WO2018159646A1 - 窒化物半導体基板の製造方法および窒化物半導体基板 - Google Patents

窒化物半導体基板の製造方法および窒化物半導体基板 Download PDF

Info

Publication number
WO2018159646A1
WO2018159646A1 PCT/JP2018/007392 JP2018007392W WO2018159646A1 WO 2018159646 A1 WO2018159646 A1 WO 2018159646A1 JP 2018007392 W JP2018007392 W JP 2018007392W WO 2018159646 A1 WO2018159646 A1 WO 2018159646A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
gan
crystal
substrate
plane
Prior art date
Application number
PCT/JP2018/007392
Other languages
English (en)
French (fr)
Inventor
丈洋 吉田
文正 堀切
Original Assignee
株式会社サイオクス
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サイオクス, 住友化学株式会社 filed Critical 株式会社サイオクス
Priority to US16/490,704 priority Critical patent/US11094539B2/en
Publication of WO2018159646A1 publication Critical patent/WO2018159646A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Definitions

  • the present invention relates to a method for manufacturing a nitride semiconductor substrate and a nitride semiconductor substrate.
  • a semiconductor device such as a light-emitting element or a high-speed transistor may be configured using a nitride semiconductor substrate made of a group III nitride crystal such as gallium nitride (GaN) (see, for example, Patent Document 1).
  • a nitride semiconductor substrate made of a group III nitride crystal such as gallium nitride (GaN) (see, for example, Patent Document 1).
  • Forming an n ⁇ type first nitride semiconductor layer by growing a nitride semiconductor crystal along a c-axis direction on a + C plane of a seed crystal substrate made of a nitride semiconductor crystal; Forming a nitride semiconductor crystal on the + C plane of the first nitride semiconductor layer along the c-axis direction to form a second nitride semiconductor layer; The seed crystal substrate is removed to expose the -C plane of the first nitride semiconductor layer, and the first nitride semiconductor layer and the second nitride semiconductor layer having the -C plane as a main surface are stacked.
  • a nitride semiconductor substrate configured by laminating a first nitride semiconductor layer and a second nitride semiconductor layer made of a nitride semiconductor crystal,
  • the first nitride semiconductor layer is an n ⁇ type having a ⁇ C plane as an exposed surface, and an n type impurity concentration in the nitride semiconductor crystal is less than 1 ⁇ 10 17 at / cm 3
  • a substrate is provided.
  • a nitride semiconductor substrate suitable for use in the configuration of a semiconductor device can be obtained.
  • FIG. 1 is a schematic configuration diagram of a specific example of a semiconductor device (semiconductor device) configured using a nitride semiconductor substrate according to the present invention. It is explanatory drawing of the other specific example of the manufacturing method of the nitride semiconductor substrate which concerns on this invention.
  • GaN substrate a substrate made of a single crystal of GaN
  • a technique is used in which a p-type impurity such as magnesium (Mg) is implanted into the GaN substrate by ion implantation to form a p-type region in the GaN substrate. May be. In that case, ion implantation into the GaN substrate requires an annealing process in a high temperature region exceeding 1200 ° C.
  • thermal decomposition of the GaN crystal may be a problem, but it is more thermally than the gallium (Ga) polar surface. If ion implantation is performed on a stable nitrogen (N) polar surface, it is considered that the problem of thermal decomposition of the GaN crystal can be solved and a pn junction diode exhibiting good rectification can be formed.
  • the GaN crystal to which such ion implantation is performed preferably has a very low concentration of impurities such as silicon (Si) and oxygen (O) in the GaN crystal. This is because if the impurity concentration in the GaN crystal is extremely low, desired conductivity (p-type semiconductor characteristics) can be imparted to the GaN crystal even if the amount of Mg injected is reduced. In other words, compared to the case of containing a large amount of impurities such as Si and O, by suppressing the impurity concentration of the GaN crystal in which ion implantation is performed, it is possible to obtain desired semiconductor characteristics while suppressing deterioration in crystal quality due to Mg implantation as much as possible. It can be granted. In addition, if the concentration of the impurity that causes carrier scattering is extremely low, it is possible to avoid a decrease in carrier mobility, which is more advantageous than the case where a large amount of impurities is contained.
  • the present inventor has intensively studied and devised a substrate manufacturing procedure to have an N-polar surface (-C surface) capable of ion implantation as an exposed surface, and ion implantation is performed.
  • -C surface N-polar surface
  • the inventors have obtained new knowledge that a GaN substrate having a very low impurity concentration of GaN crystals can be formed.
  • the present invention is based on the above-described new findings found by the present inventors.
  • the nitride semiconductor substrate is a flat plate (for example, disc-shaped) substrate (hereinafter also referred to as “wafer”) made of a nitride semiconductor crystal.
  • the nitride semiconductor crystal constituting the nitride semiconductor substrate is a semiconductor crystal using N as a group V element in a group III-V compound semiconductor using a group III element and a group V element.
  • x Al y Ga 1 This is a crystal represented by a composition formula of -xy N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • a case where the nitride semiconductor crystal is a single crystal of GaN and a GaN substrate made of a GaN crystal is manufactured as the nitride semiconductor substrate will be described as an example.
  • the GaN crystal constituting the GaN substrate has a hexagonal crystal structure (wurtzite crystal structure).
  • polar surfaces include ⁇ 0001 ⁇ planes corresponding to Ga polar planes and ⁇ 000-1 ⁇ planes corresponding to N polar planes.
  • the polar plane is sometimes referred to as “C plane”, and in particular, the ⁇ 0001 ⁇ plane may be referred to as “+ C plane” and the ⁇ 000-1 ⁇ plane may be referred to as “ ⁇ C plane”.
  • a specific index plane such as “C plane”
  • a plane within a range having an off angle within 10 ° from each crystal axis measured with an accuracy within ⁇ 0.01 °. Preferably including a surface having an off angle of 5 ° or less, more preferably 3 ° or less.
  • the off-angle refers to an angle formed between the normal direction of the surface and the axial direction of the GaN crystal.
  • HVPE equipment In the present embodiment, a GaN substrate made of a GaN crystal is manufactured using a hydride vapor phase growth apparatus (HVPE apparatus).
  • HVPE apparatus hydride vapor phase growth apparatus
  • the HVPE apparatus 200 includes an airtight container 203 in which a film formation chamber 201 is configured.
  • An inner cover 204 is provided in the film formation chamber 201, and a susceptor 208 is provided as a base on which the seed crystal substrate 20 is disposed at a position surrounded by the inner cover 204.
  • the susceptor 208 is connected to a rotation shaft 215 included in the rotation mechanism 216, and is configured to be rotatable in accordance with the drive of the rotation mechanism 216.
  • a gas supply pipe 232a that supplies hydrogen chloride (HCl) gas into the gas generator 233a, a gas supply pipe 232b that supplies ammonia (NH 3 ) gas into the inner cover 204, and an inner cover 204
  • a pipe 232d and a gas supply pipe 232e for supplying N 2 gas as a purge gas into the film forming chamber 201 are connected.
  • the gas supply pipes 232a to 232e are respectively provided with flow rate controllers 241a to 241e and valves 243a to 243e in order from the upstream side.
  • a gas generator 233a for storing Ga melt as a raw material is provided downstream of the gas supply pipe 232a.
  • the gas generator 233a is provided with a nozzle 249a that supplies gallium chloride (GaCl) gas generated by the reaction between HCl gas and Ga melt toward the seed crystal substrate 20 and the like disposed on the susceptor 208. ing.
  • GaCl gallium chloride
  • Nozzles 249b and 249c for supplying various gases supplied from these gas supply pipes toward the seed crystal substrate 20 and the like disposed on the susceptor 208 are connected to the downstream sides of the gas supply pipes 232b and 232c, respectively. Yes.
  • the nozzles 249a to 249c are arranged so as to flow gas in a direction intersecting the surface of the susceptor 208.
  • the doping gas supplied from the nozzle 249c is a mixed gas of a doping source gas and a carrier gas such as N 2 / H 2 gas.
  • As the doping gas HCl gas may be flowed together for the purpose of suppressing thermal decomposition of the halide gas of the doping raw material.
  • Examples of the doping source gas constituting the doping gas include SiH 2 Cl 2 gas in the case of silicon (Si) doping, GeCl 4 gas in the case of germanium (Ge) doping, and carbon (C) doping.
  • Si silicon
  • GeCl 4 gas germanium
  • C carbon
  • CH 2 Cl 2 gas and FeCl 2 gas in the case of iron (Fe) dope, but it is not necessarily limited thereto.
  • the other end of the airtight container 203 is provided with an exhaust pipe 230 for exhausting the film forming chamber 201.
  • the exhaust pipe 230 is provided with a pump (or blower) 231.
  • Zone heaters 207a and 207b for heating the seed crystal substrate 20 and the like in the gas generator 233a and on the susceptor 208 to a desired temperature are provided on the outer periphery of the hermetic vessel 203.
  • a temperature sensor (not shown) for measuring the temperature in the film forming chamber 201 is provided in the airtight container 203.
  • the constituent members of the HVPE apparatus 200 described above particularly the members for forming various gas flows, for example, as described below, it is possible to perform crystal growth at a low impurity concentration as described later. It is configured. Specifically, as shown in FIG. 1 so as to be identifiable by the type of hatching, all the members arranged in the region that receives the radiation of the zone heaters 207a and 207b that are heated to a high temperature are all silicon carbide (SiC). It is preferably composed of coated graphite. On the other hand, in a relatively low temperature part, it is preferable to comprise a member using high purity quartz.
  • SiC silicon carbide
  • each member is made of SiC-coated graphite instead of using high-purity quartz in a place where it comes into contact with HCl gas at a place where the temperature is relatively high (for example, 1000 ° C. or higher).
  • the inner cover 204, the susceptor 208, the rotating shaft 215, the gas generator 233a, the nozzles 249a to 249c, and the like are made of SiC-coated graphite. Since the furnace core tube constituting the hermetic vessel 203 can only be made of quartz, an inner cover 204 surrounding the susceptor 208, the gas generator 233a, and the like is provided in the film forming chamber 201.
  • a crystal growth portion of impurities such as Si, O, C, Fe, Cr, and Ni even in a temperature range suitable for the growth of a GaN crystal of 1050 ° C. or higher. It is feasible to grow a GaN crystal that can cut off the supply to the substrate, has high purity, and exhibits good thermal properties and electrical properties.
  • Each member included in the HVPE apparatus 200 is connected to a controller 280 configured as a computer, and is configured so that processing procedures and processing conditions described later are controlled by a program executed on the controller 280. Yes.
  • a crystal growth step is performed after a carry-in step, and then a carry-out step and a slice step are performed.
  • the crystal growth step at least a first layer forming step and a second layer forming step are performed.
  • the furnace port of the reaction vessel 203 is opened, and the seed crystal substrate 20 is placed on the susceptor 208.
  • the seed crystal substrate 20 placed on the susceptor 208 serves as a base (seed) for manufacturing the GaN substrate 10 described later, and is a plate-shaped substrate made of a single crystal of GaN which is an example of a nitride semiconductor. is there.
  • one main surface is a ⁇ 0001 ⁇ surface corresponding to a Ga polar surface (ie, + C surface), and the other main surface is an ⁇ 000 ⁇ surface corresponding to an N polar surface.
  • -1 ⁇ plane that is, -C plane).
  • the surface of the seed crystal substrate 20 placed on the susceptor 208 that is, the main surface (crystal growth surface, lower surface) facing the nozzles 249a to 249c.
  • the (ground) is the ⁇ 0001 ⁇ plane of the GaN crystal, that is, the + C plane (Ga polar plane).
  • the n-type impurity typified by Si has a concentration in the GaN crystal of about 1 ⁇ 10 18 to 1 ⁇ 10 19 at / cm 3 , that is, n It is conceivable to use an n + type having a relatively high type impurity concentration. However, it is not necessarily limited to the n + type, and the n-type impurity concentration is 1 ⁇ 10 15 to 1 ⁇ 10 as long as the first GaN layer 21 can be grown as described later. It may be doped at about 16 at / cm 3 .
  • planar shape and size of the seed crystal substrate 20 are not particularly limited, and may be appropriately determined according to the shape and size of the GaN substrate 10 to be manufactured.
  • the thickness of the seed crystal substrate 20 is not particularly limited, but considering the ease of handling when it is placed on the susceptor 208, the thickness is about 300 to 400 ⁇ m, which is a self-supporting thickness. It can be considered.
  • Crystal growth step When the carry-in of the seed crystal substrate 20 into the reaction chamber 201 is completed, a crystal growth step is subsequently performed. In the crystal growth step, at least the first layer forming step and the second layer forming step are sequentially performed.
  • First layer formation step In the first layer formation step, as shown in FIG. 2A, a GaN crystal is epitaxially grown on the + C plane of the seed crystal substrate 20 to form the first GaN layer 21.
  • the furnace port is closed, and the reaction chamber 201 is heated and evacuated while being introduced into the reaction chamber 201.
  • Supply of H 2 gas or H 2 gas and N 2 gas is started.
  • GaCl gas and NH 3 gas are respectively supplied to the surface of the seed crystal substrate 20.
  • the GaN crystal is epitaxially grown in the direction, and the first GaN layer 21 is formed.
  • Such crystal growth in the direction of the + C plane is preferable from the viewpoint of appropriately growing the crystal as compared with the case of directing in the direction of the N polar plane (that is, the ⁇ C plane).
  • this step in order to prevent thermal decomposition of the GaN crystals constituting the seed crystal substrate 20, NH 3 into the reaction chamber 201 is reached when the temperature of the seed crystal substrate 20 reaches 500 ° C. or before that. It is preferable to start the gas supply. In order to improve the in-plane film thickness uniformity of the first GaN layer 21, this step is preferably performed with the susceptor 208 rotated.
  • the temperature of the zone heaters 207a and 207b is set to, for example, 700 to 900 ° C. in the heater 207a that heats the upstream portion in the reaction chamber 201 including the gas generator 233a, and the reaction including the susceptor 208 is performed.
  • the heater 207b for heating the downstream portion in the chamber 201 it is preferable to set the temperature to 1000 to 1200 ° C., for example.
  • the susceptor 208 is adjusted to a predetermined temperature of 1000 to 1200 ° C.
  • the internal heater (not shown) may be used in an off state, but as long as the temperature of the susceptor 208 is in the range of 1000 to 1200 ° C., temperature control using the internal heater is performed. You may carry out.
  • Examples of other processing conditions in this step include the following. Processing pressure: 0.5 to 2 atmospheres GaCl gas partial pressure: 0.1 to 20 kPa NH 3 gas partial pressure / GaCl gas partial pressure: 1 to 100 H 2 gas partial pressure / GaCl gas partial pressure: 0 to 100
  • N 2 gas as a carrier gas may be added from each of the gas supply pipes 232a to 232b.
  • N 2 gas as a carrier gas
  • the distribution of the supply amount of the source gas and the like on the surface of the seed crystal substrate 20 can be appropriately controlled, and the entire area in the plane can be controlled. A uniform growth rate distribution can be realized. It may be added to rare gas such as Ar gas or He gas instead of N 2 gas.
  • the first GaN layer 21 formed under the above conditions is an n ⁇ type having a relatively low concentration of n type impurities typified by Si in the GaN crystal, specifically, n type impurities in the GaN crystal.
  • the concentration is less than 1 ⁇ 10 17 at / cm 3 .
  • the specific concentration value of the n-type impurity in the n ⁇ -type first GaN layer 21 will be described in detail later.
  • Such a first GaN layer 21 may be formed with a thickness of about 15 to 30 ⁇ m, for example.
  • a second layer forming step is then performed. In this step, as shown in FIG. 2A, a GaN crystal is epitaxially grown on the + C plane of the first GaN layer 21 to form the second GaN layer 22.
  • a Si-containing gas such as SiH 4 gas or SiH 2 Cl 2 is supplied as a dopant gas from the gas supply pipe 232c.
  • the partial pressure ratio of the Si-containing gas to the group III source gas in the reaction vessel 203 is, for example, 1/1 ⁇ 10 8 to 1/1000. Can do.
  • Other conditions are the same as in the case of the first layer forming step described above.
  • a GaN crystal is epitaxially grown on the surface of the first GaN layer 21 along the c-axis direction, that is, in the direction of the Ga polar plane (ie, + C plane), and the second GaN layer 22 is formed.
  • the Such crystal growth in the direction of the + C plane is preferable from the viewpoint of appropriately growing the crystal as compared with the case of directing in the direction of the N polar plane (that is, the ⁇ C plane).
  • the second GaN layer 22 formed under the above conditions is an n + type having a relatively high concentration of n-type impurities represented by Si in the GaN crystal, specifically, the Si concentration in the GaN crystal is low. It is about 1 ⁇ 10 18 to 1 ⁇ 10 19 at / cm 3 .
  • Such a second GaN layer 22 is considered to be formed with a thickness of about 300 to 400 ⁇ m, which is a thickness capable of supporting itself.
  • this step of forming the second GaN layer 22 differs from the first layer formation step described above only in the type of gas to be supplied, and thus can be performed continuously from the first layer formation step.
  • the reaction vessel 203 the seed crystal substrate 20 on which the first GaN layer 21 and the second GaN layer 22 are formed.
  • the temperature is lowered to a temperature at which it can be unloaded. Thereafter, the crystal ingot is carried out from the reaction chamber 201 to the outside.
  • the exposed surface (-C surface) of the first GaN layer 21 is subjected to a predetermined polishing process to make this surface an epi-ready mirror surface.
  • the polishing process can be performed by, for example, chemical mechanical polishing (CMP), but is not limited to this, and other methods may be used as long as an epi-ready mirror surface can be obtained. .
  • CMP chemical mechanical polishing
  • the exposed surface (+ C surface) side of the second GaN layer 22 facing the ⁇ C surface will be described later.
  • the ⁇ C plane is the main surface.
  • a GaN substrate 10 composed of a laminate of the first GaN layer 21 and the second GaN layer 22 is obtained.
  • a protective film 23 is preferably formed to cover the entire + C surface.
  • the protective film 23 may be any film as long as it can protect the + C surface during an annealing process or the like in an ion implantation step to be described later.
  • a film formed with a thickness of 30 to 50 nm is used.
  • an aluminum nitride (AlN) film that can be removed with an etching solution containing potassium borate, potassium hydroxide, or the like is preferably used, but an etching solution containing hydrofluoric acid or the like is used.
  • a removable silicon nitride (SiN) film may be used.
  • the protective film 23 is preferably formed on the polished surface after removing the seed crystal substrate 20 in a slicing step and polishing the + C surface of the second GaN layer 22, for example.
  • the present invention is not necessarily limited to this.
  • the protective film 23 may be formed after the second layer forming step in the crystal growth step, and then the slicing step may be performed.
  • the protective film 23 may be formed by using, for example, a sputtering method. Specifically, if an AlN film is used as the protective film 23, a thin AlN film is formed by sputtering Al in an Ar—N 2 mixed gas by an RF magnetron sputtering apparatus.
  • the present invention is not necessarily limited to this.
  • the protective film 23 may be formed using another film forming method such as chemical vapor deposition (CVD).
  • the formation of the protective film 23 is not essential and may be a surface in which the second GaN layer 22 is exposed.
  • the + C plane that is the exposed surface of the second GaN layer 22 is preferably a mirror surface, but may be a lapping surface.
  • the GaN substrate 10 is configured by laminating a first GaN layer 21 and a second GaN layer 22 made of GaN crystals.
  • the first GaN layer 21 constituting the GaN substrate 10 is an n ⁇ type layer having a ⁇ C plane as an exposed surface, and an n type impurity concentration in the nitride semiconductor crystal is at least less than 1 ⁇ 10 17 at / cm 3. More preferably, it has an impurity concentration as described later.
  • the first GaN layer 21 is of a controlled n ⁇ type and has an n-type impurity concentration of at least less than 1 ⁇ 10 17 at / cm 3 , more preferably less than 1 ⁇ 10 15 at / cm 3. It has become. More specifically, the concentrations of Si, boron (B) and Fe contained in the crystal are all less than 1 ⁇ 10 15 at / cm 3 , and oxygen (O) and carbon (C) Each concentration is less than 5 ⁇ 10 15 at / cm 3 . These impurity concentrations are all below the measurement limit (detection lower limit value) of rational analysis means such as SIMS currently available. At present, the concentration of various impurities contained in the crystal It is difficult to present specifically.
  • the first GaN layer 21 contains an n-type impurity (particularly, Si) at the above-mentioned concentration, but it is not preferable to have a semi-insulating property, and the electrical resistivity is, for example, 20 ° C. or more and 200 ° C. or less. It is preferably 50 ⁇ cm or less.
  • the second GaN layer 22 constituting the GaN substrate 10 is formed with a thickness capable of supporting itself to support the first GaN layer 21, and is an n + type that ensures conductivity.
  • the concentrations of B and Fe in the crystal are both less than 1 ⁇ 10 15 at / cm 3
  • the concentrations of O and C are both 5 ⁇ 10 15 at / cm.
  • the point of being less than 3 is the same as that of the first GaN layer 21, but is different from the first GaN layer 21 in that the Si concentration is about 1 ⁇ 10 18 to 1 ⁇ 10 19 at / cm 3 .
  • the second GaN layer 22 has a conductivity of 2 ⁇ 10 ⁇ 2 ⁇ cm or less under a temperature condition of 20 ° C. or more and 200 ° C. or less by containing Si at such a concentration. Functions as a type semiconductor crystal.
  • the Si concentration in the crystal and the n-type carrier concentration were substantially equal. This is because the actual concentration of impurities (such as Fe or C that compensates for n-type carriers or O that serves as a donor) that is the origin of carriers other than Si is extremely low, and these impurities are compared with the Si concentration. It shows that it is contained in the GaN crystal only to a negligible extent.
  • impurities such as Fe or C that compensates for n-type carriers or O that serves as a donor
  • the B, Fe, C, and O concentrations are less than 10 15 at / cm 3 , and other impurities can only be shown to be less than the lower detection limit, but the Si concentration in the crystal
  • the n-type carrier concentration and the n-type carrier concentration were almost equal indicates that the actual concentration of these impurities is 10 14 at / cm 3 or less.
  • the GaN crystals constituting the second GaN layer 22 have extremely low concentrations of B, Fe, O, and C in the crystal as in the GaN crystals of the first GaN layer 21, these impurities are removed. Compared to the conventional GaN crystal containing more, it has better quality. In addition, since the concentration of impurities such as Fe in the GaN crystal is low as described above, it is possible to impart desired conductivity (n-type semiconductor characteristics) to the GaN crystal even if the amount of Si added is reduced. It becomes. That is, the GaN crystal of the second GaN layer 22 is a conventional GaN crystal containing more impurities such as Fe and C in that desired semiconductor characteristics can be imparted while suppressing deterioration in crystal quality due to the addition of Si as much as possible. It is advantageous compared to In addition, since the GaN crystal of the second GaN layer 22 has a very low concentration of impurities that cause carrier scattering, it is possible to avoid a decrease in carrier mobility. This is advantageous compared to the GaN crystal.
  • the GaN substrate 10 composed of the laminated body of the first GaN layer 21 and the second GaN layer 22 as described above has a ⁇ C plane (N polarity plane) as an exposed surface, and the first GaN having the exposed surface.
  • the layer 21 is configured such that the impurity concentration of the GaN crystal in the layer 21 is extremely low.
  • the GaN substrate 10 has two layers in which an n ⁇ -type first GaN layer 21 having a ⁇ C plane as an exposed surface and an n + -type second GaN layer 22 having a + C plane as an exposed surface are stacked. It has a structure, and at least the ⁇ C plane, which is the exposed surface of the first GaN layer 21, is finished to a mirror-polished surface (epi-ready mirror surface).
  • the GaN substrate 10 having a two-layer structure is labeled to prevent chipping (chips) or the like at the corners of each of the first GaN layer 21 and the second GaN layer 22 constituting the two-layer structure. (Chamfering) may be performed.
  • the GaN substrate 10 having a two-layer structure may be provided with a straight line portion called an orientation flat or a notch portion called a notch on the periphery of the substrate for clarifying the substrate orientation.
  • the GaN substrate 10 having a two-layer structure is suitably used for manufacturing semiconductor devices such as laser diodes, LEDs, and high-speed transistors.
  • the diameter D is less than 25 mm
  • the productivity of the semiconductor devices is reduced. Since it becomes easy, it is preferable to set it as the diameter beyond it.
  • the thickness T is less than 250 ⁇ m, the mechanical strength of the GaN substrate 10 decreases, and it is possible to maintain a self-supporting state during crystal growth of a device structure using this substrate or to be easily broken during subsequent device processes. Since it becomes difficult, it is preferable to make the thickness more than that.
  • the dimension shown here is an example to the last, and this embodiment is not limited to this.
  • SiNx film 24 is formed with a thickness of 30 to 50 nm.
  • the method for forming the SiNx film 24 is not particularly limited, and a known method such as a reactive sputtering method may be used.
  • a resist pattern 25 having a desired patterning is formed on the SiNx film 24 as shown in FIG. 3B.
  • the resist material constituting the resist pattern 25, its formation method, patterning method, and the like are not particularly limited as long as they use known techniques.
  • the resist pattern 25 When the resist pattern 25 is formed, p-type impurities are ion-implanted into the ⁇ C plane (N-polar plane) of the first GaN layer 21 that is the main surface of the GaN substrate 10. That is, the ⁇ C plane of the first GaN layer 21 constituting the GaN substrate 10 is used as a plane into which p-type impurities are ion-implanted, and has a p-type impurity implanted portion on the plane.
  • This ion implantation can be performed by a known method using an ion implantation apparatus.
  • the p-type region 26 is formed in the first GaN layer 21 by this ion implantation. Thereafter, as shown in FIG. 3C, the SiNx film 24 and the resist pattern 25 are removed with an etching solution containing hydrofluoric acid (HF) or buffered hydrofluoric acid (BHF). Further, a protective film 23 made of, for example, an AlN film is formed on the exposed surface (+ C surface) of the second GaN layer 22 facing the ⁇ C surface of the GaN substrate 10 by using a sputtering method to a thickness of 30 to 50 nm. It will be formed.
  • HF hydrofluoric acid
  • BHF buffered hydrofluoric acid
  • an annealing process is performed to prepare the crystal lattice of the GaN crystal that has undergone the ion implantation step.
  • the annealing process is performed, for example, in a high temperature range of 1200 ° C. or higher, specifically, a temperature of about 1250 ° C. for a time of about 3 minutes.
  • the ion-implanted -C plane is thermally stable, so that the thermal decomposition of the GaN crystal can be avoided. Furthermore, since the protective film 23 is formed on the + C plane opposite to the ⁇ C plane, even if annealing is performed in a high temperature range, adverse effects due to heat such as roughening of the plane are caused. The problem can be avoided.
  • the protective film 23 is removed by performing an etching process using, for example, a AZ400K developer that is a potassium borate solution.
  • the p-type region 26 has an impurity concentration such as Mg of 3 ⁇ 10 18 at / cm 3 or more.
  • the p-type region 26 has a conductivity of less than 1 ⁇ 10 2 ⁇ cm under a temperature condition of 20 ° C. or more and 200 ° C. or less. Functions as a type semiconductor crystal.
  • Mg concentration for example, 3 ⁇ 10 18 at / cm 3 or more 5 ⁇ 10 20 at / cm 3 can be less than the size.
  • the p-type carrier concentration under the temperature condition of 20 ° C. or more and 200 ° C. or less is, for example, 2 ⁇ 10 17 pieces / cm 3 or more and 5 ⁇ 10 18 pieces / cm 3 or less, and the electric resistance under the same temperature condition
  • the rate is, for example, not less than 0.5 ⁇ cm and not more than 100 ⁇ cm.
  • the GaN crystal of the first GaN layer 21 subjected to ion implantation in this step has extremely low concentrations of Si, B, Fe, O and C in the crystal, the conventional GaN crystal containing more of these impurities Compared to, it will have good quality.
  • the concentration of impurities such as Si and O in the GaN crystal is extremely low, the desired conductivity (p-type) can be obtained in the GaN crystal even if the amount of p-type impurity such as Mg is reduced. (Semiconductor characteristics) can be imparted.
  • the concentration of impurities that cause carrier scattering is extremely low, it is possible to avoid a decrease in carrier mobility, which is more advantageous than the case where many impurities are contained.
  • the GaN substrate 10 on which the p-type region 26 is formed by the above-described ion implantation step is suitable for use in configuring a semiconductor device (semiconductor device).
  • a p-type region 26 is formed in the first GaN layer 21 by ion implantation of p-type impurities into the ⁇ C plane of the first GaN layer 21 in the GaN substrate 10, and the By forming a pn junction using the p-type region 26 and further forming an upper electrode 31 and a lower electrode 32, this stacked structure can function as a pn junction diode. Further, by fabricating a laminated structure including a junction surface (Schottky junction plane) between one of the above-described p-type region and n-type region and a metal layer made of metal, this laminated structure is formed into a Schottky barrier diode (JBS). ). In addition, for example, it can be realized to function as a metal semiconductor field effect transistor (MESFET), a gate injection transistor (GIT), a -C plane high electron mobility transistor (HEMT), or the like.
  • MESFET metal semiconductor field effect transistor
  • GIT gate injection transistor
  • HEMT -C plane
  • a GaN crystal is grown on the + C plane of the seed crystal substrate 20 to form an n ⁇ -type first GaN layer 21, and a GaN crystal is further formed on the + C plane of the first GaN layer 21.
  • the seed crystal substrate 20 is removed to expose the -C face of the first GaN layer 21, and the first GaN layer 21 having the -C face as the main surface and the first GaN layer 21 are formed.
  • a laminate with the two GaN layers 22 is obtained as the GaN substrate 10.
  • a GaN crystal is grown in the direction of the Ga polar plane (that is, the + C plane), so that the N polar plane (that is, the ⁇ C plane). Compared with the case where it is directed in the direction, it is preferable in terms of appropriately growing the crystal.
  • the impurity concentration can be kept extremely low because the incorporation of impurities such as O does not become intense during the growth process. .
  • an GaN crystal having an N-polar surface (-C surface) capable of ion implantation as an exposed surface and subjected to ion implantation is used.
  • the GaN substrate 10 configured to have a very low impurity concentration can be obtained appropriately.
  • the n-type impurity concentration in the GaN crystal in the first GaN layer 21 having the ⁇ C plane as an exposed surface is less than 1 ⁇ 10 17 at / cm 3 .
  • the GaN crystal in the first GaN layer 21 has a low impurity concentration and high purity, for example, when this crystal is made to be a p-type semiconductor by implanting Mg ions by ion implantation, the ion implantation amount is reduced. It becomes possible to suppress it little. That is, the GaN crystal in the first GaN layer 21 is a conventional one containing more impurities such as Fe in that desired semiconductor characteristics can be imparted while suppressing deterioration in crystal quality due to ion implantation as much as possible.
  • the GaN crystal in the first GaN layer 21 has a very low concentration of impurities that cause carrier scattering, it is possible to avoid a decrease in carrier mobility. This is advantageous compared to the GaN crystal.
  • each concentration of Si, B and Fe in the GaN crystal obtained in the present embodiment is an extremely small value of less than 1 ⁇ 10 15 at / cm 3
  • each of O and C The concentration is an extremely small value of less than 5 ⁇ 10 15 at / cm 3 .
  • These impurity concentrations are not actual measurement values of the respective impurity concentrations, but indicate the current lower detection limit values in SIMS measurement, which is a typical impurity analysis technique. That is, the actual concentration of each impurity could be so low that it could not be detected with current technology.
  • the GaN crystal obtained in the present embodiment has extremely good crystal quality such as a defect density, a dislocation density, and an internal stress that are significantly smaller than a conventional GaN crystal containing more of these impurities. It will be.
  • the diffusion of impurities is suppressed as compared with the case where a substrate made of the above GaN crystal containing more impurities is used. As a result, the characteristics of the device can be improved and the life can be extended.
  • each of the first GaN layer 21 and the second GaN layer 22 constituting the GaN substrate 10 is formed by the HVPE method. Therefore, according to the present embodiment, even when the GaN substrate 10 is composed of a stacked body of the first GaN layer 21 and the second GaN layer 22, the first GaN layer 21 and the second GaN layer 22 are formed. This can be performed continuously, and is very suitable for improving the productivity of manufacturing the GaN substrate 10. Furthermore, the use of the HVPE method is very suitable for forming the second GaN layer 22 to a thickness capable of self-supporting.
  • p-type impurities are ion-implanted into the ⁇ C plane (N-polar plane) of the first GaN layer 21 that is the main surface of the GaN substrate 10, and the p-type is implanted into the first GaN layer 21.
  • a p-type region 26 that functions as a semiconductor crystal is formed.
  • the concentration of impurities such as Si and O in the GaN crystal of the first GaN layer 21 to which ion implantation is performed is extremely low, even if the amount of p-type impurities such as Mg is suppressed, Desired conductivity (p-type semiconductor characteristics) can be imparted. That is, it is more advantageous than the conventional GaN crystal containing more impurities such as Si and O in that desired semiconductor characteristics can be imparted while suppressing the deterioration of crystal quality due to the implantation of impurities such as Mg. Furthermore, if the concentration of impurities that cause carrier scattering is extremely low, it is possible to avoid a decrease in carrier mobility, which is more advantageous than the case where many impurities are contained.
  • the crystal growth step is different from that in the first embodiment described above.
  • a first layer forming step for forming the first GaN layer 21 and a second GaN layer 22 are formed.
  • the second layer forming step is repeated a plurality of times.
  • the first GaN layer 21 is formed with a thickness of about 15 to 30 ⁇ m, for example, as in the case of the first embodiment.
  • the second GaN layer 22 is formed with a thickness of, for example, about 600 to 750 ⁇ m in consideration of the processing allowance in the slicing step described later.
  • the slicing position at this time is a portion where the second GaN layer 22 is formed in order to avoid fluctuations in the thickness of the first GaN layer 21. More specifically, after the slicing process, a polishing process for exposing the ⁇ C plane of the first GaN layer 21 is performed on one remaining part of the second GaN layer 22. For example, the remaining part is polished.
  • the slicing position with respect to the second GaN layer 22 is set so as to have a thickness of about 30 to 50 ⁇ m corresponding to the polishing allowance at the time of processing.
  • the thickness of the second GaN layer 22 is about 600 to 750 ⁇ m.
  • one of the remaining portions of the second GaN layer 22 is about 30 to 50 ⁇ m.
  • the machining allowance due to the above is about 200 to 250 ⁇ m and the polishing allowance for the exposed surface (+ C plane) of the other remaining part of the second GaN layer 22 is about 30 to 50 ⁇ m
  • the remaining part of the second GaN layer 22 is The thickness is about 300 to 400 ⁇ m, which is a thickness that can stand by itself.
  • slice processing can be performed simultaneously at a plurality of locations using, for example, a multi-wire saw, but the present invention is not limited to this, and each processing location may be performed individually.
  • a plurality of GaN substrates 10 are obtained from a crystal ingot having a laminated structure of the first GaN layer 21 and the second GaN layer 22.
  • Each GaN substrate 10 obtained in this way has the same configuration as that of the first embodiment described above.
  • the protective film 23 When forming the protective film 23 that protects the + C surface of each GaN substrate 10, the protective film 23 is individually formed on each GaN substrate 10 obtained by performing the slicing step, or the first What is necessary is just to respond
  • the following effects can be obtained. That is, according to this embodiment, since the plurality of GaN substrates 10 are obtained from the laminated structure of the first GaN layer 21 and the second GaN layer 22, the GaN substrate 10 can be manufactured efficiently, and the GaN substrate This is very suitable for mass production of 10.
  • crystal growth step is different from the first embodiment and the second embodiment described above.
  • the point that the crystal growth step includes the first layer forming step and the second layer forming step performed using the HVPE apparatus 200 is the same as in the first embodiment and the second embodiment. is there.
  • First layer formation step In the first layer formation step, as shown in FIG. 6, first, the n ⁇ -type first nitridation is performed on the + C plane of the seed crystal substrate (GaN substrate) 20 placed on the susceptor 208 of the HVPE apparatus 200.
  • a high purity HVPE-GaN layer (hereinafter simply referred to as “GaN layer”) 31, which is an example of a physical semiconductor layer, is formed.
  • This GaN layer 31 is the same as the first GaN layer 21 described in the first embodiment or the second embodiment, and the n-type impurity concentration in the GaN crystal is less than 1 ⁇ 10 17 at / cm 3. It is.
  • the GaN layer 31 in the present embodiment may be formed with a thickness of about 600 to 750 ⁇ m, preferably about 500 ⁇ m.
  • the GaN layer 31 in the present embodiment is used as a buffer layer when, for example, a HEMT is configured as described later, unlike the first GaN layer 21 in the first embodiment or the like, a relatively high insulating property, That is, it is configured as a semi-insulating layer having a relatively large electrical resistivity.
  • the electrical resistivity of the GaN crystal constituting the GaN layer 31 is, for example, maintained at a size of 1 ⁇ 10 6 ⁇ cm or more under a temperature condition of 20 ° C. or more and 200 ° C. or less.
  • the size of 1 ⁇ 10 5 ⁇ cm or more is maintained under a temperature condition of over 400 ° C.
  • the GaN crystal in the GaN layer 31 has a high insulating property with an electrical resistivity of 1 ⁇ 10 6 ⁇ cm or more under a temperature condition of 20 ° C. or more and 200 ° C. or less.
  • the GaN crystal contains a large amount of donor impurities such as Si and O, in order to increase the insulation of the crystal, for example, as disclosed in JP-T-2007-534580, Mn, Fe, cobalt
  • donor impurities hereinafter referred to as compensation impurities
  • compensation impurities such as (Co), Ni, and copper (Cu).
  • this method has a problem that the quality of the GaN crystal is likely to deteriorate due to the addition of compensation impurities.
  • the GaN crystal of this embodiment can obtain high insulation without adding a compensation impurity, it is possible to avoid the problem of crystallinity degradation, which tends to be a problem with the conventional method.
  • the insulating properties of the GaN crystal in the GaN layer 31 are low in temperature dependency and stable compared to the insulating properties obtained by adding compensation impurities into the crystal. This is because if a GaN crystal containing Si or O at a concentration of, for example, 1 ⁇ 10 17 at / cm 3 or higher is added with Fe at a concentration exceeding those concentrations, the insulating properties close to those of the GaN crystal of the present embodiment. It can be considered that it is possible to give this.
  • the level of Fe used as an impurity for compensation is relatively shallow at about 0.6 eV, the insulation obtained by adding Fe has a temperature rise compared to the insulation of the GaN crystal of this embodiment. There is a characteristic that it tends to be lowered with the above.
  • insulation can be realized without adding a compensation impurity, so that it is possible to avoid the problem of an increase in temperature dependency that tends to be a problem in the conventional method.
  • AlGaN aluminum gallium nitride
  • the AlGaN layer 32 can be formed as follows. Specifically, in addition to the Ga raw material supply system that supplies GaCl gas generated by the reaction of HCl gas and Ga melt, it was generated by the reaction of solid aluminum (Al) as a raw material and HCl gas.
  • An HVPE apparatus 200 is prepared with an Al raw material supply system for supplying aluminum chloride (AlCl 3 ) gas. Then, GaCl gas, AlCl 3 gas, and NH 3 gas are supplied as film forming gases onto the + C plane of the GaN layer 31. These film forming gases may be supplied after being mixed with a carrier gas composed of H 2 gas, N 2 gas, or a mixed gas thereof. Thereby, an AlGaN crystal is epitaxially grown by vapor phase growth on the + C plane of the GaN layer 31 to form an AlGaN layer 32.
  • AlCl 3 gas partial pressure 0.01 to 1 kPa NH 3 gas partial pressure / AlCl 3 gas partial pressure: 1 to 100 H 2 gas partial pressure / AlCl 3 gas partial pressure: 0 to 100
  • Other conditions are the same as in the case of the first embodiment described above.
  • the AlGaN layer 32 in the present embodiment may be formed with a thickness of, for example, 50 to 100 nm, preferably about 20 nm.
  • the first layer forming step for forming the GaN layer 31 and the second layer forming step for forming the AlGaN layer 32 are repeated a plurality of times. Thereby, a crystal ingot having a stacked structure in which the GaN layers 31 and the AlGaN layers 32 are alternately stacked on the GaN substrate 20 is obtained.
  • the part of the broken line in a figure has shown the area
  • a slicing step is performed on the crystal ingot having a laminated structure of the GaN layer 31 and the AlGaN layer 32 to slice the laminated structure so as to be divided (see AA in the figure).
  • the slicing position at this time is set so that the remaining part of the GaN layer 31 on the side including the 2DEG distribution region after the slicing process has a thickness of about 50 to 100 ⁇ m, for example.
  • the remaining portion of the GaN layer 31 including the 2DEG distribution region and having a thickness of about 50 ⁇ m, the AlGaN layer 32, and the other remaining of the GaN layer 31 A plurality of laminated substrates in which the portions are sequentially laminated are obtained from the crystal ingot.
  • the GaN layer 31 and the AlGaN layer 32 having the ⁇ C plane as the main surface.
  • a laminated substrate nitride semiconductor substrate having a structure in which the n-type impurity concentration in the GaN layer 31 is less than 1 ⁇ 10 17 at / cm 3 .
  • the ⁇ C plane that is the exposed surface of the GaN layer 31 is used as a mirror-polished surface as will be described later.
  • a laminated substrate is prepared in which the remaining portion of the layer 31, the AlGaN layer 32, and the other remaining portion of the GaN layer 31 are sequentially laminated.
  • the remaining portion of the GaN layer 31 having a thickness of about 50 to 100 ⁇ m is subjected to electrochemical etching (ECV) from the exposed ⁇ C plane side as shown in FIG. 8B.
  • ECV electrochemical etching
  • CV measurement can be performed using a key junction to obtain a carrier concentration distribution profile in the depth direction. Then, such a measurement is performed at some arbitrary points in the ⁇ C plane as shown in FIG. At this time, the GaN layer 31 may be provided with a film thickness monitoring trench.
  • the remaining portion of the GaN layer 31 is polished to reduce the film thickness.
  • the polishing process is performed while controlling the polishing rate, the polishing time, and the like so that the remaining film thickness after the polishing process is, for example, about 5 ⁇ m based on the result of the film thickness measurement.
  • the polishing process can be performed by CMP in which the polishing rate, the polishing time, and the like can be easily controlled.
  • the present invention is not limited to this, and other methods may be used as long as the remaining film thickness can be controlled. .
  • the SiO 2 film 33 is formed over the entire surface of the ⁇ C plane by using, for example, plasma CVD using a tetraethoxysilane (TEOS) raw material.
  • TEOS tetraethoxysilane
  • a resist pattern 34 is formed on the SiO 2 film 33 using a known photolithography technique, and then a BHF etching process using the resist pattern 34 as a mask. I do. Then, if the resist pattern 34 is removed after the BHF etching process, as shown in FIG. 9B, a patterned SiO 2 film 33 corresponding to the resist pattern 34 is obtained.
  • the removed portions patterned here correspond to source, gate, and drain portions described later.
  • an electrolytic solution 35 is supplied from the ⁇ C plane side to perform an electrochemical etching process (ECV etching).
  • ECV etching electrochemical etching process
  • a part of the GaN layer 31 is removed.
  • the AlGaN layer 32 functions as an etching stopper without being removed.
  • the portion of the GaN layer 31 corresponding to the source, gate, and drain portions is etched so as to leave, for example, about 20 to 30 nm, preferably about 10 nm while monitoring the ECV profile (FIG. 9D ) Is omitted).
  • the ⁇ C surface is an exposed surface, and the thickness of the remaining portion including the 2DEG distribution region is, for example, about 5 ⁇ m.
  • a GaN layer 31 that is formed and patterned corresponding to the source, gate, and drain portions described later is obtained.
  • a source electrode 41 made of a titanium (Ti) / aluminum (Al) film and a Ti / Al film are also made.
  • a drain electrode 42 is formed.
  • heat treatment is performed at 550 ° C. for 10 minutes in an N 2 gas atmosphere.
  • a gate electrode 43 made of a nickel (Ni) / gold (Au) film is formed, and further from an Ti / Al film through an insulating film 44 made of a SiNx film.
  • the field plate 45 is formed.
  • a HEMT having a field plate (FP) structure excellent in pressure resistance can be configured.
  • the nitride semiconductor crystal is a GaN crystal
  • the present invention is not limited to GaN, for example, Group III such as aluminum nitride (AlN), aluminum gallium nitride (AlGaN), indium nitride (InN), indium gallium nitride (InGaN), aluminum indium gallium nitride (AlInGaN), etc.
  • Nitride crystal that is, a nitride semiconductor crystal represented by a composition formula of In x Al y Ga 1-xy N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • the present invention can also be suitably applied when growing.
  • the crystal growth step of the present invention is not limited to the method shown in each of the above-described embodiments, and other methods can be used in combination as long as the impurity concentration in the crystal can be more reliably reduced. It may be.
  • Forming a first nitride semiconductor layer of the mold, - n and the nitride semiconductor crystal made of the seed crystal substrate + C plane of the nitride semiconductor crystal is grown along the c-axis direction Forming a nitride semiconductor crystal on the + C plane of the first nitride semiconductor layer along the c-axis direction to form a second nitride semiconductor layer;
  • the seed crystal substrate is removed to expose the -C plane of the first nitride semiconductor layer, and the first nitride semiconductor layer and the second nitride semiconductor layer having the -C plane as a main surface are stacked.
  • appendix 3 The method according to appendix 2, preferably, The first nitride semiconductor layer, Si nitride semiconductor crystal, the concentration of B and Fe is less than 1 ⁇ 10 15 at / cm 3 Both, O, and each concentration is 5 ⁇ either 10 C It is less than 15 at / cm 3 .
  • Appendix 4 The method according to any one of appendices 1 to 3, preferably: At least each of the first nitride semiconductor layer and the second nitride semiconductor layer is formed by a hydride vapor phase growth method.
  • Appendix 5 The method according to any one of appendices 1 to 4, preferably: Ion-implanting a p-type impurity into the ⁇ C plane, which is the main surface of the nitride semiconductor substrate; Annealing the nitride semiconductor substrate after ion implantation; and including.
  • Appendix 6 The method according to appendix 5, preferably, The annealing treatment is performed in a high temperature range of 1200 ° C. or higher.
  • Appendix 7 The method according to any one of appendices 1 to 6, preferably, Repetitively forming the first nitride semiconductor layer and the second nitride semiconductor layer to obtain a stacked structure in which the first nitride semiconductor layer and the second nitride semiconductor layer are alternately stacked; A plurality of the nitride semiconductor substrates are obtained from the stacked structure.
  • a nitride semiconductor substrate configured by laminating a first nitride semiconductor layer and a second nitride semiconductor layer made of a nitride semiconductor crystal,
  • the first nitride semiconductor layer is an n ⁇ type having a ⁇ C plane as an exposed surface, and an n type impurity concentration in the nitride semiconductor crystal is less than 1 ⁇ 10 17 at / cm 3
  • a substrate is provided.
  • each concentration of Si, B, and Fe in the nitride semiconductor crystal is less than 1 ⁇ 10 15 at / cm 3
  • each concentration of O and C is 5 ⁇ 10 5 It is less than 15 at / cm 3 .
  • a semiconductor device configured using the nitride semiconductor substrate according to any one of appendices 8 to 13, A p-type region is formed in the first nitride semiconductor layer by ion implantation of a p-type impurity into the ⁇ C plane of the first nitride semiconductor layer; A semiconductor device in which a pn junction is configured using the p-type region is provided.
  • SYMBOLS 10 GaN substrate (nitride semiconductor substrate), 20 ... Seed crystal substrate, 21 ... First GaN layer (first nitride semiconductor layer), 22 ... Second GaN layer (second nitride semiconductor layer), 26 ... p Mold area

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

窒化物半導体結晶からなる種結晶基板の+C面上に窒化物半導体結晶をc軸方向に沿って成長させてn-型の第一窒化物半導体層を形成する工程と、第一窒化物半導体層の+C面上に窒化物半導体結晶をc軸方向に沿って成長させて第二窒化物半導体層を形成する工程と、種結晶基板を除去して第一窒化物半導体層の-C面を露出させ、-C面を主面とする第一窒化物半導体層と第二窒化物半導体層との積層体を窒化物半導体基板として得る工程と、を含んで窒化物半導体基板を製造する。

Description

窒化物半導体基板の製造方法および窒化物半導体基板
 本発明は、窒化物半導体基板の製造方法および窒化物半導体基板に関する。
 発光素子や高速トランジスタ等の半導体デバイスは、例えば窒化ガリウム(GaN)等のIII族窒化物の結晶からなる窒化物半導体基板を用いて構成されることがある(例えば、特許文献1参照)。
特開2007-153664号公報
 本発明は、半導体デバイスの構成に用いて好適な窒化物半導体基板の製造方法および窒化物半導体基板に関する技術を提供することにある。
 本発明の一態様によれば、
 窒化物半導体結晶からなる種結晶基板の+C面上に窒化物半導体結晶をc軸方向に沿って成長させてn型の第一窒化物半導体層を形成する工程と、
 前記第一窒化物半導体層の+C面上に窒化物半導体結晶をc軸方向に沿って成長させて第二窒化物半導体層を形成する工程と、
 前記種結晶基板を除去して前記第一窒化物半導体層の-C面を露出させ、前記-C面を主面とする前記第一窒化物半導体層と前記第二窒化物半導体層との積層体を窒化物半導体基板として得る工程と、
 を含む窒化物半導体基板の製造方法が提供される。
 また、本発明の他の態様によれば、
 窒化物半導体結晶からなる第一窒化物半導体層および第二窒化物半導体層が積層されて構成された窒化物半導体基板であって、
 前記第一窒化物半導体層は、-C面を露出面として有するn型のものであり、窒化物半導体結晶中のn型不純物濃度が1×1017at/cm未満である
 窒化物半導体基板が提供される。
 本発明によれば、半導体デバイスの構成に用いて好適な窒化物半導体基板が得られる。
本発明に係る窒化物半導体基板の製造方法で用いる気相成長装置の一具体例の概略構成図である。 本発明に係る窒化物半導体基板の製造方法の手順の一具体例の説明図(その1)である。 本発明に係る窒化物半導体基板の製造方法の手順の一具体例の説明図(その2)である。 本発明に係る窒化物半導体基板を用いて構成された半導体デバイス(半導体装置)の一具体例の概略構成図である。 本発明に係る窒化物半導体基板の製造方法の他の具体例の説明図である。 本発明に係る窒化物半導体基板の製造方法のさらに他の具体例の説明図(その1)である。 本発明に係る窒化物半導体基板の製造方法のさらに他の具体例の説明図(その2)である。 本発明に係る窒化物半導体基板を用いて構成された半導体デバイス(半導体装置)の製造方法の一具体例の説明図(その1)である。 本発明に係る窒化物半導体基板を用いて構成された半導体デバイス(半導体装置)の製造方法の一具体例の説明図(その2)である。 本発明に係る窒化物半導体基板を用いて構成された半導体デバイス(半導体装置)の製造方法の一具体例の説明図(その3)である。
<発明者の得た知見>
 発光素子や高速トランジスタ等の半導体デバイスを構成する窒化物半導体基板として、GaNの単結晶からなる基板(以下、「GaN基板」ともいう。)が着目されている。GaN基板を用いて半導体デバイスを構成する場合には、例えば、GaN基板にマグネシウム(Mg)等のp型不純物をイオン注入によって打ち込んで、GaN基板内にp型領域を形成する、といった手法が用いられることがある。その場合において、GaN基板へのイオン注入は注入後に1200℃を超える高温域でのアニール処理を必要とするためGaN結晶の熱分解が問題となり得るが、ガリウム(Ga)極性面よりも熱的に安定な窒素(N)極性面に対してイオン注入を行えば、GaN結晶の熱分解の問題が解消し、良好な整流性を示すpn接合ダイオードを形成することが可能になると考えられる。
 このようなイオン注入が行われるGaN結晶は、そのGaN結晶中におけるシリコン(Si)や酸素(O)等の不純物の濃度が極めて低いことが好ましい。GaN結晶中の不純物濃度が極めて低ければ、Mgの注入量を少なく抑えたとしても、GaN結晶に所望の導電性(p型半導体特性)を付与することが可能となるからである。つまり、SiやO等の不純物を多く含む場合に比べると、イオン注入が行われるGaN結晶の不純物濃度を抑えることで、Mgの注入による結晶品質の低下を極力抑制しつつ、所望の半導体特性を付与できるようになる。また、キャリア散乱の要因となる不純物の濃度が極めて低ければ、キャリアの移動度低下を回避することが可能となるという点でも、不純物を多く含む場合よりも有利である。
 しかしながら、GaN結晶は、Ga極性面(すなわち+C面)の方向に成長させる場合に比べると、N極性面(すなわち-C面)の方向に成長させることが非常に困難である。しかも、N極性面の方向に成長させた場合には、その成長過程でO等の不純物の取り込みが激しく、不純物濃度を極めて低く抑えることができない。つまり、GaN結晶をN極性面の方向に成長させたのでは、イオン注入が可能なN極性面(-C面)を露出面として有し、かつ、イオン注入が行われるGaN結晶の不純物濃度が極めて低くなるように構成されたGaN基板を得ることができない。
 この点につき、本発明者は鋭意検討を重ね、基板製造の手順等を工夫することで、イオン注入が可能なN極性面(-C面)を露出面として有し、かつ、イオン注入が行われるGaN結晶の不純物濃度が極めて低いGaN基板を構成できる、という新たな知見を得るに至った。
 本発明は、本発明者が見出した上述の新たな知見に基づくものである。
<本発明の第一実施形態>
 以下、本発明の第一実施形態について図面を参照しながら説明する。
(1)窒化物半導体基板の製造方法
 先ず、本発明に係る窒化物半導体基板の製造方法の一例を説明する。
 窒化物半導体基板は、窒化物半導体結晶からなる平板状(例えば円板状)の基板(以下、「ウエハ」ともいう。)である。
 窒化物半導体基板を構成する窒化物半導体結晶は、III族元素とV族元素を用いたIII-V族化合物半導体においてV族元素としてNを用いた半導体の結晶であり、InAlGa1-x-yNの組成式(ただし、0≦x≦1,0≦y≦1,0≦x+y≦1)で表される結晶である。
 以下、本実施形態では、窒化物半導体結晶がGaNの単結晶であり、窒化物半導体基板としてGaN結晶からなるGaN基板を製造する場合を例に挙げて説明する。
 GaN基板を構成するGaN結晶は、六方晶構造(ウルツ鉱型結晶構造)を有している。このような六方晶構造のGaN結晶において、極性を有する面(極性面)としては、Ga極性面に相当する{0001}面およびN極性面に相当する{000-1}面が挙げられる。本明細書においては、極性面を「C面」と称し、特に{0001}面を「+C面」、{000-1}面を「-C面」と称する場合がある。なお、本明細書において「C面」等の特定の指数面を称する場合には、±0.01°以内の精度で計測される各結晶軸から10°以内のオフ角を有する範囲内の面、好ましくはオフ角が5°以内、より好ましくは3°以内である面を含むものとする。ここで、オフ角とは、面の法線方向とGaN結晶の軸方向とのなす角をいう。
(HVPE装置)
 本実施形態では、GaN結晶からなるGaN基板の製造を、ハイドライド気相成長装置(HVPE装置)を利用して行う。ここで、GaN基板の製造に利用するHVPE装置の構成について、図1を参照しながら説明する。
 HVPE装置200は、成膜室201が内部に構成された気密容器203を備えている。成膜室201内には、インナーカバー204が設けられているとともに、そのインナーカバー204に囲われる位置に、種結晶基板20が配置される基台としてのサセプタ208が設けられている。サセプタ208は、回転機構216が有する回転軸215に接続されており、その回転機構216の駆動に合わせて回転可能に構成されている。
 気密容器203の一端には、ガス生成器233a内へ塩化水素(HCl)ガスを供給するガス供給管232a、インナーカバー204内へアンモニア(NH)ガスを供給するガス供給管232b、インナーカバー204内へ後述するドーピングガスを供給するガス供給管232c、インナーカバー204内へパージガスとして窒素(N)ガスおよび水素(H)ガスの混合ガス(N/Hガス)を供給するガス供給管232d、および、成膜室201内へパージガスとしてのNガスを供給するガス供給管232eが接続されている。ガス供給管232a~232eには、上流側から順に、流量制御器241a~241e、バルブ243a~243eがそれぞれ設けられている。ガス供給管232aの下流には、原料としてのGa融液を収容するガス生成器233aが設けられている。ガス生成器233aには、HClガスとGa融液との反応により生成された塩化ガリウム(GaCl)ガスを、サセプタ208上に配置された種結晶基板20等に向けて供給するノズル249aが設けられている。ガス供給管232b,232cの下流側には、これらのガス供給管から供給された各種ガスをサセプタ208上に配置された種結晶基板20等に向けて供給するノズル249b,249cがそれぞれ接続されている。ノズル249a~249cは、サセプタ208の表面に対して交差する方向にガスを流すよう配置されている。ノズル249cから供給されるドーピングガスは、ドーピング原料ガスとN/Hガス等のキャリアガスとの混合ガスである。ドーピングガスについては、ドーピング原料のハロゲン化物ガスの熱分解を抑える目的でHClガスを一緒に流してもよい。ドーピングガスを構成するドーピング原料ガスとしては、例えば、シリコン(Si)ドープの場合であればSiHClガス、ゲルマニウム(Ge)ドープの場合であればGeClガス、炭素(C)ドープの場合であればCHClガス、鉄(Fe)ドープの場合であればFeClガスを、それぞれ用いることが考えられるが、必ずしもこれらに限定されるものではない。
 気密容器203の他端には、成膜室201内を排気する排気管230が設けられている。排気管230には、ポンプ(あるいはブロワ)231が設けられている。気密容器203の外周には、ガス生成器233a内やサセプタ208上の種結晶基板20等を領域別に所望の温度に加熱するゾーンヒータ207a,207bが設けられている。また、気密容器203内には成膜室201内の温度を測定する温度センサ(ただし不図示)が設けられている。
 上述したHVPE装置200の構成部材、特に各種ガスの流れを形成するための各部材については、後述するような低不純物濃度の結晶成長を行うことを可能にすべく、例えば、以下に述べるように構成されている。
 具体的には、図1中においてハッチング種類により識別可能に示しているように、高温に加熱するゾーンヒータ207a,207bの輻射を受けるような領域に配置される部材は、全て炭化ケイ素(SiC)コートグラファイトで構成されることが好ましい。その一方で、比較的低温部では、高純度石英を用いて部材を構成することが好ましい。つまり、比較的高温(例えば1000℃以上)になるような場所でHClガスと触れ合う箇所では、高純度石英を用いず、SiCコートグラファイトを用いて各部材を構成する。詳しくは、インナーカバー204、サセプタ208、回転軸215、ガス生成器233a、各ノズル249a~249c等を、SiCコートグラファイトで構成する。なお、気密容器203を構成する炉心管は石英とするしかないので、成膜室201内には、サセプタ208やガス生成器233a等を囲うインナーカバー204が設けられているのである。気密容器203の両端の壁部や排気管230等については、ステンレス等の金属材料を用いて構成すればよい。
 例えば、「Polyakov et al. J. Appl. Phys. 115, 183706 (2014)」によれば、950℃で成長することにより、低不純物濃度のGaN結晶の成長が実現可能なことが開示されている。ところが、このような低温成長では、得られる結晶品質の低下を招き、熱物性、電気特性等において良好なものが得られない。この点、上述した構成のHVPE装置200によれば、例えば、1050℃以上というGaN結晶の成長に適した温度域においても、Si、O、C、Fe、Cr、Ni等の不純物の結晶成長部への供給を遮断することができ、高純度で、かつ、熱物性および電気特性においても良好な特性を示すGaN結晶を成長させることが実現可能である。
 なお、HVPE装置200が備える各部材は、コンピュータとして構成されたコントローラ280に接続されており、コントローラ280上で実行されるプログラムによって、後述する処理手順や処理条件が制御されるように構成されている。
(GaN基板の製造手順の概要)
 続いて、上述のHVPE装置200を用い、種結晶基板20上にGaN単結晶をエピタキシャル成長させて、GaN基板を製造する場合の手順の一例について、詳しく説明する。以下の説明において、HVPE装置200を構成する各部の動作はコントローラ280により制御される。
 GaN基板の製造にあたっては、搬入ステップの後、結晶成長ステップを実施し、さらに搬出ステップおよびスライスステップを経る。また、結晶成長ステップでは、少なくとも第一層形成ステップおよび第二層形成ステップを実施する。
(搬入ステップ)
 具体的には、先ず、反応容器203の炉口を開放し、サセプタ208上に種結晶基板20を載置する。サセプタ208上に載置する種結晶基板20は、後述するGaN基板10を製造するための基(種)となるもので、窒化物半導体の一例であるGaNの単結晶からなる板状のものである。そして、互いに対向する二つの主面のうち、一方の主面がGa極性面に相当する{0001}面(すなわち+C面)となっており、他方の主面がN極性面に相当する{000-1}面(すなわち-C面)となっている。
 サセプタ208上への種結晶基板20の載置にあたっては、サセプタ208上に載置された状態の種結晶基板20の表面、すなわちノズル249a~249cに対向する側の主面(結晶成長面、下地面)が、GaN結晶の{0001}面、すなわち+C面(Ga極性面)となるようにする。
 サセプタ208上に載置する種結晶基板20としては、例えば、Siに代表されるn型不純物のGaN結晶中における濃度が1×1018~1×1019at/cm程度のもの、すなわちn型不純物濃度が相対的に高いn型のものを用いることが考えられる。ただし、必ずしもn型のものに限定されることはなく、後述するように第一GaN層21を成長させることが可能なものであれば、n型不純物濃度が1×1015~1×1016at/cm程度ドープされたものであっても構わない。
 なお、種結晶基板20の平面形状および大きさについては、特に限定されるものではなく、製造しようとするGaN基板10の形状やサイズ等に応じて適宜決定すればよい。また、種結晶基板20の厚さについても、特に限定されるものではないが、サセプタ208上に載置する際の取り扱いの容易さを考慮して、自立可能な厚さである300~400μm程度とすることが考えられる。
(結晶成長ステップ)
 反応室201内への種結晶基板20の搬入が完了したら、続いて、結晶成長ステップを実施する。結晶成長ステップでは、少なくとも第一層形成ステップおよび第二層形成ステップを、それぞれ順に実施する。
(第一層形成ステップ)
 第一層形成ステップでは、図2(a)に示すように、種結晶基板20の+C面上にGaN結晶をエピタキシャル成長させて、第一GaN層21を形成する。
 具体的には、本ステップでは、反応室201内への種結晶基板20の搬入が完了した後に、炉口を閉じ、反応室201内の加熱および排気を実施しながら、反応室201内へのHガス、或いは、HガスおよびNガスの供給を開始する。そして、反応室201内が所望の処理温度、処理圧力に到達し、反応室201内の雰囲気が所望の雰囲気となった状態で、ガス供給管232a,232bからのHClガス、NHガスの供給を開始し、種結晶基板20の表面に対してGaClガスおよびNHガスをそれぞれ供給する。これにより、種結晶基板20の表面上には、+C面(極性面)と垂直な軸方向(以下、「c軸方向」ともいう。)に沿って、すなわちGa極性面(すなわち+C面)の方向に向けて、GaN結晶がエピタキシャル成長し、第一GaN層21が形成される。このような+C面の方向への結晶成長は、N極性面(すなわち-C面)の方向に向けた場合に比べると、結晶を適切に成長させるという観点では好ましい。
 なお、本ステップでは、種結晶基板20を構成するGaN結晶の熱分解を防止するため、種結晶基板20の温度が500℃に到達した時点、或いはそれ以前から、反応室201内へのNHガスの供給を開始するのが好ましい。また、第一GaN層21の面内膜厚均一性等を向上させるため、本ステップは、サセプタ208を回転させた状態で実施するのが好ましい。
 本ステップでは、ゾーンヒータ207a,207bの温度は、ガス生成器233aを含む反応室201内の上流側の部分を加熱するヒータ207aでは例えば700~900℃の温度に設定し、サセプタ208を含む反応室201内の下流側の部分を加熱するヒータ207bでは例えば1000~1200℃の温度に設定するのが好ましい。これにより、サセプタ208は1000~1200℃の所定の温度に調整される。本ステップでは、内部ヒータ(ただし不図示)はオフの状態で使用してもよいが、サセプタ208の温度が上述の1000~1200℃の範囲である限りにおいては、内部ヒータを用いた温度制御を実施しても構わない。
 本ステップのその他の処理条件としては、以下が例示される。
 処理圧力:0.5~2気圧
 GaClガスの分圧:0.1~20kPa
 NHガスの分圧/GaClガスの分圧:1~100
 Hガスの分圧/GaClガスの分圧:0~100
 また、種結晶基板20の表面に対してGaClガスおよびNHガスを供給する際は、ガス供給管232a~232bのそれぞれから、キャリアガスとしてのNガスを添加してもよい。Nガスを添加してノズル249a~249bから供給されるガスの吹き出し流速を調整することで、種結晶基板20の表面における原料ガスの供給量等の分布を適切に制御し、面内全域にわたり均一な成長速度分布を実現することができる。なお、Nガスの代わりにArガスやHeガス等の希ガスを添加するようにしてもよい。
 以上の条件で形成される第一GaN層21は、Siに代表されるn型不純物のGaN結晶中における濃度が相対的に低いn型のもの、具体的にはGaN結晶中のn型不純物濃度が1×1017at/cm未満のものとなる。なお、n型の第一GaN層21におけるn型不純物の具体的な濃度値については、詳細を後述する。
 このような第一GaN層21は、例えば、15~30μm程度の厚さで形成することが考えられる。
(第二層形成ステップ)
 種結晶基板20の+C面上に第一GaN層21を形成したら、次いで、第二層形成ステップを実施する。本ステップでは、図2(a)に示すように、第一GaN層21の+C面上にGaN結晶をエピタキシャル成長させて、第二GaN層22を形成する。
 具体的には、本ステップでは、上述した第一層形成ステップの場合とは異なり、ガス供給管232cからドーパントガスとして、例えば、SiHガスやSiHCl等のSi含有ガスを供給する。反応容器203内におけるSi含有ガスのIII族原料ガスに対する分圧比率(Si含有ガスの分圧/GaClガスの合計分圧)は、例えば1/1×10~1/1000の大きさとすることができる。他の条件は、上述した第一層形成ステップの場合と同様である。これにより、第一GaN層21の表面上には、c軸方向に沿って、すなわちGa極性面(すなわち+C面)の方向に向けて、GaN結晶がエピタキシャル成長し、第二GaN層22が形成される。このような+C面の方向への結晶成長は、N極性面(すなわち-C面)の方向に向けた場合に比べると、結晶を適切に成長させるという観点では好ましい。
 以上の条件で形成される第二GaN層22は、Siに代表されるn型不純物のGaN結晶中における濃度が相対的に高いn型のもの、具体的にはGaN結晶中のSi濃度が1×1018~1×1019at/cm程度のものとなる。
 このような第二GaN層22は、例えば、自立可能な厚さである300~400μm程度の厚さで形成することが考えられる。
 なお、第二GaN層22を形成する本ステップは、上述した第一層形成ステップの場合とは供給するガス種が異なるだけなので、第一層形成ステップから連続的に行うことが可能である。
(搬出ステップ)
 種結晶基板20上に第一GaN層21および第二GaN層22を形成したら、反応室201内へNHガス、Nガスを供給しつつ、また、反応室201内を排気した状態で、ガス生成器233aへのHClガスの供給、反応室201内へHガスの供給、ゾーンヒータ207a、207bによる加熱をそれぞれ停止する。そして、反応室201内の温度が500℃以下に降温したらNHガスの供給を停止し、反応室201内の雰囲気をNガスへ置換して大気圧に復帰させる。そして、反応室201内を、例えば200℃以下の温度、すなわち、反応容器203内からのGaNの結晶インゴット(表面に第一GaN層21および第二GaN層22が形成された種結晶基板20)の搬出が可能となる温度へと降温させる。その後、結晶インゴットを反応室201内から外部へ搬出する。
(スライスステップ)
 結晶インゴットを搬出したら、その結晶インゴットについて、図2(b)に示すように、種結晶基板20と第一GaN層21との界面近傍を成長面と平行にスライスし(図中A-A参照)、これにより種結晶基板20を除去して第一GaN層21の-C面を露出させる。このスライス加工は、例えばワイヤソーや放電加工機等を用いて行うことが可能である。ただし、これに限定されることはなく、第一GaN層21の-C面を露出できれば、種結晶基板20に対するエッチング加工等を利用しても構わない。
 種結晶基板20を除去したら、第一GaN層21の露出面(-C面)に所定の研磨加工を施すことで、この面をエピレディなミラー面とする。研磨加工は、例えば化学的機械研磨(CMP)によって行うことが可能であるが、これに限定されることはなく、エピレディなミラー面とすることができれば、他の手法を利用しても構わない。
 なお、-C面と対向する第二GaN層22の露出面(+C面)の側については、後述する。
 そして、種結晶基板20を除去して露出面に対する研磨加工を行った後に、図2(c)に示すように、上下方向(天地方向)を反転させれば、-C面を主面とする第一GaN層21と第二GaN層22との積層体からなるGaN基板10が得られる。
(GaN基板の+C面側)
 -C面と対向する第二GaN層22の露出面(+C面)の側については、GaN基板10が後述するイオン注入ステップ等を行うことを考慮すると、図2(d)に示すように、+C面の全面を覆う保護膜23が形成されていることが好ましい。
 保護膜23は、後述するイオン注入ステップにおけるアニール処理等の際に+C面を保護し得るものであればよく、例えば30~50nmの厚さで形成したものを用いる。具体的には、保護膜23としては、例えば、ホウ酸カリウムや水酸化カリウム等を含むエッチング液で除去可能な窒化アルミニウム(AlN)膜を用いることが好ましいが、フッ酸等を含むエッチング液で除去可能な窒化ケイ素(SiN)膜を用いても構わない。
 保護膜23の形成は、例えば、スライスステップで種結晶基板20を除去した後に、第二GaN層22の+C面を研磨した上で、その研磨面上に対して行うことが好ましい。ただし、必ずしもこれに限定されることはなく、例えば、結晶成長ステップにおいて第二層形成ステップに続けて保護膜23の形成を行い、その後にスライスステップを行うようにしても構わない。
 また、保護膜23の形成は、例えば、スパッタリング法を利用して行えばよい。具体的には、保護膜23としてAlN膜を用いる場合であれば、RFマグネトロンスパッタリソグ装置により、Ar-N混合ガス中でAlをスパッタすることで、薄膜状のAlN膜を作成する。ただし、必ずしもこれに限定されることはなく、例えば、化学気相成長(CVD)等といった他の成膜手法を用いて保護膜23を形成しても構わない。
 なお、保護膜23の形成は必須ではなく、第二GaN層22が露出した状態の面としても構わない。その場合に、第二GaN層22の露出面である+C面は、ミラー面とすることが好ましいが、ラップ面であってもよい。
(2)窒化物半導体基板の構成
 次に、上述した手順の製造方法によって得られるGaN基板10、すなわち本発明に係る窒化物半導体基板の一具体例について、その構成を説明する。
 GaN基板10は、図2(c)に示すように、GaN結晶からなる第一GaN層21および第二GaN層22が積層されて構成されている。
(第一GaN層)
 GaN基板10を構成する第一GaN層21は、-C面を露出面として有するn型のものであり、窒化物半導体結晶中のn型不純物濃度が少なくとも1×1017at/cm未満、より好適には後述するような不純物濃度を有したものとなっている。
 詳しくは、第一GaN層21は、制御されたn型のものであり、n型不純物濃度が少なくとも1×1017at/cm未満、より好適には1×1015at/cm未満となっている。さらに具体的には、結晶に含まれるSi、ボロン(B)およびFeの各濃度がいずれも1×1015at/cm未満となっており、また、酸素(O)および炭素(C)の各濃度がいずれも5×1015at/cm未満となっている。なお、これらの不純物濃度は、いずれも、現在利用可能なSIMS等の合理的な分析手段の計測限界(検出下限値)を下回るものであり、現時点では、結晶中に含まれる各種不純物の濃度を具体的に提示することが困難なほどである。
 第一GaN層21は、n型不純物(特に、Si)を上述した濃度で含むものであるが、半絶縁性を有することは好ましくなく、電気抵抗率が例えば20℃以上200℃以下の温度条件下において50Ωcm以下となっていることが好ましい。
(第二GaN層)
 GaN基板10を構成する第二GaN層22は、第一GaN層21を支持するために自立可能な厚さで形成されたものであり、導電性を担保するn型のものである。
 詳しくは、第二GaN層22は、結晶中のBおよびFeの各濃度がいずれも1×1015at/cm未満であり、OおよびCの各濃度がいずれも5×1015at/cm未満である点は第一GaN層21と同様であるが、Si濃度が1×1018~1×1019at/cm程度となっている点が第一GaN層21と異なる。第二GaN層22は、Siをこのような濃度で含むことにより、20℃以上200℃以下の温度条件下での電気抵抗率が2×10-2Ωcm以下という導電性を有し、いわゆるn型半導体結晶として機能する。
 第二GaN層22おいては、結晶中のSi濃度とn型のキャリア濃度は、ほぼ等しい値であった。このことは、Si以外のキャリアの起源となる不純物(n型キャリアを補償するFeやC、あるいは、ドナーとなるO等)の実際の濃度が極めて低く、これらの不純物はSi濃度と比較して無視できる程度にしかGaN結晶中に含まれていないということを示している。すなわち、SIMS測定によっては、B、Fe、CおよびO濃度は1015at/cm台未満、それ以外の不純物に関しても検出下限値未満の濃度であるとしか示せないものの、結晶中のSi濃度とn型のキャリア濃度とは、ほぼ等しい値であったという結果は、これらの不純物の実際の濃度は1014at/cm台かそれ未満であるということを示している。
 このような第二GaN層22を構成するGaN結晶は、結晶中のB、Fe、OおよびCの各濃度が、第一GaN層21のGaN結晶と同様に極めて低いことから、これらの不純物をより多く含む従来のGaN結晶に比べ、良好な品質を有することになる。また、GaN結晶中におけるFe等の不純物濃度が上述のように低いことから、Siの添加量を少なく抑えたとしても、GaN結晶に所望の導電性(n型半導体特性)を付与することが可能となる。すなわち、第二GaN層22のGaN結晶は、Siの添加による結晶品質の低下を極力抑制しつつ、所望の半導体特性を付与できる点で、FeやC等の不純物をより多く含む従来のGaN結晶に比べて有利である。また、第二GaN層22のGaN結晶は、キャリア散乱の要因となる不純物の濃度が極めて低いことから、キャリアの移動度低下を回避することが可能となるという点で、不純物をより多く含む従来のGaN結晶に比べて有利である。
(全体構成)
 以上のような第一GaN層21および第二GaN層22の積層体からなるGaN基板10は、-C面(N極性面)を露出面として有し、かつ、その露出面を有する第一GaN層21のGaN結晶の不純物濃度が極めて低くなるように構成されたものである。さらに詳しくは、GaN基板10は、-C面を露出面として有するn型の第一GaN層21と+C面を露出面として有するn型の第二GaN層22とが積層された二層構造を有しており、少なくとも第一GaN層21の露出面である-C面が鏡面研磨面(エピレディなミラー面)に仕上げられている。
 また、二層構造のGaN基板10は、その二層構造を構成する第一GaN層21および第二GaN層22のそれぞれに角部に対して、チッピング(欠け)等を防止するためのべべリング(面取り加工)が施されたものであってもよい。さらに、二層構造のGaN基板10は、基板方位を明確化するためのオリエンテーションフラットと呼ばれる直線部またはノッチと呼ばれる切欠き部が、基板周上に設けられたものであってもよい。
 また、二層構造のGaN基板10は、例えば、レーザダイオード、LED、高速トランジスタ等の半導体デバイスを作製する際に好適に用いられるが、直径Dが25mm未満となると半導体デバイスの生産性が低下しやすくなることから、それ以上の直径とするのが好ましい。また、厚さTが250μm未満となるとGaN基板10の機械的強度が低下し、この基板を用いたデバイス構造の結晶成長時や、その後のデバイスプロセス中に割れやすくなる等、自立状態の維持が困難となることから、それ以上の厚さとするのが好ましい。ただし、ここに示した寸法はあくまで一例であり、本実施形態はこれに限定されるものではない。
(3)p型不純物のイオン注入
 次に、上述した構成のGaN基板10に対して、p型不純物をイオン注入によって打ち込む場合について、具体的に説明する。
 例えば、GaN基板10にMg等のp型不純物をイオン注入によって打ち込んで、GaN基板10内にp型領域を形成する場合には、イオン注入ステップおよびアニール処理ステップを実施する。
(イオン注入ステップ)
 本ステップでは、先ず、図3(a)に示すように、GaN基板10の主面である第一GaN層21の-C面(N極性面)の上に、例えば、保護膜として機能する窒化シリコン(SiNx)膜24を、30~50nmの厚さで形成する。SiNx膜24の形成は、その手法が特に限定されることはなく、例えば反応性スパッタリング法といった公知の手法を用いればよい。
 SiNx膜24を形成したら、さらに、図3(b)に示すように、そのSiNx膜24に重ねて、所望のパターニングがされたレジストパターン25を形成する。レジストパターン25を構成するレジスト材料、その形成手法およびパターニング手法等についても、特に限定されることはなく、公知技術を利用したものであればよい。
 そして、レジストパターン25を形成したら、GaN基板10の主面である第一GaN層21の-C面(N極性面)に対して、p型不純物をイオン注入する。つまり、GaN基板10を構成する第一GaN層21の-C面は、p型不純物がイオン注入される面として用いられ、その面上にp型不純物の被注入部分を有する。このイオン注入は、イオン注入装置を用いた公知の手法により行うことができる。
 このイオン注入によって、第一GaN層21内には、p型領域26が形成される。その後は、図3(c)に示すように、フッ酸(HF)またはバッファードフッ酸(BHF)を含むエッチング液でSiNx膜24およびレジストパターン25を除去する。さらには、GaN基板10の-C面と対向する第二GaN層22の露出面(+C面)に、例えば、AlN膜からなる保護膜23を、スパッタリング法を利用して、30~50nmの厚さで形成する。
(アニール処理ステップ)
 本ステップでは、イオン注入ステップを経たGaN結晶の結晶格子を整えるためにアニール処理を行う。アニール処理は、例えば、1200℃以上の高温域、具体的には1250℃程度の温度にて、3分程度の時間で行う。
 ただし、そのような高温域でアニール処理を行っても、イオン注入がされた-C面は熱的に安定なため、GaN結晶の熱分解が問題になってしまうのを回避することができる。さらには、-C面と対向する+C面については、保護膜23が形成されているので、高温域でのアニール処理を行った場合であっても、面が荒れてしまう等の熱による悪影響の問題を回避することができる。
 アニール処理の後は、図3(d)に示すように、例えば、ホウ酸カリウム溶液であるAZ400K現像液を用いてエッチング処理を行うことで、保護膜23を除去する。
 以上のような本ステップを経ることで、第一GaN層21内にp型領域26が形成されたGaN基板10が得られる。p型領域26は、Mg等の不純物濃度が3×1018at/cm以上となっている。このような濃度でp型不純物を含むことにより、p型領域26は、20℃以上200℃以下の温度条件下での電気抵抗率が1×10Ωcm未満という導電性を有し、いわゆるp型半導体結晶として機能する。なお、Mg濃度としては、例えば3×1018at/cm以上5×1020at/cm以下の大きさとすることができる。この場合、20℃以上200℃以下の温度条件下でのp型のキャリア濃度は例えば2×1017個/cm以上5×1018個/cm以下となり、同温度条件下での電気抵抗率は例えば0.5Ωcm以上100Ωcm以下となる。
 本ステップでイオン注入が行われる第一GaN層21のGaN結晶は、結晶中のSi、B、Fe、OおよびCの各濃度が極めて低いことから、これらの不純物をより多く含む従来のGaN結晶に比べ、良好な品質を有することになる。また、GaN結晶中のSiやO等の不純物の濃度が極めて低いことから、本ステップでは、Mg等のp型不純物の注入量を少なく抑えたとしても、GaN結晶に所望の導電性(p型半導体特性)を付与することが可能となる。つまり、Mg等の不純物注入による結晶品質の低下を極力抑制しつつ、所望の半導体特性を付与できる点で、SiやO等の不純物をより多く含む従来のGaN結晶に比べて有利である。さらには、キャリア散乱の要因となる不純物の濃度が極めて低ければ、キャリアの移動度低下を回避することが可能となるという点でも、不純物を多く含む場合よりも有利である。
(4)半導体デバイスの構成
 上述のイオン注入ステップでp型領域26が形成されたGaN基板10は、半導体デバイス(半導体装置)を構成するために用いて好適なものである。
 具体的には、図4に示すように、GaN基板10における第一GaN層21の-C面へのp型不純物のイオン注入によって第一GaN層21内にp型領域26を形成し、そのp型領域26を用いてpn接合を構成した上で、さらに上部電極31および下部電極32を形成することで、この積層構造をpn接合ダイオードとして機能させることができる。また、上述のp型領域およびn型領域のうちいずれかと金属からなる金属層との接合面(ショットキー接合面)を含む積層構造を作製することにより、この積層構造をショットキーバリアダイオード(JBS)として機能させることもできる。また、その他にも、例えば、金属半導体電界効果トランジスタ(MESFET)、ゲートインジェクショントランジスタ(GIT)、-C面高電子移動度トランジスタ(HEMT)等として機能させることも実現可能である。
(5)本実施形態により得られる効果
 本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(a)本実施形態では、種結晶基板20の+C面上にGaN結晶を成長させてn型の第一GaN層21を形成し、さらに第一GaN層21の+C面上にGaN結晶を成長させて第二GaN層22を形成した後に、種結晶基板20を除去して第一GaN層21の-C面を露出させ、その-C面を主面とする第一GaN層21と第二GaN層22との積層体をGaN基板10として得る。したがって、第一GaN層21および第二GaN層22のいずれについても、Ga極性面(すなわち+C面)の方向に向けてGaN結晶を成長させることになるので、N極性面(すなわち-C面)の方向に向けた場合に比べると、結晶を適切に成長させるという観点では好ましい。しかも、N極性面(すなわち-C面)の方向に向けた場合とは異なり、その成長過程でO等の不純物の取り込みが激しくなってしまうこともないので、不純物濃度を極めて低く抑えることができる。つまり、本実施形態によれば、従来の一般的な製造手法とは異なり、イオン注入が可能なN極性面(-C面)を露出面として有し、かつ、イオン注入が行われるGaN結晶の不純物濃度が極めて低くなるように構成されたGaN基板10を、適切に得ることができる。
(b)本実施形態では、-C面を露出面として有する第一GaN層21におけるGaN結晶中のn型不純物濃度が1×1017at/cm未満である。このように、第一GaN層21におけるGaN結晶は、不純物濃度が低く高純度であることから、例えばイオン注入によるMgイオンの打込みによりこの結晶をp型半導体とする場合に、イオンの打込み量を少なく抑えることが可能となる。すなわち、第一GaN層21におけるGaN結晶は、イオンの打込みによる結晶品質の低下を極力抑制しつつ、所望の半導体特性を付与することが可能となる点で、Fe等の不純物をより多く含む従来のGaN結晶に比べて有利である。また、第一GaN層21におけるGaN結晶は、キャリア散乱の要因となる不純物の濃度が極めて低いことから、キャリアの移動度低下を回避することが可能となるという点でも、不純物をより多く含む従来のGaN結晶に比べて有利である。
(c)特に、本実施形態で得られるGaN結晶中のSi、BおよびFeの各濃度は、いずれも、1×1015at/cm未満という極めて小さな値となり、また、OおよびCの各濃度は、いずれも、5×1015at/cm未満という極めて小さな値となる。これらの不純物濃度は、実際の各不純物の濃度の測定値ではなく、代表的な不純物分析技術であるSIMS測定における、現在の検出下限値を示したものである。すなわち、各不純物の実際の濃度を、現在の技術では検出することができないほど低くすることができたということである。
 このように、本実施形態で得られるGaN結晶は、これらの不純物をより多く含む従来のGaN結晶に比べ、欠陥密度、転位密度、内部応力が大幅に小さくなる等、極めて良好な結晶品質を有することになる。また、このようなGaN結晶を有して構成されたGaN基板10を用いて半導体デバイスを作製する場合、不純物をより多く含む上述のGaN結晶からなる基板を用いる場合に比べ、不純物の拡散が抑制される効果により、デバイスの特性を向上させたり、寿命を延ばしたりすることが可能となる。
(d)本実施形態では、GaN基板10を構成する第一GaN層21および第二GaN層22のそれぞれをHVPE法により形成する。したがって、本実施形態によれば、GaN基板10が第一GaN層21と第二GaN層22との積層体からなる場合であっても、第一GaN層21および第二GaN層22の形成を連続的に行うことが可能であり、GaN基板10の製造の生産性を向上させる上で非常に好適なものとなる。さらには、HVPE法を用いることで、第二GaN層22を自立可能な厚さに形成する上でも非常に好適なものとなる。
(e)本実施形態では、GaN基板10の主面である第一GaN層21の-C面(N極性面)に対してp型不純物をイオン注入し、第一GaN層21内にp型半導体結晶として機能するp型領域26を形成する。このように、熱的に安定な第一GaN層21の-C面(N極性面)に対してイオン注入を行えば、イオン注入後にGaN結晶の結晶格子を整えるために1200℃以上の高温域でのアニール処理を必要とする場合であっても、GaN結晶の熱分解が問題になってしまうのを回避することができる。しかも、イオン注入が行われる第一GaN層21のGaN結晶中のSiやO等の不純物の濃度が極めて低いことから、Mg等のp型不純物の注入量を少なく抑えたとしても、GaN結晶に所望の導電性(p型半導体特性)を付与することが可能となる。つまり、Mg等の不純物注入による結晶品質の低下を極力抑制しつつ、所望の半導体特性を付与できる点で、SiやO等の不純物をより多く含む従来のGaN結晶に比べて有利である。さらには、キャリア散乱の要因となる不純物の濃度が極めて低ければ、キャリアの移動度低下を回避することが可能となるという点でも、不純物を多く含む場合よりも有利である。
<本発明の第二実施形態>
 次に、本発明の第二実施形態について図面を参照しながら説明する。ここでは、主として上述した第一実施形態との相違点について説明し、第一実施形態と同様の内容については説明を省略する。
 本実施形態では、結晶成長ステップが上述した第一実施形態の場合とは異なる。本実施形態における結晶成長ステップでは、HVPE装置200のサセプタ208上に種結晶基板20を載置した後、第一GaN層21を形成する第一層形成ステップと、第二GaN層22を形成する第二層形成ステップとを、それぞれ複数回にわたって繰り返し行う。このとき、第一層形成ステップでは、第一実施形態の場合と同様に、第一GaN層21を例えば15~30μm程度の厚さで形成する。一方、第二層形成ステップでは、第一実施形態の場合とは異なり、後述するスライスステップでの加工代を考慮して、第二GaN層22を例えば600~750μm程度の厚さで形成する。
 これにより、図5に示すように、種結晶基板20上に第一GaN層21と第二GaN層22とが交互に積み重なる積層構造を有する結晶インゴットが得られる。
 その後、結晶インゴットを反応室201内から搬出したら、その結晶インゴットについてスライスステップを実施して、積層構造を分割するようにスライスする(図中A-A参照)。このときのスライス加工位置は、第一GaN層21の厚さ変動を回避するために、第二GaN層22の形成部分とする。さらに詳しくは、スライス加工後に第一GaN層21の-C面を露出させるための研磨加工を第二GaN層22の一方の残存部分に対して施すことになるが、例えば、その残存部分が研磨加工の際の研磨代に相当する30~50μm程度の厚さとなるように、第二GaN層22に対するスライス加工位置を設定する。このようにスライス加工位置を設定すれば、第二GaN層22の厚さが600~750μm程度なので、例えば、上述した第二GaN層22の一方の残存部分を30~50μm程度、ワイヤソーや放電加工等による加工代を200~250μm程度、第二GaN層22の他の残存部分の露出面(+C面)に対する研磨代を30~50μm程度と想定すると、第二GaN層22の他の残存部分が自立可能な厚さである300~400μm程度の厚さとなる。
 なお、スライス加工は、例えばマルチワイヤソーにより複数箇所について同時並行的に行うことができるが、これに限定されることはなく、それぞれの加工箇所に対して個別に行うようにしても構わない。
 以上のようなスライスステップを実施することで、第一GaN層21と第二GaN層22との積層構造を有する結晶インゴットから複数枚のGaN基板10が得られる。このようにして得られる各GaN基板10は、それぞれが上述した第一実施形態の場合と同様の構成を有する。
 なお、各GaN基板10の+C面を保護する保護膜23を形成する場合は、スライスステップを実施して得られた各GaN基板10に対して個別に保護膜23の形成を行うか、または第一層形成ステップと第二層形成ステップとを繰り返す度に保護膜23の形成ステップを介在させることで対応すればよい。
 本実施形態によれば、第一実施形態で説明した効果に加えて、以下に示す効果が得られる。
 すなわち、本実施形態によれば、第一GaN層21と第二GaN層22との積層構造から複数のGaN基板10を得るので、GaN基板10の製造を効率的に行うことができ、GaN基板10を量産化する上で非常に好適なものとなる。
<本発明の第三実施形態>
 次に、本発明の第三実施形態について図面を参照しながら説明する。ここでは、主として上述した第一実施形態および第二実施形態との相違点について説明する。
(結晶成長ステップ)
 本実施形態では、結晶成長ステップが上述した第一実施形態および第二実施形態とは異なる。なお、本実施形態においても、結晶成長ステップがHVPE装置200を用いて行う第一層形成ステップと第二層形成ステップとを含む点は、第一実施形態および第二実施形態の場合と同様である。
(第一層形成ステップ)
 第一層形成ステップでは、図6に示すように、HVPE装置200のサセプタ208上に載置した種結晶基板(GaN基板)20の+C面上に対して、先ず、n型の第一窒化物半導体層の一例である高純度HVPE-GaN層(以下、単に「GaN層」という。)31を形成する。このGaN層31は、第一実施形態または第二実施形態で説明した第一GaN層21と同様のものであり、GaN結晶中のn型不純物濃度が1×1017at/cm未満のものである。
 ただし、本実施形態におけるGaN層31は、第一実施形態等における第一GaN層21とは異なり、例えば、600~750μm、好ましくは500μm程度の厚さで形成することが考えられる。
 また、本実施形態におけるGaN層31は、後述するように例えばHEMTを構成した際にバッファ層として用いられるので、第一実施形態等における第一GaN層21とは異なり、比較的高い絶縁性、すなわち、比較的大きな電気抵抗率を有する半絶縁性層として構成されている。GaN層31を構成するGaN結晶の電気抵抗率は、例えば20℃以上200℃以下の温度条件下において、1×10Ωcm以上の大きさを維持するようになっており、また、200℃を超え400℃以下の温度条件下において、1×10Ωcm以上の大きさを維持するようになっている。GaN結晶の電気抵抗率の上限については特に制限はないが、1×10Ωcm程度の大きさが例示される。本実施形態のGaN結晶がこのような大きな電気抵抗率を有するのは、結晶中に含まれる各種不純物の濃度が極めて低いことによる。
 このように、GaN層31におけるGaN結晶は、20℃以上200℃以下の温度条件下での電気抵抗率が1×10Ωcm以上という高い絶縁性を有している。なお、GaN結晶がSiやOといったドナー不純物を多く含む場合、この結晶の絶縁性を高めるには、例えば特表2007-534580号公報に開示されているような、結晶中にMn、Fe、コバルト(Co)、Ni、銅(Cu)等のドナー補償用の不純物(以下、補償用不純物と称する)を添加する手法が知られている。ただし、この手法では、補償用不純物の添加によりGaN結晶の品質が劣化しやすくなるという課題がある。例えば、GaN結晶中に補償用不純物を添加すると、この結晶をスライスすることで得られる基板に割れが発生しやすくなる。また、基板上に形成された積層構造中に補償用不純物が拡散することで、この基板を用いて作製された半導体デバイスの特性が低下しやすくなる。これに対し、本実施形態のGaN結晶では、補償用不純物を添加することなく高い絶縁性を得られることから、従来手法では問題となりやすい結晶性劣化の課題を回避することが可能となる。
 また、GaN層31におけるGaN結晶の絶縁性は、結晶中への補償用不純物の添加によって得られる絶縁性に比べ、温度依存性が低く、安定したものとなる。というのも、SiやOを例えば1×1017at/cm以上の濃度で含むGaN結晶に対し、それらの濃度を上回る濃度でFeを添加すれば、本実施形態のGaN結晶に近い絶縁性を付与することは一見可能とも考えられる。しかしながら、補償用不純物として用いられるFeの準位は0.6eV程度と比較的浅いことから、Feの添加により得られた絶縁性は、本実施形態のGaN結晶が有する絶縁性に比べ、温度上昇等に伴って低下しやすいという特性がある。これに対し、本実施形態によれば、補償用不純物の添加を行うことなく絶縁性を実現できることから、従来手法で問題となりやすい温度依存性増加の課題を回避することが可能となる。
(第二層形成ステップ)
 GaN基板20の+C面上にGaN層31を形成したら、次いで、第二層形成ステップを実施する。本ステップでは、GaN層31の+C面上に対して、窒化アルミニウムガリウム(AlGaN)結晶をエピタキシャル成長させて、第二窒化物半導体層の一例であるAlGaN層32を形成する。
 AlGaN層32の形成は、HVPE装置200を用いる場合であれば、以下のように行うことができる。具体的には、HClガスとGa融液との反応により生成されたGaClガスを供給するGa原料供給系に加えて、原料としての固体のアルミニウム(Al)とHClガスとの反応により生成された塩化アルミニウム(AlCl)ガスを供給するAl原料供給系を、HVPE装置200に用意しておく。そして、GaN層31の+C面上に対して、成膜ガスとしてGaClガス、AlClガスおよびNHガスを供給する。これらの成膜ガスは、Hガス、Nガスまたはこれらの混合ガスから成るキャリアガスと混合して供給してもよい。これにより、GaN層31の+C面上には、AlGaN結晶が気相成長によりエピタキシャル成長されてAlGaN層32が形成される。
 本ステップの処理条件としては、以下が例示される。
 AlClガスの分圧:0.01~1kPa
 NHガスの分圧/AlClガスの分圧:1~100
 Hガスの分圧/AlClガスの分圧:0~100
 他の条件は、上述した第一実施形態の場合と同様である。
 本実施形態におけるAlGaN層32は、例えば、50~100nm、好ましくは20nm程度の厚さで形成することが考えられる。
 (各ステップの繰り返し)
 その後は、GaN層31を形成する第一層形成ステップと、AlGaN層32を形成する第二層形成ステップとを、それぞれ複数回にわたって繰り返し行う。これにより、GaN基板20上にGaN層31とAlGaN層32とが交互に積み重なる積層構造を有する結晶インゴットが得られる。なお、図中における破線の部分は、後述するように半導体デバイスを構成した際に、GaN層31内において二次元電子ガス(2DEG)が分布することになる領域を示している。
(スライスステップ)
 その後は、GaN層31とAlGaN層32との積層構造を有する結晶インゴットについてスライスステップを実施して、積層構造を分割するようにスライスする(図中A-A参照)。このときのスライス加工位置は、GaN層31の形成部分で、例えば、スライス加工後に2DEG分布領域を含む側のGaN層31の残存部分が50~100μm程度の厚さとなるように設定する。
 これにより、スライス加工後は、図7(a)に示すように、2DEG分布領域を含み50μm程度の厚さであるGaN層31の残存部分と、AlGaN層32と、GaN層31の他方の残存部分とが、順に積層されてなる積層基板が、結晶インゴットから複数枚得られる。
 そして、このようにして得られる積層基板について、図7(b)に示すように、その上下方向(天地方向)を反転させれば、-C面を主面とするGaN層31とAlGaN層32との積層体からなる積層基板(窒化物半導体基板)であって、GaN層31中のn型不純物濃度が1×1017at/cm未満となるように構成されたものが得られる。なお、GaN層31の露出面である-C面は、後述するように、鏡面研磨面とされて用いられる。
(半導体デバイスの構成)
 続いて、本実施形態で得られるGaN層31とAlGaN層32との積層基板を用いて構成される半導体デバイス(半導体装置)について説明する。ここでは、半導体デバイスの具体例として、HEMTを構成する場合を例に挙げる。
 HEMTを構成するにあたっては、先ず、図8(a)に示すように、スライスステップ(予備的な研磨処理を含む)を経て、2DEG分布領域を含むように50~100μm程度の厚さとされたGaN層31の残存部分と、AlGaN層32と、GaN層31の他方の残存部分とが、順に積層されてなる積層基板を用意する。
 積層基板を用意したら、50~100μm程度の厚さとされたGaN層31の残存部分について、図8(b)に示すように、その露出面である-C面の側から電気化学エッチング(ECV)測定を行って膜厚測定を行う。ECV測定を利用した膜厚測定は、例えば、自動キャリア濃度測定装置(ナノメトリクス・ジャパン株式会社製)により、S=0.1cm程度の面積に電界液を接触させ電気化学的接合(Mottショットキー接合)を用いてC-V測定を行い、深さ方向のキャリア濃度分布プロファイルを得ることで、行うことができる。そして、このような測定を、図8(c)に示すように、-C面の面内の任意の何点かについて行う。このとき、GaN層31には、膜厚モニタ用のトレンチを設けてもよい。
 膜厚測定後は、図8(d)に示すように、GaN層31の残存部分に対して、その膜厚を薄くする研磨処理を行う。このとき研磨処理は、膜厚測定の結果に基づいて、研磨処理後の残存膜厚が例えば5μm程度となるように、研磨レートや研磨時間等をコントロールしつつ行う。研磨処理は、研磨レートや研磨時間等のコントロールが容易なCMPによって行うことが可能であるが、これに限定されることはなく、残存膜厚が制御できれば他の手法を利用しても構わない。
 研磨処理を行って-C面の側のGaN層31の残存部分の膜厚を例えば5μm程度とした後は、図8(e)に示すように、上下方向(天地方向)を反転させる。そして、-C面の面内全域に、例えば、テトラエトキシシラン(TEOS)原料を用いたプラズマCVDを用いて、SiO膜33を成膜する。
 その後は、図9(a)に示すように、公知のフォトリソグラフィ技術を利用して、SiO膜33上にレジストパターン34を形成した上で、そのレジストパターン34をマスクとして用いたBHFエッチング処理を行う。そして、BHFエッチング処理の後にレジストパターン34を除去すれば、図9(b)に示すように、レジストパターン34に対応するパターニングがされたSiO膜33が得られる。ここでパターニングされた除去部分は、後述するソース、ゲート、ドレインの各部分に相当する。
 SiO膜33をパターニングしたら、その後は、図9(c)に示すように、-C面の側から電解液35を供給して電気化学的にエッチング処理(ECVエッチング)を行う。これにより、図9(d)に示すように、GaN層31の一部分(具体的には、SiO膜33で覆われていない部分)が除去される。ただし、AlGaN層32については、除去されずに、エッチングストッパとして機能する。
 この際、ソース、ゲート、ドレインの各部分に相当するGaN層31の部分は、例えば、20~30nm程度、好ましくは10nm程度、ECVプロファイルをモニタしながら残すようにエッチングを行う(図9(d)では省略)。
 そして、SiO膜33をBHFエッチング処理によって完全に除去すれば、図10(a)に示すように、-C面を露出面とし、2DEG分布領域を含む残存部分の厚さが例えば5μm程度に形成され、しかも後述するソース、ゲート、ドレインの各部分に対応するパターニングがされたGaN層31が得られる。
 その後は、パターニングがされたGaN層31の上に、図10(b)に示すように、例えば、チタン(Ti)/アルミニウム(Al)膜からなるソース電極41と、同じくTi/Al膜からなるドレイン電極42を形成する。その後、オーミック接合を得るために、例えばNガス雰囲気中にて10分間550℃で熱処理を行う。そして、図10(c)に示すように、例えば、ニッケル(Ni)/金(Au)膜からなるゲート電極43を形成し、さらにSiNx膜からなる絶縁膜44を介して、Ti/Al膜からなるフィールドプレート45を形成する。
 これにより、耐圧に優れたフィールドプレート(FP)構造のHEMTを構成することができる。
(本実施形態における効果)
 以上のような本実施形態においても、第一実施形態または第二実施形態で説明した1つまたは複数の効果が得られる。
<本発明の他の実施形態>
 以上に、本発明の第一実施形態、第二実施形態および第三実施形態を具体的に説明した。ただし、本発明は、上述の各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
(a)上述の各実施形態では、主として、窒化物半導体結晶がGaN結晶である場合を例に挙げて説明した。ただし、本発明は、GaNに限らず、例えば、窒化アルミニウム(AlN)、窒化アルミニウムガリウム(AlGaN)、窒化インジウム(InN)、窒化インジウムガリウム(InGaN)、窒化アルミニウムインジウムガリウム(AlInGaN)等のIII族窒化物結晶、すなわち、InAlGa1-x-yNの組成式(但し、0≦x≦1,0≦y≦1,0≦x+y≦1)で表される窒化物半導体結晶を成長させる際においても、好適に適用可能である。
(b)本発明の結晶成長ステップは、上述の各実施形態で示した手法に限らず、結晶中の不純物濃度をより確実に低減させることが可能であれば、他の手法を組み合わせて用いるようにしてもよい。
<本発明の好ましい態様>
 以下、本発明の好ましい態様について付記する。
(付記1)
 本発明の一態様によれば、
 窒化物半導体結晶からなる種結晶基板の+C面上に窒化物半導体結晶をc軸方向に沿って成長させてn型の第一窒化物半導体層を形成する工程と、
 前記第一窒化物半導体層の+C面上に窒化物半導体結晶をc軸方向に沿って成長させて第二窒化物半導体層を形成する工程と、
 前記種結晶基板を除去して前記第一窒化物半導体層の-C面を露出させ、前記-C面を主面とする前記第一窒化物半導体層と前記第二窒化物半導体層との積層体を窒化物半導体基板として得る工程と、
 を含む窒化物半導体基板の製造方法が提供される。
(付記2)
 付記1に記載の方法であって、好ましくは、
 前記第一窒化物半導体層は、窒化物半導体結晶中のn型不純物濃度が1×1017at/cm未満である。
(付記3)
 付記2に記載の方法であって、好ましくは、
 前記第一窒化物半導体層は、窒化物半導体結晶中のSi、BおよびFeの各濃度がいずれも1×1015at/cm未満であり、OおよびCの各濃度がいずれも5×1015at/cm未満である。
(付記4)
 付記1から3のいずれか1つに記載の方法であって、好ましくは、
 少なくとも前記第一窒化物半導体層および前記第二窒化物半導体層のそれぞれをハイドライド気相成長法により形成する。
(付記5)
 付記1から4のいずれか1つに記載の方法であって、好ましくは、
 前記窒化物半導体基板の主面である前記-C面に対してp型不純物をイオン注入する工程と、
 イオン注入後の前記窒化物半導体基板に対してアニール処理を行う工程と、
 を含む。
(付記6)
 付記5に記載の方法であって、好ましくは、
 前記アニール処理を1200℃以上の高温域で行う。
(付記7)
 付記1から6のいずれか1つに記載の方法であって、好ましくは、
 前記第一窒化物半導体層の形成と前記第二窒化物半導体層の形成とを繰り返し行い、前記第一窒化物半導体層と前記第二窒化物半導体層とが交互に積み重なる積層構造を得るとともに、前記積層構造から複数の前記窒化物半導体基板を得る。
(付記8)
 本発明の他の態様によれば、
 窒化物半導体結晶からなる第一窒化物半導体層および第二窒化物半導体層が積層されて構成された窒化物半導体基板であって、
 前記第一窒化物半導体層は、-C面を露出面として有するn型のものであり、窒化物半導体結晶中のn型不純物濃度が1×1017at/cm未満である
 窒化物半導体基板が提供される。
(付記9)
 付記8に記載の基板であって、好ましくは、
 前記第一窒化物半導体層は、窒化物半導体結晶中のSi、BおよびFeの各濃度がいずれも1×1015at/cm未満であり、OおよびCの各濃度がいずれも5×1015at/cm未満である。
(付記10)
 付記8または9に記載の基板であって、好ましくは、
 前記第一窒化物半導体層は、20℃以上200℃以下の温度条件下でのn型のキャリア濃度が1×1016個/cm未満である。
(付記11)
 付記8から10のいずれか1つに記載の基板であって、好ましくは、
 前記第一窒化物半導体層は、20℃以上200℃以下の温度条件下での電気抵抗率が1×10Ωcm以上である。
 より好ましくは、200℃を超え400℃以下の温度条件下での電気抵抗率が1×10Ωcm以上である。
(付記12)
 付記8から11のいずれか1つに記載の基板であって、好ましくは、
 前記第一窒化物半導体層における前記-C面が鏡面研磨面である。
(付記13)
 付記8から12のいずれか1つに記載の基板であって、好ましくは、
 前記第一窒化物半導体層における前記-C面は、p型不純物の被注入部分を有する。
(付記14)
 本発明の他の態様によれば、
 付記8から13のいずれか1つに記載の窒化物半導体基板を用いて構成された半導体装置であって、
 前記第一窒化物半導体層の前記-C面へのp型不純物のイオン注入によって前記第一窒化物半導体層内にp型領域が形成されており、
 前記p型領域を用いてpn接合が構成された半導体装置が提供される。
 10…GaN基板(窒化物半導体基板)、20…種結晶基板、21…第一GaN層(第一窒化物半導体層)、22…第二GaN層(第二窒化物半導体層)、26…p型領域

Claims (9)

  1.  窒化物半導体結晶からなる種結晶基板の+C面上に窒化物半導体結晶をc軸方向に沿って成長させてn型の第一窒化物半導体層を形成する工程と、
     前記第一窒化物半導体層の+C面上に窒化物半導体結晶をc軸方向に沿って成長させて第二窒化物半導体層を形成する工程と、
     前記種結晶基板を除去して前記第一窒化物半導体層の-C面を露出させ、前記-C面を主面とする前記第一窒化物半導体層と前記第二窒化物半導体層との積層体を窒化物半導体基板として得る工程と、
     を含む窒化物半導体基板の製造方法。
  2.  前記第一窒化物半導体層は、窒化物半導体結晶中のn型不純物濃度が1×1017at/cm未満である
     請求項1に記載の窒化物半導体基板の製造方法。
  3.  少なくとも前記第一窒化物半導体層および前記第二窒化物半導体層のそれぞれをハイドライド気相成長法により形成する
     請求項1または2に記載の窒化物半導体基板の製造方法。
  4.  前記窒化物半導体基板の主面である前記-C面に対してp型不純物をイオン注入する工程と、
     イオン注入後の前記窒化物半導体基板に対してアニール処理を行う工程と、
     を含む請求項1から3のいずれか1項に記載の窒化物半導体基板の製造方法。
  5.  前記アニール処理を1200℃以上の高温域で行う
     請求項4に記載の窒化物半導体基板の製造方法。
  6.  前記第一窒化物半導体層の形成と前記第二窒化物半導体層の形成とを繰り返し行い、前記第一窒化物半導体層と前記第二窒化物半導体層とが交互に積み重なる積層構造を得るとともに、前記積層構造から複数の前記窒化物半導体基板を得る
     請求項1から5のいずれか1項に記載の窒化物半導体基板の製造方法。
  7.  窒化物半導体結晶からなる第一窒化物半導体層および第二窒化物半導体層が積層されて構成された窒化物半導体基板であって、
     前記第一窒化物半導体層は、-C面を露出面として有するn型のものであり、窒化物半導体結晶中のn型不純物濃度が1×1017at/cm未満である
     窒化物半導体基板。
  8.  前記第一窒化物半導体層における前記-C面が鏡面研磨面である
     請求項7項に記載の窒化物半導体基板。
  9.  前記第一窒化物半導体層における前記-C面は、p型不純物の被注入部分を有する
     請求項7または8項に記載の窒化物半導体基板。
PCT/JP2018/007392 2017-03-03 2018-02-28 窒化物半導体基板の製造方法および窒化物半導体基板 WO2018159646A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/490,704 US11094539B2 (en) 2017-03-03 2018-02-28 Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017040144A JP6994835B2 (ja) 2017-03-03 2017-03-03 窒化物半導体基板の製造方法および窒化物半導体基板
JP2017-040144 2017-03-03

Publications (1)

Publication Number Publication Date
WO2018159646A1 true WO2018159646A1 (ja) 2018-09-07

Family

ID=63371232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007392 WO2018159646A1 (ja) 2017-03-03 2018-02-28 窒化物半導体基板の製造方法および窒化物半導体基板

Country Status (3)

Country Link
US (1) US11094539B2 (ja)
JP (1) JP6994835B2 (ja)
WO (1) WO2018159646A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113454272B (zh) * 2019-02-22 2024-03-08 三菱化学株式会社 GaN结晶和基板
JP7312402B2 (ja) * 2019-11-22 2023-07-21 株式会社アルバック 窒化物半導体基板の製造方法
JP7173094B2 (ja) * 2020-05-15 2022-11-16 株式会社豊田中央研究所 サセプタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541997A (ja) * 2006-06-21 2009-11-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 安熱法による成長で作製された、窒素面またはM面GaN基板を用いた光電子デバイスと電子デバイス
JP2010089971A (ja) * 2008-10-03 2010-04-22 Tokyo Univ Of Agriculture & Technology 窒化アルミニウム単結晶基板、積層体、およびこれらの製造方法
JP2013084783A (ja) * 2011-10-11 2013-05-09 Nippon Telegr & Teleph Corp <Ntt> 電界効果トランジスタおよびその製造方法
WO2015056714A1 (ja) * 2013-10-15 2015-04-23 株式会社トクヤマ n型窒化アルミニウム単結晶基板、および縦型窒化物半導体デバイス

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622447B2 (ja) 2004-01-23 2011-02-02 住友電気工業株式会社 Iii族窒化物結晶基板の製造方法
JP5170186B2 (ja) * 2004-01-23 2013-03-27 住友電気工業株式会社 Iii族窒化物結晶基板の製造方法
EP1758171A4 (en) * 2005-03-04 2009-04-29 Sumitomo Electric Industries VERTICAL GALLIUM NITRIDE SEMICONDUCTOR ELEMENT AND EPITACTIC SUBSTRATE
JP4631681B2 (ja) 2005-12-05 2011-02-16 日立電線株式会社 窒化物系半導体基板及び半導体装置
JPWO2007119433A1 (ja) * 2006-03-20 2009-08-27 財団法人神奈川科学技術アカデミー Iii−v族窒化物層およびその製造方法
JP5151400B2 (ja) * 2007-11-04 2013-02-27 日亜化学工業株式会社 半導体素子の製造方法
JP5018423B2 (ja) 2007-11-20 2012-09-05 住友電気工業株式会社 Iii族窒化物半導体結晶基板および半導体デバイス
JP2010205988A (ja) * 2009-03-04 2010-09-16 Panasonic Corp 窒化物半導体素子及びその製造方法
JP5487749B2 (ja) * 2009-06-17 2014-05-07 富士通株式会社 半導体装置及びその製造方法
US8507304B2 (en) * 2009-07-17 2013-08-13 Applied Materials, Inc. Method of forming a group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE)
JP5380754B2 (ja) 2010-02-12 2014-01-08 日立金属株式会社 窒化物半導体自立基板の製造方法および窒化物半導体デバイスの製造方法
JP5653327B2 (ja) * 2011-09-15 2015-01-14 株式会社東芝 半導体発光素子、ウェーハ、半導体発光素子の製造方法及びウェーハの製造方法
JP2016092083A (ja) * 2014-10-31 2016-05-23 国立大学法人 名古屋工業大学 GaN基板をドリフト層とした縦型ショットキーバリアダイオード
KR102491830B1 (ko) * 2015-11-02 2023-01-25 엔지케이 인슐레이터 엘티디 반도체 소자용 에피택셜 기판, 반도체 소자, 및 반도체 소자용 에피택셜 기판의 제조 방법
US20200411647A1 (en) * 2019-06-28 2020-12-31 Fuji Electric Co., Ltd. Nitride semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541997A (ja) * 2006-06-21 2009-11-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 安熱法による成長で作製された、窒素面またはM面GaN基板を用いた光電子デバイスと電子デバイス
JP2010089971A (ja) * 2008-10-03 2010-04-22 Tokyo Univ Of Agriculture & Technology 窒化アルミニウム単結晶基板、積層体、およびこれらの製造方法
JP2013084783A (ja) * 2011-10-11 2013-05-09 Nippon Telegr & Teleph Corp <Ntt> 電界効果トランジスタおよびその製造方法
WO2015056714A1 (ja) * 2013-10-15 2015-04-23 株式会社トクヤマ n型窒化アルミニウム単結晶基板、および縦型窒化物半導体デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRONORI OKUMURA: "Growth diagram of N-face GaN (000-1) grown at high rate by plasma-assisted molecular beam epitaxy", APPLIED PHYSICS LETTERS, vol. 104, no. 1, 2014, pages 012111/1 - 012111/5, XP055543378 *

Also Published As

Publication number Publication date
US11094539B2 (en) 2021-08-17
US20200006049A1 (en) 2020-01-02
JP6994835B2 (ja) 2022-01-14
JP2018145042A (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
TWI429797B (zh) 第 iii 族氮化物半導體結晶基板及半導體元件
US7951685B2 (en) Method for manufacturing semiconductor epitaxial crystal substrate
CN110731002B (zh) 氮化物半导体层叠物、半导体装置、氮化物半导体层叠物的制造方法、氮化物半导体自支撑基板的制造方法以及半导体装置的制造方法
US9806183B2 (en) Stress control on thin silicon substrates
WO2018078962A1 (ja) 半絶縁性結晶、n型半導体結晶およびp型半導体結晶
WO2018159646A1 (ja) 窒化物半導体基板の製造方法および窒化物半導体基板
US11339500B2 (en) Nitride crystal substrate, semiconductor laminate, method of manufacturing semiconductor laminate and method of manufacturing semiconductor device
JP2018064103A (ja) 13族窒化物複合基板、半導体素子、および13族窒化物複合基板の製造方法
KR102100841B1 (ko) Iii족 질화물 기판의 처리 방법 및 에피택셜 기판의 제조 방법
JP6245416B1 (ja) 炭化珪素エピタキシャルウエハの製造方法及び炭化珪素半導体装置の製造方法
JP5041397B2 (ja) 電子デバイス用半導体基板の製造方法
JP2007290924A5 (ja)
JP2017199810A (ja) 炭化珪素エピタキシャルウエハの製造方法、炭化珪素半導体装置の製造方法及び炭化珪素エピタキシャルウエハの製造装置
JP2004533725A (ja) 半導体層成長方法
KR102474331B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
JP7296509B2 (ja) 半導体積層物
WO2018221054A1 (ja) 結晶積層体、半導体デバイスおよび半導体デバイスの製造方法
JP7101736B2 (ja) GaN単結晶基板および半導体積層物
JP6783269B2 (ja) 窒化物結晶基板、半導体積層物、窒化物結晶基板の製造方法、半導体積層物の製造方法および半導体装置の製造方法
JP6819009B2 (ja) 半導体基板の製造方法
JP2012004444A (ja) 半導体装置の製造方法
JP6983570B2 (ja) 半導体積層物の製造方法、窒化物半導体自立基板の製造方法、半導体積層物および半導体装置
JP2024042982A (ja) 窒化物半導体層付き単結晶シリコン基板及び窒化物半導体層付き単結晶シリコン基板の製造方法
TW202340551A (zh) 氮化物半導體基板及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761360

Country of ref document: EP

Kind code of ref document: A1