WO2018163823A1 - ニッケル粉及びニッケルペースト - Google Patents

ニッケル粉及びニッケルペースト Download PDF

Info

Publication number
WO2018163823A1
WO2018163823A1 PCT/JP2018/006227 JP2018006227W WO2018163823A1 WO 2018163823 A1 WO2018163823 A1 WO 2018163823A1 JP 2018006227 W JP2018006227 W JP 2018006227W WO 2018163823 A1 WO2018163823 A1 WO 2018163823A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel powder
nickel
less
gas
mass
Prior art date
Application number
PCT/JP2018/006227
Other languages
English (en)
French (fr)
Inventor
雄大 本多
浅井 剛
貢 吉田
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to KR1020197029414A priority Critical patent/KR102361800B1/ko
Priority to CN201880017127.0A priority patent/CN110461503B/zh
Priority to JP2018537686A priority patent/JP6425367B1/ja
Publication of WO2018163823A1 publication Critical patent/WO2018163823A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to nickel powder suitable for use in conductive pastes used for electronic parts and the like, and more particularly to nickel powder suitable for use in conductive pastes used for internal electrodes of multilayer ceramic capacitors.
  • a multilayer ceramic capacitor (hereinafter abbreviated as “MLCC”) is an electronic component in which dielectrics and conductors are alternately stacked, and is used in electronic devices such as smartphones and tablet terminals.
  • MLCC is manufactured as follows. That is, a dielectric green sheet is produced by forming a dielectric paste obtained by mixing ceramic powder such as barium titanate with an organic binder into a sheet shape.
  • a metal fine powder for internal electrodes and ceramics for controlling the sintering behavior (hereinafter referred to as “co-material”) are mixed with an organic compound such as an organic solvent and an organic binder to form an internal electrode paste. It is formed and printed on a dielectric green sheet and dried. After laminating the dielectric green sheet coated with this electrode layer, it is thermocompression bonded to form a laminate and processed into a desired shape.
  • the laminate is subjected to heat treatment (hereinafter referred to as “binder removal treatment”) in a weakly oxidizing atmosphere, and then a temperature of about 1300 ° C. in a reducing atmosphere. Bake with. Finally, an external electrode is baked on the outside of the laminate to obtain an MLCC.
  • bin removal treatment heat treatment
  • an external electrode is baked on the outside of the laminate to obtain an MLCC.
  • the fine metal powder for internal electrodes has a particle size of several tens to several hundreds of nm.
  • noble metals such as palladium have been used, but the use of relatively inexpensive base metals such as nickel is increasing.
  • the nickel powder for internal electrodes of MLCC can synthesize spherical nickel fine powder having an average particle diameter of 1 ⁇ m or less and excellent productivity by a gas phase reaction method in which nickel chloride gas and hydrogen gas are contacted, for example.
  • the nickel powder when the nickel powder is reduced in particle size in order to reduce the thickness of the internal electrode, the specific surface area of the nickel powder increases, so that the nickel powder easily aggregates in the liquid phase and in the gas phase.
  • the MLCC capacity decreases due to short-circuiting or delamination, which causes a problem.
  • the short means a structural defect in which the flatness of the internal electrode layer is lost due to coarse particles or agglomerated nickel powder, and the uneven portion of the internal electrode layer penetrates the dielectric layer.
  • delamination is a result of insufficient mixing with the co-material due to the agglomerated nickel powder, resulting in inconsistent thermal shrinkage behavior between the internal electrode layer and the dielectric layer. It is a structural defect that peels off. Therefore, in order to produce a small and large-capacity MLCC with few structural defects, there is a demand for nickel powder with good dispersibility in the internal electrode paste.
  • the low polarity solvent means a solvent having an HLB of 2.5 or less, and examples thereof include hexane, toluene, terpineol, dihydroterpineol, dihydroterpinyl acetate and the like.
  • the following formula 1 is called a washburn (WASHBURN) formula, and is a theoretical formula regarding the dispersion rate of particles in a solvent.
  • v is the dispersion speed
  • is the solvent viscosity
  • L is the pore length
  • r is the pore radius
  • ⁇ L is the surface tension of the solvent
  • is the contact angle
  • ⁇ P is the dispersion pressure.
  • the dispersion speed is determined by the sum of wettability (first term) and dispersion pressure (second term). That is, any particle and solvent can be dispersed when a high dispersion pressure is applied, while high wettability indicates that the particles and the solvent can be dispersed even if the dispersion pressure is small.
  • a first step of preparing a mixture of nickel carboxylate and primary amine, and heating the mixture A second step of obtaining a complexing reaction solution in which a nickel complex is formed, and a third step of obtaining a nickel nanoparticle slurry by irradiating the complexing reaction solution with microwaves and heating at a temperature of 200 ° C. or higher.
  • a method for producing nickel nanoparticles is proposed in which heating is performed in the presence of a polyvalent carboxylic acid having a valence of 3 or more in the complexing reaction solution. (For example, refer to Patent Document 1).
  • the nickel powder treated with the polyvalent carboxylic acid described in Patent Document 1 has improved dispersibility in a low-polar solvent, but does not mention any wettability to the low-polar solvent. . For this reason, it is unclear whether excellent dispersibility is exhibited when weak dispersion treatment is applied.
  • the nickel powder treated with the polyvalent carboxylic acid mentioned in Patent Document 1 has a high carbon content.
  • the metal powder used as the internal electrode of MLCC needs to remove organic substances in the binder removal process, but metal powder containing organic substances with a high carbon content and a high decomposition temperature cannot completely remove organic substances by the binder removal process. In the subsequent firing step, residual organic matter becomes gas, which may result in structural defects.
  • the present invention is suitable for MLCC internal electrode materials, has excellent binder removal properties, and has improved wettability and dispersibility in low-polar solvents, particularly dihydroterpinyl acetate.
  • An object is to provide powder and nickel paste.
  • the nickel powder of the present invention is a spherical nickel powder having a number average diameter of 1 ⁇ m or less and a crystallite diameter d exceeding 40 nm.
  • the nickel powder When measured with a Fourier transform infrared spectrophotometer, the nickel powder has an absorbance I a at 1385 cm ⁇ 1 .
  • the ratio of the absorbance I b at 1600 cm ⁇ 1 (I b / I a ) is 0.8 or more, and the carbon concentration is 0.05 mass% or more and 2.0 mass% or less.
  • the reduction rate of the carbon concentration when heat-treated at 300 ° C. in an inert atmosphere is 50% or more, and when mixed with dihydroterpinyl acetate, dihydroterpinyl per surface area of nickel powder
  • a preferred embodiment is that the amount of acetate added is 0.02 g ⁇ m ⁇ 2 or less to form a paste.
  • the nickel powder of the present invention it is possible to improve wettability and dispersibility with respect to a low polarity solvent, particularly dihydroterpinyl acetate, and thus suppress the generation of aggregated particles when used as a conductive paste for MLCC. And has excellent binder removal properties during the manufacturing process of MLCC. Thereby, it can contribute to manufacture of MLCC with few shorts and delamination.
  • Examples 1-4 and Comparative Examples 1-3 obtained in nickel powder is a graph comparing the ratio of the absorbance I b (I b / I a ) in the absorbance I a and 1600 cm -1 in 1385cm -1.
  • the nickel powder of the present invention includes nickel powder produced by various production methods and nickel alloy powder mainly composed of nickel.
  • the nickel alloy powder there is an alloy powder in which chromium, silicon, boron, phosphorus, a rare earth element, a noble metal element or the like is added to nickel for imparting oxidation resistance or the like and improving electric conductivity.
  • the number average particle diameter of the nickel powder of the present invention is 1 ⁇ m or less.
  • the number average particle diameter is 0.4 ⁇ m or less, more preferably 0.25 ⁇ m or less.
  • the lower limit of the number average particle diameter of the nickel powder of the present invention is not particularly limited, but is preferably 0.01 ⁇ m or more from the viewpoint of production cost and application of ordinary nickel powder.
  • the crystallite diameter of the nickel powder of the present invention is larger than 40 nm.
  • the crystallite diameter d of the present invention is calculated by performing X-ray diffraction measurement on the (111) plane and using Scherrer's equation (Equation 2).
  • K is the Scherrer constant
  • is the measured X-ray wavelength
  • is the half width
  • is the diffraction angle.
  • a high crystallite diameter d provides good sinterability in the MLCC manufacturing process.
  • the number average particle diameter of the nickel powder of the present invention is obtained by taking a photograph of the primary particles of the nickel powder with a scanning electron microscope and measuring the particle diameter of 500 or more particles from the photograph using image analysis software. The number average particle size is calculated from the particle size distribution of the obtained nickel powder. At this time, the particle diameter is the diameter of the smallest circle that encloses the particles.
  • the shape of the nickel powder of the present invention is preferably spherical.
  • the spherical shape of the present invention means that the aspect ratio is 1.2 or less and the circularity coefficient is 0.675 or more.
  • the aspect ratio is the ratio of the major axis to the minor axis of the smallest ellipse that encloses the particles.
  • the circularity coefficient is a value defined by 4 ⁇ S ⁇ L ⁇ 2 where S is the area of the smallest ellipse surrounding the particle and L is the perimeter. Due to the spherical shape of nickel, the filling rate is increased and the flatness is improved when processed into an MLCC internal electrode, and cracks and delamination can be suppressed.
  • the ratio of the absorbance I b in absorbance I a and 1600 cm -1 in 1385Cm -1 when measured by a Fourier transform infrared spectrophotometer (I b / I a) is 0.8 or more
  • the carbon concentration is 0.05% by mass or more and 2.0% by mass or less.
  • the carbon concentration is more preferably 0.1% by mass or more and 1.0% by mass or less, and further preferably 0.2% by mass or more and 0.8% by mass or less.
  • the nickel powder of the present invention preferably has a surface coated with a monocarboxylic acid having a hydrophilic / lipophilic balance value (HLB) of 11 or less and a decomposition temperature of 300 ° C. or less.
  • the monocarboxylic acid preferably has an HLB of 1 or more and 11 or less, more preferably an HLB of 5 or more, 8 from the viewpoints of excellent binder removal properties, excellent wettability to a low-polar solvent, and excellent dispersibility.
  • the molecular structure of monocarboxylic acid R may be either a chain or a ring. Specific examples include linear or branched alkyl groups, vinyl groups, allyl groups, aralkyl groups, cycloalkyl groups, and aryl groups.
  • the nickel powder of the present invention preferably has a sodium concentration of 0.001% by mass or less and a calcium concentration of 0.001% by mass or less. It is desirable that sodium and calcium are not included because there are problems such as a reduction in the capacity of MLCC by reacting with the dielectric material of MLCC. The presence or absence of sodium and calcium can be confirmed by, for example, inductively coupled plasma mass spectrometry.
  • the nickel powder of the present invention may contain 0.01 mass% to 5.0 mass% of sulfur. By setting the sulfur concentration within this range, the sintering behavior can be improved.
  • the sulfur concentration in the nickel powder is preferably 0.01% by mass to 1.0% by mass, more preferably 0.02% by mass to 0.2% by mass.
  • the surface of nickel is preferably coated with sulfur or sulfate groups.
  • the amount of dihydroterpinyl acetate added per surface area (m ⁇ 2 ) of the nickel powder (g) Is 0.02 g ⁇ m 2 or less, and it can be made an excellent nickel powder to a low polarity solvent that becomes a paste.
  • the paste form means that when the glass plate on which the sample is placed is tilted vertically and held for 10 seconds, 95% or more of the sample is kept attached to the glass plate.
  • the specific surface area is a specific surface area measured by the BET method after the sample was degassed at 200 ° C. for 30 minutes.
  • the nickel powder of the present invention has a dispersibility in a low-polarity solvent having a particle diameter of 75% or less with a cumulative volume frequency of 75% when laser diffraction wet particle size distribution is measured in dihydroterpinyl acetate. It is also an excellent nickel powder.
  • the particle size distribution obtained by the laser diffraction wet particle size distribution measurement shows a larger value than the particle size distribution of the primary particles observed by an electron microscope. This is because in laser diffraction wet particle size distribution measurement, the particle size distribution of aggregates aggregated in dihydroterpinyl acetate is measured.
  • the laser diffraction wet particle size distribution measuring method is as follows: 0.2 g of a sample is weighed in a beaker, 20 ml of dihydroterpinyl acetate is added, and then an ultrasonic cleaning tank (USK-1A, manufactured by ASONE Corporation). The dispersion process is performed for 5 min. On the other hand, the inside of the flow cell of a laser diffraction wet particle size analyzer (LS-230, manufactured by Beckman Coulter, Inc.) is filled with dihydroterpinyl acetate, and after the sample is dispersed, the sample is subjected to a laser diffraction particle size distribution analyzer. And measure the particle size distribution.
  • LS-230 manufactured by Beckman Coulter, Inc.
  • the nickel powder of the present invention can be made into a nickel powder having an excellent binder removal property with a carbon concentration reduction rate of 50% or more when heat-treated at 300 ° C. in an inert atmosphere.
  • the carbon concentration reduction rate is measured by placing about 2 g of a sample on an alumina plate, placing it in a Tamman tube atmosphere electric furnace (manufactured by Motoyama Co., Ltd., SUPER BURN SLT2035D), and adding argon gas to the furnace. While flowing 0.0 L / min, heat treatment was performed at a temperature increase / decrease rate of 2 ° C./min, a maximum temperature of 300 ° C., and a holding time of 1 h at the maximum temperature. The carbon concentration after heat treatment) ⁇ 100%) is 50% or more.
  • the nickel powder of the present invention can be produced by a known method such as a gas phase method or a liquid phase method.
  • a gas phase method such as a gas phase method or a liquid phase method.
  • the vapor phase reduction method in which nickel powder is produced by bringing nickel chloride gas into contact with a reducing gas, or the spray pyrolysis method in which a thermally decomposable nickel compound is sprayed and thermally decomposed is used to produce fine metal powder. It is preferable in that the particle size can be easily controlled, and spherical particles can be efficiently produced.
  • the vapor phase reduction method in which nickel chloride gas is brought into contact with a reducing gas is preferable from the viewpoint that the particle diameter of the produced nickel powder can be precisely controlled and the generation of coarse particles can be prevented.
  • vaporized nickel chloride gas is reacted with a reducing gas such as hydrogen.
  • nickel chloride gas may be generated by heating and evaporating solid nickel chloride.
  • the metal chloride is brought into contact with chlorine gas to continuously generate nickel chloride gas, and this nickel chloride gas is directly supplied to the reduction process and then reduced. It is advantageous to produce nickel fine powder by contacting nickel chloride gas and continuously reducing nickel chloride gas.
  • the vapor phase reduction method can obtain nickel powder having a crystallite diameter d exceeding 40 nm in a high yield.
  • Metal chloride gases other than nickel chloride gas when used in a method for producing an alloy powder containing nickel as a main component are silicon trichloride (III) gas, silicon tetrachloride (IV) gas, monosilane gas, copper chloride (I ) Gas, copper chloride (II) gas, silver chloride gas, molybdenum chloride gas (III) gas, molybdenum chloride (V) gas, iron chloride (II) gas, iron chloride (III) gas, chromium chloride (III) gas, Chromium chloride (VI) gas, tungsten chloride (II) gas, tungsten chloride (III) gas, tungsten chloride (IV) gas, tungsten chloride (V) gas, tungsten chloride (VI) gas, tantalum chloride (III) gas, chloride Tantalum (V) gas, cobalt chloride gas, rhenium chloride (III) gas, rhenium chloride (IV) gas, rhenium chloride (V
  • examples of the reducing gas include hydrogen gas, hydrogen sulfide gas, ammonia gas, carbon monoxide gas, methane gas, and a mixed gas thereof. Particularly preferred are hydrogen gas, hydrogen sulfide gas, ammonia gas, and mixed gas thereof.
  • nickel atoms are generated at the moment when the nickel chloride gas and the reducing gas come into contact with each other, and nickel particles collide and agglomerate to generate and grow nickel particles.
  • the particle diameter of the nickel powder to be generated is determined by conditions such as the partial pressure and temperature of the nickel chloride gas in the reduction step. According to the nickel powder manufacturing method as described above, an amount of nickel chloride gas corresponding to the amount of chlorine gas supplied is generated, so the amount of nickel chloride gas supplied to the reduction process can be controlled by controlling the amount of chlorine gas supplied. The amount can be adjusted, and thereby the particle size of the nickel powder produced can be controlled.
  • nickel chloride gas is generated by the reaction of chlorine gas and metal, unlike the method of generating nickel chloride gas by heating evaporation of solid nickel chloride, not only can the use of carrier gas be reduced. Depending on the manufacturing conditions, it is possible not to use them. Therefore, in the gas phase reduction reaction, the production cost can be reduced by reducing the amount of carrier gas used and the accompanying reduction in heating energy.
  • the partial pressure of nickel chloride gas in the reduction process can be controlled by mixing an inert gas with the nickel chloride gas generated in the chlorination process.
  • the particle size of nickel powder can be controlled, and variation in particle size can be suppressed,
  • the particle size can be arbitrarily set.
  • nickel chloride as a starting material is made by reacting metallic nickel having a purity of 99.5% or more in the form of particles, lumps, plates, etc. with chlorine gas to generate nickel chloride gas.
  • the temperature is set to 800 ° C. or higher for sufficient progress of the reaction, and 1453 ° C. or lower which is the melting point of nickel.
  • the range of 900 ° C. to 1100 ° C. is preferable for practical use.
  • this nickel chloride gas is directly supplied to the reduction process and brought into contact with a reducing gas such as hydrogen gas.
  • the partial pressure of the nickel chloride gas can be controlled by appropriately diluting the nickel chloride gas with an inert gas such as argon or nitrogen.
  • an inert gas such as argon or nitrogen.
  • the temperature of the reduction reaction may be at least the temperature sufficient for completion of the reaction, preferably below the melting point of nickel, and practically 900 ° C. to 1100 ° C. in view of economy.
  • the generated nickel powder is cooled.
  • a reduction reaction is performed by blowing an inert gas such as nitrogen gas. It is desirable to rapidly cool the finished gas flow around 1000 ° C. to about 400 to 800 ° C. Thereafter, the produced nickel powder is separated and recovered by, for example, a bag filter or the like.
  • a heat decomposable nickel compound is used as a raw material. Specifically, one or more of nitrate, sulfate, oxynitrate, oxysulfate, chloride, ammonium complex, phosphate, carboxylate, alkoxy compound and the like are included.
  • the solution containing the nickel compound is sprayed to form fine droplets.
  • water, alcohol, acetone, ether or the like is used as the solvent at this time.
  • the spraying method is performed by a spraying method such as ultrasonic or double jet nozzle. In this way, fine droplets are formed and heated at a high temperature to thermally decompose the metal compound to produce nickel powder.
  • the heating temperature at this time is equal to or higher than the temperature at which the specific nickel compound used is thermally decomposed, and is preferably near the melting point of the metal.
  • nickel hydroxide containing nickel sulfate, nickel chloride or nickel complex is brought into contact by adding it to an alkali metal hydroxide such as sodium hydroxide so that the nickel hydroxide is brought into contact.
  • an alkali metal hydroxide such as sodium hydroxide
  • the nickel hydroxide is reduced with a reducing agent such as hydrazine to obtain metallic nickel powder.
  • the metallic nickel powder thus produced is crushed as necessary to obtain uniform particles.
  • the nickel powder obtained by the above method is preferably dispersed and washed in the liquid phase in order to remove the remaining raw material.
  • the nickel powder obtained by the above method is suspended in a carbonic acid aqueous solution under specific conditions with controlled pH and temperature.
  • impurities such as chlorine adhering to the surface of the nickel powder are sufficiently removed, and hydroxide such as nickel hydroxide existing on the surface of the nickel powder and friction between particles, etc.
  • hydroxide such as nickel hydroxide existing on the surface of the nickel powder and friction between particles, etc.
  • a treatment method with an aqueous carbonate solution a method in which nickel powder and an aqueous carbonate solution are mixed, or after the nickel powder is once washed with pure water, carbon dioxide gas is blown into the water slurry, or the nickel powder is once washed with pure water.
  • the aqueous slurry can be treated by adding an aqueous carbonate solution.
  • the method of incorporating sulfur into the nickel powder of the present invention is not particularly limited, and for example, the following method can be employed.
  • (1) Method of adding sulfur-containing gas during the reduction reaction (2) Method of contacting nickel powder with sulfur-containing gas (3) Method of mixing nickel powder and solid sulfur-containing compound in a dry process (4) Nickel Method of adding sulfur-containing compound solution to slurry in which powder is dispersed in liquid phase (5) Method of bubbling sulfur-containing gas in slurry in which nickel powder is dispersed in liquid phase
  • the methods (1) and (4) are preferable from the viewpoint that the sulfur content can be precisely controlled and sulfur can be added uniformly.
  • the sulfur-containing gas used in the methods (1), (2), and (5) is not particularly limited, and is a gas at the temperature of the reduction process, such as sulfur vapor, sulfur dioxide gas, and hydrogen sulfide gas. A certain gas can be used as it is or after being diluted. Of these, sulfur dioxide gas and hydrogen sulfide gas are advantageous because they are gases at room temperature and the flow rate can be easily controlled and impurities are less likely to be mixed.
  • the nickel powder slurry is dried.
  • the drying method is not particularly limited, and a known method can be used. Specific examples include air-flow drying, drying by heating, and vacuum drying that are brought into contact with a high-temperature gas to dry. Among these, air drying is preferable because there is no destruction of the sulfur-containing layer due to collision between particles.
  • the nickel powder thus obtained is stirred after being immersed in a solution containing a monocarboxylic acid having a hydrophilic / lipophilic balance value (HLB) of 11 or less.
  • HLB hydrophilic / lipophilic balance value
  • a solvent selected from at least one of pure water, ethanol, industrial alcohol, or a mixture thereof can be used.
  • pure water from the viewpoint of easy dispersion of nickel powder and economical efficiency.
  • Monocarboxylic acids having a hydrophilic / lipophilic balance value (HLB) of 11 or less are the same as those described above.
  • the amount of the monocarboxylic acid dissolved in the solvent depends on the particle diameter of the nickel powder to be added later and the desired dispersibility, but in the case of nickel powder having a number average particle diameter of about 100 nm, 0.1 to 10% by mass, preferably 0.2 to 2% by mass is preferable. This range is preferable because the effect of improving the wettability and dispersibility of the nickel powder with respect to the low polarity solvent can be sufficiently obtained, and the carbon concentration after drying can be lowered.
  • the amount of the solvent is preferably adjusted so that the concentration of the nickel powder is 20 to 50% by mass from the viewpoint of easy dispersion and economy.
  • the drying method is the same as the drying step after the cleaning step or after the cleaning step and the sulfur addition step.
  • the drying step is not particularly limited, and a known method can be used. Specific examples include air-flow drying, drying by heating, and vacuum drying that are brought into contact with a high-temperature gas to dry. Among these, air drying is preferable because there is no destruction of the sulfur-containing layer due to collision between particles. Moreover, you may add the crushing process by a jet mill etc. as needed.
  • the nickel powder of the present invention is, for example, added with a solvent such as terpineol, and if necessary, an organic binder such as ethyl cellulose, a dispersant, and an unfired powder of the ceramic to be applied, and kneaded with three rolls.
  • a nickel paste having high characteristics can be easily produced by a known method.
  • Solvents include alcohol, acetone, propanol, ethyl acetate, butyl acetate, ether, petroleum ether, mineral spirit, other paraffinic hydrocarbon solvents, or butyl carbitol, terpineol, dihydroterpineol, butyl carbitol acetate, dihydroterpineol.
  • Acetate such as acetate, dihydrocarbyl acetate, carbyl acetate, terpinyl acetate, linalyl acetate, propionate solvents such as dihydroterpinyl propionate, dihydrocarbyl propionate, isobornyl propionate, ethyl
  • propionate solvents such as dihydroterpinyl propionate, dihydrocarbyl propionate, isobornyl propionate, ethyl
  • cellosolves such as cellosolve and butyl cellosolve, aromatics, diethyl phthalate, and the like.
  • a resin binder is preferable, for example, an ethyl cellulose, polyvinyl acetal, an acrylic resin, an alkyd resin etc. are mentioned.
  • the dispersant a known appropriate one can be used, and for example, a vinyl polymer, a polycarboxylic acid amine salt, a polycarboxylic acid type, or the like can be used.
  • Table 1 summarizes sample preparation conditions for the examples and comparative examples.
  • the evaluation method is as follows. (1) Primary particle diameter A sample was observed with a field emission scanning electron microscope (S-4700, manufactured by Hitachi High-Technology Corporation), and a secondary electron image in which particles occupy one field of view was photographed at an appropriate magnification. Thereafter, image analysis was performed on 500 or more particles, and the particle size distribution was calculated from the diameter of the smallest circle surrounding the particles. Further, the shape of the particles was evaluated from the average aspect ratio and the average circularity coefficient.
  • Carbon concentration 0.5 g of a sample was placed in an alumina crucible and burned in a high-frequency furnace oxygen stream. At this time, carbon dioxide generated from carbon in the sample was analyzed by a carbon / sulfur analyzer (manufactured by Horiba, Ltd., EMIA-520SP), and the carbon concentration was calculated.
  • a carbon / sulfur analyzer manufactured by Horiba, Ltd., EMIA-520SP
  • the amount of dihydroterpinyl acetate added per surface area of the nickel powder required to become a paste was 0.02 g ⁇ m ⁇ 2 or less, good ( ⁇ ), exceeding 0.02 g ⁇ m ⁇ 2 The case was evaluated as defective (x).
  • the particle size distribution obtained in this way shows a larger value than the particle size distribution of the primary particles observed by an electron microscope. This is because the particles are aggregated in dihydroterpinyl acetate in the laser diffraction wet particle size distribution measurement. This is for measuring the particle size distribution of the aggregate.
  • the particle size distributions D25, D50, and D75 mean particle diameters with cumulative volume frequencies of 25%, 50%, and 75%, respectively. The better the dispersibility in the paste, the smaller the aggregate particle size. When D75 was 2.3 ⁇ m or less, it was evaluated as good ( ⁇ ), and when it exceeded 2.3, it was evaluated as defective ( ⁇ ).
  • Example 1 After a gas phase reaction method in which nickel chloride and hydrogen are reacted, washing is performed in pure water and a carbonic acid aqueous solution, followed by drying and crushing to prepare nickel powder.
  • this nickel powder was evaluated with an electron microscope, it was confirmed that the nickel powder was a spherical nickel powder having a number average particle diameter of 110 nm, an average aspect ratio of 0.85, and an average circularity coefficient of 1.09. From the result of X-ray diffraction measurement, the crystallite diameter d was 54.7 nm. The specific surface area was 6.42 m 2 ⁇ g ⁇ 1 .
  • the impurity concentration the sodium concentration was less than 0.001% by mass and the calcium concentration was less than 0.001% by mass.
  • pure water was added, and a stirrer was added.
  • the mixture was stirred at 100 rpm for 30 minutes and dissolved to prepare a nickel powder dispersion.
  • nitrogen gas through the flask at a rate of about 100 ml / min, the bottom of the flask was heated to 100 ° C. in an oil bath to volatilize water.
  • nickel powder was collected and sieved with a 250 ⁇ m nylon mesh to prepare a sample.
  • Example 2 A sample was prepared and evaluated in the same manner as in Example 1 except that the amount of benzoic acid was changed to 0.5% by mass.
  • Example 3 A sample was prepared and evaluated in the same manner as in Example 1 except that the amount of benzoic acid was changed to 1% by mass.
  • Example 2 A sample was prepared and evaluated in the same manner as in Example 4 except that n-decanoic acid in Example 4 was changed to a commercially available polycarboxylic acid-based dispersant (manufactured by Croda Japan Co., Ltd., Hypermer KD-9, HLB ⁇ 9). did.
  • Example 3 The nickel powder not added with the organic substance prepared in Example 1 was evaluated in the same manner as in Example 1.
  • FIG. 1 shows the analysis results of the organic substance adsorption state
  • Table 2 shows the evaluation results of the carbon concentration, the binder removal property, the wettability with respect to the low polarity solvent, and the dispersibility in the paste.
  • Examples 1 to 4 and Comparative Examples 1 and 3 have a lower carbon concentration than Comparative Example 2 to which a commercially available dispersant was added. Furthermore, it can be seen from Examples 1 to 4 and Comparative Example 1 that the debinding property is superior to Comparative Example 2 using a commercially available dispersant from the rate of decrease in carbon concentration by heat treatment. In Examples 1 to 4 and Comparative Example 1, it is considered that the binder removal property is excellent due to the low molecular weight and decomposition temperature of the added organic substance.
  • Examples 1 to 4 and Comparative Example 2 in which an organic substance having a low HLB was added were compared with Comparative Example 1 in which acetic acid having a high HLB was added and Comparative Example 3 in which no organic substance was added. Since the particle size of the aggregate is small and D75 is 2.3 ⁇ m or less, it can be seen that the dispersibility in the paste is excellent. This is presumably because in Examples 1 to 4 and Comparative Example 2, the wettability to the low-polarity solvent was improved, so that the dispersion became easier when a certain dispersion force was applied.
  • the added organic substance is a monocarboxylic acid having a low decomposition temperature and a low molecular weight
  • the binder removal property is excellent.
  • the added organic substance has a low HLB, the wettability to a low polarity solvent is improved, and the dispersibility in the paste is also improved.
  • Comparative Example 1 since the added organic substance is a monocarboxylic acid having a low decomposition temperature and low molecular weight, the binder removal property is excellent. However, since the added organic substance has a high HLB, the wettability to a low polarity solvent is insufficient, and as a result, the dispersibility in the paste is also insufficient.
  • Comparative Example 2 since the added organic substance has a low HLB, wettability to a low-polar solvent and dispersibility in the paste are improved. However, since the added organic substance is a polycarboxylic acid having a high decomposition temperature and high molecular weight, the binder removal property is inferior to that of the present invention.
  • Comparative Example 3 the carbon concentration is low because no organic substance is added, but the surface of the nickel powder is covered with hydrophilic nickel oxide, so that the wettability to a low polarity solvent is low, and the dispersion in the paste The sex is poor.
  • the decomposition temperature and carbon concentration of the added organic substance are low, which is advantageous in the binder removal treatment, improves the wettability and dispersibility in a low polarity solvent, particularly dihydroterpinyl acetate, and makes it possible to produce MLCC.
  • a low polarity solvent particularly dihydroterpinyl acetate
  • Suitable nickel powder and nickel paste can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】MLCCの内部電極材料として好適な、脱バインダ性に優れ、低極性溶媒、特にジヒドロターピニルアセテートへの濡れ性および分散性が改善されたニッケル粉およびニッケルペーストを提供する。 【解決手段】個数平均径が1μm以下、結晶子径dが40nmを超える球状ニッケル粉であって、フーリエ変換型赤外分光光度計で測定した際に1385cm-1における吸光度Iaと1600cm-1における吸光度Ibの比(Ib/Ia)が0.8以上、炭素濃度が0.05質量%以上2.0質量%以下であることを特徴とするニッケル粉。ここで、結晶子径dとは、(111)面についてX線回折測定を行い、シェラーの式(式2)を用いて計算したものであり、Kはシェラー定数、λは測定X線波長、βは半値幅、θは回折角である。

Description

ニッケル粉及びニッケルペースト
 本発明は、電子部品などに使用される導電ペースト用途に適したニッケル粉に係り、特に積層セラミックコンデンサの内部電極用途の導電ペーストに用いて好適なニッケル粉に関する。
 積層セラミックコンデンサ(以下、「MLCC」と略す)は、誘電体と導電体が交互に重なった電子部品であり、スマートフォンやタブレット端末といった電子機器に使用されている。
 一般に、MLCCは、次のようにして製造される。すなわち、チタン酸バリウムなどのセラミック粉末を有機バインダと混合した誘電体ペーストをシート状に形成して誘電体グリーンシートを作製する。一方、内部電極用の金属微粉末および、その焼結挙動を制御するためのセラミックス(以下、「共材」と記す)を、有機溶剤、有機バインダ等の有機化合物と混合して内部電極ペーストを形成し、これを誘電体グリーンシート上に印刷し、乾燥する。この電極層を塗布した誘電体グリーンシートを積層後、加熱圧着して積層体を形成し、目的の形状に加工する。次いで、有機バインダ等の有機成分を除去するために弱酸化雰囲気中で積層体に加熱処理(以下、これを「脱バインダ処理」と記す)を施し、その後、還元雰囲気中で1300℃前後の温度で焼成する。最後に積層体の外側に外部電極を焼き付けてMLCCを得る。
 近年、電子機器の小型化・高機能化に伴い、MLCCの小型化・大容量化が進んでおり、内部電極層の薄膜化が要請されている。内部電極用の金属微粉末は、粒径が数十nm~数百nmである。また、従来、パラジウムなどの貴金属が使用されていたが、比較的安価なニッケルなどの卑金属の使用が増えている。
 MLCCの内部電極用ニッケル粉は、例えば塩化ニッケルガスと水素ガスを接触させる気相反応法により、平均粒径が1μm以下で結晶性の高い球状ニッケル微粉を優れた生産性で合成できる。
 一方、内部電極を薄膜化するため、ニッケル粉を小粒径化すると、ニッケル粉の比表面積が増大することにより、ニッケル粉が液相中および気相中で凝集しやすくなる。ニッケル粉が内部電極ペースト中で凝集すると、ショートやデラミネーションによりMLCCの容量が低下するため問題となる。ここで、ショートとは、粗大粒子もしくは凝集したニッケル粉により、内部電極層の平坦性が失われ、内部電極層の凹凸部が誘電体層を貫通する構造欠陥をいう。また、デラミネーションとは、凝集したニッケル粉により共材との混合が不十分となり、内部電極層と誘電体層の熱収縮挙動が不一致となった結果、焼成時に内部電極層と誘電体層が剥離する構造欠陥である。したがって、構造欠陥が少なく、小型・大容量のMLCCを作製するため、内部電極ペースト中での分散性の良いニッケル粉が要請されている。
 内部電極ペースト中でのニッケル粉の分散性を向上させるためには、低極性溶媒に対する濡れ性を向上させることが重要である。低極性溶媒とは、HLBが2.5以下の溶媒をいい、例えば、ヘキサン、トルエン、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテートなどが挙げられる。また、下記式1は、ウォッシュバーン(WASHBURN)の式と呼ばれ、溶媒中への粒子の分散速度に関する理論式である。ここで、vは分散速度、ηは溶媒粘度、Lは細孔長さ、rは細孔半径、γは溶媒の表面張力、θは接触角、ΔPは分散圧力である。この式が示すように、分散速度は、濡れ性(第1項)と、分散圧力(第2項)の和で決まる。すなわち、いかなる粒子と溶媒も、高い分散圧力を印加すれば分散可能である一方で、濡れ性が高ければ、分散圧力が小さくとも分散可能であることを示している。
Figure JPOXMLDOC01-appb-M000002
 一次粒子の平均粒径が1μm以下で、ペースト中での分散性に優れたニッケルナノ粒子の合成に関して、例えばカルボン酸ニッケルおよび1級アミンの混合物を調製する第一の工程と、前記混合物を加熱してニッケル錯体を生成させた錯化反応液を得る第二の工程と、前記錯化反応液にマイクロ波を照射して200℃以上の温度で加熱し、ニッケルナノ粒子スラリーを得る第三の工程と、を有し、前記第三の工程において、前記錯化反応液中に、価数が3以上の多価カルボン酸を存在させた状態で加熱を行うニッケルナノ粒子の製造方法が提案されている(例えば、特許文献1参照)。
 しかしながら、特許文献1で挙げられている多価カルボン酸で処理したニッケル粉は、低極性溶媒中での分散性は改善されているが、低極性溶媒への濡れ性については何ら言及されていない。このため、弱い分散処理を加えた場合に、優れた分散性を示すか不明である。
 さらに、特許文献1で挙げられている多価カルボン酸で処理したニッケル粉は、炭素含有率が高い。MLCCの内部電極として用いられる金属粉は、脱バインダ工程において有機物を除去する必要があるが、高い炭素含有率と分解温度の高い有機物を含む金属粉では、脱バインダ処理で有機物を除去しきれず、続く焼成工程で残留有機物がガスとなり、結果的に構造欠陥の原因となる恐れがある。
特開2011-214143公報
 本発明は、上記従来技術の問題点を鑑み、MLCCの内部電極材料として好適な、脱バインダ性に優れ、低極性溶媒、特にジヒドロターピニルアセテートへの濡れ性および分散性が改善されたニッケル粉およびニッケルペーストを提供することを目的とする。
 本発明のニッケル粉は、個数平均径が1μm以下、結晶子径dが40nmを超える球状ニッケル粉であって、フーリエ変換型赤外分光光度計で測定した際に1385cm-1における吸光度Iと1600cm-1における吸光度Iの比(I/I)が0.8以上であり、炭素濃度が0.05質量%以上、2.0質量%以下であることを特徴とする。
 本発明においては、不活性雰囲気下300℃で熱処理を行った際の炭素濃度の減少率が50%以上であり、ジヒドロターピニルアセテートと混合した際、ニッケル粉の表面積あたりのジヒドロターピニルアセテートの添加量が0.02g・m-2以下でペースト状になることを好ましい態様とする。
 本発明のニッケル粉によれば、低極性溶媒、特にジヒドロターピニルアセテートに対する濡れ性及び分散性を改善することができるため、MLCC用導電ペーストとして用いた際、凝集粒子の発生を抑制することができ、MLCCの製造工程中において脱バインダ性にも優れる。これにより、ショートやデラミネーションの少ないMLCCの製造に寄与することができる。
実施例1~4および比較例1~3で得られたニッケル粉の、1385cm-1における吸光度Iと1600cm-1における吸光度Iの比(I/I)を比較したグラフである。
[ニッケル粉]
 本発明のニッケル粉には、種々の製造方法によって製造されたニッケル粉とニッケルを主成分とするニッケル合金粉が含まれる。ニッケル合金粉としてはニッケルに耐酸化性等の付与や電気伝導率向上のためクロム、珪素、ホウ素、リンや希土類元素、貴金属元素等が添加された合金粉がある。
 本発明のニッケル粉の個数平均粒径は、1μm以下である。好ましくは、個数平均粒径は0.4μm以下、より好ましくは0.25μm以下である。本発明のニッケル粉の個数平均粒径の下限は、特に制限されるものではないが、通常のニッケル粉の生産コストや用途の観点から0.01μm以上であることが好ましい。
 また、本発明のニッケル粉の結晶子径は40nmより大きい。本発明の結晶子径dとは、(111)面について、X線回折測定を行い、シェラーの式(式2)を用いて計算したものである。ここで、Kはシェラー定数、λは測定X線波長、βは半値幅、θは回折角である。結晶子径dが高いことにより、MLCCの製造工程において、良好な焼結性となる。
Figure JPOXMLDOC01-appb-M000003
 本発明のニッケル粉の個数平均粒径は、走査電子顕微鏡によりニッケル粉の一次粒子の写真を撮影し、その写真から画像解析ソフトを使用して、粒子500個以上の粒径を測定し、得られたニッケル粉の粒度分布より、その個数平均粒径を算出したものである。このとき、粒径は粒子を包み込む最小円の直径である。
 本発明のニッケル粉の形状は球状が好ましい。本発明の球状とは、アスペクト比が1.2以下、円形度係数が0.675以上であることをいう。アスペクト比は、粒子を包み込む最小楕円の長径と短径の比である。また、円形度係数とは、粒子を囲む最小楕円の面積をS、周囲長をLとしたとき、4πS・L-2で定義される値である。ニッケルの形状が球状であることにより、MLCCの内部電極に加工した際に充填率が高くなるとともに平坦性が良好となり、クラックとデラミネーションを抑制できる。
 本発明のニッケル粉は、フーリエ変換型赤外分光光度計で測定した際に1385cm-1における吸光度Iと1600cm-1における吸光度Iの比(I/I)が0.8以上であり、炭素濃度が0.05質量%以上2.0質量%以下である。I/Iを0.8以上とし、炭素濃度をこの範囲とすることで、脱バインダ性、低極性溶媒への濡れ性に優れたニッケル粉を得ることができる。炭素濃度は、より好ましくは0.1質量%以上1.0質量%以下、更に好ましくは0.2質量%以上0.8質量%以下である。
 さらに、本発明のニッケル粉は、表面を親水親油バランス値(HLB)が11以下、分解温度が300℃以下のモノカルボン酸で被覆されていることを好ましい。特に、モノカルボン酸は、優れた脱バインダ性、優れた低極性溶媒への濡れ性、優れた分散性の観点から、好ましくはHLBが1以上、11以下、より好ましくはHLBが5以上、8以下のモノカルボン酸(R-COOH)である。モノカルボン酸のRの分子構造は、鎖式もしくは環式いずれでも良い。具体的には、直鎖状または分岐状アルキル基、ビニル基、アリル基、アラルキル基、シクロアルキル基、アリール基が挙げられる。
 HLBが11以下のモノカルボン酸としては、例えば、ブタン酸(HLB=10.2)、ペンタン酸(HLB=8.8)、ヘキサン酸(HLB=7.7)、ヘプタン酸(HLB=6.9)、オクタン酸(HLB=6.2)、ノナン酸(HLB=5.7)、デカン酸(HLB=5.2)、安息香酸(HLB=7.4)、シクロヘキサンカルボン酸(HLB=7.0)、p-トルイル酸(HLB=6.6)のうち、少なくとも1つから選択されるモノカルボン酸が挙げられる。作業性を考えると、好ましくはデカン酸、安息香酸である。
 また、本発明のニッケル粉は、ナトリウム濃度が0.001質量%以下、カルシウム濃度が0.001質量%以下であることを好ましい。ナトリウムおよびカルシウムは、MLCCの誘電体材料と反応してMLCCの容量を低下させるなどの問題があるため、含まれないことが望ましい。ナトリウムおよびカルシウムの有無は、例えば誘導結合プラズマ質量分析により確認できる。
 また、本発明のニッケル粉は、硫黄を0.01質量%~5.0質量%含有していても良い。硫黄濃度をこの範囲とすることで、焼結挙動を改善することができる。ニッケル粉中の硫黄濃度は、好ましくは0.01質量%~1.0質量%、より好ましくは0.02質量%~0.2質量%である。特に、ニッケルの表面が硫黄または硫酸基で被覆されていることが好ましい。
 上記の構成とすることにより、本発明のニッケル粉は、ニッケル粉とジヒドロターピニルアセテートを混合した際、ニッケル粉の表面積(m-2)あたりのジヒドロターピニルアセテートの添加量(g)が0.02g・m以下でペースト状になる低極性溶媒へ優れたニッケル粉とすることができる。ペースト状の評価方法は、具体的には、あらかじめ比表面積を測定した試料1gをガラス板の上に敷き、スポイトでジヒドロターピニルアセテート(日本テルペン化学株式会社製、純度95%、HLB=0)を滴下してからパレットナイフでよく混練することを繰り返し、ペースト状になるまでに要したジヒドロターピニルアセテートの添加量を求め、ニッケル粉の表面積あたりのジヒドロターピニルアセテートの添加量を求める。ここで、ペースト状とは、試料の載ったガラス板を垂直に傾けて10秒間保持した際、試料の95%以上がガラス板に付着したままの状態を保つことをいう。また、比表面積は、試料を200℃にて30min脱気処理を行った後、BET法にて測定した比表面積である。
 また、本発明のニッケル粉は、ジヒドロターピニルアセテート中でレーザー回折式湿式粒度分布測定した際の累積体積頻度で75%となる粒子径が2.3μm以下の低極性溶媒への分散性に優れたニッケル粉でもある。レーザー回折式湿式粒度分布測定で得られる粒度分布は、電子顕微鏡により観察された一次粒子の粒度分布よりも大きな値を示す。これはレーザー回折式湿式粒度分布測定ではジヒドロターピニルアセテート中で凝集した凝集体の粒度分布を測定するためである。レーザー回折式湿式粒度分布測定方法は、具体的には、試料0.2gをビーカーに秤量し、ジヒドロターピニルアセテート20mlを加えた後、超音波洗浄槽(アズワン株式会社製、USK-1A)にて5min分散処理を行う。一方、レーザー回折式湿式粒度分布測定機(ベックマン・コールター株式会社製、LS-230)のフローセル内をジヒドロターピニルアセテートで満たし、試料の分散処理の後、試料をレーザー回折式粒度分布測定機に導入して、粒度分布を測定する。
 さらに、本発明のニッケル粉は、不活性雰囲気下300℃で熱処理を行った際の炭素濃度の減少率が50%以上と脱バインダ性に優れたニッケル粉とすることができる。炭素濃度の減少率の測定方法は、具体的には、試料約2gをアルミナ板に載せ、タンマン管式雰囲気電気炉(株式会社モトヤマ製、SUPER BURN SLT2035D)に入れ、炉内にアルゴンガスを1.0L/min流しながら、昇降温速度2℃/min,最高温度300℃、最高温度での保持時間1hの熱処理を行い、熱処理前後の炭素濃度の減少率((1―熱処理前の炭素濃度/熱処理後の炭素濃度)×100%)が50%以上であることをいう。
[ニッケル粉の製造方法]
 本発明のニッケル粉は、例えば、気相法や液相法など既知の方法で製造することができる。特に塩化ニッケルガスと還元性ガスとを接触させることによりニッケル粉を生成する気相還元法、あるいは熱分解性のニッケル化合物を噴霧して熱分解する噴霧熱分解法は、生成する金属微粉末の粒径を容易に制御することができ、さらに球状の粒子を効率よく製造することができるという点において好ましい。特に、塩化ニッケルガスを還元性ガスと接触させることによる気相還元法は、生成するニッケル粉の粒径を精密に制御でき、さらに粗大粒子の発生を防止できる点から好ましい。
 気相還元法においては、気化させた塩化ニッケルのガスと水素等の還元性ガスとを反応させる。この場合に固体の塩化ニッケルを加熱し蒸発させて塩化ニッケルガスを生成してもよい。しかしながら、塩化ニッケルの酸化または吸湿防止、およびエネルギー効率を考慮すると、金属ニッケルに塩素ガスを接触させて塩化ニッケルガスを連続的に発生させ、この塩化ニッケルガスを還元工程に直接供給し、次いで還元性ガスと接触させ塩化ニッケルガスを連続的に還元してニッケル微粉末を製造する方法が有利である。気相還元法は、結晶子径dが40nmを超えるニッケル粉を高い収率で得ることができる。
 ニッケルを主成分とする合金粉末の製造方法に使用される場合の塩化ニッケルガス以外の金属塩化物ガスは、三塩化珪素(III)ガス、四塩化珪素(IV)ガス、モノシランガス、塩化銅(I)ガス、塩化銅(II)ガス、塩化銀ガス、塩化モリブデンガス(III)ガス、塩化モリブデン(V)ガス、塩化鉄(II)ガス、塩化鉄(III)ガス、塩化クロム(III)ガス、塩化クロム(VI)ガス、塩化タングステン(II)ガス、塩化タングステン(III)ガス、塩化タングステン(IV)ガス、塩化タングステン(V)ガス、塩化タングステン(VI)ガス、塩化タンタル(III)ガス、塩化タンタル(V)ガス、塩化コバルトガス、塩化レニウム(III)ガス、塩化レニウム(IV)ガス、塩化レニウム(V)ガス、ジボランガス、ホスフィンガス等及びこれらの混合ガスが挙げられる。
 また還元性ガスには、水素ガス、硫化水素ガス、アンモニアガス、一酸化炭素ガス、メタンガスおよびこれらの混合ガスが挙げられる。特に好ましくは、水素ガス、硫化水素ガス、アンモニアガス、およびこれらの混合ガスである。
 気相還元反応によるニッケル粉の製造過程では、塩化ニッケルガスと還元性ガスとが接触した瞬間にニッケル原子が生成し、ニッケル原子どうしが衝突・凝集することによってニッケル粒子が生成し、成長する。そして、還元工程での塩化ニッケルガスの分圧や温度等の条件によって、生成するニッケル粉の粒径が決まる。上記のようなニッケル粉の製造方法によれば、塩素ガスの供給量に応じた量の塩化ニッケルガスが発生するから、塩素ガスの供給量を制御することで還元工程へ供給する塩化ニッケルガスの量を調整することができ、これによって生成するニッケル粉の粒径を制御することができる。
 さらに、塩化ニッケルガスは、塩素ガスと金属との反応で発生するから、固体塩化ニッケルの加熱蒸発により塩化ニッケルガスを発生させる方法とは異なり、キャリアガスの使用を少なくすることができるばかりでなく、製造条件によっては使用しないことも可能である。したがって、気相還元反応の方が、キャリアガスの使用量低減とそれに伴う加熱エネルギーの低減により、製造コストの削減を図ることができる。
 また、塩化工程で発生した塩化ニッケルガスに不活性ガスを混合することにより、還元工程における塩化ニッケルガスの分圧を制御することができる。このように、塩素ガスの供給量もしくは還元工程に供給する塩化ニッケルガスの分圧を制御することにより、ニッケル粉の粒径を制御することができ、粒径のばらつきを抑えることができるとともに、粒径を任意に設定することができる。
 例えば、出発原料である塩化ニッケルは、純度は99.5%以上の粒状、塊状、板状等の金属ニッケルを、まず塩素ガスと反応させて塩化ニッケルガスを生成させる。その際の温度は、反応を十分進めるために800℃以上とし、かつニッケルの融点である1453℃以下とする。反応速度と塩化炉の耐久性を考慮すると、実用的には900℃~1100℃の範囲が好ましい。
 次いで、この塩化ニッケルガスを還元工程に直接供給し、水素ガス等の還元性ガスと接触反応させる。その際に、塩化ニッケルガスを適宜アルゴン、窒素等の不活性ガスで希釈して塩化ニッケルガスの分圧を制御することができる。塩化ニッケルガスの分圧を制御することにより、還元部で生成する金属粉末の粒度分布等の品質を制御することができる。これにより生成する金属粉末の品質を任意に設定できるとともに、品質を安定させることができる。還元反応の温度は反応完結に十分な温度以上であればよく、ニッケルの融点以下が好ましく、経済性を考慮すると900℃~1100℃が実用的である。
 このように還元反応を行なったニッケル粉を生成したら、生成したニッケル粉を冷却する。冷却の際、生成したニッケルの一次粒子同士の凝集による二次粒子の生成を防止して所望の粒径のニッケル粉を得るために、窒素ガス等の不活性ガスを吹き込むことにより、還元反応を終えた1000℃付近のガス流を400~800℃程度までに急速冷却することが望ましい。その後、生成したニッケル粉を、例えばバグフィルター等により分離、回収する。
 噴霧熱分解法によるニッケル粉の製造方法では、熱分解性のニッケル化合物を原料とする。具体的には、硝酸塩、硫酸塩、オキシ硝酸塩、オキシ硫酸塩、塩化物、アンモニウム錯体、リン酸塩、カルボン酸塩、アルコキシ化合物などの1種または2種以上が含まれる。このニッケル化合物を含む溶液を噴霧して、微細な液滴を作る。このときの溶媒としては、水、アルコール、アセトン、エーテル等が用いられる。また、噴霧の方法は、超音波または二重ジェットノズル等の噴霧方法により行う。このようにして微細な液滴とし、高温で加熱して金属化合物を熱分解し、ニッケル粉を生成する。このときの加熱温度は、使用される特定のニッケル化合物が熱分解する温度以上であり、好ましくは金属の融点付近である。
 液相法によるニッケル粉の製造方法では、硫酸ニッケル、塩化ニッケルあるいはニッケル錯体を含むニッケル水溶液を、水酸化ナトリウムなどのアルカリ金属水酸化物中に添加するなどして接触させてニッケル水酸化物を生成し、次いでヒドラジンなどの還元剤でニッケル水酸化物を還元し金属ニッケル粉を得る。このようにして生成した金属ニッケル粉は、均一な粒子を得るために必要に応じて解砕処理を行う。
 以上の方法で得られたニッケル粉は、残留する原料を除去するため、液相中に分散させ、洗浄を行うことが好ましい。たとえば、以上の方法で得られたニッケル粉を、pHや温度を制御した特定の条件で炭酸水溶液中に懸濁させて処理を行う。炭酸水溶液で処理することにより、ニッケル粉の表面に付着している塩素などの不純物が十分に除去されるとともに、ニッケル粉の表面に存在する水酸化ニッケルなどの水酸化物や粒子同士の摩擦などにより表面から離間して形成された微粒子が除去されるため、表面に均一な酸化ニッケルの被膜を形成することができる。炭酸水溶液での処理方法としては、ニッケル粉と炭酸水溶液を混合する方法、あるいはニッケル粉を純水で一旦洗浄した後の水スラリー中に炭酸ガスを吹き込むか、あるいはニッケル粉を純水で一旦洗浄した後の水スラリー中に炭酸水溶液を添加して処理することもできる。
 本発明のニッケル粉に硫黄を含有させる方法は、特に限定されるものではなく、例えば以下の方法を採用することができる。
(1)上記還元反応中に硫黄含有ガスを添加する方法
(2)ニッケル粉を硫黄含有ガスと接触処理する方法
(3)ニッケル粉と固体の硫黄含有化合物を乾式で混合する方法
(4)ニッケル粉を液相中に分散させたスラリー中に硫黄含有化合物溶液を添加する方法
(5)ニッケル粉を液相中に分散させたスラリー中に硫黄含有ガスをバブリングする方法
 特に、硫黄含有量を精密に制御できる点や硫黄を均一に添加できる観点から(1)および(4)の方法が好ましい。(1)、(2)、(5)の方法において使用される硫黄含有ガスは、特に限定されるものではなく、硫黄蒸気、二酸化硫黄ガス、硫化水素ガス等、還元工程の温度下において気体であるガスをそのまま、あるいは希釈して使用することができる。この中でも常温で気体であり流量の制御が容易な点や不純物の混入のおそれの低い点から二酸化硫黄ガス、および硫化水素ガスが有利である。
 前述の洗浄工程および硫黄添加工程の後、ニッケル粉スラリーを乾燥する。乾燥方法は特に限定されるものではなく、既知の方法を使用することができる。具体的には高温のガスと接触させ乾燥する気流乾燥、加熱乾燥、真空乾燥などが挙げられる。このうち、気流乾燥は粒子同士の衝突による硫黄含有層の破壊がないため好ましい。
 さらに、このようにして得られたニッケル粉は、上述した親水親油バランス値(HLB)が11以下のモノカルボン酸を含有する溶液に浸漬後、撹拌する。
 親水親油バランス値(HLB)が11以下のモノカルボン酸を含有する溶液の溶媒は、純水、エタノールもしくは工業用アルコールもしくはこれらの混合物のうち少なくとも1つから選択される溶媒を用いることができる。特に、ニッケル粉の分散しやすさ、経済性の観点から、純水を使用することが望ましい。親水親油バランス値(HLB)が11以下のモノカルボン酸は上述したものと同様である。
 このとき、溶媒に溶解させる上記モノカルボン酸の量は、後に添加するニッケル粉の粒径や所望する分散性にもよるが、個数平均粒径が100nm程度のニッケル粉の場合、ニッケル粉に対し0.1~10質量%、好ましくは0.2~2質量%が好ましい。ニッケル粉の低極性溶媒に対する濡れ性および分散性の改善効果が十分に得られ、乾燥後の炭素濃度を低くすることができることから、この範囲が好ましい。
 また、溶媒の量は、分散のし易さ、経済性の観点から、ニッケル粉の濃度が20~50質量%となるように調整することが好ましい。
 撹拌の際は、溶媒中でニッケル粒子がよく分散するように湿式分散機を用い、0℃を超え70℃未満の温度域において、1分間から10時間、好ましくは30分から1時間、撹拌することが好ましい。その後、ニッケル粉スラリーを乾燥し、本発明のニッケル粉を得る。
 乾燥方法は、洗浄工程後、または洗浄工程及び硫黄添加工程後の、乾燥工程と同様である。乾燥工程は、特に限定されるものではなく、既知の方法を使用することができる。具体的には高温のガスと接触させ乾燥する気流乾燥、加熱乾燥、真空乾燥などが挙げられる。このうち、気流乾燥は粒子どうしの衝突による硫黄含有層の破壊がないため好ましい。また、必要に応じてジェットミルなどによる解砕処理を加えても良い。
 そして、本発明のニッケル粉は、例えば、ターピネオール等の溶媒、必要に応じて、エチルセルロース等の有機バインダ、分散剤、及び塗布しようとするセラミックスの未焼成粉を加え、3本ロールで混練するといった公知の方法で、容易に、高特性のニッケルペーストを製造することができる。溶媒としては、アルコール、アセトン、プロパノール、酢酸エチル、酢酸ブチル、エーテル、石油エーテル、ミネラルスピリット、その他のパラフィン系炭化水素溶剤、あるいは、ブチルカルビトール、ターピネオール、ジヒドロターピネオール、ブチルカルビトールアセテート、ジヒドロターピネオールアセテート、ジヒドロカルビルアセテート、カルビルアセテート、ターピニルアセテート、リナリールアセテート等のアセテート系や、ジヒドロターピニルプロピオネート、ジヒドロカルビルプロピオネート、イソボニルプロピオネートなどのプロピオネート系溶剤、エチルセロソルブやブチルセロソルブなどのセロソルブ類、芳香族類、ジエチルフタレートなどが挙げられる。
また、有機バインダとしては、樹脂結合剤が好ましく、例えばエチルセルロース、ポリビニルアセタール、アクリル樹脂、アルキッド樹脂等が挙げられる。
 分散剤としては、周知の適宜のものを用い得るが、例えば、ビニル系ポリマー、ポリカルボン酸アミン塩、ポリカルボン酸系等を用いることができる。
 次に、実施例および比較例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
 実施例と比較例の試料作製条件を表1にまとめた。
Figure JPOXMLDOC01-appb-T000004
評価方法は下記の通りである。
(1)一次粒子径
 電界放出走査型電子顕微鏡(株式会社日立ハイテクノロジー製、S-4700)で試料を観察し、視野一面を粒子が占める二次電子像を適当な倍率で撮影した。その後、粒子500個以上について画像解析を行い、粒子を囲む最小円の直径から粒度分布を計算した。また、平均アスペクト比と平均円形度係数から、粒子の形状を評価した。
(2)結晶子径
 X線回折測定装置(PANalytycal製、X’pert-MPD/PRO-MPD 発散スリット0.5°、受光スリットなし)にて、CuKα線(波長λ=1.5418Å)を使用し、管電圧45kV、管電流40mA、ステップ角度0.02°、走査速度0.04°/sの条件で、回折角2θ=43.5~45.5°についてX線回折測定を行った。付属の解析ソフト(X‘pert High Score)により(111面)に対応する44.5°付近のピーク位置θを検出するとともに半値幅Bを測定し、シェラー定数K=0.9としてシェラーの式を用いて結晶子径を計算した。
(3)比表面積
 比表面積測定装置(ユアサアイオニクス株式会社製、マルチソーブ16)を使用し、前処理として、秤量した試料を入れた測定セルをマントルヒータ内に挿入し、200℃にて30分脱気処理を行った後、室温まで放冷した。次に、測定セルに混合ガス(N:30%、He:70%)を流し、セル部を液体窒素で冷却して試料表面にNを吸着させた後、セル部を常温に戻して吸着したNを脱離させ、その脱離過程での吸着ガス量を熱伝導度検出器により測定し、試料のBET比表面積を算出した。
(4)不純物濃度
 試料0.1gをふっ化水素酸および硝酸で分解した後、内標準元素の溶液を添加して定容した。その後、誘導結合プラズマ質量分析(エスアイアイナノテクノロジー株式会社製、SPQ9700)に導入し、ナトリウム濃度とカルシウム濃度を定量した。
(5)有機物の吸着状態
 フーリエ変換型赤外分光光度計(サーモフィッシャーサイエンティフィック株式会社製、Nicolet 6700)にて赤外吸収スペクトルを測定した後、付属の解析ソフトを用いてベースラインを補正し、1385cm-1における吸光度Iと1600cm-1における吸光度Iの比(I/I)を調べた。1600cm-1付近にはカルボン酸陰イオンのC=O逆対称伸縮に帰属される赤外吸光のピークが観測されることから、I/Iの高い試料ではカルボン酸系化合物を含むことが示唆される。
(6)炭素濃度
 試料0.5gをアルミナるつぼに入れ、高周波炉酸素気流中で燃焼させた。このとき、試料中の炭素から生成された二酸化炭素を、炭素・硫黄分析装置(株式会社堀場製作所製、EMIA-520SP)により分析し、炭素濃度を計算した。
(7)脱バインダ性
 試料約2gをアルミナ板に載せ、タンマン管式雰囲気電気炉(株式会社モトヤマ製、SUPER BURN SLT2035D)に入れ、炉内にアルゴンガスを1.0L/min流しながら、昇降温速度2℃/min、最高温度300℃、最高温度での保持時間1hの熱処理を行い、上記方法にて炭素濃度を測定した。熱処理前後の炭素濃度を比較することにより、脱バインダ性を評価した。熱処理による炭素濃度の減少率((1-熱処理前の炭素濃度/熱処理後の炭素濃度)×100%)が50%以上ならば良(〇)、50%未満ならば不良(×)と評価した。
(8)低極性溶媒に対する濡れ性
 あらかじめ比表面積を測定した試料1gをガラス板の上に敷き、スポイトでジヒドロターピニルアセテート(日本テルペン化学株式会社製、純度95%、HLB=0)を滴下してからパレットナイフでよく混練することを繰り返し、ペースト状になるまでに要したジヒドロターピニルアセテートの添加量を求めた。ここで、ペースト状とは、試料の載ったガラス板を垂直に傾けて10秒間保持した際、試料の95%以上がガラス板に付着したままの状態を保つことをいう。ニッケル粉の低極性溶媒に対する濡れ性が高いほど、ペースト状になるまでに要するジヒドロターピニルアセテートの添加量は少なくなる。ペースト状になるまでに要した、ニッケル粉の表面積あたりのジヒドロターピニルアセテートの添加量が0.02g・m-2以下の場合、良(〇)、0.02g・m-2を超えた場合、不良(×)と評価した。
(9)ペースト中での分散性
 試料0.2gをビーカーに秤量し、ジヒドロターピニルアセテート20mlを加えた後、超音波洗浄槽(アズワン株式会社製、USK-1A)にて5min分散処理を行った。一方、レーザー回折式湿式粒度分布測定機(ベックマン・コールター株式会社製、LS-230)のフローセル内をジヒドロターピニルアセテートで満たした。試料の分散処理の後、試料をスポイトで適量採取し、レーザー回折式粒度分布測定機に導入して、粒度分布を測定した。このようにして得られる粒度分布は、電子顕微鏡により観察された一次粒子の粒度分布よりも大きな値を示すが、これはレーザー回折式湿式粒度分布測定では、ジヒドロターピニルアセテート中で粒子が凝集した凝集体の粒度分布を測定するためである。粒度分布のD25、D50、D75は、それぞれ累積体積頻度が25%、50%、75%となる粒子径を意味する。ペースト中での分散性が良好な試料ほど、凝集体の粒度は小さくなる。D75が2.3μm以下ならば良(〇)、2.3を超えれば不良(×)と評価した。
(実施例1)
 塩化ニッケルと水素を反応させる気相反応法の後、純水中および炭酸水溶液中で洗浄を行い、乾燥、解砕させて、ニッケル粉を用意した。このニッケル粉について電子顕微鏡で評価したところ、個数平均粒径は110nm、平均アスペクト比は0.85、平均円形度係数は1.09の球状ニッケル粉であることが確認された。また、X線回折測定の結果から、結晶子径dは54.7nmであった。比表面積は6.42m・g-1であった。不純物濃度は、ナトリウム濃度が0.001質量%未満、カルシウム濃度が0.001質量%未満であった。
 上記ニッケル粉に、安息香酸(関東化学株式会社製、特級、HLB=7.4)を、ニッケル粉に対する濃度が0.25質量%となるようにフラスコに秤量し、純水を加えて、攪拌機にて100rpm×30min撹拌した後、溶解させ、ニッケル粉分散液を調整した。
その後、フラスコの空隙に窒素ガスを約100ml/minで流しながら、フラスコの底部をオイルバスで100℃に加熱し、水分を揮発させた。室温まで冷却した後、ニッケル粉を回収し、250μmのナイロンメッシュで篩って試料とした。
(実施例2)
 安息香酸の量を0.5質量%に変更した以外は実施例1と同様に試料を作製し、評価した。
(実施例3)
 安息香酸の量を1質量%に変更した以外は実施例1と同様に試料を作製し、評価した。
(実施例4)
 安息香酸をn-デカン酸(関東化学株式会社製、鹿1級、HLB=5.2)1質量%、純水をエタノール、オイルバスの加熱温度を80℃に変更した以外は実施例1と同様に試料を作製し、評価した。
(比較例1)
 実施例1の安息香酸を酢酸(関東化学株式会社製、特級、HLB=15.0)1質量%に変更した以外は実施例1と同様に試料を作製し、評価した。
(比較例2)
 実施例4のn-デカン酸を市販のポリカルボン酸系分散剤(クローダジャパン株式会社製、Hypermer KD-9、HLB<9)に変更した以外は実施例4と同様に試料を作製し、評価した。
(比較例3)
 実施例1において用意した有機物を添加していないニッケル粉を実施例1と同様に評価した。
 実施例1~4、比較例1~3において得られた試料は、有機物の吸着状態、炭素濃度・脱バインダ性、低極性溶媒に対する濡れ性、ペースト中での分散性を評価した。図1に有機物の吸着状態の解析結果を、表2に炭素濃度、脱バインダ性、低極性溶媒に対する濡れ性、ペースト中での分散性の評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
 図1に示す赤外吸光スペクトルの解析結果より、有機物を添加した実施例1~4および比較例1~2では、有機物を添加していない比較例3に比べてI/Iが高く、0.8以上となっていることから、カルボン酸系の有機物が吸着していることが示唆される。
 また、表2に示す炭素濃度の分析結果より、実施例1~4および比較例1、3では、市販の分散剤を添加した比較例2と比べ、炭素濃度が低いことが分かる。さらに、熱処理による炭素濃度の減少率から、実施例1~4および比較例1では、市販の分散剤を用いた比較例2よりも脱バインダ性に優れていることが分かる。実施例1~4および比較例1では、添加した有機物の分子量および分解温度が低いことにより、脱バインダ性が優れていると考えられる。
 低極性溶媒に対する濡れ性の評価結果では、HLBの高い酢酸を添加した比較例1および有機物を添加していない比較例3に比べ、HLBの低い有機物を添加した実施例1~4および比較例2では、ペースト状になるまでに要した溶媒の添加量が少なくいことから、低極性溶媒への濡れ性が優れていることが分かる。HLBの低い有機物でニッケル粉を被覆することにより、濡れ性が改善されたものと考えられる。
 ペースト中での分散性評価結果では、HLBの高い酢酸を添加した比較例1、および有機物を添加していない比較例3に比べ、HLBの低い有機物を添加した実施例1~4および比較例2は、凝集体の粒度が小さく、D75が2.3μm以下となっていることから、ペースト中での分散性が優れていることが分かる。これは、実施例1~4および比較例2では、低極性溶媒への濡れ性が改善されているため、一定の分散力を与えた場合に分散しやすくなったためと考えられる。
 実施例1~4は、添加した有機物が、分解温度と分子量の低いモノカルボン酸であるため、脱バインダ性が優れている。また、添加した有機物のHLBが低いことにより、低極性溶媒への濡れ性が改善され、ペースト中での分散性も改善されている。
 比較例1では、添加した有機物が、分解温度と分子量の低いモノカルボン酸であるため、脱バインダ性が優れている。しかし、添加した有機物のHLBが高いことにより、低極性溶媒への濡れ性は不十分であり、その結果、ペースト中での分散性も不十分である。
 比較例2では、添加した有機物のHLBが低いため、低極性溶媒への濡れ性とペースト中での分散性は改善されている。しかし、添加した有機物が分解温度と分子量の高いポリカルボン酸であるため、脱バインダ性は本発明に劣る。
 比較例3では、有機物を添加していないため炭素濃度は低いが、ニッケル粉の表面が親水性の酸化ニッケルで覆われているため、低極性溶媒への濡れ性が低く、ペースト中での分散性が不良である。
 本発明によれば、添加した有機物の分解温度と炭素濃度が低く、脱バインダ処理において有利であり、低極性溶媒、特にジヒドロターピニルアセテートに対する濡れ性および分散性が改善され、MLCCの製造に好適なニッケル粉およびニッケルペーストを提供することができる。

Claims (8)

  1.  個数平均径が1μm以下、結晶子径dが40nmを超える球状ニッケル粉であって、フーリエ変換型赤外分光光度計で測定した際に1385cm-1における吸光度Iと1600cm-1における吸光度Iの比(I/I)が0.8以上、炭素濃度が0.05質量%以上2.0質量%以下であることを特徴とするニッケル粉。
     ここで、結晶子径dとは、(111)面についてX線回折測定を行い、シェラーの式(式2)を用いて計算したものであり、Kはシェラー定数、λは測定X線波長、βは半値幅、θは回折角である。
    Figure JPOXMLDOC01-appb-M000001
  2.  表面を親水親油バランス値(HLB)が11以下、分解温度が300℃以下のモノカルボン酸で被覆されていることを特徴とする請求項1に記載のニッケル粉。
  3.  ナトリウム濃度が0.001質量%以下、カルシウム濃度が0.001質量%以下であることを特徴とする請求項1または2に記載のニッケル粉。
  4.  アスペクト比が1.2以下、円形度係数が0.675以上であることを特徴とする請求項1~3のいずれかに記載のニッケル粉。
  5.  不活性雰囲気下300℃で熱処理を行った際の炭素濃度の減少率が50%以上であることを特徴とする請求項1~4のいずれかに記載のニッケル粉。
  6.  ジヒドロターピニルアセテートと混合した際、ニッケル粉の表面積あたりのジヒドロターピニルアセテートの添加量が0.02g・m-2以下でペースト状になることを特徴とする請求項1~5のいずれかに記載のニッケル粉。
  7.  ジヒドロターピニルアセテート中でレーザー回折式湿式粒度分布測定した際の累積体積頻度で75%となる粒子径が2.3μm以下であることを特徴とする請求項1~6のいずれかに記載のニッケル粉。
  8.  請求項1~7のいずれかのニッケル粉を含有することを特徴とするニッケルペースト。
PCT/JP2018/006227 2017-03-10 2018-02-21 ニッケル粉及びニッケルペースト WO2018163823A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197029414A KR102361800B1 (ko) 2017-03-10 2018-02-21 니켈 분말 및 니켈 페이스트
CN201880017127.0A CN110461503B (zh) 2017-03-10 2018-02-21 镍粉和镍糊料
JP2018537686A JP6425367B1 (ja) 2017-03-10 2018-02-21 ニッケル粉及びニッケルペースト

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045907 2017-03-10
JP2017-045907 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018163823A1 true WO2018163823A1 (ja) 2018-09-13

Family

ID=63447678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006227 WO2018163823A1 (ja) 2017-03-10 2018-02-21 ニッケル粉及びニッケルペースト

Country Status (5)

Country Link
JP (1) JP6425367B1 (ja)
KR (1) KR102361800B1 (ja)
CN (1) CN110461503B (ja)
TW (1) TWI813559B (ja)
WO (1) WO2018163823A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020066561A1 (ja) * 2018-09-27 2021-03-11 富士フイルム株式会社 重合体の製造方法、及び重合体を製造するフロー式反応システム
JP2021153106A (ja) * 2020-03-24 2021-09-30 Tdk株式会社 流動性付与粒子および磁性コア
WO2021210558A1 (ja) * 2020-04-14 2021-10-21 昭栄化学工業株式会社 カルボン酸含有ニッケル粉末およびカルボン酸含有ニッケル粉末の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307229A (ja) * 2004-04-16 2005-11-04 Tdk Corp ニッケル粉の製造方法とニッケル粉の製造装置とニッケル粉製造用坩堝
JP2013159830A (ja) * 2012-02-06 2013-08-19 Toyota Central R&D Labs Inc 表面被覆金属ナノ粒子、およびその製造方法
JP2015151558A (ja) * 2014-02-12 2015-08-24 新日鉄住金化学株式会社 ニッケル微粒子スラリー、金属微粒子及びその製造方法
WO2015156080A1 (ja) * 2014-04-08 2015-10-15 東邦チタニウム株式会社 ニッケル粉末
WO2017056741A1 (ja) * 2015-09-29 2017-04-06 東邦チタニウム株式会社 ニッケル粉及びニッケルペースト

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261761B2 (en) * 2002-08-28 2007-08-28 Toho Titanium Co., Ltd. Metallic nickel powder and process for production thereof
CN1968773B (zh) * 2004-06-16 2011-08-03 东邦钛株式会社 镍粉及其制备方法
JP4207161B2 (ja) * 2005-04-20 2009-01-14 セイコーエプソン株式会社 マイクロカプセル化金属粒子及びその製造方法、水性分散液、並びに、インクジェット用インク
JP5299983B2 (ja) * 2005-09-06 2013-09-25 株式会社三徳 多孔質鉄粉、多孔質鉄粉の製造方法、電波吸収体
EP2098315B1 (en) * 2006-12-08 2021-02-24 Toyo Seikan Group Holdings, Ltd. Microprotein-inactivating ultrafine metal particle
CA2699583C (en) * 2007-09-27 2016-04-19 Francesca Peri Isolable and redispersable transition metal nanoparticles their preparation and use as ir absorbers
JP2010043345A (ja) * 2008-08-18 2010-02-25 Sumitomo Electric Ind Ltd ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ
JP5661273B2 (ja) * 2008-11-26 2015-01-28 三ツ星ベルト株式会社 金属コロイド粒子及びそのペースト並びにその製造方法
JP5688895B2 (ja) * 2008-12-26 2015-03-25 Dowaエレクトロニクス株式会社 微小銀粒子粉末と該粉末を使用した銀ペースト
JP5573083B2 (ja) * 2009-10-01 2014-08-20 三洋電機株式会社 アルカリ蓄電池用水素吸蔵合金電極
JP5523153B2 (ja) * 2010-03-16 2014-06-18 Dowaエレクトロニクス株式会社 金属粉表面のベンゾトリアゾールの定量方法
JP5706881B2 (ja) * 2010-03-17 2015-04-22 新日鉄住金化学株式会社 ニッケルナノ粒子の製造方法
JP2011214143A (ja) 2010-03-17 2011-10-27 Nippon Steel Chem Co Ltd ニッケルナノ粒子の製造方法
JP2011202265A (ja) * 2010-03-26 2011-10-13 Dowa Electronics Materials Co Ltd 低温焼結性金属ナノ粒子組成物および該組成物を用いて形成された電子物品
JP5245021B1 (ja) * 2011-09-22 2013-07-24 株式会社日本触媒 導電性微粒子及びそれを含む異方性導電材料
JP2013231230A (ja) * 2012-04-04 2013-11-14 Nippon Steel & Sumikin Chemical Co Ltd 複合ニッケル粒子
TWI597112B (zh) * 2012-04-06 2017-09-01 東邦鈦股份有限公司 金屬鎳粉末及金屬鎳粉末之製造方法
CN103692105A (zh) * 2012-09-27 2014-04-02 旭化成电子材料株式会社 焊料糊剂、半导体装置及其制造方法
KR20160035004A (ko) * 2013-07-25 2016-03-30 이시하라 산교 가부시끼가이샤 금속 구리 분산액 및 그 제조 방법 그리고 그 용도
WO2015141623A1 (ja) * 2014-03-20 2015-09-24 積水化学工業株式会社 導電ペースト
JP6685503B2 (ja) * 2015-03-18 2020-04-22 株式会社リコー 立体造形用粉末材料、立体造形用キット、立体造形用グリーン体、立体造形物及び立体造形用グリーン体の製造方法、立体造形物及び立体造形用グリーン体の製造装置
CN104741603B (zh) * 2015-04-11 2017-08-01 苏州大学 一种不对称结构三金属纳米粒子、制备方法及其应用
US10087504B2 (en) * 2015-08-13 2018-10-02 Samsung Electronics Co., Ltd. Semiconductor nanocrystals and method of preparation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307229A (ja) * 2004-04-16 2005-11-04 Tdk Corp ニッケル粉の製造方法とニッケル粉の製造装置とニッケル粉製造用坩堝
JP2013159830A (ja) * 2012-02-06 2013-08-19 Toyota Central R&D Labs Inc 表面被覆金属ナノ粒子、およびその製造方法
JP2015151558A (ja) * 2014-02-12 2015-08-24 新日鉄住金化学株式会社 ニッケル微粒子スラリー、金属微粒子及びその製造方法
WO2015156080A1 (ja) * 2014-04-08 2015-10-15 東邦チタニウム株式会社 ニッケル粉末
WO2017056741A1 (ja) * 2015-09-29 2017-04-06 東邦チタニウム株式会社 ニッケル粉及びニッケルペースト

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020066561A1 (ja) * 2018-09-27 2021-03-11 富士フイルム株式会社 重合体の製造方法、及び重合体を製造するフロー式反応システム
JP7012866B2 (ja) 2018-09-27 2022-01-28 富士フイルム株式会社 重合体の製造方法、及び重合体を製造するフロー式反応システム
US12024573B2 (en) 2018-09-27 2024-07-02 Fujifilm Corporation Method for manufacturing polymer and flow-type reaction system for manufacturing polymer
JP2021153106A (ja) * 2020-03-24 2021-09-30 Tdk株式会社 流動性付与粒子および磁性コア
JP7338529B2 (ja) 2020-03-24 2023-09-05 Tdk株式会社 流動性付与粒子および磁性コア
US11869686B2 (en) 2020-03-24 2024-01-09 Tdk Corporation Fluidizing particle and magnetic core
WO2021210558A1 (ja) * 2020-04-14 2021-10-21 昭栄化学工業株式会社 カルボン酸含有ニッケル粉末およびカルボン酸含有ニッケル粉末の製造方法

Also Published As

Publication number Publication date
CN110461503B (zh) 2022-01-14
JP6425367B1 (ja) 2018-11-21
CN110461503A (zh) 2019-11-15
TWI813559B (zh) 2023-09-01
KR102361800B1 (ko) 2022-02-10
TW201842989A (zh) 2018-12-16
JPWO2018163823A1 (ja) 2019-03-22
KR20190123777A (ko) 2019-11-01

Similar Documents

Publication Publication Date Title
JP7042372B2 (ja) ニッケル粉及びその製造方法、ニッケルペースト
JP4344001B2 (ja) 微小銀粒子含有組成物、その製造方法、微小銀粒子の製造方法および微小銀粒子を有するペースト
TWI716526B (zh) 鎳粉末
KR101525099B1 (ko) 미소금속입자함유 조성물 및 그 제조 방법
JP2016028176A (ja) 銅粉の製造方法
JPWO2005123307A1 (ja) ニッケル粉末およびその製造方法
JP6799936B2 (ja) ニッケル粒子、導電性ペースト、内部電極及び積層セラミックコンデンサ
WO2018163823A1 (ja) ニッケル粉及びニッケルペースト
JP6559118B2 (ja) ニッケル粉末
JP5993764B2 (ja) 複合ニッケル粒子
JP2007126744A (ja) 微粒ニッケル粉末及びその製造方法
JP6539520B2 (ja) ニッケル微粒子含有組成物及びその製造方法
JP2015049973A (ja) 導電性ペースト及びそれに用いる複合ニッケル微粒子の製造方法
JP2014173105A (ja) ニッケルナノ粒子の表面改質方法
JP2015151558A (ja) ニッケル微粒子スラリー、金属微粒子及びその製造方法
JP4540364B2 (ja) ニッケル粉末、並びにそれを用いた導電ペースト及び積層セラミックコンデンサ
JP6738460B1 (ja) 銅粉体の製造方法
JP6799931B2 (ja) ニッケル微粒子含有組成物及びその製造方法、内部電極並びに積層セラミックスコンデンサ
TW202239980A (zh) 鎳奈米粒子、膏材料及層疊陶瓷電容器
JP2021110034A (ja) 銅粉体
JP3461337B2 (ja) ニッケル粉及び導電ペースト
JP2005076074A (ja) チタン化合物被覆ニッケル粉末およびこれを用いた導電ペースト
JP2013231229A (ja) 複合ニッケル粒子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537686

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029414

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18763908

Country of ref document: EP

Kind code of ref document: A1