WO2020179101A1 - ポリオレフィン微多孔膜 - Google Patents
ポリオレフィン微多孔膜 Download PDFInfo
- Publication number
- WO2020179101A1 WO2020179101A1 PCT/JP2019/031755 JP2019031755W WO2020179101A1 WO 2020179101 A1 WO2020179101 A1 WO 2020179101A1 JP 2019031755 W JP2019031755 W JP 2019031755W WO 2020179101 A1 WO2020179101 A1 WO 2020179101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- polyolefin
- mass
- resin
- temperature
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/105—Esters; Ether-esters of monocarboxylic acids with phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/10—Homopolymers or copolymers of propene
- C08J2423/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/494—Tensile strength
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a microporous polyolefin membrane.
- Polyolefin microporous membranes are used in battery separators, condenser separators, fuel cell materials, precision filtration membranes, etc., and are particularly used as lithium ion secondary battery (LIB) separators or their constituent materials.
- the separator prevents direct contact between the positive and negative electrodes and also allows ions to permeate through the electrolytic solution held in the micropores.
- LIB has been applied not only to small electronic devices such as mobile phones and notebook computers, but also to electric vehicles such as electric vehicles and small electric motorcycles. Since the capacity of an in-vehicle LIB tends to increase per cell in order to extend the cruising range, a battery having a large capacity per volume has been developed. Therefore, the amount of heat generated during abnormal heat generation of the battery due to an internal short circuit when foreign matter is present in the battery also tends to increase, and the local temperature of the short circuit inside the battery may rise to near 300°C in a few seconds. is there. Therefore, improving safety has become a more important issue for in-vehicle LIBs.
- the characteristics required for LIB separators to improve safety include the function of increasing resistance and stopping thermal runaway at the time of internal short circuit, or the characteristic of being difficult to shrink due to heat.
- Patent Documents 1 to 5 various raw materials or materials for a microporous polyolefin membrane have been studied as LIB separators.
- Patent Document 1 contains an olefin resin, has a gel fraction of 30% or more, a storage elastic modulus Er at 250 ° C. due to dynamic viscoelasticity of 0.01 MPa or more, and a maximum shrinkage rate of TMA of 25% or less.
- a heat resistant synthetic resin microporous film is described.
- Such a heat-resistant synthetic resin microporous film has a film layer formed on at least a part of the surface of the synthetic resin microporous film and containing a polymer of a polymerizable compound having two or more polymerizable functional groups in one molecule. contains.
- Patent Document 1 describes that such a heat-resistant synthetic resin microporous film has low heat shrinkage and low fluidity, and is excellent in meltdown resistance.
- Patent Document 2 contains a synthetic resin microporous film containing an olefin resin, has a gel fraction of 75% by mass or more, a storage elastic modulus Er at 40 to 250° C. of 0.008 MPa or more by dynamic viscoelasticity, A heat-resistant synthetic resin microporous film is described in which the maximum shrinkage ratio of TMA is 25% or less and the radical amount measured by an electron spin resonance method is 2.0 ⁇ 10 16 spins/100 mg or less. Patent Document 2 describes that the heat-resistant synthetic resin microporous film has low heat shrinkability and low fluidity.
- Patent Document 3 describes a polyethylene resin having an angular frequency of 10 rad / sec or less in which the storage elastic modulus and the loss elastic modulus obtained by measuring the melt viscoelasticity at a constant temperature in the range of 160 ° C. to 220 ° C. are the same.
- a microporous polyolefin film containing as a main component is described.
- Patent Document 3 describes that such a microporous polyolefin membrane has excellent shutdown characteristics and meltdown characteristics.
- Patent Document 4 describes a microporous polyolefin membrane made of specific polyethylene and polypropylene, in which the correlation between the molecular weight obtained from GPC / FTIR and the terminal methyl group concentration satisfies a specific relationship. Patent Document 4 describes that such a microporous polyolefin membrane has excellent permeation performance and puncture strength, has a low pore closing temperature and a high thermal rupture temperature, and is extremely excellent in high temperature oven characteristics. ..
- one of the objects of the present invention is to provide a polyolefin microporous membrane capable of suppressing thermal runaway when an internal short circuit occurs due to the presence of foreign matter or the like inside a battery having a high energy density. That is, an object of the present invention is to provide a polyolefin microporous film having good short circuit resistance in a short circuit test under severe conditions. In addition, in one Embodiment of this invention, the polyolefin microporous film which can guarantee the favorable cycle characteristic of LIB is provided.
- the present invention is as follows.
- [1] A microporous polyolefin film having a loss tangent (tan ⁇ ) at 230° C. of 0.35 or more and less than 0.60 in melt viscoelasticity measurement.
- [2] The polyolefin microporous membrane according to [1], wherein the maximum loads of MD and TD are both 3.0 gf or less in TMA measurement.
- the resin component constituting the film includes polyethylene and polypropylene, and the ratio of the polypropylene is 1% by mass or more and 10% by mass or less, with the total amount of the polyolefin resin components being 100% by mass, [1] to [11].
- the polyolefin microporous membrane according to any one of 1.
- a polyolefin microporous membrane capable of providing a separator capable of preventing thermal runaway even if a short circuit occurs in a battery having a high energy density as used for in-vehicle use.
- FIG. 1 is a graph showing an example of the temperature dependence of the storage elastic modulus and the loss tangent of the melt viscoelasticity measurement sample obtained in Example 1.
- the present embodiment will be described in detail for the purpose of exemplifying, but the present invention is not limited to the present embodiment.
- the upper limit value and the lower limit value of each numerical range can be arbitrarily combined.
- “to” means that numerical values at both ends thereof are included as an upper limit value and a lower limit value, unless otherwise specified.
- One aspect of the present invention is a polyolefin microporous membrane.
- a preferred embodiment of the polyolefin microporous membrane is one having a small electron conductivity, an ionic conductivity, a high resistance to an organic solvent, and a fine pore size.
- the polyolefin microporous membrane can be used as a battery separator or a constituent element thereof, particularly as a secondary battery separator or a constituent element thereof.
- the polyolefin microporous membrane according to the present embodiment has a loss tangent (tan ⁇ ) at 230 ° C. of 0.35 or more and less than 0.60 in the melt viscoelasticity measurement.
- the loss tangent (tan ⁇ ) at 230° C. is 0.35 or more, so that the temperature in the battery rises due to an internal short circuit and the polyolefin microporous film It is considered that when is melted, the melted resin (polyolefin microporous film) appropriately penetrates into the pores of the electrode to exert the anchor effect. Then, it is considered that the molten resin stays in place in a state where it has appropriately penetrated into the holes of the electrode, so that the increase in the short circuit area can be suppressed. Similarly, although it is not desired to be bound by the theory, since the loss tangent (tan ⁇ ) at 230 ° C.
- the molten resin has an appropriate viscosity, so that the molten resin has an appropriate viscosity. It is considered that the exposure of the electrode or the increase of the short-circuit area due to the outflow of the resin can be suppressed without increasing the fluidity too much. Therefore, even if the battery has a high energy density, thermal runaway can be prevented at the time of an internal short circuit by including the polyolefin microporous film according to the present embodiment.
- the loss tangent (tan ⁇ ) at 230 ° C. is preferably 0.35 or more, more preferably 0.37 or more, still more preferably 0.39, from the viewpoint of facilitating thermal runaway during an internal short circuit. Above, more preferably 0.40 or more, most preferably 0.41 or more, preferably 0.60 or less, more preferably 0.57 or less, still more preferably 0.54 or less, still more preferably 0. It is 52 or less, most preferably 0.50 or less.
- the loss tangent at 190 ° C. is preferably 0.50 or more and 0.75 or less, more preferably 0.52 or more and 0.73 or less, and further preferably 0.54 or more and 0.71 or less. Even more preferably, it is 0.56 or more and 0.69 or less, and most preferably 0.57 or more and 0.67 or less.
- the loss tangent at 190 ° C is 0.50 or more, an internal short circuit occurs and the temperature rises due to Joule heat. Immediately after that, the molten resin (polyolefin microporous film) appropriately penetrates into the pores of the electrode.
- the loss tangent at 280° C. is preferably 0.35 or more and 0.60 or less, more preferably 0.37 or more and 0.58 or less, still more preferably 0.39 or more and 0.56 or less, More preferably, it is 0.41 or more and 0.54 or less, and most preferably 0.43 or more and 0.52 or less. Since the loss tangent at 280°C is 0.35 or more, when the battery becomes hot due to an internal short circuit, the melted resin (polyolefin microporous film) appropriately penetrates into the pores of the electrode to provide an anchor effect.
- the resin develops, and the molten resin stays in place while appropriately penetrating into the pores of the electrode, so that it is possible to suppress the increase in the short circuit area.
- the loss tangent (tan ⁇ ) at 280° C. is 0.60 or less, the melted resin has an appropriate viscosity, It is considered that the exposure of the electrode or the increase of the short-circuit area due to the outflow of the resin can be suppressed without increasing the fluidity too much.
- the difference of loss tangent (tan [delta 230) in the loss tangent (tan [delta 190) and 230 ° C. at 190 °C (tan ⁇ 230 -tan ⁇ 190) is preferably 0.00 or less, more preferably -0. 02 or less, more preferably -0.04 or less, even more preferably -0.05 or less, and most preferably -0.08 or less.
- the difference of loss tangent (tan [delta 280) in the loss tangent (tan [delta 230) and 280 ° C. at 230 °C (tan ⁇ 280 -tan ⁇ 230) is preferably 0.03 or less, more preferably 0. 02 or less, more preferably 0.01 or less, still more preferably 0.00 or less.
- the above difference (tan ⁇ 280 -tan ⁇ 230 ) of 0.03 or less means that when a high-capacity or high-density battery is short-circuited, the short-circuited part is heated up to, for example, about 300° C. It is presumed that the fluidity of the resin thus obtained is unlikely to increase sharply and tends to stay around the short-circuited portion, so that the increase in the short-circuited area is easily prevented.
- the storage elastic modulus (G′) at 230° C. is preferably 1.0 ⁇ 10 4 Pa or more.
- the storage elastic modulus (G′) at 230° C. is 1.0 ⁇ 10 4 Pa or more, even if the polyolefin microporous membrane melts after a short circuit, it does not flow quickly, and as a result, resin outflow or It is presumed that it becomes easy to prevent the electrodes from being exposed to cause a short circuit between the electrodes due to the disappearance, which in turn makes it easier to prevent thermal runaway.
- the storage elastic modulus (G′) at 230° C. is preferably 2.0 ⁇ 10 5 Pa or less, more preferably 1.8 ⁇ 10 5 Pa or less, further preferably 1.6 ⁇ 10 5 Pa or less. It is more preferably 1.4 ⁇ 10 5 Pa or less, particularly preferably 1.2 ⁇ 10 5 Pa or less, and most preferably 1.0 ⁇ 10 5 Pa or less.
- the storage elastic modulus (G′) at 190° C. is preferably 1.0 ⁇ 10 4 Pa or more.
- the storage elastic modulus (G′) at 190° C. is 1.0 ⁇ 10 4 Pa or more, the resin melted immediately after the short circuit has an appropriate viscosity, so that the fluidity of the melted resin increases too much. It is considered that the exposure of the electrode or the increase in the short-circuit area due to the outflow of the resin can be suppressed without this.
- the storage elastic modulus (G′) at 190° C. is preferably 1.0 ⁇ 10 4 Pa or more, more preferably 3.0 ⁇ 10, from the viewpoint of easily preventing thermal runaway at the time of internal short circuit.
- the storage elastic modulus (G′) at 190° C. is preferably 1.8 ⁇ 10 5 Pa or less, more preferably 1.6 ⁇ 10 5 Pa or less, further preferably 1.4 ⁇ 10 5 Pa or less, It is more preferably 1.2 ⁇ 10 5 Pa or less, particularly preferably 1.0 ⁇ 10 5 Pa or less, and most preferably 8.0 ⁇ 10 4 Pa or less.
- the storage elastic modulus (G′) at 280° C. is preferably 1.0 ⁇ 10 4 Pa or more.
- the storage elastic modulus (G′) at 280° C. is 1.0 ⁇ 10 4 Pa or more, the resin melted at a high temperature of the battery has an appropriate viscosity, so that the molten resin It is considered that the exposure of the electrode or the increase of the short-circuit area due to the outflow of the resin can be suppressed without increasing the fluidity too much.
- the storage elastic modulus (G′) at 280° C. is preferably 1.0 ⁇ 10 4 Pa or more, more preferably 3.0 ⁇ , from the viewpoint of easily preventing thermal runaway during an internal short circuit.
- the storage elastic modulus (G′) at 280° C. is preferably 1.8 ⁇ 10 5 Pa or less, more preferably 1.6 ⁇ 10 5 Pa or less, further preferably 1.4 ⁇ 10 5 Pa or less, It is more preferably 1.2 ⁇ 10 5 Pa or less, particularly preferably 1.0 ⁇ 10 5 Pa or less, and most preferably 8.0 ⁇ 10 4 Pa or less.
- the difference (G '230 -G' 190) of the storage modulus (G '190) and a storage modulus at 230 °C (G' 230) at 190 ° C. preferably -1.0 ⁇ It is 10 3 Pa or higher, more preferably 0 Pa or higher, still more preferably 1.0 ⁇ 10 3 Pa or higher, even more preferably 2.0 ⁇ 10 3 Pa or higher, and most preferably 2.5 ⁇ 10 3 Pa or higher. Since the above difference (G′ 230 ⁇ G′ 190 ) is ⁇ 1.0 ⁇ 10 3 Pa or more, the fluidity of the molten resin is drastically increased in the process of increasing the temperature around the short-circuited part after the short circuit. It is difficult to increase the amount of the molten resin, and the molten resin is likely to stay around the short-circuited portion.
- the difference (G '280 -G' 230) of the storage modulus at 230 °C (G '230) and a storage modulus at 280 °C (G' 280) is preferably -2.1 ⁇ 10 4 Pa or more, more preferably -1.9 ⁇ 10 4 Pa or more, even more preferably -1.7 ⁇ 10 4 Pa or more, even more preferably -1.5 ⁇ 10 4 Pa or more, particularly preferably -1. .3 ⁇ 10 4 Pa or more, most preferably ⁇ 1.1 ⁇ 10 4 Pa or more.
- the above difference (G′ 280 ⁇ G′ 230 ) being ⁇ 2.1 ⁇ 10 4 Pa or more means that when a high-capacity or high-density battery is short-circuited, the temperature of the short-circuited portion rises to, for example, about 300° C. It is presumed that the fluidity of the molten resin is unlikely to increase sharply in the course of the process and tends to stay around the short-circuited portion, so that it is easy to prevent an increase in the short-circuited area.
- the storage elastic modulus (G′) and/or loss tangent (tan ⁇ ) at 190° C., 230° C., and 280° C. are, for example, selection of a polyolefin raw material to be used, specific energy at the time of melt kneading, and polymer at the time of melt kneading. It can be adjusted as described above by controlling various production conditions such as concentration or kneading temperature and strain rate during stretching (for example, the production conditions described in Table 1).
- the values obtained may differ between when the melt viscoelasticity of the polyolefin microporous membrane is measured and when the melt viscoelasticity of the polyolefin resin that is the raw material for the polyolefin microporous membrane is measured. Further, there are methods that are not preferable for measuring the melt viscoelasticity of the polyolefin microporous membrane even if the melt viscoelasticity of the raw material polyolefin resin can be measured. Therefore, in this embodiment, the storage elastic modulus (G′) and the loss tangent (tan ⁇ ) are measured by the methods described in the examples.
- a polyolefin resin as a raw material is targeted but a polyolefin microporous membrane is targeted, and various parameters by the melt viscoelasticity measurement are controlled within a specific range.
- various parameters of the separator in the battery can be controlled within a specific range, and thermal runaway at the time of internal short circuit can be prevented.
- both the maximum load of MD and TD in thermomechanical analysis (TMA) measurement be 3.0 gf or less.
- TMA thermomechanical analysis
- the maximum load in the TMA measurement is preferably 3.0 gf or less, more preferably 2.9 gf or less, still more preferably 2.8 gf or less, still more preferably 2.7 gf or less, and particularly preferably 2.6 gf or less for both MD and TD.
- the cell morphology is maintained by the tightening due to the contraction stress of the separator when the temperature rises due to the internal short circuit.
- the maximum MD load in TMA measurement is preferably 2.5 gf or less, more preferably 2.3 gf or less, and the TD maximum load is preferably 2.0 gf or less, 1.8 gf or less. Is more preferable.
- the sum of the maximum load of MD and the maximum load of TD in TMA measurement is 5.5 gf or less.
- the total of the maximum load of MD and the maximum load of TD in the TMA measurement is preferably 5.5 gf or less, more preferably 5.3 gf or less, still more preferably 5.1 gf or less, still more preferably 4.9 gf or less, and particularly preferably. It is 4.7 gf or less, more preferably 4.5 gf or less, 4.2 gf or less or 3.9 gf or less, and most preferably 1.0 gf or more. Since the total of the maximum load of MD and the maximum load of TD in TMA measurement is 1.0 gf or more, it is presumed that the cell morphology is maintained by tightening due to the contraction stress of the separator when the temperature rises due to an internal short circuit. It
- the load at 160 ° C. (load per 10 ⁇ m film thickness) in MD and TD in TMA measurement is preferably 0.05 gf or more, more preferably 0.10 gf or more, still more preferably 0.15 gf or more, and more. It is more preferably 0.20 gf or more, most preferably 0.25 gf or more, preferably 1.0 gf or less, more preferably 0.7 gf or less, still more preferably 0.5 gf or less.
- the fact that the load at 160 ° C. in MD and TD is 0.05 gf or more indicates that it is difficult to completely break the film even after the polyolefin resin is melted, and it is easy to maintain the morphology. Therefore, when the load at 160 ° C.
- the ratio of the maximum load of MD to the maximum load of TD is preferably 0.75 or more and 1.5 or less, more preferably 0.80 or more and 1. It is 45 or less, more preferably 0.85 or more and 1.40 or less, and even more preferably 0.90 or more and 1.35 or less.
- the above ratio maximum load of MD/maximum load of TD
- the maximum load of MD and TD in TMA measurement, and the load at 160° C. are, for example, the biaxial stretching temperature, the biaxial stretching ratio, the relaxation ratio at the time of heat setting, the relaxation strain rate at the time of heat setting, and the relaxation strain rate at the time of heat setting. It can be adjusted as described above by various production conditions (for example, production conditions described in Table 1) such as control of relaxation temperature or selection of polyolefin raw material. These TMA measurements are performed by the method described in the examples.
- the shutdown temperature measured at a heating rate of 15 ° C./min is 150 ° C. or lower. Since the shutdown temperature measured at a temperature rise rate of 15 ° C./min is 150 ° C. or lower, thermal runaway can be easily suppressed by instantly increasing the internal resistance when the temperature rises rapidly at the time of a short circuit.
- the shutdown temperature measured at a heating rate of 15 ° C./min is preferably 150 ° C. or lower, more preferably 149 ° C. or lower, still more preferably 148 ° C. or lower, still more preferably 147 ° C. or lower, and most preferably 146 ° C. or lower. It is preferably 130 ° C. or higher, more preferably 133 ° C.
- the shutdown temperature is 130° C. or higher, it becomes easy to prevent thermal runaway due to melting and outflow of the resin at a low temperature.
- the shutdown temperature measured at a temperature rising rate of 15° C./min is, for example, selection of a polyolefin raw material to be used, specific energy during melt-kneading, polymer concentration or kneading temperature during melt-kneading, strain rate during stretching, and the like. By controlling various manufacturing conditions (for example, the manufacturing conditions shown in Table 1), the adjustment can be performed as described above.
- the shutdown temperature is measured by the method described in the example.
- the polyolefin microporous film for example, a porous film containing a polyolefin resin, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimide amide, polyaramid, polycycloolefin, nylon, polytetrafluoroethylene or other resin.
- a porous film containing the same a woven fabric of polyolefin fibers, a non-woven fabric of polyolefin fibers, paper, and an aggregate of insulating substance particles.
- the multilayer porous film through the coating step that is, excellent coatability of the coating liquid when obtaining a secondary battery separator, the thickness of the separator is thinner than the conventional separator, secondary battery, etc.
- a porous membrane containing a polyolefin resin hereinafter, also referred to as “polyolefin resin porous membrane” is preferable.
- the polyolefin resin porous membrane will be described.
- the polyolefin resin porous membrane is a polyolefin resin composition in which the polyolefin resin occupies 50% by mass or more and 100% by mass or less of the resin component constituting the porous film from the viewpoint of improving shutdown performance and the like when used as a separator for secondary batteries. It is preferably a porous film formed of a material.
- the proportion of the polyolefin resin in the polyolefin resin composition is more preferably 60% by mass or more and 100% by mass or less, and further preferably 70% by mass or more and 100% by mass or less.
- the polyolefin resin contained in the polyolefin resin composition is not particularly limited, and for example, ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and the like are used as monomers.
- the obtained homopolymer, copolymer, multistage polymer and the like can be mentioned.
- These polyolefin resins may be used alone or in combination of two or more. Among them, polyethylene, polypropylene, copolymers thereof, and mixtures thereof are preferable as the polyolefin resin from the viewpoint of shutdown characteristics when the polyolefin resin porous membrane is used as a secondary battery separator.
- polyethylene examples include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), high molecular weight polyethylene (HMWPE), and ultra high molecular weight polyethylene ( UHMWPE) and the like.
- polypropylene examples include isotactic polypropylene, syndiotactic polypropylene, atactic polypropylene and the like.
- copolymer include ethylene-propylene random copolymer and ethylene-propylene rubber.
- the polyolefin resin preferably contains polyethylene having a melting point in the range of 130°C to 140°C as a main component from the viewpoint of stopping thermal runaway of the battery in the initial stage.
- high molecular weight polyethylene means polyethylene having a viscosity average molecular weight (Mv) of 100,000 or more.
- the Mv of ultra-high molecular weight polyethylene is 1,000,000 or more, and therefore, according to such a definition, the high molecular weight polyethylene (HMWPE) in the present specification includes UHMWPE by definition.
- polyethylene called “ultra high molecular weight polyethylene” based on a definition different from this definition is used, if Mv is 100,000 or more, it may correspond to the high molecular weight polyethylene in the present embodiment. is there.
- the high-density polyethylene means polyethylene having a density of 0.942 to 0.970 g / cm 3 .
- the density of polyethylene means a value measured according to the D) density gradient tube method described in JIS K7112 (1999).
- the polyolefin resin porous membrane When the polyolefin resin porous membrane is used as a separator for a secondary battery, it is preferable to use polyethylene, particularly high-density polyethylene, as the polyolefin resin from the viewpoint of satisfying the required performance of low melting point and high strength. Further, from the viewpoint of exhibiting rapid fuse behavior, it is preferable that the main component of the polyolefin resin porous film is polyethylene. "The main component of the polyolefin resin porous membrane is polyethylene" means that polyethylene is contained in an amount of more than 50% by mass with respect to the total mass of the polyolefin resin porous membrane.
- polyethylene is preferably 75% by mass or more, more preferably 85% by mass or more, further preferably 90% by mass or more, still more preferably 95% by mass or more, and most preferably 98% by mass. It is mass% or more, and may be 100 mass%.
- the viscosity average molecular weight (hereinafter referred to as Mv) of the polyolefin resin used as a raw material for the polyolefin microporous film is preferably 50,000 or more and less than 5,000,000, more preferably 80,000 or more and less than 2,000,000, and further preferably 100,000 or more and less than 1,000,000. is there.
- Mv The viscosity average molecular weight
- the viscosity average molecular weight is 50,000 or more, it is easy to uniformly melt-knead and the moldability of the sheet, especially the thickness stability tends to be excellent, which is preferable.
- the viscosity average molecular weight is less than 5,000,000 when used as a secondary battery separator, pores are likely to be clogged when the temperature rises, and a good shutdown function tends to be obtained, which is preferable.
- a plurality of polyolefin raw materials may be mixed and used.
- a plurality of polyolefin raw materials it is preferable to contain polyethylene having an Mv of 100,000 or more and 300,000 or less and polyethylene having an Mv of 500,000 or more and less than 1,000,000.
- polyethylene having an Mv of 100,000 or more and 300,000 or less it is possible to suppress the deterioration of the molecular weight of polyolefin without excessively increasing the viscosity during melt kneading, leaving no excessive residual stress during stretching, and causing heat shrinkage. It tends to become smaller.
- the holes are easily closed when the temperature rises, and a good shutdown function tends to be obtained.
- the polyolefin microporous film is melted, viscosity is likely to occur, so that when the battery is melted after short circuit, it is suitable to appropriately penetrate into the electrode to easily develop an anchor effect, and suppress thermal contraction to reduce the short circuit area. It is presumed that the increase can be easily suppressed.
- polyethylene having an Mv of 500,000 or more and less than 1,000,000, the stress increases during melt kneading, and the resin can be kneaded uniformly.
- the polyolefin microporous membrane expresses entanglement between the polymers, the strength tends to be high, and when the polyolefin microporous membrane melts and reaches a high temperature of about 300 ° C., the viscosity does not decrease too much. It is presumed that the resin does not flow out and stays in place easily, so that thermal runaway can be suppressed easily.
- the proportion of polyethylene having an Mv of 100,000 or more and 300,000 or less used as a raw material for the polyolefin microporous film is preferably 10% by mass or more and 40% by mass or less, more preferably 12% by mass or more, with the total amount of the polyolefin raw materials being 100% by mass. 38% by mass or less, more preferably 14% by mass or more and 36% by mass or less, still more preferably 16% by mass or more and 34% by mass or less, most preferably 18% by mass or more and 32% by mass or less (or 18% by mass or more and 30% by mass). Less than).
- the proportion of polyethylene having an Mv of 500,000 or more and less than 1 million used as a raw material for a polyolefin microporous film is preferably 40% by mass or more and 90% by mass or less, more preferably 45% by mass or more, with the total amount of the polyolefin raw materials being 100% by mass. It is 85% by mass or less, more preferably 50% by mass or more and 80% by mass or less, still more preferably 55% by mass or more and 75% by mass or less, and most preferably 62% by mass or more and 73% by mass or less.
- the total amount of the polyolefin raw material is 100% by mass, preferably less than 20% by mass, more preferably less than 15% by mass, and further preferably 10. It does not contain ultra-high molecular weight polyolefins of less than mass%, more preferably less than 7% by mass or less than 5% by mass, most preferably Mv of 1 million or more.
- the total amount of the polyolefin raw material is 100% by mass, preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 6% by mass or less or 5% by mass. Or less, more preferably 4% by mass or less (or less than 3% by mass, further less than 1% by mass), and most preferably, low density polyethylene is not included. Since the proportion of low-density polyethylene is 10% by mass or less, the microporous polyolefin membrane easily breaks easily when it reaches a high temperature of around 150 ° C., and the resin melts when it reaches a high temperature of nearly 300 ° C.
- low molecular weight polyethylene having an Mv of less than 50,000 may be contained as long as it does not significantly impede the exertion of the effects in the present invention, and the content thereof is the same as in the case of low density polyethylene, for example. And it is preferable not to include low molecular weight polyethylene having Mv of less than 50,000.
- a mixture of polyethylene and polypropylene may be used as the polyolefin resin.
- the proportion of polypropylene used as a raw material for the polyolefin microporous membrane is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 10% by mass or less, further preferably 100% by mass based on the total amount of the polyolefin raw materials. It is 4% by mass or more (or more than 4% by mass) and 9% by mass or less, more preferably 5% by mass or more and 8% by mass or less, and most preferably more than 5% by mass and less than 8% by mass.
- the proportion of polypropylene is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 10% by mass or less, further preferably 100% by mass based on the total amount of the polyolefin resin in the resin component constituting the film. Is 4% by mass or more (or more than 4% by mass) and 9% by mass or less, more preferably 5% by mass or more and 8% by mass or less, and most preferably more than 5% by mass and less than 8% by mass.
- the proportion of polypropylene is 1% by mass or more, it becomes difficult for the polyolefin microporous membrane to easily rupture when it reaches a high temperature of around 150° C., and it becomes difficult for minute pinholes to occur at the initial stage of battery short circuit. ..
- the proportion of polypropylene is 10 mass% or less, the fluidity of the molten resin does not become too large when reaching a high temperature of about 300° C., and the heat generated by the exposure of the electrode due to the outflow of the resin or the excessive penetration of the electrode It becomes easier to avoid runaway.
- the Mv of polypropylene used as a raw material for the microporous polyolefin membrane is preferably 200,000 or more and 1,000,000 or less, more preferably 250,000 or more and 900,000 or less, and further preferably 300,000 or more and 800,000 or less.
- the Mv of polypropylene is 200,000 or more, the entanglement of the polymers becomes strong during melt-kneading, so that the polypropylene is uniformly dispersed in the polyethylene and the heat resistance of the polypropylene is high. It is presumed that sex can be effectively expressed.
- the viscosity of the microporous polyolefin membrane does not increase too much even when it reaches a high temperature close to 300 ° C.
- the Mv of polypropylene is 1 million or less, deterioration of the molecular weight of the polymer due to excessive entanglement during melt-kneading can be easily suppressed. Further, it becomes easy to suppress the residual stress of the polyolefin microporous film.
- the polypropylene used as a raw material for the microporous polyolefin membrane a homopolymer is preferable from the viewpoint of increasing heat resistance and melt viscosity at high temperature.
- isotactic polypropylene is preferable.
- the amount of isotactic polypropylene is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 98% by mass or more, still more preferably 100% by mass based on the total mass of polypropylene in the entire polyolefin microporous membrane. Mass% (all). When the isotactic polypropylene content is 90% by mass or more, further melting of the microporous film due to temperature rise during a short circuit can be suppressed.
- isotactic polypropylene has high crystallinity, phase separation from the plasticizer tends to proceed easily, and a film having good porosity and high permeability tends to be obtained. Therefore, the output or the cycle characteristics can be positively influenced. Furthermore, since homopolymers have few amorphous parts, it is possible to suppress an increase in thermal shrinkage when heat below the melting point is applied or when the amorphous parts shrink due to residual stress, and the separator is used at the initial stage of short circuit. It becomes easy to suppress the problem that the short circuit area increases due to the shrinkage of the amorphous part when the temperature reaches around 100°C.
- the polyolefin resin that may be contained in the polyolefin raw material and its content are not limited to the above description. Therefore, the polyolefin raw material may contain a polyolefin resin different from that described above as long as it does not significantly impair the exertion of the effects of the present invention, and a content different from that described above. May be done.
- the polyolefin resin composition may contain any additive.
- Additives include, for example, polymers other than polyolefin resins; inorganic fillers; antioxidants such as phenolic, phosphorus, and sulfur; metal soaps such as calcium stearate and zinc stearate; ultraviolet absorbers; light stabilizers.
- the total amount of these additives added is preferably 20% by mass or less with respect to 100% by mass of the polyolefin resin from the viewpoint of improving shutdown performance and the like, more preferably 10% by mass or less, still more preferably 5% by mass. % Or less.
- the polyolefin raw material has a ratio (molecular weight distribution: Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of 1.0 or more and 15.0 or less. Preferably, it is 3.0 or more and 12.0 or less, more preferably 5.0 or more and 9.0 or less.
- Mw weight average molecular weight
- Mw/Mn molecular weight distribution
- the microporous polyolefin membrane of the present embodiment has a puncture strength (gf/ ⁇ m) per 1 ⁇ m of film thickness of preferably 17 gf/ ⁇ m or more, more preferably 18 gf/ ⁇ m or more, still more preferably 19 gf/ ⁇ m or more, and preferably It is 60 gf / ⁇ m or less, more preferably 50 gf / ⁇ m or less, still more preferably 40 gf / ⁇ m or less, still more preferably 35 gf / ⁇ m or less, and most preferably 30 gf / ⁇ m or less.
- the puncture strength is 17 gf / ⁇ m or more, when a battery using a polyolefin microporous film is produced, it is possible to prevent minute thinning or film rupture when it comes into contact with the unevenness of the electrode surface, and due to a slight short circuit. Battery defects can be suppressed.
- the puncture strength is 60 gf/ ⁇ m or less, shrinkage stress of the battery can be suppressed.
- the puncture strength (gf / ⁇ m) is measured by the method described in Examples.
- air permeability is preferably 30 sec / 100 cm 3 or more, more preferably 40 sec / 100 cm 3 or more, more preferably 50 sec / 100 cm 3 or more, even more preferably and at 60 sec / 100 cm 3 or more, preferably 500 sec / 100 cm 3 or less, more preferably 400 sec / 100 cm 3 or less, more preferably 300 sec / 100 cm 3 or less, even more preferably 200 sec / 100 cm 3 or less, and most preferably 100 sec / 100 cm It is 3 or less.
- the air permeability is 30 sec / 100 cm 3 or more, self-discharge can be suppressed.
- the air permeability is 500 sec / 100 cm 3 or less, the output of the battery can be guaranteed.
- the above air permeability (sec / 100 cm 3 ) is measured by the method described in the examples.
- the polyolefin microporous membrane of this embodiment has a tensile strength at break of MD and TD of preferably 0.1 kgf or more and 2.0 kgf or less, more preferably 0.3 kgf or more and 1.7 kgf or less, and still more preferably 0.5 kgf or more 1. 0.5 kgf or less, most preferably 0.7 kgf or more and 1.3 kgf or less.
- tensile rupture strength of MD and TD is 0.1 kgf or more, it is possible to reduce the possibility that the separator will rupture when the battery is deformed by an external force.
- the tensile breaking strength (kgf) is measured by the method described in the examples.
- the microporous polyolefin membrane of the present embodiment has a tensile elongation of MD and TD of preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, still more preferably 60% or more.
- a tensile elongation of MD and TD is 30% or more, the possibility that the separator breaks when the battery is deformed by an external force can be reduced.
- the polyolefin microporous film is distorted in the minute section generated when the polyolefin microporous film and the electrode are laminated in the presence of minute foreign substances, and pinholes are generated, which may cause a battery failure due to a micro short circuit. Can be reduced.
- the above tensile elongation (%) is measured by the method described in Examples.
- the ratio of the tensile elongation at break of MD (the tensile elongation of MD / the tensile elongation of TD) to the tensile elongation of TD is preferably 0.70 or more and 1.5 or less. It is more preferable, more preferably 0.75 or more and 1.45 or less, still more preferably 0.80 or more and 1.40 or less, still more preferably 0.85 or more and 1.35 or less.
- the ratio of the tensile elongation of MD to the tensile elongation of TD is 0.70 or more and 1.5 or less, which is anisotropy in the presence of microforeign substances of concern in the microporous membrane characterized by low shrinkage stress. It is possible to suppress the occurrence of cracks due to sex.
- the thickness of the polyolefin microporous film is preferably 0.5 ⁇ m or more and 100 ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less, further preferably 3 ⁇ m or more and 25 ⁇ m or less, still more preferably 4 ⁇ m or more and 15 ⁇ m or less, particularly preferably 5 ⁇ m or more and 12 ⁇ m or less, Most preferably, it is 8 ⁇ m or more and 11 ⁇ m or less.
- the thickness of the polyolefin microporous film is preferably 0.1 ⁇ m or more from the viewpoint of mechanical strength and insulation retention at the time of short circuit, and is preferably 100 ⁇ m or less from the viewpoint of high capacity of LIB.
- the total thickness of the polyolefin microporous film can be adjusted by controlling the die lip interval, the draw ratio in the drawing process, and the like.
- the average pore size of the polyolefin microporous membrane is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, still more preferably 0.03 ⁇ m or more, still more preferably 0.04 ⁇ m or more, particularly preferably 0.045 ⁇ m or more, and most preferably It is preferably 0.050 ⁇ m or more, preferably 0.70 ⁇ m or less, more preferably 0.20 ⁇ m or less, still more preferably 0.15 ⁇ m or less, still more preferably 0.10 ⁇ m or less, particularly preferably 0.08 ⁇ m or less, most preferably. It is preferably 0.065 ⁇ m or less.
- the average pore size is 0.01 ⁇ m or more because it has good ionic conductivity.
- the average pore diameter of 0.70 ⁇ m or less is desirable from the viewpoint of preventing deterioration of cycle characteristics or self-discharge due to clogging by by-products in the battery.
- the average pore size can be adjusted by controlling the composition ratio of polyolefin, biaxial stretching temperature, stretching ratio, heat fixing temperature, stretching ratio during heat fixing, and relaxation rate during heat fixing, and by combining these. it can.
- the above average pore size ( ⁇ m) is measured by the method described in Examples.
- the maximum pore size of the polyolefin microporous membrane is preferably 0.02 ⁇ m or more, more preferably 0.03 ⁇ m or more, still more preferably 0.04 ⁇ m or more, still more preferably 0.05 ⁇ m or more, and particularly preferably 0.06 ⁇ m or more, Particularly preferably 0.065 ⁇ m or more, most preferably 0.070 ⁇ m or more, preferably 1.00 ⁇ m or less, more preferably 0.30 ⁇ m or less, further preferably 0.20 ⁇ m or less, still more preferably 0.15 ⁇ m or less, It is particularly preferably 0.10 ⁇ m or less, still more preferably 0.090 ⁇ m or less, and most preferably 0.080 ⁇ m or less.
- the maximum pore size is 0.02 ⁇ m or more, good ionic conductivity and cycle characteristics are obtained, which is preferable.
- the maximum pore size of 1.00 ⁇ m or less is desirable from the viewpoint of preventing deterioration of cycle characteristics or self-discharge due to clogging by by-products in the battery.
- the maximum pore diameter ( ⁇ m) is measured by the method described in the examples.
- the difference between the maximum pore size and the average pore size of the polyolefin microporous membrane is preferably 0.001 ⁇ m or more, more preferably 0.003 ⁇ m or more, and further preferably 0.005 ⁇ m from the viewpoint of good cycle characteristics.
- more preferably 0.008 ⁇ m or more particularly preferably 0.01 ⁇ m or more, preferably 0.3 ⁇ m or less, more preferably 0.1 ⁇ m or less, still more preferably 0.05 ⁇ m or less, still more preferably 0. It is 03 ⁇ m or less, particularly preferably 0.02 ⁇ m or less.
- the porosity of the polyolefin microporous membrane is preferably 25% or more and 95% or less, more preferably 30% or more and 65% or less, further preferably 35% or more and 55% or less, and most preferably 40% or more and 50% or less.
- the porosity of the polyolefin microporous membrane is preferably 25% or more from the viewpoint of improving ionic conductivity, and preferably 95% or less from the viewpoint of withstand voltage characteristics.
- the pore ratio of the polyolefin microporous film controls the mixing ratio of the polyolefin resin composition and the plasticizer, the biaxial stretching temperature, the stretching ratio, the heat fixing temperature, the stretching ratio during heat fixing, and the relaxation rate during heat fixing. , And these can be adjusted by combining them.
- the porosity is measured by the method described in the examples.
- the method for producing the microporous polyolefin membrane is not particularly limited, and a known production method can be adopted.
- a method for producing a polyolefin resin composition and a pore-forming material are melt-kneaded to form a sheet, which is stretched if necessary, and then the pore-forming material is extracted to make it porous.
- melt-knead the polyolefin resin composition and the pore-forming material melt-knead the polyolefin resin composition and the pore-forming material.
- a melt-kneading method for example, a polyolefin resin and, if necessary, other additives are put into a resin kneading device such as an extruder, a kneader, a lab plast mill, a kneading roll, or a Banbury mixer to heat and melt the resin components.
- a resin kneading device such as an extruder, a kneader, a lab plast mill, a kneading roll, or a Banbury mixer to heat and melt the resin components.
- a resin kneading device such as an extruder, a kneader, a lab plast mill, a kneading roll, or a Banbury mixer
- a plasticizer As the pore forming material, a plasticizer, an inorganic material or a combination thereof can be mentioned.
- the plasticizer is not particularly limited, but it is preferable to use a non-volatile solvent capable of forming a uniform solution at the melting point of the polyolefin or higher.
- a non-volatile solvent include hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate; higher alcohols such as oleyl alcohol and stearyl alcohol. .. After extraction, these plasticizers may be recovered and reused by an operation such as distillation.
- the polyolefin resin, other additives, and the plasticizer are pre-kneaded at a predetermined ratio using a Henschel mixer or the like before being put into the resin kneading apparatus. More preferably, in the pre-kneading, a part of the plasticizer to be used is added, and the remaining plasticizer is kneaded while being appropriately heated in a resin kneading device and side-fed.
- a kneading method the dispersibility of the plasticizer is enhanced, and when the sheet-shaped molded product of the melt-kneaded product of the resin composition and the plasticizer is stretched in a later step, the film is not broken and the magnification is high. It tends to be able to be stretched with.
- liquid paraffin has high compatibility with polyethylene or polypropylene when the polyolefin resin is polyethylene, and even if the melt-kneaded product is stretched, interfacial peeling between the resin and the plasticizer is unlikely to occur, and uniform stretching is possible. It is preferable because it tends to be easy to carry out.
- the mass fraction of the polyolefin raw material in the composition comprising the polyolefin resin composition and the plasticizer is preferably 18% by mass or more and less than 35% by mass, more preferably 20% by mass or more and less than 33% by mass, further preferably 22% by mass. It is by mass% or more and less than 31% by mass. If the mass fraction of the polyolefin raw material is less than 35% by mass, the energy at the time of kneading does not rise too much, and the deterioration of the molecular weight due to excessive entanglement of the polymers can be suppressed. It does not impair the characteristics.
- the mass fraction of the polyolefin raw material is 18% by mass or more, sufficient energy can be given at the time of melt kneading, and the polymers are uniformly kneaded due to entanglement with each other. Even when the mixture of the above is stretched at a high magnification, the entanglement of the polyolefin molecular chains does not occur, a uniform and fine pore structure is easily formed, and the strength is easily increased.
- the specific energy of the polyolefin raw material and the pore-forming material at the time of kneading must be 0.10 kW ⁇ h / kg or more and 0.40 kW ⁇ h / kg or less. It is preferably 0.12 kW ⁇ h/kg or more and 0.35 kW ⁇ h/kg or less, more preferably 0.14 kW ⁇ h/kg or more and 0.30 kW ⁇ h/kg or less.
- the specific energy is the value obtained by dividing the power P (kW) of the screw of the extruder applied during melt kneading of the pore-forming material and the polyolefin raw material by the extrusion amount Q (kg / h) per unit time of the pore-forming material and the polyolefin raw material. is there.
- the power P (kW) of the screw of the extruder can be calculated from the following formula, where the torque applied to the screw during extrusion is T (N ⁇ m) and the screw rotation speed is N (rpm).
- the specific energy is 0.40 kW ⁇ h/kg or less
- the molecular weight deterioration or oxidative deterioration due to the cleavage or decomposition of the polymer due to excessive kneading is suppressed, and the polyolefin microporous film is melted and reaches a high temperature. It is presumed that it becomes easy to suppress the decrease in the viscosity.
- the temperature of the melt-kneading section is the specific energy during melt-kneading, the film strength of the polyolefin microporous film, and the uniform pore size. From the viewpoint of properties, it is preferably 140° C. or higher and lower than 200° C., and more preferably 150° C. or higher and lower than 190° C.
- the extrusion amount of the polyolefin raw material and the pore-forming material per unit time (that is, the discharge amount Q of the extruder: kg/hour) and the screw of the extruder.
- the ratio (Q / N, unit: kg / (h ⁇ rpm)) to the rotation speed N (rpm) is preferably from the viewpoint of the specific energy during melt kneading, the film strength of the polyolefin microporous film, and the uniformity of pore size. It is 2.2 or more and 7.8 or less, more preferably 2.5 or more and 7.5 or less, still more preferably 2.8 or more and 7.2 or less, and even more preferably 3.1 or more and 6.9 or less.
- melt-kneaded product is formed into a sheet.
- a melt-kneaded product is extruded into a sheet shape via a T-die or the like, brought into contact with a heat conductor, and cooled to a temperature sufficiently lower than the crystallization temperature of the resin component.
- a heat conductor used for cooling and solidification include metal, water, air, and a plasticizer. Among these, it is preferable to use a metal roll because of its high heat conduction efficiency.
- the die lip interval when extruding the melt-kneaded product from the T-die into a sheet is preferably 200 ⁇ m or more and 3,000 ⁇ m or less, and more preferably 500 ⁇ m or more and 2,500 ⁇ m or less.
- the die lip interval is 200 ⁇ m or more, the shavings and the like are reduced, the influence on the film quality such as streaks or defects is small, and the risk of film breakage or the like can be reduced in the subsequent stretching step.
- the die lip interval is 3,000 ⁇ m or less, the cooling rate is high, cooling unevenness can be prevented, and the thickness stability of the sheet can be maintained.
- the sheet-shaped molded product may be rolled.
- the rolling can be carried out, for example, by a pressing method using a double belt pressing machine or the like.
- the rolling surface magnification is preferably more than 1 time and not more than 3 times, more preferably more than 1 time and not more than 2 times.
- the rolling ratio exceeds 1, the plane orientation tends to increase and the film strength of the finally obtained porous film tends to increase.
- the rolling ratio is 3 times or less, the difference in orientation between the surface layer portion and the center is small, and a uniform porous structure tends to be formed in the thickness direction of the film.
- the stretching step for stretching the sheet-shaped molded product or the porous membrane may be performed before the step of extracting the pore-forming material from the sheet-shaped molded product (pore-forming step), or extracting the pore-forming material from the sheet-shaped molded product. It may be performed on the perforated membrane. Furthermore, the stretching step may be performed before or after the extraction of the pore-forming material from the sheet-shaped molded product.
- the stretching treatment either uniaxial stretching or biaxial stretching can be preferably used, but biaxial stretching is preferable from the viewpoint of improving the strength and the like of the obtained porous film. Further, from the viewpoint of heat shrinkability of the obtained porous film, it is preferable to perform the stretching step at least twice.
- the stretching method include simultaneous biaxial stretching, sequential biaxial stretching, multistage stretching, and multiple stretching. Simultaneous biaxial stretching is preferred from the viewpoints of pore size uniformity, stretching uniformity, and shutdown property.
- the simultaneous biaxial stretching is a stretching method in which MD (machine direction of continuous formation of a microporous film) and TD (direction crossing MD of the microporous film at an angle of 90°) are simultaneously applied. No, the draw ratio in each direction may be different.
- Sequential biaxial stretching refers to a stretching method in which MD and TD stretching are performed independently. When stretching is performed in MD or TD, the other direction is fixed in an unrestrained state or fixed length. To be in a state of being
- the stretch ratio is preferably in the range of 28 times or more and less than 100 times in terms of surface magnification, more preferably in the range of 32 times or more and 70 times or less, and further preferably in the range of 36 times or more and 50 times or less.
- the stretching ratio in each axial direction is preferably in the range of 4 times or more and less than 10 times in MD and 4 times or more and less than 10 times in TD, and is preferably 5 times or more and less than 9 times in MD and 5 times or more and less than 9 times in TD. Is more preferable, MD is more than 5.5 times and less than 8.5 times, and TD is more than 5.5 times and less than 8.5 times.
- the total area magnification is 28 times or more, the strength of the obtained polyolefin microporous film is increased and the pore size is not too small, so that the cycle characteristics are excellent.
- the total area ratio is 100 times or less, the residual stress does not become too large, so that excessive heat shrinkage can be prevented, the elongation at break can be prevented from decreasing, and the excessively large pore diameter or the large pore diameter can be prevented. Non-uniformity can be prevented.
- the stretching strain rates of MD and TD are preferably 20% / sec or more and 70% / sec or less, more preferably 23% / sec or more 67. %/Sec or less, more preferably 26%/sec or more and 64%/sec or less, even more preferably 29%/sec or more and 61%/sec or less, and most preferably 32%/sec or more and 58%/sec or less.
- the stretching strain rate of MD and TD is 20%/sec or more, so that stretching in a state in which the entanglement of the polymers in the sheet-shaped molded product is maintained Therefore, it is presumed that the microporous polyolefin membrane has high strength and a uniform pore size, and even if it melts and reaches a high temperature, the decrease in viscosity can be suppressed.
- the draw strain rate of MD and TD is 70% / sec or less, the residual stress of the obtained polyolefin microporous film tends to decrease, and low thermal shrinkage tends to occur, which is preferable.
- the temperature at the time of stretching the above sheet-shaped molded product or polyolefin microporous membrane is preferably higher than 120°C, more preferably higher than 122°C.
- the temperature at the time of stretching is preferably 131 ° C. or lower, and more preferably 129 ° C.
- the stretching temperature, especially the biaxial stretching temperature exceeds 120° C., an increase in heat shrinkage due to excessive residual stress can be suppressed.
- the temperature at the time of stretching, particularly the temperature at the time of biaxial stretching is 131° C. or less, sufficient strength can be given to the polyolefin microporous membrane, and the pore size distribution due to melting of the membrane surface can be prevented from disturbing the battery. It is possible to ensure cycle performance when charging and discharging are repeated.
- the polyolefin microporous membrane From the viewpoint of suppressing heat shrinkage, it is preferable to heat-fix the polyolefin microporous membrane.
- a method of heat setting for the purpose of adjusting the physical properties, at a predetermined temperature atmosphere, and a stretching operation performed at a predetermined stretching rate, and/or for the purpose of reducing stretching stress, at a predetermined temperature atmosphere, and at a predetermined relaxation rate.
- the relaxation operation to be performed is mentioned.
- the relaxation operation may be performed after the stretching operation.
- the magnification of the stretching operation is preferably 1.1 times or more, more preferably 1.2 times or more, for the MD and / or TD of the film. It is more preferably more than 1.4 times, preferably less than 2.3 times, and more preferably less than 2.0 times.
- the product of the stretch ratios of MD and TD is preferably less than 3.5 times, more preferably less than 3.0 times.
- the draw ratio of MD and / or TD at the time of heat fixation is 1.1 times or more, the effects of high porosity and low heat shrinkage can be obtained, and when it is 2.3 times or less, it is excessive. It is possible to prevent a large pore size or a decrease in tensile elongation.
- the product of MD and TD draw ratio during heat treatment is less than 3.5 times, an increase in heat shrinkage can be suppressed.
- the stretching operation during heat setting after extracting the plasticizer is preferably performed in TD.
- the temperature in the stretching operation is preferably 110° C. or higher and 140° C. or lower from the viewpoint of suppressing the TMA stress while maintaining the permeability and maintaining the pore size uniformity.
- Relaxation operation at the time of heat setting is a reduction operation of the membrane to MD and/or TD.
- the relaxation rate is a value obtained by dividing the dimension of the membrane after the relaxation operation by the dimension of the membrane before the relaxation operation.
- the relaxation rate is preferably less than 1.0, more preferably less than 0.97, even more preferably less than 0.95, even more preferably less than 0.90, most preferably less than 0.85.
- the relaxation rate is preferably 0.4 or more, more preferably 0.6 or more, and further preferably 0.8 or more.
- the absolute value of the strain rate at the time of relaxation is preferably 1.0% / sec or more and 9.0% / sec or less, more preferably 1.5% / sec or more and 8.5% / sec or less, still more preferably. 2.0% / sec or more and 8.0% / sec or less, more preferably 2.5% / sec or more and 7.5% / sec or less, most preferably 3.0% / sec or more and 7.0% / sec It is the following.
- the relaxation operation may be performed on both MD and TD, but may be performed on only one of MD and TD. By performing stretching and relaxation at the above magnification and strain rate, it is possible to control the thermal shrinkage of MD and/or TD within an appropriate range.
- the relaxation operation at the time of heat setting after extracting the plasticizer is preferably performed on TD.
- the temperature in the relaxation operation is preferably 125° C. or higher and 135° C. or lower from the viewpoint of suppressing TMA stress and maintaining pore size uniformity.
- a sample for melt viscoelasticity measurement was prepared by the following method.
- a plurality of polyolefin microporous membranes are laminated so that the total thickness is about 5 mm, and pressed at 25° C. and 10 MPa for 2 minutes using a pressing machine to remove air between the microporous membranes as much as possible, and laminate the polyolefin microporous membranes. I got a body.
- the polyolefin microporous film laminate was placed in a SUS frame for sheet molding (thickness 1.0 mm) having a thickness of 1.0 mm and 10 cm, preheated at 0.1 MPa and 200° C.
- Example 1 Example 1, about 500 sheets of 5 cm square polyolefin microporous membrane were stacked, and a press machine was used to obtain a sample for measuring melt viscoelasticity.
- the melting point of the polyolefin raw material was determined using a differential scanning calorimeter (DSC) measuring device "DSC-60" (manufactured by Shimadzu Corporation). After raising the temperature from room temperature to 200° C. at a rate of 10° C./min (first temperature raising process), lowering the temperature to 30° C. at 10° C./min (first temperature lowering process), and then again to 200° C. at 10° C./min The temperature at the minimum point of the endothermic peak in the second temperature raising process when the temperature was raised at was set as the melting point of the polyolefin raw material. The value obtained by rounding off the first decimal place of the obtained value was taken as the melting point of the polyolefin raw material.
- TMA50 (trademark) manufactured by Shimadzu Corporation was used for TMA measurement of the polyolefin microporous film, and a tensile type was used as a dedicated probe.
- ⁇ Shutdown characteristics> Prepare two pieces (A, B) of nickel foil with a thickness of 10 ⁇ m, and mask one nickel foil A on a slide glass with "Teflon (registered trademark)" tape, leaving a square part of 10 mm in length and 10 mm in width. Fixed with. Another nickel foil B was placed on a ceramic plate to which a thermocouple was connected, and a microporous film of a measurement sample immersed in a specified electrolytic solution for 3 hours was placed on the nickel foil B, and the nickel foil was pasted on the microporous film. Place the slide glass and silicone rubber.
- the nickel foil 2A and the nickel foil 2B were superposed in such a manner that the microporous film 1 was sandwiched, and two nickel foils were sandwiched by the glass plates 3A and 3B from both sides. At this time, the window portion of the foil 2B and the microporous film 1 were aligned so as to face each other.
- the two glass plates 3A and 3B were fixed by sandwiching them with a commercially available double clip.
- the thermocouple 5 was fixed to the glass plate with "Teflon (registered trademark)" tape.
- MD and TD tensile tests are performed using a tensile tester (Shimadzu Autograph AG-A type), and the strength at sample break is divided by the sample cross-sectional area before the test to determine the MD and TD tensile break strength. (Kg/cm 2 ).
- the measurement conditions are temperature: 23 ⁇ 2° C., humidity: 40%, sample shape: width 10 mm ⁇ length 100 mm, chuck distance: 50 mm, pulling speed: 200 mm/min.
- the tensile elongation (%) was obtained by dividing the elongation amount (mm) up to breaking by the chuck distance (50 mm) and multiplying by 100.
- PL-GPC220 (trademark) manufactured by Agilent was used, and two 30 cm columns of TSKgel GMHHR-H (20) HT (trademark) manufactured by Tosoh Corporation were used and adjusted as described above. 500 ⁇ l of the GPC measurement sample was injected into the measuring machine, and GPC measurement was performed at 160 ° C. A calibration curve was prepared using commercially available monodisperse polystyrene having a known molecular weight as a standard substance, and the polystyrene-reduced molecular weight distribution data of each sample was obtained.
- ⁇ Average pore size ( ⁇ m)> The average pore diameter ( ⁇ m) was measured using a palm porometer (Porous Materials, Inc.: CFP-1500AE) according to the half dry method. Perfluoropolyester manufactured by the same company (trade name "Galwick", surface tension 15.6 dyn/cm) was used for the immersion liquid. The applied pressure and the air permeation amount were measured for the dry curve and the wet curve, and from the pressure PHD (Pa) at which the curve of 1/2 of the obtained dry curve and the wet curve intersect, the average pore diameter dHD is calculated by the following equation. ( ⁇ m) is calculated. dHD 2860 x ⁇ / PHD
- ⁇ Film thickness ( ⁇ m)> Using a micro thickness meter (Type KBM manufactured by Toyo Seiki Co., Ltd.), the measurement was performed in an atmosphere of room temperature of 23° C. and humidity of 40%. The measurement was performed by using a terminal having a terminal diameter of 5 mm ⁇ and applying a load of 44 gf.
- Air permeability (sec/100 cm 3 )> According to JIS P-8117, using a Gurley type air permeability meter, G-B2 (trademark) manufactured by Toyo Seiki Co., Ltd., the air permeability of the microporous polyolefin membrane under the atmosphere of a temperature of 23° C. and a humidity of 40%. The resistance was measured and used as the air permeability.
- ⁇ Puncture strength (gf)> Using a handy compression tester KES-G5 (trade name) manufactured by KATO TECH, the microporous membrane was fixed with a sample holder having an opening having a diameter of 11.3 mm. Then, the center portion of the fixed microporous membrane was subjected to a puncture test under the atmosphere of a radius of curvature of the needle tip of 0.5 mm, a puncture speed of 2 mm/sec and a temperature of 23° C. and a humidity of 40% to obtain the maximum puncture. The raw puncture strength (gf) was obtained as the load.
- a polyolefin microporous membrane was produced by the following procedure.
- the composition of the resin raw material is as follows: 70 parts by mass of polyethylene having a melting point of 135° C., a viscosity average molecular weight of 700,000 and a molecular weight distribution of 5.0 for the first type of polyethylene, and a viscosity average molecular weight of 250,000 for the second type of polyethylene, and a molecular weight distribution of 5.
- This sheet was stretched 7 ⁇ 6 times in a simultaneous biaxial stretching machine at 125° C. so that the MD strain rate was 35%/sec and the TD strain rate was 30%/sec, and then the sheet was immersed in methylene chloride. The liquid paraffin was extracted and removed. Then, the sheet was dried and stretched 1.9 times in the width direction (TD) by a tenter stretching machine at 120°C. Then, this stretched sheet is heat-treated under the condition of 128° C. so as to be 0.85 times the width after transverse stretching at a strain rate of -4.2%/sec in the width direction (TD) to obtain a polyolefin microporous layer. A membrane was obtained.
- Example 2 to 23 and Comparative Examples 1 to 14 According to the production method of Example 1, the polyolefin microporous membranes of Examples 2 to 23 and Comparative examples 1 to 14 were produced under the conditions shown in Tables 1 to 9.
- the first type of polyethylene is represented by PE1
- the second type of polyethylene is represented by PE2
- the third type of polyethylene is represented by PE3,
- the polypropylene is represented by PP.
- the notations PE1 to PE3 are for convenience, and the order of introducing the raw materials in the present invention is not limited to PE1, PE2, and PE3.
- NMC nickel, manganese,
- an iron nail having a diameter of 3.0 mm was penetrated at a speed of 2 mm/sec, and the nail was maintained in a penetrated state.
- FIG. 1 shows an example of the temperature dependence of the storage elastic modulus and the loss tangent of the melt viscoelasticity measurement sample obtained in Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
また、近年、電池の高容量化に伴い、高エネルギー密度化した電池の安全性を確保する観点で、特許文献3、及び4で想定されているよりもより高温領域で安全性を担保できることが期待されている。
従って、車載用等のより高度な安全性が求められる分野においては、実際の電池内部における短絡時のセパレータの状況を想定し、過酷な条件での短絡試験で良好な短絡耐性を示すセパレータが求められる。更に車載用LIBでは高出力での充放電が繰り返されるため、長期間充放電を繰り返しても容量低下の少ないセパレータが求められる。なお、このような課題は、車載用LIBに用いられるセパレータに限られず、高エネルギー密度化された電池に用いられるセパレータにおいて同様に存在する。
[1]
溶融粘弾性測定において、230℃における損失正接(tanδ)が0.35以上0.60未満である、ポリオレフィン微多孔膜。
[2]
TMA測定において、MD、及びTDの最大荷重が共に3.0gf以下である、[1]に記載のポリオレフィン微多孔膜。
[3]
溶融粘弾性測定において、230℃での貯蔵弾性率(G’)が5.0×104Pa以上である、[1]又は[2]に記載のポリオレフィン微多孔膜。
[4]
溶融粘弾性測定において、190℃における損失正接(tanδ190)と230℃における損失正接(tanδ230)の差(tanδ230-tanδ190)が-0.05以下(前記差≦-0.05)である、[1]~[3]のいずれか1項に記載のポリオレフィン微多孔膜。
[5]
溶融粘弾性測定において、190℃における貯蔵弾性率(G’190)と230℃における貯蔵弾性率(G’230)の差(G’230-G’190)が-1.0×103Pa以上(前記差≧-1.0×103Pa)である、[1]~[4]のいずれか1項に記載のポリオレフィン微多孔膜。
[6]
溶融粘弾性測定において、230℃における貯蔵弾性率(G’230)と280℃における貯蔵弾性率(G’280)の差(G’280-G’230)が-2.1×104Pa以上(前記差≧-2.1×104Pa)である、[1]~[5]のいずれか1項に記載のポリオレフィン微多孔膜。
[7]
TMA測定において、MD、及びTDにおける160℃での荷重が共に0.10gf/10μm以上である、[1]~[6]のいずれか1項に記載のポリオレフィン微多孔膜。
[8]
昇温速度15℃/minで測定したシャットダウン温度が150℃以下である、[1]~[7]のいずれか1項に記載のポリオレフィン微多孔膜。
[9]
ハーフドライ法で求められる平均孔径が0.05μm以上0.08μm以下である、[1]~[8]のいずれか1項に記載のポリオレフィン微多孔膜。
[10]
バブルポイント法で求められる最大孔径とハーフドライ法で求められる平均孔径の差が0.01μm以上0.02μmである、[1]~[9]のいずれか1項に記載のポリオレフィン微多孔膜。
[11]
膜を構成する樹脂成分の50質量%以上100質量%以下をポリオレフィン樹脂が占めるポリオレフィン樹脂組成物により形成される、[1]~[10]のいずれか1項に記載のポリオレフィン微多孔膜。
[12]
膜を構成する樹脂成分は、ポリエチレンとポリプロピレンとを含み、前記ポリプロピレンの割合は、前記ポリオレフィン樹脂成分の総量を100質量%として1質量%以上10質量%以下である、[1]~[11]のいずれか1項に記載のポリオレフィン微多孔膜。
[13]
[1]~[12]のいずれか1項に記載のポリオレフィン微多孔膜を含む電池用セパレータ。
本発明の一態様は、ポリオレフィン微多孔膜である。ポリオレフィン微多孔膜の好ましい態様は、電子伝導性が小さく、イオン伝導性を有し、有機溶媒に対する耐性が高く、かつ孔径の微細なものである。また、ポリオレフィン微多孔膜は、電池用セパレータ又はその構成要素、特に二次電池用セパレータ又はその構成要素として利用されることができる。
よって、高エネルギー密度の電池であっても、本実施形態に係るポリオレフィン微多孔膜を備えることで、内部短絡時に熱暴走を防止することができる。
溶融粘弾性測定において、内部短絡時に熱暴走を防止し易くする観点から、230℃における損失正接(tanδ)は、好ましくは0.35以上、より好ましくは0.37以上、更に好ましくは0.39以上、より更に好ましくは0.40以上、最も好ましくは0.41以上であり、好ましくは0.60以下、より好ましくは0.57以下、更に好ましくは0.54以下、より更に好ましくは0.52以下、最も好ましくは0.50以下である。
本実施形態では、原料となるポリオレフィン樹脂を対象とするのではなく、ポリオレフィン微多孔膜を対象として、その溶融粘弾性測定による各種パラメータを特定範囲内に制御している。これにより、電池内におけるセパレータの各種パラメータを特定範囲内に制御することができ、ひいては、内部短絡時に熱暴走を防止することができる。
ポリオレフィン微多孔膜としては、例えば、ポリオレフィン樹脂を含む多孔膜、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂を含む多孔膜、ポリオレフィン系の繊維の織物(織布)、ポリオレフィン系の繊維の不織布、紙、並びに、絶縁性物質粒子の集合体が挙げられる。これらの中でも、塗工工程を経て多層多孔膜、すなわち二次電池用セパレータを得る場合に塗工液の塗工性に優れ、セパレータの膜厚を従来のセパレータより薄くして、二次電池等の蓄電デバイス内の活物質比率を高めて体積当たりの容量を増大させる観点から、ポリオレフィン樹脂を含む多孔膜(以下、「ポリオレフィン樹脂多孔膜」ともいう。)が好ましい。
ポリオレフィン樹脂多孔膜は、二次電池用セパレータとして使用されたときのシャットダウン性能等を向上させる観点から、多孔膜を構成する樹脂成分の50質量%以上100質量%以下をポリオレフィン樹脂が占めるポリオレフィン樹脂組成物により形成される多孔膜であることが好ましい。ポリオレフィン樹脂組成物におけるポリオレフィン樹脂が占める割合は、60質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることが更に好ましい。
中でも、ポリオレフィン樹脂多孔膜が二次電池用セパレータとして使用されたときのシャットダウン特性の観点から、ポリオレフィン樹脂としてはポリエチレン、ポリプロピレン、及びこれらの共重合体、並びにこれらの混合物が好ましい。
ポリエチレンの具体例としては、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、高分子量ポリエチレン(HMWPE)、及び超高分子量ポリエチレン(UHMWPE)等が挙げられる。
ポリプロピレンの具体例としては、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、アタクティックポリプロピレン等が挙げられる。
共重合体の具体例としては、エチレン-プロピレンランダム共重合体、エチレン-プロピレンラバー等が挙げられる。
[η]=6.77×10-4Mv0.67
一般的に、超高分子量ポリエチレンのMvは、100万以上であるため、仮にかかる定義に従えば、本願明細書における高分子量ポリエチレン(HMWPE)は、定義上、UHMWPEを包含する。また、かかる定義とは異なる定義に基づいて「超高分子量ポリエチレン」と称さるポリエチレンであっても、Mvが10万以上である場合には、本実施形態における高分子量ポリエチレンに該当する可能性がある。
すなわち、ポリプロピレンの割合は、膜を構成する樹脂成分中のポリオレフィン樹脂の総量を100質量%として、好ましくは1質量%以上10質量%以下、より好ましくは3質量%以上10質量%以下、更に好ましくは4質量%以上(又は4質量%超え)9質量%以下、より更に好ましくは5質量%以上8質量%以下であり、最も好ましくは5質量%を超え8質量%未満である。
ポリプロピレンの割合が1質量%以上であることにより、ポリオレフィン微多孔膜が150℃前後の高温に達したときに容易に破膜し辛くなり、電池短絡時の初期に微小なピンホールが生じ難くなる。ポリプロピレンの割合が10質量%以下であることにより、300℃近い高温に達したときに溶融した樹脂の流動性が大きくなり過ぎず、樹脂の流出又は電極への過度な染み込みによる電極の露出による熱暴走を回避し易くなる。
ポリプロピレンのMvは、ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を測定することで、次式に従って算出することができる。
[η]=1.10×10-4Mv0.80
本実施形態のポリオレフィン微多孔膜は、膜厚1μmあたりの突刺強度(gf/μm)が好ましくは17gf/μm以上、より好ましくは18gf/μm以上、更に好ましくは19gf/μm以上であり、好ましくは60gf/μm以下、より好ましくは50gf/μm以下、更に好ましくは40gf/μm以下、より更に好ましくは35gf/μm以下、最も好ましくは30gf/μm以下である。突刺強度が17gf/μm以上であることによりポリオレフィン微多孔膜を用いた電池を作製するときに、電極表面の凹凸に接触したときの微小な薄膜化又は破膜を防ぐことができ、微短絡による電池不良を抑制することができる。突刺強度が60gf/μm以下であることにより、電池の収縮応力を抑制することができる。上記の突刺強度(gf/μm)は、実施例に記載の手法により測定される。
本実施形態のポリオレフィン微多孔膜は、MD、及びTDの引張破断強度が好ましくは0.1kgf以上2.0kgf以下、より好ましくは0.3kgf以上1.7kgf以下、更に好ましくは0.5kgf以上1.5kgf以下、最も好ましくは0.7kgf以上1.3kgf以下である。MD、及びTDの引張破断強度が0.1kgf以上であると、電池が外力により変形したとき等にセパレータが破膜する可能性を低減することができる。MD、及びTDの引張破断強度が2.0kgf以下であると、残留応力を低くすることができ、熱収縮の抑制により短絡面積の増加を防ぎ易くなるため好ましい。上記の引張破断強度(kgf)は、実施例に記載の手法により測定される。
ポリオレフィン微多孔膜の製造方法としては、特に制限はなく、既知の製造方法を採用することができる。例えば、以下の方法:
(1)ポリオレフィン樹脂組成物と孔形成材とを溶融混練してシート状に成形後、必要に応じて延伸した後、孔形成材を抽出することにより多孔化させる方法;
(2)ポリオレフィン樹脂組成物を溶融混練して高ドロー比で押出した後、熱処理と延伸によってポリオレフィン結晶界面を剥離させることにより多孔化させる方法;
(3)ポリオレフィン樹脂組成物と無機充填材とを溶融混練してシート上に成形した後、延伸によってポリオレフィンと無機充填材との界面を剥離させることにより多孔化させる方法;
(4)ポリオレフィン樹脂組成物を溶解後、ポリオレフィンに対する貧溶媒に浸漬させてポリオレフィンを凝固させると同時に溶剤を除去することにより多孔化させる方法
等が挙げられる。
P=T×N/9550
比エネルギーが0.10kW・h/kg以上であることにより、重合体同士の絡み合いを促進し、異なるポリオレフィン原料を均一に混錬することで孔径が均一で強度の高いポリオレフィン微多孔膜を得ることができる傾向にある。また、ポリオレフィン微多孔膜が溶融したときに重合体同士の絡み合いにより急激な粘度低下を抑制することができると推測される。比エネルギーが0.40kW・h/kg以下であることにより、過度な混錬による重合体の開裂又は分解による分子量劣化又は酸化劣化を抑制し、ポリオレフィン微多孔膜が溶融し、高温に達したときの粘度低下を抑制し易くなると推測される。
シート状成形体又は多孔膜が延伸される延伸工程は、シート状成形体から孔形成材を抽出する工程(孔形成工程)の前に行ってよいし、シート状成形体から孔形成材を抽出した多孔膜に対して行ってもよい。更に、延伸工程は、シート状成形体からの孔形成材の抽出の前と後に行ってもよい。
シート状成形体を二軸方向に高倍率延伸すると、分子が面方向に配向し、最終的に得られる多孔膜が裂け難くなり、高い突刺強度を有するものとなる。延伸方法としては、例えば、同時二軸延伸、逐次二軸延伸、多段延伸、多数回延伸等の方法を挙げることができる。孔径の均一性、延伸の均一性、シャットダウン性の観点からは、同時二軸延伸が好ましい。
・試料の調製
溶融粘弾性測定の試料は以下の方法で作製した。ポリオレフィン微多孔膜を総厚み約5mmになるように複数枚重ね、プレス機を用いて25℃、10MPaで2分間プレスし、微多孔膜間の空気を可能な限り除き、ポリオレフィン微多孔膜の積層体を得た。ポリオレフィン微多孔膜の積層体を厚み1.0mm、10cm四方のシート成型用SUS枠(厚み1.0mm)に配置し、プレス機を用いて0.1MPa、200℃で2分間予熱した後、10MPa、200℃で2分間プレスした。その後、1.0mmのSUS枠に配置したまま10MPa、25℃で2分間プレスし、冷却固化させ約1.0mm、面積約100cm2のポリオレフィンシートを得た。得られたポリオレフィンシートから気泡を含まない箇所を選び、25mmφの円形型抜き器を用いて打ち抜き、直径25mmφ、厚み約1.0mmの溶融粘弾性測定試料を得た。実施例1においては、約500枚の5cm四方のポリオレフィン微多孔膜を重ね、プレス機を用いて溶融粘弾性測定用試料を得た。
貯蔵弾性率(G’)、損失正接(tanδ)は、Anton Paar社製のMCR302を用いて、試料室内に1m3/hの窒素をフローしながら、以下の条件により求めた。
測定温度:初期温度170℃から300℃の範囲
昇温速度:3℃/min
固定治具:直径25mmのパラレルプレート
試料厚み:約1.0mm
ギャップ:可変式(初期値を約1.0mmに設定し、法線方向の荷重が±0.5Nの範囲に収まるように測定中に適宜自動調整)
測定角周波数:1.0Hz
せん断歪み:1.0%
ポリオレフィン原料の融点は示差走査熱量(DSC)測定装置「DSC-60」(島津製作所社製)を用いて求めた。10℃/minの速度で室温から200℃まで昇温(第一昇温過程)したのち、10℃/minで30℃まで降温(第一降温過程)したのち、再度200℃まで10℃/minの速度で昇温した際の第二昇温過程での吸熱ピークの極小点の温度をポリオレフィン原料の融点とした。得られた値の小数点以下第一位を四捨五入した値を、ポリオレフィン原料の融点とした。
ポリオレフィン微多孔膜のTMA測定は、島津製作所TMA50(商標)を使用し、専用プローブとして引張型を用いた。MD(TD)の値を測定する場合は、MD(TD)が15mm、幅3.0mmに切り出したサンプルを、チャック間距離が10mmとなるようにチャックに固定し、専用プローブにセットする。チャック間距離(TD)が10mmとなるようにチャックに固定し、専用プローブにセットした。初期荷重を0.0049N(0.5gf)とし、定長モードにて30℃より10℃/minの速度にてプローブを250℃まで昇温させた。250℃まで到達する間、1秒間隔で温度と荷重をサンプリングし、最大荷重値、及び160℃における荷重値を得た。
厚さ10μmのニッケル箔を2枚(A、B)用意し、一方のニッケル箔Aをスライドガラス上に、縦10mm、横10mmの正方形部分を残して「テフロン(登録商標)」テープでマスキングすると共に固定する。
熱電対を繋いだセラミックスプレート上に、別のニッケル箔Bを載せ、この上に規定の電解液で3時間浸漬させた、測定試料の微多孔膜を置き、その上からニッケル箔を貼りつけたスライドガラスを載せ、更にシリコンゴムを載せる。
これをホットプレート上にセットした後、油圧プレス機にて1.5MPaの圧力をかけた状態で、15℃/minの速度で昇温した。
このときのインピーダンス変化を交流1V、1kHzの条件下で測定した。この測定において、インピーダンスが1000Ωに達した時点の温度をシャットダウン温度とした。
なお、規定の電解液の組成比は以下の通りである。
溶媒の組成比(体積比):炭酸プロピレン/炭酸エチレン/γ-ブチルラクトン=1/1/2
電解液の組成比:上記溶媒にてLiBF4を1mol/リットルの濃度になるように溶かし、0.5質量%になるようにトリオクチルフォスフェイトを加えた。
引張試験機(島津オートグラフAG-A型)を用いてMD、及びTDの引張試験を行い、サンプル破断時の強度を、試験前のサンプル断面積で除し、MD、及びTDの引張破断強度(kg/cm2)とした。測定条件は、温度;23±2℃、湿度:40%、サンプル形状;幅10mm×長さ100mm、チャック間距離;50mm、引張速度;200mm/minである。
引張伸度(%)は、破断に至るまでの伸び量(mm)をチャック間距離(50mm)で除して、100を乗じることにより求めた。
ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を求めた。
ポリエチレンについては、次式により算出した。
[η]=6.77×10-4Mv0.67
ポリプロピレンについては、次式によりMvを算出した。
[η]=1.10×10-4Mv0.80
・試料の調製
ポリオレフィン原料を秤量し、濃度が1mg/mlになるように溶離液1,2,4-トリクロロベンゼン(TCB)を加えた。高温溶解器を用いて、160℃で30分静置したのち、160℃で1時間揺動させ、試料がすべて溶解したことを目視で確認した。160℃のまま、0.5μmフィルターでろ過し、ろ液をGPC測定試料とした。
・GPC測定
GPC装置として、Agilent社製のPL-GPC220(商標)を用い、東ソー(株)製のTSKgel GMHHR-H(20) HT(商標)の30cmカラム2本を使用し、上記で調整したGPC測定試料500μlを測定機に注入し、160℃にてGPC測定を行った。
なお、標準物質として市販の分子量が既知の単分散ポリスチレンを用いて検量線を作成し、求められた各試料のポリスチレン換算の分子量分布データを得た。ポリエチレンの場合は、ポリスチレン換算の分子量分布データに0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)を乗じることにより、ポリエチレン換算の分子量分布データを取得した。ポリプロピレンの場合は、(ポリプロピレンのQファクター/ポリスチレンのQファクター=26.4/41.3)を乗じることにより、ポリプロピレン換算の分子量分布データを取得した。これにより、各試料の重量平均分子量(Mw)、及び分子量分布(Mw/Mn)を得た。
ハーフドライ法に準拠し、パームポロメータ(Porous Materials,Inc.社:CFP-1500AE)を用い、平均孔径(μm)を測定した。浸液には同社製のパーフルオロポリエステル(商品名「Galwick」、表面張力15.6dyn/cm)を用いた。乾燥曲線、及び湿潤曲線について、印加圧力、及び空気透過量の測定を行い、得られた乾燥曲線の1/2の曲線と湿潤曲線とが交わる圧力PHD(Pa)から、次式により平均孔径dHD(μm)を求める。
dHD=2860×γ/PHD
バブルポイント法に準拠し、パームポロメータ(Porous Materials,Inc.社:CFP-1500AE)を用い、最大孔径(μm)を測定した。浸液には同社製のパーフルオロポリエステル(商品名「Galwick」、表面張力15.6dyn/cm)を用いた。湿潤曲線について、印可圧力、及び空気透過量の測定を昇圧モードで行い、得られた湿潤曲線における最初のバブルが発生した圧力PBP(Pa)から、次式により最大孔径dBP(μm)を求める。
dBP=2860×γ/PBP
微小測厚器(東洋精機製 タイプKBM)を用いて、室温23℃、湿度40%の雰囲気下で測定した。端子径5mmφの端子を用い、44gfの荷重を印加して測定した。
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm3)と質量(g)を求め、それらと密度(g/cm3)より、次式を用いて気孔率を計算した。
気孔率(%)=(体積-質量/密度)/体積×100
JIS P-8117に準拠し、東洋精器(株)製のガーレー式透気度計、G-B2(商標)を用いて温度23℃、湿度40%の雰囲気下でポリオレフィン微多孔膜の透気抵抗度を測定し透気度とした。
カトーテック製のハンディー圧縮試験器KES-G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで微多孔膜を固定した。次に固定された微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、温度23℃、湿度40%の雰囲気下にて突刺試験を行うことにより、最大突刺荷重として生の突刺強度(gf)を得た。
<ポリオレフィン微多孔膜の製造>
ポリオレフィン微多孔膜を、以下の手順で作製した。樹脂原料の組成は、1種類目のポリエチレンとして融点135℃、粘度平均分子量70万、分子量分布5.0のポリエチレン70質量部、及び2種類目のポリエチレンとして粘度平均分子量25万、分子量分布5.0のポリエチレン23質量部、ポリプロピレンとして、融点161℃、粘度平均分子量40万、分子量分布6.0のアイソタクティックポリプロピレン7質量部であった。前記樹脂組成に、酸化防止剤として、0.3質量部のテトラキス-(メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート)メタンを混合した。得られた各混合物を、二軸押出機にフィーダーを介して投入した。更に孔形成材として流動パラフィン(37.78℃における動粘度75.90cSt)を、樹脂原料+流動パラフィンの合計を100質量部として、流動パラフィンが71質量部となるようにサイドフィードで押出機に注入し、混錬温度が160℃、Q/Nが3.5kg/(h・rpm)、比エネルギーが0.21kWh/kgとなる条件で混練し、押出機先端に設置したTダイから押出した。押出後、ただちに30℃に冷却したキャストロールで冷却固化させ、厚さ1.3mmのシートを成形した。このシートを同時二軸延伸機で125℃の条件でMDの歪速度が35%/sec、TDの歪速度が30%/secとなるように7×6倍に延伸した後、塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後、シートを乾燥し、テンター延伸機により120℃の条件で幅方向(TD)に1.9倍延伸した。その後、この延伸シートを128℃の条件で横延伸後の幅から0.85倍になるように歪速度-4.2%/secで幅方向(TD)に緩和する熱処理を行い、ポリオレフィン微多孔膜を得た。
実施例1の製造方法に準じて表1~9に記載した条件で実施例2~23、及び比較例1~14のポリオレフィン微多孔膜を作製した。なお、原料組成について1種類目のポリエチレンをPE1、2種類目のポリエチレンをPE2、3種類目のポリエチレンをPE3、ポリプロピレンをPPと表した。なお、PE1~PE3の表記は便宜的なものであり、本発明における原料の投入順序がPE1、PE2、及びPE3の順番に限定される趣旨ではない。
以下の手順a~cにより、正極、負極、及び非水電解液を調整した。
a.正極の作製
正極活物質としてニッケル、マンガン、コバルト複合酸化物(NMC)(Ni:Mn:Co=1:1:1(元素比)、密度4.70g/cm3)を90.4質量%、導電助材としてグラファイト粉末(KS6)(密度2.26g/cm3、数平均粒子径6.5μm)を1.6質量%、及びアセチレンブラック粉末(AB)(密度1.95g/cm3、数平均粒子径48nm)を3.8質量%、並びにバインダとしてポリフッ化ビニリデン(PVDF)(密度1.75g/cm3)を4.2質量%の比率で混合し、これらをN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて塗布し、130℃において3分間乾燥した後、ロールプレス機を用いて圧縮成形することにより、正極を作製した。このときの正極活物質塗布量は109g/m2であった。
b.負極の作製
負極活物質としてグラファイト粉末A(密度2.23g/cm3、数平均粒子径12.7μm)を87.6質量%、及びグラファイト粉末B(密度2.27g/cm3、数平均粒子径6.5μm)を9.7質量%、並びにバインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%(固形分換算)(固形分濃度1.83質量%水溶液)、及びジエンゴム系ラテックス1.7質量%(固形分換算)(固形分濃度40質量%水溶液)を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃において3分間乾燥した後、ロールプレス機で圧縮成形することにより、負極を作製した。このときの負極活物質塗布量は52g/m2であった。
c.非水電解液の調製
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/Lとなるように溶解させることにより、非水電解液を調製した。
上記a~cで得られた正極、負極、及び非水電解液、並びに実施例1~23で得られたセパレータを使用して、電流値1A(0.3C)、終止電池電圧4.2Vの条件で3時間定電流定電圧(CCCV)充電したサイズ100mm×60mm、容量3Ahのラミネート型二次電池を作製した。
e.釘刺し評価
ラミネート型二次電池を、温調可能な防爆ブース内の鉄板上に静置した。ラミネート型二次電池の中央部に、防爆ブース内の温度を40℃に設定し、直径3.0mmの鉄製釘を、2mm/secの速度で貫通させ、釘は貫通した状態で維持した。釘内部に、釘が貫通した後ラミネート電池内部の温度が測定できるように設置した熱電対の温度を測定し、最高到達温度、及び釘が内部に侵入してから200℃に達するまでの時間(sec)を以下のように評価した。
・最高到達温度
A:200℃以下
B:200℃より高く230℃以下
C:230℃より高く260℃以下
D:260℃より高く290℃以下
E:290℃より高く320℃以下
F:320℃より高い
G:発火又は発火の危険あり
・200℃到達時間
A:200℃に達しない
B:3.5秒以上
C:3.2秒以上3.5秒未満
D:2.9秒以上3.2秒未満
E:2.6秒以上2.9秒未満
F:2.3秒以上2.6秒未満
G:2.3秒未満
実施例、及び比較例で得たセパレータをそれぞれ使用し、上記手順dで得られた簡易電池を用いて、以下の手順でサイクル特性の評価を行った。
(1)前処理
上記簡易電池を、1/3Cの電流値で電圧4.2Vまで定電流充電した後、4.2Vの定電圧充電を8時間行い、その後1/3Cの電流で3.0Vの終止電圧まで放電を行った。次に、1Cの電流値で電圧4.2Vまで定電流充電した後、4.2Vの定電圧充電を3時間行い、更に1Cの電流で3.0Vの終止電圧まで放電を行った。最後に1Cの電流値で4.2Vまで定電流充電をした後、4.2Vの定電圧充電を3時間行った。なお、1Cとは電池の基準容量を1時間で放電する電流値を表す。
(2)サイクル試験
上記前処理を行った電池を、温度25℃の条件下で、放電電流1Cで放電終止電圧3Vまで放電を行った後、充電電流1Cで充電終止電圧4.2Vまで充電を行った。これを1サイクルとして充放電を繰り返した。そして、初期容量(第1回目のサイクルにおける容量)に対する300サイクル後の容量保持率を用いて、以下の基準でサイクル特性を評価した。
(3)サイクル特性の評価基準
A:95%以上100%以下の容量保持率
B:90%以上95%未満の容量保持率
C:85%以上90%未満の容量保持率
D:80%以上85%未満の容量保持率
E:80%未満の容量保持率
実施例1~23、及び比較例1~14で得られた微多孔膜の物性、及びそれらを二次電池に組み込んだときの評価結果を表1~9に示す。また、実施例1で得られた溶融粘弾性測定用試料について、貯蔵弾性率と損失正接の温度依存性の一例を図1に示す。
Claims (13)
- 溶融粘弾性測定において、230℃における損失正接(tanδ)が0.35以上0.60未満である、ポリオレフィン微多孔膜。
- TMA測定において、MD、及びTDの最大荷重が共に3.0gf以下である、請求項1に記載のポリオレフィン微多孔膜。
- 溶融粘弾性測定において、230℃での貯蔵弾性率(G’)が5.0×104Pa以上である、請求項1又は2に記載のポリオレフィン微多孔膜。
- 溶融粘弾性測定において、190℃における損失正接(tanδ190)と230℃における損失正接(tanδ230)の差(tanδ230-tanδ190)が-0.05以下(前記差≦-0.05)である、請求項1~3のいずれか1項に記載のポリオレフィン微多孔膜。
- 溶融粘弾性測定において、190℃における貯蔵弾性率(G’190)と230℃における貯蔵弾性率(G’230)の差(G’230-G’190)が-1.0×103Pa以上(前記差≧-1.0×103Pa)である、請求項1~4のいずれか1項に記載のポリオレフィン微多孔膜。
- 溶融粘弾性測定において、230℃における貯蔵弾性率(G’230)と280℃における貯蔵弾性率(G’280)の差(G’280-G’230)が-2.1×104Pa以上(前記差≧-2.1×104Pa)である、請求項1~5のいずれか1項に記載のポリオレフィン微多孔膜。
- TMA測定において、MD、及びTDにおける160℃での荷重が共に0.10gf/10μm以上である、請求項1~6のいずれか1項に記載のポリオレフィン微多孔膜。
- 昇温速度15℃/minで測定したシャットダウン温度が150℃以下である、請求項1~7のいずれか1項に記載のポリオレフィン微多孔膜。
- ハーフドライ法で求められる平均孔径が0.05μm以上0.08μm以下である、請求項1~8のいずれか1項に記載のポリオレフィン微多孔膜。
- バブルポイント法で求められる最大孔径とハーフドライ法で求められる平均孔径の差が0.01μm以上0.02μmである、請求項1~9のいずれか1項に記載のポリオレフィン微多孔膜。
- 膜を構成する樹脂成分の50質量%以上100質量%以下をポリオレフィン樹脂が占めるポリオレフィン樹脂組成物により形成される、請求項1~10のいずれか1項に記載のポリオレフィン微多孔膜。
- 膜を構成する樹脂成分は、ポリエチレンとポリプロピレンとを含み、前記ポリプロピレンの割合は、前記樹脂成分中の前記ポリオレフィン樹脂の総量を100質量%として1質量%以上10質量%以下である、請求項1~11のいずれか1項に記載のポリオレフィン微多孔膜。
- 請求項1~12のいずれか1項に記載のポリオレフィン微多孔膜を含む電池用セパレータ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL19868147.0T PL3816217T3 (pl) | 2019-03-04 | 2019-08-09 | Mikroporowata membrana poliolefinowa |
US16/753,121 US12110382B2 (en) | 2019-03-04 | 2019-08-09 | Polyolefin microporous membrane |
CN201980005052.9A CN111902470B (zh) | 2019-03-04 | 2019-08-09 | 聚烯烃微多孔膜 |
KR1020207010437A KR102289178B1 (ko) | 2019-03-04 | 2019-08-09 | 폴리올레핀 미다공막 |
EP19868147.0A EP3816217B1 (en) | 2019-03-04 | 2019-08-09 | Polyolefin microporous membrane |
JP2019567753A JP6741884B1 (ja) | 2019-03-04 | 2019-08-09 | ポリオレフィン微多孔膜 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-038419 | 2019-03-04 | ||
JP2019038419 | 2019-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020179101A1 true WO2020179101A1 (ja) | 2020-09-10 |
Family
ID=72338531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/031755 WO2020179101A1 (ja) | 2019-03-04 | 2019-08-09 | ポリオレフィン微多孔膜 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12110382B2 (ja) |
EP (1) | EP3816217B1 (ja) |
KR (1) | KR102289178B1 (ja) |
CN (1) | CN111902470B (ja) |
HU (1) | HUE063128T2 (ja) |
WO (1) | WO2020179101A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023020701A (ja) * | 2021-07-30 | 2023-02-09 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
JP2023529114A (ja) * | 2020-11-11 | 2023-07-07 | エルジー・ケム・リミテッド | リチウム二次電池用分離膜及びその製造方法 |
WO2024019069A1 (ja) * | 2022-07-20 | 2024-01-25 | 東レ株式会社 | ポリオレフィン微多孔膜、電池用セパレータおよび電池 |
JP7483653B2 (ja) | 2021-03-30 | 2024-05-15 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117981157A (zh) * | 2022-06-14 | 2024-05-03 | 株式会社Lg新能源 | 包含Si系负极活性材料的锂二次电池 |
KR102618427B1 (ko) * | 2022-06-14 | 2023-12-27 | 주식회사 엘지에너지솔루션 | Si계 음극 활물질을 구비하는 리튬 이차전지 |
WO2023243833A1 (ko) * | 2022-06-14 | 2023-12-21 | 주식회사 엘지에너지솔루션 | Si계 음극 활물질을 구비하는 리튬 이차전지 |
CN114914631A (zh) * | 2022-06-29 | 2022-08-16 | 上海恩捷新材料科技有限公司 | 一种超高强度隔膜及其制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5250261B2 (ja) | 1975-11-15 | 1977-12-23 | ||
WO2007069560A1 (ja) * | 2005-12-15 | 2007-06-21 | Asahi Kasei Chemicals Corporation | ポリオレフィン製微多孔膜 |
JP3995471B2 (ja) | 2001-12-26 | 2007-10-24 | 旭化成ケミカルズ株式会社 | ポリオレフィン製微多孔膜 |
WO2008069216A1 (ja) * | 2006-12-04 | 2008-06-12 | Asahi Kasei Chemicals Corporation | ポリオレフィン製微多孔膜 |
WO2009136648A1 (ja) * | 2008-05-09 | 2009-11-12 | 旭化成イーマテリアルズ株式会社 | 高出力密度リチウムイオン二次電池用セパレータ |
JP2011225736A (ja) * | 2010-04-21 | 2011-11-10 | Asahi Kasei E-Materials Corp | ポリオレフィン微多孔膜、及びリチウムイオン二次電池 |
JP2014162851A (ja) * | 2013-02-25 | 2014-09-08 | Asahi Kasei E-Materials Corp | ポリオレフィン微多孔膜の製造方法 |
JP2017128639A (ja) | 2016-01-19 | 2017-07-27 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム |
JP2017142985A (ja) * | 2016-02-10 | 2017-08-17 | 旭化成株式会社 | 微多孔膜、電池用セパレータ及び電池 |
JP2017203145A (ja) | 2016-05-13 | 2017-11-16 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ |
JP2018141029A (ja) * | 2017-02-27 | 2018-09-13 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2109360A1 (en) | 1992-12-21 | 1994-06-22 | Mitsubishi Chemical Corporation | Porous film or sheet, battery separator and lithium battery |
JP3050021B2 (ja) * | 1993-05-11 | 2000-06-05 | 三菱化学株式会社 | バッテリーセパレーター及びそれを用いたリチウム電池 |
JP4181245B2 (ja) | 1998-05-12 | 2008-11-12 | 東洋クロス株式会社 | 発泡シート |
EP1947138B1 (en) | 2005-11-01 | 2011-10-26 | Toray Tonen Specialty Separator Godo Kaisha | Polyolefin microporous membrane, separator for battery using the membrane, and battery |
US20100069596A1 (en) * | 2005-11-24 | 2010-03-18 | Kotaro Kimishima | Microporous polyolefin membrane, its production method, battery separator and battery |
KR101288803B1 (ko) * | 2007-09-12 | 2013-07-23 | 에스케이이노베이션 주식회사 | 고온 강도 및 투과도가 우수한 폴리에틸렌 미세다공막 |
JP2009149710A (ja) | 2007-12-19 | 2009-07-09 | Asahi Kasei E-Materials Corp | ポリオレフィン製微多孔膜 |
KR101437852B1 (ko) | 2007-12-26 | 2014-09-04 | 에스케이이노베이션 주식회사 | 다층 폴리올레핀계 미세다공막 및 그 제조방법 |
WO2010101195A1 (ja) | 2009-03-04 | 2010-09-10 | 旭化成イーマテリアルズ株式会社 | フッ素系高分子電解質膜 |
CN103531735B (zh) * | 2013-09-22 | 2015-12-02 | 佛山市金辉高科光电材料有限公司 | 一种锂离子电池用聚烯烃多层微多孔膜及其制备方法 |
JP6520248B2 (ja) * | 2014-03-26 | 2019-05-29 | 東ソー株式会社 | 超高分子量ポリエチレン製延伸微多孔膜 |
WO2018078710A1 (ja) | 2016-10-24 | 2018-05-03 | 住友化学株式会社 | セパレータ、およびセパレータを含む二次電池 |
JP6756902B2 (ja) | 2017-03-27 | 2020-09-16 | 旭化成株式会社 | ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 |
-
2019
- 2019-08-09 EP EP19868147.0A patent/EP3816217B1/en active Active
- 2019-08-09 US US16/753,121 patent/US12110382B2/en active Active
- 2019-08-09 HU HUE19868147A patent/HUE063128T2/hu unknown
- 2019-08-09 CN CN201980005052.9A patent/CN111902470B/zh active Active
- 2019-08-09 KR KR1020207010437A patent/KR102289178B1/ko active IP Right Grant
- 2019-08-09 WO PCT/JP2019/031755 patent/WO2020179101A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5250261B2 (ja) | 1975-11-15 | 1977-12-23 | ||
JP3995471B2 (ja) | 2001-12-26 | 2007-10-24 | 旭化成ケミカルズ株式会社 | ポリオレフィン製微多孔膜 |
WO2007069560A1 (ja) * | 2005-12-15 | 2007-06-21 | Asahi Kasei Chemicals Corporation | ポリオレフィン製微多孔膜 |
WO2008069216A1 (ja) * | 2006-12-04 | 2008-06-12 | Asahi Kasei Chemicals Corporation | ポリオレフィン製微多孔膜 |
WO2009136648A1 (ja) * | 2008-05-09 | 2009-11-12 | 旭化成イーマテリアルズ株式会社 | 高出力密度リチウムイオン二次電池用セパレータ |
JP2011225736A (ja) * | 2010-04-21 | 2011-11-10 | Asahi Kasei E-Materials Corp | ポリオレフィン微多孔膜、及びリチウムイオン二次電池 |
JP2014162851A (ja) * | 2013-02-25 | 2014-09-08 | Asahi Kasei E-Materials Corp | ポリオレフィン微多孔膜の製造方法 |
JP2017128639A (ja) | 2016-01-19 | 2017-07-27 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム |
JP2017142985A (ja) * | 2016-02-10 | 2017-08-17 | 旭化成株式会社 | 微多孔膜、電池用セパレータ及び電池 |
JP2017203145A (ja) | 2016-05-13 | 2017-11-16 | 積水化学工業株式会社 | 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ |
JP2018141029A (ja) * | 2017-02-27 | 2018-09-13 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3816217A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023529114A (ja) * | 2020-11-11 | 2023-07-07 | エルジー・ケム・リミテッド | リチウム二次電池用分離膜及びその製造方法 |
JP7531621B2 (ja) | 2020-11-11 | 2024-08-09 | エルジー・ケム・リミテッド | リチウム二次電池用分離膜及びその製造方法 |
JP7483653B2 (ja) | 2021-03-30 | 2024-05-15 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
JP2023020701A (ja) * | 2021-07-30 | 2023-02-09 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
JP7386209B2 (ja) | 2021-07-30 | 2023-11-24 | 旭化成株式会社 | ポリオレフィン微多孔膜 |
WO2024019069A1 (ja) * | 2022-07-20 | 2024-01-25 | 東レ株式会社 | ポリオレフィン微多孔膜、電池用セパレータおよび電池 |
Also Published As
Publication number | Publication date |
---|---|
HUE063128T2 (hu) | 2024-01-28 |
KR102289178B1 (ko) | 2021-08-13 |
EP3816217B1 (en) | 2023-07-26 |
CN111902470A (zh) | 2020-11-06 |
EP3816217A4 (en) | 2021-08-25 |
CN111902470B (zh) | 2021-09-21 |
US12110382B2 (en) | 2024-10-08 |
KR20200106880A (ko) | 2020-09-15 |
US20210214535A1 (en) | 2021-07-15 |
EP3816217A1 (en) | 2021-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020179101A1 (ja) | ポリオレフィン微多孔膜 | |
JP5586152B2 (ja) | ポリオレフィン製微多孔膜 | |
WO2017170289A1 (ja) | ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池 | |
EP2708358A1 (en) | Polyolefin microporous membrane | |
TWI700851B (zh) | 聚烯烴微多孔膜、非水電解液系二次電池用隔離材、及非水電解液系二次電池 | |
JPWO2019093184A1 (ja) | ポリオレフィン複合多孔質膜及びその製造方法、並びに電池用セパレータ及び電池 | |
KR20100082830A (ko) | 폴리올레핀 미세 다공막, 그 제조 방법, 전지용 세퍼레이터 및 전지 | |
JP6895570B2 (ja) | ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法 | |
JPWO2018216819A1 (ja) | ポリオレフィン微多孔膜、蓄電デバイス用セパレータ、及び蓄電デバイス | |
JP6886839B2 (ja) | ポリオレフィン微多孔膜 | |
JP6864762B2 (ja) | ポリオレフィン微多孔膜 | |
CN113891912B (zh) | 聚烯烃微多孔膜 | |
WO2020218583A1 (ja) | 耐熱性ポリオレフィン系微多孔膜及びその製造方法 | |
JP6988880B2 (ja) | ポリオレフィン微多孔膜 | |
JP6956214B2 (ja) | ポリオレフィン微多孔膜 | |
JP6741884B1 (ja) | ポリオレフィン微多孔膜 | |
JP7483653B2 (ja) | ポリオレフィン微多孔膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019567753 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19868147 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019868147 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019868147 Country of ref document: EP Effective date: 20210128 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |