WO2018128155A1 - ポリエーテルポリオールの製造方法及びポリウレタンフォームの製造方法 - Google Patents

ポリエーテルポリオールの製造方法及びポリウレタンフォームの製造方法 Download PDF

Info

Publication number
WO2018128155A1
WO2018128155A1 PCT/JP2017/047149 JP2017047149W WO2018128155A1 WO 2018128155 A1 WO2018128155 A1 WO 2018128155A1 JP 2017047149 W JP2017047149 W JP 2017047149W WO 2018128155 A1 WO2018128155 A1 WO 2018128155A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether polyol
acid catalyst
polyol composition
crude
crude polyether
Prior art date
Application number
PCT/JP2017/047149
Other languages
English (en)
French (fr)
Inventor
えりか 信國
薮田 尚士
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to US16/470,306 priority Critical patent/US11414514B2/en
Priority to JP2018560390A priority patent/JP6634531B2/ja
Priority to CN201780081441.0A priority patent/CN110139887B/zh
Priority to KR1020197017682A priority patent/KR102212980B1/ko
Publication of WO2018128155A1 publication Critical patent/WO2018128155A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4816Two or more polyethers of different physical or chemical nature mixtures of two or more polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2678Sulfur or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2687Elements not covered by groups C08G65/2672 - C08G65/2684 or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2693Supported catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the present invention relates to a method for producing a low aldehyde content polyether polyol and a method for producing a polyurethane foam.
  • aldehydes volatile organic compounds (VOCs)
  • VOCs volatile organic compounds
  • a soft urethane foam with a high cushioning property is used for a vehicle seat pad, but it is contained in the raw material for polyurethane foam after molding the urethane foam, or formaldehyde, acetaldehyde, etc. generated during the urethanization reaction, etc. Is diffused from the pad, it is required to reduce the generation of these aldehydes.
  • Patent Document 1 a method of mixing a hydrazine compound having an action of decomposing aldehydes with a polyol compound (see Patent Document 1) is known.
  • Patent Document 2 a method of applying an aldehyde scavenger to the surface of a sheet pad in order to prevent volatilization of aldehydes is known (see Patent Document 2).
  • the polyether polyol product is contacted with excess acid having a pKa of less than 5 under hydrolysis conditions, and the reaction mixture is contacted with water under hydrolysis conditions to recover a polyether polyol having almost no odor ( Patent Document 3) is known.
  • Patent Document 3 a step of neutralizing an acid, adsorbing its salt, and collecting by filtration is necessary.
  • the present invention relates to a method for producing a polyether polyol having a simpler process with a small content of aldehyde contained in the polyether polyol, which occupies most of the raw material of the polyurethane foam, and a polyurethane foam having a small amount of aldehyde to be volatilized. It aims at providing the manufacturing method of.
  • the present invention provides a crude polyether polyol composition (D1) containing a polyether polyol (A) obtained by ring-opening polymerization of an alkylene oxide to an active hydrogen compound as an acid catalyst (B) in the presence of water.
  • a polyether having a low aldehyde content can be produced, and the steps of the production method are simpler.
  • the polyurethane foam using the said polyether polyol can suppress the aldehyde amount volatilized low.
  • a crude polyether polyol composition (D1) containing a polyether polyol (A) obtained by ring-opening polymerization of an alkylene oxide to an active hydrogen compound is used in the presence of water.
  • step (1) and step (2) will be specifically described.
  • the crude polyether polyol composition (D1) obtained by the following steps (i) and (ii) can be used.
  • a reaction catalyst alkali, Lewis acid, etc.
  • step (i) when the ring-opening polymerization of alkylene oxide is performed on the active hydrogen compound using a Lewis acid catalyst in the step (i) or when the catalyst is not used, this step (ii) is not necessary, and the step (i) A crude polyether polyol (D1) is obtained.
  • Step (1) The crude polyether polyol composition (D1) obtained in the above step is brought into contact with the acid catalyst (B) in the presence of water to give a crude polyether polyol composition (D2) having a pH exceeding 5.0. ).
  • Step (2) A step of obtaining a polyether polyol (F) by removing volatile components containing the aldehyde (C) from the crude polyether polyol composition (D2).
  • a low aldehyde content polyether polyol (F) can be obtained by the said process.
  • the solid acid catalyst (B1) as the acid catalyst (B), and contact the crude polyether polyol composition (D1) and the solid acid catalyst (B1) by a batch method.
  • the step (iii) of recovering the solid acid catalyst (B1) by filtration or the like is performed after the step (1). It is preferable.
  • the crude polyether polyol composition (D1) is continuously brought into contact with the immobilized solid acid catalyst (B1) as the acid catalyst (B).
  • This method is a continuous method. In the case of such a continuous system or when the Lewis acid catalyst (B2) is used as the acid catalyst (B), the step (iii) of recovering the solid acid catalyst (B1) by filtration or the like is not necessary.
  • the combinations of these individual steps differ depending on the conditions of the catalyst for the ring-opening polymerization of alkylene oxide and the conditions of the acid catalyst to be contacted, and examples thereof include the following combinations (I) to (III).
  • the solid acid catalyst (B1) is used as the acid catalyst (B) in the step (1) and the crude polyether polyol composition (D1) and the solid acid catalyst (B1) are contacted in a continuous manner
  • the Lewis acid catalyst (B2) is used as the acid catalyst (B)
  • a crude polyether polyol composition (D1) containing a polyether polyol (A) obtained by ring-opening polymerization of an alkylene oxide to an active hydrogen compound is acid-catalyzed in the presence of water.
  • the step (1) of obtaining a crude polyether polyol composition (D2) having a pH of more than 5.0 by contacting with (B), and the step of removing volatiles containing the aldehyde (C) after the step (1) (2) is an essential process.
  • the crude polyether polyol composition (D1) used in the production method of the present invention is an alkylene oxide (hereinafter abbreviated as AO) in an active hydrogen compound in the presence of a catalyst or in the absence of a catalyst.
  • aldehyde (C) include formaldehyde (C1), acetaldehyde (C2), and propionaldehyde (C3).
  • a reaction catalyst alkali, Lewis acid, etc.
  • Step (i) itself is a step of obtaining a crude polyether polyol composition containing a polyether polyol (A) obtained by ring-opening polymerization of an alkylene oxide to an active hydrogen compound and an aldehyde (C) as an impurity.
  • a Lewis acid is used as a catalyst or when polymerization is performed in the absence of a catalyst, it is necessary to subject the crude polyether polyol composition obtained in step (i) to an adsorption treatment in step (ii).
  • the crude polyether polyol composition (D1) may be directly processed with the acid catalyst (B) in the step (1).
  • an alkali catalyst when used as the catalyst, an alkali catalyst residue other than the polyether polyol (A) obtained by ring-opening polymerization of an alkylene oxide with an active hydrogen compound in the presence of the alkali catalyst and the aldehyde (C) as impurities.
  • a crude polyether polyol composition (D0) is also obtained.
  • the reaction temperature of the alkylene oxide ring-opening polymerization reaction is preferably 80 to 180 ° C., more preferably 90 to 160 ° C., from the viewpoint of the reaction time.
  • the alkali catalyst is preferably an alkali metal hydroxide (potassium hydroxide, cesium hydroxide, etc.), more preferably potassium hydroxide.
  • the amount of the alkali catalyst used is preferably 0.01 to 5.0% by weight, more preferably 0.01 to 1.% by weight based on the crude polyether polyol composition (D0) obtained from the viewpoint of viscosity. 0% by weight.
  • the active hydrogen compound is preferably a divalent to octavalent active hydrogen group-containing compound (a).
  • the divalent to octavalent active hydrogen group-containing compound (a) include polyhydric alcohol (a1), polyhydric hydroxyl group-containing compound (a2) other than polyhydric alcohol, amino group-containing compound (a3), thiol group-containing compound ( It is at least one active hydrogen group-containing compound selected from the group consisting of a4), a phosphate group-containing compound (a5), and a compound (a6) having two or more active hydrogen groups.
  • Examples of the polyhydric alcohol (a1) include divalent aliphatic alcohols having 2 to 20 carbon atoms, trivalent aliphatic alcohols having 3 to 20 carbon atoms, and 4- to 8-valent aliphatic alcohols having 5 to 20 carbon atoms.
  • Examples of the divalent aliphatic alcohol having 2 to 20 carbon atoms include linear or branched aliphatic diols (ethylene glycol, propylene glycol, 1,3- and 1,4-butanediol, 1,6-hexanediol, and neopentyl. Glycol) and alicyclic diols (cyclohexanediol, cyclohexanedimethanol and the like).
  • Examples of the trivalent aliphatic alcohol having 3 to 20 carbon atoms include aliphatic triols (such as glycerin and trimethylolpropane).
  • Examples of the 4- to 8-valent aliphatic alcohol having 5 to 20 carbon atoms include aliphatic polyols (pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, dipentaerythritol, etc.) and sugars (sucrose, glucose, mannose, fructose, methyl). Glucoside and derivatives thereof). Of these, divalent to octavalent aliphatic alcohols having 2 to 10 carbon atoms are preferred, and divalent to tetravalent aliphatic alcohols are more preferred.
  • polyhydric hydroxyl group-containing compound (a2) other than the polyhydric alcohol examples include polyhydric phenols. Specific examples include hydroquinone, bisphenol A, bisphenol F, bisphenol S, 1,3,6,8-tetrahydroxynaphthalene, anthrol, 1,4,5,8-tetrahydroxyanthracene and 1-hydroxypyrene.
  • (Meth) acrylate means methacrylate and / or acrylate, and the same applies hereinafter.
  • the amino group-containing compound (a3) includes amines and the like. Specific examples include ammonia; monoamines such as alkylamines having 1 to 20 carbon atoms (such as butylamine) and anilines; linear or branched aliphatic polyamines such as ethylenediamine, hexamethylenediamine and diethylenetriamine; piperazine and N-aminoethylpiperazine, etc.
  • Heterocyclic polyamines of the above cycloaliphatic polyamines such as dicyclohexylmethanediamine and isophoronediamine; aromatic polyamines such as phenylenediamine, tolylenediamine and diphenylmethanediamine; polyamide polyamines obtained by condensation of dicarboxylic acids with excess polyamines; Ether polyamines; hydrazine (such as hydrazine and monoalkyl hydrazine), dihydrazide (such as succinic acid dihydrazide and terephthalic acid dihydrazide), guanidine (butyl) Guanidine and 1-cyanoguanidine, etc.) and the like.
  • hydrazine such as hydrazine and monoalkyl hydrazine
  • dihydrazide such as succinic acid dihydrazide and terephthalic acid dihydrazide
  • guanidine butyl) Guanidine and 1-cyanoguanidine,
  • the thiol group-containing compound (a4) includes a polythiol compound.
  • the polythiol include divalent to octavalent polyvalent thiols. Specific examples include ethanedithiol and 1,6-hexanedithiol.
  • Examples of the phosphoric acid group-containing compound (a5) include phosphoric acid, phosphorous acid, and phosphonic acid.
  • the compound (a6) having two or more types of active hydrogen groups is a compound having two or more types of active hydrogen groups (hydroxyl group, amino group, carboxyl group, thiol group, phosphate group, etc.) in the molecule, and alkanol Examples include amines (monoethanolamine, diethanolamine, etc.), amino acids (aspartic acid, etc.) and hydroxycarboxylic acids (citric acid, etc.).
  • the active hydrogen group-containing compound (a) is preferably a polyhydric alcohol, an amino group-containing compound, a compound having two or more active hydrogen groups, more preferably a polyhydric alcohol, and particularly preferably Ethylene glycol, propylene glycol, glycerin, pentaerythritol.
  • AO added to the active hydrogen group-containing compound (a) examples include AO having 2 to 6 carbon atoms such as ethylene oxide (hereinafter sometimes abbreviated as EO), 1,2-propylene oxide (hereinafter referred to as PO). And 1,3-propylene oxide, 1,2-butylene oxide, and 1,4-butylene oxide.
  • EO ethylene oxide
  • PO 1,2-propylene oxide
  • 1,3-propylene oxide, 1,2-butylene oxide, and 1,4-butylene oxide 1,3-propylene oxide, 1,2-butylene oxide, and 1,4-butylene oxide.
  • PO EO
  • 1,2-butylene oxide are preferred from the viewpoints of properties and reactivity.
  • block addition or random addition may be used, or a combination thereof may be used.
  • An AO adduct of the active hydrogen group-containing compound (a) obtained by adding AO to the active hydrogen group-containing compound (a) may be used as the active hydrogen compound.
  • Such an active hydrogen compound is preferably an AO adduct of a polyhydric alcohol and / or an amino group-containing compound, more preferably a propylene glycol PO adduct, a glycerin PO adduct, or a glycerin PO / EO adduct. This is a PO adduct of pentaerythritol.
  • a polyether polyol obtained by subjecting an AO adduct of an active hydrogen group-containing compound (a) as an active hydrogen compound to ring-opening polymerization of alkylene oxide may be used as the polyether polyol (A).
  • the polyether polyol (A) is preferably an AO adduct of a polyhydric alcohol and / or an amino group-containing compound, more preferably a propylene glycol PO adduct, a glycerin PO adduct, or a glycerin PO / EO adduct. This is a PO adduct of pentaerythritol.
  • the hydroxyl value (mgKOH / g) of the polyether polyol (A) is preferably 10 to 150, more preferably 20 to 70, from the viewpoint of handling and viscosity.
  • the aldehyde (C) present as an impurity in the crude polyether polyol composition (D0) and the crude polyether polyol composition (D1) includes formaldehyde (C1), acetaldehyde (C2) and propionaldehyde (C3). ).
  • Examples of the analysis method of formaldehyde (C1), acetaldehyde (C2), and propionaldehyde (C3) include a method in which a sample is derivatized with 2,4-dinitrophenylhydrazine and measured by HPLC. This analysis method can measure the total content of free aldehydes contained in the polyether polyol composition and substances that may be converted to free aldehydes later by decomposition or the like.
  • the treating agent used for the adsorption treatment of the alkali catalyst in the crude polyether polyol composition As magnesium silicate and aluminum silicate (for example, Kyowa Chemical Industry Co., Ltd., Kyoward (registered trademark) 600) is preferable. Magnesium silicate and aluminum silicate may be used alone or in combination.
  • the amount of the treating agent used is preferably from 0.1 to 3.0% by weight, more preferably from the viewpoint of the amount of alkali adsorption and the process time, based on the weight of the crude polyether polyol composition (D0). 3 to 2.0% by weight.
  • the temperature for the alkali adsorption treatment is preferably 60 to 110 ° C., more preferably 70 to 100 ° C., and most preferably 85 to 95 ° C. from the viewpoint of the viscosity of the crude polyether polyol composition (D0).
  • CPR refers to a value obtained by multiplying the number of mL of 0.01 mol / L hydrochloric acid aqueous solution required for neutralizing 30 g of the sample by 10 times.
  • the facility for performing the alkali adsorption treatment is not particularly limited as long as the crude polyether polyol composition (D0) and the treating agent are in contact with each other and the crude polyether polyol composition (D0) and the treating agent can be separated after the contact. .
  • a solid acid catalyst (B1) or a Lewis acid catalyst (B2) can be used as the acid catalyst (B) in the step (1) of the present invention.
  • the solubility of the solid acid catalyst (B1) with respect to 100 g of the polyether polyol (A) at 80 ° C. is 0.1 g or less.
  • the Lewis acid catalyst (B2) has a solubility in 100 g of polyether polyol (A) at 80 ° C. larger than 0.1 g.
  • the solid acid catalyst (B1) that can be used as the acid catalyst (B) in the step (1) of the present invention has an acidic site on the surface of the solid, and the acidic site acts as a catalyst active site.
  • the substance to be said shall be said.
  • the solid acid catalyst (B1) is preferably an inorganic porous material.
  • the solid acid catalyst (B1) specifically, at least one selected from the group consisting of silica, alumina, titania, magnesia, zirconia, zeolite, montmorillonite, aluminum silicate, hydroxyapatite and a mixture thereof is preferable. Zeolite is more preferred, and silica is particularly preferred.
  • the solid acid catalyst (B1) is preferably a solid acid catalyst in which the acid (b) is immobilized on the inorganic porous material. Further, a solid acid catalyst in which a sulfonic acid group-containing compound is immobilized as the acid (b) is more preferable. More preferably, the solid acid catalyst (B1) is a solid acid catalyst in which a sulfonic acid group-containing compound is immobilized on silica.
  • the Lewis acid catalyst (B2) that can be used as the acid catalyst (B) in the step (1) of the present invention is a substance that receives an electron pair.
  • aluminum halide aluminum chloride, aluminum bromide, aluminum fluoride, etc.
  • boron halide boron chloride, boron bromide, boron fluoride, etc.
  • triphenylborane examples thereof include at least one compound selected from the group consisting of triphenylaluminum, tris (pentafluorophenyl) borane, and tris (pentafluorophenyl) aluminum.
  • triphenylborane triphenylaluminum
  • tris (pentafluorophenyl) borane tris (penta Fluorophenyl) aluminum
  • tris (pentafluorophenyl) borane is particularly preferred.
  • the amount of the solid acid catalyst (B1) to be brought into contact with the crude polyether polyol composition (D1) is preferably 0.01 to 5 based on the weight of the crude polyether polyol composition (D1) from the viewpoint of reactivity. 0.0% by weight, more preferably 0.1 to 2.5% by weight.
  • the amount of the Lewis acid catalyst (B2) to be brought into contact with the crude polyether polyol composition (D1) is preferably 30 to 1000 ppm based on the weight of the crude polyether polyol composition (D1) from the viewpoint of reactivity. More preferably, it is 50 to 500 ppm.
  • the temperature at which the crude polyether polyol composition (D1) and the solid acid catalyst (B1) are contacted is preferably 25 to 150 ° C., more preferably 40 to 90 ° C., from the viewpoints of reactivity and process time.
  • the temperature at which the crude polyether polyol composition (D1) and Lewis acid catalyst (B2) are contacted is preferably 25 to 150 ° C., more preferably 50 to 150 ° C., and still more preferably 70 from the viewpoints of reactivity and process time. ⁇ 130 ° C.
  • the amount of water when the crude polyether polyol composition (D1) and the solid acid catalyst (B1) are brought into contact is from the viewpoint of reactivity and influence on the devolatilization process time, and the crude polyether polyol composition (D1).
  • the amount is preferably 0.05 to 5.0% by weight, more preferably 0.5 to 2.5% by weight.
  • the amount of water when the crude polyether polyol composition (D1) and the Lewis acid catalyst (B2) are brought into contact is from the viewpoint of reactivity and influence on the devolatilization process time, and the crude polyether polyol composition (D1).
  • the content is preferably 0.05 to 5.0% by weight, more preferably 0.5 to 5.0% by weight, and still more preferably 1.0 to 4.0% by weight.
  • a column of the solid acid catalyst (B1) to which the crude polyether polyol composition (D1) is immobilized is used.
  • a continuous contact method may be used, or a batch contact method may be used.
  • a method for bringing the crude polyether polyol composition (D1) and the Lewis acid (B2) into contact in the presence of water a method in which the contact is made in a batch mode is preferable.
  • the pH of the crude polyether polyol composition (D2) after contacting the crude polyether polyol composition (D1) and the solid acid catalyst (B1) in the presence of water needs to exceed 5.0. More preferably, it is 5.1 to 6.0. This is because when a polyether polyol (F) is reacted with an isocyanate to produce a urethane foam, an amine catalyst is used to accelerate the reaction, but this amine catalyst is lost when the pH is 5.0 or lower. This is because there is a possibility of activating. Moreover, when the pH of the crude polyether polyol composition (D2) is less than 5, neutralization with an alkali or the like is possible, but in that case, a step of removing the neutralized salt is required, and the process time is reduced. become longer.
  • Step (1) when the crude polyether polyol composition (D1) and the solid acid catalyst (B1) are contacted in the presence of water by a batch method, the solid acid catalyst (B1) is filtered. Remove by etc. However, in the case where the crude polyether polyol composition (D1) and the solid acid catalyst (B1) are continuously contacted by a continuous method, filtration is not always essential.
  • the solid acid catalyst (B1) is recovered by filtration or the like.
  • the acid catalyst (B1) and the crude polyether polyol are separated.
  • the equipment is not particularly limited as long as the equipment can separate the solid acid catalyst (B1) and the crude polyether polyol.
  • Step (2) the volatile matter containing aldehyde (C) in the crude polyether polyol composition (D2) is removed to obtain polyether polyol (F).
  • This process is also called a devolatilization process, and removing the volatile component containing the aldehyde (C) is called devolatilization.
  • the temperature in the devolatilization step in the present invention is preferably 90 ° C. to 130 ° C., more preferably 100 ° C. to 110 ° C. from the viewpoint of process time.
  • the devolatilization time is preferably 30 minutes to 2 hours, more preferably 1 hour to 1 hour 30 minutes, from the viewpoint of the amount of water and the aldehyde content in the polyether polyol (F).
  • the equipment required for the devolatilization process is not particularly limited as long as it is equipment capable of devolatilizing moisture and aldehyde without mixing oxygen.
  • the polyether polyol (F) obtained by the production method of the present invention is a low aldehyde content polyether polyol having a low aldehyde content.
  • the low aldehyde content polyether polyol can be used for various applications.
  • a polyol containing the polyether polyol (F) obtained by the production method of the present invention and a polyisocyanate (E) are mixed with a blowing agent, a catalyst, and
  • a polyurethane foam (G) can be produced by reacting in the presence of a foam stabilizer.
  • the polyurethane foam can keep the content of aldehyde volatilized from the polyurethane foam low.
  • polyisocyanate (E) what is conventionally used for polyurethane foam can be used.
  • polyisocyanates include aromatic polyisocyanates, linear or branched aliphatic polyisocyanates, alicyclic polyisocyanates, araliphatic polyisocyanates, and modified products thereof (urethane groups, carbodiimide groups, allophanate groups, urea groups). , A burette group, an isocyanurate group and an oxazolidone group-containing modified product) and a mixture of two or more thereof.
  • Aromatic polyisocyanates include aromatic diisocyanates having 6 to 16 carbon atoms (excluding carbons in NCO groups; the following polyisocyanates are the same), aromatic triisocyanates having 6 to 20 carbon atoms, and crude products of these isocyanates. Thing etc. are mentioned.
  • 1,3- or 1,4-phenylene diisocyanate 2,4- or 2,6-tolylene diisocyanate (TDI)
  • TDI 2,4- or 2,6-tolylene diisocyanate
  • MDI 2,4′- or 4,4′-diphenylmethane diisocyanate
  • CAde MDI polymethylene polyphenylene polyisocyanate
  • naphthylene-1,5-diisocyanate and triphenylmethane-4,4 ′, 4 ′′ -triisocyanate.
  • linear or branched aliphatic polyisocyanate examples include aliphatic diisocyanates having 6 to 10 carbon atoms. Specific examples include 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, and the like.
  • alicyclic polyisocyanate examples include alicyclic diisocyanates having 6 to 16 carbon atoms. Specific examples include isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,4-cyclohexane diisocyanate and norbornane diisocyanate.
  • araliphatic polyisocyanate examples include araliphatic diisocyanates having 8 to 12 carbon atoms. Specific examples include xylylene diisocyanate and ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate. Specific examples of the modified polyisocyanate include carbodiimide-modified MDI.
  • aromatic polyisocyanates are preferable from the viewpoint of reactivity, more preferably TDI, crude TDI, MDI, crude MDI and modified products of these isocyanates, particularly preferably TDI, MDI and crude MDI. is there.
  • blowing agent examples include water, liquefied carbon dioxide gas, and low boiling point compounds having a boiling point of ⁇ 5 to 70 ° C.
  • Low boiling point compounds include hydrogen atom-containing halogenated hydrocarbons and low boiling point hydrocarbons.
  • Specific examples of the hydrogen atom-containing halogenated hydrocarbon and low boiling point hydrocarbon include methylene chloride, HCFC (hydrochlorofluorocarbon) (HCFC-123, HCFC-141b, HCFC-142b, etc.); HFC (hydrofluorocarbon) (HFC- 134a, HFC-152a, HFC-356mff, HFC-236ea, HFC-245ca, HFC-245fa and HFC-365mfc), butane, pentane and cyclopentane.
  • water liquefied carbon dioxide, methylene chloride, cyclopentane, HCFC-141b, HFC-134a, HFC-356mff, HFC-236ea, HFC-245ca, HFC-245fa, HFC-365mfc and It is preferable to use a mixture of two or more of these as a foaming agent.
  • the amount of water used is preferably 1.0 to 8.0% by weight, more preferably 1.5 to 8% by weight based on the weight of the polyol component used in the production of urethane foam from the viewpoint of impact resilience. 4.0% by weight.
  • the amount of the low boiling point compound used is preferably 30% by weight or less, more preferably 5 to 25% by weight, based on the weight of the polyol component, from the viewpoint of poor molding.
  • the amount of liquefied carbon dioxide used is preferably 30% by weight or less, more preferably 1 to 25% by weight.
  • a catalyst that accelerates the urethanization reaction can be used.
  • Tertiary amine ⁇ triethylenediamine, N-ethylmorpholine, diethylethanolamine, tetramethylethylenediamine, diaminobicyclooctane, 1,2-dimethylimidazole, 1-methyl Imidazole, 1,8-diazabicyclo- [5,4,0] -undecene-7, bis (N, N-dimethylamino-2-ethyl) ether and N, N, N ′, N′-tetramethylhexamethylenediamine And / or carboxylic acid metal salts (such as potassium acetate, potassium octylate, stannous octylate, dibutylstannic dilaurate, and lead octylate).
  • the amount of the catalyst used is preferably 0.01 to 5.0% by weight, more preferably 0.05 to 2.0% by weight, based on the
  • foam stabilizer those used in the production of ordinary polyurethane foams can be used, such as dimethylsiloxane foam stabilizers (“SRX-253”, “PRX-607”, etc., manufactured by Toray Dow Corning Co., Ltd.) and Polyether-modified dimethylsiloxane-based foam stabilizer (“SZ-1142”, “SF-2904”, “SRX-294A”, “SH-193”, “SZ-1720”, “Toray Dow Corning Co., Ltd.”) "SZ-1675t”, “SF-2936F”, “SF-2904", "L-540", “L-3601” manufactured by Nippon Unicar Co., Ltd., and “B4900”, “B8742LF2”, “B8715LF2” manufactured by EVONIK Etc.].
  • the amount of the foam stabilizer used is preferably from 0.3 to 5.0% by weight, more preferably from 0.4 to 3.0% by weight, based on the weight of the polyol component, from the viewpoint of impact resilience.
  • auxiliaries include colorants (dyes and pigments), plasticizers (phthalates and adipates, etc.), organic fillers (synthetic short fibers, hollow microspheres made of thermoplastic or thermosetting resins, etc.) And known auxiliary components such as flame retardants (such as phosphate esters and halogenated phosphate esters), anti-aging agents (such as triazole and benzophenone), and antioxidants (such as hindered phenol and hindered amine).
  • colorants dye and pigments
  • plasticizers phthalates and adipates, etc.
  • organic fillers synthetic short fibers, hollow microspheres made of thermoplastic or thermosetting resins, etc.
  • auxiliary components such as flame retardants (such as phosphate esters and halogenated phosphate esters), anti-aging agents (such as triazole and benzophenone), and antioxidants (such as hindered phenol and hindered amine).
  • the amount of the auxiliary added is preferably 1% by weight or less based on the weight of the polyol component.
  • the plasticizer is preferably 10% by weight or less, more preferably 5% by weight or less.
  • the organic filler is preferably 50% by weight or less, more preferably 30% by weight or less.
  • the flame retardant is preferably 30% by weight or less, more preferably 2 to 20% by weight.
  • the anti-aging agent is preferably 1% by weight or less, more preferably 0.01 to 0.5 parts by weight.
  • the antioxidant is preferably 1% by weight or less, more preferably 0.01 to 0.5% by weight.
  • the isocyanate index (NCO index) [(NCO group / active hydrogen atom-containing group) equivalent ratio ⁇ 100] in producing polyurethane foam is preferably 70 to 150 from the viewpoint of impact resilience, More preferably, it is 75 to 130, and particularly preferably 80 to 120.
  • An example of a method for producing a polyurethane foam according to the method of the present invention is as follows. First, a predetermined amount of a polyol component for producing polyurethane foam, a foaming agent, a catalyst, a foam stabilizer, and other auxiliary agents as necessary are mixed. The mixture and the organic polyisocyanate component are then rapidly mixed using a polyurethane foam foamer or stirrer. The obtained mixed liquid (foaming stock solution) can be continuously foamed to obtain a polyurethane foam. Alternatively, it can be poured into a sealed or open mold (made of metal or resin), subjected to a urethanization reaction, cured for a predetermined time, and then demolded to obtain a polyurethane foam.
  • the polyurethane foam of the present invention is used for automobile seat cushions, furniture and bedding pillows, bedding mattresses, clothing and the like.
  • Example 1 In an autoclave, 100 parts of PO adduct of glycerin (hydroxyl number conversion number average molecular weight (Mn) 600) as an active hydrogen compound was added, and high purity KOH (purity 96%, sodium content 200 ppm, the same shall apply hereinafter) 2.1. A part was added and stirred under reduced pressure at 130 ° C. to uniformly dissolve and dehydrate until the water content was 0.1% by weight or less. Subsequently, 628.8 parts of PO was subjected to addition polymerization at a reaction temperature of 95 ° C., and 181.9 parts of EO was added at a reaction temperature of 130 ° C.
  • Mn 600 hydroxyl number conversion number average molecular weight 600
  • the resulting crude polyether polyol composition (D0-1) was heated and subjected to a heating reaction at 130 ° C. for 3 hours. The moisture at the time of reaching 130 ° C. was 100 ppm.
  • alkali adsorption treatment [1.6% of water was added to the crude polyether polyol composition (D0-1) and mixed at 85 to 90 ° C. for 30 minutes, and then treated as a treatment agent (adsorbent)
  • 0.5% of “KYOWARD 600” manufactured by Kyowa Chemical Industry Co., Ltd.
  • H-BHT (2,6-di-tert.-butyl-P-cresol) (manufactured by Honshu Chemical Industry Co., Ltd.) as an antioxidant was used as a polyether polyol composition ( 0.1% of D0-1) was added and dissolved at 80 ° C.
  • the resulting low aldehyde content polyether polyol (F-1) has a hydroxyl value of 33.9 mgKOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.038 meq / g, formaldehyde (C1 ) Content was 0.2 ppm, acetaldehyde (C2) content was 0.3 ppm, and propionaldehyde (C3) content was 3.8 ppm.
  • Example 2 The crude polyether polyol composition of Example 1 was “Galeon Earth NS” (B1-2) [active clay obtained by treating acid clay containing montmorillonite as a main component with mineral acid] as a solid acid catalyst.
  • a polyether polyol (F-2) was obtained through the crude polyether polyol composition (D2-2) in the same manner as in Example 1, except that 1 part was used per 100 parts of the product (D1-1). .
  • the pH of the crude polyether polyol composition (D2-2) was 5.5.
  • the resulting low aldehyde content polyether polyol (F-2) had a hydroxyl value of 33.7 mg KOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.039 meq / g, formaldehyde (C1 ) Content was 0.3 ppm, acetaldehyde (C2) content was 0.4 ppm, and propionaldehyde (C3) content was 4.5 ppm.
  • Example 3 As a solid acid catalyst, “KYOWARD 700” (B1-3) [manufactured by Kyowa Chemical Industry Co., Ltd., which is obtained by immobilizing strong acid H + on synthetic aluminum silicate mainly composed of silica and alumina]
  • the crude polyether polyol composition (D2-3) was passed through the crude polyether polyol composition (D2-3) in the same manner as in Example 1 except that 1 part was used per 100 parts of the crude polyether polyol composition (D1-1). 3) was obtained.
  • the pH of the crude polyether polyol composition (D2-3) was 5.4.
  • the resulting low aldehyde content polyether polyol (F-3) had a hydroxyl value of 33.6 mg KOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.041 meq / g, formaldehyde (C1 ) Content was 0.4 ppm, acetaldehyde (C2) content was 0.5 ppm, and propionaldehyde (C3) content was 4.9 ppm.
  • Example 4 The crude polyether polyol composition (D1-4) was obtained in the same manner as in Example 1 until the crude polyether polyol composition and the solid acid catalyst were brought into contact with each other.
  • the crude polyether polyol composition (D1-1) and the crude polyether polyol composition (D1-4) of Example 1 are the same. Subsequently, 100 parts of the crude polyether polyol composition (D1-4) and 1.2 parts of water were placed in an autoclave and stirred under reduced pressure at 130 ° C. to dissolve uniformly.
  • the solid acid catalyst “SAC-1” [ A product obtained by immobilizing and supporting a sulfonic acid group-containing compound on silica manufactured by Teika Co., Ltd.] A crude polyether polyol composition (flowing through a catalyst tower packed with 0.8 part so that the residence time is 180 sec.) D2-4) was obtained. At this time, the pH of the crude polyether polyol composition (D2-4) was 5.5. Thereafter, a step of removing volatile components by an autoclave was performed at 110 ° C. and a pressure of ⁇ 0.1 MPa or less for 60 minutes to obtain a polyether polyol (F-4). In addition, the process which removes a solid acid catalyst by filtration with a wire mesh is not performed.
  • the resulting low aldehyde content polyether polyol (F-4) has a hydroxyl value of 33.7 mgKOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.040 meq / g, formaldehyde (C1 ) Content was 0.3 ppm, acetaldehyde (C2) content was 0.3 ppm, and propionaldehyde (C3) content was 3.4 ppm.
  • the solid acid catalyst (B1) used in Examples 1 to 4 has a solubility at 80 ° C. in 100 g of the polyether polyol (A) contained in the crude polyether polyol composition (D1) used in each Example. It will be 0.1 g or less.
  • Example 5 A crude polyether polyol composition (D1-5) was obtained in the same manner as in Example 1 until the crude polyether polyol composition and the solid acid catalyst were brought into contact with each other.
  • the crude polyether polyol composition (D1-1) and the crude polyether polyol composition (D1-5) of Example 1 are the same.
  • 100 ppm (0.01 part) of tris (pentafluorophenyl) borane (B2-1) was used as a Lewis acid catalyst instead of a solid acid catalyst, and 100 parts of crude polyether polyol composition (D1-5) was used.
  • the resulting low aldehyde content polyether polyol (F-5) had a hydroxyl value of 33.6 mgKOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.039 meq / g, formaldehyde (C1 ) Content was 0.5 ppm, acetaldehyde (C2) content was 0.4 ppm, and propionaldehyde (C3) content was 3.5 ppm.
  • Example 6 The crude polyether polyol composition (D1-6) was obtained in the same manner as in Example 1 until the crude polyether polyol composition and the solid acid catalyst were brought into contact with each other.
  • the crude polyether polyol composition (D1-1) and the crude polyether polyol composition (D1-6) in Example 1 are the same.
  • 300 ppm (0.03 parts) of tris (pentafluorophenyl) borane (B2-1) is used as a Lewis acid catalyst instead of a solid acid catalyst, and is used with respect to 100 parts of the crude polyether polyol composition (D1-6).
  • the resulting low aldehyde content polyether polyol (F-6) had a hydroxyl value of 33.7 mg KOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.038 meq / g, formaldehyde (C1 ) Content was 0.4 ppm, acetaldehyde (C2) content was 0.2 ppm, and propionaldehyde (C3) content was 3.1 ppm.
  • Example 7 A crude polyether polyol composition (D1-7) was obtained in the same manner as in Example 1 until the crude polyether polyol composition and the solid acid catalyst were brought into contact with each other.
  • the crude polyether polyol composition (D1-1) and the crude polyether polyol composition (D1-7) in Example 1 are the same.
  • the resulting low aldehyde content polyether polyol (F-7) had a hydroxyl value of 33.9 mgKOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.036 meq / g, formaldehyde (C1 ) Content was 0.3 ppm, acetaldehyde (C2) content was 0.2 ppm, and propionaldehyde (C3) content was 2.8 ppm.
  • Example 8 The crude polyether polyol composition (D1-8) was obtained in the same manner as in Example 1 until the crude polyether polyol composition and the solid acid catalyst were brought into contact with each other.
  • the crude polyether polyol composition (D1-1) and the crude polyether polyol composition (D1-8) of Example 1 are the same.
  • the crude polyether polyol composition (D1-8) was prepared in the same manner as in Example 1 except that 100 ppm (0.01 part) of triphenylaluminum (B2-2) was used as a Lewis acid catalyst instead of a solid acid catalyst.
  • a polyether polyol (F-8) was obtained via the crude polyether polyol composition (D2-8).
  • the pH of the crude polyether polyol composition (D2-8) was 5.2.
  • the resulting low aldehyde content polyether polyol (F-8) had a hydroxyl value of 33.5 mgKOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.042 meq / g, formaldehyde (C1 ) Content was 0.5 ppm, acetaldehyde (C2) content was 0.4 ppm, and propionaldehyde (C3) content was 4.1 ppm.
  • Example 9 Until the crude polyether polyol composition and the solid acid catalyst were brought into contact with each other, a crude polyether polyol composition (D1-9) was obtained in the same manner as in Example 1.
  • the crude polyether polyol composition (D1-1) and the crude polyether polyol composition (D1-9) of Example 1 are the same.
  • the crude polyether polyol composition (D1-9) and the crude polyether polyol composition (D1-9) were prepared in the same manner as in Example 1 except that 100 ppm (0.01 parts) of aluminum chloride (B2-3) was used as a Lewis acid catalyst instead of a solid acid catalyst.
  • a polyether polyol (F-9) was obtained through the polyether polyol composition (D2-9).
  • the pH of the crude polyether polyol composition (D2-9) was 5.3.
  • the process which removes a solid acid catalyst by filtration with a wire mesh is not performed.
  • the resulting low aldehyde content polyether polyol (F-9) had a hydroxyl value of 33.7 mgKOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.041 meq / g, formaldehyde (C1 ) Content was 0.5 ppm, acetaldehyde (C2) content was 0.4 ppm, and propionaldehyde (C3) content was 3.8 ppm.
  • the Lewis acid catalyst (B2) used in Examples 5 to 9 has a solubility at 80 ° C. in 100 g of the polyether polyol (A) contained in the crude polyether polyol composition (D1) used in each Example. It is larger than 0.1 g.
  • the crude polyether polyol composition (D1-1) was obtained in the same manner as in Example 1 until the crude polyether polyol composition and the solid acid catalyst were brought into contact with each other.
  • the crude polyether polyol was prepared in the same manner as in Example 1, except that 1 part by weight (1 part) of phosphoric acid and 2 parts of water were used as the acid catalyst for 100 parts of the crude polyether polyol composition (D1-1).
  • phosphoric acid is neutralized with an alkali, and the neutralized salt is removed by filtration using an adsorbent to obtain a polyether polyol (F′ ⁇ ) for comparison. 1) was obtained.
  • the pH of the crude polyether polyol composition (D′ 2-1) was 3.1.
  • the comparative polyether polyol (F′-1) obtained had a hydroxyl value of 33.5 mg KOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.043 meq / g, formaldehyde (C1 ) Content was 0.7 ppm, acetaldehyde (C2) content was 1.3 ppm, and propionaldehyde (C3) content was 54.4 ppm.
  • the comparative polyether polyol (F′-2) obtained had a hydroxyl value of 33.4 mg KOH / g, an EO unit content of 20.0% by weight, an unsaturated monool content of 0.045 meq / g, formaldehyde (C1 ) Content was 1.4 ppm, acetaldehyde (C2) content was 4.2 ppm, and propionaldehyde (C3) content was 417 ppm.
  • Each polyether polyol (F) was analyzed by measuring the hydroxyl value, unsaturated monool content, and aldehyde content.
  • Each measuring method is as follows. ⁇ Hydroxyl value> JIS K1557-1 (2007) ⁇ Unsaturated monool content> JIS K1557-3 (2007)
  • Preparation Method of Polyurethane Foam A predetermined amount of polyisocyanate (E) is added to the number of parts of the polyol premix shown in Table 2 (mixture of components other than polyisocyanate (E)) so that the NCO index is 100, and homodispers ( After stirring for 6 seconds at 4000 rpm with a special machine chemical stirrer), the mixture was poured into an aluminum mold of 300 mm (length) x 300 mm (width) x 100 (height) adjusted to 65 ° C, and the curing time (raw material) Molding was performed in 5 minutes (time from injection to demolding). Table 2 shows the measurement results of the aldehyde content of each foam. In addition, the foam sample used for aldehyde content measurement was cut out from the center of the foam.
  • the polyurethane foam raw materials (components in the polyol premix) other than the polyether polyol (F) used in Examples 10 to 18 and Comparative Examples 3 to 4 are as follows.
  • the polyether polyols of Examples 1 to 4 using the solid acid catalyst and Examples 5 to 9 using the Lewis acid catalyst according to the production method of the present invention are all in contact with the acid catalyst. Later pH was over 5, and any aldehyde content was low. In particular, the formaldehyde content and the acetaldehyde content are 0.5 ppm or less, which can be said to be useful for automobile interior materials.
  • the polyether polyol of Comparative Example 1 having a pH of less than 5 in the step (1) using phosphoric acid as the acid catalyst has a low pH of 3.1 of the crude polyether polyol (D2), neutralization treatment with alkali
  • the removal of the neutralized salt was essential, the process time was long, and the aldehyde content in the polyether polyol (F) was also higher than in Examples 1-9.
  • the polyether polyol of Comparative Example 2 that does not use an acid catalyst has the highest content of any aldehyde in the polyether polyol (F), which is because it does not have a step of contacting with an acid catalyst.
  • the low aldehyde content polyether polyol obtained by the production method of the present invention has a low aldehyde content as compared with the conventional method, a flexible polyurethane foam having a low volatility aldehyde content can be obtained. Because of the above effects, the low aldehyde content polyether polyol obtained by the present invention can be applied as a raw material for vehicle seat cushions and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyethers (AREA)

Abstract

ポリエーテルポリオール中に含まれるアルデヒドの含有量が少なく、より簡便な工程を有するポリエーテルポリオールの製造方法、及び揮散するアルデヒド量が少ないポリウレタンフォームの製造方法を提供することを目的とする。 本発明のポリエーテルポリオール(F)の製造方法は、活性水素化合物にアルキレンオキサイドを開環重合させて得られるポリエーテルポリオール(A)を含有する粗ポリエーテルポリオール組成物(D1)を水の存在下で酸触媒(B)に接触させてpHが5.0を超える粗ポリエーテルポリオール組成物(D2)を得る工程(1)、及び工程(1)の後にアルデヒド(C)を含有する揮発分を除去する工程(2)を有する。

Description

ポリエーテルポリオールの製造方法及びポリウレタンフォームの製造方法
本発明は、低アルデヒド含量ポリエーテルポリオールの製造方法及びポリウレタンフォームの製造方法に関する。
近年、環境問題への関心が高まってきていることから、住宅分野のみならず、自動車等の車両室内においても、ホルムアルデヒド等のアルデヒド類(揮発性有機化合物(VOC))を極力拡散しないように求められている。そのため、自動車内装用材料に含まれているアルデヒド含量をできるだけ低減することが望ましい。
例えば、車両座席シート用パッドには、クッション性の高い軟質ウレタンフォームが用いられているが、これらのウレタンフォーム成形後にポリウレタンフォーム用原料に含有する、又は、ウレタン化反応時に発生するホルムアルデヒドやアセトアルデヒド等がパッドから拡散してしまうため、これらアルデヒド類の発生を低減することが求められている。
従来、アルデヒド類を分解する作用を持つヒドラジン化合物をポリオール化合物に混合する方法(特許文献1参照)が知られている。
また、アルデヒド類の揮発を防止するためにシート用パッドの表面にアルデヒド捕捉剤を塗布する方法(特許文献2参照)が知られている。
さらに、ポリエーテルポリオール生成物を加水分解条件下でpKaが5未満の過剰の酸と接触させ、反応混合物を加水分解条件下で水と接触させ、殆ど臭気のないポリエーテルポリオールを回収する方法(特許文献3)が知られている。しかしながら、本製造方法でもアルデヒド類の低減は十分ではなく、また本製造方法では酸を中和し、その塩を吸着し、ろ過回収する工程が必要である。
特開2006-182825号公報 特開2005-124743号公報 特表2002-506898号公報
そこで本発明は、ポリウレタンフォームの原料で大部分を占めるポリエーテルポリオール中に含まれるアルデヒドの含有量が少なく、より簡便な工程を有するポリエーテルポリオールの製造方法、及び揮散するアルデヒド量が少ないポリウレタンフォームの製造方法を提供することを目的とする。
本発明者らは、鋭意検討した結果、本発明に到達した。
すなわち、本発明は、活性水素化合物にアルキレンオキサイドを開環重合させて得られるポリエーテルポリオール(A)を含有する粗ポリエーテルポリオール組成物(D1)を水の存在下で酸触媒(B)に接触させてpHが5.0を超える粗ポリエーテルポリオール組成物(D2)を得る工程(1)、及び工程(1)の後にアルデヒド(C)を含有する揮発分を除去する工程(2)を有するポリエーテルポリオール(F)の製造方法、並びに、本発明のポリエーテルポリオールの製造方法により得られたポリエーテルポリオール(F)とポリイソシアネート(E)とを必須原料として反応させるポリウレタンフォーム(G)の製造方法である。
本発明のポリエーテルポリオールの製造方法によれば、アルデヒド含有量が少ないポリエーテルを製造することができ、かつ本製造方法の工程はより簡便である。
また、当該ポリエーテルポリオールを使用したポリウレタンフォームは揮散するアルデヒド量を低く抑えることが可能となる。
本発明のポリエーテルポリオール(F)の製造方法は、活性水素化合物にアルキレンオキサイドを開環重合させて得られるポリエーテルポリオール(A)を含有する粗ポリエーテルポリオール組成物(D1)を水の存在下で酸触媒(B)に接触させてpHが5.0を超える粗ポリエーテルポリオール組成物(D2)を得る工程(1)、及び工程(1)の後にアルデヒド(C)を含有する揮発分を除去する工程(2)を有することを特徴とする。
以下に、工程(1)と工程(2)について具体的に説明する。
本発明のポリエーテルポリオール(F)の製造方法では、以下の(i)及び(ii)の工程により得られた粗ポリエーテルポリオール組成物(D1)を使用することができる。
工程(i):活性水素化合物にアルキレンオキサイドを開環重合させて得られるポリエーテルポリオール(A)と不純物としてアルデヒド(C)を含有する粗ポリエーテルポリオール組成物を得る工程。なお、開環重合では反応触媒(アルカリ、ルイス酸など)を使用しても、使用しなくてもよい。
工程(ii):工程(i)においてアルカリ触媒を用いて粗ポリエーテルポリオール組成物を得た場合に、アルカリ触媒を含む粗ポリエーテルポリオール組成物(D0)中のアルカリ触媒を処理剤で吸着除去することより粗ポリエーテルポリオール組成物(D1)を得る工程。
なお、工程(i)においてルイス酸触媒を用いて活性水素化合物にアルキレンオキサイドを開環重合させた場合や触媒を使用しなかった場合はこの工程(ii)を行う必要はなく、工程(i)で粗ポリエーテルポリオール(D1)が得られる。
本発明のポリエーテルポリオール(F)の製造方法では、以下の工程を行う。
工程(1):上記工程で得られた粗ポリエーテルポリオール組成物(D1)を水の存在下で酸触媒(B)に接触させてpHが5.0を超える粗ポリエーテルポリオール組成物(D2)を得る工程。
工程(2):粗ポリエーテルポリオール組成物(D2)の、アルデヒド(C)を含有する揮発分を除去してポリエーテルポリオール(F)を得る工程。
上記工程により低アルデヒド含量ポリエーテルポリオール(F)を得ることができる。
工程(1)において、酸触媒(B)として固体酸触媒(B1)を使用し、粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)との接触をバッチ方式により行うことが好ましい。
バッチ方式により粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)を接触させた場合は、工程(1)の後に固体酸触媒(B1)をろ過等で回収する工程(iii)を行うことが好ましい。
なお、工程(1)において、酸触媒(B)として、固定化された固体酸触媒(B1)に対して粗ポリエーテルポリオール組成物(D1)を連続的に接触させることも好ましい。
この方式は連続方式である。
このような連続方式の場合や、酸触媒(B)としてルイス酸触媒(B2)を使用した場合は、固体酸触媒(B1)をろ過等で回収する工程(iii)は必要ない。
これらの個々の工程は、アルキレンオキサイドの開環重合の触媒の条件や、接触させる酸触媒の条件によって、組み合わせが異なるが、例えば、以下の(I)~(III)の組合せが挙げられる。
(I)工程(1)において固体酸触媒(B1)を使用し、バッチ方式により粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)を接触させた場合は、
(i)→(ii)→(1)→(iii)→(2)の工程;
(II)工程(1)において、酸触媒(B)として固体酸触媒(B1)を使用し、連続方式により粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)を接触させた場合や、酸触媒(B)としてルイス酸触媒(B2)を使用した場合は、
(i)→(ii)→(1)→(2)の工程;
(III)工程(i)においてルイス酸触媒を用いて活性水素化合物にアルキレンオキサイドを開環重合させた場合や触媒を使用しなかった場合は、
(i)→(1)→(iii)→(2)の工程、又は、(i)→(1)→(2)の工程。
従って、本発明の製造方法においては、活性水素化合物にアルキレンオキサイドを開環重合させて得られるポリエーテルポリオール(A)を含有する粗ポリエーテルポリオール組成物(D1)を水の存在下で酸触媒(B)に接触させてpHが5.0を超える粗ポリエーテルポリオール組成物(D2)を得る工程(1)、及び工程(1)の後にアルデヒド(C)を含有する揮発分を除去する工程(2)が必須の工程である。
以下、各工程について、それぞれ以下に、さらに詳しく説明する。
工程(i)について
本発明の製造方法において使用する粗ポリエーテルポリオール組成物(D1)は、触媒の存在下、又は触媒の不存在下で、活性水素化合物にアルキレンオキサイド(以下、AOと略称することがある。)を開環重合させて得られるポリエーテルポリオール(A)と不純物としてアルデヒド(C)を含有する。
アルデヒド(C)として、具体的にはホルムアルデヒド(C1)、アセトアルデヒド(C2)及びプロピオンアルデヒド(C3)が挙げられる。
そして、開環重合時には反応触媒(アルカリ、ルイス酸など)を使用しても、使用しなくてもよい。
工程(i)自体は、活性水素化合物にアルキレンオキサイドを開環重合させて得られるポリエーテルポリオール(A)と不純物としてアルデヒド(C)を含有する粗ポリエーテルポリオール組成物を得る工程である。
そして、触媒としてルイス酸を用いた場合や、触媒不存在下で重合した場合は、工程(i)で得られた粗ポリエーテルポリオール組成物に対して工程(ii)の吸着処理を行う必要はなく、粗ポリエーテルポリオール組成物(D1)としてそのまま工程(1)の酸触媒(B)との処理に進めてもよい。
一方、触媒としてアルカリ触媒を用いた場合は、活性水素化合物にアルキレンオキサイドをアルカリ触媒の存在下で開環重合させて得られるポリエーテルポリオール(A)と不純物としてアルデヒド(C)以外にアルカリ触媒残渣も含有する粗ポリエーテルポリオール組成物(D0)が得られる。この粗ポリエーテルポリオール組成物(D0)に対しては工程(ii)の吸着処理を行うことが必須となる。
アルキレンオキサイドの開環重合反応の反応温度は、反応時間の観点から、好ましくは80~180℃であり、さらに好ましくは90~160℃である。
上記のアルカリ触媒として、好ましくはアルカリ金属の水酸化物(水酸化カリウム、水酸化セシウム等)であり、さらに好ましくは水酸化カリウムである。アルカリ触媒の使用量は、粘度の観点から、得られる粗ポリエーテルポリオール組成物(D0)に対して、好ましくは0.01~5.0重量%であり、さらに好ましくは0.01~1.0重量%である。
活性水素化合物は2~8価の活性水素基含有化合物(a)が好ましい。2~8価の活性水素基含有化合物(a)としては、多価アルコール(a1)、多価アルコール以外の多価水酸基含有化合物(a2)、アミノ基含有化合物(a3)、チオール基含有化合物(a4)、リン酸基含有化合物(a5)、及び2種以上の活性水素基を有する化合物(a6)からなる群より選ばれる少なくとも1種以上の活性水素基含有化合物である。
多価アルコール(a1)としては、炭素数2~20の2価脂肪族アルコール、炭素数3~20の3価脂肪族アルコール及び炭素数5~20の4~8価脂肪族アルコールが挙げられる。
炭素数2~20の2価脂肪族アルコールとしては、直鎖又は分岐の脂肪族ジオール(エチレングリコール、プロピレングリコール、1,3-及び1,4-ブタンジオール、1,6-ヘキサンジオール並びにネオペンチルグリコール等)及び脂環式ジオール(シクロヘキサンジオール及びシクロヘキサンジメタノール等)が挙げられる。
炭素数3~20の3価脂肪族アルコールとしては、脂肪族トリオール(グリセリン及びトリメチロールプロパン等)が挙げられる。
炭素数5~20の4~8価脂肪族アルコールとしては、脂肪族ポリオール(ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン及びジペンタエリスリトール等)並びに糖類(ショ糖、グルコース、マンノース、フルクトース、メチルグルコシド及びその誘導体)が挙げられる。
これらのうち、炭素数2~10の2~8価脂肪族アルコールが好ましく、さらに好ましくは2~4価脂肪族アルコールである。
多価アルコール以外の多価水酸基含有化合物(a2)としては、多価フェノール等が挙げられる。具体的にはヒドロキノン、ビスフェノ―ルA、ビスフェノールF、ビスフェノールS、1,3,6,8-テトラヒドロキシナフタレン、アントロール、1,4,5,8-テトラヒドロキシアントラセン及び1-ヒドロキシピレン等の多価フェノ―ル;ポリブタジエンポリオール;ひまし油系ポリオール;ヒドロキシアルキル(メタ)アクリレートの(共)重合体及びポリビニルアルコール等の多官能(例えば官能基数2~100)ポリオール、フェノールとホルムアルデヒドとの縮合物(ノボラック)並びに米国特許第3265641号明細書に記載のポリフェノール等が挙げられる。
なお、(メタ)アクリレートとは、メタクリレート及び/又はアクリレートを意味し、以下において同様である。
アミノ基含有化合物(a3)としては、アミン等が含まれる。具体的には、アンモニア;炭素数1~20のアルキルアミン(ブチルアミン等)及びアニリン等のモノアミン;エチレンジアミン、ヘキサメチレンジアミン及びジエチレントリアミン等の直鎖又は分岐脂肪族ポリアミン;ピペラジン及びN-アミノエチルピペラジン等の複素環式ポリアミン;ジシクロヘキシルメタンジアミン及びイソホロンジアミン等の脂環式ポリアミン;フェニレンジアミン、トリレンジアミン及びジフェニルメタンジアミン等の芳香族ポリアミン;ジカルボン酸と過剰のポリアミンとの縮合により得られるポリアミドポリアミン;ポリエーテルポリアミン;ヒドラジン(ヒドラジン及びモノアルキルヒドラジン等)、ジヒドラジッド(コハク酸ジヒドラジッド及びテレフタル酸ジヒドラジッド等)、グアニジン(ブチルグアニジン及び1-シアノグアニジン等)等が挙げられる。
チオール基含有化合物(a4)としては、ポリチオール化合物が含まれる。ポリチオールとしては、2~8価の多価チオールが挙げられる。具体的にはエタンジチオール及び1,6-ヘキサンジチオール等が挙げられる。
リン酸基含有化合物(a5)としてはリン酸、亜リン酸及びホスホン酸等が挙げられる。
2種以上の活性水素基を有する化合物(a6)としては、分子内に2種以上の活性水素基(水酸基、アミノ基、カルボキシル基、チオール基及びリン酸基等)を有する化合物であり、アルカノールアミン(モノエタノールアミン、ジエタノールアミン等)、アミノ酸(アスパラギン酸等)及びヒドロキシカルボン酸(クエン酸等)等が挙げられる。
これらのうち、活性水素基含有化合物(a)としては、多価アルコール、アミノ基含有化合物、2種以上の活性水素基を有する化合物が好ましく、さらに好ましくは、多価アルコールであり、特に好ましくは、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトールである。
活性水素基含有化合物(a)に付加するAOとしては、炭素数2~6のAO、例えば、エチレンオキサイド(以下、EOと略称することがある。)、1,2-プロピレンオキサイド(以下、POと略称することがある。)、1,3-プロピレンオキサイド、1,2-ブチレンオキサイド及び1,4-ブチレンオキサイドが挙げられる。これらのうち、性状や反応性の観点から、PO、EO及び1,2-ブチレンオキサイドが好ましい。AOを2種以上使用する場合(例えば、PO及びEO)の付加方法としては、ブロック付加であってもランダム付加であってもよく、これらの併用であってもよい。
活性水素基含有化合物(a)にAOを付加させた活性水素基含有化合物(a)のAO付加物を活性水素化合物としてもよい。
このような活性水素化合物としては、多価アルコール及び/又はアミノ基含有化合物のAO付加物が好ましく、さらに好ましくは、プロピレングリコールのPO付加物、グリセリンのPO付加物、グリセリンのPO・EO付加物、ペンタエリスリトールのPO付加物である。
活性水素化合物としての活性水素基含有化合物(a)のAO付加物にさらにアルキレンオキサイドを開環重合させて得られるポリエーテルポリオールをポリエーテルポリオール(A)としてもよい。
ポリエーテルポリオール(A)としては、多価アルコール及び/又はアミノ基含有化合物のAO付加物が好ましく、さらに好ましくは、プロピレングリコールのPO付加物、グリセリンのPO付加物、グリセリンのPO・EO付加物、ペンタエリスリトールのPO付加物である。
ポリエーテルポリオール(A)の水酸基価(mgKOH/g)としては、ハンドリング及び粘度の観点から、10~150が好ましく、さらに好ましくは20~70である。 
本発明において、粗ポリエーテルポリオール組成物(D0)及び粗ポリエーテルポリオール組成物(D1)中に不純物として存在するアルデヒド(C)としては、ホルムアルデヒド(C1)、アセトアルデヒド(C2)及びプロピオンアルデヒド(C3)が挙げられる。
ホルムアルデヒド(C1)、アセトアルデヒド(C2)、プロピオンアルデヒド(C3)の分析方法としては、試料を2,4-ジニトロフェニルヒドラジン誘導体化して、HPLCにより測定する方法が挙げられる。本分析方法はポリエーテルポリオール組成物中に含まれる遊離アルデヒド、および後に分解等で遊離アルデヒドに変化する可能性がある物質の合計含有量を測定することができる。
工程(ii) について
前述の工程(i)においてアルカリ触媒を用いて粗ポリエーテルポリオール組成物を得た場合に、粗ポリエーテルポリオール組成物(D0)中のアルカリ触媒の吸着処理に使用する処理剤としては、珪酸マグネシウム及び珪酸アルミニウム(珪酸マグネシウムとして、例えば、協和化学工業(株)製、キョーワード(登録商標)600)が好ましい。珪酸マグネシウムと珪酸アルミニウムをそれぞれ単独で使用してもよく、また併用してもよい。
使用する処理剤の量は、アルカリ吸着量および工程時間の観点から、粗ポリエーテルポリオール組成物(D0)の重量に基づいて、0.1~3.0重量%が好ましく、さらに好ましくは0.3~2.0重量%である。
アルカリ吸着処理の温度は、粗ポリエーテルポリオール組成物(D0)の粘度の観点から、60~110℃が好ましく、さらに好ましくは70~100℃、最も好ましくは85~95℃である。
アルカリ吸着処理は、粗ポリエーテルポリオール組成物(D0)のCPRが1以下になるまで繰り返し行う。CPRとは試料30gを中和するのに要する0.01mol/L塩酸水溶液のmL数を10倍した値をいう。
アルカリ吸着処理を行う設備は、粗ポリエーテルポリオール組成物(D0)と処理剤が接触し、接触後は粗ポリエーテルポリオール組成物(D0)と処理剤を分離できる設備であれば、特に限定しない。
工程(1)について
本発明の工程(1)で酸触媒(B)としては、固体酸触媒(B1)又はルイス酸触媒(B2)を使用することができる。
固体酸触媒(B1)は、80℃のポリエーテルポリオール(A)100gに対する溶解度が0.1g以下である。また、ルイス酸触媒(B2)は80℃のポリエーテルポリオール(A)100gに対する溶解度が0.1gより大きい。
本発明の工程(1)で酸触媒(B)として使用することのできる固体酸触媒(B1)とは、固体の表面上に酸性を示す部位が存在し、その酸性部位が触媒活性点として作用する物質を言うものとする。固体酸触媒(B1)は無機多孔体であることが好ましい。
固体酸触媒(B1)として、具体的には、シリカ、アルミナ、チタニア、マグネシア、ジルコニア、ゼオライト、モンモリロナイト、珪酸アルミニウム、ヒドロキシアパタイト及びその混合物からなる群から選ばれる少なくとも1種が好ましく、シリカ、アルミナ、ゼオライトがさらに好ましく、シリカが特に好ましい。また、固体酸触媒(B1)は上記無機多孔体に酸(b)を固定化した固体酸触媒であることが好ましい。
また、酸(b)としてスルホン酸基含有化合物を固定化した固体酸触媒であることがより好ましい。
また、固体酸触媒(B1)がシリカにスルホン酸基含有化合物を固定化した固体酸触媒であることがさらに好ましい。
本発明の工程(1)で酸触媒(B)として使用することのできるルイス酸触媒(B2)とは、電子対を受け取る物質である。
本発明におけるルイス酸触媒(B2)としては、ハロゲン化アルミニウム(塩化アルミニウム、臭化アルミニウム、フッ化アルミニウム等)、ハロゲン化ホウ素(塩化ホウ素、臭化ホウ素、フッ化ホウ素等)、トリフェニルボラン、トリフェニルアルミニウム、トリス(ペンタフルオロフェニル)ボラン、及びトリス(ペンタフルオロフェニル)アルミニウムからなる群から選ばれる少なくとも1種の化合物等が挙げられる。
これらの中で、立体的に嵩高く、かつ酸性部位を有し、その部位が触媒活性点として作用する観点から、トリフェニルボラン、トリフェニルアルミニウム、トリス(ペンタフルオロフェニル)ボラン、及びトリス(ペンタフルオロフェニル)アルミニウムが好ましく、トリス(ペンタフルオロフェニル)ボランが特に好ましい。
粗ポリエーテルポリオール組成物(D1)と接触させる固体酸触媒(B1)の量としては、反応性の観点から粗ポリエーテルポリオール組成物(D1)の重量に基づいて、好ましくは0.01~5.0重量%、さらに好ましくは0.1~2.5重量%である。
粗ポリエーテルポリオール組成物(D1)と接触させるルイス酸触媒(B2)の量としては、反応性の観点から粗ポリエーテルポリオール組成物(D1)の重量に基づいて、好ましくは30~1000ppmであり、さらに好ましくは50~500ppmである。
粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)を接触させる温度は、反応性及び工程時間の観点から、25~150℃が好ましく、さらに好ましくは40~90℃である。
粗ポリエーテルポリオール組成物(D1)とルイス酸触媒(B2)を接触させる温度は、反応性及び工程時間の観点から、25~150℃が好ましく、50~150℃がより好ましく、さらに好ましくは70~130℃である。
粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)を接触させる際の水の量としては、反応性及び脱揮工程時間への影響の観点から、粗ポリエーテルポリオール組成物(D1)に対して0.05~5.0重量%が好ましく、さらに好ましくは0.5~2.5重量%である。
粗ポリエーテルポリオール組成物(D1)とルイス酸触媒(B2)を接触させる際の水の量としては、反応性及び脱揮工程時間への影響の観点から、粗ポリエーテルポリオール組成物(D1)に対して0.05~5.0重量%が好ましく、0.5~5.0重量%がより好ましく、さらに好ましくは1.0~4.0重量%である。
粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)を水の存在下で接触させる方法としては、粗ポリエーテルポリオール組成物(D1)を固定化された固体酸触媒(B1)の塔を連続的に通して接触させる方法(連続方式)でもよく、あるいはバッチ方式にて接触させる方法でもよい。
粗ポリエーテルポリオール組成物(D1)とルイス酸(B2)を水の存在下で接触させる方法としては、バッチ方式にて接触させる方法が好ましい。
粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)を、水の存在下で接触させた後の粗ポリエーテルポリオール組成物(D2)のpHは、5.0を超えることが必要であり、さらに好ましくは5.1~6.0である。
これは、ポリエーテルポリオール(F)をイソシアネートと反応させてウレタンフォームを作製する際に、反応を促進させるためにアミン触媒を使用するが、pHが5.0以下の場合はこのアミン触媒を失活させる可能性があるためである。
また、粗ポリエーテルポリオール組成物(D2)のpHが5未満の場合は、アルカリなどによって中和することも可能であるが、その場合、中和塩を除去する工程が必要となり、工程時間が長くなる。
工程(iii)について
工程(1)において、粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)をバッチ方式により水の存在下で接触させた場合は、固体酸触媒(B1)をろ過等によって取り除く。ただし、粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)を連続方式により連続的に接触させる場合は、必ずしもろ過は必須ではない。
バッチ方式により粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)を接触させた場合の、固体酸触媒(B1)をろ過等で回収する工程としては、金網等を使用して、固体酸触媒(B1)と粗ポリエーテルポリオールを分離する。固体酸触媒(B1)と粗ポリエーテルポリオールを分離できる設備であれば、設備は特に限定しない。
粗ポリエーテルポリオール組成物(D1)とルイス酸触媒(B2)を水の存在下で接触させる方法としては、バッチ方式にて接触させる方法が好ましい。
工程(2)について
工程(2)では、粗ポリエーテルポリオール組成物(D2)の、アルデヒド(C)を含有する揮発分を除去してポリエーテルポリオール(F)を得る。この工程を脱揮工程ともいい、アルデヒド(C)を含有する揮発分を除去することを脱揮という。
本発明における脱揮工程での温度は、工程時間の観点から90℃~130℃が好ましく、さらに好ましくは100℃~110℃である。
脱揮時間としては、ポリエーテルポリオール(F)中の水分量とアルデヒド含量の観点から、30分~2時間が好ましく、さらに好ましくは1時間~1時間30分である。
脱揮工程に必要な設備については、酸素を混入させずに、水分およびアルデヒドが脱揮可能な設備であれば、特に限定しない。
本発明の製造方法により得られるポリエーテルポリオール(F)は、アルデヒドの含有量が低い低アルデヒド含量ポリエーテルポリオールである。低アルデヒド含量ポリエーテルポリオールは、各種用途に用いることができるが、本発明の製造方法により得られるポリエーテルポリオール(F)を含有するポリオールと、ポリイソシアネート(E)とを、発泡剤、触媒及び整泡剤の存在下に反応させてポリウレタンフォーム(G)を製造することができる。当該ポリウレタンフォームは当該ポリウレタンフォームから揮散するアルデヒドの含有量を低く抑えることが可能となる。
ポリイソシアネート(E)としては、従来ポリウレタンフォームに使用されるものが使用できる。このようなポリイソシアネートとしては、芳香族ポリイソシアネート、直鎖又は分岐脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香脂肪族ポリイソシアネート、これらの変性物(ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、イソシアヌレート基及びオキサゾリドン基含有変性物等)及びこれらの2種以上の混合物が挙げられる。
芳香族ポリイソシアネートとしては、炭素数(NCO基中の炭素を除く;以下のポリイソシアネートも同様)が6~16の芳香族ジイソシアネート、炭素数6~20の芳香族トリイソシアネート及びこれらのイソシアネートの粗製物等が挙げられる。具体例としては、1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート(TDI)、粗製TDI、2,4’-又は4,4’-ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニレンポリイソシアネート(粗製MDI)、ナフチレン-1,5-ジイソシアネート並びにトリフェニルメタン-4,4’,4’’-トリイソシアネート等が挙げられる。
直鎖又は分岐脂肪族ポリイソシアネートとしては、炭素数6~10の脂肪族ジイソシアネート等が挙げられる。具体例としては、1,6-ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート及びリジンジイソシアネート等が挙げられる。
脂環式ポリイソシアネートとしては、炭素数6~16の脂環式ジイソシアネート等が挙げられる。具体例としては、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネート及びノルボルナンジイソシアネート等が挙げられる。
芳香脂肪族ポリイソシアネートとしては、炭素数8~12の芳香脂肪族ジイソシアネート等が挙げられる。具体例としては、キシリレンジイソシアネート及びα,α,α’,α’-テトラメチルキシリレンジイソシアネート等が挙げられる。
変性ポリイソシアネートの具体例としては、カルボジイミド変性MDI等が挙げられる。
これらの中で、反応性の観点から、芳香族ポリイソシアネートが好ましく、さらに好ましくは、TDI、粗製TDI、MDI、粗製MDI及びこれらのイソシアネートの変性物、特に好ましくは、TDI、MDI及び粗製MDIである。
発泡剤としては、水、液化炭酸ガス及び沸点が-5~70℃の低沸点化合物が含まれる。
低沸点化合物には、水素原子含有ハロゲン化炭化水素及び低沸点炭化水素等が含まれる。水素原子含有ハロゲン化炭化水素及び低沸点炭化水素の具体例としては、塩化メチレン、HCFC(ハイドロクロロフルオロカーボン)(HCFC-123、HCFC-141b及びHCFC-142b等);HFC(ハイドロフルオロカーボン)(HFC-134a、HFC-152a、HFC-356mff、HFC-236ea、HFC-245ca、HFC-245fa及びHFC-365mfc等)、ブタン、ペンタン及びシクロペンタン等が挙げられる。
これらのうち、成形性の観点から、水、液化炭酸ガス、塩化メチレン、シクロペンタン、HCFC-141b、HFC-134a、HFC-356mff、HFC-236ea、HFC-245ca、HFC-245fa、HFC-365mfc及びこれらの2種以上の混合物を発泡剤として使用するのが好ましい。
発泡剤のうち、水の使用量は、反発弾性の観点から、ウレタンフォーム製造時に使用するポリオール成分の重量に基づいて、1.0~8.0重量%が好ましく、さらに好ましくは1.5~4.0重量%である。低沸点化合物の使用量は、成形不良の観点から、ポリオール成分の重量に基づいて、30重量%以下が好ましく、さらに好ましくは5~25重量%である。液化炭酸ガスの使用量は、30重量%以下が好ましく、さらに好ましくは1~25重量%である。
触媒としては、ウレタン化反応を促進する触媒を使用でき、3級アミン{トリエチレンジアミン、N-エチルモルフォリン、ジエチルエタノールアミン、テトラメチルエチレンジアミン、ジアミノビシクロオクタン、1,2-ジメチルイミダゾール、1-メチルイミダゾール、1,8-ジアザビシクロ-[5,4,0]-ウンデセン-7、ビス(N,N-ジメチルアミノ-2-エチル)エーテル及びN,N,N’,N’-テトラメチルヘキサメチレンジアミン等}、及び/又はカルボン酸金属塩(酢酸カリウム、オクチル酸カリウム、オクチル酸第一スズ、ジラウリル酸ジブチル第二スズ及びオクチル酸鉛等)が挙げられる。触媒の使用量は、反発弾性の観点から、ウレタンフォーム製造時に使用するポリオール成分の重量に基づいて、0.01~5.0重量%が好ましく、さらに好ましくは0.05~2.0重量%である。
整泡剤としては、通常のポリウレタンフォームの製造に用いられるものを使用でき、ジメチルシロキサン系整泡剤[東レ・ダウコーニング(株)製の「SRX-253」、「PRX-607」等]及びポリエーテル変性ジメチルシロキサン系整泡剤[東レ・ダウコーニング(株)製の「SZ-1142」、「SF-2904」、「SRX-294A」、「SH-193」、「SZ-1720」、「SZ-1675t」、「SF-2936F」、「SF-2904」、日本ユニカー(株)製の「L-540」、「L-3601」、及びEVONIK社製「B4900」、「B8742LF2」、「B8715LF2」等]が挙げられる。
整泡剤の使用量は、反発弾性の観点から、ポリオール成分の重量に基づいて、0.3~5.0重量%が好ましく、さらに好ましくは0.4~3.0重量%である。
本発明のポリウレタンフォームの製造方法においては、必要により、さらに以下に述べるその他の助剤を用い、その存在下で反応させてもよい。
その他の助剤としては、着色剤(染料及び顔料)、可塑剤(フタル酸エステル及びアジピン酸エステル等)、有機充填剤(合成短繊維、熱可塑性又は熱硬化性樹脂からなる中空微小球等)、難燃剤(リン酸エステル及びハロゲン化リン酸エステル等)、老化防止剤(トリアゾール及びベンゾフェノン等)、酸化防止剤(ヒンダードフェノール及びヒンダードアミン等)等の公知の補助成分が挙げられる。
これら助剤の添加量としては、ポリオール成分の重量に基づいて、着色剤は、1重量%以下が好ましい。可塑剤は、10重量%以下が好ましく、さらに好ましくは5重量%以下である。有機充填剤は、50重量%以下が好ましく、さらに好ましくは30重量%以下である。難燃剤は、30重量%以下が好ましく、さらに好ましくは2~20重量%である。老化防止剤は、1重量%以下が好ましく、さらに好ましくは0.01~0.5重量部である。酸化防止剤は、1重量%以下が好ましく、さらに好ましくは0.01~0.5重量%である。
本発明の製造方法において、ポリウレタンフォームの製造に際してのイソシアネート指数(NCOインデックス)[(NCO基/活性水素原子含有基)の当量比×100]は、反発弾性の観点から、70~150が好ましく、さらに好ましくは75~130、特に好ましくは80~120である。
本発明の方法によるポリウレタンフォームの製造方法の具体例の一例を示せば、下記の通りである。まず、ポリウレタンフォーム製造用ポリオール成分、発泡剤、触媒、整泡剤並びに必要によりその他の助剤を所定量混合する。次いでポリウレタンフォーム発泡機又は攪拌機を使用して、この混合物と有機ポリイソシアネート成分とを急速混合する。得られた混合液(発泡原液)を連続発泡してポリウレタンフォームを得ることができる。また、密閉型又は開放型のモールド(金属製又は樹脂製)に注入し、ウレタン化反応を行わせ、所定時間硬化後、脱型してポリウレタンフォームを得ることもできる。
本発明のポリウレタンフォームは、自動車用シートクッション、家具や寝具用枕、寝具用マットレス、衣料用等に使用される。
以下、実施例により本発明をさらに説明するが、本発明はこれにより限定されるものではない。以下部は重量部を示し、%は特に示した以外は重量%を示す。 
実施例1
オートクレーブに、活性水素化合物としてグリセリンのPO付加物〔水酸基価換算数平均分子量(Mn)600〕を100部投入し、高純度KOH(純度96%、ナトリウム含量200ppm、以下同じ。)を2.1部投入して、130℃にて減圧下撹拌して均一に溶解、水分が0.1重量%以下となるまで脱水した。次いで、反応温度95℃にてPOを628.8部付加重合し、反応温度130℃でEOを181.9部付加重合した。
得られた粗ポリエーテルポリオール組成物(D0-1)を昇温し、130℃での加熱反応を3時間行った。130℃到達時の水分は100ppmであった。60℃まで冷却した後、アルカリ吸着処理〔粗ポリエーテルポリオール組成物(D0-1)に対し水を1.6%加えて85~90℃で30分混合し、次いで処理剤(吸着剤)として「キョーワード600」(協和化学工業(株)製)を粗ポリエーテルポリオール組成物(D0-1)に対し0.5%加えて同温度で30分混合した後、ろ過により処理剤を取り除いた。〕を行った。
次いで、130℃で脱水を行い、酸化防止剤として「H-BHT」(2,6-ジ-tert.-ブチル-P-クレゾール)(本州化学工業(株)製)をポリエーテルポリオール組成物(D0-1)に対し0.1%加えて80℃で溶解させた。
続けて、上記のアルカリ吸着処理で得られた粗ポリエーテルポリオール組成物(D1-1)100部、固体酸触媒としてシリカにスルホン酸基含有化合物を固定化させた固体触媒(B1-1)[テイカ(株)製]1部、水2部をオートクレーブに投入し、90℃で1時間撹拌させて粗ポリエーテルポリオール組成物(D2-1)を得た。この時の粗ポリエーテルポリオール組成物(D2-1)のpHは5.4であった。
金網によるろ過で固体酸触媒を取り除き、再びオートクレーブで揮発分を除去する工程を110℃、圧力-0.1MPa以下にて60分行い、ポリエーテルポリオール(F-1)を得た。
得られた低アルデヒド含量ポリエーテルポリオール(F-1)の水酸基価は33.9mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.038meq/g、ホルムアルデヒド(C1)含量は0.2ppm、アセトアルデヒド(C2)含量は0.3ppm、プロピオンアルデヒド(C3)含量は3.8ppmであった。
実施例2
固体酸触媒として「ガレオンアースNS」(B1-2)[水澤化学工業(株)製、モンモリロナイトを主成分とする酸性白土を鉱酸で処理した活性白土]を実施例1の粗ポリエーテルポリオール組成物(D1-1)100部に対し1部使用した以外は、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D2-2)を経て、ポリエーテルポリオール(F-2)を得た。なお、粗ポリエーテルポリオール組成物(D2-2)のpHは5.5であった。
得られた低アルデヒド含量ポリエーテルポリオール(F-2)の水酸基価は33.7mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.039meq/g、ホルムアルデヒド(C1)含量は0.3ppm、アセトアルデヒド(C2)含量は0.4ppm、プロピオンアルデヒド(C3)含量は4.5ppmであった。
実施例3
固体酸触媒として「キョーワード700」(B1-3)[協和化学工業(株)製、シリカとアルミナを主成分とする合成珪酸アルミニウムに強酸Hが固定化されたもの]を実施例1の粗ポリエーテルポリオール組成物(D1-1)100部に対し1部使用した以外は、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D2-3)を経て、ポリエーテルポリオール(F-3)を得た。なお、粗ポリエーテルポリオール組成物(D2-3)のpHは5.4であった。
得られた低アルデヒド含量ポリエーテルポリオール(F-3)の水酸基価は33.6mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.041meq/g、ホルムアルデヒド(C1)含量は0.4ppm、アセトアルデヒド(C2)含量は0.5ppm、プロピオンアルデヒド(C3)含量は4.9ppmであった。
実施例4
粗ポリエーテルポリオール組成物と固体酸触媒を接触させる前までは、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-4)を得た。実施例1の粗ポリエーテルポリオール組成物(D1-1)と粗ポリエーテルポリオール組成物(D1-4)は同じものである。
続けて、粗ポリエーテルポリオール組成物(D1-4)100部と水1.2部をオートクレーブに入れ、130℃にて減圧下撹拌して均一に溶解し、固体酸触媒「SAC-1」[テイカ(株)製、シリカにスルホン酸基含有化合物を固定化して担持させたもの]0.8部を充填した触媒塔に、滞留時間が180secになるように流して粗ポリエーテルポリオール組成物(D2-4)を得た。この時の粗ポリエーテルポリオール組成物(D2-4)のpHは5.5であった。その後、オートクレーブで揮発分を除去する工程を110℃、圧力-0.1MPa以下にて60分行って、ポリエーテルポリオール(F-4)を得た。
なお、金網によるろ過で固体酸触媒を取り除く処理は行っていない。
得られた低アルデヒド含量ポリエーテルポリオール(F-4)の水酸基価は33.7mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.040meq/g、ホルムアルデヒド(C1)含量は0.3ppm、アセトアルデヒド(C2)含量は0.3ppm、プロピオンアルデヒド(C3)含量は3.4ppmであった。
なお、実施例1~4で使用した固体酸触媒(B1)は、各実施例で使用した粗ポリエーテルポリオール組成物(D1)に含まれるポリエーテルポリオール(A)100gに対する80℃での溶解度が0.1g以下となるものである。
実施例5
粗ポリエーテルポリオール組成物と固体酸触媒を接触させる前までは、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-5)を得た。実施例1の粗ポリエーテルポリオール組成物(D1-1)と粗ポリエーテルポリオール組成物(D1-5)は同じものである。
そして、固体酸触媒ではなくルイス酸触媒としてトリス(ペンタフルオロフェニル)ボラン(B2-1)を100ppm(0.01部)使用し、粗ポリエーテルポリオール組成物(D1-5)100部に対して使用する水2部を4部に変更し、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-5)と粗ポリエーテルポリオール組成物(D2-5)を経て、ポリエーテルポリオール(F-5)を得た。なお、粗ポリエーテルポリオール組成物(D2-5)のpHは5.3であった。
なお、金網によるろ過で固体酸触媒を取り除く処理は行っていない。
得られた低アルデヒド含量ポリエーテルポリオール(F-5)の水酸基価は33.6mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.039meq/g、ホルムアルデヒド(C1)含量は0.5ppm、アセトアルデヒド(C2)含量は0.4ppm、プロピオンアルデヒド(C3)含量は3.5ppmであった。
実施例6
粗ポリエーテルポリオール組成物と固体酸触媒を接触させる前までは、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-6)を得た。実施例1の粗ポリエーテルポリオール組成物(D1-1)と粗ポリエーテルポリオール組成物(D1-6)は同じものである。
固体酸触媒ではなくルイス酸触媒としてトリス(ペンタフルオロフェニル)ボラン(B2-1)を300ppm(0.03部)使用し、粗ポリエーテルポリオール組成物(D1-6)100部に対して使用する水2部を4部に変更し、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-6)と粗ポリエーテルポリオール組成物(D2-6)を経て、ポリエーテルポリオール(F-6)を得た。なお、粗ポリエーテルポリオール組成物(D2-6)のpHは5.1であった。
なお、金網によるろ過で固体酸触媒を取り除く処理は行っていない。
得られた低アルデヒド含量ポリエーテルポリオール(F-6)の水酸基価は33.7mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.038meq/g、ホルムアルデヒド(C1)含量は0.4ppm、アセトアルデヒド(C2)含量は0.2ppm、プロピオンアルデヒド(C3)含量は3.1ppmであった。
実施例7
粗ポリエーテルポリオール組成物と固体酸触媒を接触させる前までは、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-7)を得た。実施例1の粗ポリエーテルポリオール組成物(D1-1)と粗ポリエーテルポリオール組成物(D1-7)は同じものである。
固体酸触媒ではなくルイス酸触媒としてトリス(ペンタフルオロフェニル)ボラン(B2-1)を500ppm(0.05部)使用し、粗ポリエーテルポリオール組成物(D1-7)100部に対して使用する水2部を4部に変更し、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-7)と粗ポリエーテルポリオール組成物(D2-7)を経て、ポリエーテルポリオール(F-7)を得た。なお、粗ポリエーテルポリオール組成物(D2-7)のpHは5.1であった。
なお、金網によるろ過で固体酸触媒を取り除く処理は行っていない。
得られた低アルデヒド含量ポリエーテルポリオール(F-7)の水酸基価は33.9mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.036meq/g、ホルムアルデヒド(C1)含量は0.3ppm、アセトアルデヒド(C2)含量は0.2ppm、プロピオンアルデヒド(C3)含量は2.8ppmであった。
実施例8
粗ポリエーテルポリオール組成物と固体酸触媒を接触させる前までは、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-8)を得た。実施例1の粗ポリエーテルポリオール組成物(D1-1)と粗ポリエーテルポリオール組成物(D1-8)は同じものである。
固体酸触媒ではなくルイス酸触媒としてトリフェニルアルミニウム(B2-2)を100ppm(0.01部)使用した以外は、実施例1と同様の方法により粗ポリエーテルポリオール組成物(D1-8)と粗ポリエーテルポリオール組成物(D2-8)を経て、ポリエーテルポリオール(F-8)を得た。なお、粗ポリエーテルポリオール組成物(D2-8)のpHは5.2であった。
なお、金網によるろ過で固体酸触媒を取り除く処理は行っていない。
得られた低アルデヒド含量ポリエーテルポリオール(F-8)の水酸基価は33.5mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.042meq/g、ホルムアルデヒド(C1)含量は0.5ppm、アセトアルデヒド(C2)含量は0.4ppm、プロピオンアルデヒド(C3)含量は4.1ppmであった。
実施例9
粗ポリエーテルポリオール組成物と固体酸触媒を接触させる前までは、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-9)を得た。実施例1の粗ポリエーテルポリオール組成物(D1-1)と粗ポリエーテルポリオール組成物(D1-9)は同じものである。
固体酸触媒ではなくルイス酸触媒として塩化アルミニウム(B2-3)を100ppm(0.01部)使用した以外は、実施例1と同様の方法により粗ポリエーテルポリオール組成物(D1-9)と粗ポリエーテルポリオール組成物(D2-9)を経て、ポリエーテルポリオール(F-9)を得た。なお、粗ポリエーテルポリオール組成物(D2-9)のpHは5.3であった。
なお、金網によるろ過で固体酸触媒を取り除く処理は行っていない。
得られた低アルデヒド含量ポリエーテルポリオール(F-9)の水酸基価は33.7mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.041meq/g、ホルムアルデヒド(C1)含量は0.5ppm、アセトアルデヒド(C2)含量は0.4ppm、プロピオンアルデヒド(C3)含量は3.8ppmであった。
なお、実施例5~9で使用したルイス酸触媒(B2)は、各実施例で使用した粗ポリエーテルポリオール組成物(D1)に含まれるポリエーテルポリオール(A)100gに対する80℃での溶解度が0.1gより大きいものである。
比較例1
粗ポリエーテルポリオール組成物と固体酸触媒を接触させる前までは、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D1-1)を得た。
粗ポリエーテルポリオール組成物(D1-1)100部に対し酸触媒としてリン酸を1重量%(1部)、水2部を使用した以外は、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D’2-1)を経て、リン酸をアルカリで中和し、その中和塩を吸着剤を使用してろ過することにより取り除いて、比較のためのポリエーテルポリオール(F’-1)を得た。
なお、金網によるろ過で固体酸触媒を取り除く処理は行っていない。
なお、粗ポリエーテルポリオール組成物(D’2-1)のpHは3.1であった。
得られた比較のポリエーテルポリオール(F’-1)の水酸基価は33.5mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.043meq/g、ホルムアルデヒド(C1)含量は0.7ppm、アセトアルデヒド(C2)含量は1.3ppm、プロピオンアルデヒド(C3)含量は54.4ppmであった。
比較例2
酸触媒を使用せず、及び金網によるろ過で固体酸触媒を取り除く処理を実施しない以外は、実施例1と同様の方法で粗ポリエーテルポリオール組成物(D’1-2)と粗ポリエーテルポリオール組成物(D’2-2)を経て、比較のためのポリエーテルポリオール(F’-2)を得た。
得られた比較のポリエーテルポリオール(F’-2)の水酸基価は33.4mgKOH/g、EO単位含有量は20.0重量%、不飽和モノオール含量は0.045meq/g、ホルムアルデヒド(C1)含量は1.4ppm、アセトアルデヒド(C2)含量は4.2ppm、プロピオンアルデヒド(C3)含量は417ppmであった。
実施例1~9で得られた低アルデヒド含量ポリエーテルポリオール(F-1)~(F-9)、比較例1、2で得られた比較のポリエーテルポリオール(F’-1)、(F’-2)を表1に示した。
Figure JPOXMLDOC01-appb-T000001
各ポリエーテルポリオール(F)の分析は、水酸基価、不飽和モノオール含量、アルデヒド含量の測定により行った。それぞれの測定方法は以下の通りである。
<水酸基価>
JIS K1557-1(2007年)
<不飽和モノオール含量>
JIS K1557-3(2007年)
<アルデヒド含量>
アルデヒド含量(ppm):HPLCによる分析
(1)試料のポリエーテルポリオールをアセトニトリルで濃度2.5%になるよう希釈する。
(2)100mLメスフラスコに2,4-ジニトロフェニルヒドラジン(50%水混合品)(以下、DNPH)50mgとリン酸3mLを入れ、アセトニトリルでメスアップして、DNPH誘導体化試薬を作成する。
(3)(1)で調製した液5mLと(2)のDNPH誘導体化試薬5mLを混合し、25℃で30分反応させ、30分後、アセトニトリル10mLで希釈する。
(4)(3)で調製した液をHPLCにより分析する。検量線は、6種アルデヒド化合物混合標準液(和光純薬工業(株)製)をアセトニトリルで希釈して作成する。
(測定条件)
HPLC:Waters社製、ACQUITY UPLC H-CLASS
カラム:ZORBAX Eclipse XDB-C8 4.6×250mm 5μm
展開液:アセトニトリル/水=50/50
注入量:20μL
流速:0.8mL/min
ポリウレタンフォームの作製方法
表2に示す部数のポリオールプレミックス(ポリイソシアネート(E)以外の成分の混合物)に、NCOインデックスが100となるよう所定量のポリイソシアネート(E)を加えて、ホモディスパー(特殊機化社製攪拌機)にて4000rpmで6秒撹拌後、65℃に温度調節した300mm(長さ)×300mm(幅)×100(高さ)のアルミ製モールドに注入し、キュアー時間(原料注入から脱型までの時間)5分にて成形した。
各フォームのアルデヒド含量測定結果は表2に示す。なお、アルデヒド含量測定に使用したフォームサンプルは、フォームの中心部から切り出した。
Figure JPOXMLDOC01-appb-T000002
実施例10~18、比較例3~4で用いた、上記ポリエーテルポリオール(F)以外のポリウレタンフォーム原料(ポリオールプレミックス中の成分)は次の通りである。
・ポリオール(L-1):ソルビトールのPOEO付加物。水酸基価1055、EO含量27.5%。
・発泡剤(I-1): 水
・ウレタン化触媒(J-1):東ソー(株)製「RZETA」
・ウレタン化触媒(J-2):エアプロダクツジャパン(株)製「DABCO NE300」
・整泡剤(K-1):EVONIK社製「TEGOSTAB B8742LF2」
・整泡剤(K-2):EVONIK社製「TEGOSTAB B8715LF2」
ポリイソシアネート(E-1):TDI-80/粗製MDI=80/0(重量比)、NCO%=44.6
<ポリウレタンフォームからの揮散物中のアルデヒド含量>
得られた低アルデヒド含量ポリエーテルポリオール又は比較のポリエーテルポリオールを使用して発泡したウレタンフォームから揮散するアルデヒドは、JASO M 903(2015年)に記載の手順に従って捕集した。捕集物のアルデヒド含量の分析は、上記のポリエーテルポリオールのアルデヒド含量分析方法で行った。
ウレタンフォームから揮散するアルデヒド含量は、サンプル1gあたりの値である。
表1で明らかなように、本発明の製造方法に係る、固体酸触媒を用いた実施例1~4とルイス酸触媒を用いた実施例5~9のポリエーテルポリオールは全て、酸触媒と接触後のpHが5を超えており、またいずれのアルデヒド含量も低かった。特に、ホルムアルデヒド含量とアセトアルデヒド含量に関しては、0.5ppm以下であることから、自動車内装用材料に有用であるといえる。
一方、酸触媒としてリン酸を用い工程(1)のpHが5未満の比較例1のポリエーテルポリオールは粗ポリエーテルポリオール(D2)のpHが3.1と低いために、アルカリによる中和処理及び中和塩の除去が必須で、工程時間が長くなり、かつポリエーテルポリオール(F)中のアルデヒド含量も、実施例1~9に比べて高かった。
酸触媒を使用しない比較例2のポリエーテルポリオールは、ポリエーテルポリオール(F)中のいずれのアルデヒド含量が最も高く、これは、酸触媒と接触させる工程を有しないことが原因である。
また、表2で明らかなように、本発明の製造方法により製造したポリエーテルポリオールを用いた実施例10~18のポリウレタンフォームは全て、ポリウレタンフォームから揮散するアルデヒド含量が低く、ポリウレタンフォームを作製するのに使用したポリエーテルポリオール(F)中のアルデヒド含量が低いことによる効果と考えられる。
一方、比較例1と比較例2で得られたポリエーテルポリオールを用いた比較例3と4のポリウレタンフォームは、実施例10~18と比較して、ポリウレタンフォームから揮散するアルデヒド含量が高かった。これは、ポリウレタンフォームを作製するのに使用したポリエーテルポリオール(F’)中の高いアルデヒド含量が影響している。
よって、ポリエーテルポリオール中のアルデヒド含量を低減することにより、その原料を使用して作製したポリウレタンフォームから揮散するアルデヒド含量も低減できる。
本発明の製造方法により得られる低アルデヒド含量ポリエーテルポリオールは、従来の方法によるものに比べて、アルデヒド含量が低いため、揮散するアルデヒド含量が小さい軟質ポリウレタンフォームを得ることができる。
上記効果を奏することから、本発明により得られる低アルデヒド含量ポリエーテルポリオールは、車両シートクッションなどの原料として適用できる。

Claims (14)

  1. 活性水素化合物にアルキレンオキサイドを開環重合させて得られるポリエーテルポリオール(A)を含有する粗ポリエーテルポリオール組成物(D1)を水の存在下で酸触媒(B)に接触させてpHが5.0を超える粗ポリエーテルポリオール組成物(D2)を得る工程(1)、及び工程(1)の後にアルデヒド(C)を含有する揮発分を除去する工程(2)を有するポリエーテルポリオール(F)の製造方法。
  2. 粗ポリエーテルポリオール組成物(D1)及び酸触媒(B)を25~150℃で接触させる請求項1に記載の製造方法。
  3. 水の量が、粗ポリエーテルポリオール組成物(D1)の重量に基づいて0.05~5.0重量%である請求項1又は2に記載の製造方法。
  4. 酸触媒(B)が80℃のポリエーテルポリオール(A)100gに対する溶解度が0.1g以下である固体酸触媒(B1)である請求項1~3のいずれかに記載のポリエーテルポリオールの製造方法。
  5. 固体酸触媒(B1)がシリカ、アルミナ、チタニア、マグネシア、ジルコニア、ゼオライト、モンモリロナイト、珪酸アルミニウム、ヒドロキシアパタイト及びその混合物からなる群から選ばれる少なくとも1種の固体に酸(b)を固定化した固体酸触媒である請求項4に記載の製造方法。
  6. 固体酸触媒(B1)がシリカにスルホン酸基含有化合物を固定化した固体酸触媒である請求項4又は5に記載の製造方法。
  7. 粗ポリエーテルポリオール組成物(D1)と固体酸触媒(B1)との接触をバッチ方式で行う請求項4~6のいずれかに記載の製造方法。
  8. 固定化された固体酸触媒(B1)に対して粗ポリエーテルポリオール組成物(D1)を連続的に接触させる請求項4~6のいずれかに記載の製造方法。
  9. 固体酸触媒(B1)の量が、粗ポリエーテルポリオール組成物(D1)の重量に基づいて0.01~5.0重量%である請求項4~8のいずれかに記載の製造方法。 
  10. 酸触媒(B)が80℃のポリエーテルポリオール(A)100gに対する溶解度が0.1gより大きいルイス酸触媒(B2)である請求項1~3のいずれかに記載の製造方法。
  11. ルイス酸触媒(B2)がトリフェニルボラン、トリフェニルアルミニウム、トリス(ペンタフルオロフェニル)ボラン及びトリス(ペンタフルオロフェニル)アルミニウムからなる群から選ばれる少なくとも1種の化合物である請求項10に記載の製造方法。
  12. ルイス酸触媒(B2)の量が、粗ポリエーテルポリオール組成物(D1)の重量に基づいて30~1000ppmである請求項10又は11に記載の製造方法。
  13. 粗ポリエーテルポリオール組成物(D1)が、活性水素化合物にアルキレンオキサイドをアルカリ触媒の存在下で開環重合させて得られる粗ポリエーテルポリオール組成物(D0)から、粗ポリエーテルポリオール組成物(D0)中のアルカリ触媒を処理剤で吸着除去して得られた粗ポリエーテルポリオール組成物である請求項1~12のいずれかに記載の製造方法。
  14. 請求項1~13のいずれかに記載のポリエーテルポリオールの製造方法により得られたポリエーテルポリオール(F)とポリイソシアネート(E)とを必須原料として反応させるポリウレタンフォーム(G)の製造方法。
PCT/JP2017/047149 2017-01-06 2017-12-28 ポリエーテルポリオールの製造方法及びポリウレタンフォームの製造方法 WO2018128155A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/470,306 US11414514B2 (en) 2017-01-06 2017-12-28 Polyether polyol production method and polyurethane foam production method
JP2018560390A JP6634531B2 (ja) 2017-01-06 2017-12-28 ポリエーテルポリオールの製造方法及びポリウレタンフォームの製造方法
CN201780081441.0A CN110139887B (zh) 2017-01-06 2017-12-28 聚醚多元醇的制造方法和聚氨酯泡沫的制造方法
KR1020197017682A KR102212980B1 (ko) 2017-01-06 2017-12-28 폴리에테르폴리올의 제조 방법 및 폴리우레탄 폼의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017000816 2017-01-06
JP2017-000816 2017-01-06
JP2017-057308 2017-03-23
JP2017057308 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018128155A1 true WO2018128155A1 (ja) 2018-07-12

Family

ID=62791282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047149 WO2018128155A1 (ja) 2017-01-06 2017-12-28 ポリエーテルポリオールの製造方法及びポリウレタンフォームの製造方法

Country Status (5)

Country Link
US (1) US11414514B2 (ja)
JP (1) JP6634531B2 (ja)
KR (1) KR102212980B1 (ja)
CN (1) CN110139887B (ja)
WO (1) WO2018128155A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433098A (zh) * 2020-10-20 2022-05-06 中国石油化工股份有限公司 一种催化剂及其制备方法和降低聚醚多元醇中醛含量的方法
EP4083107A4 (en) * 2019-12-27 2024-01-24 Nof Corp PROCESS FOR PURIFYING BRANCHED POLYETHYLENE GLYCOL

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110591047A (zh) * 2019-09-10 2019-12-20 华南理工大学 一种可降解聚醚型聚氨酯及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104936A (en) * 1980-01-24 1981-08-21 Dai Ichi Kogyo Seiyaku Co Ltd Purification of polyether polyol
JP2009263475A (ja) * 2008-04-24 2009-11-12 Sanyo Chem Ind Ltd ポリエーテルポリオールおよびポリウレタンフォームの製造方法
JP2012072260A (ja) * 2010-09-28 2012-04-12 Sanyo Chem Ind Ltd ポリオキシアルキレンポリオール及びこれを用いたポリウレタン樹脂
JP2014129519A (ja) * 2012-11-30 2014-07-10 Sanyo Chem Ind Ltd ポリオキシアルキレンモノオール又はポリオールの製造方法
JP2015172181A (ja) * 2014-02-21 2015-10-01 三洋化成工業株式会社 ポリエーテルポリオール組成物及びその製造方法
JP2015193826A (ja) * 2014-03-27 2015-11-05 三洋化成工業株式会社 ポリオキシアルキレンポリオールの製造方法
JP2017171708A (ja) * 2016-03-18 2017-09-28 東ソー株式会社 ポリオキシアルキレンポリオールの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715402A (en) * 1969-08-08 1973-02-06 Basf Wyandotte Corp Removal of catalysts from polyols
JPS5645923A (en) * 1979-09-21 1981-04-25 Dai Ichi Kogyo Seiyaku Co Ltd Purification of polyether polyol
RU2089564C1 (ru) * 1992-03-24 1997-09-10 Дзе Дау Кемикал Компани Способ получения гидроксифункциональных полиэфиров
IS4687A (is) 1998-03-13 1998-04-06 Shell Internationale Research Maatschappij B.V. Aðferð við framleiðslu á lyktarlitlum pólýeter pólýólum
CN1229806A (zh) 1998-03-20 1999-09-29 天津石油化工公司研究所 一种聚醚多元醇精制工艺
SE9902364D0 (sv) 1999-06-21 1999-06-21 Astra Ab New process
JP2005124743A (ja) 2003-10-22 2005-05-19 Toyo Tire & Rubber Co Ltd シート用パッド
JP2005132990A (ja) 2003-10-31 2005-05-26 Asahi Glass Co Ltd ポリエーテル類の製造法
JP2005306947A (ja) 2004-04-20 2005-11-04 Sanyo Chem Ind Ltd ポリエーテルの精製方法
JP2005314617A (ja) * 2004-04-30 2005-11-10 Sanyo Chem Ind Ltd ポリエーテルの精製方法
JP3959092B2 (ja) 2004-12-27 2007-08-15 住化バイエルウレタン株式会社 ポリウレタン成形品およびその製造方法
JP5364966B2 (ja) * 2006-04-18 2013-12-11 旭硝子株式会社 ポリエーテルポリオールまたはポリエーテルモノオールの製造方法
JP5214489B2 (ja) 2008-02-28 2013-06-19 三洋化成工業株式会社 ポリオキシアルキレンアルコールの製造方法
WO2012084762A1 (de) * 2010-12-20 2012-06-28 Bayer Materialscience Ag Verfahren zur herstellung von polyetherpolyolen
CN104177608B (zh) 2014-08-14 2016-08-24 上海多纶化工有限公司 精制聚醚的方法
CN104262611A (zh) 2014-10-11 2015-01-07 淄博德信联邦化学工业有限公司 聚醚后处理的方法
EP4269483A3 (en) * 2015-09-18 2024-01-03 Arkema Inc. Polyol pre-mixes having improved shelf life

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104936A (en) * 1980-01-24 1981-08-21 Dai Ichi Kogyo Seiyaku Co Ltd Purification of polyether polyol
JP2009263475A (ja) * 2008-04-24 2009-11-12 Sanyo Chem Ind Ltd ポリエーテルポリオールおよびポリウレタンフォームの製造方法
JP2012072260A (ja) * 2010-09-28 2012-04-12 Sanyo Chem Ind Ltd ポリオキシアルキレンポリオール及びこれを用いたポリウレタン樹脂
JP2014129519A (ja) * 2012-11-30 2014-07-10 Sanyo Chem Ind Ltd ポリオキシアルキレンモノオール又はポリオールの製造方法
JP2015172181A (ja) * 2014-02-21 2015-10-01 三洋化成工業株式会社 ポリエーテルポリオール組成物及びその製造方法
JP2015193826A (ja) * 2014-03-27 2015-11-05 三洋化成工業株式会社 ポリオキシアルキレンポリオールの製造方法
JP2017171708A (ja) * 2016-03-18 2017-09-28 東ソー株式会社 ポリオキシアルキレンポリオールの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4083107A4 (en) * 2019-12-27 2024-01-24 Nof Corp PROCESS FOR PURIFYING BRANCHED POLYETHYLENE GLYCOL
CN114433098A (zh) * 2020-10-20 2022-05-06 中国石油化工股份有限公司 一种催化剂及其制备方法和降低聚醚多元醇中醛含量的方法
CN114433098B (zh) * 2020-10-20 2024-03-29 中国石油化工股份有限公司 一种催化剂及其制备方法和降低聚醚多元醇中醛含量的方法

Also Published As

Publication number Publication date
KR20190092447A (ko) 2019-08-07
JP6634531B2 (ja) 2020-01-22
US11414514B2 (en) 2022-08-16
CN110139887B (zh) 2022-03-08
KR102212980B1 (ko) 2021-02-04
US20190309120A1 (en) 2019-10-10
JPWO2018128155A1 (ja) 2019-03-28
CN110139887A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
JP3926841B2 (ja) 新規なポリエーテルポリオール、これらポリエーテルポリオールを含有するポリオール配合物、および硬質ポリウレタンフォームを製造するためのその使用
JP6634531B2 (ja) ポリエーテルポリオールの製造方法及びポリウレタンフォームの製造方法
JP5698657B2 (ja) ポリオキシアルキレンポリオール又はモノオール及びポリウレタン樹脂
US20110218259A1 (en) Preparing polyurethanes
JP2008500417A (ja) 高度分枝多糖類を含むポリオール組成物を含有するポリウレタン、それらを製造するための混合物及び方法。
RU2708692C2 (ru) Органические ксерогели с пониженной плотностью на основе изоцианатов
EP2915850A1 (en) Resin premix composition, composition for hard polyurethane foam, and hard polyurethane foam
KR20130004587A (ko) 폴리우레탄의 제조 방법
JP5058872B2 (ja) ポリエーテルポリオールおよびポリウレタンフォームの製造方法
JP2012072260A (ja) ポリオキシアルキレンポリオール及びこれを用いたポリウレタン樹脂
JP6050840B2 (ja) ポリエーテルポリオール組成物及びその製造方法
JP5463231B2 (ja) 軟質ポリウレタンスラブフォームの製造方法
JP2011174063A (ja) 軟質ポリウレタンフォームの製造方法
JP5940122B2 (ja) 軟質ポリウレタンフォームの製造方法
JP4106359B2 (ja) ポリエーテルの製造方法
EP3317315B1 (en) Improvements relating to polyurethanes
JP2000053743A (ja) 硬質ポリウレタンフォーム
JP2008545036A (ja) ポリウレタン成形品の製造方法
JP2000017040A (ja) ポリウレタン樹脂及び硬質ポリウレタンフォームの製造方法
JP6125451B2 (ja) 軟質ポリウレタンフォームの製造方法
JP2013087261A (ja) ポリウレタンフォーム製造用ポリオール組成物及びこれを用いたポリウレタンフォームの製造方法
JP2019026840A (ja) ポリマーポリオールの製造方法及びポリウレタンフォームの製造方法
JP2011162778A (ja) 軟質ポリウレタンフォームの製造方法
JPH11322889A (ja) 硬質ポリウレタンフォーム用ポリイソシアネート、及び、それを用いた硬質ポリウレタンフォームの製造方法
JPH06306138A (ja) 発泡合成樹脂の製法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560390

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017682

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889820

Country of ref document: EP

Kind code of ref document: A1