WO2018150455A1 - 撥水性被膜及びそれが形成された製品 - Google Patents

撥水性被膜及びそれが形成された製品 Download PDF

Info

Publication number
WO2018150455A1
WO2018150455A1 PCT/JP2017/005295 JP2017005295W WO2018150455A1 WO 2018150455 A1 WO2018150455 A1 WO 2018150455A1 JP 2017005295 W JP2017005295 W JP 2017005295W WO 2018150455 A1 WO2018150455 A1 WO 2018150455A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
water
spherical
undercoat layer
resin
Prior art date
Application number
PCT/JP2017/005295
Other languages
English (en)
French (fr)
Inventor
吉田 育弘
義則 山本
佑 泉谷
夏実 久保田
茂 内海
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017528597A priority Critical patent/JP6180698B1/ja
Priority to DE112017007058.9T priority patent/DE112017007058T5/de
Priority to US16/475,841 priority patent/US11596975B2/en
Priority to PCT/JP2017/005295 priority patent/WO2018150455A1/ja
Priority to CN201780085467.2A priority patent/CN110248800B/zh
Publication of WO2018150455A1 publication Critical patent/WO2018150455A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • B05D2202/15Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2506/00Halogenated polymers
    • B05D2506/10Fluorinated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/22Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/26Abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/28Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Definitions

  • the present invention relates to a water-repellent coating and a product on which it is formed.
  • Examples of a method for forming a water-repellent surface having a fine concavo-convex structure include, for example, a method of subjecting a substrate surface to mechanical processing or etching, and a method of applying a coating composition containing fine particles or a fine particle precursor and a resin to the substrate surface Etc. have been proposed.
  • the method using a coating composition is advantageous in terms of productivity and manufacturing cost because it can impart water repellency simply by applying a resin solution to a substrate having various shapes.
  • the silica fine particles subjected to the hydrophobic treatment and the hydrophobic resin such as fluorine-containing resin are 30 to 100% and 0 to 70% in terms of weight fraction after volatilization, respectively.
  • Patent Document 1 A method of forming a super water-repellent coating by applying a super water-repellent agent containing silica fine particles dispersed in an organic solvent by ultrasonic irradiation to a substrate and then curing (see Patent Document 1)
  • Patent Document 2 A method of forming a water-repellent film on the surface of the metal plate material after forming a rough surface film with an organic paint to which fine particles are added (see Patent Document 2), On the surface, a base coating film is formed with a paint containing hydrophilic fine particles and an organic resin, and then a final coating film is formed on the base coating film with a paint mainly composed of a fluororesin or a silicone resin.
  • Patent Document 3 It is.
  • the water repellent coating as in Patent Document 1 has a problem that the water repellency is easily lost because the coating itself is easily broken or peeled off. Further, in the water-repellent coating having a two-layer structure as in Patent Documents 2 and 3, not only the outermost layer having water repellency but also the ground layer wear due to friction or the like, and the outermost layer is peeled off. There is a problem that it is easily lost.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a water-repellent coating that is unlikely to decrease in water repellency even if the surface is worn due to friction or the like.
  • the present invention is formed on a substrate surface, has an average particle diameter of 2 ⁇ m or more and 50 ⁇ m or less, and at least one spherical shape selected from the group consisting of spherical fused silica particles, spherical fused alumina particles, and spherical silicone resin particles. It comprises an undercoat layer containing particles and a base resin, and an overcoat layer formed on the undercoat layer and containing inorganic fine particles having an average particle diameter of 2 nm or more and 20 nm or less, and a water-repellent resin. It is a water repellent coating.
  • FIG. 1 shows a base layer that is formed on the surface of a base material 1 and includes an amorphous particle 2 made of an inorganic material such as silica and a base resin 3, and is formed so as to cover the base layer and is made of a water-repellent resin 4.
  • the underlayer has irregularities formed on the surface by the irregular particles 2, and these irregularities also form irregularities on the surface of the water repellent layer.
  • FIG. 2 is a schematic cross-sectional view for explaining the state before and after the abrasion of the water repellent coating according to the first embodiment of the present invention.
  • the water-repellent coating according to Embodiment 1 includes an undercoat layer 5 formed on the surface of the substrate 1 and an overcoat layer 6 formed so as to cover the undercoat layer 5.
  • the undercoat layer 5 contains spherical particles 7 having an average particle diameter of 2 ⁇ m or more and 50 ⁇ m or less and the base resin 3.
  • the spherical particles 7 are spherical fused silica particles, spherical fused alumina particles, spherical silicone resin particles, or a mixture thereof.
  • the topcoat layer 6 contains inorganic fine particles 8 having a mean particle diameter of 2 nm or more and 20 nm or less and the water repellent resin 4. Unevenness is formed on the surface of the undercoat layer 5 by the spherical particles 7, and unevenness is also formed on the surface of the overcoat layer 6 by these unevennesses.
  • the topcoat layer 6 formed on the convex portion of the undercoat layer 5 is worn, but the topcoat layer 6 formed on the concave portion of the undercoat layer 5 is worn. It is hard to do.
  • the base resin 3 wears and the spherical particles 7 are partially exposed, but further wear does not easily progress. In the vicinity where the spherical particles 7 are exposed, fine water droplets tend to adhere, but the water repellency is maintained.
  • the spherical fused silica particles and the spherical fused alumina particles as the spherical particles 7 have a high surface smoothness, are dense and have high hardness, and are excellent in wear resistance. This is because the spherical silicone particles 7 have high surface smoothness and are not easily destroyed even when friction is repeated. Further, since the spherical silicone particles as the spherical particles 7 are excellent in water repellency, the surface exposed after wear also has water repellency, and the water repellency is easily maintained.
  • the spherical silicone particles as the spherical particles 7 have a drawback that they are more easily worn against the friction caused by high hardness substances such as sand dust than the spherical fused silica particles and the spherical fused alumina particles. There are advantages such as good touch at the time and low frictional resistance at the time of friction.
  • the average particle diameter of the spherical particles 7 is 2 ⁇ m or more and 50 ⁇ m or less, and preferably 4 ⁇ m or more and 20 ⁇ m or less. If the average particle diameter of the spherical particles 7 is less than 2 ⁇ m, the unevenness of the undercoat layer 5 becomes too small, and the effect of protecting the topcoat layer 6 during friction cannot be obtained. On the other hand, when the average particle diameter of the spherical particles 7 is more than 50 ⁇ m, the unevenness of the undercoat layer 5 is too large, causing problems such as clogging of the foreign matter in the recesses of the overcoat layer 6, and the performance as a water-repellent film cannot be exhibited. .
  • the average particle diameter of the spherical particles 7 is a value measured by a laser diffraction particle diameter measuring apparatus.
  • the spherical particles 7 it is preferable to use the spherical fused silica particles and the spherical fused alumina particles whose surfaces are hydrophobized with a silylating agent, a silane coupling agent or the like.
  • a silylating agent e.g., silane coupling agent or the like.
  • this hydrophobization treatment is effective for spherical fused silica particles.
  • the base resin 3 examples include polyurethane resins, fluororesins, silicone resins, various polyolefins such as polypropylene and polyethylene, polyvinyl chloride, acrylic resins, methacrylic resins, polystyrenes, ABS resins, and AS resins. These resins may be used alone or in combination of two or more. Among these, a polyurethane resin is preferable in that it has excellent wear resistance. Moreover, a fluororesin and a silicone resin are preferable in that they are excellent in water repellency. In order to improve the adhesion to the substrate 1, a resin into which a substituent or the like is introduced may be used.
  • the volume ratio between the base resin 3 and the spherical particles 7 in the undercoat layer 5 is preferably in the range of 5:95 to 90:10, and more preferably in the range of 20:80 to 80:20. If the volume ratio of the spherical particles 7 is too small, a sufficient number of irregularities may not be formed on the surface of the undercoat layer 5. On the other hand, if the volume ratio of the spherical particles 7 is too large, the undercoat layer 5 having sufficient strength may not be obtained.
  • the undercoat layer 5 can be formed by applying a coating composition for forming an undercoat layer containing the base resin 3, the spherical particles 7, and a solvent capable of dissolving or emulsifying the base resin to the substrate 1. .
  • the total amount of the base resin 3 and the spherical particles 7 is preferably 3% by mass or more and 40% by mass or less with respect to the coating composition for forming the undercoat layer.
  • the spherical particles 7 are liable to settle and the handling property of the coating composition is lowered, and the spherical particles 7 are added to the undercoat layer 5. It may not be possible to fix it stably.
  • a crosslinking agent may be added to the coating composition for forming the undercoat layer in order to improve the strength of the base resin 3.
  • paintability or to improve the water repellency of the base resin 3 you may add a well-known additive to the coating composition for undercoat layer formation.
  • the coating composition for forming the undercoat layer can be applied by spray coating, brush coating, roller bucket coating or the like.
  • the film thickness of the undercoat layer 5 is preferably 1/3 to 5 times the average particle diameter of the spherical particles 7 as an average film thickness. If the thickness of the undercoat layer 5 is less than 1/3 times the average particle diameter of the spherical particles 7, sufficient wear resistance may not be obtained. On the other hand, when the film thickness of the undercoat layer 5 is more than 5 times the average particle diameter of the spherical particles 7, the strength of the undercoat layer 5 may be lowered, or the appearance of the water-repellent coating film may be deteriorated.
  • the inorganic fine particles 8 are not particularly limited, and examples thereof include silica, alumina, zirconia, and titania. Since the surface of these inorganic fine particles is generally hydrophilic, it is preferable to use a surface subjected to hydrophobic treatment.
  • the hydrophobizing method includes a method of reacting a silylating agent (for example, hexamethyldisilazane), a silane coupling agent or the like with the inorganic fine particles 8, and a silicone compound or fluorocarbon having a lower molecular weight than the water-repellent resin 4.
  • a silylating agent for example, hexamethyldisilazane
  • silane coupling agent or the like a silane coupling agent or the like
  • silicone compound or fluorocarbon having a lower molecular weight than the water-repellent resin 4.
  • hydrophobization can be reliably advanced by heating to 100 ° C. or higher after mixing.
  • the former method is preferable because highly stable oil repellency can be obtained.
  • the latter method has an advantage that an inexpensive material can be used.
  • the hydrophobic treatment of the inorganic fine particles 8 may be performed in a state where the inorganic fine particles 8 are in a powder state, or the above-described silylating agent or the like may be used in a state where the inorganic fine particles 8 are dispersed in the coating composition for forming the undercoat layer. You may carry out by adding. In the latter case, the application of the coating composition for forming the undercoat layer can reliably proceed with the hydrophobization by heating the coating film by spraying hot air or irradiating with infrared rays.
  • the average particle size of primary particles of the inorganic fine particles 8 is 2 nm or more and 20 nm or less, and preferably 5 nm or more and 15 nm or less.
  • the average particle size of the primary particles of the inorganic fine particles 8 is less than 2 nm, it is difficult to prepare the coating composition for forming the topcoat layer, and the water repellency of the water repellent coating becomes insufficient.
  • the average particle size of the primary particles of the inorganic fine particles 8 is more than 20 nm, the water-repellent coating is insufficient in water repellency, and when the friction is repeated, the water repellency is easily lost.
  • the average particle diameter of the inorganic fine particles 8 here is a value measured by a laser diffraction type particle size distribution measuring apparatus.
  • water-repellent resin 4 examples include a resin whose surface is water-repellent by mixing a fluorine-based additive or the like with a fluorine resin, a silicone resin, an acrylic resin, a urethane resin, an epoxy resin, or the like.
  • a fluororesin and a silicone resin are preferable in that they are excellent in water repellency.
  • the mass ratio of the inorganic fine particles 8 and the water repellent resin 4 in the overcoat layer 6 is preferably in the range of 40:60 to 95: 5, and more preferably in the range of 50:50 to 90:10. If the volume ratio of the inorganic fine particles 8 is too large, the topcoat layer 6 may become brittle and wear resistance may be reduced. On the other hand, if the volume ratio of the water repellent resin 4 is too large, sufficient water repellency may not be obtained.
  • the overcoat layer 6 can be formed by applying a coating composition for forming an overcoat layer containing the inorganic fine particles 8, the water repellent resin 4, and a solvent capable of dissolving the water repellent resin on the undercoat layer 5.
  • the total amount of the inorganic fine particles 8 and the water-repellent resin 4 is preferably 0.3% by mass or more and 70% by mass or less, and 0.5% by mass or more and 50% by mass with respect to the coating composition for forming the overcoat layer. The following is more preferable. If the total amount of the inorganic fine particles 8 and the water-repellent resin 4 is less than 0.3% by mass, the overcoat layer 6 may become thin and sufficient water repellency may not be obtained.
  • the inorganic fine particles 8 do not remain as large aggregates by using a liquid dispersing machine such as a homogenizer, a dissolver, or a high-pressure dispersing device.
  • a solvent having a boiling point and a viscosity suitable for the coating method may be appropriately selected from those that can dissolve the water-repellent resin.
  • the coating composition for forming the topcoat layer can be applied by spray coating, brush coating, roller bucket coating, or the like.
  • the film thickness of the overcoat layer 6 is preferably adjusted so that the amount of the water-repellent resin 4 after drying per 100 cm 2 is 0.03 g or more and 1.2 g or less. If the amount of the water repellent resin 4 is less than 0.03 g, the undercoat layer 5 may be exposed and sufficient water repellency may not be obtained. On the other hand, if the amount of the water-repellent resin 4 exceeds 1.2 g, the water repellency may be lowered due to friction or the topcoat layer 6 may be easily peeled off.
  • the base material 1 on which the water-repellent film is formed it can be used for various parts in products that require water-repellent performance.
  • products that require water-repellent performance include heat exchangers for air conditioner outdoor units, elevators, refrigerators, solar cells, radomes, and the like.
  • the material of the substrate 1 include unsaturated polyester, polyethylene, cross-linked polyethylene, polyvinyl chloride, polyimide, polypropylene, polystyrene, ABS resin, AS resin, fluororesin, silicone resin and other metals, and metals such as aluminum and stainless steel. , Glass, porcelain and the like.
  • FIG. FIG. 3 is a schematic cross-sectional view for explaining the state before and after the abrasion of the water repellent coating according to the second embodiment of the present invention.
  • the water-repellent coating according to Embodiment 2 is implemented in that the undercoat layer 5 further contains porous particles 9 having an average particle diameter of 1 ⁇ m or more and 15 ⁇ m or less and less than the average particle diameter of the spherical particles 7. Different from Form 1.
  • the undercoat layer 5 contains the porous particles 9 having a specific average particle diameter, minute irregularities are formed on the surface of the undercoat layer 5. Thereby, it becomes difficult for the topcoat layer 6 to peel from the undercoat layer 5, and an effect is obtained that excellent water repellency can be maintained even if friction is repeated.
  • the reason is considered to be that the contact area with the topcoat layer 6 is increased and the anchor effect is obtained due to minute irregularities formed on the surface of the undercoat layer 5.
  • porous particles 9 examples include calcium silicate particles such as silica gel, precipitated silica, zonolite and tobermorite, alumina hydrate particles such as boehmite, and porous lime-based particles such as quick lime and slaked lime. These porous particles 9 may be used alone or in combination of two or more. Among these, silica gel and precipitated silica are preferable in that they have an appropriate strength and exhibit good dispersibility in the undercoat layer 5. Further, the surface of the porous particles 9 may be hydrophobized by the same method as the above-described hydrophobizing treatment of the inorganic fine particles.
  • the water repellency is less likely to be lowered even if the surface is worn due to friction or the like.
  • the average particle diameter of the porous particles 9 is 1 ⁇ m or more and 15 ⁇ m or less and less than the average particle diameter of the spherical particles 7.
  • the porous particles 9 having an average particle size smaller than the average particle size of the spherical particles 7 irregularities smaller than the irregularities formed by the spherical particles 7 can be formed. Since the porous particles 9 are porous, they are easily crushed at the time of wear, and do not affect the wear-inhibiting effect of the spherical particles 7 and the characteristics of ensuring the flatness of the wear surface. In addition, the water-repellent resin 4 is likely to adhere to the crushed surface of the porous particles 9, thereby maintaining high water repellency.
  • the wear surface When the average particle size of the porous particles 9 is less than 1 ⁇ m, the wear surface may be easily hydrophilized. On the other hand, when the average particle diameter of the porous particles 9 exceeds 15 ⁇ m, a large hydrophilic surface may be generated when the porous particles 9 are crushed, and water may easily adhere.
  • the average particle diameter of the porous particles 9 here is a value measured by a laser diffraction particle size distribution measuring device.
  • the content of the porous particles 9 in the undercoat layer 5 is preferably 5% by mass or more and 80% by mass or less with respect to the content of the spherical particles 7. If the content of the porous particles 9 is less than 5% by mass, the effect of forming minute irregularities is small and the effect of suppressing the peeling of the topcoat layer 6 may not be obtained. On the other hand, if the content of the porous particles 9 exceeds 80% by mass, the worn surface may be easily hydrophilized.
  • the total amount of the spherical particles 7 and the porous particles 9 is preferably 10% by mass or more and 95% by mass or less, and more preferably 20% by mass or more and 80% by mass or less with respect to the base resin 3.
  • the total amount of the spherical particles 7 and the porous particles 9 is less than 10% by mass, the unevenness due to the porous particles may not be sufficiently obtained.
  • the total amount of the spherical particles 7 and the porous particles 9 exceeds 95% by mass, it may be difficult to apply or the strength as the undercoat layer 5 may not be obtained.
  • the undercoat layer 5 in the water-repellent coating according to Embodiment 2 comprises a base resin 3, spherical particles 7, porous particles 9, and a solvent for forming the base resin into a solution or emulsion, and a coating composition for forming an undercoat layer. It can be formed by applying an object to the substrate 1.
  • the total amount of the base resin 3, the spherical particles 7, and the porous particles 9 is preferably 3% by mass or more and 50% by mass or less with respect to the coating composition for forming the undercoat layer.
  • the spherical particles 7 and the porous particles 9 is less than 3% by mass, the spherical particles 7 are liable to settle and the handling property of the coating composition is lowered.
  • the spherical particles 7 cannot be fixed stably.
  • the total amount of the base resin 3, the spherical particles 7, and the porous particles 9 exceeds 50% by mass, it may be difficult to form the undercoat layer 5 uniformly.
  • a crosslinking agent may be added to the coating composition for forming the undercoat layer in order to improve the strength of the base resin 3.
  • paintability or to improve the water repellency of the undercoat layer 5 you may add a well-known additive to the coating composition for undercoat layer formation.
  • the application method of the coating composition for forming the undercoat layer, the film thickness of the undercoat layer 5, the configuration of the overcoat layer 6, the application method of the coating composition for forming the overcoat layer, and the film thickness of the overcoat layer 6 are the same as in the first embodiment. is there.
  • FIG. FIG. 4 is a schematic cross-sectional view for explaining the state before and after the abrasion of the water repellent coating according to Embodiment 3 of the present invention.
  • the water-repellent coating according to Embodiment 3 is that the undercoat layer 5 further contains fluororesin particles 10 having an average particle size of 0.05 ⁇ m or more and 15 ⁇ m or less and less than the average particle size of the spherical particles 7. Different from the first embodiment. Since the undercoat layer 5 contains the fluororesin particles 10 having a specific average particle diameter, minute irregularities are formed on the surface of the undercoat layer 5 as described in the second embodiment, and the overcoat layer 6 is undercoated. The effect that it becomes difficult to peel from the layer 5 is acquired.
  • the fluororesin particles 10 are soft and easily stretched by friction. When the undercoat layer 5 is worn and the fluororesin particles 10 begin to be exposed, the fluororesin is stretched to the wear surface by friction, and high water repellency is imparted to the wear surface. As described above, high water repellency is imparted to the worn surface, and the topcoat layer 6 remains without being peeled except on the worn surface, so that even if the surface is worn, the water repellency is less likely to be lowered.
  • Examples of the material of the fluororesin particles 10 used here include PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane), FEP (perfluoroethylene propene copolymer), and the like.
  • the average particle diameter of the fluororesin particles 10 is not less than 0.05 ⁇ m and not more than 15 ⁇ m, and is less than the average particle diameter of the spherical particles 7.
  • the fluororesin particles 10 having an average particle size smaller than the spherical particles 7 irregularities smaller than the irregularities formed by the spherical particles 7 can be formed.
  • the fluororesin particles 10 are easily stretched by friction, and do not affect the wear-inhibiting effect of the spherical particles 7 and the characteristics of ensuring the flatness of the wear surface.
  • the fluororesin is stretched to the wear surface, not only high water repellency is imparted but also lubricity is imparted to the wear surface, so that an effect of suppressing the progress of wear can be obtained.
  • the average particle size of the fluororesin particles 10 is less than 0.05 ⁇ m, the adhesion between the substrate 1 and the undercoat layer 5 may be reduced, and the undercoat layer 5 may be easily peeled off from the substrate 1.
  • the average particle diameter of the fluororesin particles 10 exceeds 15 ⁇ m, the strength of the undercoat layer 5 may be lowered.
  • the average particle diameter of the fluororesin particles 10 is a value measured by a laser diffraction particle diameter measuring apparatus.
  • the fluororesin particles 10 may have an average particle size of primary particles of 0.05 ⁇ m or more and 15 ⁇ m or less and less than the average particle size of the spherical particles 7, or secondary particles (several tens of particles).
  • the aggregate of primary particles having an average particle diameter of nm to several hundred nm) may have an average particle diameter of 0.05 ⁇ m or more and 15 ⁇ m or less and less than the average particle diameter of the spherical particles 7.
  • the content of the fluororesin particles 10 in the undercoat layer 5 is preferably 5% by mass or more and 100% by mass or less with respect to the spherical particles 7.
  • the content of the fluororesin particles 10 is less than 5% by mass, the effect of forming minute irregularities is small, and the effect of suppressing peeling of the topcoat layer 6 may not be obtained.
  • the undercoat layer 5 may become soft and wear resistance may decrease.
  • the total amount of the spherical particles 7 and the fluororesin particles 10 is preferably 10% by mass or more and 70% by mass or less, and more preferably 30% by mass or more and 60% by mass or less with respect to the base resin 3. If the total amount of the spherical particles 7 and the fluororesin particles 10 is less than 10% by mass, sufficient unevenness may not be obtained. On the other hand, when the total amount of the spherical particles 7 and the fluororesin particles 10 exceeds mass% by volume, it may be difficult to apply or the strength as the undercoat layer 5 may not be obtained.
  • the undercoat layer 5 in the water-repellent coating according to Embodiment 3 includes a base resin 3, spherical particles 7, fluororesin particles 10, and a solvent for forming the base resin into a solution or emulsion, and a coating composition for forming an undercoat layer. It can be formed by applying an object to the substrate 1.
  • a method of adding the fluororesin particles 10 to the coating composition for forming the undercoat layer a method of mixing the fluororesin particles 10 in a powder state with the base resin 3, the spherical particles 7 and a solvent, Examples thereof include a method of mixing the dispersion with the base resin 3, the spherical particles 7, and a solvent.
  • the total amount of the base resin 3, the spherical particles 7, and the fluororesin particles 10 is preferably 3% by mass or more and 50% by mass or less with respect to the coating composition for forming the undercoat layer.
  • the spherical particles 7 and the fluororesin particles 10 are less than 3% by mass, the spherical particles 7 are liable to settle and the handling property of the coating composition is lowered. In some cases, the spherical particles 7 cannot be fixed stably.
  • the total amount of the base resin 3, the spherical particles 7, and the fluororesin particles 10 exceeds 50% by mass, it may be difficult to form the undercoat layer 5 uniformly.
  • a crosslinking agent may be added to the coating composition for forming the undercoat layer in order to improve the strength of the base resin 3. Moreover, in order to improve applicability
  • the application method of the coating composition for forming the undercoat layer, the film thickness of the undercoat layer 5, the configuration of the overcoat layer 6, the application method of the coating composition for forming the overcoat layer, and the film thickness of the overcoat layer 6 are the same as in the first embodiment. is there.
  • Embodiment 4 By forming the water-repellent coating of the present invention on the surface of the insulator, the insulating properties can be improved.
  • the insulator is used to fix a conductor having a large potential difference without short-circuiting it.
  • the insulator include polyethylene, cross-linked polyethylene, polyvinyl chloride, polyimide, rubbery polymer, fluorine resin such as PTFE and ETFE, silicone resin, glass, porcelain and other inorganic materials, and those coated with these materials. It is done.
  • FIG. 5 is a schematic cross-sectional view when the water-repellent coating of the present invention is applied to an insulator.
  • the water-repellent coating 12 of the present invention is formed on the surface of the insulator 11.
  • a pleat may be formed on the outer surface of the insulator 11 as shown in FIG. 5 so that creeping discharge in which a current flows along the surface of the insulator 11 hardly occurs.
  • the insulation of the surface may be lowered and leakage current may be increased, or an arc may be generated and the insulation may be destroyed.
  • the water-repellent coating 12 By forming the water-repellent coating 12 on the surface of the insulator 11, adhesion of water droplets and dust can be suppressed, and contamination by salt and dust that adversely affects the insulation can be suppressed. Not only can the contamination be suppressed, but also has the effect of suppressing the deterioration of the insulating properties even when it is contaminated.
  • the decrease in insulation due to surface contamination becomes apparent when the contaminants absorb moisture and form a conductive film.
  • the moisture-absorbed contaminant cannot form a film and is spherical or particulate. In such a state, high insulation can be maintained even if there are contaminants.
  • the insulator 11 As a factor for lowering the insulating properties, there is not only the above-mentioned contamination but also deterioration of the insulator 11 due to a compound such as nitric acid and sulfuric acid generated by discharge, ultraviolet rays, and the like.
  • the resin In the case of the insulator 11 formed of a resin other than the fluororesin, the resin deteriorates with long-term use, and the insulating properties gradually decrease.
  • the water-repellent coating 12 here can exert the effect as described in any of Embodiments 1 to 3, but particularly good results are obtained by using a fluororesin or a silicone resin as a base resin in this application. Is obtained. These base resins are unlikely to deteriorate and hardly cause long-term performance degradation of the insulator.
  • Embodiment 5 FIG.
  • the water-repellent coating of the present invention can be used for outdoor equipment to suppress adhesion of water droplets and dirt.
  • the water-repellent coating of the present invention is highly durable against hail, hail, snow, rain, etc., and can exhibit an effect over a long period of time.
  • FIG. 6 is a schematic cross-sectional view when the water-repellent coating of the present invention is applied to a radome.
  • the water-repellent coating 12 of the present invention is formed on the outer surface of the radome 20.
  • Radomes are often installed outdoors, and contamination and surface degradation become a problem. In the case of radar using microwaves or millimeter waves, water droplets adhering to the outer surface of the radome may be a problem. These problems can be avoided by forming the water-repellent coating of the present invention.
  • the water-repellent coating 12 here can exert any of the effects described in the first to third embodiments.
  • FIG. 7 is a schematic configuration diagram when the water-repellent coating of the present invention is applied to an outdoor unit of an air conditioner.
  • the interior of the outdoor unit 30 is partitioned by a partition plate 31 into a heat exchange chamber 35 having a heat exchanger 32, a fan 33 and a fan motor 34, and a machine room 37 having a compressor 36.
  • the heat exchange chamber 35 is provided with an air outlet 38 and a suction port 39.
  • a bell mouth 40 is provided at the air outlet 38.
  • the water repellent coating 12 of the present invention is formed on the surface of the fan 33. In some cases, snow or the like adheres to the fan during heating, resulting in a decrease in efficiency or difficulty in continuous operation.
  • the water repellent coating of the present invention By forming the water repellent coating of the present invention on the surface of the fan 33, adhesion of snow and ice can be suppressed and these problems can be reduced. Further, by forming the water-repellent coating of the present invention on the surface of the heat exchanger 32, it is possible to suppress the adhesion of snow and ice. When snow or ice adheres to or peels off from the fan surface or the heat exchanger surface, a large frictional force is generated on these surfaces. By forming the water-repellent film of the present invention, the effect can be exhibited over a long period of time.
  • the water-repellent coating 12 here can exert any of the effects described in the first to third embodiments.
  • Example 1 After mixing spherical fused silica particles (manufactured by Denka Co., Ltd.) with hexamethyldisilazane, the particles obtained by classifying those hydrophobized by drying are used as spherical particles (average particle size 2.1 ⁇ m).
  • a coating composition for forming an undercoat layer comprising 5% by mass of spherical fused silica particles and 5% by mass of polyurethane resin using polyurethane dispersion (ADEKA BONTITER (registered trademark) HUX-232, manufactured by Adeka Co., Ltd.) as a base resin
  • a product was prepared. This was coated on an aluminum plate by spray coating and then dried at 120 ° C.
  • the undercoat layer was formed by 15 minutes.
  • the average film thickness of the undercoat layer was measured with a microscope, it was 1.5 ⁇ m.
  • the volume ratio of the polyurethane resin and the spherical fused silica particles in the undercoat layer was 40:60.
  • hydrophobic fumed silica (RX300, average particle size 7 nm, manufactured by Nippon Aerosil Co., Ltd.) is used as inorganic fine particles
  • silicone resin KR221, manufactured by Shin-Etsu Silicone Co., Ltd.
  • xylene is used as a solvent.
  • a coating composition for forming an overcoat layer containing 3.0% by mass of hydrophobic fumed silica and 1.0% by mass of a silicone resin was prepared. This was applied onto the undercoat layer by spray coating and then dried at 120 ° C. for 5 minutes to form an overcoat layer. The coating composition for forming the topcoat layer was applied so that the amount of the silicone resin after drying per 100 cm 2 was about 0.6 g.
  • the initial evaluation of water repellency was performed by dropping about 5 ⁇ L of water droplets from the tip of a PTFE (polytetrafluoroethylene) -coated needle having an inner diameter of 0.1 mm onto the surface of the water-repellent coating and measuring the contact angle with a contact angle meter (Kyowa). Measurement was carried out using CX-150 model manufactured by Interface Science Co., Ltd. Evaluation of water repellency after wear was performed using a clock meter (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) while pressing the polyester nonwoven fabric against the surface of the water-repellent coating with a load of 80 g / cm 2 (50 and 100 reciprocations). Then, the water contact angle was measured. Table 1 shows the evaluation results of water repellency.
  • Example 2 Except for using spherical fused silica particles having an average particle diameter of 6.7 ⁇ m hydrophobized with hexamethyldisilazane, instead of spherical fused silica particles having an average particle diameter of 2.1 ⁇ m hydrophobized with hexamethyldisilazane, An undercoat layer was formed in the same manner as in Example 1. It was 6 micrometers when the average film thickness of the undercoat was measured with the microscope. Moreover, the volume ratio of the polyurethane resin and the spherical fused silica particles in the undercoat layer was 50:50. Next, an overcoat layer was formed in the same manner as in Example 1. Table 1 shows the evaluation results of water repellency.
  • Example 3 Except for using spherical fused silica particles having an average particle size of 10.2 ⁇ m hydrophobized with hexamethyldisilazane instead of spherical fused silica particles having an average particle size of 2.1 ⁇ m hydrophobized with hexamethyldisilazane.
  • An undercoat layer was formed in the same manner as in Example 1. It was 6 micrometers when the average film thickness of the undercoat was measured with the microscope. Moreover, the volume ratio of the polyurethane resin and the spherical fused silica particles in the undercoat layer was 50:50. Next, an overcoat layer was formed in the same manner as in Example 1. Table 1 shows the evaluation results of water repellency.
  • Example 4 Instead of spherical fused silica particles having an average particle diameter of 2.1 ⁇ m hydrophobized with hexamethyldisilazane, spherical fused silica particles having an average particle diameter of 10.2 ⁇ m hydrophobized with hexamethyldisilazane were used.
  • An undercoat layer was formed in the same manner as in Example 1 except that the content of the particles was reduced. It was 8.5 micrometers when the average film thickness of the undercoat was measured with the microscope. Moreover, the volume ratio of the polyurethane resin and the spherical fused silica particles in the undercoat layer was 70:30. Next, an overcoat layer was formed in the same manner as in Example 1. Table 1 shows the evaluation results of water repellency.
  • Example 5 Except for using spherical fused silica particles having an average particle diameter of 20.6 ⁇ m hydrophobized with hexamethyldisilazane, instead of spherical fused silica particles having an average particle diameter of 2.1 ⁇ m hydrophobized with hexamethyldisilazane An undercoat layer was formed in the same manner as in Example 1. It was 15 micrometers when the average film thickness of the undercoat was measured with the microscope. Moreover, the volume ratio of the polyurethane resin and the spherical fused silica particles in the undercoat layer was 50:50. Next, an overcoat layer was formed in the same manner as in Example 1. Table 1 shows the evaluation results of water repellency.
  • Example 6 Except for using spherical fused silica particles having an average particle diameter of 48.6 ⁇ m hydrophobized with hexamethyldisilazane, instead of spherical fused silica particles having an average particle diameter of 2.1 ⁇ m hydrophobized with hexamethyldisilazane, An undercoat layer was formed in the same manner as in Example 1. It was 25 micrometers when the average film thickness of the undercoat was measured with the microscope. Moreover, the volume ratio of the polyurethane resin and the spherical fused silica particles in the undercoat layer was 50:50. Next, an overcoat layer was formed in the same manner as in Example 1. Table 1 shows the evaluation results of water repellency.
  • Example 7 Instead of spherical fused silica particles with an average particle size of 2.1 ⁇ m that have been hydrophobized with hexamethyldisilazane, spherical fused alumina particles (manufactured by DENKA CORPORATION) are mixed with hexamethyldisilazane and dried to make it hydrophobic.
  • An undercoat layer was formed in the same manner as in Example 1 except that a product obtained by classifying the prepared product (average particle size 12.6 ⁇ m) was used. It was 18 micrometers when the average film thickness of the undercoat was measured with the microscope. Moreover, the volume ratio of the polyurethane resin and spherical fused alumina particles in the undercoat layer was 40:60. Next, an overcoat layer was formed in the same manner as in Example 1. Table 1 shows the evaluation results of water repellency.
  • Example 1 except that an undercoat layer having an average film thickness of 10 ⁇ m was formed using a coating composition for forming an undercoat layer that did not contain spherical fused silica particles having an average particle diameter of 2.1 ⁇ m that had been hydrophobized with hexamethyldisilazane.
  • a water repellent film was formed in the same manner as described above. Table 1 shows the evaluation results of water repellency.
  • Example 1 except that crushed silica particles hydrophobized with hexamethyldisilazane and having an average particle size of 5 ⁇ m were used instead of spherical fused silica particles having an average particle size of 2.1 ⁇ m and hydrophobized with hexamethyldisilazane.
  • An undercoat layer was formed in the same manner as described above. It was 5 micrometers when the average film thickness of the undercoat was measured with the microscope. Next, an overcoat layer was formed in the same manner as in Example 1. Table 1 shows the evaluation results of water repellency.
  • the water-repellent coatings of Examples 1 to 7 initially exhibit super-water repellency (property exhibiting a water contact angle of 150 ° or more). Further, it can be seen that the water-repellent coatings of Examples 1 to 7 maintain a large water contact angle even after wear, and the water repellency is hardly lowered. Although the water contact angle is close to 150 ° after wear, a phenomenon in which minute water droplets adhere to the surface is observed. This is presumably because the overcoat layer disappears locally, the undercoat layer is exposed, and water easily adheres to the exposed portion. In the case of showing a large water contact angle, the area of the exposed portion is considered to be very small.
  • Example 8 Fluorine resin dispersion (Lumiflon (registered trademark) FE4300, Asahi Glass) using spherical silicone resin particles (Tospearl (registered trademark) 2000B, manufactured by Momentive Performance Materials Japan GK) with an average particle size of 5.6 ⁇ m as spherical particles. Co., Ltd.) was used as a base resin to prepare a coating composition for forming an undercoat layer containing 3% by mass of spherical silicone resin particles and 5% by mass of a fluororesin. This was coated on an aluminum plate by spray coating and then dried at 120 ° C. for 15 minutes to form an undercoat layer. It was 4 micrometers when the average film thickness of the undercoat was measured with the microscope. Moreover, the volume ratio of the fluororesin and the spherical silicone resin particles in the undercoat layer was 40:60.
  • hydrophobic fumed silica (RX300, average particle size 7 nm, manufactured by Nippon Aerosil Co., Ltd.) is used as the inorganic fine particles, and fluororesin (Lumiflon (registered trademark) LF800, manufactured by Asahi Glass Co., Ltd.) is used as the water repellent resin.
  • a coating composition for forming an overcoat layer comprising 3.0% by mass of hydrophobic fumed silica and 1.0% by mass of a fluororesin was prepared using ethanol as a solvent. This was applied onto the undercoat layer by spray coating and then dried at 120 ° C. for 5 minutes to form an overcoat layer. The coating composition for forming the topcoat layer was applied so that the amount of the fluororesin after drying per 100 cm 2 was about 0.9 g.
  • the water repellency was evaluated in the same manner as in Example 1. Table 2 shows the evaluation results of water repellency.
  • Example 9 An undercoat layer was formed in the same manner as in Example 8 except that the content of the spherical silicone resin particles was changed to 10% by mass. It was 5 micrometers when the average film thickness of the undercoat was measured with the microscope. Moreover, the volume ratio of the fluororesin and the spherical silicone resin particles in the undercoat layer was 40:60. Next, an overcoat layer was formed in the same manner as in Example 8. Table 2 shows the evaluation results of water repellency.
  • Example 6 A water-repellent coating was formed in the same manner as in Example 8 except that an undercoat layer having an average film thickness of 2 ⁇ m was formed using a coating composition for forming an undercoat layer containing no spherical silicone resin particles having an average particle size of 5.6 ⁇ m. did. Table 1 shows the evaluation results of water repellency.
  • spherical silicone resin particles having an average particle size of 5.6 ⁇ m instead of spherical silicone resin particles having an average particle size of 5.6 ⁇ m, spherical silicone resin particles having an average particle size of 1.9 ⁇ m (Tospearl (registered trademark) 120, manufactured by Momentive Performance Materials Japan GK) are used to form spherical particles.
  • An undercoat layer was formed in the same manner as in Example 8 except that the content of the silicone resin particles was changed to 10% by mass. It was 5.5 micrometers when the average film thickness of the undercoat layer was measured with the microscope.
  • an overcoat layer was formed in the same manner as in Example 8. Table 2 shows the evaluation results of water repellency.
  • the water repellent coatings of Examples 8 and 9 initially exhibit super water repellency (property exhibiting a water contact angle of 150 ° or more). Furthermore, it can be seen that the water-repellent coatings of Examples 8 and 9 maintain a large water contact angle even after wear, and the water repellency is hardly lowered. Although the water contact angle is close to 150 ° after wear, a phenomenon in which minute water droplets adhere to the surface is observed. This is presumably because the overcoat layer disappears locally, the undercoat layer is exposed, and water easily adheres to the exposed portion. In the case of showing a large water contact angle, the area of the exposed portion is considered to be very small.
  • the water repellent film of Comparative Example 6 in which the undercoat layer does not contain spherical silicone resin particles has a water contact angle that rapidly decreases after abrasion, and the water repellency is significantly reduced. It can be seen that even in the water-repellent coating of Comparative Example 7 using spherical silicone resin particles having an average particle size of less than 2 ⁇ m, the water repellency is significantly reduced after abrasion.
  • Example 10 to 15 Instead of spherical fused silica particles having an average particle size of 2.1 ⁇ m that have been hydrophobized with hexamethyldisilazane, spherical fused silica particles having an average particle size of 10.2 ⁇ m that have been hydrophobized with hexamethyldisilazane are used.
  • An undercoat layer was formed in the same manner as in Example 1 except that the coating composition for forming an undercoat layer to which the indicated particles were added was used.
  • an overcoat layer was formed in the same manner as in Example 1.
  • Table 3 shows the evaluation results of water repellency.
  • silica gel and precipitated silica are manufactured by Tosoh Silica Co., Ltd., and the fluororesin particles are TF9201Z manufactured by 3M Japan Co., Ltd.
  • the water repellent coatings of Examples 10 to 15 initially exhibit super water repellency (property exhibiting a water contact angle of 150 ° or more). Further, it can be seen that the water-repellent coatings of Examples 10 to 15 maintain a larger water contact angle even after abrasion as compared with the water-repellent coating of Example 3, and the water repellency is hardly lowered. Microscopic observation of the surface after abrasion confirmed that peeling of the water-repellent resin due to abrasion was suppressed, and the effect of adding porous particles or fluororesin particles to the undercoat layer was recognized.
  • the water-repellent coatings of Examples 14 and 15 in which the undercoat layer contains fluororesin particles not only maintain excellent water repellency even after 100 reciprocations, but also make it easy for fine water droplets to adhere to the surface. Development was suppressed. This is presumably because the surface exposed by abrasion is highly hydrophobic.
  • Example 16 to 18 Instead of spherical fused silica particles having an average particle diameter of 2.1 ⁇ m that have been hydrophobized with hexamethyldisilazane, spherical fused silica particles having an average particle diameter of 6.7 ⁇ m that have been hydrophobized with hexamethyldisilazane are used.
  • An undercoat layer was formed in the same manner as in Example 1 except that the coating composition for forming an undercoat layer to which the indicated particles were added was used.
  • an overcoat layer was formed in the same manner as in Example 1.
  • Table 4 shows the evaluation results of water repellency.
  • silica gel and precipitated silica are manufactured by Tosoh Silica Co., Ltd., and the fluororesin particles are TF9201Z manufactured by 3M Japan Co., Ltd.
  • the water repellent coatings of Examples 16 to 18 initially exhibit super water repellency (property exhibiting a water contact angle of 150 ° or more). Further, it can be seen that the water repellent coatings of Examples 16 to 18 maintain a larger water contact angle even after abrasion as compared with the water repellent coating of Example 2, and the water repellency is hardly lowered.
  • the water-repellent coating of Example 18 in which the undercoat layer contains fluororesin particles not only maintains excellent water repellency even after 100 reciprocations, but also develops so that minute water droplets are likely to adhere to the surface. It was suppressed.
  • Example 19 to 21 Instead of spherical fused silica particles having an average particle diameter of 2.1 ⁇ m that have been hydrophobized with hexamethyldisilazane, spherical fused silica particles having an average particle diameter of 20.6 ⁇ m that have been hydrophobized with hexamethyldisilazane are used.
  • An undercoat layer was formed in the same manner as in Example 1 except that the coating composition for forming an undercoat layer to which the indicated particles were added was used.
  • an overcoat layer was formed in the same manner as in Example 1.
  • Table 4 shows the evaluation results of water repellency.
  • silica gel and precipitated silica are manufactured by Tosoh Silica Co., Ltd., and the fluororesin particles are TF9201Z manufactured by 3M Japan Co., Ltd.
  • the water repellent coatings of Examples 19 to 21 initially exhibited super water repellency (property exhibiting a water contact angle of 150 ° or more). Further, it can be seen that the water repellent coatings of Examples 19 to 21 maintain a larger water contact angle even after abrasion as compared with the water repellent coating of Example 5, and the water repellency is hardly lowered.
  • the water-repellent coating of Example 21 in which the undercoat layer contains fluororesin particles not only maintains excellent water repellency after 100 reciprocations, but also develops so that minute water droplets are likely to adhere to the surface. It was suppressed.
  • Example 22 Fluorine resin dispersion (Lumiflon (registered trademark) FE4300, Asahi Glass) using spherical silicone resin particles (Tospearl (registered trademark) 2000B, manufactured by Momentive Performance Materials Japan GK) with an average particle size of 5.6 ⁇ m as spherical particles. Co., Ltd.) was used as a base resin to prepare a coating composition for forming an undercoat layer containing 3% by mass of spherical silicone resin particles and 5% by mass of a fluororesin. This was coated on an 80 mm ⁇ 100 mm unsaturated polyester resin flat plate by brush coating and then dried at 120 ° C. for 15 minutes to form an undercoat layer. It was 7.5 micrometers when the average film thickness of the undercoat was measured with the microscope. Moreover, the volume ratio of the fluororesin and the spherical silicone resin particles in the undercoat layer was 40:60.
  • hydrophobic fumed silica (RX300, average particle size 7 nm, manufactured by Nippon Aerosil Co., Ltd.) is used as the inorganic fine particles, and fluororesin (Lumiflon (registered trademark) LF800, manufactured by Asahi Glass Co., Ltd.) is used as the water repellent resin.
  • a coating composition for forming an overcoat layer comprising 3.0% by mass of hydrophobic fumed silica and 1.0% by mass of a fluororesin was prepared using ethanol as a solvent. This was applied onto the undercoat layer by spray coating and then dried at 120 ° C. for 5 minutes to form an overcoat layer. The coating composition for forming the topcoat layer was applied so that the amount of the fluororesin after drying per 100 cm 2 was about 0.6 g.
  • the initial and post-degradation water repellency was evaluated.
  • the initial evaluation of water repellency was performed by dropping about 5 ⁇ L of water droplets from the tip of a PTFE (polytetrafluoroethylene) -coated needle having an inner diameter of 0.1 mm onto the surface of the water-repellent coating and measuring the contact angle with a contact angle meter (Kyowa). Measurement was carried out using CX-150 model manufactured by Interface Science Co., Ltd.
  • the water repellency after the deterioration was evaluated by measuring the water contact angle after deterioration for 200 hours with a sunshine weather meter (manufactured by Suga Test Instruments).
  • the initial and post-degradation insulating properties were evaluated.
  • the initial insulation evaluation was performed by measuring the surface resistance value.
  • Evaluation of insulation after deterioration was performed by measuring the surface resistance value after 6 days exposure to saturated steam of 1N nitric acid at 60 ° C. The evaluation results are shown in Table 6.
  • Example 23 An undercoat layer was formed in the same manner as in Example 22 except that a coating composition for forming an undercoat layer to which 3% by mass of silica gel having an average particle size of 2.5 ⁇ m (Tosoh Silica Co., Ltd.) was added was used. Next, an overcoat layer was formed in the same manner as in Example 22. Table 6 shows the evaluation results of weather resistance and insulation.
  • Example 22 an undercoat layer that was not formed was evaluated as Comparative Example 8, and an unsaturated polyester resin flat plate on which no water-repellent coating was formed was evaluated as Comparative Example 9.
  • Table 6 shows the evaluation results of weather resistance and insulation.
  • Example 22 and 23 excellent water repellency was maintained even after the deterioration test, and excellent weather resistance was obtained.
  • Comparative Example 8 excellent water repellency is exhibited in the initial stage, but water repellency is lost after the deterioration test. This is because the water-repellent coating peeled off because the undercoat layer was not formed.
  • Example 23 compared with Example 24, the water repellency after the deterioration test is kept good. Since silica gel, which is porous particles, is added to the undercoat layer, peeling of the water-repellent coating is suppressed, and excellent weather resistance is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

基材(1)表面上に形成され、2μm以上50μm以下の平均粒径を有し且つ球状溶融シリカ粒子、球状溶融アルミナ粒子及び球状シリコーン樹脂粒子からなる群から選択される少なくとも1種の球状粒子(7)と、下地樹脂(3)とを含有する下塗り層(5)、並びに前記下塗り層上に形成され、2nm以上20nm以下の平均粒径を有する無機微粒子(8)と、撥水性樹脂(4)とを含有する上塗り層(6)を備える撥水性被膜である。前記下地樹脂は、ポリウレタン樹脂又はフッ素樹脂であることが好ましい。前記撥水性樹脂は、フッ素樹脂又はシリコーン樹脂であることが好ましい。

Description

撥水性被膜及びそれが形成された製品
 本発明は、撥水性被膜及びそれが形成された製品に関するものである。
 微小な凹凸構造を有する撥水性表面の形成方法として、例えば、基材表面に機械的加工又はエッチングを施す方法、微粒子又は微粒子前駆体と樹脂とを含むコーティング組成物を基材表面に塗布する方法等が提案されている。
 これらの方法の中でも、コーティング組成物を用いる方法は、様々な形状の基材に樹脂溶液を塗布するだけで撥水性を付与できるため、生産性及び製造コストの面で有利である。このような方法の具体例としては、疎水処理が施されたシリカ微粒子と、フッ素含有樹脂等の疎水性樹脂とを、揮発後の重量分率でそれぞれ30~100%、0~70%となるように含有し、超音波照射によってシリカ微粒子を有機溶媒中に分散させた超撥水剤を、基材に塗布後、硬化させることにより超撥水被膜を形成する方法(特許文献1を参照)、金属板材の表面に、微粒子を添加した有機系塗料により粗面状被膜を形成した後、その粗面状被膜の上に撥水性被膜を形成する方法(特許文献2を参照)、金属材の表面に、親水性微粒子と有機樹脂とを含有する塗料により下地塗膜を形成した後、その下地塗膜の上にフッ素系樹脂又はシリコーン系樹脂を主成分とする塗料により仕上げ塗膜を形成する方法(特許文献3を参照)等が挙げられる。
特開2003-147340号公報 特開平8-323285号公報 特開2011-083689号公報
 しかしながら、特許文献1のような撥水性被膜は、被膜自体が破壊されたり剥離し易いため、撥水性が容易に失われてしまうという問題がある。また、特許文献2及び3のような二層構造の撥水性被膜では、摩擦等により撥水性を有する最表層だけでなく下地層の摩耗も進行し、最表層の剥離が生じるため、撥水性が容易に失われてしまうという問題がある。
 本発明は、上記のような課題を解決するためになされたものであり、摩擦等により表面が摩耗しても撥水性が低下し難い撥水性被膜を提供することを目的とする。
 本発明は、基材表面上に形成され、2μm以上50μm以下の平均粒径を有し且つ球状溶融シリカ粒子、球状溶融アルミナ粒子及び球状シリコーン樹脂粒子からなる群から選択される少なくとも1種の球状粒子と、下地樹脂とを含有する下塗り層、並びに前記下塗り層上に形成され、2nm以上20nm以下の平均粒径を有する無機微粒子と、撥水性樹脂とを含有する上塗り層を備えることを特徴とする撥水性被膜である。
 本発明によれば、摩擦等により表面が摩耗しても撥水性が低下し難い撥水性被膜を提供することができる。
従来の撥水性被膜の摩耗前後の状態を説明するための模式断面図である。 本発明の実施の形態1による撥水性被膜の摩耗前後の状態を説明するための模式断面図である。 本発明の実施の形態2による撥水性被膜の摩耗前後の状態を説明するための模式断面図である。 本発明の実施の形態3による撥水性被膜の摩耗前後の状態を説明するための模式断面図である。 本発明の撥水性被膜を絶縁物に適用した場合の模式断面図である。 本発明の撥水性被膜をレドームに適用した場合の模式断面図である。 本発明の撥水性被膜を空調機の室外機に適用した場合の概略構成図である。
 実施の形態1.
 図1は、基材1表面上に形成され、シリカ等の無機物からなる不定形粒子2と下地樹脂3とを含む下地層、並びに下地層を覆うように形成され、撥水性樹脂4からなる撥水層を備える従来の撥水性被膜の摩耗前後の状態を説明するための模式断面図である。下地層は、不定形粒子2により表面に凹凸が形成されており、これらの凹凸により撥水層の表面にも凹凸が形成される。凹凸を有する下地層の上に撥水層を形成することで、撥水層が破壊されたり剥離するのを抑制している。
 このような撥水性被膜の表面を摩擦すると、下地層の凸部の上に形成された撥水層は摩耗するが、下地層の凹部の上に形成された撥水層は摩耗し難い。摩擦が繰り返されて摩耗が進行すると、図1の下段に示すように、下地樹脂3が摩耗し、更には不定形粒子2の一部が破壊されたり角が取れたりして親水面が露出した状態となる。このような状態になると、撥水性は失われ、表面に水滴が付着する。
 図2は、本発明の実施の形態1による撥水性被膜の摩耗前後の状態を説明するための模式断面図である。実施の形態1による撥水性被膜は、基材1表面上に形成された下塗り層5と、下塗り層5を覆うように形成された上塗り層6とを備えている。下塗り層5は、2μm以上50μm以下の平均粒径を有する球状粒子7と下地樹脂3とを含有する。球状粒子7は、球状溶融シリカ粒子、球状溶融アルミナ粒子、球状シリコーン樹脂粒子又はこれらの混合物である。上塗り層6は、2nm以上20nm以下の平均粒径を有する無機微粒子8と撥水性樹脂4とを含有する。球状粒子7により下塗り層5の表面には凹凸が形成されており、これらの凹凸により上塗り層6の表面にも凹凸が形成される。
 実施の形態1による撥水性被膜の表面を摩擦すると、下塗り層5の凸部の上に形成された上塗り層6は摩耗するが、下塗り層5の凹部の上に形成された上塗り層6は摩耗し難い。摩擦が繰り返されて摩耗が進行すると、下地樹脂3が摩耗し、球状粒子7が部分的に露出した状態となるが、更なる摩耗は進行し難くなる。球状粒子7が露出した近傍には、微小な水滴が付着し易くなる傾向があるものの、撥水性は維持される。その理由は、球状粒子7としての球状溶融シリカ粒子及び球状溶融アルミナ粒子は、表面の平滑性が高く、緻密で且つ硬度が高いため、耐摩耗性が優れているためであり、また、球状粒子7としての球状シリコーン粒子は、表面の平滑性が高く、摩擦が繰り返されても破壊され難いためである。また、球状粒子7としての球状シリコーン粒子は、撥水性が優れているため、摩耗後に露出する表面も撥水性を有しており、撥水性が維持され易い。球状粒子7としての球状シリコーン粒子は、球状溶融シリカ粒子及び球状溶融アルミナ粒子に比べて、砂塵等の高硬度の物質が介在する摩擦に対して摩耗し易いという欠点があるが、手で擦った時の手触りが良い、摩擦時の摩擦抵抗が小さい等の利点がある。
 球状粒子7の平均粒径は、2μm以上50μm以下であり、4μm以上20μm以下であることが好ましい。球状粒子7の平均粒径が2μm未満であると、下塗り層5の凹凸が小さくなり過ぎて摩擦時に上塗り層6を保護する効果が得られない。一方、球状粒子7の平均粒径が50μm超であると、下塗り層5の凹凸が大き過ぎて上塗り層6の凹部に異物が詰まる等の問題が生じ、撥水性被膜としての性能が発揮できなくなる。ここでの球状粒子7の平均粒径は、レーザ回折式粒子径測定装置により測定した値である。
 球状粒子7として、球状溶融シリカ粒子及び球状溶融アルミナ粒子の表面をシリル化剤、シランカップリング剤等で疎水化処理したものを用いることが好ましい。疎水化処理した球状溶融シリカ粒子及び球状溶融アルミナ粒子を用いることで、摩耗時に露出する表面の撥水性を高めることができ、撥水性を維持する効果を高めることができる。特に、この疎水化処理は、球状溶融シリカ粒子に対して有効である。
 下地樹脂3としては、ポリウレタン樹脂、フッ素樹脂、シリコーン樹脂、ポリプロピレン、ポリエチレン等の各種ポリオレフィン、ポリ塩化ビニル、アクリル樹脂、メタクリル樹脂、ポリスチレン、ABS樹脂、AS樹脂等が挙げられる。これらの樹脂は、単独で使用してもよいし、又は2種以上を使用してもよい。これらの中でも、ポリウレタン樹脂は、耐摩耗性に優れるという点で好ましい。また、フッ素樹脂及びシリコーン樹脂は、撥水性に優れるという点で好ましい。基材1との密着性を向上させるために、置換基等が導入された樹脂を用いてもよい。
 下塗り層5における下地樹脂3と球状粒子7との体積割合は、5:95~90:10の範囲であることが好ましく、20:80~80:20の範囲であることがより好ましい。球状粒子7の体積割合が小さ過ぎると、下塗り層5の表面に十分な数の凹凸が形成されないことがある。一方、球状粒子7の体積割合が大き過ぎると、十分な強度を有する下塗り層5が得られないことがある。
 下塗り層5は、下地樹脂3と、球状粒子7と、下地樹脂を溶液化又はエマルジョン化できる溶剤とを含有する下塗り層形成用コーティング組成物を基材1に塗布することにより形成することができる。下地樹脂3と球状粒子7との合計量は、下塗り層形成用コーティング組成物に対して、3質量%以上40質量%以下であることが好ましい。下地樹脂3と球状粒子7との合計量が3質量%未満であると、球状粒子7が沈降し易くなってコーティング組成物の取扱い性が低下する上に、下塗り層5中に球状粒子7を安定に固定できないことがある。一方、下地樹脂3と球状粒子7との合計量が40質量%を超えると、下塗り層5を均一に形成することが難しくなることがある。下塗り層形成用コーティング組成物には、下地樹脂3の強度を向上させるため、架橋剤を添加してもよい。また、下塗り層形成用コーティング組成物には、塗布性を向上させたり、下地樹脂3の撥水性を向上させるために、公知の添加剤を添加してもよい。
 下塗り層形成用コーティング組成物の塗布は、スプレー塗布、ハケ塗布、ローラーバケ塗布等により行うことができる。下塗り層5の膜厚は、平均膜厚として球状粒子7の平均粒径の1/3倍以上5倍以下であることが好ましい。下塗り層5の膜厚が、球状粒子7の平均粒径の1/3倍未満であると、十分な耐摩耗性が得られないことがある。一方、下塗り層5の膜厚が、球状粒子7の平均粒径の5倍超であると、下塗り層5の強度が低下したり、撥水性被膜の外観が悪くなることがある。
 無機微粒子8としては、特に限定されないが、シリカ、アルミナ、ジルコニア、チタニア等が挙げられる。これらの無機微粒子の表面は一般に親水性であるため、表面に疎水化処理を施したものを用いることが好ましい。疎水化処理の方法は、シリル化剤(例えば、ヘキサメチルジシラザン等)、シランカップリング剤等を無機微粒子8と反応させる方法、並びに撥水性樹脂4よりも低分子量のシリコーン化合物やフッ化炭素化合物を無機微粒子8と混合して表面に吸着させる方法が挙げられる。後者の方法では、混合後、100℃以上に加熱することで、疎水化を確実に進めることができる。前者の方法は、安定性の高い撥油性が得られるので好ましい。後者の方法は、原料として安価なものを利用できるという利点がある。無機微粒子8の疎水化処理は、無機微粒子8が粉体の状態で行ってもよいし、又は下塗り層形成用コーティング組成物中に無機微粒子8が分散された状態で上記したシリル化剤等を添加することで行ってもよい。後者の場合には、下塗り層形成用コーティング組成物の塗布後に熱風吹付け又は赤外線照射により塗布膜を加熱することで疎水化を確実に進めることができる。
 無機微粒子8の一次粒子の平均粒径は、2nm以上20nm以下であり、5nm以上15nm以下であることが好ましい。無機微粒子8の一次粒子の平均粒径が2nm未満であると、上塗り層形成用コーティング組成物の調製が困難となる上に、撥水性被膜の撥水性が不十分となる。一方、無機微粒子8の一次粒子の平均粒径が20nm超であると、撥水性被膜の撥水性が不十分となる上に、摩擦が繰り返されると撥水性が失われ易くなる。ここでの無機微粒子8の平均粒径は、レーザ回折式粒度分布測定装置により測定した値である。
 撥水性樹脂4としては、フッ素樹脂、シリコーン樹脂、あるいはアクリル樹脂、ウレタン樹脂、エポキシ樹脂等に対してフッ素系添加剤等を混合することで表面を撥水化した樹脂等が挙げられる。これらの中でも、フッ素樹脂及びシリコーン樹脂は、撥水性に優れるという点で好ましい。
 上塗り層6における無機微粒子8と撥水性樹脂4との質量割合は、40:60~95:5の範囲であることが好ましく、50:50~90:10の範囲であることがより好ましい。無機微粒子8の体積割合が大き過ぎると、上塗り層6が脆くなり耐摩耗性が低下することがある。一方、撥水性樹脂4の体積割合が大き過ぎると、十分な撥水性が得られないことがある。
 上塗り層6は、無機微粒子8と、撥水性樹脂4と、撥水性樹脂を溶解できる溶剤とを含有する上塗り層形成用コーティング組成物を下塗り層5上に塗布することにより形成することができる。無機微粒子8と撥水性樹脂4との合計量は、上塗り層形成用コーティング組成物に対して、0.3質量%以上70質量%以下であることが好ましく、0.5質量%以上50質量%以下であることがより好ましい。無機微粒子8と撥水性樹脂4との合計量が0.3質量%未満であると、上塗り層6が薄くなり十分な撥水性が得られないことがある。一方、無機微粒子8と撥水性樹脂4との合計量が70質量%を超えると、クラックの多い膜が形成され易く、上塗り層6が剥離し易くなることがある。上塗り層形成用コーティング組成物の調製は、ホモジナイザー、ディゾルバー、高圧分散装置等の液中分散機を用いて、無機微粒子8が大きな凝集体として残留しないようにすることが好ましい。また、溶剤としては、撥水性樹脂を溶解できるものの中から、塗布方法に適した沸点及び粘度を有するものを適宜選択すればよい。
 上塗り層形成用コーティング組成物の塗布は、スプレー塗布、ハケ塗布、ローラーバケ塗布等により行うことができる。上塗り層6の膜厚は、100cm2あたりの乾燥後の撥水性樹脂4の量が0.03g以上1.2g以下となるように調整することが好ましい。撥水性樹脂4の量が0.03g未満であると、下塗り層5が露出して十分な撥水性が得られないことがある。一方、撥水性樹脂4の量が1.2gを超えると、摩擦により撥水性が低下したり、上塗り層6が剥離し易くなることがある。
 撥水性被膜が形成される基材1としては、撥水性能が要求される製品中の各種部品に用いることができる。撥水性能が要求される製品としては、例えば、空調機室外機の熱交換器、エレベータ、冷蔵庫、太陽電池、レドーム等が挙げられる。基材1の材質としては、例えば、不飽和ポリエステル、ポリエチレン、架橋ポリエチレン、ポリ塩化ビニル、ポリイミド、ポリプロピレン、ポリスチレン、ABS樹脂、AS樹脂、フッ素樹脂、シリコーン樹脂等のプラスチック、アルミニウム、ステンレス等の金属、ガラス、磁器等が挙げられる。
 実施の形態2.
 図3は、本発明の実施の形態2による撥水性被膜の摩耗前後の状態を説明するための模式断面図である。実施の形態2による撥水性被膜は、下塗り層5が、1μm以上15μm以下であり且つ球状粒子7の平均粒径未満である平均粒径を有する多孔質粒子9を更に含有するという点において実施の形態1と異なる。下塗り層5が特定の平均粒径を有する多孔質粒子9を含有することで、下塗り層5の表面に微小な凹凸が形成される。それにより、上塗り層6が下塗り層5から剥離し難くなり、摩擦が繰り返されても優れた撥水性を維持できるという効果が得られる。その理由は、下塗り層5の表面に形成された微小な凹凸により、上塗り層6との接触面積が大きくなること並びにアンカー効果が得られることであると考えられる。
 多孔質粒子9としては、シリカゲル、沈降シリカ、ゾノトライト、トバモライト等のケイ酸カルシウム粒子、ベーマイト等のアルミナ水和物粒子、生石灰、消石灰等の石灰系粒子を多孔質化したもの等が挙げられる。これらの多孔質粒子9は、単独で使用してもよいし、又は2種以上を使用してもよい。これらの中でも、シリカゲル及び沈降シリカは、適度な強度を有していること並びに下塗り層5中で良好な分散性を示すという点で好ましい。また、上述した無機微粒子の疎水化処理と同様の方法で、多孔質粒子9の表面を疎水化してもよい。多孔質粒子9の表面を疎水化することにより、摩擦等により表面が摩耗しても撥水性がより低下し難くなる。また、多孔質粒子9をフッ素樹脂あるいはシリコーン樹脂の溶液と混合して乾燥させることで、多孔質粒子9の内部にフッ素樹脂又はシリコーン樹脂を含浸させることも好ましい。フッ素樹脂又はシリコーン樹脂が含浸された多孔質粒子9を用いることで、摩擦等により多孔質粒子9の表面が摩耗しても撥水性がより低下し難くなる。
 多孔質粒子9の平均粒径は、1μm以上15μm以下であり且つ球状粒子7の平均粒径未満である。球状粒子7の平均粒径よりも小さい平均粒径を有する多孔質粒子9を用いることで、球状粒子7により形成される凹凸よりも小さな凹凸を形成することができる。多孔質粒子9は、多孔質であるため摩耗時に破砕され易く、球状粒子7による摩耗抑制効果及び摩耗面の平坦性確保の特性に影響を与えない。また、多孔質粒子9の破砕面には撥水性樹脂4が付着し易く、このことで高い撥水性が維持される。多孔質粒子9の平均粒径が1μm未満であると、摩耗面が親水化し易くなることがある。一方、多孔質粒子9の平均粒径が15μmを超えると、多孔質粒子9の破砕時に大きな親水面が生じて水の付着が起こり易くなることがある。ここでの多孔質粒子9の平均粒径は、レーザ回折式粒度分布測定装置により測定した値である。
 下塗り層5における多孔質粒子9の含有量は、球状粒子7の含有量に対して、5質量%以上80質量%以下であることが好ましい。多孔質粒子9の含有量が5質量%未満であると、微小な凹凸の形成効果が小さく、上塗り層6の剥離抑制効果が得られないことがある。一方、多孔質粒子9の含有量が80質量%を超えると、摩耗面が親水化し易くなることがある。
 球状粒子7と多孔質粒子9との合計量は、下地樹脂3に対して、10質量%以上95質量%以下であることが好ましく、20質量%以上80質量%以下であることがより好ましい。球状粒子7と多孔質粒子9との合計量が10質量%未満であると、多孔質粒子による凹凸が十分に得られないことがある。一方、球状粒子7と多孔質粒子9との合計量が95質量%を超えると、塗布が困難になったり、下塗り層5としての強度が得られないことがある。
 実施の形態2による撥水性被膜における下塗り層5は、下地樹脂3と、球状粒子7と、多孔質粒子9と、下地樹脂を溶液化又はエマルジョン化できる溶剤とを含有する下塗り層形成用コーティング組成物を基材1に塗布することにより形成することができる。下地樹脂3と球状粒子7と多孔質粒子9との合計量は、下塗り層形成用コーティング組成物に対して、3質量%以上50質量%以下であることが好ましい。下地樹脂3と球状粒子7と多孔質粒子9との合計量が3質量%未満であると、球状粒子7が沈降し易くなってコーティング組成物の取扱い性が低下する上に、下塗り層5中に球状粒子7を安定に固定できないことがある。一方、下地樹脂3と球状粒子7と多孔質粒子9との合計量が50質量%を超えると、下塗り層5を均一に形成することが難しくなることがある。下塗り層形成用コーティング組成物には、下地樹脂3の強度を向上させるため、架橋剤を添加してもよい。また、下塗り層形成用コーティング組成物には、塗布性を向上させたり、下塗り層5の撥水性を向上させるために、公知の添加剤を添加してもよい。
 下塗り層形成用コーティング組成物の塗布方法、下塗り層5の膜厚、上塗り層6の構成、上塗り層形成用コーティング組成物の塗布方法並びに上塗り層6の膜厚は、実施の形態1と同様である。
 実施の形態3.
 図4は、本発明の実施の形態3による撥水性被膜の摩耗前後の状態を説明するための模式断面図である。実施の形態3による撥水性被膜は、下塗り層5が、0.05μm以上15μm以下であり且つ球状粒子7の平均粒径未満である平均粒径を有するフッ素樹脂粒子10を更に含有するという点において実施の形態1と異なる。下塗り層5が特定の平均粒径を有するフッ素樹脂粒子10を含有することで、実施の形態2で説明したのと同様に下塗り層5の表面に微小な凹凸が形成され、上塗り層6が下塗り層5から剥離し難くなるという効果が得られる。
 フッ素樹脂粒子10は、柔らかく摩擦により引き伸ばされやすい性質を有している。下塗り層5が摩耗されてフッ素樹脂粒子10が露出し始めると、摩擦によりフッ素樹脂が摩耗面に引き伸ばされ、摩耗面には高い撥水性が付与されることになる。このように、摩耗面には高い撥水性が付与されると共に、摩耗面以外では上塗り層6が剥離せずに残留するため、表面が摩耗しても撥水性がより低下し難い。
 ここで用いるフッ素樹脂粒子10の材質は、PTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン)、FEP(パーフルオロエチレンプロペンコポリマー)等が挙げられる。
 フッ素樹脂粒子10の平均粒径は、0.05μm以上15μm以下であり且つ球状粒子7の平均粒径未満である。球状粒子7より小さい平均粒径を有するフッ素樹脂粒子10を用いることで、球状粒子7により形成される凹凸よりも小さな凹凸を形成することができる。フッ素樹脂粒子10は、摩擦で引き伸ばされ易く、球状粒子7による摩耗抑制効果及び摩耗面の平坦性確保の特性に影響を与えない。さらに、フッ素樹脂が摩耗面に引き伸ばされることで、高い撥水性が付与されるだけでなく、摩耗面に潤滑性も付与されるため、摩耗が進むのを抑制する効果も得られる。フッ素樹脂粒子10の平均粒径が0.05μm未満であると、基材1と下塗り層5との密着性が低下し、基材1から下塗り層5が剥離し易くなることがある。一方、フッ素樹脂粒子10の平均粒径が15μmを超えると、下塗り層5の強度が低下することがある。ここでのフッ素樹脂粒子10の平均粒径は、レーザ回折式粒子径測定装置により測定した値である。なお、フッ素樹脂粒子10は、一次粒子が0.05μm以上15μm以下であり且つ球状粒子7の平均粒径未満である平均粒径を有するものであってもよいし、又は二次粒子(数十nm~数百nmの平均粒径を有する一次粒子の凝集体)が0.05μm以上15μm以下であり且つ球状粒子7の平均粒径未満である平均粒径を有するものであってもよい。
 下塗り層5におけるフッ素樹脂粒子10の含有量は、球状粒子7に対して、5質量%以上100質量%以下であることが好ましい。フッ素樹脂粒子10の含有量が5質量%未満であると、微小な凹凸の形成効果が小さく、上塗り層6の剥離抑制効果が得られないことがある。一方、フッ素樹脂粒子10の含有量が100質量%を超えると、下塗り層5が柔らかくなり耐摩耗性が低下することがある。
 球状粒子7とフッ素樹脂粒子10との合計量は、下地樹脂3に対して、10質量%以上70質量%以下であることが好ましく、30質量%以上60質量%以下であることがより好ましい。球状粒子7とフッ素樹脂粒子10との合計量が10質量%未満であると、十分な凹凸が得られないことがある。一方、球状粒子7とフッ素樹脂粒子10との合計量が質量体積%を超えると、塗布が困難になったり、下塗り層5としての強度が得られないことがある。
 実施の形態3による撥水性被膜における下塗り層5は、下地樹脂3と、球状粒子7と、フッ素樹脂粒子10と、下地樹脂を溶液化又はエマルジョン化できる溶剤とを含有する下塗り層形成用コーティング組成物を基材1に塗布することにより形成することができる。フッ素樹脂粒子10を下塗り層形成用コーティング組成物に添加する方法としては、粉体の状態にあるフッ素樹脂粒子10を、下地樹脂3、球状粒子7及び溶剤と混合する方法、フッ素樹脂粒子10のディスパージョンを、下地樹脂3、球状粒子7及び溶剤と混合する方法等が挙げられる。下地樹脂3と球状粒子7とフッ素樹脂粒子10との合計量は、下塗り層形成用コーティング組成物に対して、3質量%以上50質量%以下であることが好ましい。下地樹脂3と球状粒子7とフッ素樹脂粒子10との合計量が3質量%未満であると、球状粒子7が沈降し易くなってコーティング組成物の取扱い性が低下する上に、下塗り層5中に球状粒子7を安定に固定できないことがある。一方、下地樹脂3と球状粒子7とフッ素樹脂粒子10との合計量が50質量%を超えると、下塗り層5を均一に形成することが難しくなることがある。下塗り層形成用コーティング組成物には、下地樹脂3の強度を向上させるため、架橋剤を添加してもよい。また、下塗り層形成用コーティング組成物には、塗布性を向上させたり、下塗り層5の撥水性を向上させるために、公知の添加剤を添加してもよい。
 下塗り層形成用コーティング組成物の塗布方法、下塗り層5の膜厚、上塗り層6の構成、上塗り層形成用コーティング組成物の塗布方法並びに上塗り層6の膜厚は、実施の形態1と同様である。
 実施の形態4.
 本発明の撥水性被膜を絶縁物の表面に形成することで、絶縁特性を向上させることができる。絶縁物は、大きな電位差を有する導体を短絡させることなく固定するために用いるものである。絶縁物としては、ポリエチレン、架橋ポリエチレン、ポリ塩化ビニル、ポリイミド、ゴム状重合体、PTFEやETFEなどのフッ素樹脂、シリコーン樹脂、ガラス、磁器等の無機物、及びこれらの材料で被覆されたものが挙げられる。
 図5は、本発明の撥水性被膜を絶縁物に適用した場合の模式断面図である。図5において、絶縁物11の表面には、本発明の撥水性被膜12が形成されている。絶縁物11の表面に沿って電流が流れる沿面放電が起こりにくいように、絶縁物11の外面には、図5に示されるようにひだが形成されていてもよい。絶縁物11の表面が塩分や塵埃等により汚染された場合、表面の絶縁性が低下し漏れ電流が増大したり、これに伴いアークを発生して絶縁が破壊されたりすることがある。
 撥水性被膜12を絶縁物11の表面に形成することで、水滴や塵埃の付着が抑制され、絶縁性に悪影響を及ぼす塩分や塵埃による汚染を抑制できる。汚染を抑制できるだけでなく、汚染された場合でも絶縁性の劣化を抑制する効果がある。表面汚染による絶縁性の低下は、汚染物が吸湿し導電性の膜を形成することで顕在化する。撥水性被膜12上においては、吸湿した汚染物は膜を形成することができず、球状又は粒子状となる。このような状態となることで、汚染物があっても高い絶縁性が維持できることになる。
 絶縁性を低下させる要因としては、上記の汚染だけでなく、放電に伴い生成される硝酸や硫酸等の化合物や紫外線などによる絶縁物11の劣化がある。フッ素樹脂以外の樹脂で形成された絶縁物11の場合、長期の使用で樹脂が劣化し、次第に絶縁性も低下する。本発明の撥水性被膜を形成することで、樹脂の劣化を抑制することができる。ここでの撥水性被膜12は、実施の形態1~3において説明したいずれでも効果を発揮できるが、特に本用途においては、下地樹脂として、フッ素樹脂又はシリコーン樹脂を用いることで、特に良好な結果が得られる。これらの下地樹脂は、劣化し難く絶縁物の長期的な性能低下を引き起こし難い。
 実施の形態5.
 本発明の撥水性被膜は、屋外機器に用いることで、水滴や汚れの付着を抑制することができる。本発明の撥水性被膜は、ひょう、あられ、雪、雨等に対しても耐久性が高く長期にわたって効果を発揮することができる。
 図6は、本発明の撥水性被膜をレドームに適用した場合の模式断面図である。図6において、レドーム20の外表面には、本発明の撥水性被膜12が形成されている。レドームは、屋外に設置されることが多く、汚れの付着及び表面の劣化が問題になる。マイクロ波やミリ波を用いるレーダーであれば、レドームの外表面に付着する水滴が問題となる場合がある。本発明の撥水性被膜を形成することで、これらの問題を回避することができる。ここでの撥水性被膜12は、実施の形態1~3において説明したいずれでも効果を発揮できる。
 図7は、本発明の撥水性被膜を空調機の室外機へ適用した場合の概略構成図である。図7において、室外機30の内部は、仕切板31によって、熱交換器32、ファン33及びファンモータ34を備えた熱交換室35と、圧縮機36を備えた機械室37とに区画されており、熱交換室35には吹出口38及び吸込口39が設けられている。また、吹出口38にはベルマウス40が設けられている。ファン33の表面には、本発明の撥水性被膜12が形成されている。暖房時にファンに雪等が付着し、効率が低下したり、継続して運転することが困難になったりする場合がある。ファン33の表面に本発明の撥水性被膜を形成することで、雪や氷の付着を抑制しこれらの問題を軽減できる。また、熱交換器32の表面に本発明の撥水性被膜を形成することで、雪や氷の付着を抑制することもできる。ファンの表面や熱交換器の表面に雪や氷が付着したり剥離する場合には、これらの表面に大きな摩擦力が生じる。本発明の撥水性被膜を形成することで、長期にわたって効果を発揮することができる。ここでの撥水性被膜12は、実施の形態1~3において説明したいずれでも効果を発揮できる。
 以下に実施例及び比較例を示して本発明を具体的に説明するが、これらにより本発明は何ら制限を受けるものではない。
[実施例1]
 球状溶融シリカ粒子(デンカ株式会社製)をヘキサメチルジシラザンと混合した後、乾燥することで疎水化したものを分級して得られたものを球状粒子(平均粒径2.1μm)として用い、ポリウレタンディスパージョン(アデカボンタイター(登録商標)HUX-232、株式会社アデカ製)を下地樹脂として用いて、5質量%の球状溶融シリカ粒子及び5質量%のポリウレタン樹脂を含む下塗り層形成用コーティング組成物を調製した。これをスプレー塗布によりアルミニウム板上に塗布した後、120℃で15分間乾燥して下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ1.5μmであった。また、下塗り層におけるポリウレタン樹脂と球状溶融シリカ粒子との体積割合は40:60であった。
 次に、疎水性フュームドシリカ(RX300、平均粒径7nm、日本アエロジル株式会社製)を無機微粒子として用い、シリコーン樹脂(KR221、信越シリコーン株式会社製)を撥水性樹脂として用い、キシレンを溶剤として用いて、3.0質量%の疎水性フュームドシリカ及び1.0質量%のシリコーン樹脂を含む上塗り層形成用コーティング組成物を調製した。これをスプレー塗布により下塗り層上に塗布した後、120℃で5分間乾燥して上塗り層を形成した。上塗り層形成用コーティング組成物の塗布は、100cm2あたりの乾燥後のシリコーン樹脂の量が約0.6gとなるように行った。
 初期の撥水性の評価は、内径0.1mmのPTFE(ポリテトラフルオロエチレン)コートされた針の先端から約5μLの水滴を撥水性被膜の表面に滴下させ、その接触角を接触角計(共和界面科学株式会社製CX-150型)により測定して行った。摩耗後の撥水性の評価は、クロックメータ(株式会社安田精機製作所製)を用いて撥水性被膜の表面にポリエステル不織布を80g/cm2の加重で押しつけながら往復(50回往復及び100回往復)させた後、水接触角を測定して行った。撥水性の評価結果を表1に示す。
[実施例2]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径6.7μmの球状溶融シリカ粒子を用いたこと以外は実施例1と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ6μmであった。また、下塗り層におけるポリウレタン樹脂と球状溶融シリカ粒子との体積割合は50:50であった。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表1に示す。
[実施例3]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径10.2μmの球状溶融シリカ粒子を用いたこと以外は実施例1と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ6μmであった。また、下塗り層におけるポリウレタン樹脂と球状溶融シリカ粒子との体積割合は50:50であった。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表1に示す。
[実施例4]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径10.2μmの球状溶融シリカ粒子を用い、球状溶融シリカ粒子の含有量を減らしたこと以外は実施例1と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ8.5μmであった。また、下塗り層におけるポリウレタン樹脂と球状溶融シリカ粒子との体積割合は70:30であった。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表1に示す。
[実施例5]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径20.6μmの球状溶融シリカ粒子を用いたこと以外は実施例1と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ15μmであった。また、下塗り層におけるポリウレタン樹脂と球状溶融シリカ粒子との体積割合は50:50であった。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表1に示す。
[実施例6]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径48.6μmの球状溶融シリカ粒子を用いたこと以外は実施例1と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ25μmであった。また、下塗り層におけるポリウレタン樹脂と球状溶融シリカ粒子との体積割合は50:50であった。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表1に示す。
[実施例7]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、球状溶融アルミナ粒子(デンカ株式会社製)をヘキサメチルジシラザンと混合した後、乾燥することで疎水化したものを分級して得られたもの(平均粒径12.6μm)を用いたこと以外は実施例1と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ18μmであった。また、下塗り層におけるポリウレタン樹脂と球状溶融アルミナ粒子との体積割合は40:60であった。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表1に示す。
[比較例1]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子を含まない下塗り層形成用コーティング組成物を用いて、平均膜厚1.2μmの下塗り層を形成したこと以外は実施例1と同様にして撥水性被膜を形成した。撥水性の評価結果を表1に示す。
[比較例2]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子を含まない下塗り層形成用コーティング組成物を用いて、平均膜厚10μmの下塗り層を形成したこと以外は実施例1と同様にして撥水性被膜を形成した。撥水性の評価結果を表1に示す。
[比較例3]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径1.9μmの球状溶融シリカ粒子を用いたこと以外は実施例1と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ1.0μmであった。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表1に示す。
[比較例4]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径51.1μmの球状溶融シリカ粒子を用いたこと以外は実施例1と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ30μmであった。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表1に示す。
[比較例5]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径5μmの破砕シリカ粒子を用いたこと以外は実施例1と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ5μmであった。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、実施例1~7の撥水性被膜は、初期は超撥水性(150°以上の水接触角を示す性質)を示している。更に、実施例1~7の撥水性被膜は、摩耗後も大きな水接触角を維持しており、撥水性が低下し難いことが分かる。なお、摩耗後に150°近い水接触角を示しているにもかかわらず、表面に微小な水滴が付着する現象が認められる。これは、局所的に上塗り層が消失して下塗り層が露出し、その露出部分に水が付着し易いためであると考えられる。大きな水接触角を示すものでは、その露出部分の面積が非常に小さいと考えられる。一方、下塗り層が球状溶融シリカ粒子を含まない比較例1及び2の撥水性被膜は、摩耗後に水接触角が急激に小さくなり、撥水性が著しく低下することが分かる。平均粒径が2μm未満の球状溶融シリカ粒子を用いた比較例3、平均粒径が50μmを超える球状溶融シリカ粒子を用いた比較例4及び破砕シリカ粒子を用いた比較例5の撥水性被膜でも、摩耗後に撥水性が著しく低下することが分かる。
[実施例8]
 平均粒径5.6μmの球状シリコーン樹脂粒子(トスパール(登録商標)2000B、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)を球状粒子として用い、フッ素樹脂ディスパージョン(ルミフロン(登録商標)FE4300、旭硝子株式会社製)を下地樹脂として用いて、3質量%の球状シリコーン樹脂粒子及び5質量%のフッ素樹脂を含む下塗り層形成用コーティング組成物を調製した。これをスプレー塗布によりアルミニウム板上に塗布した後、120℃で15分間乾燥して下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ4μmであった。また、下塗り層におけるフッ素樹脂と球状シリコーン樹脂粒子との体積割合は40:60であった。
 次に、疎水性フュームドシリカ(RX300、平均粒径7nm、日本アエロジル株式会社製)を無機微粒子として用い、フッ素樹脂(ルミフロン(登録商標)LF800、旭硝子株式会社製)を撥水性樹脂として用い、エタノールを溶剤として用いて、3.0質量%の疎水性フュームドシリカ及び1.0質量%のフッ素樹脂を含む上塗り層形成用コーティング組成物を調製した。これをスプレー塗布により下塗り層上に塗布した後、120℃で5分間乾燥して上塗り層を形成した。上塗り層形成用コーティング組成物の塗布は、100cm2あたりの乾燥後のフッ素樹脂の量が約0.9gとなるように行った。撥水性の評価を実施例1と同様にして行った。撥水性の評価結果を表2に示す。
[実施例9]
 球状シリコーン樹脂粒子の含有量を10質量%に変更したこと以外は実施例8と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ5μmであった。また、下塗り層におけるフッ素樹脂と球状シリコーン樹脂粒子との体積割合は40:60であった。次に、実施例8と同様にして上塗り層を形成した。撥水性の評価結果を表2に示す。
[比較例6]
 平均粒径5.6μmの球状シリコーン樹脂粒子を含まない下塗り層形成用コーティング組成物を用いて、平均膜厚2μmの下塗り層を形成したこと以外は実施例8と同様にして撥水性被膜を形成した。撥水性の評価結果を表1に示す。
[比較例7]
 平均粒径5.6μmの球状シリコーン樹脂粒子の代わりに、平均粒径1.9μmの球状シリコーン樹脂粒子(トスパール(登録商標)120、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)を用い、球状シリコーン樹脂粒子の含有量を10質量%に変更したこと以外は実施例8と同様にして下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ5.5μmであった。次に、実施例8と同様にして上塗り層を形成した。撥水性の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例8及び9の撥水性被膜は、初期は超撥水性(150°以上の水接触角を示す性質)を示している。更に、実施例8及び9の撥水性被膜は、摩耗後も大きな水接触角を維持しており、撥水性が低下し難いことが分かる。なお、摩耗後に150°近い水接触角を示しているにもかかわらず、表面に微小な水滴が付着する現象が認められる。これは、局所的に上塗り層が消失して下塗り層が露出し、その露出部分に水が付着し易いためであると考えられる。大きな水接触角を示すものでは、その露出部分の面積が非常に小さいと考えられる。一方、下塗り層が球状シリコーン樹脂粒子を含まない比較例6の撥水性被膜は、摩耗後に水接触角が急激に小さくなり、撥水性が著しく低下することが分かる。平均粒径が2μm未満の球状シリコーン樹脂粒子を用いた比較例7の撥水性被膜でも、摩耗後に撥水性が著しく低下することが分かる。
[実施例10~15]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径10.2μmの球状溶融シリカ粒子を用い、表3に示される粒子を添加した下塗り層形成用コーティング組成物を用いた以外は実施例1と同様にして下塗り層を形成した。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表3に示す。なお、表3中、シリカゲル及び沈降シリカは東ソー・シリカ株式会社製であり、フッ素樹脂粒子はスリーエムジャパン株式会社製TF9201Zである。
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、実施例10~15の撥水性被膜は、初期は超撥水性(150°以上の水接触角を示す性質)を示している。更に、実施例10~15の撥水性被膜は、実施例3の撥水性被膜と比べて、摩耗後もより大きな水接触角を維持しており、撥水性が殆ど低下していないことが分かる。摩耗後の表面の顕微鏡観察では、摩耗による撥水性樹脂の剥離が抑制されていることが確認でき、多孔質粒子又はフッ素樹脂粒子を下塗り層に添加することの効果が認められた。特に、下塗り層がフッ素樹脂粒子を含む実施例14及び15の撥水性被膜は、100回往復後においても優れた撥水性を維持しているだけでなく、表面に微小な水滴が付着し易くなる現像が抑制されていた。これは、摩耗によって露出する表面の疎水性が高いためであると考えられる。
[実施例16~18]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径6.7μmの球状溶融シリカ粒子を用い、表4に示される粒子を添加した下塗り層形成用コーティング組成物を用いたこと以外は実施例1と同様にして下塗り層を形成した。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表4に示す。なお、表4中、シリカゲル及び沈降シリカは東ソー・シリカ株式会社製であり、フッ素樹脂粒子はスリーエムジャパン株式会社製TF9201Zである。
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、実施例16~18の撥水性被膜は、初期は超撥水性(150°以上の水接触角を示す性質)を示している。更に、実施例16~18の撥水性被膜は、実施例2の撥水性被膜と比べて、摩耗後もより大きな水接触角を維持しており、撥水性が殆ど低下していないことが分かる。特に、下塗り層がフッ素樹脂粒子を含む実施例18の撥水性被膜は、100回往復後においても優れた撥水性を維持しているだけでなく、表面に微小な水滴が付着し易くなる現像が抑制されていた。
[実施例19~21]
 ヘキサメチルジシラザンで疎水化された平均粒径2.1μmの球状溶融シリカ粒子の代わりに、ヘキサメチルジシラザンで疎水化された平均粒径20.6μmの球状溶融シリカ粒子を用い、表5に示される粒子を添加した下塗り層形成用コーティング組成物を用いたこと以外は実施例1と同様にして下塗り層を形成した。次に、実施例1と同様にして上塗り層を形成した。撥水性の評価結果を表4に示す。なお、表5中、シリカゲル及び沈降シリカは東ソー・シリカ株式会社製であり、フッ素樹脂粒子はスリーエムジャパン株式会社製TF9201Zである。
Figure JPOXMLDOC01-appb-T000005
 表5から分かるように、実施例19~21の撥水性被膜は、初期は超撥水性(150°以上の水接触角を示す性質)を示している。更に、実施例19~21の撥水性被膜は、実施例5の撥水性被膜と比べて、摩耗後もより大きな水接触角を維持しており、撥水性が殆ど低下していないことが分かる。特に、下塗り層がフッ素樹脂粒子を含む実施例21の撥水性被膜は、100回往復後においても優れた撥水性を維持しているだけでなく、表面に微小な水滴が付着し易くなる現像が抑制されていた。
[実施例22]
 平均粒径5.6μmの球状シリコーン樹脂粒子(トスパール(登録商標)2000B、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)を球状粒子として用い、フッ素樹脂ディスパージョン(ルミフロン(登録商標)FE4300、旭硝子株式会社製)を下地樹脂として用いて、3質量%の球状シリコーン樹脂粒子及び5質量%のフッ素樹脂を含む下塗り層形成用コーティング組成物を調製した。これをハケ塗布により80mm×100mmの不飽和ポリエステル樹脂平板上に塗布した後、120℃で15分間乾燥して下塗り層を形成した。下塗り層の平均膜厚を顕微鏡により測定したところ7.5μmであった。また、下塗り層におけるフッ素樹脂と球状シリコーン樹脂粒子との体積割合は40:60であった。
 次に、疎水性フュームドシリカ(RX300、平均粒径7nm、日本アエロジル株式会社製)を無機微粒子として用い、フッ素樹脂(ルミフロン(登録商標)LF800、旭硝子株式会社製)を撥水性樹脂として用い、エタノールを溶剤として用いて、3.0質量%の疎水性フュームドシリカ及び1.0質量%のフッ素樹脂を含む上塗り層形成用コーティング組成物を調製した。これをスプレー塗布により下塗り層上に塗布した後、120℃で5分間乾燥して上塗り層を形成した。上塗り層形成用コーティング組成物の塗布は、100cm2あたりの乾燥後のフッ素樹脂の量が約0.6gとなるように行った。
 屋外用途での撥水性被膜の耐候性を評価するため、初期及び劣化後の撥水性を評価した。初期の撥水性の評価は、内径0.1mmのPTFE(ポリテトラフルオロエチレン)コートされた針の先端から約5μLの水滴を撥水性被膜の表面に滴下させ、その接触角を接触角計(共和界面科学株式会社製CX-150型)により測定して行った。劣化後の撥水性の評価は、サンシャインウェザメータ(スガ試験機製)で200時間劣化させた後、水接触角を測定して行った。また、絶縁物としての耐久性を評価するため、初期及び劣化後の絶縁性を評価した。初期の絶縁性の評価は、表面抵抗値を測定して行った。劣化後の絶縁性の評価は、60℃、1N硝酸の飽和蒸気中に6日間暴露した後、表面抵抗値を測定して行った。評価結果を表6に示す。
[実施例23]
 平均粒径2.5μmのシリカゲル(東ソー・シリカ株式会社製)を3質量%添加した下塗り層形成用コーティング組成物を用いた以外は実施例22と同様にして下塗り層を形成した。次に、実施例22と同様にして上塗り層を形成した。耐候性及び絶縁性の評価結果を表6に示す。
[比較例8及び9]
 実施例22において下塗り層を形成しなかったものを比較例8として評価し、撥水性被膜が形成されていない不飽和ポリエステル樹脂平板を比較例9として評価した。耐候性及び絶縁性の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例22及び23では、劣化試験後にも優れた撥水性が維持されており、優れた耐候性が得られている。比較例8では、初期は優れた撥水性を発揮するが、劣化試験後は撥水性が失われている。これは、下塗り層が形成されていないため撥水性被膜が剥離してしまったためである。実施例23は、実施例24と比べて、劣化試験後の撥水性が良好に保たれている。下塗り層に多孔性粒子であるシリカゲルが添加されているため撥水性被膜の剥離が抑制され、優れた耐候性が得られている。
 絶縁性は、撥水性被膜が形成されていない比較例9では、劣化試験後の表面抵抗値が大きく低下しているが、撥水性被膜を形成した実施例22及び23では、劣化試験後の表面抵抗値の低下は大きく抑制されている。硝酸蒸気暴露後の水接触角は測定していないが、実施例22及び23では、優れた撥水性が維持されており、表面劣化以外の水濡れ等による絶縁性の低下を抑制する効果も維持されている。
 1 基材、2 不定形粒子、3 下地樹脂、4 撥水性樹脂、5 下塗り層、6 上塗り層、7 球状粒子、8 無機微粒子、9 多孔質粒子、10 フッ素樹脂粒子、11 絶縁物、12 撥水性被膜、20 レドーム、30 室外機、31 仕切板、32 熱交換器、33 ファン、34 ファンモータ、35 熱交換室、36 圧縮機、37 機械室、38 吹出口、39 吸込口、40 ベルマウス。

Claims (6)

  1.  基材表面上に形成され、2μm以上50μm以下の平均粒径を有し且つ球状溶融シリカ粒子、球状溶融アルミナ粒子及び球状シリコーン樹脂粒子からなる群から選択される少なくとも1種の球状粒子と、下地樹脂とを含有する下塗り層、並びに
     前記下塗り層上に形成され、2nm以上20nm以下の平均粒径を有する無機微粒子と、撥水性樹脂とを含有する上塗り層
    を備えることを特徴とする撥水性被膜。
  2.  前記下塗り層が、1μm以上15μm以下であり且つ前記球状粒子の平均粒径未満である平均粒径を有する多孔質粒子を更に含有することを特徴とする請求項1に記載の撥水性被膜。
  3.  前記下塗り層が、0.05μm以上15μm以下であり且つ前記球状粒子の平均粒径未満である平均粒径を有するフッ素樹脂粒子を更に含有することを特徴とする請求項1に記載の撥水性被膜。
  4.  前記下地樹脂が、ポリウレタン樹脂又はフッ素樹脂であることを特徴とする請求項1~3の何れか一項に記載の撥水性被膜。
  5.  前記撥水性樹脂が、フッ素樹脂又はシリコーン樹脂であることを特徴とする請求項1~4の何れか一項に記載の撥水性被膜。
  6.  請求項1~5の何れか一項に記載の撥水性被膜が基材表面に形成されたことを特徴とする製品。
PCT/JP2017/005295 2017-02-14 2017-02-14 撥水性被膜及びそれが形成された製品 WO2018150455A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017528597A JP6180698B1 (ja) 2017-02-14 2017-02-14 撥水性被膜及びそれが形成された製品
DE112017007058.9T DE112017007058T5 (de) 2017-02-14 2017-02-14 Wasserabweisende beschichtung und produkt mit einer solchen
US16/475,841 US11596975B2 (en) 2017-02-14 2017-02-14 Water repellent coating film and product provided with same
PCT/JP2017/005295 WO2018150455A1 (ja) 2017-02-14 2017-02-14 撥水性被膜及びそれが形成された製品
CN201780085467.2A CN110248800B (zh) 2017-02-14 2017-02-14 防水性被膜及形成有其的制品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/005295 WO2018150455A1 (ja) 2017-02-14 2017-02-14 撥水性被膜及びそれが形成された製品

Publications (1)

Publication Number Publication Date
WO2018150455A1 true WO2018150455A1 (ja) 2018-08-23

Family

ID=59604770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005295 WO2018150455A1 (ja) 2017-02-14 2017-02-14 撥水性被膜及びそれが形成された製品

Country Status (5)

Country Link
US (1) US11596975B2 (ja)
JP (1) JP6180698B1 (ja)
CN (1) CN110248800B (ja)
DE (1) DE112017007058T5 (ja)
WO (1) WO2018150455A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200062795A (ko) * 2018-11-27 2020-06-04 한국산업기술대학교산학협력단 개선된 발수 특성 및 오일 용출 특성을 가지는 필름 및 이의 제조방법
JP2021037650A (ja) * 2019-08-30 2021-03-11 株式会社吉野工業所 撥液性物品
JPWO2021181549A1 (ja) * 2020-03-11 2021-09-16
JP7069438B1 (ja) * 2021-07-15 2022-05-17 三菱電機株式会社 被膜及び部材
WO2023026935A1 (ja) * 2021-08-26 2023-03-02 大和製罐株式会社 撥液膜の製造方法、撥液膜および包装材
WO2023058621A1 (ja) * 2021-10-08 2023-04-13 ダイキン工業株式会社 被膜形成用組成物及び被膜並びに薬液
WO2023112934A1 (ja) * 2021-12-16 2023-06-22 東洋アルミニウム株式会社 積層体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8661459B2 (en) 2005-06-21 2014-02-25 Microsoft Corporation Content syndication platform
US9104773B2 (en) 2005-06-21 2015-08-11 Microsoft Technology Licensing, Llc Finding and consuming web subscriptions in a web browser
JP5971337B2 (ja) * 2012-07-13 2016-08-17 東洋製罐株式会社 内容物に対する滑り性に優れた包装容器
KR102153579B1 (ko) * 2017-09-07 2020-09-08 (주)엘지하우시스 금속 질감이 부여된 창호용 합성수지 프로파일
KR102125932B1 (ko) * 2018-09-04 2020-06-23 한국세라믹기술원 Slips 구조체 및 그 제조 방법
US10839860B2 (en) * 2019-04-15 2020-11-17 Seagate Technology Llc Methods and devices for reducing condensation in storage devices
EP4190875A4 (en) * 2020-07-28 2023-09-06 Mitsubishi Electric Corporation COATING COMPOSITION FOR HEAT EXCHANGERS
CN114389024A (zh) * 2020-10-20 2022-04-22 华为技术有限公司 天线罩及天线
CN116904100A (zh) * 2023-06-02 2023-10-20 北京航空材料研究院股份有限公司 一种双层防护涂层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012238A (ja) * 2007-07-03 2009-01-22 Furukawa Sky Kk 金属塗装材及びその製造方法
JP2010155727A (ja) * 2008-12-26 2010-07-15 Car Mate Mfg Co Ltd コーティング膜形成方法およびコーティング液
JP2012020248A (ja) * 2010-07-15 2012-02-02 Nicca Chemical Co Ltd 撥水性コーティング膜、その製造方法及びそれを備えた機能性材料
JP2013123660A (ja) * 2011-12-13 2013-06-24 Nicca Chemical Co Ltd 撥水性コーティング膜の製造方法、それに用いる下地膜形成用組成物及び撥水性コーティング膜を備えた機能性材料
JP2016002706A (ja) * 2014-06-17 2016-01-12 凸版印刷株式会社 包装材料とそれを蓋材として用いた包装容器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268245A (ja) 1994-03-30 1995-10-17 Nippon Paint Co Ltd 超撥水性被覆組成物
JPH08157643A (ja) 1994-12-07 1996-06-18 Asahi Glass Co Ltd 撥水撥油性多孔性シリカ粒子および撥水撥油性塗膜
JPH08323285A (ja) 1995-05-31 1996-12-10 Kobe Steel Ltd 撥水性及び着霜防止性が優れた部材及びその製造方法
JP2003147340A (ja) 2001-11-16 2003-05-21 Toto Ltd 超撥水剤およびそれを用いて作製される超撥水材
JP5462578B2 (ja) 2009-10-15 2014-04-02 株式会社Uacj 撥水性金属塗装材
JP2015209493A (ja) 2014-04-25 2015-11-24 三菱電機株式会社 撥水性部材及びその製造方法、空気調和機の室外機、並びに換気扇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012238A (ja) * 2007-07-03 2009-01-22 Furukawa Sky Kk 金属塗装材及びその製造方法
JP2010155727A (ja) * 2008-12-26 2010-07-15 Car Mate Mfg Co Ltd コーティング膜形成方法およびコーティング液
JP2012020248A (ja) * 2010-07-15 2012-02-02 Nicca Chemical Co Ltd 撥水性コーティング膜、その製造方法及びそれを備えた機能性材料
JP2013123660A (ja) * 2011-12-13 2013-06-24 Nicca Chemical Co Ltd 撥水性コーティング膜の製造方法、それに用いる下地膜形成用組成物及び撥水性コーティング膜を備えた機能性材料
JP2016002706A (ja) * 2014-06-17 2016-01-12 凸版印刷株式会社 包装材料とそれを蓋材として用いた包装容器

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102171249B1 (ko) * 2018-11-27 2020-11-02 강남제비스코 주식회사 개선된 발수 특성 및 오일 용출 특성을 가지는 필름 및 이의 제조방법
KR20200062795A (ko) * 2018-11-27 2020-06-04 한국산업기술대학교산학협력단 개선된 발수 특성 및 오일 용출 특성을 가지는 필름 및 이의 제조방법
JP7246833B2 (ja) 2019-08-30 2023-03-28 株式会社吉野工業所 撥液性物品
JP2021037650A (ja) * 2019-08-30 2021-03-11 株式会社吉野工業所 撥液性物品
JPWO2021181549A1 (ja) * 2020-03-11 2021-09-16
WO2021181549A1 (ja) * 2020-03-11 2021-09-16 三菱電機株式会社 撥水性被膜及びこれが形成された製品、並びにこの撥水性被膜の修復方法及びこの撥水性被膜の劣化検知方法
JP7275376B2 (ja) 2020-03-11 2023-05-17 三菱電機株式会社 撥水性被膜及びこれが形成された製品、並びにこの撥水性被膜の修復方法及びこの撥水性被膜の劣化検知方法
WO2023286240A1 (ja) * 2021-07-15 2023-01-19 三菱電機株式会社 被膜及び部材
JP7069438B1 (ja) * 2021-07-15 2022-05-17 三菱電機株式会社 被膜及び部材
WO2023026935A1 (ja) * 2021-08-26 2023-03-02 大和製罐株式会社 撥液膜の製造方法、撥液膜および包装材
WO2023058621A1 (ja) * 2021-10-08 2023-04-13 ダイキン工業株式会社 被膜形成用組成物及び被膜並びに薬液
JP2023057045A (ja) * 2021-10-08 2023-04-20 ダイキン工業株式会社 被膜形成用組成物及び被膜並びに薬液
JP7440793B2 (ja) 2021-10-08 2024-02-29 ダイキン工業株式会社 被膜形成用組成物及び被膜並びに薬液
WO2023112934A1 (ja) * 2021-12-16 2023-06-22 東洋アルミニウム株式会社 積層体

Also Published As

Publication number Publication date
US11596975B2 (en) 2023-03-07
CN110248800B (zh) 2021-03-09
JPWO2018150455A1 (ja) 2019-02-28
DE112017007058T5 (de) 2019-10-24
JP6180698B1 (ja) 2017-08-16
US20190351450A1 (en) 2019-11-21
CN110248800A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
JP6180698B1 (ja) 撥水性被膜及びそれが形成された製品
Schaeffer et al. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles
JP4956467B2 (ja) 超疎水性のセルフクリーニング粉体ならびにその製造方法
JP5677144B2 (ja) 撥水性部材及びその製造方法、並びに空調機室外機
JP5940174B2 (ja) コーティング組成物、その製造方法及びコーティング物品
JP6236454B2 (ja) 超疎水性粉末コーティング
JP2015209493A (ja) 撥水性部材及びその製造方法、空気調和機の室外機、並びに換気扇
JP2017518895A (ja) 疎水性物品
JP2009229040A (ja) 熱交換器および熱交換器の製造方法
JPH10273617A (ja) 撥水性コーティング膜
Cai et al. Scalable Fabrication of Superhydrophobic Coating with Rough Coral Reef‐Like Structures for Efficient Self‐Cleaning and Oil‐Water Separation: An Experimental and Molecular Dynamics Simulation Study
Ribeiro et al. Superhydrophobic nanocomposite coatings based on different polysiloxane matrices designed for electrical insulators
JP2012020248A (ja) 撥水性コーティング膜、その製造方法及びそれを備えた機能性材料
Gu et al. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces
JP2005132919A (ja) 撥水性および滑水性に優れる表面処理用組成物
JPH10156282A (ja) 撥水撥油性金属材料
RU2572974C1 (ru) Композиция супергидрофобного покрытия и способ получения супергидрофобного покрытия из нее
KR102632654B1 (ko) 초발수성 애자의 제조 방법 및 이로부터 제조된 초발수성 애자
KR20110033705A (ko) 코어-쉘형 무기-불소 고분자 복합 나노 입자를 이용한 초내오염성 표면
JP3888137B2 (ja) 超撥水材およびその製造方法
JP2011161322A (ja) 撥水性部材及びその製造方法
WO2021181549A1 (ja) 撥水性被膜及びこれが形成された製品、並びにこの撥水性被膜の修復方法及びこの撥水性被膜の劣化検知方法
JPH105685A (ja) 撥水・撥油性材
JP4600611B2 (ja) 耐磨耗性撥水性塗料及び耐磨耗性撥水性表面を有する物品
JP2000297249A (ja) はっ水性塗料及びその塗膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017528597

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896583

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17896583

Country of ref document: EP

Kind code of ref document: A1