WO2018145500A1 - 一种自平衡车辆装置及其相应控制方法 - Google Patents

一种自平衡车辆装置及其相应控制方法 Download PDF

Info

Publication number
WO2018145500A1
WO2018145500A1 PCT/CN2017/112042 CN2017112042W WO2018145500A1 WO 2018145500 A1 WO2018145500 A1 WO 2018145500A1 CN 2017112042 W CN2017112042 W CN 2017112042W WO 2018145500 A1 WO2018145500 A1 WO 2018145500A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
chassis
self
balance
balancing
Prior art date
Application number
PCT/CN2017/112042
Other languages
English (en)
French (fr)
Inventor
韩德玮
Original Assignee
大行科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大行科技(深圳)有限公司 filed Critical 大行科技(深圳)有限公司
Priority to US16/484,118 priority Critical patent/US11554818B2/en
Priority to EP17895523.3A priority patent/EP3572309A4/en
Priority to JP2019541766A priority patent/JP2020505272A/ja
Publication of WO2018145500A1 publication Critical patent/WO2018145500A1/zh
Priority to US18/079,028 priority patent/US11851113B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G9/00Resilient suspensions of a rigid axle or axle housing for two or more wheels
    • B60G9/02Resilient suspensions of a rigid axle or axle housing for two or more wheels the axle or housing being pivotally mounted on the vehicle, e.g. the pivotal axis being parallel to the longitudinal axis of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • B62D37/04Stabilising vehicle bodies without controlling suspension arrangements by means of movable masses
    • B62D37/06Stabilising vehicle bodies without controlling suspension arrangements by means of movable masses using gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/10Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type pneumatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0161Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during straight-line motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/20Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram all arms being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D24/00Connections between vehicle body and vehicle frame
    • B62D24/04Vehicle body mounted on resilient suspension for movement relative to the vehicle frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • B60G2202/242Pneumatic damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/45Rolling frame vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0511Roll angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed

Definitions

  • the invention relates to a device for two or more wheels (including) vehicles, in particular to a multi-wheeled vehicle capable of self-balancing, and is particularly suitable for a narrow-speed high-speed vehicle.
  • the wheels of each vehicle touch the ground can contribute to the "grip" force, which is beneficial to turning, braking and general stability, so "multi-wheeler", especially at high speeds, is better than two cars. Stable and safe.
  • the gyroscope if there is another set of auxiliary intelligent electromagnetic actuation system, the better use effect can be achieved, and the overall performance is unmatched by the two-wheeled vehicle.
  • the electromagnetic system can sometimes even operate independently to achieve the purpose of balancing the body.
  • the Chinese transportation department will not allow less than four rounds of vehicles on the highway, and will not change in the short term.
  • narrow-body vehicles Compared with ordinary wide-body cars, narrow-body vehicles occupy small roads, and are convenient and flexible to intervene in traffic such as small mice. They provide obvious advantages in terms of road congestion, parking difficulty and cost unit price. According to statistics, the average passengers (including drivers) ) Only between 1.5 and 1.7, wasteful production and on-road costs, exhaust air pollution; global smog headaches, paving and repairing highways and land occupation costs, electric components are becoming more mature, (subject to China 2017 subsidies) After the three or four thousand yuan will be able to buy a high-speed narrow-body electric car on the card today, the present invention is particularly important and timely.
  • the invention aims to provide a self-balancing device for a vehicle and a corresponding control method thereof.
  • the gravity gyroscope 4 (hereinafter referred to as "heavy gyro") using a vertical rotating shaft makes the vehicle more stable and reliable during driving, and does not Extraterrestrial Tilting or tipping over the force, causing an accident.
  • the invention is particularly applicable to narrow-body vehicles.
  • the present invention is achieved by a self-balancing vehicle comprising a passenger compartment 10 and its chassis 11 (collectively referred to as 2), a plurality of wheels 13 symmetrically distributed, and various drives, steering and braking, meters, etc.
  • the balance of the chassis chassis is primarily provided by the rigidly connected weights 4, which maintain a vertical orientation and additionally provide advanced assistance and functionality by some fast-reacting intelligent electromagnetic actuation systems.
  • any pair of right and left wheels will be able to obtain and maintain the load of the two wheels against the weight of the vehicle by the tangible or effective shaft 3 placed in the bottom of the car (not counting lateral forces such as centrifugal force) And the difference between the cross wind).
  • the two-wheel rotating shaft 13 and the suspension system 15 thereof are at both ends of the lateral balance lever 1, and the lever can rotate around the rotating shaft 3 in the front-rear direction below the center chassis 2, and the end of the lever swings up and down like a seesaw according to the terrain change, so that two The wheel load pressure is nearly close in static and straight-line driving conditions (unless the vehicle is subjected to large lateral forces).
  • the front and rear balance levers can be connected to form a drive platform 3, and the central shaft is also combined into a single longitudinal shaft. The lower the better, the less the two wheels are affected by the lateral forces such as centrifugal force and strong wind. gap.
  • the microprocessor When the vehicle has just started, if the weight has not reached the effective speed, the microprocessor immediately detects the angle detectors ("Electrical") 6 and 7 including the electronic gyroscope on the platform and the chassis. Passing through the force of the quick-acting active pusher system 5, correcting the chassis including the accelerating weight, and making it vertical;
  • the vehicle can be started, but the speed should not be too fast, so that the chassis and the gravity gyroscope remain vertical until the gravity gyroscope reaches the preset speed.
  • the microprocessor immediately detects the electric turret located on the platform and the chassis. Through the force of the movable push rod device, the chassis is righted horizontally and the vehicle can be started immediately.
  • the lateral slope of the road surface will change, and the vehicle may generate centrifugal force due to turning, or there may be horizontal wind, so that the chassis chassis 2 may be tilted to one side, push or pull the movable push rod device 5;
  • the rod system instantly produces the opposite force to pursue and approach the zero push and pull force, which is equivalent to the directional gravity of the chassis and its load transmitted directly to the shaft 3, providing the passenger with the best feeling.
  • This method is suitable for situations where the road surface is not too rough and the cross wind is not too large, so as to prevent the push rod system from reacting too much, causing the passenger to feel too swaying or the risk of the vehicle turning over.
  • the shock absorber system of the left and right axles is fixed to both sides of the chassis 2, the angle opposite to the chassis is controlled by the balance cylinder 8, and the left and right balance cylinders 8 are connected by a liquid pipe, and the axles of the two sides obtain the function of the seesaw, and the upper and lower reverse interactions are performed.
  • the average weight is shared.
  • the suspension cylinder or spring and balance cylinder can be integrated to save costs.
  • the implementation method 2 is similar as above, but the balance cylinders on both sides are not connected, and the relative angles of the axles and the chassis of the two sides are adjusted and controlled by the intelligent system controlled by the microcontroller through the balance cylinder 8 to achieve the same result and function.
  • the drive platform and the chassis are integrated to receive the balancing function of the gravity gyroscope, but the car is still centrifugally tilted with the chassis via the effective shaft 12 as described above to make the passenger more comfortable.
  • the outer casing of the windshield is not required, the same purpose can be achieved as long as the person sitting and other parts related to the driving vehicle are centrifugally tilted via the rotating shaft 12.
  • the inclination of the carriage can also be controlled by intelligent actuation or by the driver's own hands or feet.
  • Figure 1 is a schematic diagram of the state of the self-balancing vehicle (implementing method 1: lateral lever jaw);
  • FIG. 2 is a schematic diagram of a second state of a self-balancing vehicle
  • Figure 3 is a partial enlarged view of Figure 2;
  • Figure 4 is a schematic diagram of a self-balancing vehicle component connection module
  • Figure 5 implementation method 2 a schematic diagram of a balanced cylinder connecting two wheels
  • Figure 6 implements the third method: the schematic diagram of the two-wheel control of the microcontroller
  • Figure 7 shows the fourth method: the schematic diagram of the effective shaft tilting function.
  • a mechanical brake system can be used to stabilize the chassis and the platform system does not move, turn off the electric system to save power, and wait for the next drive.
  • the self-balancing vehicle when the vehicle is static, the self-balancing vehicle includes a driving platform 1 having a plurality of wheels, and the plurality of wheels mainly refers to a tricycle or a four-wheeled vehicle, wherein the tricycle includes the first two rounds and the last one and the last two rounds.
  • the platform 1 is preferably provided with a conventional power source, a steering system, a brake system, and a passenger seat and driver control layout.
  • Car chassis 2 The platform 1 and the chassis 2 are rotatably connected at a central portion by a horizontal axis 3 disposed in a front-rear direction, wherein the front-rear direction refers to a direction in which the vehicle travels straight; the chassis is kept at a stable position by the balance force of the weight Safe vertical angle.
  • a pusher system 5 is arranged between the platform and the chassis, and the processor collects each electric gyro, and the data such as the force of the wheel and the driving speed or the turning radius are optimally commanded by the program operation.
  • a control method mainly using the electromagnetic push rod system 5 for automatic balancing comprising the following steps:
  • the microprocessor When the vehicle is not turned on, the microprocessor immediately detects the electric gyro 6 and 7 respectively fixed on the platform 1 and the chassis 2, and through the action of the movable push rod system 5, the chassis is fixed to make it vertical, and the vehicle can also be used. Start immediately.
  • quick response push rod system 5 Instantly produces the opposite force to pursue and approach the zero push and pull force, which is equivalent to the gravity of the chassis and the load directly pointing to the shaft 3, which can provide the best feeling for the passenger.
  • This method is suitable for situations where the road surface is not too rugged and the cross wind is not too strong, so as to prevent the push rod system from reacting too much, causing the passenger to feel too swaying.
  • a method of borrowing an electromagnetic system to control a balance car by using a preset program comprising the following steps:
  • the intelligent push rod system 5 continuously adjusts the chassis angle to the tilt angle of the chassis 2 calculated by the formula.
  • the method can also control the moderate tilt of the car platform to offset. However, when the wind is coming, the window should be opened suddenly to reduce the influence of cross wind. When the wind is too high, the computer system should issue a warning or stop the vehicle.
  • this method is suitable for roads that are not too rugged, so as to avoid causing passengers to feel too swaying or even slipping the vehicle.
  • the suspension system adopts a conventional "parallelogram" 15 structure, and a spring or shock-absorbing cylinder 9 providing elastic force, wherein the left and right shock-absorbing cylinders or springs are connected with the balance cylinder 8, and the left and right balance cylinders are more mutually Connected with a liquid delivery tube. Since the operation of each part has a certain nonlinearity, the entire suspension and balance joint system needs to be optimized, through the mechanical nonlinear design and complementary means, or through the microprocessor program, to adjust the total amount of cylinder liquid, so that The mid-mounted car is subject to minimal fluctuations and remains steady.
  • the implementation method 2 is similar as above, but the balance cylinders on both sides are not connected, and the relative angles of the two axles and the chassis are adjusted and controlled by the intelligent system referenced by the microcontroller, the vehicle speed and the force data of each axle. Achieve the same results and features.
  • the force data can be taken from a pressure sensor such as a strain gauge installed in a suspension or balancing system.
  • the compartment 11 and the chassis 12 can be separated, and the two upper and lower shelves 16 fixed on the platform are hinged to form a longitudinal horizontal effective shaft 12, and the bottom and the inside of the compartment are provided under a large centrifugal force.
  • the seat is tilted slightly outward to reduce the centrifugal force experienced by the passenger and increase comfort.
  • the drive platform and the chassis are integrated to receive the balancing function of the gravity gyroscope, but the car is still centrifugally tilted with the chassis via the effective shaft 12 as described above to make the passenger more comfortable.
  • the product or consumer chooses a housing that does not require a windshield, the same purpose can be achieved as long as the person sitting and other parts associated with the driving vehicle are centrifugally tilted via the shaft 12.
  • the inclination of the carriage can also be controlled by intelligent actuation or by the driver's own hands or feet. Locking the shaft 12, turning off the weight 4, it is an ordinary two-wheeled motor. ( Figure 6)
  • the rotating shaft 3 can be selectively rotated to a certain extent in the longitudinal plane of the vehicle, and the angle of the chassis chassis 2 is reduced, which is more comfortable for the passengers. More than one of the front and rear bearings of the rotating shaft can be provided with a spring and a stop device to achieve the desired function of the rotating shaft. If the front and rear bearings have upper and lower elasticity, it can be an independent suspension system.
  • Pairs of left and right vehicles are preferably of the same size and performance.
  • the invention is also applicable to vehicles of four or more wheels if necessary.
  • the center of gravity of the vehicle should be reduced as much as possible.
  • the drive platform in “Implementation Method 1” should be equipped with as many parts as possible, such as batteries, to reduce the balance of the weight.
  • safety measures shall be provided, including mechanical, electronic, warning lights and sounds, and program facilities to limit or remedy some improper or self-contained operations, including turning radii. Too small and too fast, too early to turn off some, especially balanced, etc., in order to meet national and industry safety standards in particular. Microprocessors can do a lot of things.
  • Gyros whether it is heavy or electric, heavy-duty balance vehicle technology, microcontroller control electromagnetic actuation technology, and pressure sensor and dynamic physics, etc., should be regarded as known technologies, many reports on the Internet, This case is not detailed.

Abstract

一种带有两个以上轮子的自平衡车辆,在车厢底盘(2)坐人的部分固定了重力陀螺仪(4)来提供有效的垂直稳定度,每一个车轮(13)都能与路面保持最佳的接触,使车辆更好地应付各种行驶中的外力如离心力、横风、以及乘客载货移动和路面崎岖不平因素而产生的变化;车厢部分(2)可以选择因应离心力向外倾斜;如果是三轮以上的车辆,左右一对车轮(13)的平均荷重,经由有效的中置轴销(13)上下反向摆动,追求左右平均荷重相近,随时应付路面和其他外力的变动,而不影响车厢(2)的稳定。还提供了上述自平衡车辆的操作方法。该自平衡车辆及操作方法,可以采用窄身的车辆,当受到离心力和横风外力时,即使轮子往旁打滑,车厢也会保持垂直平稳。

Description

一种自平衡车辆装置及其相应控制方法 技术领域
本发明涉及两轮以上(含)车辆的装置,特别涉及一种能够自平衡的驱动多轮车辆,尤其适用于窄身高速的车辆。
背景技术
上世纪初期福特汽车推试图动了由重力陀螺仪(后称“重陀”)自动平衡的内燃机驱动的宽体的两轮车辆(不久后停止生产),近年有人提出由重陀自动平衡的两轮的电动摩托车(尚未投产);它们都是两轮(一前一后),都是通过使用一套重陀利用物理原理来对抗各种横向外力,如离心力,地心引力,风力,货物移动等外力、来实现行驶中平稳不翻倒的理想效果。(重陀是传统物理学的高速转动的陀螺,不同于近代光学或电子的电子陀螺仪,后者不能提供稳定力,但能更精准地测量物件的方向。)近十多年来国外互联网上出现了起码二十种窄身多轮车的提案和模型,但专利文献上尚未出现于与本发明互相抵触的技术方案。
众所周知,每个车辆的轮子接触地面,都可以贡献“抓地”力,有利转弯、刹车和一般稳定性,所以“多轮车”,尤其在高速行驶时、在在都较于两辆车来得稳定和安全。尤其是在陀螺仪之外,如果另有一套辅助性智能型的电磁致动系统,就能达到更佳的使用效果,总体性能是两轮车辆所不比拟的。而该电磁系统,有时甚至可以独立运作达到平衡车体的目的。此外,中国交通部门不让少过四轮的车辆上高速路的规定,短期内大概不会改变。
窄身有什么好处?较之普通宽体轿车,窄身车辆占据路面小,方便灵活穿插交通如小老鼠,对公路拥塞,停车困难以及成本单价方面在在都提供明显的优势;而据统计小车的平均乘客(含司机)只有1.5–1.7之间,无谓浪费生产和上路的成本,排气污染空气;在全球都为雾霾头痛,铺建维修公路和占地成本昂贵,电动原件日趋成熟,(经中国2017办法补贴后)三四万元将有可能可以买到一台能上牌上高速的窄身电动车的今天,本发明尤为重要和及时。
发明内容
本发明旨在提供一种车辆的自平衡的装置及其相应控制方法,利用垂直转轴的重力陀螺仪4(下称“重陀”)使在行驶过程中,车辆更加稳定可靠,不会因为各种外 力而发生倾斜或翻倒、造成意外。本发明尤其适用于窄身的车辆。
本发明是这样实现的:一种自平衡车辆,包括载人的车厢10和其底盘11(统称为2),左右对称分配的多个车轮13,以及各种驱动,转向和刹车,仪表等等安全行驶所需的装置和功能,其中更包含本发明所陈述的自平衡装置。车厢底盘的平衡力主要由刚性连接的重陀4来提供,让其保持垂直的取向,另外由一些快速反应的智能电磁致动系统来提供进阶的辅助和功能。
三轮以上的车辆,任何左右一对的轮组,都经由中置于车厢底部的有形或有效的转轴3,来争取到并保持两轮对车辆重量的负载基本平分(不算横向外力如离心力和横风所产生的差异)。
以下实现方法一到三是针对三轮以上的
实现方法一(图1,4)
两轮的转轴13和其避震系统15处于横向平衡杠杆1的两端,杠杆可以绕着中置底盘2下方的前后方向的转轴3转动,杠杆末端因应地形变动而上下摆动如跷跷板,使得两轮负重压力在静止和直线行驶状态基本接近,(除非车辆受到很大的横向外力)。前后平衡杠杆可以连起来成为一个驱动平台3,中置的转轴也联合为单一个纵向的转轴,越低越好,以减少两轮因为离心力和强风等横向力难免产生的左右两轮受力的差距。
如果主要使用重陀自平衡车辆,就有以下步骤:
a)当车辆刚启动,如果重陀还没有达到有效的转速的时候,微处理器即时检测位于平台与底盘上的包括电子陀螺仪在内的角度探测器(“电陀”)6和7,经由快速反应的活动推杆系统5的作用力,扶正包含加速中的重陀在内的底盘、使其垂直;
b)车辆可以开动了,但速度不能太快,让底盘和重力陀螺仪保持垂直,直到重力陀螺仪达到预设的转速。
c)关掉推杆系统5,让重陀在不同角度的路面上单独自动平衡包括转弯和横风中各式行驶中车辆的底盘。而平台的多轮有效地接触各种路面上,发挥平台的行驶功能,稳定和安全性远大于也利用重陀的两轮车辆。但如果转弯太大或太快,仍有可能使得乘客感觉到离心力。
如果主要是用电磁系统来衡车辆的,就有以下步骤:
a)不开重陀,当车辆刚启动时,微处理器即时检测位于平台与底盘上的电陀,经由活动推杆装置的作用力,扶正底盘使其垂直水平,车辆可立刻开动。
b)开动后,路面的横向斜度会改变,而车辆可能由于转弯产生离心力,也可能有横向的大风,使车厢底盘2可能向一边倾斜,推或拉活动推杆装置5;快速反应的推杆系统即时产生相反的力量,来追求和接近到零的推拉力,相当于底盘和其负载的定向重力直接传到转轴3上,可提供乘客最佳感受。此方法适用于路面不太崎岖和横风不太大的情况,以免推杆系统反应不及,造成乘客产生太晃动的感觉、或车辆翻侧的危险。
实现方法二(图2,3,5,没有显示转向系统)
左右两轮轴的避震系统固定到车厢底盘2的两侧,与底盘相对的角度由平衡气缸8控制,并且左右平衡气缸8用液管相通,两边轮轴就取得跷跷板的功能,上下反向互动,平均分摊重量。避震气缸或弹簧和平衡气缸可以融为一体,节省成本。
实现方法三(图6)
如上实现方法二差不多,但两边平衡气缸不连通,两边轮轴与底盘的相对角度由微控制器控制的智能系统透过平衡气缸8来进行调整控制,达到相同的结果和功能。
实现方法四(图7)
如果是两轮车,驱动平台和底盘融为一体,接受重力陀螺仪的平衡功能,但是车厢仍与底盘经由有效转轴12离心倾斜如上述,让乘客更舒服。如果不需挡雨挡风的外壳,那只要人坐的部分和其他与驾驶车辆相关的部位都经由转轴12离心倾斜,就会达到相同目的。车厢倾斜度也可以用智能致动或驾驶人自行用手或脚来控制。
其他细节,由下面“具体实施方式”描述。
附图说明
图1为自平衡车辆状态一示意图(实现办法一:横向杠杆跷跷板);
图2为自平衡车辆状态二示意图;
图3为图2的局部放大示意图;
图4自平衡车辆元件连接模块示意图;
图5实现方法二:连通两轮的平衡气缸的示意图;
图6实现办法三:微控制器控制两轮的示意图;
图7实现方法四:有效转轴离心倾斜功能示意图。
其中:
1.平衡杠杆/驱动底盘
2.车厢和底盘固定在一起的统称
3.平衡杠杆与车厢底盘之间的转轴
4.重力陀螺仪
5.活动推杆系统的推杆
6.固定在底盘上的电子陀螺仪
7.固定在平衡杠杆或驱动平台或避震系统上的电子陀螺仪
8.平衡气缸
9.避震系统的弹簧或气缸
10.单独的车厢
11.单独的底盘
12.铰接车厢和底盘的有效轴承
13.车轮和其轴承
14.压力传感器
15.车辆平行四边形避震系统
16.车厢和底盘铰接的支架。
具体实施方式
下面结合附图做进一步说明。当车辆要停泊一段时间,可以用一个机械刹车系统稳定底盘和平台系统不动,关掉电动系统省电,等待下次开车。
壹实现方法一(继续以上面“发明内容”的定义)
如图1所示为车辆在静态时,该自平衡车辆包括具有多轮的驱动平台1,前述多轮主要指三轮车或四轮车,其中三轮车包括前两轮后一轮以及前一轮后两轮的情形,其中前面两轮在在都远较为稳定;为了尽量降低重心,所述平台1最好设置有常规动力源、转向系统、刹车系统,以及一个安装乘客座椅和司机控制版面等的车厢底盘2, 所述平台1与底盘2在中部通过前后方向设置的水平轴3可转动连接,所述前后方向是指该车辆直线行驶时的方向;通过重陀的平衡力所述底盘被保持在一个较平稳安全的垂直角度。平台与底盘之间设有推杆系统5,其处理器收集各个电陀,轮子受力和行驶速度或转弯半径等数据经程式运算做出最佳指令。
(1)以下为一种主要使用重陀自平衡的控制用法,包括以下步骤:
a)车辆可以开动了,但速度不能太快,使用智能活动推杆5,让底盘2和重陀4恢复作动并保持垂直,直到重陀达到预设的转速。
b)关掉活动推杆系统5,让重陀4在不同角度的路面上,风力和离心力外力影响下单独自动平衡行驶中车厢底盘2。但是如果转弯太大或太快,有可能使得乘客感觉到离心力,甚或车轮向外打滑。
c)如果路面太崎岖,速度应有所限制;如果速度太快,转弯半径应有所限制;如果风太大,应该发出警告,要求打开窗户,甚或索性不准开动。这些安全功能和服务,微处理器都能提供。
(2)一种主要是用电磁推杆系统5自动平衡的控制方法,包括以下步骤:
a)开车时不打开重陀4,微处理器即时检测分别固定于平台1与底盘2上的电陀6和7,经由活动推杆系统5的作用力,扶正底盘使其垂直,车辆亦可立刻开动。
b)开动后,路面的横向斜度会改变,而车辆可能由于转弯产生离心力,也可能有横向的大风,使底盘可能向一边倾斜,推或拉活动推杆装置;快速反应的推杆系统5即时产生相反的力量,来追求和接近到零的推拉力,相当于底盘和负载的重力直接指向转轴3上,可提供乘客最佳感受。此方法适用于路面不太崎岖和横风不太强大的情况,以免推杆系统反应不及,造成乘客产生太晃动的感觉。
(3)一种利用预设程式借用电磁系统来控制平衡车厢的方法,包括以下步骤:
a)预先用物理学,计算好程式,在什么速度和转向半径情形下,车厢底盘应该有什么的倾斜角度来抵消离心力。
b)车辆在行驶中,智能推杆系统5不断调整底盘角度达到公式计算好的底盘2倾斜角度。
c)如果强风产生一定的平均风力,本方法也可控制车厢平台适度的倾斜来抵消。 但横风来去很突然就应打开窗户,减少横风影响。风太大时,电脑系统应发出警告或停开车辆。
d)同样,此方法适用于路面不太崎岖情况,以免造成乘客产生太晃动的感觉甚或车辆打滑的意外。
贰实现方法二(图2、3:连通两轮的平衡气缸)
b)避震系统选用传统的类似“平行四边形”15结构、和提供弹力或的弹簧和避震气缸9,其中左右两边的避震气缸或弹簧和平衡气缸8连接,而左右的平衡气缸更互相以液体输送管相通。由于各个零件的作动都有一定的非线性,整个避震和平衡的联合系统需要优化,经由机械非线性的设计和互补手段,或经由微处理器程式,调节气缸液体总量的方式,使得中置的车厢受到最小的上下波动,保持平稳。
c)实现方法一所描述的(1)(2)(3)三种用法或原理都适用于这里,不另赘述。
叄实现方法三(微控制器控制两轮的平衡气缸)
a)如上实现方法二差不多,但两边平衡气缸不连通,两边轮轴与底盘的相对角度由微控制器控制的智能系统参考电陀,车辆速度和每个轮轴的受力的数据来进行调整控制,达到相同的结果和功能。受力数据可从避震或平衡系统安装的例如应变片的压力传感器取得。
b)实现方法一所描述的(1)(2)(3)三种用法或原理都适用于这里,不另赘述。
肆其他相关实现办法(图7)
a)车厢11与底盘12可以分开,经由固定在平台上前后一对的架子16上的两个以培玲构成纵向水平的有效转轴12铰接,在较大的离心力情况下使车厢底部和里面的座椅顺势稍微向外倾斜,以便降低乘客体验的离心力,增加舒适感。
b)如果是两轮车,驱动平台和底盘融为一体,接受重力陀螺仪的平衡功能,但是车厢仍与底盘经由有效转轴12离心倾斜如上述,让乘客更舒服。如果产品或消费者选择不需挡雨挡风的外壳,只要人坐的部分和其他与驾驶车辆相关的部位都经由转轴12离心倾斜,也会达到相同目的。车厢倾斜度也可以用智能致动或驾驶人自行用手或脚来控制。锁定转轴12,关掉重陀4,开起来就是一台普通的两轮机动车。(图6)
c)如果使用重陀,车子上下坡,依照物理力学就会产生扭力催使底盘绕着转轴3转动而往一旁倾斜一个大致相当于斜坡的角度,在极端情况下可能影响稳定和安全。因此可以让这个转轴3有选择性一定限度的在车子纵向平面上转动的空间,减少车厢底盘2旁倾的角度,对乘客比较自在。转轴前后轴承一个以上都可以设有弹簧和止动装置,让转轴达到所需的功能。如果前后轴承都有上下弹性,则可成为一个独立的避震系统。
d)可以透过避震15和平衡系统的气缸压8力的调整,来应付不同重力和行驶状态的需要或喜爱的的车厢高度,平衡与避震整合系统的反应速度和“硬度”。由于林林种种的办法相对传统和明显,属于“已知技术”,不另赘述。
e)如果是三轮,单轮应该在后,两轮组应该在前面,尤其转弯和刹车功能都会更好更安全。成对的左右车辆最好是一样大小和性能。如果有必要,本发明也适用于四轮以上的车辆。
f)在上述方法和用法,如果把所有所述电动和电子系统(除了安全相关的)都关掉,一个会开两辆车的司机,还是可以透过转向和倾斜等技巧,经由离心力来有效控制车辆。这样可以省电。
g)车辆的重心应尽量的降低,例如“实现方法1”里面的驱动平台应附有尽量多的零件,如电池等,以减轻重陀平衡的要求。
h)在以上每一种实施例中,应设有安全措施,包括机械的,电子的,警示灯和声音,和程式上的设施,限制或自行补救一些不当或自危的操作,包括转弯半径太小和速度太快,太早关掉某些尤其是平衡更能等,以达到尤其是国家及行业安全标准。微处理器可发挥很多的功能。
i)陀螺仪,无论是重陀还是电陀,重陀平衡车辆技术,微控制器控制电磁致动技术,以及压力传感器和动力物理学等技术,均应视为已知技术,互联网很多报道,本案不另详述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种自平衡车辆的装置,包括车厢和其底盘2,驱动和刹车等合法的安全驾驶装置和功能,其中车厢底盘2固定有平衡能力并可开关的重力陀螺仪4;同时固定有绝对角度测量器如电子陀螺仪6。
  2. 根据权利1的所述的自平衡车辆装置,其特征在于:轮子13和其避震系统15的分布,都相对于车辆的中间线左右对称的。
  3. 根据权利要求1致2所述的自平衡车辆装置,其特征在于:在静止和直走时不管路面斜度如何,任何左右一对的轮轴对车辆重量的负载基本平分分配。
  4. 根据权利要求1致3所述的自平衡车辆装置,其特征在于:每一左右相对的轮轴,都置于平衡杠杆1的两端,而该平衡杠杆中间设有前后纵向的平衡转轴3,让两个轮轴按力学要求可以互相上下反向摆动如跷跷板;其中平衡杠杆可以是实质的或虚拟有效的,而每个左右轮轴离地高度可以选择或不选择用机械力学或机电方法来控制。
  5. 根据权利要求1致4所述的自平衡车辆装置,其特征在于:在直线行驶情况之下,不论路面横向的斜度如何,每一对轮都同样有效地压到到路面。
  6. 根据权利要求1致5所述的自平衡车辆装置,其特征在于:前后平衡杠杆彼此刚性连接,基本成为一个驱动平台1;其中各个上述平衡杠杆的中置转轴也融为单一实体或有效的纵向的转轴3,铰接车厢底盘2;其中转轴3至少有一个轴承是可以设置有弹簧可以选择性地上下移动到一定限度;如果车厢底盘不靠重陀平衡,上述上下移动就不需要。
  7. 根据权利要求1致6所述的自平衡车辆装置,其特征在于:车厢底盘2和平衡杠杆1或驱动平台1上固定有绝对斜度探测器如光学或电子陀螺仪6和7,可以分别检测它们的绝对斜度。
  8. 根据权利要求6至7所述的自平衡车辆装置,其特征在于:驱动平台与底盘之间设置有活动推杆装置5来提供平衡力,微处理器连接所述推活动杆装置以及分别固定于平台和底盘的电子陀螺仪等斜度探测器6和7、数据存储器等相关零部件来辅助或负责稳定车厢。
  9. 根据权利要求1致5所述的自平衡车辆装置,其特征在于:相对的左右两轮分别以一般类似平行四边形15的方式,悬挂于平衡杠杆两端或车厢底盘的两边,在平行四边形的斜角设有平衡气缸8与避震气缸或弹簧9相容或相连;避震系统并装有压力传感器14等检测器,间接检测轮轴受力情况。
  10. 根据权利要求9所述的自平衡车辆装置,其特征在于:取消或锁定平衡转轴,左右两个平衡气缸经由液管相通,提供一个有效的平衡杠杆跷跷板效应给左右两轮;这些气缸都可连接到调整系统,以应付不同重力和行驶状态的需求,包括但不限于车厢高度,避震和平衡系统的反应速度和“硬度”等。
  11. 根据权利要求9和10所述的自平衡车辆装置,其特征在于:左右平行四边形上设置有电子陀螺仪,左右平衡气缸由微控制器分别控制。
  12. 根据权利要求1至11所述的自平衡车辆装置,其特征在于:可以锁定平衡转轴3,并且不打开重力陀螺仪,采用物理力学计算好车辆速度,转弯半径对车厢的倾斜的要求来抵抗离心力的公式、存于微控制器,并随时控制车厢斜度平稳行驶。
  13. 根据权利要求1至12所述的自平衡车辆装置,其特征在于:平衡系统电力部分可以选择性关掉,使车辆可以用开自行车方式来平衡行驶。
  14. 根据权利要求1至13所述的自平衡车辆装置,其特征在于:车厢10与底盘11经由前后分别有一组支架16上的纵向水平的有效转轴12铰接,使乘客在较大的离心力情况车厢10的底部有限度的离心倾斜、使乘客仍能享受较舒适的体验;使用上述12项关掉陀螺仪用自行车方法驾驶时,转轴12要锁定。
  15. 如果是两轮车,驱动平台和底盘融为一体,接受重力陀螺仪的平衡功能,但是车厢仍与底盘经由有效转轴12离心倾斜如上述,让乘客更舒服;车厢倾斜度也可以用智能致动或驾驶人自行用手或脚来控制;锁定转轴12,关掉重陀4,开起来就是一台普通的两轮机动车。
  16. 根据权利要求1致14所述的自平衡车辆装置,其特征在于:车辆设有主要为机械式的刹车系统,停泊时可以固定车辆不得前后滑动,而车厢也不得倾斜,各种电动系统也可选择给关掉。
PCT/CN2017/112042 2017-02-07 2017-11-21 一种自平衡车辆装置及其相应控制方法 WO2018145500A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/484,118 US11554818B2 (en) 2017-02-07 2017-11-21 Self-stabilizing vehicle and control method thereof
EP17895523.3A EP3572309A4 (en) 2017-02-07 2017-11-21 SELF-BALANCING VEHICLE DEVICE AND RELATED CONTROL METHOD
JP2019541766A JP2020505272A (ja) 2017-02-07 2017-11-21 自己平衡型車両装置及びその制御方法
US18/079,028 US11851113B2 (en) 2017-02-07 2022-12-12 Self-stabilizing vehicle and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710068262.5A CN108394479B (zh) 2017-02-07 2017-02-07 一种自平衡车辆装置及其相应控制方法
CN201710068262.5 2017-02-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/484,118 A-371-Of-International US11554818B2 (en) 2017-02-07 2017-11-21 Self-stabilizing vehicle and control method thereof
US18/079,028 Continuation US11851113B2 (en) 2017-02-07 2022-12-12 Self-stabilizing vehicle and control method thereof

Publications (1)

Publication Number Publication Date
WO2018145500A1 true WO2018145500A1 (zh) 2018-08-16

Family

ID=63093845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112042 WO2018145500A1 (zh) 2017-02-07 2017-11-21 一种自平衡车辆装置及其相应控制方法

Country Status (5)

Country Link
US (2) US11554818B2 (zh)
EP (1) EP3572309A4 (zh)
JP (1) JP2020505272A (zh)
CN (1) CN108394479B (zh)
WO (1) WO2018145500A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113715717A (zh) * 2021-10-27 2021-11-30 洛阳德野专用车辆有限公司 一种越野房车车厢的防摇晃结构
CN115042902A (zh) * 2022-07-26 2022-09-13 浙江德策工贸有限公司 一种滑板车及滑板车行驶方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11458796B2 (en) * 2018-09-24 2022-10-04 Zoox, Inc. Controlling vehicle suspension system using pressure set point
CN109353438B (zh) * 2018-10-11 2023-09-26 佛山科学技术学院 一种减震平衡车
CN109203901A (zh) * 2018-11-10 2019-01-15 石河子大学 一种可调节侧倾及俯仰角悬架系统的高地隙车辆及其工作方式
CN109606246B (zh) * 2019-01-30 2023-07-07 中国矿业大学 一种用于半流体运输集装箱动平衡液压底盘及控制方法
CN112477729A (zh) * 2019-09-12 2021-03-12 昆山市尚升危险废物专业运输有限公司 一种防倾斜的危险品运输车车厢结构
CN111717299A (zh) * 2020-06-09 2020-09-29 南京理工大学 车辆自稳定驾驶舱及基于该驾驶舱的控制系统和方法
CN111731399B (zh) * 2020-07-06 2021-06-15 神华国能集团有限公司 一种行走设备及机器人
CN112167790B (zh) * 2020-10-09 2022-04-22 珠海格力电器股份有限公司 一种炊具
KR20220063054A (ko) * 2020-11-09 2022-05-17 현대강전(주) 운송장비용 쏠림방지장치
US11952072B2 (en) * 2020-12-08 2024-04-09 Bryant Engineering & Development, LLC Self-stabilizing vehicle
US20220177058A1 (en) * 2020-12-08 2022-06-09 Bryant Engineering & Development, LLC Self-Stabilizing Two-Wheeled Vehicle
IT202000031109A1 (it) * 2020-12-16 2022-06-16 Piaggio & C Spa Un motoveicolo con avantreno rollante e carrello posteriore con due ruote motrici
CN113264111A (zh) * 2021-06-22 2021-08-17 黑系智能装备(威海)有限公司 用于自行式越野房车箱体的自平衡装置
CN114524031A (zh) * 2022-02-23 2022-05-24 福建汉特云智能科技有限公司 一种机器人车体及扫地机器人
CN114940222B (zh) * 2022-06-10 2023-06-20 华南农业大学 一种具有坡地自适应调整的轻型履带底盘
CN117508352B (zh) * 2023-12-28 2024-03-22 河南德野专用车辆股份有限公司 一种可调式房车上装稳定平衡车架

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083447A (ja) * 2008-10-02 2010-04-15 Toyota Motor Corp 移動体の慣性制御装置及び方法
CN202728379U (zh) * 2012-08-30 2013-02-13 张济安 一种两轮轿车
DE102012202596A1 (de) * 2012-02-21 2013-08-22 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben eines Fahrzeugs
US20160031515A1 (en) * 2013-07-16 2016-02-04 Sergey Nikolaevich Andreev Two-Wheeled Gyroscope-Stabilized Vehicle and Methods for Controlling Thereof
CN105365914A (zh) * 2014-08-19 2016-03-02 北京凌云智能科技有限公司 一种电动两轮汽车

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326318A (en) * 1965-10-22 1967-06-20 Bevoise John M De Anti-skid vane
US3373832A (en) * 1966-04-19 1968-03-19 Thomas O. Summers Gyro vehicle
US3711113A (en) * 1970-09-09 1973-01-16 J Stammreich Vehicle suspension arrangement
FR2153221B1 (zh) * 1971-09-23 1976-09-17 Jamer Jacques
US4887829A (en) * 1987-04-07 1989-12-19 Prince Curtis L Rear wheel suspension system for a tricycle vehicle
JP2970940B2 (ja) * 1994-06-14 1999-11-02 ブリンクス・ウエストマース・ベー・ブイ 少なくとも3つの車輪を備えた自己安定方向可制御車両
NL1007045C2 (nl) * 1997-09-16 1999-03-25 Brinks Westmaas Bv Kantelvoertuig.
US6805362B1 (en) * 2003-05-02 2004-10-19 Thomas Wesley Melcher Vehicle lean and alignment control system
FR2872773B1 (fr) * 2004-07-07 2006-09-29 Moulene Sarl Vehicule motorise de faible largeur
JP4529588B2 (ja) * 2004-08-24 2010-08-25 トヨタ自動車株式会社 車両制御装置
JP4363311B2 (ja) * 2004-11-12 2009-11-11 トヨタ自動車株式会社 減衰力制御装置
EP1885593B1 (en) * 2005-05-31 2011-07-20 Brinks Westmaas B.V. Self-balancing vehicle
JP2008230466A (ja) * 2007-03-22 2008-10-02 Hitachi Ltd サスペンション制御装置
JP4594346B2 (ja) * 2007-03-22 2010-12-08 トヨタ自動車株式会社 車両挙動制御装置
CN102138023A (zh) * 2008-07-09 2011-07-27 火石工业产品有限责任公司 气弹簧-气减振器组件及方法
CN201357866Y (zh) * 2008-07-10 2009-12-09 昆明理工大学 经济型三轮太阳能车车架
JP2010030416A (ja) * 2008-07-29 2010-02-12 Mitsubishi Heavy Ind Ltd 走行安定装置及び該装置を備えた産業車両
JP2010105436A (ja) * 2008-10-28 2010-05-13 Aisin Seiki Co Ltd ロール剛性制御装置
GB2465020B (en) * 2008-11-07 2012-10-10 Antony Richard Weir Self-balancing single-track electric vehicle
WO2010116641A1 (ja) * 2009-03-30 2010-10-14 株式会社エクォス・リサーチ 車両
US8167318B2 (en) * 2009-09-21 2012-05-01 Msi Defense Solutions, Llc Hydraulic anti-roll system
GB2476807B (en) * 2010-01-08 2012-10-31 David Andrew Gale A vehicle
US8918239B2 (en) * 2010-03-16 2014-12-23 Lit Motors Corporation Electrical system for gyroscopic stabilized vehicle
JP5505319B2 (ja) * 2011-01-18 2014-05-28 株式会社エクォス・リサーチ 車両
GB2492757B (en) * 2011-07-07 2015-12-23 David Andrew Gale A vehicle
JP5741278B2 (ja) * 2011-07-26 2015-07-01 株式会社エクォス・リサーチ 車両
DE102012011867A1 (de) * 2012-06-14 2013-01-24 Daimler Ag Radaufhängung
US8919788B2 (en) * 2012-08-27 2014-12-30 Lit Motors Corporation Gyroscopic system in vehicle suspension
JP6277404B2 (ja) * 2012-09-28 2018-02-14 株式会社エクォス・リサーチ 自動車
CN203381739U (zh) * 2013-05-28 2014-01-08 中国科学院金属研究所 一种两轮自平衡电动车
FR3010042B1 (fr) * 2013-09-02 2015-08-14 Bruno Malphettes Vehicule inclinable a trois roues
WO2015048823A1 (en) * 2013-09-30 2015-04-02 Firestone Industrial Products Company, Llc Gas damper
CN103600801A (zh) * 2013-10-17 2014-02-26 上海交通大学 基于红外传感器的转向控制系统及其自平衡两轮车
CN103600799B (zh) * 2013-10-17 2015-12-23 上海交通大学 基于压力传感器的转向控制系统及其自平衡两轮车
US9387742B2 (en) * 2014-01-13 2016-07-12 Arvinmeritor Technology, Llc Suspension system and method of control
DE102014203388A1 (de) * 2014-02-25 2015-08-27 Zf Friedrichshafen Ag Stabilisator zur Wankstabilisierung eines Fahrzeugs und Verfahren zum Betreiben eines solchen Stabilisators
US9120511B1 (en) * 2014-02-28 2015-09-01 Horizon Hobby, LLC Systems and methods for causing a rotational force to be applied to a vehicle
CN204095952U (zh) * 2014-08-19 2015-01-14 祝凌云 一种电动两轮汽车
CA2980741C (en) * 2015-03-25 2019-07-09 Hendrickson Usa, L.L.C. Damping air spring and shock absorber combination for heavy-duty vehicle axle/suspension systems
WO2017024473A1 (en) * 2015-08-10 2017-02-16 Two Wheels Technology, Co., Ltd. Self-balancing vehicles
WO2017048065A1 (ko) * 2015-09-15 2017-03-23 김대우 자이로스코프를 이용한 차량 제어 장치 및 그 방법
CN105676858A (zh) * 2016-03-02 2016-06-15 深圳市美莱创新股份有限公司 自平衡两轮平衡车及控制方法
ITUA20163740A1 (it) * 2016-05-24 2017-11-24 Sistemi Sospensioni Spa Sospensione per veicolo con ammortizzatore idraulico rigenerativo e con sistema di regolazione dell'assetto del veicolo.
US10035400B2 (en) * 2016-07-27 2018-07-31 GM Global Technology Operations LLC Vehicle suspension system
JP6743735B2 (ja) * 2017-03-17 2020-08-19 トヨタ自動車株式会社 自動傾斜車両
JP6760195B2 (ja) * 2017-05-02 2020-09-23 トヨタ自動車株式会社 自動傾斜車両
DE112018005593T5 (de) * 2017-11-15 2020-07-30 Sway Motorsports Llc Steuersystem für neigbares Fahrzeug
US10486755B2 (en) * 2017-11-30 2019-11-26 Facebook, Inc. Self-balancing robotic motorcycle
WO2019222447A1 (en) * 2018-05-18 2019-11-21 Hendrickson Usa, L.L.C. Damping air spring with substantially fixed volume
CN108657343A (zh) * 2018-06-08 2018-10-16 深圳市壹然进出口贸易有限公司 自平衡电动漂移鞋
KR101969143B1 (ko) * 2018-06-22 2019-04-16 연성은 자이로 카트
US20200102043A1 (en) * 2018-09-28 2020-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Robotic steering mechanism for autonomous bicycle
US11027786B2 (en) * 2018-11-20 2021-06-08 Harley-Davidson Motor Company Group, LLC Gyroscopic rider assist device
US20200262263A1 (en) * 2019-02-19 2020-08-20 Sway Motorsports Llc Autonomous tilting delivery vehicle
US11072389B2 (en) * 2019-02-22 2021-07-27 Sway Motorsports Llc Three-wheeled tilting vehicle
GB2598760B (en) * 2020-09-11 2024-04-10 Gabriel Birligea Danut A vehicle
US20220177058A1 (en) * 2020-12-08 2022-06-09 Bryant Engineering & Development, LLC Self-Stabilizing Two-Wheeled Vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083447A (ja) * 2008-10-02 2010-04-15 Toyota Motor Corp 移動体の慣性制御装置及び方法
DE102012202596A1 (de) * 2012-02-21 2013-08-22 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben eines Fahrzeugs
CN202728379U (zh) * 2012-08-30 2013-02-13 张济安 一种两轮轿车
US20160031515A1 (en) * 2013-07-16 2016-02-04 Sergey Nikolaevich Andreev Two-Wheeled Gyroscope-Stabilized Vehicle and Methods for Controlling Thereof
CN105365914A (zh) * 2014-08-19 2016-03-02 北京凌云智能科技有限公司 一种电动两轮汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572309A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113715717A (zh) * 2021-10-27 2021-11-30 洛阳德野专用车辆有限公司 一种越野房车车厢的防摇晃结构
CN113715717B (zh) * 2021-10-27 2023-11-14 河南德野专用车辆股份有限公司 一种越野房车车厢的防摇晃结构
CN115042902A (zh) * 2022-07-26 2022-09-13 浙江德策工贸有限公司 一种滑板车及滑板车行驶方法
CN115042902B (zh) * 2022-07-26 2024-03-29 浙江德策工贸有限公司 一种滑板车及滑板车行驶方法

Also Published As

Publication number Publication date
CN108394479B (zh) 2020-04-24
US20230116366A1 (en) 2023-04-13
US20200023913A1 (en) 2020-01-23
CN108394479A (zh) 2018-08-14
US11851113B2 (en) 2023-12-26
JP2020505272A (ja) 2020-02-20
US11554818B2 (en) 2023-01-17
EP3572309A4 (en) 2020-02-19
EP3572309A1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
WO2018145500A1 (zh) 一种自平衡车辆装置及其相应控制方法
US11155302B1 (en) Dynamically balanced in-line wheel vehicle
CN105539658B (zh) 一种安全的两轮自平衡车
CN102514663B (zh) 自平衡式两轮电动车
CN100537283C (zh) 具有有限倾角的机动车
EP3305640A1 (en) Vehicle
US20220097763A1 (en) Three-wheeled tilting vehicle
US9162726B2 (en) Mobile vehicle
JP2017534500A (ja) 二輪式電気自動車
CN101918256A (zh) 用于车辆电子稳定系统的负载传感器
CN102303667B (zh) 一种三轮车车架
CN104229016A (zh) 双向自平衡电动车
US20230040278A1 (en) Tilting Wheeled Vehicle
CN104648570A (zh) 一种轮外侧站立式的电动平衡车
CN116829445A (zh) 可转换的休闲坐下式至站立式车辆
CN109153425B (zh) 具有进行角运动的脚踏台的自平衡运输装置
US2521986A (en) Combination steerable and banking wheel suspension
CN114148441A (zh) 一种车轮十字形布置的动平衡车
CN206528569U (zh) 一种滑板车
JP2020164100A (ja) 前二輪揺動三輪車
JP6211415B2 (ja) 車両
CN218858617U (zh) 一种高速全向自平衡车
Lodhi et al. Performance Evaluation of Leaning Reverse Trike
CN114379685B (zh) 一种多轮动平衡车
CN209176829U (zh) 一种多轮滑板车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017895523

Country of ref document: EP

Effective date: 20190823