WO2018126818A1 - 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法 - Google Patents

一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法 Download PDF

Info

Publication number
WO2018126818A1
WO2018126818A1 PCT/CN2017/113058 CN2017113058W WO2018126818A1 WO 2018126818 A1 WO2018126818 A1 WO 2018126818A1 CN 2017113058 W CN2017113058 W CN 2017113058W WO 2018126818 A1 WO2018126818 A1 WO 2018126818A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
ion battery
plant
carbon material
dimensional
Prior art date
Application number
PCT/CN2017/113058
Other languages
English (en)
French (fr)
Inventor
杨成浩
熊嘉雯
熊训辉
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/315,149 priority Critical patent/US20190312277A1/en
Publication of WO2018126818A1 publication Critical patent/WO2018126818A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of plant fiber carbon materials, and particularly relates to a plant fiber three-dimensional structure carbon material and a preparation method thereof.
  • Carbon materials occupy an important position in human life and are also important raw materials for commercial lithium-ion batteries in industrial production. Carbon materials have rich pore structure, large specific surface area, excellent electrical conductivity and chemical stability, and are one of the functional materials with wide application.
  • the anode material is one of the key materials of the sodium ion battery and the lithium ion battery.
  • the three-dimensional structure carbon of the plant fiber is used as a raw material for preparing the anode material, and the microstructure thereof is a three-dimensional porous sheet and a long tunnel structure, and the sheet thickness is 5-30 nm. .
  • the three-dimensional porous carbon material constructs an excellent conductive network, and the porous tunnel structure is beneficial to the rapid diffusion of the electrode material ions, improving the utilization rate of the material, thereby improving the capacity, cycle life and rate performance.
  • the three-dimensional carbon material of the plant fiber exhibits high specific capacity, excellent cycle performance and rate performance.
  • the invention can utilize various plant fibers and wastes which are common in daily life as raw materials for sodium ion batteries and lithium ion battery anode materials, and such raw materials are rich in sources, such as disposable bamboo chopsticks and the like, can be reused, thereby improving the use thereof. Efficiency and environmental protection.
  • the object of the present invention is to provide a plant fiber three-dimensional structural carbon material as a negative electrode material for a sodium ion battery and a lithium ion battery, and a preparation method thereof.
  • the preparation method of the invention has simple process, rich and cheap raw material sources and environmental protection characteristics.
  • the three-dimensional structural carbon material of the plant fiber synthesized by the preparation method of the present invention exhibits high specific capacity, excellent cycle performance, and rate performance.
  • a three-dimensional structural carbon material of plant fiber as a negative electrode material of a sodium ion battery and a lithium ion battery the structure of which is a three-dimensional porous lamella and a long tunnel structure, and the thickness of the sheet material is 5-30 nm .
  • the three-dimensional carbon material of the plant fiber can construct an excellent conductive network, and combines the porous channel structure, which is beneficial to the rapid diffusion of the electrode material ions, improves the utilization of the electrode material, and further improves the capacity, cycle life and rate performance of the electrode material.
  • a method for preparing a three-dimensional structural carbon material of a plant fiber as a negative electrode material of a sodium ion battery and a lithium ion battery comprising the following steps:
  • the plant fiber material comprises a seed fiber series, a bast fiber series, a leaf fiber series, a fruit fiber series or a plant waste fiber series; and the seed fiber series comprises cotton fiber or kapok fiber.
  • the bast fiber series includes linen or bamboo fiber
  • the leaf fiber series includes sisal, pineapple fiber or abaca
  • the fruit fiber series includes coconut fiber or pineapple pulp fiber
  • the plant waste fiber series includes coffee grounds or use. After the disposable bamboo chopsticks.
  • the nitrate is one or more of magnesium nitrate, sodium nitrate and potassium nitrate, and the concentration of the nitrate solution is 0.1-10 mol/L.
  • the sealing infiltration temperature is 60 to 100 ° C
  • the sealing infiltration time is 4 to 24 h.
  • the protective atmosphere is an inert atmosphere, a reducing atmosphere or a mixed atmosphere;
  • the inert atmosphere is nitrogen or argon, the reducing atmosphere is hydrogen;
  • the mixed atmosphere is a nitrogen-hydrogen mixed gas.
  • the heating rate of the heat preservation calcination process is 5-10 ° C / min
  • the temperature of the heat preservation calcination is 600-900 ° C
  • the time of the heat preservation calcination is 1-6 h.
  • the drying is performed in an oven at 60-100 ° C for 6-24 h.
  • a second object of the present invention is to provide a three-dimensional structural carbon material of a plant fiber for a sodium ion battery negative electrode and a lithium ion battery negative electrode, wherein the plant fiber three-dimensional structure carbon material is used for preparing a sodium ion secondary battery and a lithium ion two Secondary battery.
  • the present invention has the following advantages and technical effects:
  • the three-dimensional carbon material of the plant fiber of the invention is an amorphous carbon material, and the more the nitrate content of the pore-forming agent added, the less the rod-like fiber, the more the three-dimensional porous sheet carbon, the thickness of the sheet material is 5-30 nm;
  • the three-dimensional carbon material of the plant fiber of the invention constructs an excellent conductive network, and the porous, long tunnel structure is beneficial to the rapid diffusion of ions of the electrode material and the utilization of the electrode material;
  • the three-dimensional structure carbon fiber of the plant fiber of the present invention is used as a sodium ion battery and a lithium ion battery negative electrode, and exhibits high specific capacity, excellent cycle performance and rate performance;
  • Example 1 is an XRD pattern of a carbon fiber three-dimensional structural carbon material prepared by the pore-forming agent magnesium nitrate solution of Example 1 at a concentration of 0 mol/L, 0.25 mol/L, 0.5 mol/L, and 0.75 mol/L, respectively;
  • 2a is an SEM image of a three-dimensional carbon material of cotton fiber prepared by the pore-forming agent magnesium nitrate solution of Example 1 at a concentration of 0 mol/L;
  • 2b is an SEM image of a three-dimensional carbon material of cotton fiber prepared by the concentration of the magnesium nitrate solution of the pore-forming agent of Example 1 at 2.5 mol/L;
  • 2c is an SEM image of a three-dimensional carbon material of cotton fiber prepared by the concentration of the magnesium nitrate solution of the pore-forming agent of Example 1 being 0.5 mol/L;
  • 2d is an SEM image of a three-dimensional carbon material of cotton fiber prepared by the pore-forming agent magnesium nitrate solution having a concentration of 0.75 mol/L;
  • 2e is a SEM cross-sectional view of a carbon fiber three-dimensional structural carbon material prepared by the pore-forming agent magnesium nitrate solution having a concentration of 0.75 mol/L;
  • FIG. 3 is a carbon fiber three-dimensional structure carbon material prepared by the pore-forming agent magnesium nitrate solution of Example 1 having a concentration of 0 mol/L, 0.25 mol/L, 0.5 mol/L, and 0.75 mol/L, respectively, as a negative electrode material for sodium ion battery 100 mA.
  • Example 4 is a three-dimensional carbon material of cotton fiber prepared by the pore-forming agent magnesium nitrate solution of Example 1 having a concentration of 0 mol/L, 0.25 mol/L, 0.5 mol/L, and 0.75 mol/L, respectively, as a negative electrode material for sodium ion battery 1.0. Cycling 100 times capacity map at A/g current density;
  • FIG. 5 is a three-dimensional carbon material of a cotton fiber prepared by the pore-forming agent magnesium nitrate solution having a concentration of 0 mol/L, 0.25 mol/L, 0.5 mol/L, and 0.75 mol/L, respectively, as a negative electrode material ratio of a sodium ion battery.
  • Performance map
  • FIG. 6 is a first charge and discharge curve of a three-dimensional carbon material of a cotton fiber prepared by the pore-forming agent magnesium nitrate solution having a concentration of 0.75 mol/L as a negative electrode material of a lithium ion battery;
  • FIG. 7 is a capacity chart of a carbon fiber three-dimensional structure carbon material prepared by the pore-forming agent magnesium nitrate solution having a concentration of 0.75 mol/L as a lithium ion battery anode material at a current density of 1.0 A/g;
  • FIG. 8 is a 200-time capacity diagram of a carbon fiber three-dimensional structure carbon material prepared by the pore-forming agent magnesium nitrate solution having a concentration of 0.75 mol/L as a negative electrode material of a lithium ion battery at a current density of 2.0 A/g;
  • FIG. 9 is a graph showing the rate performance of a three-dimensional carbon material of a cotton fiber obtained by the pore-forming agent magnesium nitrate solution of Example 1 in a concentration of 0.75 mol/L.
  • the dried defatted cotton fiber is heated to 800 ° C at a heating rate of 8 ° C / min under nitrogen atmosphere, and calcined at 800 ° C for 3 h;
  • the XRD pattern of the obtained carbon fiber three-dimensional structure carbon material is shown in Fig. 1. It can be seen from Fig. 1 that the carbon fiber three-dimensional structure carbon material obtained is an amorphous carbon material.
  • FIG. 2a The SEM images of the carbon fiber three-dimensional structure of the obtained pore-forming agent magnesium nitrate solution concentrations of 0 mol/L, 0.25 mol/L, 0.5 mol/L, and 0.75 mol/L, respectively, are shown in Fig. 2a, Fig. 2b, Fig. 2c, and Fig. 2d, respectively.
  • FIG. 2e is the embodiment 1.
  • the SEM cross-section of the three-dimensional carbon material of the cotton fiber prepared by the solution of the nitrate magnesium nitrate solution of 0.75 mol/L can be seen from Fig. 2e as the thickness of the sheet material is 5-30 nm.
  • the prepared carbon fiber three-dimensional structure carbon material was prepared into a negative electrode sheet, and a CR2032 type sodium ion button type battery and a CR2032 type lithium ion button type battery were assembled in a glove box.
  • the obtained battery was subjected to a charge and discharge test at a constant temperature condition of 25 ° C in a voltage range of 0.01 V to 3 V.
  • the three-dimensional carbon material of the cotton fiber with the concentration of the pore-forming agent magnesium nitrate solution of 0 mmol/L, 0.25 mmol/L, 0.5 mmol/L, and 0.75 mmol/L ie, magnesium nitrate of 0 mmol, 5 mmol, 10 mmol, and 15 mmol, respectively
  • the prepared sodium ion battery was subjected to 50 times and 100 charge and discharge cycles at currents of 100 mAh/g and 1 A/g, respectively, and the obtained curves are shown in Figs. 3 and 4.
  • the amount of magnesium nitrate added was 0.25 mol/L, 0.5 mol/L, and 0.75 mol/L.
  • the carbon fiber three-dimensional structure carbon material prepared by high-temperature carbonization of the pore-forming material can be used as the anode material of the sodium ion battery to improve the specific capacity of the battery and to exhibit more excellent cycle performance.
  • the concentration of the pore-forming agent magnesium nitrate solution is 0 mmol/L, 0.25 mmol/L, 0.5 mmol/L
  • the sodium ion battery made of three-dimensional carbon material of cotton fiber with 0.75mmol/L (that is, magnesium nitrate of 0mmol, 5mmol, 10mmol, and 15mmol respectively) is in magnification. 100mA/g, 250mA/g, 500mA/g, 1.0A/g, 2.0A/g, 5.0A/g, 10.0A/g, 100mA/g
  • the charge and discharge cycles were respectively performed at the current density to test the battery rate performance as shown in Fig. 5.
  • Figure 5 shows that 0.
  • the three-dimensional carbon fiber battery made of the pore-forming agent magnesium nitrate solution is charged and discharged by a large current after being charged and discharged by a large current, and the capacity is higher than the initial 100 mA/g.
  • the capacity at current density embodies more excellent rate performance.
  • the concentration of the pore forming agent magnesium nitrate solution is 0.75 mol/L (ie, magnesium nitrate is 15 mmol).
  • the first charge-discharge curve of lithium ion at a current density of 100 mA/g obtained from the three-dimensional carbon material of cotton fiber prepared after high-temperature carbonization of pores is shown in Fig. 6.
  • the first coulombic efficiency is 53.47%. .
  • the lithium ion battery made of the three-dimensional carbon material of the cotton fiber with the concentration of the pore-forming agent magnesium nitrate solution of 0.75 mol/L (ie, magnesium nitrate of 15 mmol) was respectively at a current density of 1.0 A/g and 2.0 A/g.
  • the following is performed 140 times and 200 times of charge and discharge cycles, and the obtained curves are shown in Figs. 7 and 8.
  • the initial discharge specific capacity was 904.0 mAh/g at a current density of 1.0 A/g, and after 140 cycles, the specific discharge capacity was 689.3 mAh/g, and the cycle retention ratio was 76.25%.
  • the initial discharge specific capacity was 590.4 mAh/g at a current density of 2.0 A/g, and the discharge specific capacity was 439.3 mAh/g after 200 cycles, and the cycle retention ratio was 74.44%.
  • the three-dimensional carbon material of cotton fiber prepared by adding high-temperature pore-forming carbonization of magnesium nitrate can be used as a negative electrode material for lithium ion batteries to improve the specific capacity of the battery. Cyclic performance.
  • the obtained lithium ion battery made of three-dimensional carbon material of cotton fiber having a pore-forming agent magnesium nitrate solution concentration of 0.75 mol/L was respectively at a magnification of 100 mA/g, 500 mA/g, and 1.0 A.
  • Charge/discharge cycles were respectively performed at /g, 2.0 A/g, 5.0 A/g, and 10.0 A/g current density to test battery rate performance as shown in FIG. It can be seen from Fig. 9 that after charging and discharging a large current, the lithium ion battery is further charged and discharged at 2.0 A/g, and its capacity is higher than the capacity at the initial current density of 2.0 A/g, which exhibits more excellent rate performance.
  • the dried bamboo fiber was heated to 900 ° C at a heating rate of 5 ° C / min under an argon atmosphere, and calcined at 900 ° C for 2 h.
  • the obtained three-dimensional carbon material of bamboo fiber is an amorphous carbon material, and has high charge and discharge capacity and rate performance for both sodium ion batteries and lithium ion batteries.
  • sisal fiber material three-dimensional structure carbon material Preparation of sisal fiber material three-dimensional structure carbon material:
  • sisal material burlap bag physically pulverize to powder form, obtain sisal fiber powder; prepare 10mL/L sodium nitrate solution 10mL, take 1.5g sisal fiber powder and fully immerse it in sodium nitrate solution;
  • the dried sisal fiber is heated to 750 ° C at a heating rate of 8 ° C / min under a mixed atmosphere of argon gas and 5% hydrogen, and calcined at 750 ° C for 4 hours;
  • the three-dimensional carbon material of the prepared sisal fiber powder is an amorphous carbon material, and has high charge and discharge capacity and rate performance for both sodium ion batteries and lithium ion batteries.
  • the dried pineapple pulp fiber is heated to 600 ° C at a heating rate of 8 ° C / min under a mixed atmosphere of nitrogen and 5% hydrogen, and calcined at 600 ° C for 6 h;
  • the three-dimensional carbon material of the prepared pineapple pulp fiber is an amorphous carbon material, which has high charge and discharge capacity and rate performance for both sodium ion batteries and lithium ion batteries.
  • the dried coffee ground fiber powder is heated to 900 ° C at a heating rate of 10 ° C / min under a mixed atmosphere of argon gas and 10% hydrogen, and calcined at 900 ° C for 1 h;
  • the three-dimensional carbon material of the prepared coffee ground fiber is an amorphous carbon material, and has high charge and discharge capacity and rate performance for both sodium ion batteries and lithium ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法,所述植物纤维三维结构碳材料的制备方法是:将植物纤维浸入造孔剂硝酸盐溶液中,恒温浸润,烘干后在保护气氛中煅烧、磨粉,经盐酸与去离子水洗涤后,烘干。所述植物纤维三维结构碳材料呈三维多孔薄片状与长隧道结构,薄片厚度为5-30nm。该植物纤维三维结构碳材料构建优异的导电网络,结合多孔,长隧道结构有利于电极材料离子的快速扩散,提高材料的利用率。该植物纤维三维结构碳材料表现出高比容量、优异的循环性能和高倍率性能。该制备方法简单可行,所用原材料来源丰富,具有环保特性。

Description

一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法
技术领域
本发明属于植物纤维碳材料技术领域,具体涉及植物纤维三维结构碳材料及其制备方法。
背景技术
碳材料在人类生活中占据着重要的位置,也是商业化锂离子电池在工业生产中重要的原料。碳材料具有丰富的孔隙结构、较大的比表面积和优良的导电性、化学稳定性等优点,是具有广泛用途的功能型材料之一。
然而随着锂离子电池的广泛应用,锂资源面临逐步枯竭,为了缓解资源约束,钠离子电池开发和应用的需求逐步增加。钠离子具有原料丰富,比容量和效率较高,成本低等优点,在规模化储能及智能电网中有望实现广泛应用。由于钠与锂属于同一主族,具有相似的理化性质,钠离子电池与锂离子电池充放电原理基本一致,在充电时钠离子从正极材料脱出,经过电解液嵌入到负极材料,在放电时钠离子从负极材料脱出,经过电解液嵌入到正极材料。
负极材料是钠离子电池与锂离子电池关键材料之一,本发明使用植物纤维三维结构碳为制备负极材料的原材料,其微观结构呈三维多孔薄片状与长隧道结构,片状厚度为5-30nm。三维多孔的碳材料构建优异的导电网络,结合多孔隧道结构有利于电极材料离子的快速扩散,提高材料的利用率,进而提高其容量、循环寿命及倍率性能。植物纤维三维结构碳材料表现出高比容量、优异的循环性能和倍率性能。本发明能利用生活中常见的各种植物纤维及其废弃物作为钠离子电池与锂离子电池负极材料原材料,此类原材料来源丰富,如一次性竹筷子之类,能重复利用,从而提高其使用效率,达到环保的目的。
发明内容
本发明的目的是提供一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法。本发明制备方法工艺简单,原料来源丰富且廉价,具有环保特性。通过本发明制备方法合成的植物纤维三维结构碳材料表现出高比容量、优异的循环性能和倍率性能。
一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料,其结构呈三维多孔薄片状与长隧道结构,片状材料厚度为 5-30nm 。该植物纤维三维结构碳材料能构建优异的导电网络,结合多孔道结构,有利于电极材料离子的快速扩散,提高电极材料的利用率,进而提高电极材料的容量、循环寿命及倍率性能。
本发明的目的是通过如下的技术方案实现的。
一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料的制备方法,包括如下步骤:
(1)取植物纤维材料于硝酸盐溶液中密封浸润;
(2)密封浸润后,取出植物纤维材料,烘干;
(3)烘干的植物纤维材料在保护气氛下保温煅烧;
(4)取出已碳化的植物纤维材料,压碎研磨至粉末状;
(5)依次用0.5-3mol/L的盐酸及去离子水分别洗涤,烘干,得到干燥的黑色粉末状植物纤维三维结构碳材料。
进一步地,步骤(1)中,所述植物纤维材料包括种子纤维系列、韧皮纤维系列、叶纤维系列、果实纤维系列或植物废弃纤维系列;所述种子纤维系列包括棉纤维或木棉纤维,所述韧皮纤维系列包括亚麻或竹纤维,所述叶纤维系列包括剑麻、菠萝纤维或蕉麻,所述果实纤维系列包括椰子纤维或菠萝果肉纤维,所述植物废弃纤维系列包括咖啡渣或使用后的一次性竹筷子。
进一步地,步骤( 1 )中,所述硝酸盐为硝酸镁、硝酸钠和硝酸钾中的一种以上,所述硝酸盐溶液 的浓度为 0.1-10mol/L 。
进一步地,步骤(1)中,所述密封浸润的温度为60~100℃,密封浸润的时间为4-24h。
进一步地,步骤(3)中,所述保护气氛为惰性气氛、还原气氛或混合气氛;所述惰性气氛为氮气或氩气,所述还原气氛指氢气;所述混合气氛为氮气-氢气混合气体或氩气-氢气混合气体,其中氢气的体积比例为0%-10%。
进一步地,步骤(3)中,所述保温煅烧过程的升温速率为5-10℃/min,保温煅烧的温度为600-900℃,保温煅烧的时间为1-6h。
进一步地,步骤(2)、(5)中,所述烘干是在烘箱60-100℃下干燥6-24h。
本发明的目的之二是提供一种钠离子电池负极与锂离子电池负极用的植物纤维三维结构碳材料的用途,所述植物纤维三维结构碳材料用于制备钠离子二次电池与锂离子二次电池。
与现有技术相比,本发明具有如下优点和技术效果:
(1)本发明植物纤维三维结构碳材料为无定型碳材料,加入的造孔剂硝酸盐含量越多,棒状纤维越少,三维多孔薄片碳越多,片状材料厚度为5-30nm;
(2)本发明的植物纤维三维结构碳材料构建优异的导电网络,结合多孔,长隧道结构有利于电极材料离子的快速扩散,提高电极材料的利用率;
(3)本发明植物纤维三维结构碳材料用作钠离子电池和锂离子电池负极,表现出高比容量、优异的循环性能和倍率性能;
(4)本发明制备方法简单可行,所用原料来源丰富,具有环保性。
附图说明
图1为实施例1造孔剂硝酸镁溶液浓度分别为0mol/L、0.25mol/L、0.5mol/L、0.75mol/L制得的棉花纤维三维结构碳材料的XRD图谱;
图2a为实施例1造孔剂硝酸镁溶液浓度为0mol/L制得的棉花纤维三维结构碳材料的SEM图;
图2b为实施例1造孔剂硝酸镁溶液浓度为2.5mol/L制得的棉花纤维三维结构碳材料的SEM图;
图2c为实施例1造孔剂硝酸镁溶液浓度为0.5mol/L制得的棉花纤维三维结构碳材料的SEM图;
图2d为实施例1造孔剂硝酸镁溶液浓度为0.75mol/L制得的棉花纤维三维结构碳材料的SEM图;
图2e为实施例1造孔剂硝酸镁溶液浓度为0.75mol/L制得的棉花纤维三维结构碳材料的SEM截面图;
图3为实施例1造孔剂硝酸镁溶液浓度分别为0mol/L、0.25mol/L、0.5mol/L、0.75mol/L制得的棉花纤维三维结构碳材料的作为钠离子电池负极材料100mA/g电流密度下循环50次容量图;
图4为实施例1造孔剂硝酸镁溶液浓度分别为0mol/L、0.25mol/L、0.5mol/L、0.75mol/L制得的棉花纤维三维结构碳材料的作为钠离子电池负极材料1.0A/g电流密度下循环100次容量图;
图5为实施例1造孔剂硝酸镁溶液浓度分别为0mol/L、0.25mol/L、0.5mol/L、0.75mol/L制得的棉花纤维三维结构碳材料的作为钠离子电池负极材料倍率性能图;
图6为实施例1造孔剂硝酸镁溶液浓度为0.75mol/L制得的棉花纤维三维结构碳材料的作为锂离子电池负极材料首次充放电曲线;
图7为实施例1造孔剂硝酸镁溶液浓度为0.75mol/L制得的棉花纤维三维结构碳材料的作为锂离子电池负极材料1.0A/g电流密度下循环140次容量图;
图8为实施例1造孔剂硝酸镁溶液浓度为0.75mol/L制得的棉花纤维三维结构碳材料的作为锂离子电池负极材料2.0A/g电流密度下循环200次容量图;
图9为实施例1造孔剂硝酸镁溶液浓度为0.75mol/L制得的棉花纤维三维结构碳材料的作为锂离子电池负极材料倍率性能图。
具体实施方式
以下实施例可以更好地理解本发明,但本发明不局限于以下实施例。
实施例1
制备棉花纤维材料三维结构碳材料:
(1)配制0mol/L、0.25mol/L、0.5mol/L、0.75mol/L硝酸镁溶液各20mL,取1.5g脱脂棉花纤维充分浸入硝酸镁溶液中;
(2)完全浸润并密封保存于60℃烘箱内24h后,取出,将脱脂棉花纤维置于80℃烘箱内干燥24h;
(3)烘干的脱脂棉花纤维在氮气气氛下以8℃/min的升温速率升温至800℃,800℃保温煅烧3h;
(4)待材料自然冷却后,压碎研磨得到黑色粉末状材料;
(5)所得黑色粉末状材料依次分别用3mol/L盐酸和去离子水洗涤三次后,置于60℃下烘箱干燥12h,得到干燥的黑色粉末状棉花纤维三维结构碳材料。
1、结构分析:
得到的棉花纤维三维结构碳材料XRD图如图1所示,由图1可以看出所制得的棉花纤维三维结构碳材料为无定型碳材料。
所得造孔剂硝酸镁溶液浓度分别为0mol/L、0.25mol/L、0.5mol/L、0.75mol/L的棉花纤维三维结构碳材料SEM图分别如图2a、图2b、图2c、图2d所示,由图2a、图2b、图2c、图2d可以看出,加入的造孔剂硝酸镁含量越多,棒状棉花纤维越少,三维多孔薄片碳越多;图2e为实施例1造孔剂硝酸镁溶液浓度为0.75mol/L制得的棉花纤维三维结构碳材料的SEM截面图,由图2e可以看出片状材料厚度为5-30nm。
2、电化学性能(首次效率、循环性能、倍率性能)测试:
将制备所得棉花纤维三维结构碳材料制成负极片,在手套箱中组装得到CR2032型钠离子扣式电池与CR2032型锂离子扣式电池。制得的电池在恒温条件25℃下,在0.01V-3V电压范围内进行充放电测试。
(1)制备得到的钠离子电池的电化学性能
将以造孔剂硝酸镁溶液浓度分别为0mmol/L、0.25mmol/L、0.5mmol/L、0.75mmol/L(即硝酸镁分别为0mmol、5mmol、10mmol、15mmol)的棉花纤维三维结构碳材料制成的钠离子电池分别在电流为100mAh/g和1A/g电流密度下分别进行50次与100次充放电循环,所得曲线如图3、图4所示。
由图3可知,在100mAh/g电流密度下,首次充放电及经过50次循环比容量如表1所示:
表 1 在 100mAh/g 电流密度下首次充放电及 50 次循环比容量
容量( mAh/g ) 20mL 硝酸镁浓度(硝酸镁的量) 20mL 硝酸镁浓度(硝酸镁的量) 20mL 硝酸镁浓度(硝酸镁的量) 20mL 硝酸镁浓度(硝酸镁的量)
0mol/L
(0mmol)
0.25mol/L
(5mmol)
0.5mol/L
(10mmol)
0.75mol/L
(15mmol)
首次 222.9 341.8 274.5 647.2
第 50 次 137.7 299.8 322.9 956.0
50 次循环保持率 61.78% 87.71% 117.63% 147.71%
由图 4 可知,在 1A · g-1 电流密度下,首次充放电及经过 100 次循环比容量如表 2 所示:
表 2 在 1A · g-1 电流密度下首次充放电及经过 100 次循环比容量
容量( mAh/g ) 20mL 硝酸镁浓度(硝酸镁的量) 20mL 硝酸镁浓度(硝酸镁的量) 20mL 硝酸镁浓度(硝酸镁的量) 20mL 硝酸镁浓度(硝酸镁的量)
0mol/L
(0mmol)
0.25mol/L
(5mmol)
0.5mol/L
(10mmol)
0.75mol/L
(15mmol)
首次 125.0 253.9 374.5 454.4
第 100 次 87.2 228.0 332.7 473
100 次循环保持率 70.40% 89.80% 88.84% 104.09%
由以上结果可知,硝酸镁加入量为 0.25mol/L 、 0. 5mol/L 、 0.75mol/L 造孔高温碳化后所制备的棉花纤维三维结构碳材料用作钠离子电池负极材料能提高电池比容量,体现更加优异的循环性能。
将所得实施以造孔剂硝酸镁溶液浓度为 0mmol/L 、 0.25mmol/L 、 0. 5mmol/L 、 0.75mmol/L( 即硝酸镁分别为 0mmol 、 5mmol 、 10mmol 、 15mmol) 的棉花纤维三维结构碳材料制成的钠离子电池分别在倍率为 100mA/g 、 250mA/g 、 500mA/g 、 1.0A/g 、 2.0A/g 、 5.0A/g 、 10.0A/g 、 100mA/g 电流密度下分别进行充放电循环以测试电池倍率性能如图 5 所示。由图 5 可知 0. 5mol/L 、 0.75mol/L 造孔剂硝酸镁溶液制得的棉花纤维三维结构碳材料制成的钠离子电池经过大电流充放电后,再进行 100mA/g 充放电,其容量高于初始 100mA/g 电流密度下容量,体现了更加优异倍率性能。
( 2 )制备得到锂离子电池的电化学性能
将造孔剂硝酸镁溶液浓度为 0.75mol/L( 即硝酸镁为 15mmol) 造孔高温碳化后所制备的棉花纤维三维结构碳材料所得实施锂离子在 100mA/g 电流密度下的首次充放电曲线如图 6 所示,首次库伦效率为 53.47% 。
所实施以造孔剂硝酸镁溶液浓度为0.75mol/L(即硝酸镁为15mmol)的棉花纤维三维结构碳材料制成的锂离子电池分别在倍率为1.0A/g和2.0A/g电流密度下分别进行140次与200次充放电循环,所得曲线如图7、图8所示。
由图7可知,在1.0A/g电流密度下初始放电比容量为904.0mAh/g,经过140次循环后,其放电比容量为689.3mAh/g,循环保持率为76.25%。
由图8可知,在2.0A/g电流密度下,初始放电比容量为590.4mAh/g,经过200次循环后,其放电比容量为439.3mAh/g,循环保持率为74.44%。
由以上结果可知,相比常用于制备锂离子电池的碳材料,加入硝酸镁高温造孔碳化后所制备的棉花纤维三维结构碳材料用作锂离子电池负极材料能提高电池比容量,体现较为优异的循环性能。
将所得实施以造孔剂硝酸镁溶液浓度为0.75mol/L(即硝酸镁为15mmol)的棉花纤维三维结构碳材料制成的锂离子电池分别在倍率为100mA/g、500mA/g、1.0A/g、2.0A/g、5.0A/g、10.0A/g电流密度下分别进行充放电循环以测试电池倍率性能如图9所示。由图9可知锂离子电池经过大电流充放电后,再进行2.0A/g充放电,其容量高于初始2.0A/g电流密度下容量,体现了更加优异倍率性能。
实施例2
制备竹纤维材料三维结构碳材料:
(1)取一次性竹筷子,物理粉碎至粉末状,得竹纤维粉末;配制7.5mol/L硝酸镁溶液20mL,取1.5g竹纤维粉末充分浸入硝酸镁溶液中;
(2)完全浸润并密封保存于60℃烘箱内24h后,取出,将竹纤维置于80℃烘箱内干燥12h;
(3)烘干的竹纤维在氩气气氛下以5℃/min的升温速率升温至900℃,900℃保温煅烧2h。
(4)待材料自然冷却后,研磨得到黑色粉末状材料。
(5)所得材料分别用0.5mol/L盐酸和去离子水洗涤三次,然后将洗涤后的材料置于80℃下干燥24h,得到干燥的黑色粉末状竹纤维三维结构碳材料。
制得的竹纤维三维结构碳材料为无定型碳材料,用于钠离子电池和锂离子电池均具有较高的充放电容量和倍率性能。
实施例3
制备剑麻纤维材料三维结构碳材料:
(1)取剑麻材质麻布袋,物理粉碎至粉末状,得剑麻纤维粉末;配制10mol/L硝酸钠溶液10mL,取1.5g剑麻纤维粉末充分浸入硝酸钠溶液中;
(2)完全浸润并密封保存于80℃烘箱内12h后,取出,将剑麻纤维置于80℃烘箱内干燥12h;
(3)烘干的剑麻纤维在氩气与5%氢气混合气氛下以8℃/min的升温速率升温至750℃,750℃保温煅烧4h;
(4)待材料自然冷却后,研磨得到黑色粉末状材料;
(5)所得材料分别用3mol/L盐酸和去离子水洗涤三次,然后将洗涤后的材料置于100℃下干燥6h,得到干燥的黑色粉末状剑麻纤维粉三维结构碳材料。
制得的剑麻纤维粉三维结构碳材料为无定型碳材料,用于钠离子电池和锂离子电池均具有较高的充放电容量和倍率性能。
实施例4
制备菠萝果肉纤维材料三维结构碳材料:
(1)配制2.5mol/L硝酸钾溶液20mL,取1.5g干燥的菠萝果肉纤维充分浸入硝酸钾溶液中;
(2)完全浸润并密封保存于85℃烘箱内15h,取出,将菠萝果肉纤维置于80℃烘箱内干燥12h;
(3)烘干的菠萝果肉纤维在氮气与5%氢气混合气氛下以8℃/min的升温速率升温至600℃,600℃保温煅烧6h;
(4)待材料自然冷却后,研磨得到黑色粉末状材料;
(5)所得材料分别用3mol/L盐酸和去离子水洗涤三次,然后将洗涤后的材料置于80℃下干燥12h,得到干燥的黑色粉末状菠萝果肉纤维三维结构碳材料。
制得的菠萝果肉纤维三维结构碳材料为无定型碳材料,用于钠离子电池和锂离子电池均具有较高的充放电容量和倍率性能。
实施例5
制备咖啡渣纤维材料三维结构碳材料:
(1)取咖啡渣,风干后物理粉碎至粉末状,得到咖啡渣纤维粉末;配制5mol/L硝酸钠溶液20mL,取2g咖啡渣纤维粉末充分浸入溶液中;
(2)完全浸润并密封保存于100℃烘箱内4h,取出,将咖啡渣纤维置于80℃烘箱内干燥12h;
(3)烘干的咖啡渣纤维粉末在氩气与10%氢气混合气氛下以10℃/min的升温速率升温至900℃,900℃保温煅烧1h;
(4)待材料自然冷却后,研磨得到黑色粉末状材料;
(5)所得材料分别用1mol/L盐酸和去离子水洗涤三次,然后将洗涤后的材料置于80℃下干燥24h,得到干燥的咖啡渣纤维三维结构碳材料。
制得的咖啡渣纤维三维结构碳材料为无定型碳材料,用于钠离子电池和锂离子电池均具有较高的充放电容量和倍率性能。

Claims (8)

  1. 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料,其特征在于:所述植物纤维三维结构碳材料的微观结构呈三维多孔薄片状与长隧道结构,片状材料厚度为5-30nm。
  2. 制备权利要求1所述的一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料的方法,其特征在于,包括以下步骤:
    (1)取植物纤维材料于硝酸盐溶液中密封浸润;
    (2)密封浸润后,取出植物纤维材料,烘干;
    (3)烘干的植物纤维材料在保护气氛下保温煅烧;
    (4)取出已碳化的植物纤维材料,压碎研磨至粉末状;
    (5)依次用0.5-3mol/L的盐酸及去离子水分别洗涤,烘干,得到干燥的黑色粉末状植物纤维三维结构碳材料。
  3. 根据权利要求2所述的一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料的制备方法,其特征在于:步骤(1)中,所述植物纤维材料包括种子纤维系列、韧皮纤维系列、叶纤维系列、果实纤维系列或植物废弃纤维系列;所述种子纤维系列包括棉纤维或木棉纤维,所述韧皮纤维系列包括亚麻或竹纤维,所述叶纤维系列包括剑麻、菠萝纤维或蕉麻,所述果实纤维系列包括椰子纤维或菠萝果肉纤维,所述植物废弃纤维系列包括咖啡渣或使用后的一次性竹筷子。
  4. 根据权利要求2所述的一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料的制备方法,其特征在于:步骤(1)中,所述硝酸盐为硝酸镁、硝酸钠和硝酸钾中的一种以上,所述硝酸盐溶液的浓度为0.1-10mol/L。
  5. 根据权利要求2所述的一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料的制备方法,其特征在于:步骤(1)中,所述密封浸润的温度为60~100℃,密封浸润的时间为4-24h。
  6. 根据权利要求2所述的一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料的制备方法,其特征在于:步骤(3)中,所述保护气氛为惰性气氛、还原气氛或混合气氛;所述惰性气氛为氮气或氩气,所述还原气氛指氢气;所述混合气氛为氮气-氢气混合气体或氩气-氢气混合气体,其中氢气的体积比例为0%-10%。
  7. 根据权利要求2所述的一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料的制备方法,其特征在于:步骤(3)中,所述保温煅烧过程的升温速率为5-10℃/min,保温煅烧的温度为600-900℃,保温煅烧的时间为1-6h。
  8. 根据权利要求2所述的一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料的制备方法,其特征在于:步骤(2)、(5)中,所述烘干是在烘箱60-100℃下干燥6-24h。
PCT/CN2017/113058 2017-01-04 2017-11-27 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法 WO2018126818A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/315,149 US20190312277A1 (en) 2017-01-04 2017-11-27 Three-dimensional structured plant-fiber carbon material for use as anode material for sodium-ion battery and lithium-ion battery, and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610963618.7 2017-01-04
CN201610963618.7A CN106654267A (zh) 2017-01-04 2017-01-04 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2018126818A1 true WO2018126818A1 (zh) 2018-07-12

Family

ID=58820650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113058 WO2018126818A1 (zh) 2017-01-04 2017-11-27 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法

Country Status (3)

Country Link
US (1) US20190312277A1 (zh)
CN (1) CN106654267A (zh)
WO (1) WO2018126818A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719891A (zh) * 2018-11-23 2020-01-21 辽宁星空钠电电池有限公司 基于生物质的钠离子电池硬碳负极材料及其制备方法和应用
CN113506866A (zh) * 2021-06-28 2021-10-15 山东玉皇新能源科技有限公司 一种碳包覆的Fe2O3/硬碳复合材料及其制备方法
CN116395670A (zh) * 2023-04-24 2023-07-07 河北民族师范学院 一种钠离子电池硬碳负极材料的制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654267A (zh) * 2017-01-04 2017-05-10 华南理工大学 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法
CN107994222B (zh) * 2017-12-06 2020-06-09 中南大学深圳研究院 一种三明治结构碳基复合材料及其制备方法和应用
CN108622877B (zh) * 2018-04-09 2022-01-28 中国矿业大学 一种具有多级孔构造的氮掺杂多孔碳材料及其制备方法与应用
CN108923047B (zh) * 2018-06-29 2020-09-25 中南林业科技大学 锂离子电池用中空炭纤维负极材料及其制备方法和应用
CN109192942B (zh) * 2018-08-15 2021-10-15 中原工学院 一种钠离子电池电极材料及其制备方法
CN111987293A (zh) * 2019-05-21 2020-11-24 中国科学院物理研究所 硝酸和/或硝酸盐改性的碳基负极材料及其制备方法和用途
CN113036073B (zh) * 2019-12-09 2022-07-19 中国科学院上海硅酸盐研究所 用于固态锂硫电池的一种复合正极及其制备方法
CN111945250A (zh) * 2020-08-26 2020-11-17 西南交通大学 生物质多孔碳纤维、其制备方法及应用
CN114180571B (zh) * 2020-09-14 2023-06-16 华中科技大学 一种氮掺杂碳基储锂材料及其制备方法和应用
CN112310371A (zh) * 2020-10-19 2021-02-02 华东理工大学 一种羟基氧化铁/生物质炭复合材料及其制备方法
CN112599752B (zh) * 2021-01-06 2023-07-18 天津工业大学 一种碳包覆中空木棉纤维承载花状二硫化钼复合材料作为钠离子电池负极材料的制备方法
CN113036123B (zh) * 2021-03-09 2022-04-12 南京邮电大学 一种碳材料的应用及其模拟仿真方法
CN113453524B (zh) * 2021-04-23 2022-11-18 中南林业科技大学 一种基于竹木材三维孔框架的磁性金属复合材及其制备方法和应用
CN113363452B (zh) * 2021-05-10 2023-08-01 武汉理工大学 自支撑磷/碳三维导电网络复合电极材料及其制备方法和应用
CN113506865B (zh) * 2021-06-28 2024-03-22 山东玉皇新能源科技有限公司 一种电池负极材料及其制备方法
CN114177884A (zh) * 2021-11-19 2022-03-15 天津工业大学 三维整体型纤维状多孔碳材料、制备方法及应用
CN114635201A (zh) * 2022-01-29 2022-06-17 商丘师范学院 一种蝉衣热解碳纤维及其制备方法和应用
CN114715882B (zh) * 2022-03-15 2023-08-18 北京理工大学 一种多绒毛状碳管材料及其制备方法
CN114737279B (zh) * 2022-03-25 2023-02-24 北京科技大学 一种生物质中空碳纤维及其制备方法、电极材料、电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767505A1 (en) * 1995-10-03 1997-04-09 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous electrode material for secondary battery and process for production thereof
CN103066294A (zh) * 2013-01-28 2013-04-24 福州大学 一种由植物纤维制备锂电材料的方法
CN104701498A (zh) * 2015-03-27 2015-06-10 陕西科技大学 一种生物碳/钒酸铵锂离子电池正极材料的制备方法
CN105742571A (zh) * 2016-03-30 2016-07-06 陕西科技大学 空心管状结构的生物碳用锂离子电池负极材料及制备方法
CN106207188A (zh) * 2016-08-16 2016-12-07 安徽师范大学 三维超薄碳基复合材料及其制备方法和应用
CN106299384A (zh) * 2016-10-14 2017-01-04 北京理工大学 一种基于生物炭的锂空电池正极电极片
CN106654267A (zh) * 2017-01-04 2017-05-10 华南理工大学 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441242B (zh) * 2013-09-13 2015-10-28 桂林理工大学 基于化学活化的剑麻炭纤维制备锂离子电池负极材料的方法
CN106365163B (zh) * 2016-08-23 2018-10-09 中南大学 一种剑麻纤维活性炭的制备方法及该剑麻纤维活性炭在锂离子电容器中的应用
CN106356517A (zh) * 2016-10-28 2017-01-25 华南理工大学 一种钠离子电池与锂离子电池负极植物生物质碳掺杂硫氮复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767505A1 (en) * 1995-10-03 1997-04-09 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous electrode material for secondary battery and process for production thereof
CN103066294A (zh) * 2013-01-28 2013-04-24 福州大学 一种由植物纤维制备锂电材料的方法
CN104701498A (zh) * 2015-03-27 2015-06-10 陕西科技大学 一种生物碳/钒酸铵锂离子电池正极材料的制备方法
CN105742571A (zh) * 2016-03-30 2016-07-06 陕西科技大学 空心管状结构的生物碳用锂离子电池负极材料及制备方法
CN106207188A (zh) * 2016-08-16 2016-12-07 安徽师范大学 三维超薄碳基复合材料及其制备方法和应用
CN106299384A (zh) * 2016-10-14 2017-01-04 北京理工大学 一种基于生物炭的锂空电池正极电极片
CN106654267A (zh) * 2017-01-04 2017-05-10 华南理工大学 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719891A (zh) * 2018-11-23 2020-01-21 辽宁星空钠电电池有限公司 基于生物质的钠离子电池硬碳负极材料及其制备方法和应用
CN113506866A (zh) * 2021-06-28 2021-10-15 山东玉皇新能源科技有限公司 一种碳包覆的Fe2O3/硬碳复合材料及其制备方法
CN113506866B (zh) * 2021-06-28 2023-11-14 山东玉皇新能源科技有限公司 一种碳包覆的Fe2O3/硬碳复合材料及其制备方法
CN116395670A (zh) * 2023-04-24 2023-07-07 河北民族师范学院 一种钠离子电池硬碳负极材料的制备方法

Also Published As

Publication number Publication date
US20190312277A1 (en) 2019-10-10
CN106654267A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018126818A1 (zh) 一种作为钠离子电池与锂离子电池负极材料的植物纤维三维结构碳材料及其制备方法
CN103050699B (zh) 一种锂离子电池软碳负极材料及其制备方法
CN103337631B (zh) 提高钛酸锂高倍率放电性能并抑制产气的碳氮共包覆方法
CN102244292A (zh) 锂离子电池离子液体基凝胶聚合物电解质及制备与应用
CN109585832B (zh) 一种硫掺杂微晶石墨及其制备方法和作为钠离子电池负极材料的应用
CN115385323A (zh) 杂原子掺杂生物质衍生硬碳负极材料及其制备方法
CN108987704A (zh) 一种具有多孔结构的锂离子电池硅碳复合负极材料的制备方法及其应用
CN109411737B (zh) 一种具有三维结构的极性硫化物-硫/多孔碳复合正极材料及其制备方法
CN113178562B (zh) 一种织物状碳包覆二氧化硅复合材料和应用
CN111017903A (zh) 一种高性能碳阳极pan硬碳材料及其制备方法
CN102610804A (zh) 锂离子电池负极材料的制备方法、锂离子电池负极及锂离子电池
CN107881600B (zh) 一种用于锂离子电池负极的纳米碳纤维的制备方法及其应用
CN116885144B (zh) 一种用于锂电池负极材料的硅碳复合材料及其制备方法
CN112421049A (zh) 一种球磨制备锂电池硅碳负极材料的方法、硅碳负极材料
CN116040611A (zh) 一种锂离子电池薄膜负极材料及制备方法和应用
CN111009652A (zh) 一种硫/三聚氰胺基多孔骨架复合材料及其制备方法和应用
CN104271648A (zh) 聚丙烯腈-甲基丙烯酸甲酯凝胶电解质膜的制备方法,及其相应电解质和制备方法
CN110854357A (zh) 一种镶嵌硅颗粒的纳米碳纤维负极材料电极片的制备方法
CN114873579A (zh) 一种复合炭微球、其制备方法及应用
CN110429253B (zh) 基于硅倍半氧烷的氮掺杂硅碳复合负极材料及其制备方法
CN114551830A (zh) 一种氧化石墨烯包覆人造石墨锂离子负极材料的制备方法
CN110518194B (zh) 一种原位碳包覆制备核壳型硅/碳复合材料的方法及其应用
CN108807921B (zh) 一种锂电池负极材料及其制备方法
CN106532024B (zh) 石墨烯担载纳米硼的锂离子电池的负极材料的制备方法
CN109133029A (zh) 一种锂离子电池负极材料的制备方法及其制备的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 17889907

Country of ref document: EP

Kind code of ref document: A1