WO2018155669A1 - 新規四環式保護剤 - Google Patents

新規四環式保護剤 Download PDF

Info

Publication number
WO2018155669A1
WO2018155669A1 PCT/JP2018/006866 JP2018006866W WO2018155669A1 WO 2018155669 A1 WO2018155669 A1 WO 2018155669A1 JP 2018006866 W JP2018006866 W JP 2018006866W WO 2018155669 A1 WO2018155669 A1 WO 2018155669A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
formula
atom
Prior art date
Application number
PCT/JP2018/006866
Other languages
English (en)
French (fr)
Inventor
矢野 真也
健太 齋藤
秀樹 窪田
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to JP2018529317A priority Critical patent/JP6393857B1/ja
Publication of WO2018155669A1 publication Critical patent/WO2018155669A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages

Definitions

  • the present invention relates to a novel tetracyclic compound useful as a protective agent such as a carboxy group, a hydroxy group, an amino group, an amide group or a mercapto group.
  • an object of the present invention is to provide a protecting group that facilitates separation and purification after the reaction without solidification or insolubilization by improving the solubility of the functional group-protected compound in an organic solvent. It is in.
  • the present inventor has developed a novel compound in which a trialkylsilyloxy group is introduced into the benzene ring of the tetracyclic compound via an oxyalkylene group. It has been found that a compound in which a functional group is protected using this tetracyclic compound is difficult to precipitate in an organic solvent, can be easily separated and purified by liquid-liquid phase separation, and is useful as a protective agent.
  • the present invention has been completed.
  • the present invention provides the following [1] to [8].
  • Y represents a hydroxy group or a halogen atom
  • Z represents an oxygen atom, a sulfur atom, a single bond or a linear alkylene group having 1 to 3 carbon atoms
  • at least one of R 1 to R 13 is Formula (2)
  • R 14 represents a linear or branched alkylene group having 1 to 16 carbon atoms
  • X represents O or CONR 15 (wherein R 15 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms);
  • A is the formula (3), (4), (5), (6), (7), (8), (9), (10), (11), (12) or (13)
  • R 16 , R 17 and R 18 are the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms, or an aryl group which may have a substituent; R 19 represents a single bond or a linear or branched alkylene group having 1 to 3 carbon atoms, and R 20 , R 21 and R 22 each represents a linear or branched alkylene group having 1 to 3 carbon atoms)
  • [2] The tetracyclic compound according to [1], wherein Y is a hydroxy group, a chlorine atom, or a bromine atom.
  • [3] The tetracyclic compound according to [1] or [2], wherein Z is a single bond.
  • [6] The tetracyclic compound according to any one of [1] to [5], wherein R 14 is a linear or branched alkylene group having 6 to 16 carbon atoms.
  • a compound in which a functional group is protected using the tetracyclic compound (1) of the present invention tends to be in a liquid state and has improved solubility in a solvent as compared with an unprotected compound. By this operation, separation and purification after the condensation reaction are easy.
  • the tetracyclic compound (1) of the present invention is bonded to the raw materials and intermediate compounds.
  • the tetracyclic compound of the present invention represented by the general formula (1) is characterized in that at least one of R 1 to R 13 has the structure of the formula (2).
  • the compound protected by using this tetracyclic compound (1) tends to be in a liquid state compared with an unprotected compound, and the solubility in a solvent is remarkably improved.
  • Y represents a hydroxy group or a halogen atom.
  • the halogen atom include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom.
  • Y is preferably a hydroxy group, a chlorine atom or a bromine atom.
  • Z represents an oxygen atom, a sulfur atom, a single bond or a linear alkylene group having 1 to 3 carbon atoms.
  • the linear alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, and a trimethylene group, and among these, a single bond is particularly preferable.
  • R 1 to R 13 represents a group represented by the formula (2), of which 2 to 4 are groups represented by the formula (2). It is preferable.
  • the remainder is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • examples of the remaining halogen atom represented by R 1 to R 13 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom and a chlorine atom are preferable. Further, the ortho position is preferred as the substitution position.
  • Examples of the remaining alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, and an n-butyloxy group, and among these, a methoxy group is preferable.
  • Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group, and among these, a methyl group is preferable.
  • R 14 represents a linear or branched alkylene group having 1 to 16 carbon atoms.
  • the number of carbon atoms of the alkylene group is preferably 2 or more, more preferably 6 or more, still more preferably 8 or more, from the viewpoint of improving the solubility of the compound to which the tetracyclic compound (1) of the present invention is bonded in the solvent.
  • 16 or less is preferable, 14 or less is more preferable, and 12 or less is further more preferable.
  • alkylene groups a linear or branched alkylene group having 2 to 16 carbon atoms is preferable, a linear or branched alkylene group having 6 to 16 carbon atoms is more preferable, and an alkylene group having 8 to 14 carbon atoms is more preferable.
  • a linear or branched alkylene group is more preferable, and a linear or branched alkylene group having 8 to 12 carbon atoms is more preferable.
  • alkylene group examples include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nanomethylene group, a decamethylene group, an undecamethylene group, and a dodecacene group.
  • alkylene group examples include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nanomethylene group, a decamethylene group, an undecamethylene group, and a dodecacene group.
  • Examples include a methylene group and a tetradecamethylene group.
  • X represents O or CONR 15 .
  • R 15 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom.
  • A is represented by the formula (3), (4), (5), (6), (7), (8), (9), (10), (11), (12) or (13).
  • R 16 , R 17 and R 18 are the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms or an aryl group which may have a substituent. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, Examples include n-hexyl group.
  • an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group, tert-butyl, and isopropyl group are more preferable.
  • the aryl group which may have a substituent include an aryl group having 6 to 10 carbon atoms, specifically, a phenyl group, a naphthyl group and the like which may be substituted by an alkyl group having 1 to 3 carbon atoms. Is mentioned. Of these, a phenyl group is more preferable.
  • R 19 represents a single bond or a linear or branched alkylene group having 1 to 3 carbon atoms.
  • the linear or branched alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, a trimethylene group, and a propylene group, and among these, a single bond is particularly preferable.
  • R 20 , R 21 and R 22 each represent a linear or branched alkylene group having 1 to 3 carbon atoms.
  • Examples of the linear or branched alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, a trimethylene group, and a propylene group, and a methylene group is particularly preferable.
  • Y is a hydroxy group, a chlorine atom or a bromine atom; Z is a single bond; at least one of R 1 to R 13 , preferably 2 to 4 are represented by the formula (2) The remaining group is a hydrogen atom, a chlorine atom or a fluorine atom; R 14 is a linear or branched alkylene group having 2 to 16 carbon atoms; R 19 is a single bond or a methylene group; A compound in which R 20 , R 21 and R 22 are methylene groups is more preferred.
  • R 14 is a linear or branched alkyl group having 6 to 16 carbon atoms; X is O or CONH; A is represented by the formula (3) or (13) R 16 , R 17 and R 18 are the same or different and are alkyl groups having 1 to 4 carbon atoms; R 19 is a single bond; R 20 , R 21 and R 22 are methylene groups The compound which is is more preferable.
  • R 1b represents a hydrogen atom or a halogen atom
  • Y, Z, A, X and R 14 are the same as above
  • Examples of the tetracyclic compound (1) of the present invention include the following (a) to (j).
  • Y represents a hydroxy group or a halogen atom
  • Z represents an oxygen atom, a sulfur atom, a single bond or a linear alkylene group having 1 to 3 carbon atoms
  • Ra represents a hydrogen atom or a halogen atom.
  • the tetracyclic compound (1) of the present invention can be produced, for example, according to the following reaction formula.
  • Hal represents a halogen atom
  • Z represents an oxygen atom, a sulfur atom, a single bond or a linear alkylene group having 1 to 3 carbon atoms
  • at least one of R 1a to R 13a represents a hydroxyl group
  • the remaining represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms
  • at least one of R 1c to R 13c represents a group represented by the formula (2), and the remaining is hydrogen
  • R 1d to R 8d are a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or 1 to 4 represents an alkoxy group
  • at least one of R 1e to R 13e represents —OTBS, —OTIPS, or —OTBDPS, and the remainder represents
  • a silyloxylated alkyl halide (14) and a halogenated aryl compound (15) are reacted to obtain a silyloxylated aryl compound (16), and then reacted with a metal reagent to obtain an organometallic reagent (18).
  • the organometallic reagent (18) and the ketone compound (20) are reacted to obtain the compound of the formula (21), and the tetracyclic compound (21) having a hydroxyl group is halogenated to obtain the compound of the formula (24). It is done.
  • a silyloxylated alkyl halide (14) and a ketone compound (25) are reacted to obtain a silyloxylated ketone compound (26), and then reacted with an organometallic reagent (32) to obtain a compound of the formula (27).
  • the compound of Formula (28) is obtained by halogenating the tetracyclic compound (27) which has a hydroxyl group.
  • an organometallic reagent (32) is obtained after protecting the hydroxyl group of a ketone compound (25) with a silyl ether, it is made to react with an organometallic reagent (32), and the compound of Formula (30) is obtained.
  • the protecting group of the compound of formula (30) is then deprotected to obtain a compound of formula (31), which is reacted with a silyloxylated alkyl halide (14) to obtain a compound of formula (27).
  • the ketone compound (29) is reacted with the organometallic reagent (33) to obtain the compound of formula (34), and the protecting group of the compound of formula (34) is deprotected to obtain the compound of formula (35).
  • Subsequent reaction with silyloxylated alkyl halide (14) yields a compound of formula (37).
  • the compound of Formula (38) is obtained by halogenating the tetracyclic compound (37) which has a hydroxyl group.
  • the ketone compound (26) is reacted with the organometallic reagent (36) to obtain the compound of the formula (37).
  • the silyloxylated alkyl halide (14) as a raw material can be produced, for example, by reacting a halogenated alcohol and a silylating agent in the presence of a base.
  • a bromine atom etc. are mentioned as a halogen atom in a compound (14).
  • an alcohol and a silylating agent are mixed with each other in the same manner as described above. It can manufacture by making it react in presence.
  • silylating agent used in the above reaction examples include triisopropylsilyl chloride (TIPSCl), triisopropylsilyl bromide, triisopropylsilyl iodide, methanesulfonyltriisopropylsilyl, trifluoromethanesulfonylisopropylsilyl, p-toluenesulfonyltriisopropylsilyl.
  • TIPSCl triisopropylsilyl chloride
  • TBDPSCl tert-butyldimethylchlorosilane
  • TBSCl tert-butyldimethylchlorosilane
  • Bases include TEA, DIPEA, DBU, diazabicyclononene (DBN), DABCO, imidazole, N-methylimidazole, N, N-dimethylaniline, pyridine, 2,6-lutidine, DMAP, LDA, NaOAc, MeONa, Organic bases such as MeOK, lithium hexamethyldisilazide (LHMDS), sodium bis (trimethylsilyl) amide (NaHMDS), Na 2 CO 3 , NaHCO 3 , NaH, NaNH 2 , K 2 CO 3 , Cs 2 CO 3, etc. An inorganic base is mentioned.
  • Solvents include hydrocarbons such as hexane and heptane, diethyl ether, diisopropyl ether, cyclopentyl methyl ether (CPME), ethers such as tetrahydrofuran and dioxane, nitriles such as acetonitrile, dimethylformamide (DMF), dimethylacetamide, hexa Amides such as methylphosphoramide, sulfoxides such as dimethyl sulfoxide, lactams such as N-methylpyrrolidone, hydrogen halides such as chloroform and dichloromethane, aromatic hydrocarbons such as toluene and xylene, or a mixture thereof A solvent is mentioned. The reaction may be performed, for example, at 0 to 100 ° C. for 1 to 24 hours.
  • reaction of silyloxylated alkyl halide (14) with compound of formula (15), reaction of silyloxylated alkyl halide (14) with compound of formula (23), silyloxylated alkyl halide (14) and compound of formula (25) The reaction of silyloxylated alkyl halide (14) with the compound of formula (31) and the reaction of silyloxylated alkyl halide (14) with the compound of formula (35) are carried out in the presence of a base. Is preferred.
  • Bases used in the above reaction include TEA, DIPEA, DBU, DBN, DABCO, imidazole, N-methylimidazole, N, N-dimethylaniline, pyridine, 2,6-lutidine, DMAP, LDA, NaOAc, MeONa, MeOK.
  • Organic bases such as lithium hexamethyldisilazide (LHMDS) and sodium bis (trimethylsilyl) amide (NaHMDS), and inorganic bases such as Na 2 CO 3 , NaHCO 3 , NaH, K 2 CO 3 , and Cs 2 CO 3 It is done.
  • Solvents include hydrocarbons such as hexane and heptane, ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran and dioxane, nitriles such as acetonitrile, amides such as DMF, dimethylacetamide and hexamethylphosphoramide, Examples thereof include sulfoxides such as dimethyl sulfoxide, lactams such as N-methylpyrrolidone, hydrogen halides such as chloroform and dichloromethane, aromatic hydrocarbons such as toluene and xylene, or a mixed solvent thereof.
  • the reaction may be performed, for example, at 40 ° C. to 150 ° C. for 1 hour to 24 hours.
  • organometallic reagents include a Grignard reagent or a lithium reagent that can be prepared from an aryl halide.
  • the solvent examples include ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran and dioxane, aromatic hydrocarbons such as toluene and xylene, hydrogen halides such as chloroform and dichloromethane, or a mixed solvent thereof.
  • ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran and dioxane
  • aromatic hydrocarbons such as toluene and xylene
  • hydrogen halides such as chloroform and dichloromethane
  • the compound of formula (23) from the compound of formula (22), the compound of formula (31) from the compound of formula (30), and the compound of formula (35) from the compound of formula (34)
  • the deprotecting agent include TBAF (tetrabutylammonium fluoride), a fluorinated pyridine complex, a hydrogen fluoride triethylamine complex, and ammonium fluoride.
  • the solvent examples include ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran and dioxane, aromatic hydrocarbons such as toluene and xylene, hydrogen halides such as chloroform and dichloromethane, or a mixed solvent thereof.
  • ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran and dioxane
  • aromatic hydrocarbons such as toluene and xylene
  • hydrogen halides such as chloroform and dichloromethane
  • halogen It can be produced by reacting an agent.
  • the halogen atom in the formulas (24), (28), and (38) include a chlorine atom and a bromine atom.
  • the halogenating agent include thionyl chloride / pyridine, acetyl chloride, PCl 3 / DIPEA, NCS, HCl, acetyl bromide, PBr 3 / DIPEA, NBS, HBr and the like.
  • Solvents include hydrocarbons such as hexane and heptane, ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran, and dioxane, aromatic hydrocarbons such as toluene and xylene, hydrogen halides such as chloroform and dichloromethane, Examples thereof include dimethylformamide (DMF) or a mixed solvent thereof.
  • the reaction may be carried out, for example, at 0 to 100 ° C. for 0.5 to 48 hours.
  • the tetracyclic compound (1) of the present invention can be used as a protective agent for functional groups such as carboxy group, hydroxyl group, amino group, amide group or mercapto group.
  • a compound in which a carboxy group, a hydroxyl group, an amino group, an amide group or a mercapto group is protected by the tetracyclic compound (1) of the present invention is characterized by being highly liquid and soluble in a solvent. Therefore, a compound having a functional group protected using the tetracyclic compound (1) of the present invention as a protective agent is easily dissolved in an organic solvent and can be easily separated and purified by an operation such as liquid-liquid phase separation. Further, the protecting group used in the compound of the present invention can be easily removed by an acid.
  • the compound that can be protected by the tetracyclic compound (1) of the present invention may be any compound having a carboxy group, a hydroxyl group, an amino group, an amide group, or a mercapto group, such as an amino acid, a peptide, a sugar compound, a protein, or a nucleic acid compound.
  • Other various pharmaceutical compounds, agricultural chemical compounds, other various polymers, dendrimer compounds, and the like may be any compound having a carboxy group, a hydroxyl group, an amino group, an amide group, or a mercapto group, such as an amino acid, a peptide, a sugar compound, a protein, or a nucleic acid compound.
  • the peptide synthesis method using the tetracyclic compound (1) of the present invention as a protective agent is, for example, a production method including the following steps (1) to (4).
  • This peptide synthesis method is industrially advantageous because it allows liquid-liquid separation of the protected peptide obtained in each step.
  • the tetracyclic compound (1) of the present invention is condensed with the C-terminal carboxy group of an N-protected amino acid or N-protected peptide in a soluble solvent to obtain C in the tetracyclic compound (1) of the present invention.
  • An end-protected N-protected C-protected amino acid or N-protected C-protected peptide is obtained.
  • the tetracyclic compound (1) of the present invention is reacted with the C-terminal amide group of an N-protected amino acid or N-protected peptide in a soluble solvent to produce the C-terminal compound of the tetracyclic compound (1) of the present invention.
  • a soluble solvent to produce the C-terminal compound of the tetracyclic compound (1) of the present invention.
  • N-protected C-protected amino acids or N-protected C-protected peptides To protect N-protected C-protected amino acids or N-protected C-protected peptides.
  • the protecting group at the N-terminus of the obtained N-protected C-protected amino acid or N-protected C-protected peptide is removed to obtain a C-protected amino acid or C-protected peptide.
  • N-protected amino acid or N-protected peptide is condensed to the N-terminus of the obtained C-protected amino acid or C-protected peptide to obtain an N-protected C-protected peptide.
  • the protecting group at the N-terminus and the protecting group at the C-terminus of the obtained N-protected C-protected peptide are removed to obtain the target peptide.
  • TIPS2-Flu-C O Br- (CH 2 ) 11 -OTIPS 14.7 g (36.1 mmol), 2,7-dihydroxy-9H-fluoren-9-one 3.19 g (15.0 mmol), potassium carbonate 7.48 g (54.1 mmol) was suspended in 43.0 mL of DMF, heated to 95 ° C., and stirred for 3 hours. The reaction solution was filtered, and the residue was washed with 180 mL of heptane.
  • the filtrate was separated, and 86 mL of heptane was added to the resulting heptane layer, followed by separation and washing twice with 43 mL of DMF, once with 43 mL of water, and twice with 43 mL of 10% brine.
  • 43 mL of heptane was added, and the solution was separated and washed twice with 43 mL of acetonitrile.
  • the obtained heptane layer was separated and washed once with 120 mL of 0.5N hydrochloric acid, once with 120 mL of saturated aqueous sodium hydrogen carbonate solution, once with 120 mL of 20% brine, and once with 120 mL of acetonitrile.
  • TIPS2-3-F-Ph-Flu-Br represents a structure in the formula.
  • Fmoc-Leu-O- (TIPS2-3-F-Ph-Flu) represents the structure in the formula
  • 3-F-5-OTBS-Ph-Flu-OH, 3-F-5-OH-Ph-Flu-OH, Br- (CH 2 ) 10 -CONH-C (CH 2 OTIPS) 3 , TIPS3 -3-F-Ph-Flu-OH and TIPS3-3-3-F-Ph-Flu-Cl represent the structures in the formula
  • reaction solution was cooled to 50 ° C., 3.17 g (17.6 mmol) of fluorenone dissolved in 23.4 mL of anhydrous THF was added, and the mixture was refluxed for 40 minutes.
  • the reaction solution was cooled to room temperature, the reaction was stopped with 100 mL of saturated aqueous ammonium chloride solution, and 150 mL of CPME was added, followed by liquid separation washing. The obtained organic layer was separated and washed once with 100 mL of 20% brine.
  • the obtained organic layer was separated and washed once with 50 mL of 1N hydrochloric acid and once with 50 mL of 20% brine.
  • the organic layer was concentrated under reduced pressure, the obtained residue was dissolved in 10 mL of dichloromethane, 200 mL of heptane was added and stirred, and the precipitate was collected by filtration. This slurry washing with dichloromethane and heptane was further performed once, and the resulting precipitate was dried under reduced pressure to obtain 2.53 g of 3-F-5-OH-Ph-Flu-OH.
  • the obtained organic layer was separated and washed three times with 50 mL of 5% aqueous potassium dihydrogen phosphate solution and once with 50 mL of 20% brine.
  • the organic layer was concentrated under reduced pressure, and the resulting residue was dissolved in 250 mL of heptane and separated and washed three times with 50 mL of acetonitrile.
  • Example 5 Confirmation of Solubility Improvement Performance for Peptide Compounds The results of measuring the solubility of the compound protected with the tetracyclic protecting agent in the present invention are shown below.
  • CPME cyclopentyl methyl ether
  • H-Phe-Leu-Gly-O- (TIPS2-3--3-H-Phe-Leu-Gly-OH, to which no tetracyclic protecting agent is bound, dissolves only 0.9 mM in CPME.
  • the solubility of F-Ph-Flu) was improved to about 540 mM or more, about 600 times or more. From this result, it was confirmed that the solubility of the peptide was remarkably improved by derivatization with a tetracyclic protecting agent.
  • H-Phe-Leu-Gly-OH and H-Phe-Leu-Gly-O- (TIPS2-3-F-Ph-Flu) have the following structures.
  • the obtained mixture was dissolved in 123 mL of CPME, 3.67 mL (24.56 mmol) of DBU was added, and the mixture was stirred at room temperature for 1 hour and 40 minutes. Further, 0.92 mL (6.13 mmol) of DBU was added and stirred at room temperature for 20 minutes. After confirming the disappearance of Fmoc-Gly-O- (TIPS2-3-F-Ph-Flu), the solution was cooled to 5 ° C., and 4.90 mL (31.6 mmol) of 4M CPME / HCl was added dropwise, and the solution was reduced under reduced pressure. Concentrated with.
  • H-Gly-O- (TIPS2-3-F-Ph -2.17 g of a mixture containing -Flu) was obtained.
  • H-Gly-O- (TIPS2-3-F-Ph-Flu) has the following structure.
  • Fmoc-Phe-Leu-Gly-O- TIPS2-3-F-Ph-Flu
  • ESIMS MNa + 1523.0 Note that Fmoc-Phe-Leu-Gly-O- (TIPS2-3-F-Ph-Flu) has the following structure.
  • Fmoc-Phe-Leu-Gly-O- (TIPS2-3-F-Ph-Flu) 1.15 g (0.77 mmol) was dissolved in THF 7.7 mL, DBU 0.23 mL (1.53 mmol) was added, Cooled to 5 ° C. and stirred for 25 minutes. After confirming the disappearance of Fmoc-Phe-Leu-Gly-O- (TIPS2-3-F-Ph-Flu), 0.36 mL (1.46 mmol) of 4M CPME / HCl was added dropwise, and the solution was concentrated under reduced pressure. .
  • Example (5-b) Synthesis of H-Phe-Leu-Gly-OH 70 mg (0.055 mmol) of H-Phe-Leu-Gly-O- (TIPS2-3-F-Ph-Flu) was dissolved in 1.04 mL of dichloromethane and dissolved in trifluoroacetic acid. 55 ⁇ L (0.71 mmol) was added, and the mixture was stirred at room temperature for 1 hour and 15 minutes. After confirming disappearance of H-Phe-Leu-Gly-O- (TIPS2-3-F-Ph-Flu), the solution was concentrated under reduced pressure, 7 mL of diisopropyl ether was added dropwise to the residue, and the mixture was cooled to 5 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

官能基を保護した化合物の有機溶媒への溶解性を向上させることで、反応後の分離、精製を固体化又は不溶化することなく容易ならしめる保護基の提供。 一般式(1) (式中、Yはヒドロキシ基又はハロゲン原子を示し、Zは酸素原子、硫黄原子、単結合又は炭素数1~3の直鎖アルキレン基を示し、R1~R13のうちの少なくとも1個は式(2) で表される基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し; R14は炭素数1~16の直鎖又は分岐鎖のアルキレン基を示し; XはO又はCONR15(ここでR15は水素原子又は炭素数1~4のアルキル基を示す)を示し; Aは式(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)又は(13)で表される基を示す) で表される四環式化合物。

Description

新規四環式保護剤
 本発明は、カルボキシ基、ヒドロキシ基、アミノ基、アミド基又はメルカプト基等の保護剤として有用な新規四環式化合物に関する。
 ペプチド合成や種々の化合物の合成において、カルボキシ基、ヒドロキシ基、アミノ基、アミド基やメルカプト基等の官能基を保護して反応させる必要が生じることがある。そのような保護基としては、簡便な方法により保護ができ、かつ穏和な条件で脱離できるものが望まれる。例えば、カルボキシ基の保護基としては、ベンジルエステル(Bn)、tert-ブチルエステル等が知られている。また、最近、ベンジルアルコール系化合物、トリチル系化合物、フルオレン系化合物が保護基として有用であることが報告されている(特許文献1、2、3)。
特許第5929756号公報 特許第5113118号公報 国際公開第2010/104169号
 しかしながら、従来の保護基で官能基を保護した化合物は、合成時に析出しやすい欠点があった。特にペプチド合成においては有機溶媒にも不溶になってしまうため、反応後の化合物の分離、精製が困難になることがしばしばであった。この分離、精製の困難性は、縮合反応が連続して行なわれるペプチド合成においては大きな問題であった。
 従って、本発明の課題は、官能基を保護した化合物の有機溶媒への溶解性を向上させることで、反応後の分離、精製を固体化又は不溶化することなく容易ならしめる保護基を提供することにある。
 そこで本発明者は、四環式化合物の置換基について種々検討した結果、四環式化合物のベンゼン環にオキシアルキレン基を介し末端にトリアルキルシリルオキシ基を導入した新規化合物を開発した。本四環式化合物を用いて官能基を保護した化合物が有機溶媒中で析出しにくく、液-液相分離の操作により分離精製が容易であり、当該化合物が保護剤として有用であることを見出し、本発明を完成した。
 すなわち、本発明は、次の〔1〕~〔8〕を提供するものである。
〔1〕一般式(1)
Figure JPOXMLDOC01-appb-C000004
(式中、Yはヒドロキシ基又はハロゲン原子を示し、Zは酸素原子、硫黄原子、単結合又は炭素数1~3の直鎖アルキレン基を示し、R1~R13のうちの少なくとも1個は式(2)
Figure JPOXMLDOC01-appb-C000005
で表される基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
14は炭素数1~16の直鎖又は分岐鎖のアルキレン基を示し;
XはO又はCONR15(ここでR15は水素原子又は炭素数1~4のアルキル基を示す)を示し;
Aは式(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)又は(13)
Figure JPOXMLDOC01-appb-C000006
(ここで、R16、R17及びR18は、同一又は異なって、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又は置換基を有していてもよいアリール基を示し;R19は単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示し、R20、R21及びR22はそれぞれ、炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す)
で表される基を示す)
で表される四環式化合物。
〔2〕Yがヒドロキシ基、塩素原子、又は臭素原子である〔1〕記載の四環式化合物。
〔3〕Zが単結合である〔1〕又は〔2〕記載の四環式化合物。
〔4〕R1~R13のうち少なくとも1個が式(2)で表される基であり、残余が水素原子又はハロゲン原子である〔1〕~〔3〕のいずれかに記載の四環式化合物。
〔5〕R14が炭素数2~16の直鎖又は分岐鎖のアルキレン基である〔1〕~〔4〕のいずれかに記載の四環式化合物。
〔6〕R14が炭素数6~16の直鎖又は分岐鎖のアルキレン基である〔1〕~〔5〕のいずれかに記載の四環式化合物。
〔7〕R19が単結合又はメチレン基であり、R20、R21及びR22がメチレン基である〔1〕~〔6〕のいずれかに記載の四環式化合物。
〔8〕〔1〕~〔7〕のいずれかに記載の四環式化合物からなるカルボキシ基、ヒドロキシ基、アミノ基、アミド基又はメルカプト基の保護剤。
 本発明の四環式化合物(1)を用いて官能基を保護した化合物は、未保護のものに比べて液状になりやすく、また溶媒への溶解性が向上するため、液-液相分離等の操作により、縮合反応後の分離、精製が容易である。
 医薬、農薬等様々な化学物質の製造工程において、原料や中間体の不溶化、固化が支障となっている場合、原料や中間体化合物に本発明の四環式化合物(1)を結合させることで、これらの溶解性を向上させ、これらの問題点を解決することができる。
 一般式(1)で表される本発明の四環式化合物は、R1~R13の少なくとも1個が式(2)の構造を有する点に特徴がある。かかる構造を有することにより、この四環式化合物(1)を用いて保護した化合物が未保護のものに比べて液状になりやすく、また溶媒への溶解性が顕著に向上する。
 一般式(1)中、Yはヒドロキシ基又はハロゲン原子を示す。ここで、ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子、フッ素原子が挙げられる。
 Yとしては、ヒドロキシ基、塩素原子又は臭素原子が好ましい。
 Zは、酸素原子、硫黄原子、単結合又は炭素数1~3の直鎖アルキレン基を示す。炭素数1~3の直鎖のアルキレン基としては、メチレン基、エチレン基、トリメチレン基が挙げられるが、このうち単結合が特に好ましい。
 本発明の四環式化合物は、R1~R13のうち、少なくとも1個が式(2)で示される基を示すが、このうち2~4個が式(2)で示される基であることが好ましい。
 残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である。ここで、R1~R13で示される残余のハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、このうちフッ素原子、塩素原子が好ましい。さらに置換位置としては、オルト位が好ましい。残余の炭素数1~4のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基等が挙げられ、このうちメトキシ基が好ましい。また、炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられ、このうちメチル基が好ましい。
 R14は炭素数1~16の直鎖又は分岐鎖のアルキレン基を示す。当該アルキレン基の炭素数は、本発明四環式化合物(1)を結合させた化合物の溶媒への溶解度を向上させる点から、2以上が好ましく、6以上がより好ましく、8以上がさらに好ましく、また16以下が好ましく、14以下がより好ましく、12以下がさらに好ましい。
 当該アルキレン基のうち、炭素数2以上16以下の直鎖又は分岐鎖のアルキレン基が好ましく、炭素数6以上16以下の直鎖又は分岐鎖のアルキレン基がより好ましく、炭素数8以上14以下の直鎖又は分岐鎖のアルキレン基がさらに好ましく、炭素数8以上12以下の直鎖又は分岐鎖のアルキレン基がさらに好ましい。当該アルキレン基の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ナノメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、テトラデカメチレン基等が挙げられる。
 XはO又はCONR15を示す。
 ここでR15は水素原子又は炭素数1~4のアルキル基を示し、水素原子が好ましい。
 Aは、式(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)又は(13)で示される基を示す。R16、R17及びR18は、同一又は異なって、炭素数1~6の直鎖又は分岐鎖のアルキル基、又は置換基を有していてもよいアリール基を示す。ここで炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。このうち、炭素数1~4のアルキル基がより好ましく、メチル基、tert-ブチル、イソプロピル基がさらに好ましい。
 置換基を有していてもよいアリール基としては、炭素数6~10のアリール基が挙げられ、具体的には炭素数1~3のアルキル基が置換してもよいフェニル基、ナフチル基等が挙げられる。このうち、フェニル基がさらに好ましい。
 R19は、単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す。炭素数1~3の直鎖又は分岐鎖のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基が挙げられるが、このうち単結合が特に好ましい。
 R20、R21及びR22は、それぞれ炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す。炭素数1~3の直鎖又は分岐鎖のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基が挙げられるが、メチレン基が特に好ましい。
 一般式(1)において、Yがヒドロキシ基、塩素原子又は臭素原子であり;Zが単結合であり;R1~R13のうち少なくとも1個、好ましくは2~4個が式(2)で示される基であり、残余が水素原子、塩素原子又はフッ素原子であり;R14が炭素数2~16の直鎖又は分岐鎖のアルキレン基であり;R19が単結合又はメチレン基であり;R20、R21及びR22がメチレン基である化合物がより好ましい。
 また、一般式(2)において、R14が炭素数6~16の直鎖又は分岐鎖のアルキル基であり;XはO又はCONHであり;Aは、式(3)又は(13)で示される基であり;R16、R17及びR18は、同一又は異なって、炭素数1~4のアルキル基であり;R19は単結合であり;R20、R21及びR22はメチレン基である化合物がより好ましい。
 式(1)におけるY、Z、及びR1~R13が置換した構造としては、例えば次の構造が好ましい。
Figure JPOXMLDOC01-appb-C000007
(式中、R1bは水素原子、ハロゲン原子を示し、Y、Z、A、X及びR14は前記と同じ)
 本発明の四環式化合物(1)としては、一例を挙げるならば次の(a)~(j)が挙げられる。
(a)TIPS2型-(M27)-O保護剤
Figure JPOXMLDOC01-appb-C000008
(式中、Yはヒドロキシ基又はハロゲン原子を示し、Zは酸素原子、硫黄原子、単結合又は炭素数1~3の直鎖アルキレン基を示し、Raは水素原子又はハロゲン原子を示す。)
(b)TIPS2型-(M45)-O保護剤
Figure JPOXMLDOC01-appb-C000009
(式中、Y、Z及びRaは(a)と同様である。)
(c)TIPS2型-(M35)-O保護剤
Figure JPOXMLDOC01-appb-C000010
(式中、Y、Z及びRaは(a)と同様である。)
(d)TIPS3型-(M27)(M5)-O保護剤
Figure JPOXMLDOC01-appb-C000011
(式中、Y、Z及びRaは(a)と同様である。)
(e)TIPS3型-(M45)(M5)-O保護剤
Figure JPOXMLDOC01-appb-C000012
(式中、Y、Z及びRaは(a)と同様である。)
(f)TIPS3型-(M5)-O保護剤
Figure JPOXMLDOC01-appb-C000013
(式中、Y、Z及びRaは(a)と同様である。)
(g)TIPS4型-(M27)(M35)-O保護剤
Figure JPOXMLDOC01-appb-C000014
(式中、Y、Z及びRaは(a)と同様である。)
(h)TIPS4型-(M45)(M35)-O保護剤
Figure JPOXMLDOC01-appb-C000015
(式中、Y、Z及びRaは(a)と同様である。)
 本発明の四環式化合物(1)は、例えば次の反応式に従って製造することができる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(式中、Halはハロゲン原子を示し、Zは酸素原子、硫黄原子、単結合又は炭素数1~3の直鎖アルキレン基を示し、R1a~R13aのうち少なくとも1個は水酸基を示し、残余は水素原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し、R1c~R13cのうち少なくとも1個は式(2)で表わされる基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し、R1d~R8dは水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し、R1e~R13eのうち少なくとも1個は-OTBS、-OTIPS、又は-OTBDPSを示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し、MはMgBr又はLiを示す。)
 シリルオキシ化アルキルハライド(14)とハロゲン化アリール化合物(15)とを反応させて、シリルオキシ化アリール化合物(16)を得、次いで金属試薬と反応させて有機金属試薬(18)が得られる。有機金属試薬(18)とケトン化合物(20)を反応させ、式(21)の化合物を得、水酸基を有する四環式化合物(21)をハロゲン化することにより、式(24)の化合物が得られる。また、ハロゲン化アリール化合物(15)の水酸基をシリルエーテルで保護した後、金属試薬と反応させて有機金属試薬(19)を得、ケトン化合物(20)と反応させ、式(22)の化合物が得られる。次いで式(22)の化合物の保護基を脱保護して式(23)の化合物を得、シリルオキシ化アルキルハライド(14)と反応させ、式(21)の化合物が得られる。
 シリルオキシ化アルキルハライド(14)とケトン化合物(25)とを反応させて、シリルオキシ化ケトン化合物(26)を得、次いで有機金属試薬(32)と反応させて、式(27)の化合物が得られる。また、水酸基を有する四環式化合物(27)をハロゲン化することにより、式(28)の化合物が得られる。また、ケトン化合物(25)の水酸基をシリルエーテルで保護した後、有機金属試薬(32)と反応させて、式(30)の化合物が得られる。次いで式(30)の化合物の保護基を脱保護して式(31)の化合物を得、シリルオキシ化アルキルハライド(14)と反応させ、式(27)の化合物が得られる。
 ケトン化合物(29)を有機金属試薬(33)と反応させて、式(34)の化合物を得、式(34)の化合物の保護基を脱保護して式(35)の化合物が得られる。
 次いでシリルオキシ化アルキルハライド(14)と反応させて、式(37)の化合物が得られる。また、水酸基を有する四環式化合物(37)をハロゲン化することにより、式(38)の化合物が得られる。また、ケトン化合物(26)を有機金属試薬(36)と反応させて、式(37)の化合物が得られる。
 原料であるシリルオキシ化アルキルハライド(14)は、例えばハロゲン化アルコールとシリル化剤とを塩基の存在下に反応させることにより製造することができる。化合物(14)中のハロゲン原子としては、臭素原子等が挙げられる。
 また、式(15)の化合物から式(17)の化合物、及び、式(25)の化合物から式(29)の化合物を得る反応も、上記と同様に、アルコールとシリル化剤とを塩基の存在下に反応させることにより製造することができる。
 上記反応に用いられるシリル化剤としては、塩化トリイソプロピルシリル(TIPSCl)、臭化トリイソプロピルシリル、ヨウ化トリイソプロピルシリル、メタンスルホニルトリイソプロピルシリル、トリフルオロメタンスルホニルイソプロピルシリル、p-トルエンスルホニルトリイソプロピルシリル、tert-ブチルジフェニルクロロシラン(TBDPSCl)、tert-ブチルジメチルクロロシラン(TBSCl)等が挙げられる。
 塩基としては、TEA、DIPEA、DBU、ジアザビシクロノネン(DBN)、DABCO、イミダゾール、N-メチルイミダゾール、N,N-ジメチルアニリン、ピリジン、2,6-ルチジン、DMAP、LDA、NaOAc、MeONa、MeOK、リチウムヘキサメチルジシラジド(LHMDS)、ナトリウムビス(トリメチルシリル)アミド(NaHMDS)等の有機塩基、Na2CO3、NaHCO3、NaH、NaNH2、K2CO3、Cs2CO3等の無機塩基が挙げられる。
 溶媒としては、ヘキサン、ヘプタン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン、ジオキサン等のエーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ヘキサメチルホスホルアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、N-メチルピロリドン等のラクタム類、クロロホルム、ジクロロメタンなどのハロゲン化水素類、トルエン、キシレン等の芳香族炭化水素類、またはこれらの混合溶媒が挙げられる。
 反応は、例えば0℃~100℃で1時間~24時間行えばよい。
 シリルオキシ化アルキルハライド(14)と式(15)の化合物との反応、シリルオキシ化アルキルハライド(14)と式(23)の化合物との反応、シリルオキシ化アルキルハライド(14)と式(25)の化合物との反応、シリルオキシ化アルキルハライド(14)と式(31)の化合物との反応、及び、シリルオキシ化アルキルハライド(14)と式(35)の化合物との反応は、塩基の存在下に行うのが好ましい。
 上記反応に用いられる塩基としては、TEA、DIPEA、DBU、DBN、DABCO、イミダゾール、N-メチルイミダゾール、N,N-ジメチルアニリン、ピリジン、2,6-ルチジン、DMAP、LDA、NaOAc、MeONa、MeOK、リチウムヘキサメチルジシラジド(LHMDS)、ナトリウムビス(トリメチルシリル)アミド(NaHMDS)等の有機塩基、Na2CO3、NaHCO3、NaH、K2CO3、Cs2CO3等の無機塩基が挙げられる。
 溶媒としては、ヘキサン、ヘプタン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、ジオキサン等のエーテル類、アセトニトリル等のニトリル類、DMF、ジメチルアセトアミド、ヘキサメチルホスホルアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、N-メチルピロリドン等のラクタム類、クロロホルム、ジクロロメタンなどのハロゲン化水素類、トルエン、キシレン等の芳香族炭化水素類、またはこれらの混合溶媒が挙げられる。
 反応は、例えば40℃~150℃で1時間~24時間行えばよい。
 式(20)の化合物から式(21)の化合物、式(20)の化合物から式(22)の化合物、式(26)の化合物から式(27)の化合物、式(29)の化合物から式(30)の化合物、式(29)の化合物から式(34)の化合物、及び、式(26)の化合物から式(37)の化合物を得るには、有機金属試薬(18)、(19)、(32)、(33)又は(36)と反応させる手段が挙げられる。
 有機金属試薬としては、ハロゲン化アリールから調製できるグリニャール試薬、若しくはリチウム試薬等が挙げられる。溶媒としては、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、クロロホルム、ジクロロメタンなどのハロゲン化水素類またはこれらの混合溶媒が挙げられる。反応は、例えば0℃~100℃で1時間~48時間行うのが好ましい。
 式(22)の化合物から式(23)の化合物、式(30)の化合物から式(31)の化合物、及び、式(34)の化合物から式(35)の化合物を得るには、脱保護剤を反応させる手段が挙げられる。
 脱保護剤としては、TBAF(テトラブチルアンモニウムフルオリド)、フッ化ピリジン錯体、フッ化水素トリエチルアミン錯体、フッ化アンモニウム等が挙げられる。溶媒としては、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、クロロホルム、ジクロロメタンなどのハロゲン化水素類またはこれらの混合溶媒が挙げられる。反応は、例えば0℃~80℃で1時間~24時間行うのが好ましい。
 式(21)の化合物から式(24)の化合物、式(27)の化合物から式(28)の化合物、及び、式(37)の化合物から式(38)の化合物を得るには、例えばハロゲン化剤を反応させることにより製造することができる。式(24)、(28)、及び、(38)中のハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 ハロゲン化剤としては、塩化チオニル/ピリジン、塩化アセチル、PCl3/DIPEA、NCS、HCl、臭化アセチル、PBr3/DIPEA、NBS、HBr等が挙げられる。
 溶媒としては、ヘキサン、ヘプタン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、クロロホルム、ジクロロメタンなどのハロゲン化水素類、ジメチルホルムアミド(DMF)またはこれらの混合溶媒が挙げられる。反応は、例えば0℃~100℃で0.5時間~48時間行えばよい。
 本発明の四環式化合物(1)は、カルボキシ基、水酸基、アミノ基、アミド基又はメルカプト基等の官能基の保護剤として使用できる。本発明の四環式化合物(1)でカルボキシ基、水酸基、アミノ基、アミド基又はメルカプト基を保護された化合物は、液状性、溶媒に対する溶解性が高いという特徴を有する。従って、本発明の四環式化合物(1)を保護剤として用いて官能基を保護した化合物は、有機溶媒に溶解され易く、液-液相分離等の操作により分離精製が容易となる。また、本発明化合物で使用された保護基は、酸により容易に脱離することができる。
 本発明の四環式化合物(1)で保護できる化合物としては、カルボキシ基、水酸基、アミノ基、アミド基又はメルカプト基を有する化合物であればよく、例えばアミノ酸、ペプチド、糖化合物、タンパク質、核酸化合物、その他種々の医薬品化合物、農薬化合物、その他、種々のポリマー、デンドリマー化合物等が挙げられる。
 本発明の四環式化合物(1)を保護剤として用いるペプチドの合成法は、例えば次の工程(1)~(4)を含む製法である。このペプチド合成法は、各工程で得られる保護ペプチドの分離を液-液分離することができることから、工業的に有利である。
(1)本発明の四環式化合物(1)を、可溶性溶媒中、N-保護アミノ酸又はN-保護ペプチドのC末端カルボキシ基と縮合させて、本発明の四環式化合物(1)でC末端が保護されたN-保護C保護アミノ酸又はN-保護C-保護ペプチドを得る。若しくは、本発明の四環式化合物(1)を、可溶性溶媒中、N-保護アミノ酸又はN-保護ペプチドのC末端アミド基と反応させて、本発明の四環式化合物(1)でC末端が保護されたN-保護C保護アミノ酸又はN-保護C-保護ペプチドを得る。
(2)得られたN-保護C保護アミノ酸又はN-保護C-保護ペプチドのN末端の保護基を除去して、C-保護アミノ酸又はC-保護ペプチドを得る。
(3)得られたC-保護アミノ酸又はC-保護ペプチドのN末端に、N保護アミノ酸又はN-保護ペプチドを縮合させて、N-保護C-保護ペプチドを得る。
(4)得られたN-保護C-保護ペプチドのN末端の保護基及びC末端の保護基を除去して、目的のペプチドを得る。
 次に実施例を挙げて、本発明を詳細に説明するが、本発明は何らこれに限定されるものではない。
実施例1
TIPS2-3-F-Ph-Flu-Clの合成
Figure JPOXMLDOC01-appb-C000019
(以下、Br-(CH211-OTIPS、TIPS2-Flu-C=O、TIPS2-3-F-Ph-Flu-OH、TIPS2-3-F-Ph-Flu-Clは式中の構造を示すこととする。)
実施例(1-a):TIPS2-Flu-C=O
 Br-(CH211-OTIPS 14.7g(36.1mmol)、2,7-ジヒドロキシ-9H-フルオレン-9-オン 3.19g(15.0mmol)、炭酸カリウム7.48g(54.1mmol)をDMF43.0mLに懸濁し、95℃に加熱し、3時間撹拌した。反応溶液を濾過し、濾物をヘプタン180mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン86mLを加え、DMF43mLで2回、水43mLで1回、10%食塩水43mLで2回分液洗浄した。得られたヘプタン層に、ヘプタン43mLを加え、アセトニトリル43mLで2回分液洗浄した。ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=100:0→100:1→40:1→30:1→1:1)で精製し、TIPS2-Flu-C=O 12.3gを得た。
1H-NMR(400MHz,Benzene-d6)δ1.02-1.18(m,42H),1.21-1.40(m,24H),1.41-1.51(m,4H),1.52-1.68(m,8H),3.52(t,4H),3.69(t,4H),6.86(dd,2H),6.95(d,2H),7.36(d,2H)
13C-NMR(100MHz,Benzene-d6)δ12.4(6C),18.4(12C),26.4(2C),26.4(2C),29.5(2C),29.8(2C),30.0(2C),30.0(4C),30.2(2C),33.5(2C),63.7(2C),68.3(2C),110.0(2C),120.8(2C),121.3(2C),136.7(2C),137.8(2C),160.1(2C),193.4ESIMS MNa+ 887.7
実施例(1-b):TIPS2-3-F-Ph-Flu-OH
 TIPS2-Flu-C=O 6.95g(8.0mmol)を無水THF40mLに溶解し、3-フルオロフェニルマグネシウムブロミドTHF溶液16.0mL(16.0mmol)をゆっくり添加し、45℃に加熱し、2時間撹拌した。反応溶液を5℃に冷却し、0.5N塩酸120mLで反応を停止し、ヘプタン240mLを添加し、分液洗浄した。得られたヘプタン層を0.5N塩酸120mLで1回、飽和炭酸水素ナトリウム水溶液120mLで1回、20%食塩水120mLで1回、アセトニトリル120mLで1回分液洗浄した。ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=90:0→40:1→30:1)で精製し、TIPS2-3-F-Ph-OH 7.63gを得た。
1H-NMR(400MHz,CDCl3)δ1.00-1.16(m,42H),1.20-1.35(m,24H),1.35-1.44(m,4H),1.53(quin.,4H),1.71(quin.,4H),2.59(s,1H),3.66(t,4H),3.87(td,4H),6.79(d,2H),6.85(dd,2H),6.91(td,1H),7.06(d,1H),7.14-7.23(m,2H),7.44(d,2H)
13C-NMR(100MHz,CDCl3)δ12.1(6C),18.2(12C),25.9(2C),26.2(2C),29.4(2C),29.5(2C),29.6(2C),29.7(4C),29.8(2C),33.2(2C),63.6(2C),68.4(2C),83.1,111.0(2C),112.8(d,1C),114.1(d,1C),115.6(2C),120.2(2C),121.3,129.8(d,1C),132.3(2C),146.3(d,1C),151.5(2C),159.2(2C),162.9(d,1C)
ESIMS MH+ 961.8
実施例(1-c):TIPS2-3-F-Ph-Flu-Cl
 TIPS2-3-F-Ph-Flu-OH 289mg(0.30mmol)を無水ジクロロメタン6.0mLに溶解し、ピリジン0.60mL(7.43mmol)を添加し、塩化チオニル44uL(0.60mmol)を添加し、室温で30分間撹拌した。反応溶液にヘプタン60mLを添加し、アセトニトリル20mLで3回分液洗浄した。得られたヘプタン層を減圧下で濃縮し、TIPS2-3-F-Ph-Flu-Cl 239mgを得た。
1H-NMR(400MHz,CDCl3)δ1.02-1.15(m,42H),1.23-1.37(m,24H),1.38-1.48(m,4H),1.53(quin.,4H),1.74(quin.,4H),3.66(t,4H),3.85-3.96(m,4H),6.87(d,1H),6.89(s,3H),6.91-6.98(m,1H),7.16-7.25(m,3H),7.46(d,2H)
13C-NMR(100MHz,CDCl3)δ12.2(6C),18.2(12C),26.0(2C),26.2(2C),29.4(2C),29.6(4C),29.7(4C),29.8(2C),33.2(2C),63.6(2C),68.5(2C),73.9,111.7(2C),114.1(d,1C),114.9(d,1C),115.8(2C),120.4(2C),122.3(d,1C),130.0(d,1H),131.6(2C),144.3(d,1C),150.3(2C),159.3(2C),162.8(d,1C)
ESIMS MNa+ 1001.6
実施例2
TIPS2-3-F-Ph-Flu-Brの合成
Figure JPOXMLDOC01-appb-C000020
(以下、TIPS2-3-F-Ph-Flu-Brは式中の構造を示すこととする。)
実施例(2-a):TIPS2-3-F-Ph-Flu-Br
 TIPS2-3-F-Ph-Flu-OH 1.14g(1.20mmol)をクロロホルム6.0mLに溶解し、DIPEA 5.6mL(32.3mmol)を添加し、0℃に冷却し、PBr3205μL(2.16mmol)を滴下した後、室温で1時間撹拌した。反応溶液にヘプタン400mLを添加し、水40mLで分液洗浄した。得られたヘプタン層にヘプタン40mLを加え、アセトニトリル40mLで分液洗浄した。前記のヘプタンとアセトニトリルによる分液洗浄をさらに2回行った後、ヘプタン層を減圧下で濃縮し、TIPS2-3-F-Ph-Flu-Br 1.24gを得た。
ESIMS MH+ 1023.7
実施例3
Fmoc-Leu-O-(TIPS2-3-F-Ph-Flu)の合成
Figure JPOXMLDOC01-appb-C000021
(以下、Fmoc-Leu-O-(TIPS2-3-F-Ph-Flu)は式中の構造を示すこととする。)
実施例(3-a):Fmoc-Leu-O-(TIPS2-3-F-Ph-Flu)
 TIPS2-3-F-Ph-Flu-Br 1.25g(1.22mmol)をクロロホルム11.0mLに溶解し、DIPEA 852μL(4.88mmol)、Fmoc-Leu-OH 1.72g(4.88mmol)を添加し、60℃に加熱し、1時間30分撹拌した。さらにDIPEA 852μL(4.88mmol)、Fmoc-Leu-OH 1.72g(4.88mmol)を添加し、60℃で18時間撹拌した。反応溶液を室温まで冷却した後、減圧下で濃縮して、得られた残渣をヘプタン70mLに溶解し、アセトニトリル15mLで分液した。得られたヘプタン層にヘプタン5mLを加え、アセトニトリル15mLで分液した。前記のヘプタンとアセトニトリルによる分液をさらに1回行った後、ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=50:1→40:1→10:1→5:1)で精製し、Fmoc-Leu-O-(TIPS2-3-F-Ph-Flu) 126mgを得た。
1H-NMR(400MHz,CDCl3)δ0.91-1.15(m,48H),1.16-1.47(m,29H),1.47-1.82(m,10H),3.66(td,4H),3.72-3.95(m,4H),4.18(t,1H),4.34(d,2H),4.51-4.60(m,1H),5.12(d,1H),6.70-7.08(m,7H),7.17-7.24(m,3H),7.25-7.30(m,1H),7.37(t,2H),7.46-7.56(m,3H),7.74(d,2H)
13C-NMR(100MHz,CDCl3)δ12.1(6C),18.2(12C),22.0,23.1,24.9,25.9(4C),26.2(2C),29.4(2C),29.6(2C),29.7(4C),29.8(2C),33.2(2C),42.1,47.2,52.8,63.6(2C),67.1,68.3(2C),88.8,110.7,111.0,112.5(d,1C),114.8(d,1C),115.3(2C),120.0(2C),120.3(2C),120.8,125.2(2C),127.1,127.2,127.8(2C),130.2(d,1C),133.0,133.3,141.3(2C),143.8,143.9,144.0,147.2(d,1C),156.0(2C),159.0(2C),162.9(d,1C),170.5
ESIMS MNa+ 1318.9
実施例4
TIPS3-3-F-Ph-Flu-Clの合成
Figure JPOXMLDOC01-appb-C000022
(以下、3-F-5-OTBS-Ph-Flu-OH、3-F-5-OH-Ph-Flu-OH、Br-(CH210-CONH-C(CH2OTIPS)3、TIPS3-3-F-Ph-Flu-OH、TIPS3-3-F-Ph-Flu-Clは式中の構造を示すこととする。)
実施例(4-a):3-F-5-OTBS-Ph-Flu-OH
 1-bromo-3-[[(1,1-dimethylethyl)dimethylsilyl)oxy]-5-fluorobenzene 7.13g(23.4mmol)を無水THF46.8mLに溶解し、マグネシウム 681mg(28.0mmol)を添加し、反応容器内を窒素置換した後、1,2-ジブロモエタン 10uL(0.12mmol)を添加し、2時間還流した。反応溶液を50℃に冷却し、無水THF23.4mLに溶解したフルオレノン 3.17g(17.6mmol)を添加し、40分間還流した。反応溶液を室温に冷却し、飽和塩化アンモニウム水溶液100mLで反応を停止し、CPME150mLを加え、分液洗浄した。得られた有機層を20%食塩水100mLで1回分液洗浄した。有機層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=100:0→20:1)で精製し、3-F-5-OTBS-Ph-Flu-OH 6.75gを得た。
1H-NMR(400MHz,DMSO-d6)δ0.04(s,6H),0.83(s,9H),6.36-6.39(m,1H),6.46(s,1H),6.50(dt,1H),6.69-6.74(m,1H),7.24-7.29(m,4H),7.35-7.42(m,2H),7.82(d,2H)
13C-NMR(100MHz,CDCl3)δ-4.4(2C),18.3,25.8(3C)83.4,105.9(d,1C),106.5(d,1C),113.3,120.3(2C)124.8(2C),128.6(2C),129.5(2C),139.7(2C),146.4(d,1C),149.9(2C),156.8(d,1C),163.4(d,1C)
ESIMS MH+ 407.2
実施例(4-b):3-F-5-OH-Ph-Flu-OH
 3-F-5-OTBS-Ph-Flu-OH 5.11g(12.6mmol)をTHF31.5mLに溶解し、1.0MテトラブチルアンモニウムフロリドTHF溶液 18.9mL(18.9mmol)を添加し、室温で40分間撹拌した。反応溶液を0℃に冷却し、1N塩酸75mLで反応を停止し、酢酸エチル150mLを加え、分液洗浄した。得られた有機層を1N塩酸50mLで1回、20%食塩水50mLで1回分液洗浄した。有機層を減圧下で濃縮して、得られた残渣をジクロロメタン10mLに溶解し、ヘプタン200mLを加え、撹拌し、沈澱物を濾取した。このジクロロメタンとヘプタンによるスラリー洗浄をさらに一回行い、得られた沈澱物を減圧下で乾燥し、3-F-5-OH-Ph-Flu-OH 2.53gを得た。
1H-NMR(400MHz,CD2Cl2)δ6.44(dt,1H),6.58-6.62(m,1H),6.66-6.71(m,1H),7.24-7.33(m,4H),7.37-7.43(m,2H),7.68-7.73(m,2H)
13C-NMR(100MHz,CD2Cl2)δ83.6,102.2(d,1C),105.3(d,1C),108.8(d,1C),120.7(2C),124.9(2C),128.9(2C),129.8(2C),140.0(2C),147.6(d,1C),150.0(2C),157.2(d,1C),163.9(d,1C)
ESIMS MH+ 293.2
実施例(4-c):TIPS3-3-F-Ph-Flu-OH
 3-F-5-OH-Ph-Flu-OH 1.14g(3.90mmol)、Br-(CH210-CONH-C(CH2OTIPS)3 2.51g(3.00mmol)、炭酸カリウム 1.24g(9.00mmol)をDMF15.0mLに懸濁し、95℃に加熱し、2時間30分撹拌した。反応溶液を室温に冷却し、酢酸エチル200mL、5%リン酸二水素カリウム水溶液200mLを添加し、分液洗浄した。得られた有機層を5%リン酸二水素カリウム水溶液50mLで3回、20%食塩水50mLで1回分液洗浄した。有機層を減圧下で濃縮し、得られた残渣をヘプタン250mLに溶解し、アセトニトリル50mLで3回分液洗浄した。ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=30:1→5:1)で精製し、TIPS3-3-F-Ph-Flu-OH 1.33gを得た。
1H-NMR(400MHz,CD2Cl2)δ1.00-1.15(m,63H),1.21-1.34(m,10H),1.34-1.44(m,2H),1.48-1.58(m,2H),1.70(quin.,2H),2.06(t,2H),2.66(s,1H),3.86(t,2H),4.04(s,6H),5.72(s,1H),6.47(dt,1H),6.59-6.64(m,1H),6.71(t,1H),7.25-7.33(m,4H),7.39(td,2H),7.70(d,2H)
13C-NMR(100MHz,CDCl3)δ12.1(9C),18.1(18C),25.9,26.1,29.3,29.4,29.5(3C),29.6,37.9,61.3(3C),62.2,68.4,83.5,100.7(d,1C),104.9(d,1C),108.0,120.3(2C),124.8(2C),128.6(2C),129.4(2C),139.7(2C),146.6(d,1C),150.0(2C),160.4(d,1C),163.6(d,1C),172.6
ESIMS MH+ 1048.7
実施例(4-d):TIPS3-3-F-Ph-Flu-Cl
 TIPS3-3-F-Ph-Flu-OH 105mg(0.10mmol)を無水ジクロロメタン3.0mLに溶解し、ピリジン 200uL(2.48mmol)、塩化チオニル 29uL(0.40mmol)を添加し、室温で1時間撹拌した。反応溶液にヘプタン60mLを加え、アセトニトリル 30mLで分液洗浄した。得られたヘプタン層をアセトニトリル15mLで2回分液洗浄した。ヘプタン層を減圧下で濃縮し、TIPS3-3-F-Ph-Flu-Cl 80mgを得た。
1H-NMR(400MHz,CDCl3)δ0.98-1.15(m,63H),1.21-1.34(m,10H),1.34-1.44(m,2H),1.57(quin.,2H),1.72(quin.,2H),2.09(t,2H),3.85(t,2H),4.05(s,6H),5.75(s,1H),6.49(dt,1H),6.71(dt,1H),6.84(s,1H),7.30(t,1H),7.30(t,1H),7.39(t,1H),7.39(t,1H),7.44(d,2H),7.68(d,2H)
13C-NMR(100MHz,CDCl3)δ12.0(9C),18.1(18C),25.9,26.1,29.2,29.3,29.5(3C),29.6,37.9,61.3(3C),62.2,68.5,74.1,101.2(d,1C),106.0(d,1C),109.6,120.4(2C),125.5(2C),128.8(2C),129.5(2C),138.9(2C),144.4(d,1C),148.9(2C),160.4(d,1C),163.5(d,1C),172.6
ESIMS MH+ 1066.7
実施例5
 ペプチド化合物に対する溶解度向上性能の確認
 本発明における四環式保護剤で保護した化合物の溶解度を測定した結果を以下に示す。
 モデルとして使用したペプチド:H-Phe-Leu-Gly-OH
 H-Phe-Leu-Gly-OH、H-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)を合成し、25℃でCPME(シクロペンチルメチルエーテル)にそれぞれの化合物を飽和させ、その溶解度を測定した。
 その結果、四環式保護剤の結合していないH-Phe-Leu-Gly-OHがCPMEに0.9mMしか溶解しないのに比べ、H-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)の溶解度は540mM以上と約600倍以上溶解度が向上した。この結果から、四環式保護剤で誘導体化することで、ペプチドの溶解度が著しく向上することが確認できた。なお、H-Phe-Leu-Gly-OHとH-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)は下記の構造を示す。
Figure JPOXMLDOC01-appb-C000023
実施例(5-a)
 H-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)の合成
 TIPS2-3-F-Ph-Flu-OH 15.25g(15.9mmol)をクロロホルム 76.3mLに溶解し、5℃に冷却し、DIPEA 74.3mL(427mmol)を添加し、PBr3 2.71mL(28.5mmol)を滴下した後、室温まで昇温し、1時間40分撹拌した。反応溶液を5℃に冷却した後、ヘプタン1017mLを添加し、水102mLで1回、アセトニトリル102mLで3回分液洗浄した。ヘプタン層を減圧下で濃縮し、TIPS2-3-F-Ph-Flu-Brを含む混合物を得た。
 得られた混合物をクロロホルム 142.9mLに溶解し、Fmoc-Gly-OH 28.29g(95.2mmol)、DIPEA 16.57mL(95.2mmol)を添加し、60℃に加熱し、16時間40分撹拌した。溶液を減圧下で濃縮し、得られた残渣をヘプタン854mLに溶解し、アセトニトリル186mLで分液洗浄した。得られたヘプタン層にヘプタン186mLを加え、アセトニトリル186mLで分液洗浄した。前記のヘプタンとアセトニトリルによる分液洗浄をさらに1回行った後、ヘプタン層を減圧下で濃縮して、Fmoc-Gly-O-(TIPS2-3-F-Ph-Flu)を含む混合物を得た。なお、Fmoc-Gly-O-(TIPS2-3-F-Ph-Flu)は下記の構造を示す。
Figure JPOXMLDOC01-appb-C000024
 得られた混合物をCPME 123mLに溶解し、DBU 3.67mL(24.56mmol)を加え、室温で1時間40分撹拌した。さらにDBU 0.92mL(6.13mmol)を添加し、室温で20分撹拌した。Fmoc-Gly-O-(TIPS2-3-F-Ph-Flu)の消失を確認後、5℃に冷却した後、4M CPME/HCl 7.90mL(31.6mmol)を滴下し、溶液を減圧下で濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル:トリエチルアミン=100:10:1.1→50:50:1)で粗精製し、H-Gly-O-(TIPS2-3-F-Ph-Flu)を含む混合物 2.17gを得た。なお、H-Gly-O-(TIPS2-3-F-Ph-Flu)は下記の構造を示す。
Figure JPOXMLDOC01-appb-C000025
 得られた混合物 2.17gをCPME 14.9mLに溶解し、DMF 6.4mL、Fmoc-Leu-OH 1.13g(3.21mmol)、DIPEA 1.48mL(8.52mmol)、(ヒドロキシイミノ)シアノ酢酸エチル(Oxyma) 0.46g(3.22mmol)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩(COMU) 1.38g(3.21mmol)を加え、室温で50分撹拌した。H-Gly-O-(TIPS2-3-F-Ph-Flu)の消失を確認後、2-(2-アミノエトキシ)エタノール 127μL(1.28mmol)を加え、室温で15分撹拌した。反応溶液にDMSO 21.3mLに溶解した3-メルカプト-1-プロパンスルホン酸ナトリウム 4.58g(25.7mmol)を添加し、5℃に冷却した後、DMSO 2.1mL、DBU 2.50mL(17.0mmol)を加え、35分撹拌した。Fmoc-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)の消失を確認後、4M CPME/HCl 4.47mL(17.9mmol)を滴下し、室温まで昇温し、CPME 1.1mL、20%食塩水 60mL、10%炭酸ナトリウム水溶液 51mLを加え、分液洗浄した。得られた有機相にDMSO 0.6mL、DMF 0.6mL、50%リン酸水素二カリウム水溶液 20mLを加え、分液洗浄し、H-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)を含む混合液を得た。
 なお、Fmoc-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)とH-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)は下記の構造を示す。
Figure JPOXMLDOC01-appb-C000026
 得られた混合液に対し、DMF 8.8mL、Fmoc-Phe-OH 1.24g(3.21mmol)、DIPEA 1.48mL(8.52mmol)、Oxyma 0.45g(3.19mmol)、COMU 1.37g(3.20mmol)を加え、室温で50分撹拌した。H-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)の消失を確認後、溶液を減圧下で濃縮し、得られた残渣をヘプタン 72mLに溶解し、アセトニトリル 36mLで4回分液洗浄した。ヘプタン層を減圧下で濃縮し、得られた残渣を減圧下で乾燥し、Fmoc-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)2.06gを得た。
ESIMS MNa+ 1523.0
 なお、Fmoc-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)は下記の構造を示す。
Figure JPOXMLDOC01-appb-C000027
 Fmoc-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)1.15g(0.77mmol)をTHF 7.7mLに溶解し、DBU 0.23mL(1.53mmol)を加え、5℃に冷却し、25分撹拌した。Fmoc-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)の消失を確認後、4M CPME/HCl 0.36mL(1.46mmol)を滴下し、溶液を減圧下で濃縮した。得られた残渣をヘプタン 52mLに溶解し、アセトニトリル 52mLで3回分液洗浄した。ヘプタン層を減圧下で濃縮し、得られた残渣にアセトニトリル 20mLを添加した。充分撹拌した後、デカンテーションにより油状物を分離した。このアセトニトリルによる洗浄、デカンテーションをさらに2回行い、油状物を得た。油状物を減圧下で乾燥し、H-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu) 0.69gを得た。
ESIMS MH+ 1279.1
実施例(5-b)
 H-Phe-Leu-Gly-OHの合成
 H-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu) 70mg(0.055mmol)をジクロロメタン 1.04mLに溶解し、トリフルオロ酢酸 55μL(0.71mmol)を添加し、室温で1時間15分撹拌した。H-Phe-Leu-Gly-O-(TIPS2-3-F-Ph-Flu)の消失を確認後、溶液を減圧下で濃縮し、残渣にジイソプロピルエーテル7mLを滴下し、5℃に冷却し、充分撹拌した後、5℃、3000rpmで5分間遠心分離し、デカンテーションにより沈殿物を分離した。このジイソプロピルエーテルによるスラリー洗浄、遠心分離、デカンテーションをさらに3回行い、沈殿物を得た。沈澱物を減圧下で乾燥し、H-Phe-Leu-Gly-OH 15mgを得た。
ESIMS MH+ 336.1

Claims (8)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Yはヒドロキシ基又はハロゲン原子を示し、Zは酸素原子、硫黄原子、単結合又は炭素数1~3の直鎖アルキレン基を示し、R1~R13のうちの少なくとも1個は式(2)
    Figure JPOXMLDOC01-appb-C000002
    で表される基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    14は炭素数1~16の直鎖又は分岐鎖のアルキレン基を示し;
    XはO又はCONR15(ここでR15は水素原子又は炭素数1~4のアルキル基を示す)を示し;
    Aは式(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)又は(13)
    Figure JPOXMLDOC01-appb-C000003
    (ここで、R16、R17及びR18は、同一又は異なって、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又は置換基を有していてもよいアリール基を示し;R19は単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示し、R20、R21及びR22はそれぞれ、炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す)
    で表される基を示す)
    で表される四環式化合物。
  2.  Yがヒドロキシ基、塩素原子、又は臭素原子である請求項1記載の四環式化合物。
  3.  Zが単結合である請求項1又は2記載の四環式化合物。
  4.  R1~R13のうち少なくとも1個が式(2)で表される基であり、残余が水素原子又はハロゲン原子である請求項1~3のいずれかに記載の四環式化合物。
  5.  R14が炭素数2~16の直鎖又は分岐鎖のアルキレン基である請求項1~4のいずれかに記載の四環式化合物。
  6.  R14が炭素数6~16の直鎖又は分岐鎖のアルキレン基である請求項1~5のいずれかに記載の四環式化合物。
  7.  R19が単結合又はメチレン基であり、R20、R21及びR22がメチレン基である請求項1~6のいずれかに記載の四環式化合物。
  8.  請求項1~7のいずれかに記載の四環式化合物からなるカルボキシ基、ヒドロキシ基、アミノ基、アミド基又はメルカプト基の保護剤。
PCT/JP2018/006866 2017-02-27 2018-02-26 新規四環式保護剤 WO2018155669A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018529317A JP6393857B1 (ja) 2017-02-27 2018-02-26 新規四環式保護剤

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-034295 2017-02-27
JP2017034295 2017-02-27
JP2017-175471 2017-09-13
JP2017175471 2017-09-13

Publications (1)

Publication Number Publication Date
WO2018155669A1 true WO2018155669A1 (ja) 2018-08-30

Family

ID=63253958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006866 WO2018155669A1 (ja) 2017-02-27 2018-02-26 新規四環式保護剤

Country Status (3)

Country Link
JP (1) JP6393857B1 (ja)
TW (1) TW201833127A (ja)
WO (1) WO2018155669A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123994A1 (ja) * 2017-12-19 2019-06-27 積水メディカル株式会社 新規アルキルジフェニルメタン保護剤
CN110256277A (zh) * 2019-03-19 2019-09-20 广州同隽医药科技有限公司 一种含有芴环结构的化合物及其应用
EP4086272A1 (en) 2021-05-07 2022-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing cyclic compounds comprising n-substituted amino acid residues
WO2023277186A1 (ja) * 2021-07-02 2023-01-05 ペプチスター株式会社 液相ペプチド合成用担体結合ペプチドの分析方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531235B1 (ja) * 2017-12-19 2019-06-12 積水メディカル株式会社 新規アルキルジフェニルメタン保護剤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510522A1 (en) * 2003-08-30 2005-03-02 Agilent Technologies Inc Method of polynucleotide synthesis using modified support
JP2010531317A (ja) * 2007-06-26 2010-09-24 バクスター・インターナショナル・インコーポレイテッド Fmocをベースとした加水分解性リンカーの調製方法
WO2012029794A1 (ja) * 2010-08-30 2012-03-08 味の素株式会社 分岐鎖含有芳香族化合物
WO2017038650A1 (ja) * 2015-08-28 2017-03-09 積水メディカル株式会社 ベンジル化合物
JP6283774B1 (ja) * 2016-06-20 2018-02-21 積水メディカル株式会社 新規ジフェニルメタン保護剤
JP6283775B1 (ja) * 2016-07-25 2018-02-21 積水メディカル株式会社 新規キサンテン保護剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510522A1 (en) * 2003-08-30 2005-03-02 Agilent Technologies Inc Method of polynucleotide synthesis using modified support
JP2010531317A (ja) * 2007-06-26 2010-09-24 バクスター・インターナショナル・インコーポレイテッド Fmocをベースとした加水分解性リンカーの調製方法
WO2012029794A1 (ja) * 2010-08-30 2012-03-08 味の素株式会社 分岐鎖含有芳香族化合物
WO2017038650A1 (ja) * 2015-08-28 2017-03-09 積水メディカル株式会社 ベンジル化合物
JP6283774B1 (ja) * 2016-06-20 2018-02-21 積水メディカル株式会社 新規ジフェニルメタン保護剤
JP6283775B1 (ja) * 2016-07-25 2018-02-21 積水メディカル株式会社 新規キサンテン保護剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUNDERSEN, L. L. ET AL.: "Chloromethoxysilanes as protecting reagents for sterically hinered alcohols", ACTA CHEMICA SCANDINAVICA, vol. 43, no. 7, 1989, pages 706 - 709, XP002086775 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123994A1 (ja) * 2017-12-19 2019-06-27 積水メディカル株式会社 新規アルキルジフェニルメタン保護剤
US10870667B2 (en) 2017-12-19 2020-12-22 Sekisui Medical Co., Ltd. Alkyldiphenylmethane protective agent
US11542287B2 (en) 2017-12-19 2023-01-03 Sekisui Medical Co., Ltd. Alkyldiphenylmethane protective agent
CN110256277A (zh) * 2019-03-19 2019-09-20 广州同隽医药科技有限公司 一种含有芴环结构的化合物及其应用
CN110256277B (zh) * 2019-03-19 2020-12-15 广州同隽医药科技有限公司 一种含有芴环结构的化合物及其应用
EP4086272A1 (en) 2021-05-07 2022-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing cyclic compounds comprising n-substituted amino acid residues
WO2023277186A1 (ja) * 2021-07-02 2023-01-05 ペプチスター株式会社 液相ペプチド合成用担体結合ペプチドの分析方法

Also Published As

Publication number Publication date
JP6393857B1 (ja) 2018-09-19
JPWO2018155669A1 (ja) 2019-03-07
TW201833127A (zh) 2018-09-16

Similar Documents

Publication Publication Date Title
JP6393857B1 (ja) 新規四環式保護剤
TWI797082B (zh) 新穎二苯甲烷保護劑
WO2018021233A1 (ja) 新規キサンテン保護剤
CN111491941B (zh) 新型烷基二苯甲烷保护剂
WO2006006290A1 (ja) 1-オキサセファロスポリン-7α-メトキシ-3-クロルメチル誘導体の製法
TW201806927A (zh) 製備4-烷氧基-3-(醯基或烷基)氧基吡啶醯胺之方法
KR102421025B1 (ko) 신규 트리틸 보호제
WO2016078505A1 (zh) 芴乙酮衍生物的制备方法
JP6322350B1 (ja) 新規トリチル保護剤
JP6531235B1 (ja) 新規アルキルジフェニルメタン保護剤
US10343999B2 (en) Method for synthesizing enantiomerically pure N-(pyridin-4-yl)-2-hydroxy-alkylamide derivatives
JP3646225B2 (ja) 芳香族エステル誘導体及びその中間体並びにそれらの製造方法
JP2010083798A (ja) ω−ヒドロキシ長鎖脂肪酸誘導体の製造方法
JPH0987288A (ja) 1,3−ビス(3−アミノプロピル)−1,1,3,3−テトラオルガノジシロキサンの精製方法
JPH10251190A (ja) 芳香族ケトン化合物、その製造方法およびその中間体
CN114644577A (zh) 一种取代异腈化合物的环保制备方法
JP2001151745A (ja) 3−ニトロ−2−(N−t−ブトキシカルボニル)アミノ安息香酸エステル類の製造法およびその製造中間体
JP2004315445A (ja) サイクリックカーボネート類の製造方法
JPH0812658A (ja) シドノン類の製造法
JPH10195051A (ja) アザスピロ〔4,5〕デカトリエノン類の製造法
JP2004315446A (ja) エポキシド類の製造方法
JP2003128661A (ja) アクリル酸エステル誘導体
JP2001151744A (ja) 3−ニトロ−2−(N−t−ブトキシカルボニル)アミノ安息香酸エステル類の製造方法およびその製造中間体
JP2004051496A (ja) トリオルガノシリルカルボキシレート化合物の製造方法
JPH1160513A (ja) シクロプロピルアセチレン誘導体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529317

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757938

Country of ref document: EP

Kind code of ref document: A1