JP2010043345A - ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ - Google Patents

ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ Download PDF

Info

Publication number
JP2010043345A
JP2010043345A JP2008209997A JP2008209997A JP2010043345A JP 2010043345 A JP2010043345 A JP 2010043345A JP 2008209997 A JP2008209997 A JP 2008209997A JP 2008209997 A JP2008209997 A JP 2008209997A JP 2010043345 A JP2010043345 A JP 2010043345A
Authority
JP
Japan
Prior art keywords
nickel
powder
alloy powder
nickel powder
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008209997A
Other languages
English (en)
Inventor
Kazumasa Okada
一誠 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008209997A priority Critical patent/JP2010043345A/ja
Priority to US13/059,323 priority patent/US20110141654A1/en
Priority to PCT/JP2009/061701 priority patent/WO2010021202A1/ja
Priority to EP09808138A priority patent/EP2314400A1/en
Priority to KR1020117002812A priority patent/KR20110059700A/ko
Priority to CN2009801324560A priority patent/CN102123805A/zh
Priority to TW098127526A priority patent/TW201016350A/zh
Publication of JP2010043345A publication Critical patent/JP2010043345A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Powder Metallurgy (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】表面が平滑化されており、さらに電極途切れの発生を確実に防止できる内部電極を備える積層セラミックコンデンサ、それに用いられる導電性ペースト、ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法を提供することを目的とする。
【解決手段】本発明のニッケル粉末またはニッケルを主成分とする合金粉末は、平均粒径D50が30〜300nm、X線回折法による(111)面の回折ピークの半値幅が0.5°以下であり、かつBET法により測定された比表面積Aと平均粒径D50に対応する比表面積の理論値Bとの比(A/B)が3以下であることを特徴とする。
【選択図】なし

Description

本発明は、金属粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサに関し、特に、積層セラミックコンデンサの内部電極に用いる導電性ペースト用の導電性微粉末として好適な金属粉末、その製造方法、およびそれを用いた導電性ペースト、並びに積層セラミックコンデンサに関する。
近年、金属粉末は、種々の分野で使用されており、厚膜導電体の材料として、積層セラミック部品の電極等の電気回路の形成に使用されている。例えば、積層セラミックコンデンサ(Multi−LayerCeramic Capacitor:MLCC)の内部電極は、金属粉末を含む導電性ペーストを用いて形成されている。
この積層セラミックコンデンサは、複数の誘電体層と複数の導電層(内部電極層)とを、圧着により交互に積み重ね、これを焼成して一体化することにより、積層セラミック焼成体としたセラミック本体と、当該セラミック本体の両端部に一対の外部電極を形成したものである。
より具体的には、例えば、金属粉末を、セルロース系樹脂等の有機バインダーをターピネオール等の溶剤に溶解させた有機ビヒクルと混合し、三本ロール等によって混練・分散して、内部電極用の導電性ペーストを作製し、この導電性ペーストを、誘電体層を形成するセラミックグリーンシート上に印刷し、セラミックグリーンシートと導電性ペースト層(内部電極層)とを、圧着により交互に積み重ねて積層体を形成する。そして、この積層体を還元雰囲気下において焼成することにより、積層セラミック焼成体を得ることができる。
また、この積層セラミックコンデンサの内部電極を形成する導電性ペーストに含有される金属粉末として、従来、白金、パラジウム、銀−パラジウム合金等の金属が用いられていたが、これらの金属は高価であるため、近年、低コスト化を図るべく、より安価なニッケル等の金属が使用されている。
また、この金属粉末の製造方法としては、金属イオンを還元剤により還元する液相還元法が利用されている。より具体的には、例えば、還元剤を含有する還元剤水溶液を用意し、この還元剤水溶液中にニッケルイオンを含有するニッケル水溶液を混合することにより、ニッケルイオンを還元させて、ニッケル粉末を析出させる方法が開示されている。そして、このような方法により、所望の粒径を有し、品質が極めて安定した、不純物の少ないニッケル粉末を製造することができると記載されている(例えば、特許文献1参照)。
特開平11−302709号公報
ここで、近年、電子部品の高性能化に伴い、積層セラミックコンデンサの小型化、高容量化が要請されるとともに、内部電極の電極表面の平滑化が求められている。しかし、上記液相還元法により製造されたニッケル粉末は、微粒子の集合体となるため結晶性が低く、結晶性の低いニッケル粉末を含有する導電性ペーストにより、積層セラミックコンデンサの内部電極を形成すると、焼成時にニッケル粉末を含有する導電性ペーストの収縮が大きくなり、焼結の進行に伴って、導電性ペーストが島状に途切れてしまい、電極途切れ(内部電極の途切れ)が発生し、積層セラミックコンデンサの静電容量が低下するという不都合が生じていた。
また、結晶性を高めるためには、熱処理による単結晶化が有効であるが、ニッケル粉末を構成するニッケル粒子の粒径が小さくなると、焼結開始温度が低下するため、結晶性を高めるための熱処理時に焼結が進行し、粒子同士が結合して凝集した粉末となりやすく、ニッケル粉末が粗大化する。その結果、粗大化したニッケル粉末を含有する導電性ペーストにより、積層セラミックコンデンサの内部電極を形成すると、電極表面の平滑化が困難になり、電極間のショートを引き起こすという問題があった。
そこで、本発明は、上述の問題に鑑みてなされたものであり、表面が平滑化され、さらに電極途切れを確実に防止できる内部電極を備える積層セラミックコンデンサ、それに用いられる導電性ペースト、ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法を提供することを目的とする。
上記目的を達成するために、請求項1に記載の発明では、平均粒径D50が30〜300nm、X線回折法による(111)面の回折ピークの半値幅が0.5°以下であり、かつBET法により測定された比表面積Aと平均粒径D50に対応する比表面積の理論値Bとの比(A/B)が3以下であることを特徴とするニッケル粉末またはニッケルを主成分とする合金粉末である。
同構成によれば、金属粉末であるニッケル粉末またはニッケルを主成分とする合金粉末の表面が平滑化されるとともに、結晶性が向上するため、ニッケル粉末またはニッケルを主成分とする合金粉末を含有する導電性ペーストにより、内部電極を形成する場合であっても、電極表面の平滑化が容易になるとともに、電極途切れの発生を回避することが可能になる。
請求項2に記載の発明は、ニッケルイオンと、還元剤と、分散剤とを含む反応液中で、前記還元剤により前記ニッケルイオンを還元させて、ニッケル粉末全体またはニッケルを主成分とする合金粉末全体に対して0.1質量%以上5質量%以下の炭素を含有するニッケル粉末またはニッケルを主成分とする合金粉末を析出させる工程と、析出させたニッケル粉末またはニッケルを主成分とする合金粉末に対して、300℃〜700℃で熱処理を行う工程とを少なくとも含むことを特徴とするニッケル粉末またはニッケルを主成分とする合金粉末の製造方法である。
同構成によれば、反応液において、炭素が、還元析出したニッケル粉末またはニッケルを主成分とする合金粉末の表面に吸着するとともに、単結晶化を行うための熱処理時に炭素が分解し、焼結開始温度が上がることになる。従って、熱処理時に焼結が進行し、粒子同士が結合して凝集した粉末となることにより粗大化するという不都合を防止することができ、表面が平滑化されたニッケル粉末またはニッケルを主成分とする合金粉末を得ることが可能になる。また、熱処理時に、炭素の分解と同時に単結晶化が進行するため、結晶性が向上したニッケル粉末またはニッケルを主成分とする合金粉末を得ることが可能になる。その結果、ニッケル粉末またはニッケルを主成分とする合金粉末を含有する導電性ペーストにより、内部電極を形成する場合であっても、電極表面の平滑化が容易になるとともに、電極途切れの発生を回避することが可能になる。
請求項3に記載の発明は、請求項2に記載のニッケル粉末またはニッケルを主成分とする合金粉末の製造方法であって、Hガスを2%以上含む還元雰囲気中で、熱処理を行うことを特徴とする。
同構成によれば、熱処理を行う際に、ニッケル粉末またはニッケルを主成分とする合金粉末の酸化を抑制することができる。
請求項4に記載の発明は、請求項1に記載のニッケル粉末またはニッケルを主成分とする合金粉末と、有機ビヒクルを主成分とすることを特徴とする導電性ペーストである。
同構成によれば、表面が平滑化されるとともに、結晶性が向上したニッケル粉末またはニッケルを主成分とする合金粉末が充填された導電性ペーストを提供することが可能になるため、電極表面の平滑化が要請されるとともに、電極途切れのない積層セラミックコンデンサの内部電極の形成に最適な導電性ペーストを提供することが可能になる。
請求項5に記載の発明は、内部電極層および誘電体層を交互に積層して形成されたコンデンサ本体を備える積層セラミックコンデンサであって、内部電極層が、請求項4に記載の導電性ペーストにより形成されていることを特徴とする。
同構成によれば、電極表面が平滑であり、さらに電極途切れのない内部電極を備える積層セラミックコンデンサを提供することが可能になる。
本発明によれば、ニッケル粉末またはニッケルを主成分とする合金粉末を含有する導電性ペーストにより、内部電極を形成する場合であっても、電極表面の平滑化が容易になるとともに、電極途切れの発生を回避することができる金属粉末を提供できる。
以下に、本発明の好適な実施形態について説明する。本発明に係る金属粉末は、積層セラミックコンデンサの内部電極に用いる導電性ペースト用の導電性粉末として使用されるものである。本発明に係る金属粉末の製造方法としては、水溶液中の金属イオンを還元して、金属化合物を湿式還元処理する液相還元法により作製することができる。
より具体的には、水もしくは水と低級アルコールの混合物に水溶性の金属化合物を加えて溶解して、金属イオンを含む水溶液を作製し、この水溶液に分散剤を添加した後、還元剤を溶解した水溶液を加えた反応液を作製し、当該反応液を攪拌した後、結晶性を向上させるための熱処理を行うことにより作製できる。
例えば、金属粉末として、ニッケル粉末またはニッケルを主成分とする合金粉末を製造する場合は、純水に金属化合物としてのニッケル塩(例えば、硫酸ニッケル)が溶解した金属イオン(ニッケルイオン)を含み、分散剤が添加された水溶液と、還元剤として作用する3価のチタンイオンを含むチタンイオン水溶液を、所定の割合で混合して反応液を作製した後、当該反応液にpH調整剤として水酸化ナトリウム水溶液を加えてpHを調整し、攪拌を行うことにより、ニッケルイオンを還元して、ニッケル粉末またはニッケルを主成分とする合金粉末を析出させる。そして、ニッケル粉末またはニッケルを主成分とする合金粉末の結晶性を向上させるために、還元雰囲気中で熱処理を行うことにより製造する。
本発明に係る金属粉末としては、特に限定されないが、ニッケル粉末、ニッケルを主成分とする合金粉末が好適に使用される。これは、ニッケル粉末またはニッケルを主成分とする合金粉末は、導電性に優れるとともに、コストが低く、また、銅等の他の金属に比し耐酸化性に優れるため、酸化による導電性の低下も生じにくく、導電性材料として好適だからである。ニッケルの合金粉末としては、例えば、マンガン、クロム、コバルト、アルミニウム、鉄、銅、亜鉛、金、白金、銀、およびパラジウムからなる群より選択される少なくとも1種以上の元素とニッケルとの合金粉末が使用できる。また、ニッケルを主成分とする合金粉末におけるニッケルの含有量は、50質量%以上、好ましくは80質量%以上であることが好ましい。これは、ニッケルの含有量が少なくなると、焼成時に酸化されやすくなるため、電極途切れや静電容量の低下等が起こりやすくなるためである。
また、本発明に係る金属粉末は、積層セラミックコンデンサの内部電極に用いる導電性ペースト用の導電性粉末として使用されるため、ニッケル粉末またはニッケルを主成分とする合金粉末の平均粒径D50が30〜300nmであるものが使用できる。
また、使用するニッケル塩は、特に限定されないが、例えば、硫酸ニッケル、塩化ニッケル、硝酸ニッケル、酢酸ニッケル、スルファミン酸ニッケル、および水酸化ニッケルからなる群より選ばれる少なくとも1種類を含むものが使用できる。また、これらのニッケル塩のうち、還元剤である三塩化チタンと同じ塩素イオンを含むとの観点から、塩化ニッケルを使用することが好ましい。
また、反応液中のニッケル塩の濃度は、5g/l以上100g/l以下が好ましい。これは、ニッケル塩の濃度が5g/l未満の場合は、十分な量のニッケル粉末を還元析出させることが困難になるため、生産性が低下し、また、ニッケル塩の濃度が100g/lより大きい場合は、ニッケル粒子同士の衝突確率が増すため粒子が凝集しやすく、粒径の制御が困難になるという不都合が生じる場合があるためである。
また、使用する還元剤としては、例えば、三塩化チタン、水素化ホウ素ナトリウム、ヒドラジン等が使用できる。このうち、金属イオンに対する強還元性を有する三塩化チタンを使用し、3価のチタンイオンを含むチタンイオン水溶液を用いて金属イオンを還元することが好ましい。
また、pH調整剤は、従来、ニッケル粉末の還元析出工程において使用されているものであれば、特に限定されない。より具体的には、pH調整剤としては、例えば、水酸化ナトリウム、炭酸ナトリウム、アンモニア等を使用することができる。
また、本実施形態においては、ニッケル粉末またはニッケルを主成分とする合金粉末の製造工程において、熱処理による粗大化を防止して結晶性を高めるために、ニッケル粉末全体またはニッケルを主成分とする合金粉末全体に対して0.1質量%以上5質量%以下の炭素を含有するニッケル粉末またはニッケルを主成分とする合金粉末を還元雰囲気中で熱処理する構成としている。
このような構成により、反応液において、炭素が、還元析出したニッケル粉末またはニッケルを主成分とする合金粉末の表面に吸着するとともに、単結晶化を行うための熱処理時に炭素が分解し、焼結開始温度が上がることになる。従って、熱処理時に焼結が進行し、粒子同士が結合して凝集した粉末となることにより粗大化するという不都合を防止することができ、表面が平滑化されたニッケル粉末またはニッケルを主成分とする合金粉末を得ることが可能になる。また、熱処理時に、炭素の分解と同時に単結晶化が進行するため、結晶性が向上したニッケル粉末またはニッケルを主成分とする合金粉末を得ることが可能になる。その結果、ニッケル粉末またはニッケルを主成分とする合金粉末を含有する導電性ペーストにより、内部電極を形成する場合であっても、電極表面の平滑化が容易になるとともに、電極途切れの発生を回避することが可能になる。
より具体的には、本発明のニッケル粉末またはニッケルを主成分とする合金粉末の結晶性の指標としては、X線回折法による(111)面の回折ピークの半値幅を用いる。そして、本発明の製造方法を使用することにより、X線回折法による(111)面の回折ピークの半値幅が0.5°以下であるニッケル粉末またはニッケルを主成分とする合金粉末を得ることが可能になるため、ニッケル粉末またはニッケルを主成分とする合金粉末の結晶性が向上することになる。その結果、ニッケル粉末またはニッケルを主成分とする合金粉末を含有する導電性ペーストにより、内部電極を形成する場合であっても、電極途切れの発生を回避することが可能になる。
また、本発明のニッケル粉末またはニッケルを主成分とする合金粉末の平滑性の指標としては、比表面積を用いる。より具体的には、BET法により測定されたニッケル粉末またはニッケルを主成分とする合金粉末の比表面積A〔m/g〕と、ニッケル粉末またはニッケルを主成分とする合金粉末の平均粒径D50に対応する比表面積の理論値B〔m/g〕とを用いる。そして、本発明の製造方法を使用することにより、比表面積Aと比表面積の理論値Bとの比(A/B)が3以下であるであるニッケル粉末またはニッケルを主成分とする合金粉末を得ることが可能になるため、ニッケル粉末またはニッケルを主成分とする合金粉末の平滑性が向上することになる。その結果、ニッケル粉末またはニッケルを主成分とする合金粉末を含有する導電性ペーストにより、内部電極を形成する場合であっても、電極表面の平滑化が容易になる。
なお、ここで言う「BET法」とは、気相吸着法による粉体の表面測定法の一つであり、吸着等温式を用いて、1gの試料が有する総表面積(即ち、比表面積)を算出する方法であって、周知の方法である。
また、ニッケル粉末またはニッケルを主成分とする合金粉末の平均粒径D50に対応する比表面積の理論値B〔m/g〕は、以下の(式1)により求めることができる。
B〔m/g〕=6/(D50〔um〕×ρ〔g/cm〕)…(式1)
ここで、(式1)中、ρは密度である。
従って、例えば、SEM(走査型電子顕微鏡)を用いて測定されたニッケル粉末またはニッケルを主成分とする合金粉末の平均粒径D50が100nm、密度8.9g/cmの場合、上記(式1)より、比表面積の理論値B〔m/g〕は6.7〔m/g〕となる。そして、BET法により測定されたニッケル粉末またはニッケルを主成分とする合金粉末の比表面積A〔m/g〕が16〔m/g〕の場合、比表面積Aと比表面積の理論値Bとの比(A/B)は2.4となり、この場合、ニッケル粉末またはニッケルを主成分とする合金粉末が表面平滑性に優れていると言えることになる。
また、本実施形態においては、炭素を含有する分散剤を使用して、上述の液相還元法により、炭素を含有するニッケル粉末またはニッケルを主成分とする合金粉末を得る構成としている。なお、使用する分散剤としては、反応液中のニッケル粉末またはニッケルを主成分とする合金粉末の分散性を向上させるとともに、還元析出したニッケル粉末またはニッケルを主成分とする合金粉末の表面に炭素を吸着させることができるものであれば、特に限定されない。例えば、高分子分散剤であるポリビニルピロリドン、ポリカルボン酸型アニオン系分散剤や、ポリビニルアルコール、カチオン系分散剤等を使用することができる。
なお、ニッケル粉末全体またはニッケルを主成分とする合金粉末全体に対する炭素の含有量を0.1質量%以上5質量%以下としたのは、炭素の含有量が0.1質量%未満の場合は、炭素が、還元析出したニッケル粉末またはニッケルを主成分とする合金粉末の表面に十分に吸着せず、上述した粗大化の防止効果と結晶性の向上効果が十分に得られない場合があるからであり、また、炭素の含有量が5質量%より多い場合は、熱処理時に分解せずに残留する場合があるからである。
また、上述の液相還元法により作製された、炭素を含有するニッケル粉末またはニッケルを主成分とする合金粉末の熱処理は、ニッケル粉末またはニッケルを主成分とする合金粉末の酸化を抑制するために還元雰囲気で行われ、熱処理を行う際の雰囲気は、Hガスを2%以上含む還元雰囲気(例えば、NガスとHガスの混合ガスの雰囲気)にすることが好ましい。また、熱処理を行う際の温度を300℃〜700℃とすることが好ましく、400℃〜600℃とすることが更に好ましい。これは、熱処理を行う際の温度が300℃未満の場合は、上述した結晶性の向上効果が十分に得られない場合があるからであり、また、熱処理を行う際の温度が700℃より大きい場合は、粒子同士が結合して凝集した粉末となりやすく、粗大化する場合があるためである。また、熱処理を行う際の、上記温度の保持時間を0.5時間〜3時間とすることが好ましい。
次に、積層セラミックコンデンサの内部電極用の導電性ペーストについて説明する。本発明の導電ペーストとしては、上述の本発明のニッケル粉末またはニッケルを主成分とする合金粉末と、有機ビヒクルを主成分としている。本発明において使用される有機ビヒクルは、樹脂と溶剤との混合物であり、樹脂としては、メチルセルロース、エチルセルロース、ニトロセルロース、酢酸セルロース、プロピオン酸セルロース等のセルロース系樹脂、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル等のアクリル酸エステル類、アルキッド樹脂、およびポリビニルアルコール等が使用でき、安全性、安定性等の観点から、エチルセルロースが特に好ましく使用される。また、有機ビヒクルを構成する溶剤としては、ターピネオール、テトラリン、ブチルカルビトール、カルビトールアセテート等を単独でまたは混合して使用することができる。
導電性ペーストを作製する際には、例えば、セルロース系樹脂の有機バインダーをターピネオールに溶解させた有機ビヒクルを作製し、次いで、本発明のニッケル粉末またはニッケルを主成分とする合金粉末と有機ビヒクルを混合し、三本ロールやボールミル等によって混練・分散することにより、本発明の積層セラミックコンデンサの内部電極用の導電性ペーストを得ることができる。なお、導電性ペーストには、誘電体材料や焼結調整用の添加剤等を加えることもできる。
次に、上述の導電性ペーストを使用した積層セラミックコンデンサの製造方法について説明する。積層セラミックコンデンサは、セラミックグリーンシートからなる複数の誘電体層と、導電性ペーストからなる複数の内部電極層とを、圧着により交互に積層させて積層体を得た後、当該積層体を焼成して一体化することにより。セラミック本体となる積層セラミック焼成体を作製したのち、当該セラミック本体の両端部に一対の外部電極を形成することにより製造される。
より具体的には、まず、未焼成のセラミックシートであるセラミックグリーンシートを用意する。このセラミックグリーンシートとしては、例えば、チタン酸バリウム等の所定のセラミックの原料粉末に、ポリビニルブチラール等の有機バインダーとターピネオール等の溶剤とを加えて得た誘電体層用ペーストを、PETフィルム等の支持フィルム上にシート状に塗布し、乾燥させて溶剤を除去したもの等が挙げられる。なお、セラミックグリーンシートからなる誘電体層の厚みは、特に限定されないが、積層セラミックコンデンサの小型化の要請の観点から、0.2μm〜4μmが好ましい。
次いで、このセラミックグリーンシートの片面に、スクリーン印刷法等の公知の方法によって、上述の導電性ペーストを印刷して塗布し、導電性ペーストからなる内部電極層を形成したものを複数枚、用意する。なお、導電性ペーストからなる内部電極層の厚みは、当該内部電極層の薄層化の要請の観点から、0.2〜4μm以下とすることが好ましい。
次いで、支持フィルムから、セラミックグリーンシートを剥離するとともに、セラミックグリーンシートからなる誘電体層とその片面に形成された導電性ペーストからなる内部電極層とが交互に配置されるように、加熱・加圧処理により積層して、積層体を得る。なお、当該積層体の両面に、導電性ペーストを塗布していない保護用のセラミックグリーンシートを配置する構成としても良い。
次いで、積層体を所定サイズに切断してグリーンチップを形成した後、当該グリーンチップに対して脱バインダー処理を施し、還元雰囲気下において焼成することにより、積層セラミック焼成体を製造する。なお、脱バインダー処理における雰囲気は、大気またはNガス雰囲気にすることが好ましく、脱バインダー処理を行う際の温度を200℃〜400℃とすることが好ましい。また、脱バインダー処理を行う際の、上記温度の保持時間を0.5時間〜24時間とすることが好ましい。また、焼成は、内部電極層に用いる金属の酸化を抑制するために還元雰囲気で行われ、焼成を行う際の雰囲気は、NガスまたはNガスとHガスとの混合ガスの雰囲気にすることが好ましく、また、積層体の焼成を行う際の温度を1250℃〜1350℃とすることが好ましい。また、焼成を行う際の、上記温度の保持時間を0.5時間〜8時間とすることが好ましい。
グリーンチップの焼成を行うことにより、グリーンシート中の有機バインダーが除去されるとともに、セラミックの原料粉末が焼成されて、セラッミック製の誘電体層が形成される。また内部電極層中の有機ビヒクルが除去されるとともに、ニッケル粉末またはニッケルを主成分とする合金粉末が焼結もしくは溶融、一体化されて、内部電極が形成され、誘電体層と内部電極層とが複数枚、交互に積層された積層セラミック焼成体が形成される。
なお、酸素を誘電体層の内部に取り込んで電気的特性を高めるとともに、内部電極の再酸化を抑制するとの観点から、焼成後のグリーンチップに対して、アニール処理を施すことが好ましい。なお、アニール処理における雰囲気は、Nガス雰囲気にすることが好ましく、アニール処理を行う際の温度を800℃〜950℃とすることが好ましい。また、アニール処理を行う際の、上記温度の保持時間を2時間〜10時間とすることが好ましい。
そして、作製した積層セラミック焼成体に対して、一対の外部電極を設けることにより、積層セラミックコンデンサが製造される。なお、外部電極の材料としては、例えば、銅やニッケル、またはこれらの合金が好適に使用できる。
以上に説明した本実施形態によれば、以下の効果を得ることができる。
(1)本実施形態においては、ニッケル粉末またはニッケルを主成分とする合金粉末が、平均粒径D50が30〜300nm、X線回折法による(111)面の回折ピークの半値幅が0.5°以下であり、かつBET法により測定された比表面積Aと平均粒径D50に対応する比表面積の理論値Bとの比(A/B)が3以下である構成としている。従って、金属粉末であるニッケル粉末またはニッケルを主成分とする合金粉末の表面が平滑化されるとともに、結晶性が向上するため、ニッケル粉末またはニッケルを主成分とする合金粉末を含有する導電性ペーストにより、内部電極を形成する場合であっても、電極表面の平滑化が容易になるとともに、電極途切れの発生を回避することが可能になる。
(2)本実施形態においては、ニッケル粉末またはニッケルを主成分とする合金粉末を製造する際に、ニッケルイオンと、還元剤と、分散剤とを含む反応液中で、還元剤によりニッケルイオンを還元させて、ニッケル粉末全体またはニッケルを主成分とする合金粉末全体に対して0.1質量%以上5質量%以下の炭素を含有するニッケル粉末またはニッケルを主成分とする合金粉末を析出させる構成としている。そして、析出させたニッケル粉末またはニッケルを主成分とする合金粉末に対して、300℃〜700℃で熱処理を行う構成としている。従って、反応液において、還元析出したニッケル粉末またはニッケルを主成分とする合金粉末の表面に吸着した炭素が、単結晶化を行うための熱処理時に分解し、焼結開始温度が上がることになる。その結果、熱処理時に焼結が進行し、粒子同士が結合して凝集した粉末となることにより粗大化するという不都合を防止することができ、表面が平滑化されたニッケル粉末またはニッケルを主成分とする合金粉末を得ることが可能になる。また、熱処理時に、炭素の分解と同時に単結晶化が進行するため、結晶性が向上したニッケル粉末またはニッケルを主成分とする合金粉末を得ることが可能になる。従って、ニッケル粉末またはニッケルを主成分とする合金粉末を含有する導電性ペーストにより、内部電極を形成する場合であっても、電極表面の平滑化が容易になるとともに、電極途切れの発生を回避することが可能になる。
(3)本実施形態においては、Hガスを2%以上含む還元雰囲気中で、熱処理を行う構成としている。従って、熱処理を行う際に、ニッケル粉末またはニッケルを主成分とする合金粉末の酸化を抑制することができる。
以下に、本発明を実施例、比較例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。
(実施例1)
(ニッケル粉末の作製)
金属化合物としての硫酸ニッケル六水和物を、20g/lの濃度となるように純水に溶解させ、ニッケルイオンを含む水溶液を作製し、この水溶液に分散剤としてポリビニルピロリドン(分子量30000)を、4g/lの濃度となるように添加した。次いで、還元剤としての塩化チタンを、80g/lの濃度となるように純水に溶解させ、3価のチタンイオンを含むチタンイオン水溶液を作製した。そして、これらの水溶液を混合して、反応液を作製し、この反応液に、pH調整剤として、水酸化ナトリウムを、10g/lの濃度となるように純水に溶解させた水酸化ナトリウム水溶液を加えて、反応液のpHが9.0となるように調整した。
次いで、この反応液を、30℃の反応温度で120分間、500rpmの速度で攪拌しながら反応させて、ニッケル粉末を還元析出させた。次いで、この反応液に対して吸引ろ過を行い、純水で洗浄を繰り返しながら不純物を除去して、水を分散媒とする沈殿のないニッケル分散液を得た。そして、このニッケル分散液を乾燥させることにより、ニッケル粉末を作製した。なお、析出したニッケル粉末において、走査型電子顕微鏡を使用して倍率30000倍にて観察した時の平均粒径D50を測定したところ120nmであった。また、高周波燃焼赤外線吸収法を使用して、ニッケル粉末が含有する炭素量を測定したところ、ニッケル粉末全体に対して1.5質量%であった。
次いで、析出したニッケル粉末を、還元雰囲気(Hガスが3%、Nガスが97%)において、500℃の温度で、熱処理した。なお、熱処理時の保持時間を1時間として行った。また、熱処理後のニッケル粉末において、走査型電子顕微鏡を使用して倍率30000倍にて観察した時の平均粒径D50を測定したところ、150nmであり、ニッケル粉末の粗大化は見られなかった。また、上記(式1)より、熱処理後のニッケル粉末の平均粒径D50に対応する比表面積の理論値B〔m/g〕を求めたところ、4.5〔m/g〕であった。また、BET法により測定された熱処理後のニッケル粉末の比表面積A〔m/g〕は10〔m/g〕であり、BET法により測定された比表面積Aと平均粒径D50に対応する比表面積の理論値Bとの比(A/B)は2.2であった。従って、熱処理後のニッケル粉末は表面平滑性に優れていることが確認された。さらに、X線回折法により、熱処理後のニッケル粉末の結晶性を評価したところ、(111)面の回折ピークの半値幅が0.25°となり、結晶性が高いことが確認された。なお、本実施例で得られたニッケル粉末の電子顕微鏡写真を図1に示す。
(導電性ペーストの作製)
次いで、有機バインダーであるエチルセルロース10質量部をターピネオール90質量部に溶解させた有機ビヒクルを作製し、上述の熱処理後のニッケル粉末100質量部と有機ビヒクル40質量部を混合し、三本ロールによって混練・分散することにより、積層セラミックコンデンサの内部電極用の導電性ペーストを作製した。
(内部電極の作製、積層体の作製)
まず、誘電体層用ペースト(セラミックの原料粉末であるチタン酸バリウムに、有機バインダーであるエチルセルロースと溶剤であるターピネオールとを加えたもの)を支持フィルムであるPETフィルム上にシート状に塗布し、次いで、乾燥させて溶剤を除去することにより、厚みが2μmであるセラミックグリーンシートを作製した。次いで、このセラミックグリーンシートの片面に、スクリーン印刷法により、上述の作製した導電性ペーストを印刷して塗布し、導電性ペーストからなる厚みが2μmである内部電極層を形成した。次いで、PETフィルムからセラミックグリーンシートを剥離するとともに、剥離したセラミックグリーンシートの内部電極層の表面上に保護用のセラミックグリーンシートを積層、圧着して、セラミックグリーンシートからなる誘電体層と導電性ペーストからなる内部電極層とが交互に積層された積層体を作製した。
(積層セラミック焼成体の作製)
製作した積層体を所定サイズ(0.3mm×0.6mm)に切断してグリーンチップを形成後、当該グリーンチップに対して脱バインダー処理、焼成、およびアニール処理を行い、コンデンサ本体である積層セラミック焼成体を作製した。なお、脱バインダー処理は、大気雰囲気において、300℃の温度で、保持時間を1時間として行った。また、焼成は、Nガス雰囲気において、1300℃の温度で、保持時間を2時間として行った。また、アニール処理は、Nガス雰囲気において、900℃の温度で、保持時間を1時間として行った。
(電極表面の平滑性評価、および電極途切れ評価)
次いで、製作した積層セラミック焼成体を切断し、その断面を、走査型電子顕微鏡を使用して観察(倍率:2000倍、視野:50μm×60μm)して、電極の平滑性、および電極途切れの有無を目視により判断した。その結果を表1に示す。
(実施例2)
(ニッケル粉末の作製)
金属化合物としての酢酸ニッケル四水和物を、25g/lの濃度となるように純水に溶解させ、ニッケルイオンを含む水溶液を作製し、この水溶液に分散剤としてポリビニルアルコール(分子量10000)を、4g/lの濃度となるように添加した。次いで、還元剤としての塩化チタンを、80g/lの濃度となるように純水に溶解させ、3価のチタンイオンを含むチタンイオン水溶液を作製した。そして、これらの水溶液を混合して、反応液を作製し、この反応液に、pH調整剤として、炭酸ナトリウムを、20g/lの濃度となるように純水に溶解させた水酸化ナトリウム水溶液を加えて、反応液のpHが8.5となるように調整した。
次いで、この反応液を、30℃の反応温度で120分間、500rpmの速度で攪拌しながら反応させて、ニッケル粉末を還元析出させた。次いで、この反応液に対してクロスフローの限外ろ過を行い、純水で洗浄を繰り返しながら不純物を除去して、水を分散媒とする沈殿のないニッケル分散液を得た。そして、このニッケル分散液を乾燥させることにより、ニッケル粉末を作製した。なお、析出したニッケル粉末において、走査型電子顕微鏡を使用して倍率30000倍にて観察した時の平均粒径D50を測定したところ30nmであった。また、高周波燃焼赤外線吸収法を使用して、ニッケル粉末が含有する炭素量を測定したところ、ニッケル粉末全体に対して4質量%であった。
次いで、析出したニッケル粉末を、還元雰囲気(Hガスが3%、Nガスが97%)において、350℃の温度で、熱処理した。なお、熱処理時の保持時間を1時間として行った。また、熱処理後のニッケル粉末において、走査型電子顕微鏡を使用して倍率30000倍にて観察した時の平均粒径D50を測定したところ、40nmであり、ニッケル粉末の粗大化は見られなかった。また、上記(式1)より、熱処理後のニッケル粉末の平均粒径D50に対応する比表面積の理論値B〔m/g〕を求めたところ、16.8〔m/g〕であった。また、BET法により測定された熱処理後のニッケル粉末の比表面積A〔m/g〕は33.6〔m/g〕であり、BET法により測定された比表面積Aと平均粒径D50に対応する比表面積の理論値Bとの比(A/B)は2.0であった。従って、熱処理後のニッケル粉末は表面平滑性に優れていることが確認された。さらに、X線回折法により、熱処理後のニッケル粉末の結晶性を評価したところ、(111)面の回折ピークの半値幅が0.45°となり、結晶性が高いことが確認された。
また、上述の実施例1と同様にして、導電性ペースト、内部電極、積層体、および積層セラミック焼成体を得た。その後、上述の実施例1と同一条件により、電極表面の平滑性評価、および電極途切れ評価を行った、以上の結果を表1に示す。
(比較例1)
熱処理を行わなかったこと以外は、上述の実施例1と同様にして、ニッケル粉末を作製した。なお、作製したニッケル粉末において、走査型電子顕微鏡を使用して倍率30000倍にて観察した時の平均粒径D50を測定したところ、120nmであった。また、上記(式1)より、作製したニッケル粉末の平均粒径D50に対応する比表面積の理論値B〔m/g〕を求めたところ、5.6〔m/g〕であった。また、BET法により測定されたニッケル粉末の比表面積A〔m/g〕は15.7〔m/g〕であり、BET法により測定された比表面積Aと平均粒径D50に対応する比表面積の理論値Bとの比(A/B)は2.8であった。従って、熱処理後のニッケル粉末は表面平滑性に優れていることが確認された。さらに、X線回折法により、熱処理後のニッケル粉末の結晶性を評価したところ、(111)面の回折ピークの半値幅が1.5°となり、結晶性が低いことが確認された。なお、本実施例で得られたニッケル粉末の電子顕微鏡写真を図2に示す。また、上述の実施例1と同様にして、導電性ペースト、内部電極、積層体、および積層セラミック焼成体を得た。その後、上述の実施例1と同一条件により、電極表面の平滑性評価、および電極途切れ評価を行った、以上の結果を表1に示す。
(比較例2)
熱処理を行う際の温度を100℃に設定したこと以外は、上述の実施例1と同様にして、ニッケル粉末を作製した。なお、熱処理前のニッケル粉末において、走査型電子顕微鏡を使用して倍率30000倍にて観察した時の平均粒径D50を測定したところ、120nmであった。また、熱処理後のニッケル粉末において、走査型電子顕微鏡を使用して倍率30000倍にて観察した時の平均粒径D50を測定したところ、120nmであり、ニッケル粉末の粗大化は見られなかった。また、上記(式1)より、作製したニッケル粉末の平均粒径D50に対応する比表面積の理論値B〔m/g〕を求めたところ、5.6〔m/g〕であった。また、BET法により測定されたニッケル粉末の比表面積A〔m/g〕は14〔m/g〕であり、BET法により測定された比表面積Aと平均粒径D50に対応する比表面積の理論値Bとの比(A/B)は2.5であった。従って、熱処理後のニッケル粉末は表面平滑性に優れていることが確認された。さらに、X線回折法により、熱処理後のニッケル粉末の結晶性を評価したところ、(111)面の回折ピークの半値幅が0.8°となり、結晶性が低いことが確認された。なお、本実施例で得られたニッケル粉末の電子顕微鏡写真を図3に示す。また、上述の実施例1と同様にして、導電性ペースト、内部電極、積層体、および積層セラミック焼成体を得た。その後、上述の実施例1と同一条件により、電極表面の平滑性評価、および電極途切れ評価を行った、以上の結果を表1に示す。
(比較例3)
熱処理を行う際の温度を800℃に設定したこと以外は、上述の実施例1と同様にして、ニッケル粉末を作製した。なお、熱処理前のニッケル粉末において、走査型電子顕微鏡を使用して倍率30000倍にて観察した時の平均粒径D50を測定したところ、200nmであった。また、熱処理後のニッケル粉末において、走査型電子顕微鏡を使用して倍率30000倍にて観察した時の平均粒径D50を測定したところ、800nmであり、ニッケル粉末の粗大化が見られた。また、上記(式1)より、作製したニッケル粉末の平均粒径D50に対応する比表面積の理論値B〔m/g〕を求めたところ、0.8〔m/g〕であった。また、BET法により測定されたニッケル粉末の比表面積A〔m/g〕は3.6〔m/g〕であり、BET法により測定された比表面積Aと平均粒径D50に対応する比表面積の理論値Bとの比(A/B)は4.5であった。従って、熱処理後のニッケル粉末は表面平滑性が低いことが確認された。さらに、X線回折法により、熱処理後のニッケル粉末の結晶性を評価したところ、(111)面の回折ピークの半値幅が0.1°となり、結晶性が高いことが確認された。なお、本実施例で得られたニッケル粉末の電子顕微鏡写真を図4に示す。また、上述の実施例1と同様にして、導電性ペースト、内部電極、積層体、および積層セラミック焼成体を得た。その後、上述の実施例1と同一条件により、電極表面の平滑性評価、および電極途切れ評価を行った、以上の結果を表1に示す。
図1に示すように、実施例1のニッケル粉末は、凝集した粉末となっておらず、表面平滑性に優れていることが判る。また、表1に示すように、実施例1のニッケル粉末を含有する導電性ペーストにより形成された内部電極は、表面の平滑性に優れるとともに、電極途切れが発生していないことが判る。以上より、実施例1のニッケル粉末を含有する導電性ペーストは、積層セラミックコンデンサの内部電極の形成に優れていると言える。
また、図2に示すように、比較例1のニッケル粒子は、凝集した粉末となっておらず、表面平滑性に優れていることが判る。しかし、表1に示すように、比較例1のニッケル粉末を含有する導電性ペーストにより形成された内部電極は、電極途切れが発生していることが判る。これは、比較例1においては、析出したニッケル粒子に対して熱処理を行わなかったため、ニッケル粉末の結晶性が低かったためであると考えられる。
また、図3に示すように、比較例2のニッケル粒子は、凝集した粉末となっておらず、表面平滑性に優れていることが判る。しかし、表1に示すように、比較例1のニッケル粉末を含有する導電性ペーストにより形成された内部電極は、電極途切れが発生していることが判る。これは、比較例2においては、析出したニッケル粒子に対して熱処理を行ったが、熱処理温度が100℃と低温であったため、単結晶化が十分に進行せず、ニッケル粉末の結晶性が十分に向上しなかったためであると考えられる。
また、図4に示すように、比較例3のニッケル粒子は、粗大化しており、表面平滑性が不良であることが判る。また、表1に示すように、比較例3のニッケル粉末を含有する導電性ペーストにより形成された内部電極は、表面の平滑性が不良であることが判る。これは、比較例3においては、析出したニッケル粒子に対して熱処理を行ったが、熱処理温度が800℃と高温であったため、単結晶化は進行したが、粒子同士が結合して凝集した粉末となったためであると考えられる。
本発明の活用例としては、ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサに関し、特に、積層セラミックコンデンサの内部電極に用いる導電性ペースト用の導電性微粉末として好適なニッケル粉末またはニッケルを主成分とする合金粉末、その製造方法、およびそれを用いた導電性ペースト、並びに積層セラミックコンデンサが挙げられる。
実施例1におけるニッケル粉末を示す電子顕微鏡写真である。 比較例1におけるニッケル粉末を示す電子顕微鏡写真である。 比較例2におけるニッケル粉末を示す電子顕微鏡写真である。 比較例3におけるニッケル粉末を示す電子顕微鏡写真である。

Claims (5)

  1. 平均粒径D50が30〜300nm、X線回折法による(111)面の回折ピークの半値幅が0.5°以下であり、かつBET法により測定された比表面積Aと前記平均粒径D50に対応する比表面積の理論値Bとの比(A/B)が3以下であることを特徴とするニッケル粉末またはニッケルを主成分とする合金粉末。
  2. ニッケルイオンと、還元剤と、分散剤とを含む反応液中で、前記還元剤により前記ニッケルイオンを還元させて、ニッケル粉末全体またはニッケルを主成分とする合金粉末全体に対して0.1質量%以上5質量%以下の炭素を含有するニッケル粉末またはニッケルを主成分とする合金粉末を析出させる工程と、
    前記析出させたニッケル粉末またはニッケルを主成分とする合金粉末に対して、300℃〜700℃で熱処理を行う工程と
    を少なくとも含むことを特徴とするニッケル粉末またはニッケルを主成分とする合金粉末の製造方法。
  3. ガスを2%以上含む還元雰囲気中で、前記熱処理を行うことを特徴とする請求項2に記載のニッケル粉末またはニッケルを主成分とする合金粉末の製造方法。
  4. 請求項1に記載のニッケル粉末またはニッケルを主成分とする合金粉末と、有機ビヒクルを主成分とすることを特徴とする導電性ペースト。
  5. 内部電極層および誘電体層を交互に積層して形成されたコンデンサ本体を備える積層セラミックコンデンサであって、
    前記内部電極層が、請求項4に記載の導電性ペーストにより形成されていることを特徴とする積層セラミックコンデンサ。
JP2008209997A 2008-08-18 2008-08-18 ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ Pending JP2010043345A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008209997A JP2010043345A (ja) 2008-08-18 2008-08-18 ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ
US13/059,323 US20110141654A1 (en) 2008-08-18 2009-06-26 Nickel powder or alloy powder comprising nickel as main component, method for producing the same, conductive paste and laminated ceramic capacitor
PCT/JP2009/061701 WO2010021202A1 (ja) 2008-08-18 2009-06-26 ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ
EP09808138A EP2314400A1 (en) 2008-08-18 2009-06-26 Nickel powder or alloy powder comprising nickel as main component, method for producing the same, conductive paste and laminated ceramic capacitor
KR1020117002812A KR20110059700A (ko) 2008-08-18 2009-06-26 니켈 분말 또는 니켈을 주성분으로 하는 합금 분말 및 그 제조 방법, 도전성 페이스트 및, 적층 세라믹 콘덴서
CN2009801324560A CN102123805A (zh) 2008-08-18 2009-06-26 镍粉或包含镍作为主要成分的合金粉末、其制备方法、导电性糊状物、以及层压陶瓷电容器
TW098127526A TW201016350A (en) 2008-08-18 2009-08-17 Nickel powder or alloy powder with nickel as the major component, and the method for preparation thereof, conductive paste, and multi-layer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209997A JP2010043345A (ja) 2008-08-18 2008-08-18 ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ

Publications (1)

Publication Number Publication Date
JP2010043345A true JP2010043345A (ja) 2010-02-25

Family

ID=41707081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209997A Pending JP2010043345A (ja) 2008-08-18 2008-08-18 ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ

Country Status (7)

Country Link
US (1) US20110141654A1 (ja)
EP (1) EP2314400A1 (ja)
JP (1) JP2010043345A (ja)
KR (1) KR20110059700A (ja)
CN (1) CN102123805A (ja)
TW (1) TW201016350A (ja)
WO (1) WO2010021202A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042104A (ja) * 2011-07-19 2013-02-28 Sumitomo Electric Ind Ltd 積層セラミックコンデンサ用の導電ペーストおよびその製造方法
JP2013112889A (ja) * 2011-11-30 2013-06-10 Toda Kogyo Corp ニッケル微粒子粉末の製造法及び該製造法により得られるニッケル微粒子粉末
JP2015026807A (ja) * 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. 内部電極ペースト組成物、およびこれを内部電極層に用いた積層型セラミックキャパシタ
JP2015190043A (ja) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 湿式ニッケル粉末の製造方法
JP2017186661A (ja) * 2016-03-31 2017-10-12 Dowaエレクトロニクス株式会社 銀被覆ニッケル粉末およびその製造方法
US20210280370A1 (en) * 2020-03-03 2021-09-09 Taiyo Yuden Co., Ltd. Manufacturing method of ceramic electronic device and metal conductive paste

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115425A (ja) * 2011-11-30 2013-06-10 Samsung Electro-Mechanics Co Ltd 積層セラミック電子部品及びその製造方法
KR20140023543A (ko) * 2012-08-16 2014-02-27 삼성전기주식회사 내부 전극용 니켈 분말, 그 제조방법 및 이를 포함하는 적층 세라믹 전자부품
CN104837580B (zh) * 2012-11-20 2016-10-26 杰富意矿物股份有限公司 镍粉末、导电膏以及层叠陶瓷电子部件
EP3121829B1 (en) 2014-03-20 2020-09-16 Sekisui Chemical Co., Ltd. Electroconductive paste
US10395841B2 (en) * 2016-12-02 2019-08-27 Capacitor Sciences Incorporated Multilayered electrode and film energy storage device
KR102361800B1 (ko) * 2017-03-10 2022-02-10 도호 티타늄 가부시키가이샤 니켈 분말 및 니켈 페이스트
KR102278500B1 (ko) * 2017-07-05 2021-07-15 도호 티타늄 가부시키가이샤 금속 분말 및 그 제조 방법
WO2019148277A1 (en) * 2018-01-30 2019-08-08 Tekna Plasma Systems Inc. Metallic powders for use as electrode material in multilayer ceramic capacitors and method of manufacturing and of using same
KR102484793B1 (ko) * 2018-06-28 2023-01-05 도호 티타늄 가부시키가이샤 금속 분말과 그 제조 방법, 및 소결 온도의 예측 방법
KR20230008405A (ko) * 2021-07-07 2023-01-16 삼성전기주식회사 커패시터 부품 및 커패시터 부품의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105402A (ja) * 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd 導電ペースト用の銅粉及びその銅粉を用いた導電ペースト並びにその導電ペーストを用いた導体を含んだチップ部品
JP2004176120A (ja) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd 導電粉末、その製造方法、及びそれを用いた導電ペースト
JP2005154904A (ja) * 2003-11-25 2005-06-16 Samsung Electronics Co Ltd 炭素含有ニッケル粒子粉末およびその製造方法
JP2008095146A (ja) * 2006-10-12 2008-04-24 Akita Prefecture 球状ニッケル微小粒子およびその製造方法ならびに、異方性導電フィルム用導電粒子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921805B2 (ja) 1998-04-24 2007-05-30 株式会社村田製作所 ニッケル微粉末の製造方法
TWI399254B (zh) * 2004-12-10 2013-06-21 Mitsui Mining & Smelting Co Nickel powder and its manufacturing method and conductive paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105402A (ja) * 2001-09-28 2003-04-09 Mitsui Mining & Smelting Co Ltd 導電ペースト用の銅粉及びその銅粉を用いた導電ペースト並びにその導電ペーストを用いた導体を含んだチップ部品
JP2004176120A (ja) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd 導電粉末、その製造方法、及びそれを用いた導電ペースト
JP2005154904A (ja) * 2003-11-25 2005-06-16 Samsung Electronics Co Ltd 炭素含有ニッケル粒子粉末およびその製造方法
JP2008095146A (ja) * 2006-10-12 2008-04-24 Akita Prefecture 球状ニッケル微小粒子およびその製造方法ならびに、異方性導電フィルム用導電粒子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042104A (ja) * 2011-07-19 2013-02-28 Sumitomo Electric Ind Ltd 積層セラミックコンデンサ用の導電ペーストおよびその製造方法
JP2013112889A (ja) * 2011-11-30 2013-06-10 Toda Kogyo Corp ニッケル微粒子粉末の製造法及び該製造法により得られるニッケル微粒子粉末
JP2015026807A (ja) * 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. 内部電極ペースト組成物、およびこれを内部電極層に用いた積層型セラミックキャパシタ
JP2015190043A (ja) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 湿式ニッケル粉末の製造方法
JP2017186661A (ja) * 2016-03-31 2017-10-12 Dowaエレクトロニクス株式会社 銀被覆ニッケル粉末およびその製造方法
US20210280370A1 (en) * 2020-03-03 2021-09-09 Taiyo Yuden Co., Ltd. Manufacturing method of ceramic electronic device and metal conductive paste
US11610735B2 (en) * 2020-03-03 2023-03-21 Taiyo Yuden Co., Ltd. Manufacturing method of ceramic electronic device and metal conductive paste

Also Published As

Publication number Publication date
KR20110059700A (ko) 2011-06-03
WO2010021202A1 (ja) 2010-02-25
TW201016350A (en) 2010-05-01
EP2314400A1 (en) 2011-04-27
CN102123805A (zh) 2011-07-13
US20110141654A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2010021202A1 (ja) ニッケル粉末またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ
JP5407495B2 (ja) 金属粉末および金属粉末製造方法、導電性ペースト、並びに積層セラミックコンデンサ
JP5843821B2 (ja) 金属粉ペースト、及びその製造方法
JP2009079239A (ja) ニッケル粉末、またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ
JP4081987B2 (ja) 金属粉末の製造方法,金属粉末,これを用いた導電性ペーストならびにこれを用いた積層セラミック電子部品
JP2010053409A (ja) 金属粉末の製造方法および金属粉末、導電性ペースト、積層セラミックコンデンサ
JP5574154B2 (ja) ニッケル粉末およびその製造方法
KR20070048263A (ko) 도전성 입자의 제조 방법, 도전성 페이스트 및 전자 부품의제조 방법
JP6135935B2 (ja) 湿式ニッケル粉末の製造方法
US20160203911A1 (en) Surface-treated metal powder, and method for producing same
JP4100244B2 (ja) ニッケル粉末とその製造方法
JP2015036444A (ja) 表面処理された金属粉の製造方法
JP5206246B2 (ja) ニッケル粉末およびその製造方法
JPWO2014162821A1 (ja) 金属粉末の製造方法、導電性ペーストの製造方法、および積層セラミック電子部品の製造方法
JP5526856B2 (ja) ニッケル粉末およびその製造方法
JP2015036443A (ja) 表面処理された金属粉の製造方法
JP2014231643A (ja) 金属粉末の製造方法、金属粉末及び積層セラミックコンデンサ用導電性ペースト
JP4940520B2 (ja) 金属粉末およびその製造方法、導電性ペーストならびに積層セラミック電子部品
JP2013067865A (ja) 金属粉末、導電性ペースト及び積層セラミックコンデンサ
JP2004247632A (ja) 導電性ペースト、及び積層セラミックコンデンサ
JP5348918B2 (ja) ニッケル粉末、卑金属粉末の製法、導体ペースト、ならびに電子部品
JP3922001B2 (ja) 銅粉末の製造方法、銅粉末、導電性ペースト、及び積層セラミック電子部品
JP2020084275A (ja) ニッケル粉末
JP4389437B2 (ja) 導電性ペーストの製造方法および積層セラミック電子部品
JP2001266653A (ja) ニッケル粉及び導電ペースト

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100707

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507