WO2018179810A1 - ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 - Google Patents
ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 Download PDFInfo
- Publication number
- WO2018179810A1 WO2018179810A1 PCT/JP2018/003272 JP2018003272W WO2018179810A1 WO 2018179810 A1 WO2018179810 A1 WO 2018179810A1 JP 2018003272 W JP2018003272 W JP 2018003272W WO 2018179810 A1 WO2018179810 A1 WO 2018179810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microporous membrane
- less
- polyolefin
- rate
- polyolefin microporous
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/044—Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/052—Closed cells, i.e. more than 50% of the pores are closed
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2207/00—Foams characterised by their intended use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a microporous polyolefin membrane, a method for producing the same, and a separator for a secondary battery.
- Polyolefin microporous membranes are used in battery separators, capacitor separators, fuel cell materials, microfiltration membranes, etc., because they exhibit excellent electrical insulation or ion permeability, especially for lithium ion secondary batteries. Used as a separator.
- lithium ion secondary batteries have been applied not only to small electronic devices such as mobile phones and laptop computers, but also to electric vehicles such as electric cars and small electric motorcycles.
- the separator for lithium ion secondary batteries not only has mechanical properties and ion permeability, but the micropores of the separator are blocked by heat melting etc. according to the heat generated by the secondary battery, thereby suppressing ionic conduction in the electrolyte.
- a property of stopping the electrochemical reaction (shutdown property) and a property of melting the battery and discharging the battery (meltdown property) before reaching an abnormally high temperature state while maintaining energy are required.
- the shutdown temperature corresponds to the lowest temperature at which the separator shuts down, and the meltdown temperature exceeds the shutdown temperature.
- Patent Documents 1 and 2 In connection with the required characteristics of the separator, raw materials for polyolefin microporous membrane, porosity, tensile strength, tensile elongation, production conditions, etc. have been studied (Patent Documents 1 and 2).
- Patent Document 1 discloses a viscosity average molecular weight (Mv) of 100,000 or more and less than 400,000 in order to provide a separator that is not easily deformed without impairing conventional physical properties, and that has excellent film resistance and stress relaxation properties.
- a polyolefin microporous membrane comprising polyethylene (PE) or a copolymer thereof and PE or a copolymer thereof having an Mv of 400,000 or more and 10,000,000 or less as essential components has been proposed.
- Patent Document 1 also examines the tensile strength and tensile elongation of a polyolefin microporous membrane, and the ratio (Q / N) between the discharge amount of the polyolefin composition at the time of production and the screw rotation speed.
- Patent Document 2 discloses a weight average molecular weight (Mw) of 5 in order to balance separator air permeability, porosity, pore diameter, compressibility, mechanical strength, dimensional stability, shutdown characteristics, and meltdown characteristics.
- Mw weight average molecular weight
- a polyolefin microporous membrane comprising a polyolefin composition containing, as essential components, ⁇ 10 5 or more polyolefin and Mw 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 polyolefin produced using a Ziegler-Natta catalyst has been proposed. .
- the conventional polyolefin microporous film as described in Patent Documents 1 and 2 has a high film strength, in the secondary battery using the same, the distortion of the secondary battery due to an impact such as dropping is the distortion of the film. May be directly connected to the surface, and may break and cause a short circuit. Therefore, the conventional secondary battery requires a mechanism that relaxes the distortion of the separator in the secondary battery.
- the separator since the behavior of the separator with respect to the external temperature becomes important, the separator is stable in dimensions even at an external temperature within a range from 100 ° C. to about 120 ° C. when used in an on-vehicle application, and near the melting point of the separator. Insulating properties cannot be ensured unless the micropores are quickly closed.
- the polyolefin microporous membrane is required not only to have low heat shrinkage but also to rapidly shrink near the melting point and to have good shutdown performance.
- the problem to be solved by the present invention is that it has dimensional stability against temperatures in the range from 100 ° C. to 120 ° C. or external stress, and quickly closes at 130 ° C. Therefore, it is to provide a polyolefin microporous membrane capable of stopping thermal runaway of a battery at an initial stage, and a secondary battery separator using the same.
- the present inventors have found that the above problems can be solved by specifying the heat shrinkability of the polyolefin microporous membrane or by specifying the production conditions of the polyolefin microporous membrane, and have completed the present invention.
- the present invention is as follows.
- the thermal contraction rate in the TD direction at 120 ° C. is 8% or less, and the thermal contraction rate in the TD direction at 130 ° C. is 3 to 5 times the thermal contraction rate in the TD direction at 120 ° C.
- the polyolefin microporous membrane according to [1] which has a dynamic friction coefficient of 0.10 or more and 0.35 or less.
- the polyolefin fine particle according to [1] or [2] which contains 15% or more of molecules having a molecular weight of 50,000 or less and 15% or more of molecules having a molecular weight of 500,000 or more.
- Porous membrane [4]
- the ratio of the thermal shrinkage rate in the MD direction to the thermal shrinkage rate in the TD direction is more than 1.0 at 120 ° C. and less than 1.0 at 130 ° C.
- the ratio (Q / N) between the extrusion rate Q of the polyolefin composition and the screw rotation speed N of the extruder is 2.0 or more and 7.0 or less, according to [7].
- a method for producing a polyolefin microporous membrane is 1.2 or more and 1.8 or less.
- the polyolefin microporous film which has dimensional stability with respect to the temperature below a melting
- the shrinkage of the separator can be suppressed up to an external temperature near 120 ° C., and the separator can be shut down quickly at a higher external temperature, thereby improving the safety of the secondary battery. it can.
- One embodiment of the present invention is a polyolefin microporous membrane.
- the polyolefin microporous membrane preferably has a small electron conductivity, an ionic conductivity, a high resistance to an organic solvent, and a fine pore size.
- the polyolefin microporous membrane can be used as a separator for a secondary battery.
- the polyolefin microporous membrane according to the first embodiment has a thermal shrinkage rate in the TD direction at 120 ° C. of 8.0% or less and a thermal shrinkage rate in the TD direction at 130 ° C. of TD at 120 ° C.
- the thermal contraction rate is 3 to 5 times the thermal contraction rate in the direction, and is 12.0% or more larger than the thermal contraction rate in the TD direction at 120 ° C.
- the MD direction means the machine direction of continuous microporous membrane molding
- the TD direction means the direction crossing the MD direction of the microporous membrane at an angle of 90 °.
- the thermal shrinkage in the TD direction at 120 ° C. of the polyolefin microporous membrane is within a range of 8.0% or less, the external temperature or the internal temperature of the secondary battery is It is considered that the polyolefin microporous membrane has dimensional stability even when the temperature is in the range from 100 ° C to 120 ° C.
- the thermal shrinkage rate in the TD direction at 120 ° C. is preferably 3.0% to 7.5%, more preferably 3.5% to 7.0%, still more preferably 4.0% to It is within the range of 6.0%.
- the thermal shrinkage in the TD direction at 130 ° C. of the polyolefin microporous membrane is in the range of 3 to 5 times the thermal shrinkage in the TD direction at 120 ° C.
- the polyolefin microporous membrane has good heat resistance. And tend to have good shutdown characteristics.
- the thermal shrinkage rate in the TD direction at 130 ° C. is in the range of 5 times or less of the thermal shrinkage rate in the TD direction at 120 ° C.
- the microporous membrane Excessive shrinkage can be suppressed. From the same viewpoint, the thermal contraction rate in the TD direction at 130 ° C.
- a polyolefin microporous membrane whose thermal shrinkage in the TD direction at 130 ° C is 12.0% or more larger than the thermal shrinkage in the TD direction at 120 ° C is instantly closed when heated, for example, at a temperature exceeding the melting point of the polyolefin resin. Tends to shut down with holes.
- the melting point means the temperature at which the polyolefin resin or microporous film melts, and can be read from the temperature at which the maximum point is taken, for example, in the temperature rise measurement of a differential scanning thermometer. In terms of shutdown characteristics, the value (%) obtained by subtracting the thermal shrinkage rate (%) in the TD direction at 120 ° C. from the thermal shrinkage rate (%) in the TD direction at 130 ° C.
- the thermal contraction rate (%) in the TD direction is within the above range. Separation of the separator can be suppressed at an external temperature in the range of 100 ° C. to 120 ° C., and the separator can be quickly shut down near 130 ° C.
- the thermal contraction rate in the TD direction at 120 ° C. and 130 ° C. is, for example, selection of a catalyst during synthesis of a polyolefin raw material, control of strain rate during extrusion and stretching of a polyolefin composition, relaxation rate during heat setting of a microporous membrane Can be adjusted as described above, for example by control of.
- the polyolefin microporous membrane according to the second embodiment has a dynamic friction coefficient of 0.10 or more and 0.35 or less.
- the dynamic friction coefficient of the polyolefin microporous membrane is 0.10 or more, the grip force of the transport roll against the polyolefin microporous membrane is increased, so that it is easy to transport the web when making a secondary battery. It is thought that it can be made.
- the coefficient of dynamic friction is 0.35 or less, when an impact is applied to a secondary battery including a polyolefin microporous membrane as a separator, the separator is slightly placed between a plurality of electrodes.
- the dynamic friction coefficient is preferably 0.13 or more and 0.30 or less, more preferably 0.15 or more and 0.25 or less.
- the dynamic friction coefficient of the polyolefin microporous membrane can be adjusted within a range of 0.10 or more and 0.35 or less, for example, by selecting a catalyst at the time of polyolefin raw material synthesis.
- the ratio of the thermal shrinkage rate in the MD direction to the thermal shrinkage rate in the TD direction exceeds 1.0 at 120 ° C., and 130 It is less than 1.0 at ° C.
- the structure of the microporous polyolefin membrane that does not shrink at high temperatures is specified by the fact that the thermal shrinkage ratio of MD / TD exceeds 1.0 at 120 ° C. and less than 1.0 at 130 ° C.
- the thermal shrinkage ratio of MD / TD is preferably greater than 1.05 at 120 ° C. and less than 0.95 at 130 ° C., more preferably greater than 1.10 at 120 ° C. and less than 0.90 at 130 ° C.
- the MD / TD thermal shrinkage ratio can be adjusted as described above, for example, by appropriately controlling the MD / TD strain rate ratio during extrusion and stretching of the polyolefin composition.
- the polyolefin microporous membrane according to the fourth embodiment has an arbitrary combination of the thermal shrinkage and the dynamic friction coefficient of the polyolefin microporous membrane described above.
- polyolefin microporous membranes include porous membranes containing polyolefin resin, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide amide, polyaramid, polycycloolefin, nylon, polytetrafluoroethylene, and other resins.
- porous membranes include porous membranes, polyolefin fiber fabrics (woven fabrics), polyolefin fiber nonwoven fabrics, paper, and aggregates of insulating substance particles.
- a multilayer porous membrane that is, a secondary battery separator is obtained through a coating process
- the coating solution is excellent in coating properties
- the separator film thickness is made thinner than that of a conventional separator, so that a secondary battery, etc.
- a porous film containing a polyolefin resin hereinafter also referred to as “polyolefin resin porous film”.
- the polyolefin resin porous membrane will be described.
- the polyolefin resin porous membrane is a polyolefin resin composition in which the polyolefin resin accounts for 50% by mass or more and 100% by mass or less of the resin component constituting the porous membrane from the viewpoint of improving the shutdown performance when used as a separator for a secondary battery.
- a porous film formed by a material is preferable.
- the proportion of the polyolefin resin in the polyolefin resin composition is more preferably 60% by mass or more and 100% by mass or less, and further preferably 70% by mass or more and 100% by mass or less.
- the polyolefin resin contained in the polyolefin resin composition is not particularly limited.
- ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene are used as monomers. Examples thereof include a homopolymer, a copolymer, or a multistage polymer.
- these polyolefin resins may be used independently or may be used in mixture of 2 or more types.
- polyethylene, polypropylene, copolymers thereof, and mixtures thereof are preferable as the polyolefin resin from the viewpoint of shutdown characteristics when the polyolefin resin porous membrane is used as a separator for a secondary battery.
- polyethylene examples include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene.
- polypropylene examples include isotactic polypropylene, syndiotactic polypropylene, and atactic polypropylene.
- copolymer examples include an ethylene-propylene random copolymer, an ethylene-propylene rubber, and the like.
- the polyolefin resin is preferably polyethylene having a melting point in the range from 130 ° C. to 140 ° C. from the viewpoint of stopping the thermal runaway of the battery in the initial stage. 70 mass% or more is preferable, as for the ratio of polyethylene in polyolefin resin, 80 mass% or more is more preferable, and 90 mass% or more is further more preferable.
- polyethylene particularly high-density polyethylene
- polyolefin resin is preferably used as the polyolefin resin from the viewpoint of satisfying the required performance of a low melting point and high strength when the polyolefin resin porous membrane is used as a separator for a secondary battery.
- the main component of a polyolefin resin porous film is polyethylene from a viewpoint of expressing a quick fuse behavior.
- high density polyethylene means polyethylene having a density of 0.942 to 0.970 g / cm 3 .
- the density of polyethylene refers to a value measured according to the D) density gradient tube method described in JIS K7112 (1999).
- the proportion of the high-density polyethylene synthesized by the Ziegler-Natta catalyst is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass. preferable.
- the molecular chain of polyethylene synthesized by the Ziegler-Natta catalyst has moderate linearity and does not have bulky side chains, so that the dynamic friction coefficient of the obtained microporous film is small. Therefore, when an impact is applied to a secondary battery including a polyolefin microporous membrane as a separator, the separator is slid slightly or deliberately between the electrodes, so that the distortion of the separator itself is reduced and the membrane is not broken. It is possible.
- the polyolefin resin from the viewpoint of improving the heat resistance of the porous membrane, a mixture of polyethylene and polypropylene may be used as the polyolefin resin.
- the ratio of polypropylene to the total polyolefin resin in the polyolefin resin composition is preferably 1 to 35% by mass, more preferably 3 to 20% by mass from the viewpoint of achieving both heat resistance and a good shutdown function. %, More preferably 4 to 10% by mass.
- Arbitrary additives can be contained in the polyolefin resin composition.
- additives include polymers other than polyolefin resins; inorganic fillers; phenol-based, phosphorus-based and sulfur-based antioxidants; metal soaps such as calcium stearate and zinc stearate; ultraviolet absorbers; light stabilizers An antistatic agent, an antifogging agent, a coloring pigment, and the like.
- the total addition amount of these additives is preferably 20 parts by mass or less with respect to 100 parts by mass of the polyolefin resin from the viewpoint of improving shutdown performance and the like, more preferably 10 parts by mass or less, and still more preferably 5 parts. It is below mass parts.
- Polyolefin microporous membrane has a porous structure in which a large number of very small pores are gathered to form dense communication holes, so it has excellent ionic conductivity, good withstand voltage characteristics, and high strength. It has the characteristic of being.
- One or a plurality of different functional layers may be formed on one or both surfaces of the polyolefin microporous membrane described above.
- the functional layer include a heat-resistant layer containing a heat-resistant resin such as inorganic particles or a crosslinkable polymer, and an adhesive layer containing an adhesive polymer.
- the laminating method include a method of coating a functional layer on a polyolefin microporous film with a gravure coater or a die coater, or laminating by coextrusion.
- the film thickness of the microporous membrane is preferably from 0.1 ⁇ m to 100 ⁇ m, more preferably from 1 ⁇ m to 50 ⁇ m, and even more preferably from 3 ⁇ m to 25 ⁇ m.
- the thickness of the microporous membrane is preferably 0.1 ⁇ m or more from the viewpoint of mechanical strength, and preferably 100 ⁇ m or less from the viewpoint of increasing the capacity of the secondary battery.
- the film thickness of the microporous film can be adjusted by controlling the die lip interval, the draw ratio in the drawing step, and the like.
- the average pore diameter of the microporous membrane is preferably 0.03 ⁇ m or more and 0.70 ⁇ m or less, more preferably 0.04 ⁇ m or more and 0.20 ⁇ m or less, further preferably 0.05 ⁇ m or more and 0.10 ⁇ m or less, and still more preferably 0.06 ⁇ m. It is 0.09 ⁇ m or less. From the viewpoint of high ion conductivity and withstand voltage, the average pore size of the microporous membrane is preferably 0.03 ⁇ m or more and 0.70 ⁇ m or less.
- the average pore diameter of the microporous membrane can be measured by a measuring method described in, for example, JP-A-2017-27945. The average pore diameter should be adjusted by controlling the composition ratio, extrusion sheet cooling rate, stretching temperature, stretching ratio, heat setting temperature, stretching ratio during heat setting, relaxation rate during heat setting, or a combination of these. Can do.
- the porosity of the microporous membrane is preferably 25% to 95%, more preferably 30% to 65%, and still more preferably 35% to 55%.
- the porosity is preferably 25% or more from the viewpoint of improving ionic conductivity, and preferably 95% or less from the viewpoint of withstand voltage characteristics.
- the porosity of the microporous membrane is controlled by controlling the mixing ratio of the polyolefin resin composition and the plasticizer, the stretching temperature, the stretching ratio, the heat setting temperature, the stretching ratio at the time of heat fixing, the relaxation rate at the time of heat fixing, or It can be adjusted by combining.
- the meltdown temperature of the microporous membrane is preferably 150 ° C. or higher and 200 ° C. or lower, more preferably 160 ° C. or higher and 190 ° C. or lower, and further preferably 170 ° C. or higher and 180 ° C. or lower.
- a meltdown temperature of 150 ° C. or higher means that the microporous membrane does not break up to 150 ° C., so the safety of the secondary battery can be ensured.
- the meltdown temperature above 150 ° C. and below 200 ° C. means that the secondary battery is gradually discharged even if the microporous membrane breaks, so the secondary battery has excessively high energy. In this way, safety can be ensured.
- the meltdown temperature can be adjusted within a range of 150 ° C. or higher and 200 ° C. or lower depending on the molecular weight of the polyolefin, stretching, and heat setting conditions.
- the viscosity average molecular weight (Mv) of the polyolefin resin used as a raw material is preferably 30,000 or more and 12,000,000 or less, more preferably 50,000 or more and 5 or less. Less than 1,000,000, more preferably 100,000 or more and less than 2,000,000.
- a viscosity average molecular weight of 30,000 or more is preferable because the moldability during melt molding is good and the strength tends to increase due to the entanglement between the polymers.
- a viscosity average molecular weight of 12,000,000 or less is preferable because uniform melt kneading is facilitated and the formability of the sheet, particularly thickness stability, tends to be excellent.
- the polyolefin resin porous membrane is used as a separator for a secondary battery, if the viscosity average molecular weight is less than 1,000,000, the pores are likely to be blocked when the temperature rises, and a good shutdown function tends to be obtained. This is preferable.
- the polyolefin resin porous membrane preferably has a ratio of weight average molecular weight to number average molecular weight (dispersion degree: Mw / Mn) of 3.0 or more and 10.0 or less. More preferably, it is 5.0 or more and 9.0 or less.
- Mw / Mn weight average molecular weight to number average molecular weight
- the dispersity (Mw / Mn) is 3.0 or more, the film has a certain amount of high molecular weight component and low molecular weight component, and the high molecular weight component ensures appropriate heat resistance and strength. Good shutdown performance can be exhibited at around 130 ° C. due to the presence of the components. It is preferable that the dispersity (Mw / Mn) is 10.0 or less because contamination due to bleedout of low molecular weight components can be prevented.
- the microporous membrane In gel permeation chromatography (GPC) measurement of a microporous membrane, the microporous membrane preferably contains 15% or more of molecules having a molecular weight of 50,000 or less and 15% or more of molecules having a molecular weight of 500,000 or more.
- the microporous film contains molecules having molecular weights of 50,000 or less and 500,000 or more, so that it has excellent friction resistance, has little dimensional change below the melting point, and near the melting point of the microporous film (for example, 130 ° C.). Both molecules can melt and shrink rapidly.
- a low molecular weight component having a molecular weight of 50,000 or less ensures good kneadability, and a high molecular weight component having a molecular weight of 500,000 or more ensures strength and elongation.
- the molecular weight obtained by GPC measurement is a polystyrene (PS) conversion molecular weight as a standard polymer.
- PS polystyrene
- the microporous membrane preferably contains 17% or more of molecules having a molecular weight of 50,000 or less, more preferably 17% or more of molecules having a molecular weight of 500,000 or more, and 19% of molecules having a molecular weight of 50,000 or less in GPC measurement. More preferably, it contains 19% or more of molecules having a molecular weight of 500,000 or more.
- the ratio of the elastic modulus in the MD direction to the elastic modulus in the TD direction (MD / TD elastic modulus ratio) of the microporous membrane is preferably 1.7 or more and 3.0 or less.
- the elastic modulus ratio of MD / TD is 1.7 or more
- the end portion is not constrained and is not easily broken and deforms in the TD direction.
- a roll obtained by winding a separator in the MD direction is limited in movement in the MD direction for winding and fixing, and is easy to tear in the MD direction.
- the elastic modulus ratio of MD / TD is more preferably 1.9 or more and 2.8 or less, and further preferably 2.1 or more and 2.5 or less.
- Another aspect of the present invention is a method for producing a polyolefin microporous membrane.
- the method for producing a polyolefin microporous membrane according to the fifth embodiment includes the following steps: (A) A step of synthesizing polyethylene or an ethylene structural unit-containing copolymer using a monomer and a Ziegler-Natta catalyst to obtain a polyethylene raw material; (B) A step of forming a polyolefin composition containing a polyethylene raw material into a sheet and stretching the sheet; and (C) The sheet is extracted and heat-set, and the thermal shrinkage in the TD direction at 120 ° C. is 8. 0% or less, and the thermal contraction rate in the TD direction at 130 ° C. is 3 to 5 times the thermal contraction rate in the TD direction at 120 ° C., and the thermal contraction rate in the TD direction at 120 ° C. Forming a polyolefin microporous membrane that is 12.0% or greater than including.
- the method for producing a polyolefin microporous membrane according to the sixth embodiment includes the following steps: (B-1) Simultaneous biaxial or sequential biaxial stretching process of a molded sheet made of a polyolefin composition, wherein the ratio of strain rate in MD direction to strain rate in TD direction (MD / TD strain rate ratio) is 1. A step of 2 or more and 1.8 or less; including.
- the method for producing a polyolefin microporous membrane according to the seventh embodiment includes the following steps: (C-1) extracting the stretched sheet and subjecting the sheet to TD stretching at a strain rate in the transverse (TD) direction of 20% / second or more; and (C-2) 10% of the TD stretched sheet. Relaxing at a relaxation rate of less than 1 second / second; including.
- steps (C-1) and (C-2) the molded sheet or microporous membrane made of the polyolefin composition can be gently relaxed after being rapidly stretched.
- the method for producing a microporous polyolefin membrane according to the eighth embodiment includes any combination of all the steps described above.
- step (A) the monomer is polymerized to synthesize polyethylene or an ethylene structural unit-containing copolymer.
- step (A) the monomer is polymerized to synthesize polyethylene or an ethylene structural unit-containing copolymer.
- Using a Ziegler-Natta catalyst during the synthesis of polyethylene raw material reduces the polarization by obtaining a polymer with moderate linearity, thereby lowering the friction of the polyethylene raw material and consequently improving the impact resistance of the secondary battery. Can do.
- polyethylene synthesized with a Ziegler-Natta catalyst has an appropriate molecular weight distribution, the dimensional change of the microporous membrane containing the polyethylene raw material is suppressed below the melting point of the polyethylene raw material, and the fine melting point (eg, 130 ° C.) is small near the melting point.
- the porous membrane can be rapidly contracted.
- the low molecular weight component of the obtained polymer improves the kneadability of the polyethylene raw material, and the high molecular weight component of the obtained polymer guarantees strength and elongation.
- the polyolefin composition is molded and stretched.
- This step preferably includes step (B) or (B-1).
- the polyolefin composition can be formed into a sheet, for example.
- the molding of the polyolefin composition is, for example, (1) A method of melt-kneading a polyolefin composition and a pore-forming material to form a sheet, (2) A method in which a polyolefin composition is melt-kneaded and extruded at a high draw ratio, (3) A method in which a polyolefin composition and an inorganic filler are melt-kneaded and molded on a sheet, Can be performed by: As an example, the methods (1) and (3) will be described below.
- the polyolefin resin composition and the pore-forming material are melt-kneaded.
- the melt-kneading method for example, the polyolefin resin and, if necessary, other additives are put into a resin kneading apparatus such as an extruder, kneader, lab plast mill, kneading roll, Banbury mixer, etc., while the resin component is heated and melted.
- a method of introducing and kneading the pore-forming material at an arbitrary ratio is mentioned.
- a plasticizer As the hole forming material, a plasticizer, an inorganic material, or a combination thereof can be used.
- the plasticizer is not particularly limited, but it is preferable to use a non-volatile solvent that can form a uniform solution at a temperature equal to or higher than the melting point of the polyolefin.
- a non-volatile solvent include, for example, hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate; higher alcohols such as oleyl alcohol and stearyl alcohol. . Note that these plasticizers may be recovered and reused after extraction by an operation such as distillation.
- the polyolefin resin, other additives and the plasticizer are previously kneaded at a predetermined ratio using a Henschel mixer or the like in advance. More preferably, in the pre-kneading, a part of the plasticizer to be used is charged, and the remaining plasticizer is appropriately heated in a resin kneader and kneaded while side-feeding.
- a kneading method the dispersibility of the plasticizer is increased, and when the sheet-shaped molded body of the melt-kneaded product of the resin composition and the plasticizer is stretched in a later step, a high magnification is obtained without breaking the film. Tend to stretch.
- liquid paraffin has high compatibility with the polyolefin resin when polyethylene or polypropylene is used, and even when the melt-kneaded product is stretched, the interface between the resin and the plasticizer hardly occurs, and uniform stretching is possible. This is preferable because it tends to be carried out easily.
- the ratio of the polyolefin resin composition and the plasticizer is not particularly limited as long as they can be uniformly melt-kneaded and formed into a sheet shape.
- the mass fraction of the plasticizer in the composition comprising the polyolefin resin composition and the plasticizer is preferably 20 to 90 mass%, more preferably 30 to 80 mass%.
- the mass fraction of the plasticizer is 90% by mass or less, the melt tension at the time of melt molding tends to be sufficient for improving moldability.
- the mass fraction of the plasticizer is 20% by mass or more, even when the mixture of the polyolefin resin composition and the plasticizer is stretched at a high magnification, the polyolefin molecular chain is not broken, and the pore structure is uniform and fine. Are easily formed, and the strength is also easily increased.
- the inorganic material is not particularly limited.
- oxide ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide; silicon nitride, titanium nitride, nitride Nitride ceramics such as boron; silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite , Ceramics such as asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand; and glass fiber. These may be used alone or in combination of two or more. Among these, silica, alumina, and titania are preferable from the viewpoint of electrochemical stability, and silica is more preferable from the viewpoint of easy extraction from the
- the ratio of the inorganic material to the polyolefin resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and high strength with respect to the total mass from the viewpoint of obtaining good separability. From the viewpoint of ensuring the above, it is preferably 99% by mass or less, and more preferably 95% by mass or less.
- the ratio (Q / N,) of the extrusion rate of the polyolefin composition (that is, the discharge amount Q of the extruder: kg / hour) and the screw rotation speed N (rpm) of the extruder (Unit: kg / (h ⁇ rpm)) is preferably 2.0 or more and 7.0 or less, more preferably 3.0 or more and 6.0 or less, and still more preferably 4.0 or more and 5.0 or less.
- melt kneading is performed under a Q / N condition of 2.0 or more and less than 7.0, moderate unevenness can be formed on the surface of the melt kneaded product by controlling the bleed mode of the plasticizer such as liquid paraffin. Friction of the polyolefin microporous film is easily adjusted appropriately.
- melt-kneaded product is formed into a sheet.
- a melt-kneaded product is extruded into a sheet shape via a T-die or the like, and brought into contact with a heat conductor to cool to a temperature sufficiently lower than the crystallization temperature of the resin component. And then solidify.
- the heat conductor used for cooling and solidifying include metals, water, air, and plasticizers. Among these, it is preferable to use a metal roll because of its high heat conduction efficiency.
- the die lip interval when the melt-kneaded product is extruded from the T die into a sheet is preferably 200 ⁇ m or more and 3,000 ⁇ m or less, and more preferably 500 ⁇ m or more and 2,500 ⁇ m or less.
- the die lip interval is 200 ⁇ m or more, the mess and the like are reduced, and there is little influence on the film quality such as streaks or defects, and the risk of film breakage or the like can be reduced in the subsequent stretching step.
- the die lip interval is 3,000 ⁇ m or less, the cooling rate is high, cooling unevenness can be prevented, and the thickness stability of the sheet can be maintained.
- the sheet-like molded body may be rolled. Rolling can be performed, for example, by a pressing method using a double belt press or the like.
- the rolling surface magnification is preferably more than 1 and 3 or less, more preferably more than 1 and 2 or less.
- the rolling ratio exceeds 1, the plane orientation increases and the film strength of the finally obtained porous film tends to increase.
- the rolling ratio is 3 times or less, the orientation difference between the surface layer portion and the center is small, and a uniform porous structure tends to be formed in the thickness direction of the film.
- the stretching process in which the sheet-shaped molded body or the porous membrane is stretched may be performed before the step (hole forming process) of extracting the hole forming material from the sheet-shaped molded body, or the hole forming material is extracted from the sheet-shaped molded body. You may carry out with respect to the porous membrane which was made. Furthermore, you may perform an extending process before and after extraction of the hole formation material from a sheet-like molded object.
- biaxial stretching is preferable from the viewpoint of improving the strength and the like of the obtained porous film.
- the stretching method include simultaneous biaxial stretching, sequential biaxial stretching, multistage stretching, and multiple stretching. Simultaneous biaxial stretching is preferred from the viewpoints of improvement of puncture strength, uniformity of stretching, and shutdown property. Further, sequential biaxial stretching is preferable from the viewpoint of easy control of the plane orientation.
- simultaneous biaxial stretching is a stretching method in which stretching in the MD (machine direction of continuous microporous membrane) stretching and TD (in the direction crossing the MD of the microporous membrane at an angle of 90 °) are performed simultaneously.
- the stretching ratio in each direction may be different.
- Sequential biaxial stretching refers to a stretching method in which MD and TD are stretched independently. When MD or TD is stretched, the other direction is fixed in an unconstrained state or a constant length. State.
- the stretching ratio is preferably in the range of 20 to 100 times in terms of surface magnification, and more preferably in the range of 25 to 70 times.
- the draw ratio in each axial direction is preferably in the range of 4 to 10 times in MD, 4 to 10 times in TD, 5 to 8 times in MD, and 5 times or more in TD. More preferably, it is in the range of 8 times or less.
- the total area magnification is 20 times or more, there is a tendency that sufficient strength can be imparted to the obtained porous film.
- the total area magnification is 100 times or less, film breakage in the stretching process is prevented and high productivity tends to be obtained.
- the ratio of the strain rate in the MD direction to the strain rate in the TD direction is preferably 1.2 or more and 1 0.8 or less, more preferably 1.3 or more and 1.7 or less, and still more preferably 1.4 or more and 1.6 or less.
- the rate of thermal shrinkage in the TD direction at 130 ° C.
- step (C) the hole forming material is removed from the sheet-like molded body to form a porous film. This step can be performed before and / or after the stretching step and can be included in step (C).
- a method for removing the hole forming material for example, a method of extracting the hole forming material by immersing the sheet-like molded body in an extraction solvent and sufficiently drying it may be mentioned.
- the method for extracting the hole forming material from the sheet-like molded body may be either a batch type or a continuous type.
- the extraction solvent used when extracting the pore-forming material from the sheet-shaped molded body is a poor solvent for the polyolefin resin and a good solvent for the pore-forming material, and the boiling point is lower than the melting point of the polyolefin resin. Is preferred.
- extraction solvents examples include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; non-chlorine such as hydrofluoroether and hydrofluorocarbon Halogenated solvents; alcohols such as ethanol and isopropanol; ethers such as diethyl ether and tetrahydrofuran; ketones such as acetone and methyl ethyl ketone.
- hydrocarbons such as n-hexane and cyclohexane
- halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane
- non-chlorine such as hydrofluoroether and hydrofluorocarbon Halogenated solvents
- alcohols such as ethanol and isopropanol
- ethers such as diethyl ether and tetrahydrofuran
- ketones such as acetone and
- heat setting process In the heat setting process, heat treatment is performed for the purpose of heat setting after the stretching process or after the formation of the porous film in order to suppress the shrinkage of the porous film. This step can be included in step (C), (C-1) or (C-2). Further, the porous film may be subjected to a post-treatment such as a hydrophilic treatment with a surfactant or the like, or a crosslinking treatment with ionizing radiation or the like.
- a stretching operation performed at a predetermined temperature atmosphere and a predetermined stretching rate and / or a reduction of stretching stress is performed at a predetermined temperature atmosphere and a predetermined relaxation rate.
- a relaxation operation is mentioned.
- the relaxation operation may be performed after the stretching operation.
- the relaxation operation is an operation for reducing the film to MD and / or TD.
- the relaxation rate is a value obtained by dividing the dimension of the film after the relaxation operation by the dimension of the film before the relaxation operation. When both MD and TD are relaxed, it is a value obtained by multiplying the MD relaxation rate and the TD relaxation rate.
- the relaxation rate is preferably 1.0 or less, more preferably 0.97 or less, and even more preferably 0.95 or less.
- the relaxation rate is preferably 0.5 or more from the viewpoint of film quality.
- the relaxation operation may be performed in both directions of MD and TD, but only one of MD and TD may be performed.
- the stretching and relaxation operations after this plasticizer extraction are preferably performed at TD.
- the temperature in the stretching and relaxation operation is preferably lower than the melting point of the polyolefin resin, and more preferably in the range of 1 ° C. to 25 ° C. lower than the melting point of the polyolefin resin. When the temperature in the stretching and relaxation operation is within the above range, it is preferable from the viewpoint of the balance between the thermal shrinkage reduction and the porosity.
- the strain rate in the TD stretching step is preferably 20% / second or more, more preferably 25% / second or more, 30% More preferably, it is more than / sec.
- a microporous film excellent in heat shrinkability for example, a heat shrinkage rate in the TD direction at 120 ° C. is 8.0% or less
- the thermal shrinkage rate in the TD direction at 130 ° C. is 3 to 5 times the thermal shrinkage rate in the TD direction at 120 ° C., and 12.0% or more than the thermal shrinkage rate in the TD direction at 120 ° C.
- a large polyolefin microporous film tends to be obtained. This tendency is remarkable in the method for producing a polyolefin microporous membrane according to the fifth and seventh embodiments.
- the relaxation rate is preferably 10% / second or less, more preferably 8% / second or less, and 6% / second or less. Is more preferable.
- a microporous film excellent in heat shrinkability for example, a thermal shrinkage rate in the TD direction at 120 ° C. is 8.0% or less, and at 130 ° C.
- the microporous polyolefin has a thermal contraction rate in the TD direction of 3 to 5 times the thermal contraction rate in the TD direction at 120 ° C. and 12.0% or more larger than the thermal contraction rate in the TD direction at 120 ° C.
- a film tends to be obtained. This tendency is remarkable in the method for producing a polyolefin microporous membrane according to the fifth and seventh embodiments.
- the polyolefin microporous membrane according to this embodiment can be used as a separator for a secondary battery. Since the separator including the polyolefin microporous membrane according to the present embodiment suppresses shrinkage to an external temperature near 120 ° C. and shuts down quickly at a higher external temperature, the safety of the secondary battery can be improved. .
- the measured value of the various physical properties mentioned above is a value measured according to the measuring method in the Example mentioned later unless there is particular notice.
- the molecular weight distribution index (Mw / Mn) was also obtained by calculating the weight average molecular weight (Mw) and the number average molecular weight (Mn) of each sample.
- Porosity (%) (volume ⁇ mass / membrane density) / volume ⁇ 100
- Air permeability (sec) In accordance with JIS P-8117, the air resistance of the polyolefin microporous membrane was measured using the Gurley type air permeability meter G-B2 (trademark) manufactured by Toyo Seiki Co., Ltd. It was.
- MD direction thermal shrinkage (%) (100 ⁇ MD direction dimension after heating) / 100 ⁇ 100 (%)
- TD direction thermal shrinkage rate (%) (100 ⁇ dimension in TD direction after heating) / 100 ⁇ 100 (%) From the obtained thermal contraction value, the ratio of the thermal contraction rate in the MD direction to the thermal contraction rate in the TD direction (MD / TD thermal contraction ratio) was calculated.
- the coating layer is formed in an organic solvent that can dissolve the coating layer. The polyolefin microporous membrane is immersed, and the coating layer is removed, whereby the thermal shrinkage of the polyolefin microporous membrane can be measured.
- the sample was set so that the distance between chucks was 50 mm, and the sample was stretched at a pulling speed of 200 mm / min until the distance between chucks was 60 mm, that is, the strain reached 20.0%.
- the tensile modulus (MPa) was determined from the slope of 1.0% to 4.0% strain in the obtained stress-strain curve. From the obtained elastic modulus, the ratio of the elastic modulus in the MD direction to the elastic modulus in the TD direction (MD / TD elastic modulus ratio) was calculated.
- FIG. 1 (A) shows a schematic view of an apparatus for measuring the meltdown temperature.
- 1 is a microporous film
- 2A and 2B are 10-micrometer-thick nickel foils
- 3A and 3B are glass plates.
- Reference numeral 4 denotes an electric resistance measuring device (LCR meter “AG-4411” (trademark) manufactured by Ando Electric Co., Ltd.), which is connected to the nickel foils 2A and 2B.
- a thermocouple 5 is connected to the thermometer 6.
- a data collector 7 is connected to the electric resistance device 4 and the thermometer 6. 8 is an oven that heats the microporous membrane. More specifically, as shown in FIG.
- the microporous film 1 is overlaid on the nickel foil 2A, and the “Teflon” (registered trademark) tape (shaded portion in the figure) is vertically attached to the nickel foil 2A. Fix it.
- “Teflon” (registered trademark) tape is pasted on the nickel foil 2B, and masking is performed by leaving a window portion of 15 mm ⁇ 10 mm in the central portion of the foil 2B. It is.
- the nickel foil 2A and the nickel foil 2B are overlapped so as to sandwich the microporous film 1, and two nickel foils are sandwiched by the glass plates 3A and 3B from both sides thereof. At this time, the window portion of the foil 2 ⁇ / b> B and the porous film 1 come to face each other.
- Two glass plates are fixed by pinching with a commercially available double clip.
- the thermocouple 5 is fixed to the glass plate with “Teflon” (registered trademark) tape.
- Temperature and electric resistance are continuously measured with such an apparatus.
- the temperature is raised from 25 ° C. to 200 ° C. at a rate of 2 ° C./min, and the electric resistance value is measured at an alternating current of 1 kHz. After the electric resistance value exceeded 10 3 ⁇ , the temperature at which the electric resistance value again fell below 10 3 ⁇ was defined as the meltdown temperature.
- a wound electrode body was produced by a conventional method. The number of windings was adjusted according to the thickness of the PO microporous film. The outermost peripheral end portion of the obtained wound electrode body was fixed by applying an insulating tape.
- the negative electrode lead was welded to the battery can, the positive electrode lead was welded to the safety valve, and the wound electrode body was inserted into the battery can. Thereafter, 5 g of the nonaqueous electrolyte was poured into the battery can, and the lid was caulked to the battery can via a gasket to obtain a cylindrical secondary battery having an outer diameter of 18 mm and a height of 65 mm.
- This cylindrical secondary battery was charged to a battery voltage of 4.2 V at a current value of 0.2 C (current that is 0.2 times the hourly rate (1 C) of the rated electric capacity) in an atmosphere of 25 ° C.
- the battery was charged for a total of 3 hours by a method of starting to reduce the current value so as to hold 2 V. Subsequently, the battery was discharged to a battery voltage of 3.0 V at a current value of 0.2 C.
- the percentage (%) of cells that maintained a capacity of 0% or more was calculated as self-discharge characteristics.
- the charged secondary battery was heated from room temperature to 120 ° C. at a rate of 5 ° C./minute, and held in that state for 30 minutes. Thereafter, the secondary battery was further heated to 150 ° C. at 30 ° C./min, the time until ignition was measured, and evaluated according to the following criteria.
- a (good) and B (acceptable) were used as acceptance criteria.
- B (Acceptable) Fired at 150 ° C for 30 minutes or more and less than 45 minutes.
- FIG. 2 is a schematic diagram of a crash test.
- the impact of the impact on the sample is observed by dropping a 18.2 kg weight onto the top of the round bar.
- the procedure of the collision test in an Example and a comparative example is demonstrated below. Under the environment of 25 ° C., the secondary battery obtained in the above item d was charged with a constant current of 1 C, and after reaching 4.2 V, it was charged with a constant voltage of 4.2 V for a total of 3 hours. Next, in a 25 ° C.
- the secondary battery was placed sideways on a flat surface, and a stainless steel round bar having a diameter of 15.8 mm was arranged so as to cross the center of the secondary battery.
- the round bar was arranged so that its long axis was parallel to the longitudinal direction of the separator.
- a 18.2 kg weight was dropped from a height of 61 cm so that an impact was applied at a right angle to the vertical axis direction of the secondary battery from the round bar arranged at the center of the secondary battery.
- the surface temperature of the secondary battery was measured. Tests were performed for 5 cells each and evaluated according to the following criteria. For this evaluation item, A (good) and B (acceptable) were used as acceptance criteria.
- the surface temperature of a secondary battery is the temperature which measured the position of 1 cm from the bottom side of the exterior body of a secondary battery with the thermocouple (K type seal type).
- Examples 1 to 23 and Comparative Examples 1 to 12 Polyethylene was synthesized using a polyethylene synthesis catalyst (shown as “synthesis catalyst” in the table) shown in any of Tables 1 to 4 and an ethylene monomer. As shown in Tables 1 to 4, since each of the examples uses a mixture of two types of polyethylene, one type of polyethylene is described as PE1, the other type of PE as PE2, and PE1 and PE2 respectively. Tables 1 to 4 show the synthesis catalyst, viscosity average molecular weight, and weight fraction.
- the obtained polyethylene and a plasticizer were blended and stirred with a Henschel mixer to prepare a resin composition.
- the resin composition is extruded, formed into a sheet, stretched, immersed in methylene chloride to form holes, and heat-set to obtain a polyolefin porous film It was.
- Tables 1 to 3 show the physical properties of the microporous membranes obtained in Examples 1 to 23 and the evaluation results when they are incorporated in the secondary battery.
- Table 4 shows the physical properties of the porous films obtained in Comparative Examples 1 to 12 and the evaluation results when they were incorporated in the secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cell Separators (AREA)
- Molding Of Porous Articles (AREA)
Abstract
Description
[1]
120℃でのTD方向の熱収縮率が8%以下であり、そして130℃でのTD方向の熱収縮率が、前記120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ前記120℃でのTD方向の熱収縮率より12%以上大きいポリオレフィン微多孔膜。
[2]
動摩擦係数が0.10以上0.35以下である、[1]に記載のポリオレフィン微多孔膜。
[3]
ゲルパーミエーションクロマトグラフィー(GPC)測定において、分子量50,000以下の分子を15%以上含み、かつ分子量500,000以上の分子を15%以上含む、[1]又は[2]に記載のポリオレフィン微多孔膜。
[4]
メルトダウン温度が150℃以上200℃以下である、[1]~[3]のいずれか1項に記載のポリオレフィン微多孔膜。
[5]
TD方向の熱収縮率に対するMD方向の熱収縮率の比(MD/TDの熱収縮比率)が、120℃では1.0を超え、かつ130℃では1.0未満である、[1]~[4]のいずれか1項に記載のポリオレフィン微多孔膜。
[6]
TD方向の弾性率に対するMD方向の弾性率の比(MD/TDの弾性率比率)が、1.7以上3.0以下である、[5]に記載のポリオレフィン微多孔膜。
[7]
以下の工程:
(A)モノマー及びチーグラー・ナッタ触媒を用いてポリエチレン又はエチレン構成単位含有コポリマーを合成して、ポリエチレン原料を得る工程;
(B)前記ポリエチレン原料を含むポリオレフィン組成物をシートに成形して、前記シートを延伸する工程;並びに
(C)前記シートを抽出し、熱固定して、120℃でのTD方向の熱収縮率が8%以下であり、そして130℃でのTD方向の熱収縮率が、前記120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ前記120℃でのTD方向の熱収縮率より12%以上大きいポリオレフィン微多孔膜を形成する工程;
を含む、ポリオレフィン微多孔膜の製造方法。
[8]
前記工程(B)において、前記ポリオレフィン組成物の押出速度Qと押出機のスクリュー回転数Nとの比(Q/N)が、2.0以上7.0以下である、[7]に記載のポリオレフィン微多孔膜の製造方法。
[9]
前記工程(B)の同時二軸又は逐次二軸延伸において、TD方向の歪み速度に対するMD方向の歪み速度の比(MD/TDの歪み速度比)が、1.2以上1.8以下である、[7]又は[8]に記載のポリオレフィン微多孔膜の製造方法。
[10]
前記工程(C)の熱固定において、TD方向への延伸と緩和を1回ずつ含み、延伸工程の歪み速度が20%/秒以上であり、緩和速度が10%/秒以下である、[7]~[9]のいずれか1項に記載のポリオレフィン微多孔膜の製造方法。
また、本発明によれば、120℃付近の外部温度まではセパレータの収縮を抑え、より高温の外部温度では速やかにセパレータをシャットダウンさせることができ、ひいては2次電池の安全性を向上させることができる。
本発明の一態様は、ポリオレフィン微多孔膜である。ポリオレフィン微多孔膜は、電子伝導性が小さく、イオン伝導性を有し、有機溶媒に対する耐性が高く、かつ孔径の微細なものが好ましい。また、ポリオレフィン微多孔膜は、2次電池用セパレータとして利用されることができる。
ポリオレフィン微多孔膜としては、例えば、ポリオレフィン樹脂を含む多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を含む多孔膜、ポリオレフィン系の繊維の織物(織布)、ポリオレフィン系の繊維の不織布、紙、並びに、絶縁性物質粒子の集合体が挙げられる。これらの中でも、塗工工程を経て多層多孔膜、すなわち2次電池用セパレータを得る場合に塗工液の塗工性に優れ、セパレータの膜厚を従来のセパレータより薄くして、2次電池等の蓄電デバイス内の活物質比率を高めて体積当たりの容量を増大させる観点から、ポリオレフィン樹脂を含む多孔膜(以下、「ポリオレフィン樹脂多孔膜」ともいう。)が好ましい。
ポリオレフィン樹脂多孔膜は、2次電池用セパレータとして使用された時のシャットダウン性能等を向上させる観点から、多孔膜を構成する樹脂成分の50質量%以上100質量%以下をポリオレフィン樹脂が占めるポリオレフィン樹脂組成物により形成される多孔膜であることが好ましい。ポリオレフィン樹脂組成物におけるポリオレフィン樹脂が占める割合は、60質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましい。
中でも、ポリオレフィン樹脂多孔膜が2次電池用セパレータとして使用された時のシャットダウン特性の観点から、ポリオレフィン樹脂としてはポリエチレン、ポリプロピレン、及びこれらの共重合体、並びにこれらの混合物が好ましい。
ポリエチレンの具体例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン等が挙げられる。
ポリプロピレンの具体例としては、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、アタクティックポリプロピレン等が挙げられる。
共重合体の具体例としては、エチレン-プロピレンランダム共重合体、エチレン-プロピレンラバー等が挙げられる。
ポリオレフィン微多孔膜は、非常に小さな孔が多数集まって緻密な連通孔を形成した多孔構造を有しているため、イオン伝導性に非常に優れると同時に耐電圧特性も良好であり、しかも高強度であるという特徴を有する。
また、上述したポリオレフィン微多孔膜のいずれか一方又は両方の面上に、一つ又は複数の異なる機能層が形成されていてもよい。機能層としては、例えば、無機粒子又は架橋性高分子などの耐熱樹脂を含む耐熱層、接着性高分子を含む接着層等が挙げられる。
積層化方法は、グラビアコーター若しくはダイコーターによりポリオレフィン微多孔膜に機能層をコーティングする方法、又は共押出による積層化などが挙げられる。
平均孔径は、組成比、押出シートの冷却速度、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率を制御すること、又はこれらを組み合わせることにより調整することができる。
微多孔膜の気孔率は、ポリオレフィン樹脂組成物と可塑剤の混合比率、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率を制御すること、又はこれらを組み合わせることによって調整することができる。
本発明の別の態様は、ポリオレフィン微多孔膜の製造方法である。
(A)モノマー及びチーグラー・ナッタ触媒を用いてポリエチレン又はエチレン構成単位含有コポリマーを合成して、ポリエチレン原料を得る工程;
(B)ポリエチレン原料を含むポリオレフィン組成物をシートに成形して、シートを延伸する工程;並びに
(C)シートを抽出し、熱固定して、120℃でのTD方向の熱収縮率が8.0%以下であり、そして130℃でのTD方向の熱収縮率が、120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ120℃でのTD方向の熱収縮率より12.0%以上大きいポリオレフィン微多孔膜を形成する工程;
を含む。
(B-1)ポリオレフィン組成物から成る成形シートの同時二軸又は逐次二軸延伸工程であって、TD方向の歪み速度に対するMD方向の歪み速度の比(MD/TDの歪み速度比)が1.2以上1.8以下である工程;
を含む。
(C-1)延伸されたシートを抽出し、20%/秒以上の横(TD)方向の歪み速度でシートをTD延伸に供する工程;及び
(C-2)TD延伸されたシートを10%/秒以下の緩和速度で緩和する工程;
を含む。
工程(C-1)及び(C-2)によって、ポリオレフィン組成物から成る成形シート又は微多孔膜を急速に延伸した後に緩やかに緩和することが可能である。
ポリエチレン原料の合成工程では、モノマーを重合してポリエチレン又はエチレン構成単位含有コポリマーを合成する。この工程は、工程(A)を含むことが好ましい。
成形・延伸工程では、ポリオレフィン組成物の成形と延伸を行う。この工程は、工程(B)又は(B-1)を含むことが好ましい。ポリオレフィン組成物は、例えばシート状に成形されることができる。
ポリオレフィン組成物の成形は、例えば、
(1)ポリオレフィン組成物と孔形成材を溶融混練してシート状に成形する方法、
(2)ポリオレフィン組成物を溶融混練して高ドロー比で押し出す方法、
(3)ポリオレフィン組成物と無機充填材を溶融混練してシート上に成形する方法、
により行なわれることができる。一例として上記(1)及び(3)の方法を以下に説明する。
シート状成形体又は多孔膜が延伸される延伸工程は、シート状成形体から孔形成材を抽出する工程(孔形成工程)の前に行ってよいし、シート状成形体から孔形成材を抽出した多孔膜に対して行ってもよい。さらに、延伸工程は、シート状成形体からの孔形成材の抽出の前と後に行ってもよい。
シート状成形体を二軸方向に高倍率延伸すると、分子が面方向に配向し、最終的に得られる多孔膜が裂け難くなり、高い突刺強度を有するものとなる。延伸方法としては、例えば、同時二軸延伸、逐次二軸延伸、多段延伸、多数回延伸等の方法を挙げることができる。突刺強度の向上、延伸の均一性、シャットダウン性の観点からは、同時二軸延伸が好ましい。また、面配向の制御容易性の観点からは遂次二軸延伸が好ましい。
孔形成(抽出)工程では、シート状成形体から孔形成材を除去して多孔膜を形成する。この工程は、延伸工程の前及び/又は後に行われることができ、工程(C)に含まれることができる。
熱固定工程では、多孔膜の収縮を抑制するために、延伸工程後、又は、多孔膜形成後に熱固定を目的として熱処理を行う。この工程は、工程(C)、(C-1)又は(C-2)に含まれることができる。また、多孔膜に、界面活性剤等による親水化処理、電離性放射線等による架橋処理等の後処理を行ってもよい。
緩和操作は、膜のMD及び/又はTDへの縮小操作のことである。緩和率とは、緩和操作後の膜の寸法を緩和操作前の膜の寸法で除した値のことである。なお、MDとTDの双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。緩和率は、1.0以下であることが好ましく、0.97以下であることがより好ましく、0.95以下であることがさらに好ましい。緩和率は、膜品位の観点から0.5以上であることが好ましい。緩和操作は、MDとTDの両方向で行ってもよいが、MDとTDのうち片方だけ行ってもよい。
この可塑剤抽出後の延伸及び緩和操作は、好ましくはTDに行う。延伸及び緩和操作における温度は、ポリオレフィン樹脂の融点より低いことが好ましく、ポリオレフィン樹脂の融点より1℃から25℃低い範囲内にあることがより好ましい。延伸及び緩和操作における温度が上記範囲内であると、熱収縮率低減と気孔率とのバランスの観点から好ましい。
本実施形態に係るポリオレフィン微多孔膜は、2次電池用セパレータとして利用されることができる。本実施形態に係るポリオレフィン微多孔膜を含むセパレータは、120℃付近の外部温度までは収縮を抑え、より高温の外部温度では速やかにシャットダウンするため、2次電池の安全性を改良することができる。
ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を求めた。
ポリエチレンについては、次式により算出した。
[η]=6.77×10-4Mv0.67
GPC装置として、Waters社製のALC/GPC-150-C-plus型(商標)を用い、東ソー(株)製のGMH6-HT(商標)の30cmのカラム2本とGMH6-HTL(商標)の30cmのカラム2本を直列接続して使用し、オルトジクロロベンゼンを移動相溶媒として使用し、試料濃度0.05wt%で140℃にてGPC測定を行った。
なお、標準物質として市販の分子量が既知の単分散ポリスチレンを用いて検量線を作成し、求められた各試料のポリスチレン換算の分子量分布データに、0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)を乗じることにより、ポリエチレン換算の分子量分布データを取得した。これにより、各試料の重量平均分子量(Mw)、及び数平均分子量(Mn)を算出することで、分子量分布指標(Mw/Mn)も得た。
微小測厚器(東洋精機製 タイプKBM)を用いて、室温23℃で膜厚を測定した。
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm3)と質量(g)を求め、それらと膜密度(g/cm3)より、次式を用いて気孔率を計算した。
気孔率(%)=(体積-質量/膜密度)/体積×100
JIS P-8117に準拠し、東洋精器(株)製のガーレー式透気度計、G-B2(商標)を用いてポリオレフィン微多孔膜の透気抵抗度を測定し、透気度として示した。
カトーテック製のハンディー圧縮試験器KES-G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで微多孔膜を固定した。次に固定された微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、25℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重として生の突刺強度(gf)を得た。
サンプルをMD/TD方向にそれぞれ100mmの正方形に切り出し、120℃、または130℃に加熱してある熱風乾燥機にサンプルを入れ、1時間後の寸法収縮率を求めた。サンプルは、乾燥機の内壁等に付着しないように、かつサンプル同士が融着しないように、コピー紙等の上に乗せた。MD方向熱収縮率とTD方向熱収縮率は、それぞれ下記数式により算出される。
MD方向熱収縮率(%)=(100-加熱後のMD方向寸法)/100×100(%)
TD方向熱収縮率(%)=(100-加熱後のTD方向寸法)/100×100(%)
得られた熱収縮値から、TD方向の熱収縮率に対するMD方向の熱収縮率の比(MD/TDの熱収縮比率)を算出した。
また、ポリオレフィン微多孔膜上に無機粒子、耐熱樹脂又は接着性高分子などを含む塗工層が形成されている場合は、塗工層を溶解することができる有機溶媒に、塗工層が形成されたポリオレフィン微多孔膜を浸漬させ、塗工層を除去することで、ポリオレフィン微多孔膜の熱収縮率を測定することができる。
カトーテック株式会社製、KES-SE摩擦試験機を用い、荷重50g、接触子面積10×10=100mm2(0.5mmφの硬質ステンレス線(SUS304製ピアノ線)を隙間なく、かつ、重ならないように20本巻きつけたもの)、接触子送りスピード1mm/秒、張力6kPa、温度25℃、及び湿度50%の条件下で幅50mm×測定方向200mmのサンプルサイズについてMD、TD方向に各3回ずつ動摩擦係数を測定し、その平均を求めた。
MD方向及びTD方向の測定について、MD方向サンプル(MD方向120mm×TD方向10mm)及びTD方向サンプル(MD方向10mm×TD方向120mm)を切り出した。雰囲気温度23±2℃、湿度40±2%の状況下でJIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG-A型(商標)を用いて、サンプルのMD方向及びTD方向の引張弾性率を測定した。サンプルをチャック間距離が50mmとなるようにセットし、引張速度200mm/分でチャック間が60mm、すなわち歪みが20.0%に達するまでサンプルを伸張した。引張弾性率(MPa)は、得られる応力-歪曲線における歪み1.0%から4.0%の傾きから求めた。得られた弾性率から、TD方向の弾性率に対するMD方向の弾性率の比(MD/TDの弾性率比率)を算出した。
図1(A)にメルトダウン温度の測定装置の概略図を示す。1は微多孔膜であり、2A及び2Bは厚さ10μmのニッケル箔、3A及び3Bはガラス板である。4は電気抵抗測定装置(安藤電気製LCRメーター「AG-4311」(商標))でありニッケル箔2A、2Bと接続されている。5は熱電対であり温度計6と接続されている。7はデータコレクターであり、電気抵抗装置4及び温度計6と接続されている。8はオーブンであり、微多孔膜を加熱する。
さらに詳細に説明すると、図1(B)に示すようにニッケル箔2A上に微多孔膜1を重ねて、縦方向に「テフロン」(登録商標)テープ(図の斜線部)でニッケル箔2Aに固定する。微多孔膜1には電解液として1mol/リットルのホウフッ化リチウム溶液(溶媒:プロピレンカーボネート/エチレンカーボネート/γ-ブチルラクトン=1/1/2)が含浸されている。ニッケル箔2B上には図1(C)に示すように「テフロン」(登録商標)テープ(図の斜線部)を貼り合わせ、箔2Bの中央部分に15mm×10mmの窓の部分を残してマスキングしてある。
ニッケル箔2Aとニッケル箔2Bを微多孔膜1をはさむような形で重ね合わせ、さらにその両側からガラス板3A、3Bによって2枚のニッケル箔をはさみこむ。このとき、箔2Bの窓の部分と、多孔膜1が相対する位置に来るようになっている。
2枚のガラス板は市販のダブルクリップではさむことにより固定する。熱電対5は「テフロン」(登録商標)テープでガラス板に固定する。
このような装置で連続的に温度と電気抵抗を測定する。なお、温度は25℃から200℃まで2℃/minの速度にて昇温させ、電気抵抗値は1kHzの交流にて測定する。電気抵抗値が103Ωを上回った後に、再び103Ωを下回るときの温度をメルトダウン温度とした。
a.正極の作製
正極活物質としてリチウムコバルト複合酸化物LiCoO2、並びに導電材としてグラファイト及びアセチレンブラックを、バインダーであるポリフッ化ビニリデン(PVDF)及びN-メチルピロリドン(NMP)に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ15μmのアルミニウム箔にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。得られた成形体を57.0mm幅にスリットして正極を得た。
負極活物質として人造グラファイト、及びバインダーとしてカルボキシメチルセルロースのアンモニウム塩とスチレン-ブタジエン共重合体ラテックスとを、精製水に分散させてスラリーを調製した。このスラリーを負極集電体となる銅箔にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。得られた成形体を58.5mm幅にスリットして負極を得た。
エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=1:1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1mol/Lとなるように溶解させて、非水電解液を調製した。
正極、実施例又は比較例で得られた多孔膜及び負極を積層した後、常法により巻回電極体を作製した。なお、PO微多孔膜の厚みによって巻回数を調整した。得られた巻回電極体の最外周端部を絶縁テープの貼付により固定した。負極リードを電池缶に、正極リードを安全弁にそれぞれ溶接して、巻回電極体を電池缶の内部に挿入した。その後、非水電解液を電池缶内に5g注入し、ガスケットを介して蓋を電池缶にかしめることにより、外径18mm、高さ65mmの円筒型2次電池を得た。この円筒型2次電池を25℃雰囲気下、0.2C(定格電気容量の1時間率(1C)の0.2倍の電流)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を絞り始めるという方法で、合計3時間充電を行った。続いて0.2Cの電流値で電池電圧3.0Vまで放電した。0%以上の容量を維持していたセルの割合(%)を、自己放電特性として算出した。
dで組み立てた2次電池を用いて、充電後の2次電池を室温から120℃まで5℃/分で昇温させ、その状態で30分保持した。その後、2次電池を30℃/分でさらに150℃まで昇温させ、発火までの時間を計測し、下記基準により評価した。本評価項目については、A(良好)とB(許容)を合格の基準とした。
A(良好):150℃保持で45分以上発火しなかったもの。
B(許容):150℃保持で30分以上45分未満で発火したもの。
C(不可):150℃保持で30分未満で発火したもの、又は150℃に達する前に発火したもの。
図2は、衝突試験の概略図である。
衝突試験では、試験台上に配置された試料の上に、試料と丸棒(φ=15.8mm)が概ね直交するように、丸棒を置いて、丸棒から61cmの高さの位置から、丸棒の上面へ18.2kgの錘を落すことにより、試料に対する衝撃の影響を観察する。
図2を参照して、実施例及び比較例における衝突試験の手順を以下に説明する。
25℃の環境下で、上記項目dで得た2次電池を1Cの定電流で充電し、4.2Vに到達した後、4.2Vの定電圧で合計3時間充電した。
次に、25℃の環境下で、2次電池を平坦な面に横向きに置き、2次電池の中央部を横切るように、直径15.8mmのステンレスの丸棒を配置した。丸棒は、その長軸がセパレータの長手方向と平行となるように配置した。2次電池の中央部に配置した丸棒から2次電池の縦軸方向に対して、直角に衝撃が加わるように、18.2kgの錘を61cmの高さから落下させた。衝突後、2次電池の表面温度を測定した。5セルずつ試験を行い、下記基準に即して評価した。本評価項目については、A(良好)とB(許容)を合格の基準とした。なお、2次電池の表面温度とは、2次電池の外装体の底側から1cmの位置を熱電対(K型シールタイプ)で測定した温度である。
A(良好):全てのセルにおいて、表面温度上昇が30℃以下。
B(許容):表面温度が30℃超過100℃以下のセルがあるが、全てのセルにおいて表面温度が100℃以下。
C(不可):1個以上のセルで表面温度が100℃を超過、又は発火。
長さ1000mのフィルムを巻取機で巻き取り、巻取後の端面のずれを測定し、下記基準に即して評価した。本評価項目については、A(良好)とB(許容)を合格の基準とした。
A(良好):巻き取り時の端面のずれが1mm以下。
B(許容):巻き取り時の端面のずれが1mmより大きく5mm以下。
C(不可):巻き取り時の端面のずれが5mmより大きい。
表1~4のいずれかに示されるポリエチレン合成用触媒(表中では「合成触媒」として表す)とエチレンモノマーを用いてポリエチレンを合成した。なお、表1~4に示されるように各実施例では2種類のポリエチレンを混合して用いているため、片方のポリエチレン種をPE1、もう片方のPE種をPE2と記載し、PE1とPE2それぞれの合成触媒、粘度平均分子量、重量分率を表1~4に示した。
実施例1~23で得られた微多孔膜の物性及びそれらを2次電池に組み込んだときの評価結果を表1~3に示す。
比較例1~12で得られた多孔膜の物性及びそれらを2次電池に組み込んだときの評価結果を表4に示す。
2A,2B ニッケル箔
3A,3B ガラス板
4 電気抵抗測定装置
5 熱電対
6 温度計
7 データコレクター
8 オーブン
Claims (10)
- 120℃でのTD方向の熱収縮率が8%以下であり、そして130℃でのTD方向の熱収縮率が、前記120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ前記120℃でのTD方向の熱収縮率より12%以上大きいポリオレフィン微多孔膜。
- 動摩擦係数が0.10以上0.35以下である、請求項1に記載のポリオレフィン微多孔膜。
- ゲルパーミエーションクロマトグラフィー(GPC)測定において、分子量50,000以下の分子を15%以上含み、かつ分子量500,000以上の分子を15%以上含む、請求項1又は2に記載のポリオレフィン微多孔膜。
- メルトダウン温度が150℃以上200℃以下である、請求項1~3のいずれか1項に記載のポリオレフィン微多孔膜。
- TD方向の熱収縮率に対するMD方向の熱収縮率の比(MD/TDの熱収縮比率)が、120℃では1.0を超え、かつ130℃では1.0未満である、請求項1~4のいずれか1項に記載のポリオレフィン微多孔膜。
- TD方向の弾性率に対するMD方向の弾性率の比(MD/TDの弾性率比率)が、1.7以上3.0以下である、請求項5に記載のポリオレフィン微多孔膜。
- 以下の工程:
(A)モノマー及びチーグラー・ナッタ触媒を用いてポリエチレン又はエチレン構成単位含有コポリマーを合成して、ポリエチレン原料を得る工程;
(B)前記ポリエチレン原料を含むポリオレフィン組成物をシートに成形して、前記シートを延伸する工程;並びに
(C)前記シートを抽出し、熱固定して、120℃でのTD方向の熱収縮率が8%以下であり、そして130℃でのTD方向の熱収縮率が、前記120℃でのTD方向の熱収縮率の3倍以上5倍以下であり、かつ前記120℃でのTD方向の熱収縮率より12%以上大きいポリオレフィン微多孔膜を形成する工程;
を含む、ポリオレフィン微多孔膜の製造方法。 - 前記工程(B)において、前記ポリオレフィン組成物の押出速度Qと押出機のスクリュー回転数Nとの比(Q/N)が、2.0以上7.0以下である、請求項7に記載のポリオレフィン微多孔膜の製造方法。
- 前記工程(B)の同時二軸又は逐次二軸延伸において、TD方向の歪み速度に対するMD方向の歪み速度の比(MD/TDの歪み速度比)が、1.2以上1.8以下である、請求項7又は8に記載のポリオレフィン微多孔膜の製造方法。
- 前記工程(C)の熱固定において、TD方向への延伸と緩和を1回ずつ含み、延伸工程の歪み速度が20%/秒以上であり、緩和速度が10%/秒以下である、請求項7~9のいずれか1項に記載のポリオレフィン微多孔膜の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880021128.2A CN110461925B (zh) | 2017-03-27 | 2018-01-31 | 聚烯烃微多孔膜及聚烯烃微多孔膜的制造方法 |
KR1020197027874A KR102264032B1 (ko) | 2017-03-27 | 2018-01-31 | 폴리올레핀 미다공막 및 폴리올레핀 미다공막의 제조 방법 |
US16/498,076 US11242440B2 (en) | 2017-03-27 | 2018-01-31 | Polyolefin microporous membrane and production method thereof |
EP18774533.6A EP3587481B1 (en) | 2017-03-27 | 2018-01-31 | Polyolefin microporous membrane and production method thereof |
PL18774533T PL3587481T3 (pl) | 2017-03-27 | 2018-01-31 | Mikroporowata membrana poliolefinowa i sposób jej wytwarzania |
JP2019508661A JP6756902B2 (ja) | 2017-03-27 | 2018-01-31 | ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-060465 | 2017-03-27 | ||
JP2017060465 | 2017-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179810A1 true WO2018179810A1 (ja) | 2018-10-04 |
Family
ID=63674906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003272 WO2018179810A1 (ja) | 2017-03-27 | 2018-01-31 | ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US11242440B2 (ja) |
EP (1) | EP3587481B1 (ja) |
JP (2) | JP6756902B2 (ja) |
KR (1) | KR102264032B1 (ja) |
CN (1) | CN110461925B (ja) |
DE (1) | DE202018006625U1 (ja) |
HU (1) | HUE055821T2 (ja) |
PL (1) | PL3587481T3 (ja) |
WO (1) | WO2018179810A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020084084A (ja) * | 2018-11-28 | 2020-06-04 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
CN112795066A (zh) * | 2019-11-13 | 2021-05-14 | 上海恩捷新材料科技有限公司 | 一种聚烯烃微多孔膜 |
CN112886136A (zh) * | 2019-11-13 | 2021-06-01 | 上海恩捷新材料科技有限公司 | 一种聚烯烃微多孔隔离膜 |
EP3816217A4 (en) * | 2019-03-04 | 2021-08-25 | Asahi Kasei Kabushiki Kaisha | MICROPOROUS POLYOLEFINE MEMBRANE |
KR20220048022A (ko) | 2019-10-08 | 2022-04-19 | 아사히 가세이 가부시키가이샤 | 폴리올레핀 미다공막 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002128942A (ja) | 2000-10-26 | 2002-05-09 | Tonen Chem Corp | ポリオレフィン微多孔膜及びその製造方法 |
WO2004020511A1 (ja) * | 2002-08-28 | 2004-03-11 | Asahi Kasei Chemicals Corporation | ポリオレフィン製微多孔膜及びその評価方法 |
JP2006124652A (ja) | 2004-09-30 | 2006-05-18 | Asahi Kasei Chemicals Corp | ポリオレフィン製微多孔膜 |
JP2009132904A (ja) * | 2007-11-28 | 2009-06-18 | Sk Energy Co Ltd | 物性と高温熱安定性に優れるポリオレフィン微多孔膜 |
WO2009123015A1 (ja) * | 2008-03-31 | 2009-10-08 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜、及び捲回物 |
JP2010007053A (ja) * | 2008-05-30 | 2010-01-14 | Asahi Kasei E-Materials Corp | ポリオレフィン製微多孔膜 |
WO2010070930A1 (ja) * | 2008-12-19 | 2010-06-24 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜及びリチウムイオン二次電池用セパレータ |
JP2012522669A (ja) * | 2009-04-06 | 2012-09-27 | エスケー イノベーション シーオー., エルティーディー. | 物性及び高温安全性に優れたポリオレフィン系多層微多孔膜 |
JP2013535792A (ja) * | 2010-08-02 | 2013-09-12 | セルガード エルエルシー | 高融点微多孔質リチウムイオン再充電可能電池セパレータおよび製造方法および使用方法 |
WO2014126079A1 (ja) * | 2013-02-13 | 2014-08-21 | 東レバッテリーセパレータフィルム株式会社 | 電池用セパレータ及びその電池用セパレータの製造方法 |
JP2017027945A (ja) | 2015-07-24 | 2017-02-02 | 旭化成株式会社 | 蓄電デバイス用セパレータ |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2602830A1 (en) * | 2005-03-31 | 2006-10-12 | Tonen Chemical Corporation | Method for producing microporous polyolefin membrane and microporous membrane |
WO2007069560A1 (ja) * | 2005-12-15 | 2007-06-21 | Asahi Kasei Chemicals Corporation | ポリオレフィン製微多孔膜 |
ATE538167T1 (de) | 2007-01-30 | 2012-01-15 | Asahi Kasei E Materials Corp | Mikroporöse polyolefinmembran |
KR101716249B1 (ko) * | 2014-05-28 | 2017-03-14 | 도레이 배터리 세퍼레이터 필름 주식회사 | 폴리올레핀 미세 다공막 및 이의 제조 방법 |
KR20170041194A (ko) * | 2014-08-12 | 2017-04-14 | 도레이 배터리 세퍼레이터 필름 주식회사 | 폴리올레핀 미세다공막 및 그 제조 방법, 비수 전해액계 이차전지용 세퍼레이터, 및 비수 전해액계 이차전지 |
-
2018
- 2018-01-31 JP JP2019508661A patent/JP6756902B2/ja active Active
- 2018-01-31 US US16/498,076 patent/US11242440B2/en active Active
- 2018-01-31 HU HUE18774533A patent/HUE055821T2/hu unknown
- 2018-01-31 CN CN201880021128.2A patent/CN110461925B/zh active Active
- 2018-01-31 PL PL18774533T patent/PL3587481T3/pl unknown
- 2018-01-31 KR KR1020197027874A patent/KR102264032B1/ko active IP Right Grant
- 2018-01-31 WO PCT/JP2018/003272 patent/WO2018179810A1/ja unknown
- 2018-01-31 DE DE202018006625.7U patent/DE202018006625U1/de active Active
- 2018-01-31 EP EP18774533.6A patent/EP3587481B1/en active Active
-
2020
- 2020-08-27 JP JP2020143684A patent/JP6895570B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002128942A (ja) | 2000-10-26 | 2002-05-09 | Tonen Chem Corp | ポリオレフィン微多孔膜及びその製造方法 |
WO2004020511A1 (ja) * | 2002-08-28 | 2004-03-11 | Asahi Kasei Chemicals Corporation | ポリオレフィン製微多孔膜及びその評価方法 |
JP2006124652A (ja) | 2004-09-30 | 2006-05-18 | Asahi Kasei Chemicals Corp | ポリオレフィン製微多孔膜 |
JP2009132904A (ja) * | 2007-11-28 | 2009-06-18 | Sk Energy Co Ltd | 物性と高温熱安定性に優れるポリオレフィン微多孔膜 |
WO2009123015A1 (ja) * | 2008-03-31 | 2009-10-08 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜、及び捲回物 |
JP2010007053A (ja) * | 2008-05-30 | 2010-01-14 | Asahi Kasei E-Materials Corp | ポリオレフィン製微多孔膜 |
WO2010070930A1 (ja) * | 2008-12-19 | 2010-06-24 | 旭化成イーマテリアルズ株式会社 | ポリオレフィン製微多孔膜及びリチウムイオン二次電池用セパレータ |
JP2012522669A (ja) * | 2009-04-06 | 2012-09-27 | エスケー イノベーション シーオー., エルティーディー. | 物性及び高温安全性に優れたポリオレフィン系多層微多孔膜 |
JP2013535792A (ja) * | 2010-08-02 | 2013-09-12 | セルガード エルエルシー | 高融点微多孔質リチウムイオン再充電可能電池セパレータおよび製造方法および使用方法 |
WO2014126079A1 (ja) * | 2013-02-13 | 2014-08-21 | 東レバッテリーセパレータフィルム株式会社 | 電池用セパレータ及びその電池用セパレータの製造方法 |
JP2017027945A (ja) | 2015-07-24 | 2017-02-02 | 旭化成株式会社 | 蓄電デバイス用セパレータ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3587481A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020084084A (ja) * | 2018-11-28 | 2020-06-04 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
JP7235486B2 (ja) | 2018-11-28 | 2023-03-08 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
EP3816217A4 (en) * | 2019-03-04 | 2021-08-25 | Asahi Kasei Kabushiki Kaisha | MICROPOROUS POLYOLEFINE MEMBRANE |
US12110382B2 (en) | 2019-03-04 | 2024-10-08 | Asahi Kasei Kabushiki Kaisha | Polyolefin microporous membrane |
KR20220048022A (ko) | 2019-10-08 | 2022-04-19 | 아사히 가세이 가부시키가이샤 | 폴리올레핀 미다공막 |
CN112795066A (zh) * | 2019-11-13 | 2021-05-14 | 上海恩捷新材料科技有限公司 | 一种聚烯烃微多孔膜 |
CN112886136A (zh) * | 2019-11-13 | 2021-06-01 | 上海恩捷新材料科技有限公司 | 一种聚烯烃微多孔隔离膜 |
CN112795066B (zh) * | 2019-11-13 | 2023-10-24 | 上海恩捷新材料科技有限公司 | 一种聚烯烃微多孔膜 |
Also Published As
Publication number | Publication date |
---|---|
EP3587481A4 (en) | 2020-04-15 |
JP6756902B2 (ja) | 2020-09-16 |
DE202018006625U1 (de) | 2021-12-17 |
PL3587481T3 (pl) | 2021-12-20 |
EP3587481A1 (en) | 2020-01-01 |
JP6895570B2 (ja) | 2021-06-30 |
US11242440B2 (en) | 2022-02-08 |
EP3587481B1 (en) | 2021-09-08 |
KR102264032B1 (ko) | 2021-06-11 |
JP2020189998A (ja) | 2020-11-26 |
JPWO2018179810A1 (ja) | 2019-11-07 |
HUE055821T2 (hu) | 2021-12-28 |
US20200024419A1 (en) | 2020-01-23 |
CN110461925A (zh) | 2019-11-15 |
KR20190118640A (ko) | 2019-10-18 |
CN110461925B (zh) | 2022-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100977345B1 (ko) | 폴리올레핀제 미다공막 | |
JP4753446B2 (ja) | ポリオレフィン製微多孔膜 | |
JP6895570B2 (ja) | ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 | |
JP5586152B2 (ja) | ポリオレフィン製微多孔膜 | |
US20110059368A1 (en) | Separtor for high-power density lithium ion secondary battery (as amended) | |
JP6823718B2 (ja) | ポリオレフィン微多孔膜、蓄電デバイス用セパレータ、及び蓄電デバイス | |
JP7045862B2 (ja) | ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 | |
WO2010070930A1 (ja) | ポリオレフィン製微多孔膜及びリチウムイオン二次電池用セパレータ | |
WO2015194504A1 (ja) | ポリオレフィン微多孔質膜、電池用セパレータ及び電池 | |
JP6988881B2 (ja) | ポリエチレン微多孔膜を含む二次電池用セパレータ | |
WO2020179101A1 (ja) | ポリオレフィン微多孔膜 | |
JP6886839B2 (ja) | ポリオレフィン微多孔膜 | |
JP5792914B1 (ja) | 積層多孔質膜及びその製造方法 | |
JP6864762B2 (ja) | ポリオレフィン微多孔膜 | |
CN113891912A (zh) | 聚烯烃微多孔膜 | |
JP7343716B2 (ja) | ポリオレフィン微多孔膜 | |
JP2017080977A (ja) | 多層微多孔膜及び蓄電デバイス用セパレータ | |
JP6741884B1 (ja) | ポリオレフィン微多孔膜 | |
EP4043516A1 (en) | Polyolefin microporous membrane | |
JP2022051238A (ja) | ポリオレフィン微多孔膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774533 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019508661 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197027874 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018774533 Country of ref document: EP Effective date: 20190926 |