar was arranged so that its long axis was parallel to the longitudinal direction of the separator.
  • a 18.2 kg weight was dropped from a height of 61 cm so that an impact was applied at a right angle to the vertical axis direction of the secondary battery from the round bar arranged at the center of the secondary battery.
  • the surface temperature of the secondary battery was measured. Tests were performed for 5 cells each and evaluated according to the following criteria. For this evaluation item, A (good) and B (acceptable) were used as acceptance criteria.
  • the surface temperature of a secondary battery is the temperature which measured the position of 1 cm from the bottom side of the exterior body of a secondary battery with the thermocouple (K type seal type).
  • Examples 1 to 23 and Comparative Examples 1 to 12 Polyethylene was synthesized using a polyethylene synthesis catalyst (shown as “synthesis catalyst” in the table) shown in any of Tables 1 to 4 and an ethylene monomer. As shown in Tables 1 to 4, since each of the examples uses a mixture of two types of polyethylene, one type of polyethylene is described as PE1, the other type of PE as PE2, and PE1 and PE2 respectively. Tables 1 to 4 show the synthesis catalyst, viscosity average molecular weight, and weight fraction.
  • the obtained polyethylene and a plasticizer were blended and stirred with a Henschel mixer to prepare a resin composition.
  • the resin composition is extruded, formed into a sheet, stretched, immersed in methylene chloride to form holes, and heat-set to obtain a polyolefin porous film It was.
  • Tables 1 to 3 show the physical properties of the microporous membranes obtained in Examples 1 to 23 and the evaluation results when they are incorporated in the secondary battery.
  • Table 4 shows the physical properties of the porous films obtained in Comparative Examples 1 to 12 and the evaluation results when they were incorporated in the secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

ポリオレフィン微多孔膜の120℃でのTD熱収縮率が8%以下であり、そしてポリオレフィン微多孔膜の130℃でのTD熱収縮率が、120℃での熱収縮率の3倍以上5倍以下であり、かつ120℃での熱収縮率より12%以上大きい。

Description

ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
 本発明は、ポリオレフィン微多孔膜及びその製造方法、並びに2次電池用セパレータに関する。
 ポリオレフィン微多孔膜は、優れた電気絶縁性又はイオン透過性を示すことから、電池用セパレータ、コンデンサー用セパレータ、燃料電池用材料、精密濾過膜等に使用されており、特にリチウムイオン2次電池用セパレータとして使用されている。
 近年、リチウムイオン2次電池は、携帯電話、ノート型パソコン等の小型電子機器だけでなく、電気自動車、小型電動バイク等の電動車両への応用も図られている。リチウムイオン2次電池用セパレータには、機械的特性及びイオン透過性だけでなく、2次電池の発熱に応じてセパレータの微多孔が熱溶融等により閉塞して、電解液内のイオン伝導を抑制し、電気化学反応を停止させる性質(シャットダウン特性)、及びエネルギーを保持したまま異常な高温状態になる前に溶融破膜して電池を放電させる性質(メルトダウン特性)も要求される。一般に、シャットダウン温度は、セパレータがシャットダウンする温度のうちの最低温度と対応し、メルトダウン温度は、シャットダウン温度を超える。
 セパレータの要求特性と関連して、ポリオレフィン微多孔膜の原料、多孔性、引張強度、引張伸度、製造条件等が検討されている(特許文献1及び2)。
 特許文献1には、従来の物性を損なうことなく、変形し難く、耐破膜性及び応力緩和特性に優れるセパレータを提供するために、粘度平均分子量(Mv)100,000以上400,000未満のポリエチレン(PE)又はそのコポリマーと、Mv400,000以上10,000,000以下のPE又はそのコポリマーとを必須成分として含むポリオレフィン微多孔膜が提案されている。特許文献1では、ポリオレフィン微多孔膜の引張強度及び引張伸度、並びに製造時のポリオレフィン組成物の吐出量とスクリュー回転数との比(Q/N)も検討されている。
 特許文献2には、セパレータの透気度、空孔率、細孔径、圧縮性、機械的強度、寸法安定性、シャットダウン特性及びメルトダウン特性のバランスを取るために、重量平均分子量(Mw)5×10以上のポリオレフィンと、チーグラー・ナッタ触媒を用いて製造されたMw1×10以上5×10未満のポリオレフィンとを必須成分として含むポリオレフィン組成物から成るポリオレフィン微多孔膜が提案されている。
特開2006-124652号公報 特開2002-128942号公報
 近年のリチウムイオン2次電池の高容量化及び高エネルギー密度化に伴い、セパレータにとって、従来よりも厳しい環境を想定した安全性の担保が求められていた。
 しかしながら、特許文献1及び2に記載のような従来のポリオレフィン微多孔膜は、膜強度が高いとしても、それを使用した2次電池において、落下などの衝撃による2次電池の歪みが膜の歪みに直接的に繋がり、破膜して短絡を起こす可能性がある。それ故に、従来の2次電池は、2次電池中でセパレータの歪みを緩和させる機構を要する。
 また、セパレータの外部温度に対する挙動も重要になるため、セパレータは、車載用途で用いられたときには、100℃から約120℃までの範囲内の外部温度でも寸法が安定であり、かつセパレータの融点付近では速やかに微孔を閉塞させなければ、絶縁性を確保することができない。
 したがって、ポリオレフィン微多孔膜には、単純に低熱収縮性を有するだけでなく、融点付近では速やかに収縮し、かつ良好なシャットダウン性能を有することが求められている。特に、電池の熱暴走を初期段階で止めるという観点から、130℃付近で膜の微孔を閉塞させることが好ましい。
 上記の事情に鑑みて、本発明が解決しようとする課題は、100℃から120℃までの範囲内の温度又は外部応力に対しては寸法安定性を有し、130℃では速やかに閉孔するため、電池の熱暴走を初期段階で止めることができるポリオレフィン微多孔膜、及びそれを用いた2次電池用セパレータを提供することである。
 本発明者らは、ポリオレフィン微多孔膜の熱収縮性を特定することによって、又はポリオレフィン微多孔膜の製造条件を特定することによって上記課題を解決し得ることを見出し、本発明を完成させた。
 すなわち、本発明は以下のとおりである。
[1]
 120℃でのTD方向の熱収縮率が8%以下であり、そして130℃でのTD方向の熱収縮率が、前記120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ前記120℃でのTD方向の熱収縮率より12%以上大きいポリオレフィン微多孔膜。
[2]
 動摩擦係数が0.10以上0.35以下である、[1]に記載のポリオレフィン微多孔膜。
[3]
 ゲルパーミエーションクロマトグラフィー(GPC)測定において、分子量50,000以下の分子を15%以上含み、かつ分子量500,000以上の分子を15%以上含む、[1]又は[2]に記載のポリオレフィン微多孔膜。
[4]
 メルトダウン温度が150℃以上200℃以下である、[1]~[3]のいずれか1項に記載のポリオレフィン微多孔膜。
[5]
 TD方向の熱収縮率に対するMD方向の熱収縮率の比(MD/TDの熱収縮比率)が、120℃では1.0を超え、かつ130℃では1.0未満である、[1]~[4]のいずれか1項に記載のポリオレフィン微多孔膜。
[6]
 TD方向の弾性率に対するMD方向の弾性率の比(MD/TDの弾性率比率)が、1.7以上3.0以下である、[5]に記載のポリオレフィン微多孔膜。
[7]
 以下の工程:
 (A)モノマー及びチーグラー・ナッタ触媒を用いてポリエチレン又はエチレン構成単位含有コポリマーを合成して、ポリエチレン原料を得る工程;
 (B)前記ポリエチレン原料を含むポリオレフィン組成物をシートに成形して、前記シートを延伸する工程;並びに
 (C)前記シートを抽出し、熱固定して、120℃でのTD方向の熱収縮率が8%以下であり、そして130℃でのTD方向の熱収縮率が、前記120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ前記120℃でのTD方向の熱収縮率より12%以上大きいポリオレフィン微多孔膜を形成する工程;
を含む、ポリオレフィン微多孔膜の製造方法。
[8]
 前記工程(B)において、前記ポリオレフィン組成物の押出速度Qと押出機のスクリュー回転数Nとの比(Q/N)が、2.0以上7.0以下である、[7]に記載のポリオレフィン微多孔膜の製造方法。
[9]
 前記工程(B)の同時二軸又は逐次二軸延伸において、TD方向の歪み速度に対するMD方向の歪み速度の比(MD/TDの歪み速度比)が、1.2以上1.8以下である、[7]又は[8]に記載のポリオレフィン微多孔膜の製造方法。
[10]
 前記工程(C)の熱固定において、TD方向への延伸と緩和を1回ずつ含み、延伸工程の歪み速度が20%/秒以上であり、緩和速度が10%/秒以下である、[7]~[9]のいずれか1項に記載のポリオレフィン微多孔膜の製造方法。
 本発明によれば、融点を下回る温度又は外部応力に対して寸法安定性を有し、融点付近では高速閉孔性又はシャットダウン性能を有するポリオレフィン微多孔膜を提供することができる。
 また、本発明によれば、120℃付近の外部温度まではセパレータの収縮を抑え、より高温の外部温度では速やかにセパレータをシャットダウンさせることができ、ひいては2次電池の安全性を向上させることができる。
メルトダウン温度測定の概略図である。 衝突試験の概略図である。
 以下、本発明を実施するための形態(以下、「実施形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
<微多孔膜>
 本発明の一態様は、ポリオレフィン微多孔膜である。ポリオレフィン微多孔膜は、電子伝導性が小さく、イオン伝導性を有し、有機溶媒に対する耐性が高く、かつ孔径の微細なものが好ましい。また、ポリオレフィン微多孔膜は、2次電池用セパレータとして利用されることができる。
 第一の実施形態に係るポリオレフィン微多孔膜は、120℃でのTD方向の熱収縮率が8.0%以下であり、かつ130℃でのTD方向の熱収縮率が、120℃でのTD方向の熱収縮率の3倍以上5倍以下であって、120℃でのTD方向の熱収縮率より12.0%以上大きい。
 本明細書では、MD方向とは、微多孔膜連続成形の機械方向を意味し、かつTD方向とは、微多孔膜のMD方向を90°の角度で横切る方向を意味する。
 理論に拘束されることを望まないが、ポリオレフィン微多孔膜の120℃でのTD方向の熱収縮率が8.0%以下の範囲内にあると、外部温度又は2次電池の内部温度が、100℃から120℃までの範囲内の高温になっても、ポリオレフィン微多孔膜が寸法安定性を有することが考えられる。同様の観点から、120℃でのTD方向の熱収縮率は、好ましくは3.0%~7.5%、より好ましくは3.5%~7.0%、さらに好ましくは4.0%~6.0%の範囲内である。
 ポリオレフィン微多孔膜の130℃でのTD方向の熱収縮率が、120℃でのTD方向の熱収縮率の3倍以上5倍以下の範囲内にあると、ポリオレフィン微多孔膜は、良好な耐熱性と良好なシャットダウン特性を備える傾向にある。また、130℃でのTD方向の熱収縮率が、120℃でのTD方向の熱収縮率の5倍以下の範囲内にあると、電池の温度が130℃まで上昇した際に微多孔膜の過度の収縮が抑制されることができる。同様の観点から、130℃でのTD方向の熱収縮率は、120℃でのTD方向の熱収縮率に対して、好ましくは3.1倍以上5.0倍以下、より好ましくは3.3倍以上5.0倍以下、よりさらに好ましくは3.5倍以上4.5倍以下、特に好ましくは3.7倍以上4.3倍以下の範囲内である。
 130℃でのTD方向の熱収縮率が120℃でのTD方向の熱収縮率より12.0%以上大きいポリオレフィン微多孔膜は、加熱時に、例えばポリオレフィン樹脂の融点を超える温度で、瞬時に閉孔してシャットダウンする傾向にある。融点とは、ポリオレフィン樹脂又は微多孔膜の溶融する温度を意味し、例えば示差走査熱力計の昇温測定において極大点を取る温度から読み取ることができる。シャットダウン特性の観点では、130℃でのTD方向の熱収縮率(%)から120℃でのTD方向の熱収縮率(%)を引いた値(%)は、好ましくは12%超32%以下、より好ましくは13.0%以上31.0%以下、さらに好ましくは14.0%以上20.0%以下の範囲内である。電池捲回方向と垂直なTD方向は端部が拘束されておらず、セパレータの熱収縮の挙動に影響され易いため、TD方向の熱収縮率(%)が上記の範囲内にあることで、100℃から120℃までの範囲内の外部温度ではセパレータの収縮を抑え、130℃付近では速やかにセパレータをシャットダウンさせることができる。
 120℃及び130℃でのTD方向の熱収縮率は、例えば、ポリオレフィン原料合成時の触媒の選定、ポリオレフィン組成物の押出及び延伸時の歪み速度の制御、微多孔膜の熱固定時の緩和速度の制御などにより、上記で説明されたとおりに調整されることができる。
 第二の実施形態に係るポリオレフィン微多孔膜は、動摩擦係数が0.10以上0.35以下である。理論に拘束されることを望まないが、ポリオレフィン微多孔膜の動摩擦係数が0.10以上であると、ポリオレフィン微多孔膜に対する搬送ロールのグリップ力が高まるので2次電池作製時のウェブ搬送を容易にすることができると考えられる。理論に拘束されることを望まないが、動摩擦係数が0.35以下であると、ポリオレフィン微多孔膜をセパレータとして含む2次電池に衝撃が加わった際に、複数の電極の間でセパレータを僅かに又は敢えて滑らせることによって、セパレータ自体の歪みを低減し、2次電池の耐衝撃性を改良し得ることが考えられる。このような観点から、動摩擦係数は、好ましくは0.13以上0.30以下、より好ましくは0.15以上0.25以下である。
 ポリオレフィン微多孔膜の動摩擦係数は、例えば、ポリオレフィン原料合成時の触媒の選定などにより、0.10以上0.35以下の範囲内に調整されることができる。
 第三の実施形態に係るポリオレフィン微多孔膜は、TD方向の熱収縮率に対するMD方向の熱収縮率の比(MD/TDの熱収縮比率)が、120℃では1.0を超え、かつ130℃では1.0未満である。
 電池の温度が上がった際に、130℃付近では、端部が拘束されていないTD方向へ収縮し、速やかに閉孔してシャットダウンするが、100℃から120℃までの範囲内の温度では過度に収縮しないというポリオレフィン微多孔膜の構造は、MD/TDの熱収縮比率が120℃では1.0を超え、かつ130℃では1.0未満であることにより特定される。MD/TDの熱収縮比率は、好ましくは120℃で1.05超かつ130℃で0.95未満であり、より好ましくは120℃で1.10超かつ130℃で0.90未満である。
 MD/TDの熱収縮比率は、例えば、ポリオレフィン組成物の押出及び延伸時のMD/TDの歪み速度比を適切に制御することにより、上記で説明されたとおりに調整されることができる。
 第四の実施形態に係るポリオレフィン微多孔膜は、上記で説明されたポリオレフィン微多孔膜の熱収縮率と動摩擦係数について任意の組み合わせを有するものである。
 ポリオレフィン微多孔膜の構成要素及び好ましい実施形態について以下に説明する。
[構成要素]
 ポリオレフィン微多孔膜としては、例えば、ポリオレフィン樹脂を含む多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を含む多孔膜、ポリオレフィン系の繊維の織物(織布)、ポリオレフィン系の繊維の不織布、紙、並びに、絶縁性物質粒子の集合体が挙げられる。これらの中でも、塗工工程を経て多層多孔膜、すなわち2次電池用セパレータを得る場合に塗工液の塗工性に優れ、セパレータの膜厚を従来のセパレータより薄くして、2次電池等の蓄電デバイス内の活物質比率を高めて体積当たりの容量を増大させる観点から、ポリオレフィン樹脂を含む多孔膜(以下、「ポリオレフィン樹脂多孔膜」ともいう。)が好ましい。
 ポリオレフィン樹脂多孔膜について説明する。
 ポリオレフィン樹脂多孔膜は、2次電池用セパレータとして使用された時のシャットダウン性能等を向上させる観点から、多孔膜を構成する樹脂成分の50質量%以上100質量%以下をポリオレフィン樹脂が占めるポリオレフィン樹脂組成物により形成される多孔膜であることが好ましい。ポリオレフィン樹脂組成物におけるポリオレフィン樹脂が占める割合は、60質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましい。
 ポリオレフィン樹脂組成物に含有されるポリオレフィン樹脂としては、特に限定されず、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、及び1-オクテン等をモノマーとして用いて得られるホモ重合体、共重合体、又は多段重合体等が挙げられる。また、これらのポリオレフィン樹脂は、単独で用いても、2種以上を混合して用いてもよい。
 中でも、ポリオレフィン樹脂多孔膜が2次電池用セパレータとして使用された時のシャットダウン特性の観点から、ポリオレフィン樹脂としてはポリエチレン、ポリプロピレン、及びこれらの共重合体、並びにこれらの混合物が好ましい。
 ポリエチレンの具体例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン等が挙げられる。
 ポリプロピレンの具体例としては、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、アタクティックポリプロピレン等が挙げられる。
 共重合体の具体例としては、エチレン-プロピレンランダム共重合体、エチレン-プロピレンラバー等が挙げられる。
 また、ポリオレフィン樹脂は、電池の熱暴走を初期段階で止めるという観点から、130℃から140℃までの範囲内に融点を持つポリエチレンであることが好ましい。ポリオレフィン樹脂におけるポリエチレンの割合は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。
 中でも、ポリオレフィン樹脂多孔膜が2次電池用セパレータとして使用された時に低融点かつ高強度の要求性能を満たす観点から、ポリオレフィン樹脂としてポリエチレン、特に高密度ポリエチレンを用いることが好ましい。さらに、速やかなヒューズ挙動を発現する観点から、ポリオレフィン樹脂多孔膜の主成分がポリエチレンであることが好ましい。なお、本発明において、高密度ポリエチレンとは密度0.942~0.970g/cm3のポリエチレンをいう。なお、本発明においてポリエチレンの密度とは、JIS K7112(1999)に記載のD)密度勾配管法に従って測定した値をいう。
 耐衝撃性の観点から、チーグラー・ナッタ触媒によって合成された高密度ポリエチレンの割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。チーグラー・ナッタ触媒によって合成されたポリエチレンの分子鎖は、適度な直線性を持ち、かつ嵩高い側鎖を有さないため、得られる微多孔膜の動摩擦係数は小さくなる。したがって、ポリオレフィン微多孔膜をセパレータとして含む2次電池に衝撃が加わった際に、電極の間でセパレータを僅かに又は敢えて滑らせることによって、セパレータ自体の歪みを低減して破膜に至らせないことが可能である。
 また、多孔膜の耐熱性を向上させる観点から、ポリオレフィン樹脂としてポリエチレン及びポリプロピレンの混合物を用いてもよい。この場合、ポリオレフィン樹脂組成物中の、総ポリオレフィン樹脂に対するポリプロピレンの割合は、耐熱性と良好なシャットダウン機能を両立させる観点から、1~35質量%であることが好ましく、より好ましくは3~20質量%、さらに好ましくは4~10質量%である。
 ポリオレフィン樹脂組成物には、任意の添加剤を含有させることができる。添加剤としては、例えば、ポリオレフィン樹脂以外の重合体;無機フィラー;フェノール系、リン系、イオウ系等の酸化防止剤;ステアリン酸カルシウム、ステアリン酸亜鉛等の金属石鹸類;紫外線吸収剤;光安定剤;帯電防止剤;防曇剤;着色顔料等が挙げられる。これらの添加剤の総添加量は、ポリオレフィン樹脂100質量部に対して、20質量部以下であることが、シャットダウン性能等を向上させる観点から好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下である。
[微多孔膜の詳細]
 ポリオレフィン微多孔膜は、非常に小さな孔が多数集まって緻密な連通孔を形成した多孔構造を有しているため、イオン伝導性に非常に優れると同時に耐電圧特性も良好であり、しかも高強度であるという特徴を有する。
 また、上述したポリオレフィン微多孔膜のいずれか一方又は両方の面上に、一つ又は複数の異なる機能層が形成されていてもよい。機能層としては、例えば、無機粒子又は架橋性高分子などの耐熱樹脂を含む耐熱層、接着性高分子を含む接着層等が挙げられる。
 積層化方法は、グラビアコーター若しくはダイコーターによりポリオレフィン微多孔膜に機能層をコーティングする方法、又は共押出による積層化などが挙げられる。
 微多孔膜の膜厚は、0.1μm以上100μm以下が好ましく、より好ましくは1μm以上50μm以下、さらに好ましくは3μm以上25μm以下である。微多孔膜の膜厚は、機械的強度の観点から0.1μm以上が好ましく、2次電池の高容量化の観点から100μm以下が好ましい。微多孔膜の膜厚は、ダイリップ間隔、延伸工程における延伸倍率等を制御すること等によって調整することができる。
 微多孔膜の平均孔径は、0.03μm以上0.70μm以下が好ましく、より好ましくは0.04μm以上0.20μm以下、さらに好ましくは0.05μm以上0.10μm以下、よりさらに好ましくは0.06μm以上0.09μm以下である。高いイオン伝導性と耐電圧の観点から、微多孔膜の平均孔径は、0.03μm以上0.70μm以下が好ましい。微多孔膜の平均孔径は、例えば特開2017-27945号公報に記載の測定法で測定することができる。
 平均孔径は、組成比、押出シートの冷却速度、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率を制御すること、又はこれらを組み合わせることにより調整することができる。
 微多孔膜の気孔率は、好ましくは25%以上95%以下、より好ましく30%以上65%以下、さらに好ましくは35%以上55%以下である。気孔率は、イオン伝導性向上の観点から25%以上が好ましく、耐電圧特性の観点から95%以下が好ましい。
 微多孔膜の気孔率は、ポリオレフィン樹脂組成物と可塑剤の混合比率、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率を制御すること、又はこれらを組み合わせることによって調整することができる。
 微多孔膜のメルトダウン温度は、好ましくは150℃以上200℃以下、より好ましくは160℃以上190℃以下、さらに好ましくは170℃以上180℃以下である。150℃以上のメルトダウン温度は、150℃までは微多孔膜の破膜が起こらないことを意味するので、2次電池の安全性を確保することができる。また、150℃超かつ200℃以下のメルトダウン温度とは、微多孔膜の破膜が起きても2次電池を徐々に放電させることを意味するので、2次電池が過度に高いエネルギーを持たないようにして、安全性を担保することができる。メルトダウン温度は、ポリオレフィンの分子量、延伸および熱固定条件によって150℃以上200℃以下の範囲内に調整されることができる。
 微多孔膜がポリオレフィン樹脂多孔膜である場合、原料として用いるポリオレフィン樹脂の粘度平均分子量(Mv)は、30,000以上12,000,000以下であることが好ましく、より好ましくは50,000以上5,000,000未満、さらに好ましくは100,000以上2,000,000未満である。粘度平均分子量が30,000以上であると、溶融成形の際の成形性が良好になると共に、重合体同士の絡み合いにより高強度となる傾向にあるため好ましい。一方、粘度平均分子量が12,000,000以下であると、均一に溶融混練をすることが容易となり、シートの成形性、特に厚み安定性に優れる傾向にあるため好ましい。さらに、ポリオレフィン樹脂多孔膜が2次電池用セパレータとして使用された時に、粘度平均分子量が1,000,000未満であると、温度上昇時に孔を閉塞し易く、良好なシャットダウン機能が得られる傾向にあるため好ましい。
 ポリオレフィン樹脂多孔膜の物性又は原料特性の観点から、ポリオレフィン樹脂多孔膜は、数平均分子量に対する重量平均分子量の比(分散度:Mw/Mn)が3.0以上10.0以下であることが好ましく、5.0以上9.0以下であることがより好ましい。分散度(Mw/Mn)が3.0以上であることで、膜には高分子量成分と低分子量成分がそれぞれ一定量存在し、高分子量成分が適度な耐熱性と強度を担保し、低分子量成分の存在により130℃付近で良好なシャットダウン性能を示すことができる。分散度(Mw/Mn)が10.0以下であることで、低分子量成分のブリードアウトによるコンタミネーションを防ぐことができるため好ましい。
 微多孔膜のゲルパーミエーションクロマトグラフィー(GPC)測定において、微多孔膜は、分子量50,000以下の分子を15%以上含み、かつ分子量500,000以上の分子を15%以上含むことが好ましい。微多孔膜は、分子量50,000以下と500,000以上の分子を含むことによって、耐摩擦性に優れ、融点以下では寸法変化が少なく、かつ微多孔膜の融点付近(例えば、130℃)では両方の分子が溶融して、急速に収縮することができる。また、微多孔膜において、分子量50,000以下の低分子量成分が良好な混練性を担保し、かつ分子量500,000以上の高分子量成分が強度と伸度を担保する。なお、GPC測定により得られる分子量は、標準ポリマーとしてのポリスチレン(PS)換算分子量である。求められた各試料のポリスチレン換算の分子量分布データに、0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)を乗じることにより、本発明のポリオレフィン樹脂多孔膜の分子量分布データを取得した。微多孔膜は、GPC測定において、分子量50,000以下の分子を17%以上含み、かつ分子量500,000以上の分子を17%以上含むことがより好ましく、分子量50,000以下の分子を19%以上含み、かつ分子量500,000以上の分子を19%以上含むことがさらに好ましい。
 微多孔膜は、TD方向の弾性率に対するMD方向の弾性率の比(MD/TDの弾性率比率)が、1.7以上3.0以下であることが好ましい。MD/TDの弾性率比率が1.7以上であると、微多孔膜をセパレータとして含む2次電池に衝撃が加わった時に、端部が拘束されておらず破断し難いセパレータのTD方向に変形が集中し、破断に至らない傾向がある。一般に、セパレータをMD方向に捲回することにより得られるロールは、巻回固定のためにMD方向の移動が制限されており、MD方向に裂け易い。しかしながら、MD/TDの弾性率比率が3.0以下であると、微多孔膜の縦裂け(MD方向の裂け)が容易に起こらない傾向にある。これらの傾向は、特定のMD/TDの熱収縮比率を有する第三の実施形態に係るポリオレフィン微多孔膜において顕著である。このような観点から、MD/TDの弾性率比率は、より好ましくは1.9以上2.8以下、さらに好ましくは2.1以上2.5以下である。
<微多孔膜の製造方法>
 本発明の別の態様は、ポリオレフィン微多孔膜の製造方法である。
 第五の実施形態に係るポリオレフィン微多孔膜の製造方法は、以下の工程:
 (A)モノマー及びチーグラー・ナッタ触媒を用いてポリエチレン又はエチレン構成単位含有コポリマーを合成して、ポリエチレン原料を得る工程;
 (B)ポリエチレン原料を含むポリオレフィン組成物をシートに成形して、シートを延伸する工程;並びに
 (C)シートを抽出し、熱固定して、120℃でのTD方向の熱収縮率が8.0%以下であり、そして130℃でのTD方向の熱収縮率が、120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ120℃でのTD方向の熱収縮率より12.0%以上大きいポリオレフィン微多孔膜を形成する工程;
を含む。
 第六の実施形態に係るポリオレフィン微多孔膜の製造方法は、以下の工程:
 (B-1)ポリオレフィン組成物から成る成形シートの同時二軸又は逐次二軸延伸工程であって、TD方向の歪み速度に対するMD方向の歪み速度の比(MD/TDの歪み速度比)が1.2以上1.8以下である工程;
を含む。
 第七の実施形態に係るポリオレフィン微多孔膜の製造方法は、以下の工程:
 (C-1)延伸されたシートを抽出し、20%/秒以上の横(TD)方向の歪み速度でシートをTD延伸に供する工程;及び
 (C-2)TD延伸されたシートを10%/秒以下の緩和速度で緩和する工程;
を含む。
 工程(C-1)及び(C-2)によって、ポリオレフィン組成物から成る成形シート又は微多孔膜を急速に延伸した後に緩やかに緩和することが可能である。
 第八の実施形態に係るポリオレフィン微多孔膜の製造方法は、上記で説明された全ての工程について、任意の組み合わせを含むものである。
 ポリオレフィン微多孔膜の製造工程及び好ましい実施形態について以下に説明する。
[樹脂原料の合成工程]
 ポリエチレン原料の合成工程では、モノマーを重合してポリエチレン又はエチレン構成単位含有コポリマーを合成する。この工程は、工程(A)を含むことが好ましい。
 ポリエチレン原料の合成時にチーグラー・ナッタ触媒を用いると、適度な直線性を持つポリマーを得ることにより分極を減少させて、ポリエチレン原料の摩擦を下げ、結果として2次電池の耐衝撃性を向上させることができる。また、チーグラー・ナッタ触媒により合成されたポリエチレンは、適度な分子量分布を持つため、ポリエチレン原料の融点以下では、ポリエチレン原料を含む微多孔膜の寸法変化を抑え、融点付近では(例えば130℃)微多孔膜を急速に収縮させることができる。また、チーグラー・ナッタ触媒を用いると、得られたポリマーの低分子量成分が、ポリエチレン原料の混練性を良好にし、得られたポリマーの高分子量成分が強度と伸度を担保する。
[成形・延伸工程]
 成形・延伸工程では、ポリオレフィン組成物の成形と延伸を行う。この工程は、工程(B)又は(B-1)を含むことが好ましい。ポリオレフィン組成物は、例えばシート状に成形されることができる。
(成形)
 ポリオレフィン組成物の成形は、例えば、
(1)ポリオレフィン組成物と孔形成材を溶融混練してシート状に成形する方法、
(2)ポリオレフィン組成物を溶融混練して高ドロー比で押し出す方法、
(3)ポリオレフィン組成物と無機充填材を溶融混練してシート上に成形する方法、
により行なわれることができる。一例として上記(1)及び(3)の方法を以下に説明する。
 まず、ポリオレフィン樹脂組成物と孔形成材を溶融混練する。溶融混練方法としては、例えば、ポリオレフィン樹脂及び必要によりその他の添加剤を押出機、ニーダー、ラボプラストミル、混練ロール、バンバリーミキサー等の樹脂混練装置に投入することで、樹脂成分を加熱溶融させながら任意の比率で孔形成材を導入して混練する方法が挙げられる。
 孔形成材としては、可塑剤、無機材又はそれらの組み合わせを挙げることができる。
 可塑剤としては、特に限定されないが、ポリオレフィンの融点以上において均一溶液を形成し得る不揮発性溶媒を用いることが好ましい。このような不揮発性溶媒の具体例としては、例えば、流動パラフィン、パラフィンワックス等の炭化水素類;フタル酸ジオクチル、フタル酸ジブチル等のエステル類;オレイルアルコール、ステアリルアルコール等の高級アルコール等が挙げられる。なお、これらの可塑剤は、抽出後、蒸留等の操作により回収して再利用してよい。さらに、好ましくは、樹脂混練装置に投入する前に、ポリオレフィン樹脂、その他の添加剤及び可塑剤を、予めヘンシェルミキサー等を用いて所定の割合で事前混練する。より好ましくは、事前混練においては、使用される可塑剤の一部分を投入し、残りの可塑剤は、樹脂混練装置に適宜加温しサイドフィードしながら混練する。このような混練方法を用いることにより、可塑剤の分散性が高まり、後の工程で樹脂組成物と可塑剤の溶融混練物のシート状成形体を延伸する際に、破膜することなく高倍率で延伸することができる傾向にある。
 可塑剤の中でも、流動パラフィンは、ポリオレフィン樹脂がポリエチレン又はポリプロピレンの場合に、これらとの相溶性が高く、溶融混練物を延伸しても樹脂と可塑剤の界面剥離が起こり難く、均一な延伸が実施し易くなる傾向にあるため好ましい。
 ポリオレフィン樹脂組成物と可塑剤の比率は、これらを均一に溶融混練して、シート状に成形できる範囲であれば特に限定はない。例えば、ポリオレフィン樹脂組成物と可塑剤とから成る組成物中に占める可塑剤の質量分率は、好ましくは20~90質量%、より好ましくは30~80質量%である。可塑剤の質量分率が90質量%以下であると、溶融成形時のメルトテンションが、成形性向上のために十分になる傾向にある。一方、可塑剤の質量分率が20質量%以上であると、ポリオレフィン樹脂組成物と可塑剤との混合物を高倍率で延伸した場合でもポリオレフィン分子鎖の切断が起こらず、均一かつ微細な孔構造を形成し易く、強度も増加し易い。
 無機材としては、特に限定されず、例えば、アルミナ、シリカ(珪素酸化物)、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;及びガラス繊維が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、電気化学的安定性の観点から、シリカ、アルミナ及びチタニアが好ましく、シート状成形体からの抽出が容易である点から、シリカがより好ましい。
 ポリオレフィン樹脂組成物に対する無機材の比率は、良好な隔離性を得る観点から、これらの合計質量に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましく、高い強度を確保する観点から、99質量%以下であることが好ましく、95質量%以下であることがより好ましい。
 押出機により溶融混練を行う場合には、ポリオレフィン組成物の押出速度(すなわち、押出機の吐出量Q:kg/時間)と押出機のスクリュー回転数N(rpm)との比(Q/N、単位:kg/(h・rpm))が、好ましくは2.0以上7.0以下、より好ましくは3.0以上6.0以下、さらに好ましくは4.0以上5.0以下である。2.0以上7.0未満のQ/Nの条件下で溶融混練を行うと、流動パラフィン等の可塑剤のブリードの態様を制御することにより溶融混練物の表面に適度な凹凸ができるため、ポリオレフィン微多孔膜の摩擦が適切に調整され易くなる。
 次に、溶融混練物をシート状に成形する。シート状成形体を製造する方法としては、例えば、溶融混練物を、Tダイ等を介してシート状に押出し、熱伝導体に接触させて樹脂成分の結晶化温度より充分に低い温度まで冷却して固化する方法が挙げられる。冷却固化に用いられる熱伝導体としては、金属、水、空気、可塑剤等が挙げられる。これらの中でも、熱伝導の効率が高いため、金属製のロールを用いることが好ましい。また、押出した混練物を金属製のロールに接触させる際に、少なくとも一対のロールで挟み込むことは、熱伝導の効率がさらに高まると共に、シートが配向して膜強度が増し、シートの表面平滑性も向上する傾向にあるため、より好ましい。溶融混練物をTダイからシート状に押出す際のダイリップ間隔は、200μm以上3,000μm以下であることが好ましく、500μm以上2,500μm以下であることがより好ましい。ダイリップ間隔が200μm以上であると、メヤニ等が低減され、スジ又は欠点などの膜品位への影響が少なく、その後の延伸工程において、膜破断などのリスクを低減することができる。一方、ダイリップ間隔が3,000μm以下であると、冷却速度が速く、冷却ムラを防げると共に、シートの厚み安定性を維持できる。
 また、シート状成形体を圧延してもよい。圧延は、例えば、ダブルベルトプレス機等を使用したプレス法により実施することができる。シート状成形体に圧延を施すことにより、特に表層部分の配向を増すことができる。圧延面倍率は1倍を超えて3倍以下であることが好ましく、1倍を超えて2倍以下であることがより好ましい。圧延倍率が1倍を超えると、面配向が増加し、最終的に得られる多孔膜の膜強度が増加する傾向にある。一方、圧延倍率が3倍以下であると、表層部分と中心内部の配向差が小さく、膜の厚さ方向に均一な多孔構造を形成することができる傾向にある。
(延伸)
 シート状成形体又は多孔膜が延伸される延伸工程は、シート状成形体から孔形成材を抽出する工程(孔形成工程)の前に行ってよいし、シート状成形体から孔形成材を抽出した多孔膜に対して行ってもよい。さらに、延伸工程は、シート状成形体からの孔形成材の抽出の前と後に行ってもよい。
 延伸処理としては、一軸延伸又は二軸延伸のいずれも好適に用いることができるが、得られる多孔膜の強度等を向上させる観点から二軸延伸が好ましい。また、得られた多孔膜の熱収縮性の観点から、少なくとも2回の延伸工程を行うことが好ましい。
 シート状成形体を二軸方向に高倍率延伸すると、分子が面方向に配向し、最終的に得られる多孔膜が裂け難くなり、高い突刺強度を有するものとなる。延伸方法としては、例えば、同時二軸延伸、逐次二軸延伸、多段延伸、多数回延伸等の方法を挙げることができる。突刺強度の向上、延伸の均一性、シャットダウン性の観点からは、同時二軸延伸が好ましい。また、面配向の制御容易性の観点からは遂次二軸延伸が好ましい。
 ここで、同時二軸延伸とは、MD(微多孔膜連続成形の機械方向)の延伸とTD(微多孔膜のMDを90°の角度で横切る方向)の延伸が同時に施される延伸方法をいい、各方向の延伸倍率は異なってもよい。逐次二軸延伸とは、MD及びTDの延伸が独立して施される延伸方法をいい、MD又はTDに延伸がなされているときは、他方向は非拘束状態又は定長に固定されている状態とする。
 延伸倍率は、面倍率で20倍以上100倍以下の範囲であることが好ましく、25倍以上70倍以下の範囲であることがより好ましい。各軸方向の延伸倍率は、MDに4倍以上10倍以下、かつTDに4倍以上10倍以下の範囲内であることが好ましく、MDに5倍以上8倍以下、かつTDに5倍以上8倍以下の範囲内であることがより好ましい。総面積倍率が20倍以上であると、得られる多孔膜に十分な強度を付与できる傾向にある。一方、総面積倍率が100倍以下であると、延伸工程における膜破断を防ぎ、高い生産性が得られる傾向にある。
 シート状成形体又は多孔膜の同時二軸又は逐次二軸延伸においては、TD方向の歪み速度に対するMD方向の歪み速度の比(MD/TDの歪み速度比)が、好ましくは1.2以上1.8以下、より好ましくは1.3以上1.7以下、さらに好ましくは1.4以上1.6以下である。1.2以上1.8以下のMD/TDの歪み速度比で同時二軸又は逐次二軸延伸を行うと、熱収縮性に優れた微多孔膜、例えば、120℃でのTD方向の熱収縮率が8.0%以下であり、そして130℃でのTD方向の熱収縮率が、120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ120℃でのTD方向の熱収縮率より12.0%以上大きいポリオレフィン微多孔膜が得られる傾向にある。この傾向は、第五及び第六の実施形態に係るポリオレフィン微多孔膜の製造方法において顕著である。
[孔形成(抽出)工程]
 孔形成(抽出)工程では、シート状成形体から孔形成材を除去して多孔膜を形成する。この工程は、延伸工程の前及び/又は後に行われることができ、工程(C)に含まれることができる。
 孔形成材を除去する方法としては、例えば、抽出溶剤にシート状成形体を浸漬して孔形成材を抽出し、充分に乾燥させる方法が挙げられる。シート状成形体から孔形成材を抽出する方法は、バッチ式と連続式のいずれであってもよい。多孔膜の収縮を抑えるために、浸漬及び乾燥の一連の工程中に、シート状成形体の端部を拘束することが好ましい。また、多孔膜中の孔形成材残存量は、多孔膜全体の質量に対して1質量%未満に調整することが好ましい。
 シート状成形体から孔形成材を抽出する際に用いられる抽出溶剤は、ポリオレフィン樹脂に対して貧溶媒であり、かつ孔形成材に対して良溶媒であり、沸点がポリオレフィン樹脂の融点より低いことが好ましい。このような抽出溶剤としては、例えば、n-ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン等のハロゲン化炭化水素類;ハイドロフルオロエーテル、ハイドロフルオロカーボン等の非塩素系ハロゲン化溶剤;エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン等のケトン類が挙げられる。なお、これらの抽出溶剤は、蒸留等の操作により回収して再利用してよい。また、孔形成材として無機材を用いる場合には、水酸化ナトリウム、水酸化カリウム等の水溶液を抽出溶剤として用いることができる。
[熱固定工程]
 熱固定工程では、多孔膜の収縮を抑制するために、延伸工程後、又は、多孔膜形成後に熱固定を目的として熱処理を行う。この工程は、工程(C)、(C-1)又は(C-2)に含まれることができる。また、多孔膜に、界面活性剤等による親水化処理、電離性放射線等による架橋処理等の後処理を行ってもよい。
 多孔膜には、収縮を抑制する観点から熱固定を目的として熱処理を施すことが好ましい。熱処理の方法としては、物性の調整を目的として、所定の温度雰囲気及び所定の延伸率で行う延伸操作、及び/又は、延伸応力の低減を目的として、所定の温度雰囲気及び所定の緩和率で行う緩和操作が挙げられる。延伸操作を行った後に緩和操作を行ってもよい。これらの熱処理は、テンター又はロール延伸機を用いて行うことができる。
 延伸操作は、膜のMD及び/又はTDに1.1倍以上、より好ましくは1.2倍以上の延伸を施すことが、さらなる高強度かつ高気孔率な多孔膜が得られる観点から好ましい。
 緩和操作は、膜のMD及び/又はTDへの縮小操作のことである。緩和率とは、緩和操作後の膜の寸法を緩和操作前の膜の寸法で除した値のことである。なお、MDとTDの双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。緩和率は、1.0以下であることが好ましく、0.97以下であることがより好ましく、0.95以下であることがさらに好ましい。緩和率は、膜品位の観点から0.5以上であることが好ましい。緩和操作は、MDとTDの両方向で行ってもよいが、MDとTDのうち片方だけ行ってもよい。
 この可塑剤抽出後の延伸及び緩和操作は、好ましくはTDに行う。延伸及び緩和操作における温度は、ポリオレフィン樹脂の融点より低いことが好ましく、ポリオレフィン樹脂の融点より1℃から25℃低い範囲内にあることがより好ましい。延伸及び緩和操作における温度が上記範囲内であると、熱収縮率低減と気孔率とのバランスの観点から好ましい。
 延伸後に抽出したシートの熱固定工程においてTD延伸を行う際には、TD延伸工程の歪み速度が20%/秒以上であることが好ましく、25%/秒以上であることがより好ましく、30%/秒以上であることがさらに好ましい。熱固定工程におけるTD延伸を20%/秒以上の歪み速度で行うと、熱収縮性に優れた微多孔膜、例えば、120℃でのTD方向の熱収縮率が8.0%以下であり、そして130℃でのTD方向の熱収縮率が、120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ120℃でのTD方向の熱収縮率より12.0%以上大きいポリオレフィン微多孔膜が得られる傾向にある。この傾向は、第五及び第七の実施形態に係るポリオレフィン微多孔膜の製造方法において顕著である。
 延伸工程の後にTD方向への緩和操作を行う場合には、緩和速度が10%/秒以下であることが好ましく、8%/秒以下であることがより好ましく、6%/秒以下であることがさらに好ましい。10%/秒以下の緩和速度で緩和操作を行うと、熱収縮性に優れた微多孔膜、例えば、120℃でのTD方向の熱収縮率が8.0%以下であり、そして130℃でのTD方向の熱収縮率が、120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ120℃でのTD方向の熱収縮率より12.0%以上大きいポリオレフィン微多孔膜が得られる傾向にある。この傾向は、第五及び第七の実施形態に係るポリオレフィン微多孔膜の製造方法において顕著である。
<2次電池用セパレータ>
 本実施形態に係るポリオレフィン微多孔膜は、2次電池用セパレータとして利用されることができる。本実施形態に係るポリオレフィン微多孔膜を含むセパレータは、120℃付近の外部温度までは収縮を抑え、より高温の外部温度では速やかにシャットダウンするため、2次電池の安全性を改良することができる。
 なお、上述した各種物性の測定値は、特に断りの無い限り、後述する実施例における測定法に準じて測定される値である。
 次に、実施例及び比較例を挙げて本実施形態をより具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。
(1)粘度平均分子量
 ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を求めた。
 ポリエチレンについては、次式により算出した。
  [η]=6.77×10-4Mv0.67
(2)GPC測定
 GPC装置として、Waters社製のALC/GPC-150-C-plus型(商標)を用い、東ソー(株)製のGMH6-HT(商標)の30cmのカラム2本とGMH6-HTL(商標)の30cmのカラム2本を直列接続して使用し、オルトジクロロベンゼンを移動相溶媒として使用し、試料濃度0.05wt%で140℃にてGPC測定を行った。
 なお、標準物質として市販の分子量が既知の単分散ポリスチレンを用いて検量線を作成し、求められた各試料のポリスチレン換算の分子量分布データに、0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)を乗じることにより、ポリエチレン換算の分子量分布データを取得した。これにより、各試料の重量平均分子量(Mw)、及び数平均分子量(Mn)を算出することで、分子量分布指標(Mw/Mn)も得た。
(3)膜厚(μm)
 微小測厚器(東洋精機製 タイプKBM)を用いて、室温23℃で膜厚を測定した。
(4)気孔率(%)
 10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと膜密度(g/cm)より、次式を用いて気孔率を計算した。
   気孔率(%)=(体積-質量/膜密度)/体積×100
(5)透気度(sec)
 JIS P-8117に準拠し、東洋精器(株)製のガーレー式透気度計、G-B2(商標)を用いてポリオレフィン微多孔膜の透気抵抗度を測定し、透気度として示した。
(6)突刺強度(gf)
 カトーテック製のハンディー圧縮試験器KES-G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで微多孔膜を固定した。次に固定された微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、25℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重として生の突刺強度(gf)を得た。
(7)熱収縮率(%)
 サンプルをMD/TD方向にそれぞれ100mmの正方形に切り出し、120℃、または130℃に加熱してある熱風乾燥機にサンプルを入れ、1時間後の寸法収縮率を求めた。サンプルは、乾燥機の内壁等に付着しないように、かつサンプル同士が融着しないように、コピー紙等の上に乗せた。MD方向熱収縮率とTD方向熱収縮率は、それぞれ下記数式により算出される。
  MD方向熱収縮率(%)=(100-加熱後のMD方向寸法)/100×100(%)
  TD方向熱収縮率(%)=(100-加熱後のTD方向寸法)/100×100(%)
 得られた熱収縮値から、TD方向の熱収縮率に対するMD方向の熱収縮率の比(MD/TDの熱収縮比率)を算出した。
 また、ポリオレフィン微多孔膜上に無機粒子、耐熱樹脂又は接着性高分子などを含む塗工層が形成されている場合は、塗工層を溶解することができる有機溶媒に、塗工層が形成されたポリオレフィン微多孔膜を浸漬させ、塗工層を除去することで、ポリオレフィン微多孔膜の熱収縮率を測定することができる。
(8)動摩擦係数
 カトーテック株式会社製、KES-SE摩擦試験機を用い、荷重50g、接触子面積10×10=100mm2(0.5mmφの硬質ステンレス線(SUS304製ピアノ線)を隙間なく、かつ、重ならないように20本巻きつけたもの)、接触子送りスピード1mm/秒、張力6kPa、温度25℃、及び湿度50%の条件下で幅50mm×測定方向200mmのサンプルサイズについてMD、TD方向に各3回ずつ動摩擦係数を測定し、その平均を求めた。
(9)MD(長手)方向及びTD(幅)方向の引張弾性率(MPa)
 MD方向及びTD方向の測定について、MD方向サンプル(MD方向120mm×TD方向10mm)及びTD方向サンプル(MD方向10mm×TD方向120mm)を切り出した。雰囲気温度23±2℃、湿度40±2%の状況下でJIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG-A型(商標)を用いて、サンプルのMD方向及びTD方向の引張弾性率を測定した。サンプルをチャック間距離が50mmとなるようにセットし、引張速度200mm/分でチャック間が60mm、すなわち歪みが20.0%に達するまでサンプルを伸張した。引張弾性率(MPa)は、得られる応力-歪曲線における歪み1.0%から4.0%の傾きから求めた。得られた弾性率から、TD方向の弾性率に対するMD方向の弾性率の比(MD/TDの弾性率比率)を算出した。
(10)メルトダウン温度(℃)
 図1(A)にメルトダウン温度の測定装置の概略図を示す。1は微多孔膜であり、2A及び2Bは厚さ10μmのニッケル箔、3A及び3Bはガラス板である。4は電気抵抗測定装置(安藤電気製LCRメーター「AG-4311」(商標))でありニッケル箔2A、2Bと接続されている。5は熱電対であり温度計6と接続されている。7はデータコレクターであり、電気抵抗装置4及び温度計6と接続されている。8はオーブンであり、微多孔膜を加熱する。
 さらに詳細に説明すると、図1(B)に示すようにニッケル箔2A上に微多孔膜1を重ねて、縦方向に「テフロン」(登録商標)テープ(図の斜線部)でニッケル箔2Aに固定する。微多孔膜1には電解液として1mol/リットルのホウフッ化リチウム溶液(溶媒:プロピレンカーボネート/エチレンカーボネート/γ-ブチルラクトン=1/1/2)が含浸されている。ニッケル箔2B上には図1(C)に示すように「テフロン」(登録商標)テープ(図の斜線部)を貼り合わせ、箔2Bの中央部分に15mm×10mmの窓の部分を残してマスキングしてある。
 ニッケル箔2Aとニッケル箔2Bを微多孔膜1をはさむような形で重ね合わせ、さらにその両側からガラス板3A、3Bによって2枚のニッケル箔をはさみこむ。このとき、箔2Bの窓の部分と、多孔膜1が相対する位置に来るようになっている。
 2枚のガラス板は市販のダブルクリップではさむことにより固定する。熱電対5は「テフロン」(登録商標)テープでガラス板に固定する。
 このような装置で連続的に温度と電気抵抗を測定する。なお、温度は25℃から200℃まで2℃/minの速度にて昇温させ、電気抵抗値は1kHzの交流にて測定する。電気抵抗値が10Ωを上回った後に、再び10Ωを下回るときの温度をメルトダウン温度とした。
(11)オーブン試験・衝突試験
a.正極の作製
 正極活物質としてリチウムコバルト複合酸化物LiCoO、並びに導電材としてグラファイト及びアセチレンブラックを、バインダーであるポリフッ化ビニリデン(PVDF)及びN-メチルピロリドン(NMP)に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ15μmのアルミニウム箔にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。得られた成形体を57.0mm幅にスリットして正極を得た。
b.負極の作製
 負極活物質として人造グラファイト、及びバインダーとしてカルボキシメチルセルロースのアンモニウム塩とスチレン-ブタジエン共重合体ラテックスとを、精製水に分散させてスラリーを調製した。このスラリーを負極集電体となる銅箔にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。得られた成形体を58.5mm幅にスリットして負極を得た。
c.非水電解液の調製
 エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=1:1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1mol/Lとなるように溶解させて、非水電解液を調製した。
d.電池組立
 正極、実施例又は比較例で得られた多孔膜及び負極を積層した後、常法により巻回電極体を作製した。なお、PO微多孔膜の厚みによって巻回数を調整した。得られた巻回電極体の最外周端部を絶縁テープの貼付により固定した。負極リードを電池缶に、正極リードを安全弁にそれぞれ溶接して、巻回電極体を電池缶の内部に挿入した。その後、非水電解液を電池缶内に5g注入し、ガスケットを介して蓋を電池缶にかしめることにより、外径18mm、高さ65mmの円筒型2次電池を得た。この円筒型2次電池を25℃雰囲気下、0.2C(定格電気容量の1時間率(1C)の0.2倍の電流)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を絞り始めるという方法で、合計3時間充電を行った。続いて0.2Cの電流値で電池電圧3.0Vまで放電した。0%以上の容量を維持していたセルの割合(%)を、自己放電特性として算出した。
e.オーブン試験
 dで組み立てた2次電池を用いて、充電後の2次電池を室温から120℃まで5℃/分で昇温させ、その状態で30分保持した。その後、2次電池を30℃/分でさらに150℃まで昇温させ、発火までの時間を計測し、下記基準により評価した。本評価項目については、A(良好)とB(許容)を合格の基準とした。
 A(良好):150℃保持で45分以上発火しなかったもの。
 B(許容):150℃保持で30分以上45分未満で発火したもの。
 C(不可):150℃保持で30分未満で発火したもの、又は150℃に達する前に発火したもの。
f.衝突試験
 図2は、衝突試験の概略図である。
 衝突試験では、試験台上に配置された試料の上に、試料と丸棒(φ=15.8mm)が概ね直交するように、丸棒を置いて、丸棒から61cmの高さの位置から、丸棒の上面へ18.2kgの錘を落すことにより、試料に対する衝撃の影響を観察する。
 図2を参照して、実施例及び比較例における衝突試験の手順を以下に説明する。
 25℃の環境下で、上記項目dで得た2次電池を1Cの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で合計3時間充電した。
 次に、25℃の環境下で、2次電池を平坦な面に横向きに置き、2次電池の中央部を横切るように、直径15.8mmのステンレスの丸棒を配置した。丸棒は、その長軸がセパレータの長手方向と平行となるように配置した。2次電池の中央部に配置した丸棒から2次電池の縦軸方向に対して、直角に衝撃が加わるように、18.2kgの錘を61cmの高さから落下させた。衝突後、2次電池の表面温度を測定した。5セルずつ試験を行い、下記基準に即して評価した。本評価項目については、A(良好)とB(許容)を合格の基準とした。なお、2次電池の表面温度とは、2次電池の外装体の底側から1cmの位置を熱電対(K型シールタイプ)で測定した温度である。
 A(良好):全てのセルにおいて、表面温度上昇が30℃以下。
 B(許容):表面温度が30℃超過100℃以下のセルがあるが、全てのセルにおいて表面温度が100℃以下。
 C(不可):1個以上のセルで表面温度が100℃を超過、又は発火。
(12)搬送性
 長さ1000mのフィルムを巻取機で巻き取り、巻取後の端面のずれを測定し、下記基準に即して評価した。本評価項目については、A(良好)とB(許容)を合格の基準とした。
 A(良好):巻き取り時の端面のずれが1mm以下。
 B(許容):巻き取り時の端面のずれが1mmより大きく5mm以下。
 C(不可):巻き取り時の端面のずれが5mmより大きい。
[実施例1~23、及び比較例1~12]
 表1~4のいずれかに示されるポリエチレン合成用触媒(表中では「合成触媒」として表す)とエチレンモノマーを用いてポリエチレンを合成した。なお、表1~4に示されるように各実施例では2種類のポリエチレンを混合して用いているため、片方のポリエチレン種をPE1、もう片方のPE種をPE2と記載し、PE1とPE2それぞれの合成触媒、粘度平均分子量、重量分率を表1~4に示した。
 得られたポリエチレンと、可塑剤を配合して、ヘンシェルミキサーで攪拌して、樹脂組成物を調製した。表1~4のいずれかに示される条件下で、樹脂組成物を押し出し、シート状に成形し、延伸し、塩化メチレンに浸漬して孔を形成し、熱固定して、ポリオレフィン多孔膜を得た。
 得られたポリオレフィン多孔膜を上記の評価方法に従って評価した。
 実施例1~23で得られた微多孔膜の物性及びそれらを2次電池に組み込んだときの評価結果を表1~3に示す。
 比較例1~12で得られた多孔膜の物性及びそれらを2次電池に組み込んだときの評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1  微多孔膜
 2A,2B  ニッケル箔
 3A,3B  ガラス板
 4  電気抵抗測定装置
 5  熱電対
 6  温度計
 7  データコレクター
 8  オーブン

Claims (10)

  1.  120℃でのTD方向の熱収縮率が8%以下であり、そして130℃でのTD方向の熱収縮率が、前記120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ前記120℃でのTD方向の熱収縮率より12%以上大きいポリオレフィン微多孔膜。
  2.  動摩擦係数が0.10以上0.35以下である、請求項1に記載のポリオレフィン微多孔膜。
  3.  ゲルパーミエーションクロマトグラフィー(GPC)測定において、分子量50,000以下の分子を15%以上含み、かつ分子量500,000以上の分子を15%以上含む、請求項1又は2に記載のポリオレフィン微多孔膜。
  4.  メルトダウン温度が150℃以上200℃以下である、請求項1~3のいずれか1項に記載のポリオレフィン微多孔膜。
  5.  TD方向の熱収縮率に対するMD方向の熱収縮率の比(MD/TDの熱収縮比率)が、120℃では1.0を超え、かつ130℃では1.0未満である、請求項1~4のいずれか1項に記載のポリオレフィン微多孔膜。
  6.  TD方向の弾性率に対するMD方向の弾性率の比(MD/TDの弾性率比率)が、1.7以上3.0以下である、請求項5に記載のポリオレフィン微多孔膜。
  7.  以下の工程:
     (A)モノマー及びチーグラー・ナッタ触媒を用いてポリエチレン又はエチレン構成単位含有コポリマーを合成して、ポリエチレン原料を得る工程;
     (B)前記ポリエチレン原料を含むポリオレフィン組成物をシートに成形して、前記シートを延伸する工程;並びに
     (C)前記シートを抽出し、熱固定して、120℃でのTD方向の熱収縮率が8%以下であり、そして130℃でのTD方向の熱収縮率が、前記120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ前記120℃でのTD方向の熱収縮率より12%以上大きいポリオレフィン微多孔膜を形成する工程;
    を含む、ポリオレフィン微多孔膜の製造方法。
  8.  前記工程(B)において、前記ポリオレフィン組成物の押出速度Qと押出機のスクリュー回転数Nとの比(Q/N)が、2.0以上7.0以下である、請求項7に記載のポリオレフィン微多孔膜の製造方法。
  9.  前記工程(B)の同時二軸又は逐次二軸延伸において、TD方向の歪み速度に対するMD方向の歪み速度の比(MD/TDの歪み速度比)が、1.2以上1.8以下である、請求項7又は8に記載のポリオレフィン微多孔膜の製造方法。
  10.  前記工程(C)の熱固定において、TD方向への延伸と緩和を1回ずつ含み、延伸工程の歪み速度が20%/秒以上であり、緩和速度が10%/秒以下である、請求項7~9のいずれか1項に記載のポリオレフィン微多孔膜の製造方法。
PCT/JP2018/003272 2017-03-27 2018-01-31 ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 WO2018179810A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880021128.2A CN110461925B (zh) 2017-03-27 2018-01-31 聚烯烃微多孔膜及聚烯烃微多孔膜的制造方法
KR1020197027874A KR102264032B1 (ko) 2017-03-27 2018-01-31 폴리올레핀 미다공막 및 폴리올레핀 미다공막의 제조 방법
US16/498,076 US11242440B2 (en) 2017-03-27 2018-01-31 Polyolefin microporous membrane and production method thereof
EP18774533.6A EP3587481B1 (en) 2017-03-27 2018-01-31 Polyolefin microporous membrane and production method thereof
PL18774533T PL3587481T3 (pl) 2017-03-27 2018-01-31 Mikroporowata membrana poliolefinowa i sposób jej wytwarzania
JP2019508661A JP6756902B2 (ja) 2017-03-27 2018-01-31 ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-060465 2017-03-27
JP2017060465 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018179810A1 true WO2018179810A1 (ja) 2018-10-04

Family

ID=63674906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003272 WO2018179810A1 (ja) 2017-03-27 2018-01-31 ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法

Country Status (9)

Country Link
US (1) US11242440B2 (ja)
EP (1) EP3587481B1 (ja)
JP (2) JP6756902B2 (ja)
KR (1) KR102264032B1 (ja)
CN (1) CN110461925B (ja)
DE (1) DE202018006625U1 (ja)
HU (1) HUE055821T2 (ja)
PL (1) PL3587481T3 (ja)
WO (1) WO2018179810A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084084A (ja) * 2018-11-28 2020-06-04 旭化成株式会社 ポリオレフィン微多孔膜
CN112795066A (zh) * 2019-11-13 2021-05-14 上海恩捷新材料科技有限公司 一种聚烯烃微多孔膜
CN112886136A (zh) * 2019-11-13 2021-06-01 上海恩捷新材料科技有限公司 一种聚烯烃微多孔隔离膜
EP3816217A4 (en) * 2019-03-04 2021-08-25 Asahi Kasei Kabushiki Kaisha MICROPOROUS POLYOLEFINE MEMBRANE
KR20220048022A (ko) 2019-10-08 2022-04-19 아사히 가세이 가부시키가이샤 폴리올레핀 미다공막

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128942A (ja) 2000-10-26 2002-05-09 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
WO2004020511A1 (ja) * 2002-08-28 2004-03-11 Asahi Kasei Chemicals Corporation ポリオレフィン製微多孔膜及びその評価方法
JP2006124652A (ja) 2004-09-30 2006-05-18 Asahi Kasei Chemicals Corp ポリオレフィン製微多孔膜
JP2009132904A (ja) * 2007-11-28 2009-06-18 Sk Energy Co Ltd 物性と高温熱安定性に優れるポリオレフィン微多孔膜
WO2009123015A1 (ja) * 2008-03-31 2009-10-08 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜、及び捲回物
JP2010007053A (ja) * 2008-05-30 2010-01-14 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜
WO2010070930A1 (ja) * 2008-12-19 2010-06-24 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜及びリチウムイオン二次電池用セパレータ
JP2012522669A (ja) * 2009-04-06 2012-09-27 エスケー イノベーション シーオー., エルティーディー. 物性及び高温安全性に優れたポリオレフィン系多層微多孔膜
JP2013535792A (ja) * 2010-08-02 2013-09-12 セルガード エルエルシー 高融点微多孔質リチウムイオン再充電可能電池セパレータおよび製造方法および使用方法
WO2014126079A1 (ja) * 2013-02-13 2014-08-21 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその電池用セパレータの製造方法
JP2017027945A (ja) 2015-07-24 2017-02-02 旭化成株式会社 蓄電デバイス用セパレータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2602830A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Method for producing microporous polyolefin membrane and microporous membrane
WO2007069560A1 (ja) * 2005-12-15 2007-06-21 Asahi Kasei Chemicals Corporation ポリオレフィン製微多孔膜
ATE538167T1 (de) 2007-01-30 2012-01-15 Asahi Kasei E Materials Corp Mikroporöse polyolefinmembran
KR101716249B1 (ko) * 2014-05-28 2017-03-14 도레이 배터리 세퍼레이터 필름 주식회사 폴리올레핀 미세 다공막 및 이의 제조 방법
KR20170041194A (ko) * 2014-08-12 2017-04-14 도레이 배터리 세퍼레이터 필름 주식회사 폴리올레핀 미세다공막 및 그 제조 방법, 비수 전해액계 이차전지용 세퍼레이터, 및 비수 전해액계 이차전지

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128942A (ja) 2000-10-26 2002-05-09 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
WO2004020511A1 (ja) * 2002-08-28 2004-03-11 Asahi Kasei Chemicals Corporation ポリオレフィン製微多孔膜及びその評価方法
JP2006124652A (ja) 2004-09-30 2006-05-18 Asahi Kasei Chemicals Corp ポリオレフィン製微多孔膜
JP2009132904A (ja) * 2007-11-28 2009-06-18 Sk Energy Co Ltd 物性と高温熱安定性に優れるポリオレフィン微多孔膜
WO2009123015A1 (ja) * 2008-03-31 2009-10-08 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜、及び捲回物
JP2010007053A (ja) * 2008-05-30 2010-01-14 Asahi Kasei E-Materials Corp ポリオレフィン製微多孔膜
WO2010070930A1 (ja) * 2008-12-19 2010-06-24 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜及びリチウムイオン二次電池用セパレータ
JP2012522669A (ja) * 2009-04-06 2012-09-27 エスケー イノベーション シーオー., エルティーディー. 物性及び高温安全性に優れたポリオレフィン系多層微多孔膜
JP2013535792A (ja) * 2010-08-02 2013-09-12 セルガード エルエルシー 高融点微多孔質リチウムイオン再充電可能電池セパレータおよび製造方法および使用方法
WO2014126079A1 (ja) * 2013-02-13 2014-08-21 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその電池用セパレータの製造方法
JP2017027945A (ja) 2015-07-24 2017-02-02 旭化成株式会社 蓄電デバイス用セパレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3587481A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084084A (ja) * 2018-11-28 2020-06-04 旭化成株式会社 ポリオレフィン微多孔膜
JP7235486B2 (ja) 2018-11-28 2023-03-08 旭化成株式会社 ポリオレフィン微多孔膜
EP3816217A4 (en) * 2019-03-04 2021-08-25 Asahi Kasei Kabushiki Kaisha MICROPOROUS POLYOLEFINE MEMBRANE
US12110382B2 (en) 2019-03-04 2024-10-08 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane
KR20220048022A (ko) 2019-10-08 2022-04-19 아사히 가세이 가부시키가이샤 폴리올레핀 미다공막
CN112795066A (zh) * 2019-11-13 2021-05-14 上海恩捷新材料科技有限公司 一种聚烯烃微多孔膜
CN112886136A (zh) * 2019-11-13 2021-06-01 上海恩捷新材料科技有限公司 一种聚烯烃微多孔隔离膜
CN112795066B (zh) * 2019-11-13 2023-10-24 上海恩捷新材料科技有限公司 一种聚烯烃微多孔膜

Also Published As

Publication number Publication date
EP3587481A4 (en) 2020-04-15
JP6756902B2 (ja) 2020-09-16
DE202018006625U1 (de) 2021-12-17
PL3587481T3 (pl) 2021-12-20
EP3587481A1 (en) 2020-01-01
JP6895570B2 (ja) 2021-06-30
US11242440B2 (en) 2022-02-08
EP3587481B1 (en) 2021-09-08
KR102264032B1 (ko) 2021-06-11
JP2020189998A (ja) 2020-11-26
JPWO2018179810A1 (ja) 2019-11-07
HUE055821T2 (hu) 2021-12-28
US20200024419A1 (en) 2020-01-23
CN110461925A (zh) 2019-11-15
KR20190118640A (ko) 2019-10-18
CN110461925B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
KR100977345B1 (ko) 폴리올레핀제 미다공막
JP4753446B2 (ja) ポリオレフィン製微多孔膜
JP6895570B2 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP5586152B2 (ja) ポリオレフィン製微多孔膜
US20110059368A1 (en) Separtor for high-power density lithium ion secondary battery (as amended)
JP6823718B2 (ja) ポリオレフィン微多孔膜、蓄電デバイス用セパレータ、及び蓄電デバイス
JP7045862B2 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
WO2010070930A1 (ja) ポリオレフィン製微多孔膜及びリチウムイオン二次電池用セパレータ
WO2015194504A1 (ja) ポリオレフィン微多孔質膜、電池用セパレータ及び電池
JP6988881B2 (ja) ポリエチレン微多孔膜を含む二次電池用セパレータ
WO2020179101A1 (ja) ポリオレフィン微多孔膜
JP6886839B2 (ja) ポリオレフィン微多孔膜
JP5792914B1 (ja) 積層多孔質膜及びその製造方法
JP6864762B2 (ja) ポリオレフィン微多孔膜
CN113891912A (zh) 聚烯烃微多孔膜
JP7343716B2 (ja) ポリオレフィン微多孔膜
JP2017080977A (ja) 多層微多孔膜及び蓄電デバイス用セパレータ
JP6741884B1 (ja) ポリオレフィン微多孔膜
EP4043516A1 (en) Polyolefin microporous membrane
JP2022051238A (ja) ポリオレフィン微多孔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508661

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027874

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018774533

Country of ref document: EP

Effective date: 20190926