WO2018157606A1 - 柔性显示面板、其制作方法及显示装置 - Google Patents

柔性显示面板、其制作方法及显示装置 Download PDF

Info

Publication number
WO2018157606A1
WO2018157606A1 PCT/CN2017/106060 CN2017106060W WO2018157606A1 WO 2018157606 A1 WO2018157606 A1 WO 2018157606A1 CN 2017106060 W CN2017106060 W CN 2017106060W WO 2018157606 A1 WO2018157606 A1 WO 2018157606A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
organic insulating
display panel
flexible display
inorganic insulating
Prior art date
Application number
PCT/CN2017/106060
Other languages
English (en)
French (fr)
Inventor
田宏伟
牛亚男
刘政
左岳平
许晓伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/764,552 priority Critical patent/US20200243574A1/en
Publication of WO2018157606A1 publication Critical patent/WO2018157606A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate

Definitions

  • Embodiments of the present disclosure relate to a flexible display panel, a method of fabricating the same, and a display device.
  • Flexible devices are becoming more widely used in our lives. Flexible electronic devices, especially flexible display panels, are attracting more and more attention because of their thinness, flexibility, folding and even mechanical properties.
  • the total thickness of the inorganic film layer is generally above 1000 nm.
  • an inorganic film layer such as SiN x is positively affected due to frequent bending. The influence of the stress on the opposite sides, the inorganic film layer is more likely to crack or even break, resulting in the degradation of the quality of the flexible display panel and even damage.
  • Embodiments of the present disclosure provide a flexible display panel, a method of fabricating the same, and a display device.
  • the inorganic insulating layer is formed with a groove in a quasi-bending region of the flexible display panel
  • the organic insulating layer covers at least a surface of the groove.
  • An embodiment of the present disclosure further provides a display device including the above flexible display panel as provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a method for fabricating the above flexible display panel according to an embodiment of the present disclosure, including:
  • the groove is formed in the inorganic insulating layer of the pseudo-bending region of the flexible display panel, and the organic insulating layer covers at least a surface of the groove.
  • FIGS. 1A-1C are schematic structural diagrams of a flexible display panel according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of an organic insulating layer filling another space between a portion of an inorganic insulating layer and a source/drain layer according to an embodiment of the present disclosure
  • FIG. 3A is a schematic structural diagram of an organic insulating layer filling other spaces between all inorganic insulating layers and source and drain layers according to an embodiment of the present disclosure
  • FIG. 3B is a schematic structural view of a flexible display panel provided with an additional film layer according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural view of filling an organic insulating layer with a full groove according to an embodiment of the present disclosure
  • FIG. 5A is a schematic structural diagram of a non-display area of a flexible display panel according to an embodiment of the present disclosure
  • FIG. 5B is a schematic structural diagram of a non-pixel area of a flexible display panel according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural view showing the entire inorganic insulating layer of the pseudo-bending region provided by the embodiment of the present disclosure
  • FIGS. 7A-7D are schematic structural views of an additional film layer disposed in a quasi-bending region according to an embodiment of the present disclosure.
  • FIG. 8 is a flow chart of steps of a method for fabricating a flexible display panel according to an embodiment of the present disclosure
  • FIG. 9 is a flow chart of a method for fabricating a recess and an organic insulating layer by using a photolithography process according to an embodiment of the present disclosure
  • FIG. 10A-10C are respectively used to fabricate grooves and organically by using a photolithography process according to an embodiment of the present disclosure.
  • FIG. 11 is a flow chart of a method for fabricating a recess and an organic insulating layer by using a halftone mask process according to an embodiment of the present disclosure
  • 12A-12E are schematic structural diagrams of each step in a method for fabricating a groove and an organic insulating layer by using a halftone mask process according to an embodiment of the present disclosure
  • FIG. 13 is a schematic plan view of a flexible display panel according to an embodiment of the present disclosure.
  • the thickness of the film layer, the shape of the region, the shape and shape of the structural features, and the like in the drawings do not reflect the true scale, and are only used to schematically illustrate the contents of the present disclosure.
  • a flexible display panel provided by an embodiment of the present disclosure provides a flexible display panel provided with an area to be frequently bent, a groove in a region of the inorganic insulating layer to be frequently bent, and an inorganic insulating layer and a source and drain. Between the pole layers, an organic insulating layer having a stronger bending ability than the inorganic insulating layer is added to cover or completely cover the groove of the region to be frequently bent, so that any display panel that can be bent can be used.
  • the structure in the embodiment of the present disclosure is provided with an area to be frequently bent, a groove in a region of the inorganic insulating layer to be frequently bent, and an inorganic insulating layer and a source and drain.
  • 1A-1C is a schematic diagram of a basic structure of a flexible display panel according to an embodiment of the present disclosure; the flexible display panel includes: a non-bending area (including a display area a) and a region b to be frequently bent.
  • the flexible display panel includes a flexible substrate 101, an inorganic insulating layer 102 disposed on the flexible substrate 101, and a groove 100 disposed in the intended bending region b.
  • the flexible display panel may further include an organic insulating layer 103 and a source and drain layer 104.
  • the organic insulating layer 103 at least completely covers the surface of the recess 100, and the bending ability of the organic insulating layer 103 is greater than the bending ability of the inorganic insulating layer 102.
  • the flexible substrate can be, for example, a plastic substrate.
  • an inorganic insulating layer 102, an organic insulating layer 103, and a source and drain layer 104 are provided on the flexible substrate 101.
  • the quenched region b may be disposed in the non-display area of the flexible display panel or in the display area, and is generally disposed on the corresponding inorganic insulating layer where the via hole 108 is not provided, that is, the via area d Area.
  • the flexible display panel may include other functional film layers 1024 (not specifically shown for clarity) in addition to the inorganic insulating layer 102, the organic insulating layer 103, and the source and drain layers 104, as shown in FIGS. 7A-7D.
  • the flexible display panel provides a groove in the pseudo-bending region of the inorganic insulating layer, and adds a bend.
  • the organic insulating layer having a higher folding ability than the inorganic insulating layer covers or completely covers the groove of the quasi-bending region, thereby reducing the inorganic film layer of the quasi-bending region, thereby preventing the inorganic film layer in the quasi-bending region from being Frequent bending causes cracks and even breaks, thereby reducing stress damage to the device itself during bending, and improving device reliability and life.
  • the organic insulating layer provided in the embodiment of the present disclosure may completely cover the surface of the groove as shown in FIG. 1C, and is not provided to other spaces between the inorganic insulating layer and the source and drain layers.
  • the organic insulating layer may also be disposed to fill other spaces between the inorganic insulating layer and the source and drain layers, that is, the inorganic insulating layer 102 may be completely covered, as shown in FIG. 2, as described below.
  • it may be provided that, in addition to completely covering the surface of the groove, a portion of the space between the inorganic insulating layer and the source and drain layers may be filled, that is, the inorganic insulating layer 102 may be partially covered.
  • embodiments of the present disclosure are not limited thereto.
  • an organic insulating layer may be disposed at least around the position of the recess and the position of the via for the source and drain, as shown in FIGS. 2-3A and 7A-7B, and the method of fabricating the same, See the following for how to make a flexible display panel.
  • the embodiment of the present disclosure increases an organic insulating layer having a strong bending ability at a predetermined bending radius between the inorganic insulating layer and the source and drain layers.
  • the above bending ability at a predetermined bending radius means when the material When bending to a certain bending radius (generally a small bending radius, as described below), the material resists the stress without the ability to damage; the greater the bending ability of the material at the preset bending radius, when bending The less likely it is to crack or even break.
  • the structure of the embodiment of the present disclosure is mainly applied to a flexible display panel having a fixed quasi-bending area, and the quasi-bending area is generally disposed in a non-pixel area, in order to prevent the inorganic insulating layer of the quasi-bending area from being cracked due to frequent bending, or even The fracture, the embodiment of the present disclosure forms a groove in the quasi-bending region of the inorganic insulating layer, and causes the organic insulating layer to at least completely cover the surface of the groove.
  • the intended bend region on the flexible display panel can generally be divided into a main bend region and the remaining bend region.
  • the main bending region refers to a region having a small bending radius, for example, a bending radius of less than about 5 mm;
  • the remaining bending region refers to a region where a slight bending is performed, and a bending radius thereof is large, for example, a bending radius of more than about 20 mm.
  • the bending radius of the intended bending region may vary according to the design requirements of the product, and the inorganic insulating layer in the region where the bending radius is larger is more likely to be cracked or even broken, and thus the embodiment of the present disclosure generally relates to bending of a small bending radius.
  • the area, ie the main bending area, for example, has a preset bending radius of less than 5 mm.
  • the flexible display panel provided by the embodiment of the present disclosure may be a flexible display panel of other bending types in addition to the fixed quasi-bending area, for example, a flexible display panel in which the entire display panel can be bent in a certain direction. It is even a flexible display panel that can be bent at will.
  • the grooves are arranged in different ways for display panels of different bending types. For example, in the case where there is a fixed bend region in the flexible display panel, the length direction of the groove is arranged along the axis direction of the bend; and the flexible display panel which can be bent at will can be illuminated around one or more pixels.
  • the area is provided with a groove structure in a non-pixel area that is not illuminated; or it may be set to other structures, but should not affect the normal display of the flexible display panel.
  • the organic insulating layer can fill the other space between the inorganic insulating layer and the source and drain layers in addition to completely covering the surface of the groove, thereby forming a space for forming the height.
  • the organic insulating layer is also filled in a space between the inorganic insulating layer and the source and drain layers which are closest to the source and drain layers.
  • an organic insulating layer provided by an embodiment of the present disclosure fills all inorganic insulating layers and Schematic diagram of other spaces between the source and drain layers; the organic insulating layer 103 in the figure covers not only the recessed regions on the inorganic insulating layer but also the space between the uppermost inorganic insulating layer and the source and drain layers. That is, in this case, the orthographic projection of the organic insulating layer on the flexible substrate completely covers the orthographic projection of the inorganic insulating layer on the flexible substrate.
  • the organic insulating layer since the organic insulating layer completely covers the uppermost inorganic insulating layer, it can function as a space structure for forming a certain thickness; and at the same time, the function of the insulating layer can replace the function of a part of the inorganic insulating layer.
  • the thickness of the uppermost inorganic insulating layer can be appropriately reduced; in addition, the bending ability of the organic insulating layer at a predetermined bending radius is greater than the bending ability of the inorganic insulating layer at a predetermined bending radius, thereby appropriately lowering the uppermost inorganic layer
  • the thickness of the insulating layer, replacing the part of the inorganic insulating layer with the organic insulating layer, can reduce the probability of the inorganic insulating layer being cracked or even broken due to frequent bending, thereby reducing the damage of the device itself during bending.
  • the material of the organic insulating layer is one or a combination of the following materials.
  • it is an organic film of a polyimide type.
  • other insulating films having better bending ability can be selected as the organic insulating layer, provided that the bending ability of the inorganic insulating layer at a predetermined bending radius is satisfied.
  • a material having a stronger bending ability may be doped in the material of the organic insulating layer.
  • a flexible substance is doped in the organic insulating layer.
  • a polyimide material doped with graphene or a polyimide material doped with nano ceramics may be used to form the organic insulating layer.
  • an additional film layer 105 is provided on the side of the organic insulating layer 103 close to the flexible substrate 101.
  • the bending ability of the additional film layer 105 material is greater than the bending ability of the material of the organic insulating layer 103.
  • the orthographic projection of the additional film layer 105 on the flexible substrate 101 is within the orthographic projection of the organic insulating layer 103 on the flexible substrate 101.
  • the additional film layer 105 may be located over the entire area under the organic insulating layer 103, or may be located only under the organic insulating layer 103 other than the groove, or only in the groove area, without affecting the display function.
  • the organic insulating layer 103 may be formed on the inorganic film layer and then form the additional film layer 105 on the organic insulating layer 103, as shown in Figs. 7C-7D.
  • the additional film layer 105 may be located over the entire area above the organic insulating layer 103, as shown in FIG. 7C; or may be located only in the area above the organic insulating layer 103 formed by the groove region, or may cover the groove region.
  • Organic insulating layer 103 for example, the orthographic projection of the additional film layer 105 on the flexible substrate 101 is within the orthographic projection of the organic insulating layer 103 on the flexible substrate 101; or greater than or equal to the orthographic projection of the groove region on the substrate 101.
  • 3B is a schematic structural diagram of a flexible display panel provided with an additional film layer according to an embodiment of the present disclosure.
  • the added additional film layer has a strong bending ability, on the one hand, the deformation of the inorganic insulating layer can be buffered, and on the other hand, if the inorganic insulating layer is cracked, the additional film layer can also appropriately prevent the crack from being conducted upward. Therefore, the size of the additional film layer 105 is generally not larger than the size of the organic insulating layer, that is, the orthographic projection area of the additional film layer 105 on the substrate 101 is not larger than the orthographic projection area of the organic insulating layer on the substrate 101. In order not to increase the thickness of the flexible display panel, the thickness of the additional film layer is generally set to be from 1000 angstroms to 8,000 angstroms.
  • the material of the additional film layer is one or a combination of the following materials: a material similar to the material of the organic insulating layer and doped with graphene, A material similar to the material of the organic insulating layer and doped with nano ceramics, graphene.
  • the thickness of the organic insulating layer filled between the inorganic insulating layer and the source and drain layers is from 0.5 ⁇ m to 2 ⁇ m; and the thickness of the organic insulating layer covering the surface of the recess is from 0.5 ⁇ m to 3 ⁇ m.
  • the organic insulating layer 103 is covered only by the surface of the groove, and the groove 100 is not completely filled.
  • the organic insulating layer 103 may be completely filled with the grooves 100, that is, a structure as shown in FIG. 4, in which the organic insulating layer 103 is formed. Fill the groove 100.
  • a represents a display area
  • b represents a set pseudo-bending area
  • c represents a non-display area.
  • the source drain layer 104 includes: a source drain electrode 1041, and a source drain The source drain electrode 1042 is connected to the electrode 1041; the quasi-bending area is disposed in the non-display area c of the flexible display panel, and the recess 100 is disposed under the source drain lead 1042.
  • a via region d is provided in a non-bending region.
  • the intended bending region b is disposed in the non-display region at the bezel of the flexible display panel, that is, the groove 100 on the inorganic insulating layer 102 or on the flexible substrate 101 is disposed in the non-display region
  • due to the lead of the source and drain electrodes 1042 generally passes through the region that is to be bent normally, so that an organic insulating layer with a strong bending ability at a predetermined bending radius is added between the uppermost inorganic film layer and the source and drain layers, and the source and drain electrodes are also prevented.
  • the leads are cracked or even broken due to frequent bending.
  • the main bending region having a bending radius of not more than 5 mm is generally provided with one to two.
  • each of the intended bending regions is correspondingly provided with a groove structure.
  • the pseudo-bending area provided in the embodiment of the present disclosure is disposed in the non-pixel area of the flexible display panel.
  • Schematic diagram of the structure For example, the intended bending region b is disposed on the display area a of the flexible display panel; the groove is disposed in the non-pixel area a' in the display area a.
  • the groove may be provided in a non-pixel area a' where no light is emitted between adjacent sub-pixels.
  • the inorganic insulating layer provided in the embodiments of the present disclosure may include a plurality of film layers.
  • the inorganic insulating layer includes a buffer layer 1021, a gate insulating layer 1022, and an interlayer insulating layer 1023 which are sequentially disposed.
  • the flexible display panel provided in the embodiment of the present disclosure may further include other layers 1024 below the interlayer insulating layer 1023.
  • a groove provided in a region to be bent in the inorganic insulating layer may be disposed as shown in FIG. 1 to FIG. 5B such that the bottom of the groove 100 is at a certain distance from the flexible substrate 101, for example, the thickness of the bottom of the groove is 50.
  • Amy-1000 Amy is a groove provided in a region to be bent in the inorganic insulating layer.
  • FIG. 1B a schematic structural view of the inorganic insulating layer of the pseudo-bending region provided by the embodiment of the present disclosure is completely removed; and then an organic insulating layer is disposed in the recess 100 , as shown in FIG. 6 .
  • embodiments of the present disclosure are not limited thereto.
  • the width of the groove opening is one Generally depending on the radius of curvature, for example, the width of the groove is from 0.5 mm to 5 mm, and for example, the width of the groove is about 0.5 mm.
  • the flexible display panel provided in the embodiment of the present disclosure may be a rectangle, or may be another shaped display panel that needs to be bent.
  • FIG. 1 to FIG. 7 are only schematic diagrams for showing the structure of the flexible display panel, and are not used to define the true structure thereof, such as the thickness of the film layer, the number of source and drain electrodes, and other layer positions, etc., according to actual needs. Make settings.
  • the organic insulating layer may be disposed at other locations, such as under the inorganic insulating layer, without affecting the function.
  • an embodiment of the present disclosure further provides a display device, which includes any of the above flexible display panels provided by the embodiments of the present disclosure.
  • the principle of the display device is similar to that of the flexible display panel provided by the embodiment of the present disclosure. Therefore, the implementation of the display device can be referred to the implementation of the flexible display panel, and the repeated description is omitted.
  • the embodiment of the present disclosure further provides a method for fabricating a flexible display panel, which is used to fabricate the flexible display panel provided by the embodiment of the present disclosure.
  • the flexible display panel can be fabricated by the following steps:
  • Step 701 sequentially forming an inorganic insulating layer on the flexible substrate
  • Step 702 forming a groove in the pseudo-bending region of the inorganic insulating layer, and forming an organic insulating layer on the inorganic insulating layer to at least completely cover the surface of the groove;
  • Step 703 forming a pattern of source and drain layers on the organic insulating layer.
  • the bending ability of the organic insulating layer at a predetermined bending radius is greater than the bending ability of the inorganic insulating layer at a predetermined bending radius.
  • a flow chart of a method for fabricating a groove and an organic insulating layer by using a photolithography process includes:
  • Step 801 in the pseudo-bending area of the flexible display panel, using a photolithography process to remove part of the inorganic insulating layer to form a groove;
  • Step 802 forming an organic insulating film on the inorganic insulating layer to at least completely cover the surface of the groove;
  • Step 803 etching a pixel area in the flexible display panel to form a source/drain electrode Through holes, a pattern of an inorganic insulating layer and an organic insulating layer is obtained.
  • a part or all of the inorganic insulating layer is removed by a photolithography process to form a groove.
  • the parameters of the groove refer to the introduction of the flexible display panel described above, and no further description is repeated here.
  • an organic insulating film is formed on the inorganic insulating layer so as to at least completely cover the surface of the groove.
  • the manner of forming the organic insulating film includes, for example, inkjet printing, spin coating, slit coating, printing, and the like.
  • thickness, coverage, and the like of the organic insulating film reference may be made to the above description of the flexible display panel portion, and details are not described herein again.
  • the pixel region in the flexible display panel is etched to form, for example, a via hole 108 for forming a source/drain electrode, thereby obtaining A pattern of an inorganic insulating layer and an organic insulating layer.
  • the structure of the flexible display panel of FIG. 1 to FIG. 2 and FIG. 4 to FIG. 7 is similar to that of FIG. 3A.
  • the structure after each step is performed. See the schematics above.
  • a flow chart of a method for fabricating a groove and an organic insulating layer by using a halftone mask process includes:
  • Step 1001 forming an organic insulating film on the inorganic insulating layer
  • Step 1002 using a halftone mask process to remove a portion of the organic insulating film in the predetermined region, and removing all of the organic insulating film in the region to be bent; wherein the predetermined region is used to make a source on the inorganic insulating layer Via of the drain;
  • Step 1003 using a dry etching process, using the remaining organic insulating film as a mask, etching the inorganic insulating layer in the quenched region to a certain depth;
  • Step 1004 using an ashing process, removing all the corresponding organic insulating films in the preset area to obtain a pattern of the organic insulating layer;
  • Step 1005 using an organic insulating layer pattern as a mask, using an etching process to preset regions Performing etching to form a pattern of via holes, and etching the region to be bent, removing part of the inorganic insulating layer to form a groove, and obtaining a pattern of the inorganic insulating layer;
  • step 1006 an organic insulating film is formed on the inorganic insulating layer by inkjet printing so as to at least completely cover the surface of the groove to obtain a pattern of the organic insulating layer.
  • the via holes are not etched, but an organic insulating film is formed on the inorganic insulating layer to form a structure as shown in FIG. 12A.
  • the uppermost organic insulating film is etched by a halftone mask process, and the upper portion of the organic insulating film in the predetermined region e is removed, and the quasi-bending region b is removed. All organic insulating films in the middle.
  • the position of the preset region e is used to fabricate the source and drain vias 108 on the inorganic insulating layer to form a structure as shown in FIG. 12B.
  • step 1003 when the above step 1003 is implemented, after the step 1002 is performed, the inorganic insulating layer in the quenched region is continuously etched by using a dry etching process or other feasible process, using the occlusion of the remaining organic insulating film. At a certain depth, the entire groove structure is not etched at this time, but the complete etching is performed until step 1005, that is, the structure shown in Fig. 12C is formed.
  • the ashing process is used to remove all the remaining organic insulating films in the preset area e, and the pattern of the organic insulating layer is obtained.
  • a structure as shown in FIG. 12D is formed.
  • the occlusion of the organic insulating layer pattern is used, and the predetermined region e is etched to form a complete pattern of the via hole, and the quenched region is continuously etched and removed.
  • a portion of the inorganic insulating layer is formed to form a pattern of the grooves, thereby obtaining a pattern of the inorganic insulating layer to form a structure as shown in Fig. 12E.
  • an organic insulating film may be formed on the inorganic insulating layer mainly on the inorganic insulating layer so as to at least completely cover the surface of the groove to obtain a pattern of the organic insulating layer. That is, a structure as shown in FIG. 10C is also formed.
  • forming an organic insulating film on the inorganic insulating layer includes forming an organic insulating film doped with a flexible substance on the inorganic insulating layer.
  • a uniformly mixed solution may be prepared in advance, which is an organic insulating material doped with a flexible substance, the mixed solution is coated on the inorganic insulating layer, and finally an organic insulating film doped with a flexible substance is formed.
  • the uniformity of the dopant material needs to be ensured during the fabrication process, and the formed organic insulating layer can still be fabricated by the above two processes for forming the groove and the organic insulating layer, and does not affect the normal functions of other film layers.
  • forming an organic insulating film on the inorganic insulating layer includes forming an additional thin film on the inorganic insulating layer, and forming an organic insulating film on the additional film layer.
  • the order of forming the additional film layer and the organic insulating layer may be reversed; that is, forming a structure as shown in FIGS. 3B, 7A-7B, or 7C-7D; or forming on both sides of the organic insulating film layer.
  • Additional film layer The bending ability of the additional film material is greater than the bending ability of the organic insulating film material.
  • the manufacturing method can be made by the above two methods, and the process flow is similar, except that an additional film is formed before or after the organic insulating film is formed. Therefore, the above two types can be referred to. The introduction of the method will not repeat the production process.
  • Embodiments of the present disclosure provide a method for fabricating an exemplary flexible display panel.
  • a recess and an organic insulating layer are formed by a photolithography process, a mask is used to remove the inorganic insulating layer in the bend region, and then in the layer.
  • An organic insulating film is coated over the insulating layer, and the via of the source and drain electrodes in the display region is etched using the organic insulating film as a mask.
  • the recess and the organic insulating layer are formed by the halftone mask process, the inorganic insulating film in the quasi-bending region can be etched by using a halftone mask process and an ashing process after the entire layer of the organic insulating film is formed.
  • the vias of the source and drain electrodes in the display region are etched together, and then an organic insulating film which at least completely covers the surface of the recesses is formed in the recesses of the intended bend regions.
  • the flexible display panel provided by the embodiment of the present disclosure has a groove provided in a quasi-bending region of the inorganic insulating layer, and an organic insulating layer having a bending ability stronger than that of the inorganic insulating layer at a predetermined bending radius is added to at least Covering or completely covering the groove of the region to be bent, reducing the inorganic film layer in the region to be bent, thereby preventing the inorganic film layer in the region to be bent from being cracked or even broken due to frequent bending, The stress on the device itself is reduced when bending, and the reliability and life of the device are improved.
  • the organic insulating layer can completely cover the uppermost inorganic insulating layer (such as the interlayer insulating layer), the function of the insulating layer can be used instead of the partial inorganic insulating layer, and the uppermost layer can be appropriately reduced during fabrication.
  • the thickness of the inorganic insulating layer can be used instead of the partial inorganic insulating layer, and the uppermost layer can be appropriately reduced during fabrication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种柔性显示面板、其制作方法及显示装置。柔性显示面板包括:柔性基底(101)、设置在柔性基底(101)上的无机绝缘层(102)和有机绝缘层(103);无机绝缘层(102)在柔性显示面板的拟弯折区域(b)形成有凹槽(100);有机绝缘层(103)至少覆盖凹槽(100)的表面,且有机绝缘层(103)的弯折能力大于无机绝缘层(102)。

Description

柔性显示面板、其制作方法及显示装置
相关申请的交叉引用
本申请要求于2017年02月28日向SIPO提交的名称为“一种柔性显示面板、其制作方法及显示装置”的中国专利申请No.201710114786.3的优先权,其全文通过引用合并于本文。
技术领域
本公开的实施例涉及一种柔性显示面板、其制作方法及显示装置。
背景技术
柔性器件在我们的生活当中得到越来越广泛的应用。柔性电子器件尤其是柔性显示面板,以其轻薄,可弯曲甚至折叠,机械性能好等特点越来越受到人们的重视。然而,在进行弯折时,由于柔性显示面板采用了大量的无机工艺,无机膜层的总厚度一般要在1000纳米以上,例如,SiNx等无机膜层,由于在频繁弯折时,受到正反两面应力的影响,无机膜层较容易产生裂痕甚至断裂,从而造成柔性显示面板品质的下降乃至损坏失效。
发明内容
本公开的实施例提供一种柔性显示面板、其制作方法及显示装置。
本公开实施例提供的一种柔性显示面板,包括:
柔性基底;以及
设置在所述柔性基底上的无机绝缘层和有机绝缘层;
其中,所述无机绝缘层在所述柔性显示面板的拟弯折区域形成有凹槽,以及
所述有机绝缘层至少覆盖所述凹槽的表面。
本公开实施例还提供了一种显示装置,该显示装置包括如本公开实施例提供的上述柔性显示面板。
本公开实施例还提供了一种如本公开实施例提供的上述柔性显示面板的制作方法,包括:
在所述柔性基底上形成所述无机绝缘层和所述有机绝缘层;以及
在所述柔性显示面板的拟弯折区域的所述无机绝缘层中形成所述凹槽,并使所述有机绝缘层至少覆盖所述凹槽的表面。
附图说明
以下将结合附图对本公开的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本公开的实施例,其中:
图1A-1C为本公开实施例提供的柔性显示面板的基本结构示意图;
图2为本公开实施例提供的有机绝缘层填充一部分无机绝缘层和源漏极层之间的其它空间的结构示意图;
图3A为本公开实施例提供的有机绝缘层填充全部无机绝缘层和源漏极层之间的其它空间的结构示意图;
图3B所示,为本公开实施例提供的设置有附加膜层的柔性显示面板的结构示意图;
图4为本公开实施例提供的使有机绝缘层填充满凹槽的结构示意图;
图5A为本公开实施例提供的拟弯折区域设置在柔性显示面板的非显示区域的结构示意图;
图5B为本公开实施例提供的拟弯折区域设置在柔性显示面板的非像素区域的结构示意图;
图6为本公开实施例提供的拟弯折区域的无机绝缘层全部挖除的结构示意图;
图7A-7D为本公开实施例提供的附加膜层也设置在拟弯折区域的结构示意图;
图8为本公开实施例提供的柔性显示面板的制作方法的步骤流程图;
图9为本公开实施例提供的一种采用光刻工艺制作凹槽及有机绝缘层的方法步骤流程图;
图10A-图10C分别为本公开实施例提供的采用光刻工艺制作凹槽及有机 绝缘层的方法中各步骤执行后的结构示意图;
图11为本公开实施例提供的一种采用半色调掩膜工艺制作凹槽及有机绝缘层的方法步骤流程图;
图12A-图12E分别为本公开实施例提供的采用半色调掩膜工艺制作凹槽及有机绝缘层的方法中各步骤执行后的结构示意图;
图13为本公开实施例提供的柔性显示面板的平面示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在无需做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”、或类似表述仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
附图中膜层厚度、区域形状、结构特征形状大小等不反映真实比例,仅用于示意说明本公开的内容。
本公开实施例提供的一种柔性显示面板,对设置有拟经常弯折的区域的柔性显示面板,在无机绝缘层的拟经常弯折的区域设置了凹槽,并在无机绝缘层和源漏极层之间,增加了弯折能力比无机绝缘层强的有机绝缘层,使其至少覆盖或完全覆盖拟经常弯折的区域的凹槽,因而只要是能够弯折的显示面板,均可以采用本公开实施例中的结构。
如图1A-1C所示,为本公开实施例提供的柔性显示面板的基本结构示意图;该柔性显示面板包括:非弯折区域(包括显示区域a)和拟经常弯折的区域b。
例如,该柔性显示面板包括柔性基底101、设置在柔性基底101上的无机绝缘层102、设置在拟弯折区域b的凹槽100。柔性显示面板还可以包括有机绝缘层103和源漏极层104。例如,有机绝缘层103至少完全覆盖凹槽100的表面,且有机绝缘层103的弯折能力大于无机绝缘层102的弯折能力。
柔性基底例如可以为塑料基底。
例如,在柔性基底101上设置有无机绝缘层102,有机绝缘层103和源漏极层104。拟弯折区域b既可以设置在柔性显示面板中的非显示区域,又可以设置在显示区域,一般设置在对应的无机绝缘层上未设置过孔108的区域,也即过孔区d之外的区域。柔性显示面板除了包括无机绝缘层102,有机绝缘层103和源漏极层104外,还可以包括其它功能膜层1024(为清晰起见,未具体显示),如图7A-7D所示。
由于柔性显示面板中,无机膜层较容易因为频繁弯折而产生裂痕甚至断裂,因而本公开实施例提供的柔性显示面板,在无机绝缘层的拟弯折区域设置了凹槽,并增加了弯折能力比无机绝缘层强的有机绝缘层,使其至少覆盖或完全覆盖拟弯折区域的凹槽,减少了拟弯折区域的无机膜层,因而可以防止拟弯折区域的无机膜层因为频繁弯折而产生裂痕甚至断裂,从而减少弯曲时应力对器件本身的损伤,提高器件的信赖性和寿命。
例如,本公开实施例中设置的有机绝缘层,可以如图1C所示,完全覆盖凹槽的表面,而并不设置到无机绝缘层和源漏极层之间的其它空间。也可以将有机绝缘层设置为可以填充到无机绝缘层和源漏极层之间的其它空间,即可以完全覆盖无机绝缘层102,如图2所示,详见下面介绍。另外,还可以设置为除了完全覆盖凹槽表面之外,还可以填充一部分无机绝缘层和源漏极层之间的其它空间,即可以部分覆盖无机绝缘层102。但是,本公开的实施例不限于此。
为了方便制作,不增加工艺流程,可以至少在凹槽位置和用于制作源漏极的过孔的位置周围设置有机绝缘层,如图2-3A以及7A-7B所示,而其制作方法,可以参见下面对柔性显示面板的制作方法。
本公开实施例在无机绝缘层和源漏极层之间增加了在预设弯曲半径下的弯折能力较强的有机绝缘层。上述在预设弯曲半径下的弯折能力是指当材料 弯曲到一定弯曲半径(一般为较小弯曲半径,详见下面介绍)时,材料抵抗应力的作用而不出现损伤的能力;材料在预设弯曲半径下的弯折能力越大,在弯折时越不容易产生裂痕甚至断裂。
本公开实施例的结构主要应用于具有固定拟弯折区域的柔性显示面板,而拟弯折区域一般设置在非像素区域,为了防止拟弯折区域的无机绝缘层因为频繁弯折而产生裂痕甚至断裂,本公开的实施例在无机绝缘层的拟弯折区域形成凹槽,并使有机绝缘层至少完全覆盖凹槽的表面。
例如,柔性显示面板上的拟弯折区域一般可以分为主弯折区域和其余弯折区域。主弯折区域是指弯曲半径较小的区域,例如弯曲半径小于约5毫米;其余弯折区域指进行轻微弯折,其弯曲半径较大的区域,例如弯曲半径大于约20毫米。
拟弯折区域的弯折半径可以根据产品的设计需要而变化,由于弯曲半径越大的区域的无机绝缘层越容易产生裂痕甚至断裂,因而本公开的实施例一般是关于较小弯曲半径的弯曲区域,即主弯折区域,例如,预设弯曲半径小于5毫米。
例如,本公开实施例提供的柔性显示面板,除了是固定拟弯折区域外,还可以是其它弯折类型的柔性显示面板,例如,整个显示面板都可以沿一定方向弯折的柔性显示面板,甚至是可以随意弯折的柔性显示面板。为了使凹槽中的有机绝缘层起到最大的保护作用,对不同弯折类型的显示面板,凹槽设置的方式也不相同。例如,对柔性显示面板中有固定拟弯折区域的情况,凹槽的长度方向沿着弯折的轴线方向设置;而对可以随意弯折的柔性显示面板,可以围绕着一个或多个像素发光区域,在不发光的非像素区域设置一圈的凹槽结构;又或者可以设置为其它的结构,但不应影响柔性显示面板的正常显示。
例如,在本公开实施例提供的柔性显示面板中,有机绝缘层除了完全覆盖凹槽表面之外,还可以填充到无机绝缘层和源漏极层之间的其它空间,起到架高形成空间结构的作用。例如,有机绝缘层还填充于与源漏极层最邻近的无机绝缘层和源漏极层之间的空间中。
如图3A所示,为本公开实施例提供的有机绝缘层填充全部无机绝缘层和 源漏极层之间的其它空间的结构示意图;图中有机绝缘层103不仅覆盖了无机绝缘层上的凹槽区域,而且填充到了最上层的无机绝缘层和源漏极层之间的空间中,即,此种情况下,有机绝缘层在柔性基底上的正投影完全覆盖无机绝缘层在柔性基底上的正投影。
例如,由于有机绝缘层完全覆盖了最上层的无机绝缘层,因而可以起到架高形成一定厚度的空间结构的作用;同时利用其绝缘的作用,可以替代部分无机绝缘层的作用,在制作时,可以适当降低最上层的无机绝缘层的厚度;另外,有机绝缘层在预设弯曲半径下的弯折能力大于无机绝缘层在预设弯曲半径下的弯折能力,因而适当降低最上层的无机绝缘层的厚度,以有机绝缘层替代部分无机绝缘层的作用,可以降低无机绝缘层因为频繁弯折而产生裂痕甚至断裂的概率,从而减少弯曲时应力对器件本身的损伤。
例如,有机绝缘层的材料为下列材料中的一种或组合。例如,为聚酰亚胺类的有机膜。另外,还可以选用其他弯折能力较佳的绝缘膜作为有机绝缘层,条件是满足比无机绝缘层在预设弯曲半径下的弯折能力强。
为了进一步提高有机绝缘层的弯折能力,可以在有机绝缘层的材料中掺杂弯折能力更强的材料。例如,在有机绝缘层中掺杂柔性物质。例如,可以采用掺杂有石墨烯的聚酰亚胺材料,或者是掺杂有纳米陶瓷的聚酰亚胺材料来制作有机绝缘层。
除了可以直接在制作的有机绝缘层中掺杂弯折能力更强的材料之外,还可以在形成有机绝缘层之前,形成一层弯折能力更强的材料。例如,如图3B以及7A-7B所示,在有机绝缘层103靠近柔性基底101的一侧设置附加膜层105。
附加膜层105材料的弯折能力大于有机绝缘层103材料的弯折能力。例如,附加膜层105在柔性基底101上的正投影位于有机绝缘层103在柔性基底101上的正投影内。
在不影响显示功能的情况下,附加膜层105可以位于有机绝缘层103之下的整个区域,也可以仅位于除凹槽之外的有机绝缘层103之下的区域,或者仅位于凹槽区域中的有机绝缘层之下的区域。其在柔性基底101上的正投影也相应地位于有机绝缘层103的相应部分在柔性基底101上的正投影内。
也可以在无机膜层上先形成有机绝缘层103,再在有机绝缘层103上形成附加膜层105,如图7C-7D所示。在此例中,附加膜层105可以位于有机绝缘层103之上的整个区域,如图7C所示;也可以仅位于凹槽区域形成的有机绝缘层103之上的区域,或者覆盖凹槽区域的有机绝缘层103。例如,附加膜层105在柔性基底101上的正投影位于有机绝缘层103在柔性基底101上的正投影内;或者大于等于凹槽区域在基底101上的正投影。如图3B所示,为本公开实施例提供的设置有附加膜层的柔性显示面板的结构示意图。例如,由于增加的附加膜层具有较强的弯折能力,一方面可以对无机绝缘层的形变进行缓冲,另一方面如果无机绝缘层出现裂纹,附加膜层也可以适当的阻止裂纹向上传导,因而附加膜层105设置的大小一般不大于有机绝缘层的大小,也即,附加膜层105在基底101上的正投影面积不大于有机绝缘层在基板101上的正投影面积。为了不增加柔性显示面板的厚度,附加膜层的厚度一般设置为1000埃米-8000埃米。
而在制作附加膜层时,可以选取弯折能力较强的材料,例如,附加膜层的材料为下列材料中的一种或组合:与有机绝缘层材料相同且掺杂有石墨烯的材料、与有机绝缘层材料相同且掺杂有纳米陶瓷的材料、石墨烯。
例如,填充于无机绝缘层和源漏极层之间的有机绝缘层的厚度为0.5微米-2微米;覆盖凹槽表面的有机绝缘层的厚度为0.5微米-3微米。
例如,如图3A所示的结构,在拟弯折区域b的凹槽100中,使有机绝缘层103仅覆盖凹槽的表面,并不完全填充满凹槽100。另外,在不影响有机绝缘层103上方制作的其它功能膜层的条件下,也可以使有机绝缘层103完全填充满凹槽100,即形成如图4所示的结构,其中的有机绝缘层103填充满凹槽100。此外,还可以将有机绝缘层103填充满凹槽100之外,再高出凹槽水平位置之上几μm到数十μm,例如,3-30μm。发明人发现这样的有机绝缘层的填充方式可以获得更好的抗弯折效果。
下面的实施例均以图3A中的有机绝缘层的设置方式为例进行说明。
如图5A所示,为本公开实施例提供的拟弯折区域b设置在柔性显示面板的非显示区域的结构示意图;图中a代表显示区域,b代表设置的拟弯折区域,c代表非显示区域。例如,源漏极层104包括:源漏电极1041,以及与源漏 电极1041相连的源漏极引线1042;拟弯折区域设置在柔性显示面板的非显示区域c,且凹槽100设置在源漏极引线1042的下方。
例如,如图7A-7D以及图13所示,在非弯折区域设置过孔区域d。
例如,当拟弯折区域b设置在柔性显示面板的边框处的非显示区域时,即无机绝缘层102上或柔性基底101上的凹槽100设置在非显示区域时,由于源漏极的引线1042一般会经过拟常弯折的区域,因而在最上层的无机膜层和源漏极层之间增加在预设弯曲半径下的弯折能力较强的有机绝缘层,还可以防止源漏极引线因为频繁弯折而产生裂痕甚至断裂。
另外,本公开实施例提供的柔性显示面板,当拟弯折区域设置在柔性显示面板的边框处的非显示区域时,一般弯曲半径不大于5毫米的主弯折区域设置有1个-2个,且每个拟弯折区域均对应的设置有凹槽结构。
而当拟弯折区域设置在显示区域中时,为了方便制作,应尽量避开发光区域,如图5B所示,为本公开实施例提供的拟弯折区域设置在柔性显示面板的非像素区域的结构示意图。例如,拟弯折区域b设置在柔性显示面板的显示区域a;凹槽设置在显示区域a中的非像素区域a’。例如,凹槽可以设置在相邻子像素之间不发光的非像素区域a’。
例如,本公开实施例中提供的无机绝缘层可以包括多个膜层。例如,如图5A所示,无机绝缘层包括:依次设置的缓冲层1021,栅极绝缘层1022和层间绝缘层1023。
例如,如图7A-7D所示,本公开实施例中提供的柔性显示面板还可以包括层间绝缘层1023以下的其它层1024。
例如,设置在无机绝缘层中拟弯折区域的凹槽,其可以如图1-图5B所示设置为凹槽100的底部距离柔性基底101有一定距离,例如,凹槽底部的厚度为50埃米-1000埃米。
例如,也可以将拟弯折区域的无机绝缘层全部挖除,即挖除至柔性基底上方。如图1B所示,为本公开实施例提供的拟弯折区域的无机绝缘层全部挖除的结构示意图;然后再在凹槽100中设置有机绝缘层,如图6所示。但是,本公开的实施例并不限于此。
例如,设置在无机绝缘层中拟弯折区域的凹槽100,其凹槽开口的宽度一 般取决于弯曲半径,例如,凹槽的宽度为0.5毫米-5毫米,又例如,凹槽的宽度为约0.5毫米。
例如,本公开实施例中提供的柔性显示面板可以是矩形,也可以是其它需要弯折的异形显示面板。另外,图1-图7中仅是为了表示柔性显示面板结构的示意图,并不用于限定其真实的结构,如膜层的厚度,源漏极的数量和其它各层位置等可以根据实际的需要进行设置。例如,在不影响功能的情况下,有机绝缘层也可以设置在其它位置,例如,无机绝缘层之下。
基于同一公开构思,本公开实施例还提供了一种显示装置,该显示装置包括本公开实施例提供的上述任一柔性显示面板。由于该显示装置解决问题的原理与本公开实施例提供的柔性显示面板相似,因此该显示装置的实施可以参见柔性显示面板的实施,重复之处不再赘述。
基于同一构思,本公开实施例还提供了一种柔性显示面板的制作方法,用于制作本公开实施例提供的上述柔性显示面板,如图8所示,可以采用如下步骤制作柔性显示面板:
步骤701,在柔性基底上依次形成无机绝缘层;
步骤702,在无机绝缘层的拟弯折区域形成凹槽,并在无机绝缘层上形成有机绝缘层,使其至少完全覆盖凹槽的表面;
步骤703,在有机绝缘层上形成源漏极层的图形。
有机绝缘层在预设弯曲半径下的弯折能力大于无机绝缘层在预设弯曲半径下的弯折能力。
下面介绍制作凹槽及有机绝缘层的示例工艺方法。
采用光刻工艺制作凹槽及有机绝缘层
例如,如图9所示,为本公开实施例提供的一种采用光刻工艺制作凹槽及有机绝缘层的方法步骤流程图,包括:
步骤801,在柔性显示面板的拟弯折区域,采用光刻工艺,去除掉部分无机绝缘层,形成凹槽;
步骤802,在无机绝缘层上形成有机绝缘薄膜,使其至少完全覆盖凹槽的表面;
步骤803,对柔性显示面板中像素区域进行刻蚀,形成用于制作源漏电极 的过孔,得到无机绝缘层和有机绝缘层的图形。
下面以形成图3A结构的柔性显示面板为例,对采用光刻工艺制作凹槽及有机绝缘层的步骤进行详细说明。
例如,在实现上述步骤801时,如图10A所示,在柔性显示面板的拟弯折区域b,采用光刻工艺,去除掉部分或全部无机绝缘层,形成一个凹槽。而凹槽的参数可以参见上述柔性显示面板部分的介绍,在此不做重复赘述。
例如,在实现上述步骤802时,如图10B所示,在无机绝缘层上形成有机绝缘薄膜,使其至少完全覆盖凹槽的表面。形成有机绝缘薄膜的方式包括例如,喷墨打印、旋转(spin)涂覆、狭缝(sl it)涂覆、印刷等方式。而有机绝缘薄膜的厚度,覆盖范围等可以参见上述柔性显示面板部分的介绍,在此不再赘述。
例如,在实现上述步骤803时,如图10C所示,在制作完有机绝缘薄膜之后,再对柔性显示面板中像素区域进行刻蚀,形成例如用于制作源漏电极的过孔108,进而得到无机绝缘层和有机绝缘层的图形。
图1-图2以及图4-图7中的柔性显示面板,其制作时形成的结构与图3A类似,可以参见上述采用光刻工艺制作凹槽及有机绝缘层时,各步骤执行后的结构参见上面各示意图。
采用半色调掩膜工艺制作凹槽及有机绝缘层
如图11所示,为本公开实施例提供的一种采用半色调掩膜工艺制作凹槽及有机绝缘层的方法步骤流程图,包括:
步骤1001,在无机绝缘层上形成有机绝缘薄膜;
步骤1002,采用半色调掩膜工艺,去除掉预设区域中的部分有机绝缘薄膜,以及去除掉拟弯折区域中的全部有机绝缘薄膜;其中,预设区域用于在无机绝缘层上制作源漏极的过孔;
步骤1003,采用干刻工艺,利用剩余的有机绝缘薄膜作为掩模,将拟弯折区域中的无机绝缘层刻蚀至一定深度;
步骤1004,采用灰化工艺,去除掉预设区域中对应的全部有机绝缘薄膜,得到有机绝缘层的图形;
步骤1005,利用有机绝缘层图形作为掩模,采用蚀刻工艺,对预设区域 进行刻蚀形成过孔的图形,以及对拟弯折区域进行刻蚀,去除掉部分无机绝缘层形成凹槽,得到无机绝缘层的图形;
步骤1006,采用喷墨打印的方式,在无机绝缘层上形成有机绝缘薄膜,使其至少完全覆盖凹槽的表面,得到有机绝缘层的图形。
下面以形成图3A结构的柔性显示面板为例,对采用半色调掩膜工艺制作凹槽及有机绝缘层的步骤进行详细说明。
例如,在实现上述步骤1001时,在形成完无机绝缘层之后,先不刻蚀过孔,而是在无机绝缘层上形成有机绝缘薄膜,形成如图12A所示的结构。
例如,在执行上述步骤1002时,采用半色调掩膜工艺对最上层的有机绝缘薄膜进行刻蚀,在去除掉预设区域e中的上部分有机绝缘薄膜的同时,去除掉拟弯折区域b中的全部有机绝缘薄膜。预设区域e的位置用于在无机绝缘层上制作源漏极的过孔108,形成如图12B所示的结构。
例如,在实现上述步骤1003时,是在执行完步骤1002之后,采用干刻工艺或者其它可行的工艺,利用剩余的有机绝缘薄膜的遮挡,继续将拟弯折区域中的无机绝缘层刻蚀至一定的深度,此时并不刻蚀出全部的凹槽结构,而是等到步骤1005时才进行完全刻蚀,即形成如图12C所示的结构。
例如,在执行上述步骤1004时,是在执行完步骤1003之后,再采用灰化工艺,去除掉预设区域e中对应的全部剩余的有机绝缘薄膜,此时得到了有机绝缘层的图形,即形成如图12D中所示的结构。
例如,在实现上述步骤1005时,利用有机绝缘层图形的遮挡,采用蚀刻工艺,对预设区域e进行刻蚀形成过孔的完整的图形的同时,对拟弯折区域继续进行刻蚀,去除掉部分无机绝缘层形成凹槽的图形,进而得到无机绝缘层的图形,形成如图12E所示的结构。
例如,在实现上述步骤1006时,可以采用喷墨打印的方式,在无机绝缘层上,主要是在凹槽区域形成有机绝缘薄膜,使其至少完全覆盖凹槽的表面,得到有机绝缘层的图形,即也形成如图10C所示的结构。
对上述两种制作凹槽及有机绝缘层,除了可以直接形成有机绝缘层之外,还可以在此基础上进行进一步改进,例如,在有机绝缘材料中掺杂弯折能力更强的物质,或者在形成有机绝缘层之前或之后,形成一层掺杂弯折能力更 强的附加膜层105等。
例如,在无机绝缘层上形成有机绝缘薄膜,包括:在无机绝缘层上形成掺杂有柔性物质的有机绝缘薄膜。例如,可以事先准备好混合均匀的混合溶液,该混合溶液为掺杂有柔性物质的有机绝缘材料,在无机绝缘层上涂覆该混合溶液,最后形成掺杂有柔性物质的有机绝缘薄膜。但制作过程中需保证掺杂物质的均匀性,形成的有机绝缘层仍可以通过上述两种制作凹槽及有机绝缘层工艺进行制作,以及不会影响其它膜层的正常功能等。
例如,在无机绝缘层上形成有机绝缘薄膜,包括:在无机绝缘层上形成附加薄膜,以及在附加膜层上形成有机绝缘薄膜。可选择地,也可以将形成附加膜层和有机绝缘层的顺序反过来;即,形成如图3B、7A-7B,或7C-7D所示的结构;或者在有机绝缘膜层的两面都形成附加膜层。附加薄膜材料的弯折能力大于有机绝缘薄膜材料的弯折能力。由于增加附加膜层的柔性显示面板,其制作方法均可以采用上述两种方法制作,且工艺流程类似,只是在形成有机绝缘薄膜之前或之后,形成一层附加薄膜,因此,可以参见上述两种方法的介绍,不再对制作过程进行重复赘述。
图1-图7中的其它的柔性显示面板结构的制作工艺可以参见上述采用半色调掩膜工艺制作凹槽及有机绝缘层等的工艺步骤,重复之处不再赘述。
本公开实施例提供了示例的柔性显示面板的制作方法,采用光刻工艺制作凹槽及有机绝缘层时,需要使用一张掩膜版对拟弯折区域的无机绝缘层进行去除,然后在层间绝缘层上方涂覆有机绝缘薄膜,并利用有机绝缘薄膜作为掩膜版将显示区域中源漏极的过孔蚀刻出来。而采用半色调掩膜工艺制作凹槽及有机绝缘层时,可以在制作完一整层的有机绝缘薄膜之后,采用半色调掩膜工艺和灰化工艺,在刻蚀拟弯折区域的无机绝缘层时,一起刻蚀出显示区域中源漏极的过孔,之后再在拟弯折区域的凹槽中形成至少完全覆盖凹槽的表面的有机绝缘薄膜。
本公开实施例提供的柔性显示面板,在无机绝缘层的拟弯折区域设置了凹槽,并增加了在预设弯曲半径下的弯折能力比无机绝缘层强的有机绝缘层,使其至少覆盖或完全覆盖拟弯折区域的凹槽,减少了拟弯折区域的无机膜层,因而可以防止拟弯折区域的无机膜层因为频繁弯折而产生裂痕甚至断裂,从 而减少弯曲时应力对器件本身的损伤,提高器件的可信赖性和寿命。另外,由于有机绝缘层也可以完全覆盖最上层的无机绝缘层(如层间绝缘层),因而利用其绝缘的作用,可以替代部分无机绝缘层的作用,进而在制作时,可以适当降低最上层的无机绝缘层的厚度。
以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其它结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的示例性实施例,但本公开的保护范围并不局限于此。任何熟悉本技术领域的普通技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。

Claims (24)

  1. 一种柔性显示面板,包括:
    柔性基底;以及
    设置在所述柔性基底上的无机绝缘层和有机绝缘层;
    其中,所述无机绝缘层在所述柔性显示面板的拟弯折区域形成有凹槽,以及
    所述有机绝缘层至少覆盖所述凹槽的表面。
  2. 如权利要求1所述的柔性显示面板,其中,所述有机绝缘层的弯折能力大于所述无机绝缘层的弯折能力。
  3. 如权利要求1或2所述的柔性显示面板,其中,所述有机绝缘层位于所述无机绝缘层远离所述柔性基底的一侧。
  4. 如权利要求1-3任一项所述的柔性显示面板,其中,所述柔性显示面板还包括附加膜层,所述附加膜层位于所述有机绝缘层和所述无机绝缘层之间,且与所述无机绝缘层直接接触。
  5. 如权利要求1-3任一项所述的柔性显示面板,其中,所述柔性显示面板还包括附加膜层,所述附加膜层位于所述有机绝缘层和所述无机绝缘层之间,且与所述有机绝缘层直接接触。
  6. 如权利要求4所述的柔性显示面板,其中,所述附加膜层位于所述无机绝缘层远离所述柔性基底的一侧。
  7. 如权利要求5所述的柔性显示面板,其中,所述附加膜层位于所述有机绝缘层远离所述柔性基底的一侧,且至少覆盖所述凹槽内的所述有机绝缘层部分。
  8. 如权利要求1-7任一项所述的柔性显示面板,其中所述有机绝缘层位于所述凹槽中的部分高出所述凹槽水平位置。
  9. 如权利要求1-8任一项所述的柔性显示面板,还包括:在所述柔性基 底上形成的源漏极层;以及在所述柔性显示面板的非弯折区域形成的过孔。
  10. 如权利要求9所述的柔性显示面板,其中,所述源漏极层位于所述非弯折区域,所述有机绝缘层位于所述无机绝缘层和所述源漏极层之间。
  11. 如权利要求1或2所述的柔性显示面板,其中,所述无机绝缘层位于所述有机绝缘层远离所述柔性基底的一侧。
  12. 如权利要求1-11任一项所述的柔性显示面板,其中,所述有机绝缘层中包含柔性物质。
  13. 如权利要求4-12任一项所述的柔性显示面板,其中,所述附加膜层的材料为下列材料中的一种或其组合:
    与所述有机绝缘层材料相同且掺杂有石墨烯的材料、与所述有机绝缘层材料相同且掺杂有纳米陶瓷的材料、或石墨烯。
  14. 如权利要求9-10、12-13任一项所述的柔性显示面板,其中,所述源漏极层包括:源漏电极,以及与所述源漏电极相连的源漏极引线;以及
    所述有机绝缘层位于所述源漏极引线与所述无机绝缘层之间。
  15. 如权利要求1-14任一项所述的柔性显示面板,其中,所述无机绝缘层包括:依次设置在柔性基底上的缓冲层,栅极绝缘层和层间绝缘层。
  16. 如权利要求1-15任一项所述的柔性显示面板,其中,所述有机绝缘层的材料为下列材料中的一种或组合:
    聚酰亚胺和亚克力。
  17. 一种显示装置,包括权利要求1-16中任一项所述的柔性显示面板。
  18. 一种如权利要求1-16任一项所述的柔性显示面板的制作方法,包括:
    在所述柔性基底上形成所述无机绝缘层和所述有机绝缘层;以及
    在所述柔性显示面板的拟弯折区域的所述无机绝缘层中形成所述凹槽,并使所述有机绝缘层至少覆盖所述凹槽的表面。
  19. 一种如权利要求18所述的柔性显示面板的制作方法,还包括:在所述有机绝缘层上形成所述源漏极层的图形;其中,所述有机绝缘层的弯折能 力大于所述无机绝缘层的弯折能力。
  20. 如权利要求19所述的方法,还包括:
    在所述柔性显示面板的拟弯折区域,采用光刻工艺,去除掉部分所述无机绝缘层,形成所述凹槽;
    在所述无机绝缘层上形成所述有机绝缘薄膜,使其至少覆盖所述凹槽的表面;
    对所述柔性显示面板中所述像素区域进行刻蚀,形成用于制作所述源漏电极的过孔,得到所述无机绝缘层和所述有机绝缘层的图形。
  21. 如权利要求18-20任一项所述的方法,还包括:
    在所述无机绝缘层上形成所述有机绝缘薄膜;
    采用半色调掩膜工艺,去除掉预设区域中的部分所述有机绝缘薄膜,以及去除掉拟弯折区域中的全部所述有机绝缘薄膜;其中,所述预设区域用于在所述无机绝缘层上制作源漏极的过孔;
    采用干刻工艺,利用剩余的有机绝缘薄膜的遮挡,将所述拟弯折区域中的所述无机绝缘层刻蚀至一定深度;
    采用灰化工艺,去除掉所述预设区域中对应的全部有机绝缘薄膜,得到有机绝缘层的图形;
    利用所述有机绝缘层图形作外掩模,采用蚀刻工艺,对所述预设区域进行刻蚀形成所述过孔的图形,以及对所述拟弯折区域进行刻蚀,去除掉部分所述无机绝缘层形成凹槽,得到所述无机绝缘层的图形;以及
    采用喷墨打印的方式,在所述无机绝缘层上形成有机绝缘薄膜,使其至少覆盖所述凹槽的表面,得到有机绝缘层的图形。
  22. 如权利要求20-21任一项所述的方法,还包括:
    在所述无机绝缘层上采用喷墨打印的方式形成掺杂有柔性物质的有机绝缘薄膜。
  23. 如权利要求20-21任一项所述的方法,还包括:
    在所述无机绝缘层上形成所述附加薄膜;以及
    在所述附加膜层上形成所述有机绝缘薄膜;
    其中,所述附加薄膜材料的弯折能力大于所述有机绝缘薄膜材料的弯折能力。
  24. 如权利要求20-21任一项所述的方法,还包括:
    在所述有机绝缘层上形成所述附加薄膜,使其至少覆盖所述凹槽中的有机绝缘层部分;
    其中,所述附加薄膜材料的弯折能力大于所述有机绝缘薄膜材料的弯折能力。
PCT/CN2017/106060 2017-02-28 2017-10-13 柔性显示面板、其制作方法及显示装置 WO2018157606A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/764,552 US20200243574A1 (en) 2017-02-28 2017-10-13 Flexible display panel, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710114786.3 2017-02-28
CN201710114786.3A CN106601133B (zh) 2017-02-28 2017-02-28 一种柔性显示面板、其制作方法及显示装置

Publications (1)

Publication Number Publication Date
WO2018157606A1 true WO2018157606A1 (zh) 2018-09-07

Family

ID=58587949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106060 WO2018157606A1 (zh) 2017-02-28 2017-10-13 柔性显示面板、其制作方法及显示装置

Country Status (3)

Country Link
US (1) US20200243574A1 (zh)
CN (1) CN106601133B (zh)
WO (1) WO2018157606A1 (zh)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601133B (zh) * 2017-02-28 2020-04-14 京东方科技集团股份有限公司 一种柔性显示面板、其制作方法及显示装置
CN107170758B (zh) 2017-05-25 2020-08-14 京东方科技集团股份有限公司 柔性显示基板及其制作方法、显示装置
JP6843710B2 (ja) * 2017-07-12 2021-03-17 株式会社ジャパンディスプレイ 表示装置、および表示装置の製造方法
CN107507846B (zh) * 2017-07-25 2021-04-23 武汉华星光电半导体显示技术有限公司 一种oled显示器及其制程
CN107424520B (zh) 2017-07-26 2019-04-16 京东方科技集团股份有限公司 基板及其制备方法、显示面板、显示装置
CN107195253B (zh) * 2017-07-26 2020-08-25 武汉天马微电子有限公司 可折叠柔性显示装置
CN107425044B (zh) * 2017-08-04 2021-03-23 京东方科技集团股份有限公司 一种柔性显示面板、其制作方法及显示装置
CN109427911B (zh) * 2017-08-31 2021-12-14 昆山国显光电有限公司 一种柔性薄膜晶体管及其制备方法
CN109427249A (zh) * 2017-08-31 2019-03-05 昆山工研院新型平板显示技术中心有限公司 柔性显示面板及其制作方法
CN109755256B (zh) * 2017-11-01 2022-01-11 京东方科技集团股份有限公司 柔性显示面板及制备方法、柔性显示装置
CN107680497B (zh) * 2017-11-03 2019-12-03 京东方科技集团股份有限公司 显示基板的制造方法、显示基板、显示面板和显示装置
CN107910335A (zh) * 2017-11-08 2018-04-13 武汉华星光电半导体显示技术有限公司 柔性显示面板、柔性显示面板制作方法及显示装置
CN107994055B (zh) * 2017-11-10 2020-09-04 武汉华星光电半导体显示技术有限公司 可弯折显示面板及其制作方法
US10847596B2 (en) 2017-11-10 2020-11-24 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Bendable display panel and fabricating method thereof
KR102416038B1 (ko) * 2017-11-30 2022-07-04 삼성디스플레이 주식회사 디스플레이 장치 및 그 제조 방법
CN109860202B (zh) * 2017-11-30 2021-03-26 云谷(固安)科技有限公司 阵列基板及其制造方法及显示屏
CN109859624B (zh) * 2017-11-30 2021-04-20 昆山国显光电有限公司 阵列基板及其制备方法及显示屏
CN108198950B (zh) * 2017-12-28 2019-11-22 武汉华星光电半导体显示技术有限公司 柔性显示面板的边缘区结构、柔性显示面板
CN108183126B (zh) * 2017-12-31 2020-11-10 深圳市华星光电技术有限公司 一种弹性显示面板制作方法、弹性显示面板及其显示器
US10424750B2 (en) 2017-12-31 2019-09-24 Shenzhen China Star Optoelectronics Technology Co., Ltd. Stretchable display panel, manufacturing method thereof, and stretchable display apparatus
CN108242462B (zh) * 2018-01-12 2020-08-18 京东方科技集团股份有限公司 有机发光显示面板及其制备方法、显示装置
CN108231672A (zh) * 2018-01-19 2018-06-29 昆山国显光电有限公司 柔性显示面板的制作方法及柔性显示面板
CN108288637B (zh) * 2018-01-24 2021-03-02 武汉华星光电半导体显示技术有限公司 柔性显示面板的制作方法及柔性显示面板
KR102535784B1 (ko) * 2018-02-02 2023-05-24 삼성디스플레이 주식회사 표시 장치 및 그것의 제조 방법
CN112820766B (zh) * 2018-03-28 2024-07-09 上海天马微电子有限公司 一种柔性显示面板及显示装置
CN108470521B (zh) * 2018-03-29 2021-02-26 京东方科技集团股份有限公司 一种显示面板、显示装置及其制作方法
CN108847136A (zh) 2018-06-29 2018-11-20 京东方科技集团股份有限公司 电子设备
CN109037469B (zh) 2018-07-09 2020-11-03 上海天马微电子有限公司 一种柔性显示面板和显示装置
CN108922983B (zh) 2018-07-26 2020-07-28 武汉天马微电子有限公司 一种显示面板及显示装置
CN108898955A (zh) * 2018-07-31 2018-11-27 武汉天马微电子有限公司 一种显示面板及显示装置
CN109036134B (zh) * 2018-08-01 2021-01-26 京东方科技集团股份有限公司 柔性显示基板及其制作方法、显示装置
CN109300848B (zh) * 2018-08-24 2021-04-02 武汉华星光电半导体显示技术有限公司 制作柔性阵列基板的方法以及柔性阵列基板
CN109166866B (zh) * 2018-08-28 2020-12-04 武汉天马微电子有限公司 一种显示面板和显示装置
CN108986671B (zh) * 2018-09-21 2021-07-13 上海天马微电子有限公司 一种可折叠屏和显示装置
CN109300913B (zh) * 2018-09-27 2020-11-27 厦门天马微电子有限公司 阵列基板和显示面板
CN111081714B (zh) * 2018-10-19 2022-11-04 京东方科技集团股份有限公司 柔性阵列基板及其制备方法、显示面板
CN109460162B (zh) * 2018-10-31 2022-05-24 上海天马微电子有限公司 一种触控显示面板以及电子设备
CN111142696B (zh) * 2018-11-05 2023-04-28 上海和辉光电股份有限公司 一种可弯折触控屏
US10964731B2 (en) * 2018-12-04 2021-03-30 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Array substrate and manufacturing method thereof and display device
CN109493728B (zh) * 2018-12-13 2022-10-14 云谷(固安)科技有限公司 一种显示面板及显示装置
US10950809B2 (en) 2018-12-21 2021-03-16 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible display panel having a photoresist supporting element
CN109671762B (zh) * 2018-12-21 2020-11-24 武汉华星光电半导体显示技术有限公司 柔性显示面板、其制造方法及柔性显示装置
CN110660327B (zh) 2019-01-18 2021-03-23 友达光电股份有限公司 显示装置
CN109887956B (zh) * 2019-01-25 2021-04-27 武汉华星光电半导体显示技术有限公司 有机发光二极管柔性阵列基板
CN109860252B (zh) * 2019-01-30 2021-07-06 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN109830184B (zh) 2019-02-22 2021-04-27 京东方科技集团股份有限公司 一种电致发光显示面板及其制备方法、显示装置
CN109801954B (zh) * 2019-02-26 2021-04-09 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板及显示装置
CN110047381A (zh) * 2019-03-27 2019-07-23 武汉华星光电半导体显示技术有限公司 显示面板及制作方法
CN110246849A (zh) 2019-05-17 2019-09-17 武汉华星光电半导体显示技术有限公司 阵列基板
CN110233155B (zh) * 2019-06-26 2021-02-26 武汉华星光电半导体显示技术有限公司 一种阵列基板及其制作方法、显示面板
CN110379310A (zh) * 2019-07-22 2019-10-25 京东方科技集团股份有限公司 一种柔性显示模组及其制备方法、柔性显示装置
CN110534475A (zh) * 2019-08-19 2019-12-03 武汉华星光电半导体显示技术有限公司 一种阵列基板及其制作方法、显示面板
CN110838468A (zh) * 2019-11-19 2020-02-25 京东方科技集团股份有限公司 显示基板的制作方法、显示基板、显示面板及显示装置
CN111402729A (zh) * 2020-03-25 2020-07-10 武汉华星光电半导体显示技术有限公司 柔性显示面板及其制备方法
CN111627968B (zh) * 2020-06-04 2022-12-09 京东方科技集团股份有限公司 柔性显示用基板及其制备方法、柔性显示装置
CN113823654B (zh) * 2020-06-19 2024-03-15 京东方科技集团股份有限公司 一种驱动基板、发光装置及其制作方法
CN113947994B (zh) * 2020-07-15 2023-01-10 京东方科技集团股份有限公司 显示面板和显示装置
CN112002702B (zh) * 2020-08-06 2022-09-27 武汉华星光电半导体显示技术有限公司 柔性显示面板及可卷曲显示装置
CN115482721A (zh) * 2021-05-31 2022-12-16 京东方科技集团股份有限公司 柔性显示面板和滑卷显示装置
CN114373387B (zh) * 2021-12-22 2024-04-09 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103648A (zh) * 2014-07-24 2014-10-15 上海天马微电子有限公司 柔性显示设备、柔性显示母板及其制作方法
US9159950B2 (en) * 2013-03-27 2015-10-13 Samsung Display Co., Ltd. Organic light emitting display device and method for manufacturing the same
CN105185835A (zh) * 2015-07-30 2015-12-23 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法、阵列基板、显示装置
CN105679800A (zh) * 2016-01-27 2016-06-15 京东方科技集团股份有限公司 Oled显示屏及其制备方法、显示设备
CN106338852A (zh) * 2016-11-01 2017-01-18 上海天马微电子有限公司 一种可挠式基板、显示面板及可挠式基板的制作方法
CN106601133A (zh) * 2017-02-28 2017-04-26 京东方科技集团股份有限公司 一种柔性显示面板、其制作方法及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278978B (zh) * 2012-08-31 2015-12-02 厦门天马微电子有限公司 一种液晶显示面板及其制作方法
CN204029804U (zh) * 2014-06-30 2014-12-17 京东方科技集团股份有限公司 一种柔性基板、柔性显示面板和柔性显示装置
CN204885169U (zh) * 2015-09-16 2015-12-16 京东方科技集团股份有限公司 有机发光二极管显示基板及显示装置
CN205454263U (zh) * 2015-12-29 2016-08-10 广东欧珀移动通信有限公司 一种可折叠的移动终端
CN106129096B (zh) * 2016-08-29 2019-08-20 武汉华星光电技术有限公司 一种柔性背板及其制作方法、柔性显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9159950B2 (en) * 2013-03-27 2015-10-13 Samsung Display Co., Ltd. Organic light emitting display device and method for manufacturing the same
CN104103648A (zh) * 2014-07-24 2014-10-15 上海天马微电子有限公司 柔性显示设备、柔性显示母板及其制作方法
CN105185835A (zh) * 2015-07-30 2015-12-23 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法、阵列基板、显示装置
CN105679800A (zh) * 2016-01-27 2016-06-15 京东方科技集团股份有限公司 Oled显示屏及其制备方法、显示设备
CN106338852A (zh) * 2016-11-01 2017-01-18 上海天马微电子有限公司 一种可挠式基板、显示面板及可挠式基板的制作方法
CN106601133A (zh) * 2017-02-28 2017-04-26 京东方科技集团股份有限公司 一种柔性显示面板、其制作方法及显示装置

Also Published As

Publication number Publication date
US20200243574A1 (en) 2020-07-30
CN106601133B (zh) 2020-04-14
CN106601133A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018157606A1 (zh) 柔性显示面板、其制作方法及显示装置
US10818696B2 (en) Display panel and fabricating method thereof
KR102315759B1 (ko) 플렉시블 디스플레이 패널의 제조 방법 및 플렉시블 디스플레이 패널
CN109755256B (zh) 柔性显示面板及制备方法、柔性显示装置
US20210376290A1 (en) Display Panel, Display Device and Method for Manufacturing Display Panel
US20190259967A1 (en) Flexible display panel and method for manufacturing same
KR101866705B1 (ko) 마이크로 커버층을 갖는 디스플레이 디바이스 및 이의 제조 방법
US11191160B2 (en) Flexible base substrate, manufacturing method thereof, display device
CN108091675B (zh) 显示基板及其制作方法
US9768196B2 (en) Flexible display apparatus, flexible display motherboard and method for manufacturing flexible display motherboard
US20230209913A1 (en) Display panel, manufacturing method thereof, and display device
EP3270416A1 (en) Pixel unit and preparation method therefor, array substrate and display device
WO2019105086A1 (zh) 显示基板及其制作方法、显示面板、显示装置
US20210167145A1 (en) Display substrate, display apparatus, method of fabricating display substrate
WO2019144610A1 (zh) 扇出结构及其制造方法、显示面板
US11158689B2 (en) Electroluminescent display panel, manufacturing method thereof and display device
US20190245018A1 (en) Display substrate and manufacturing method thereof, and display apparatus
US20210343805A1 (en) Array substrate, display device, and method for fabricating an array substrate
TWI555183B (zh) 薄膜電晶體以及畫素結構
US11233219B2 (en) Organic light emitting component, fabrication method, and display device each having anti-shrinkage stop structures
CN110600482B (zh) 一种阵列基板及其制作方法、显示面板
CN109461760B (zh) 有机发光显示面板与显示装置
JP2014026906A (ja) 表示装置及びその製造方法
US11695075B2 (en) Thin film transistor and manufacturing method thereof, array substrate and display device
US20210020873A1 (en) Mask, flexible display panel and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/02/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17898599

Country of ref document: EP

Kind code of ref document: A1