WO2018123299A1 - 半導体装置、半導体装置の製造方法、及び、固体撮像素子 - Google Patents

半導体装置、半導体装置の製造方法、及び、固体撮像素子 Download PDF

Info

Publication number
WO2018123299A1
WO2018123299A1 PCT/JP2017/040764 JP2017040764W WO2018123299A1 WO 2018123299 A1 WO2018123299 A1 WO 2018123299A1 JP 2017040764 W JP2017040764 W JP 2017040764W WO 2018123299 A1 WO2018123299 A1 WO 2018123299A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
insulating film
low resistance
semiconductor device
vertical hole
Prior art date
Application number
PCT/JP2017/040764
Other languages
English (en)
French (fr)
Inventor
卓志 重歳
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201780075272.XA priority Critical patent/CN110088883B/zh
Priority to US16/349,886 priority patent/US11335720B2/en
Publication of WO2018123299A1 publication Critical patent/WO2018123299A1/ja
Priority to US17/661,950 priority patent/US20220262842A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration

Definitions

  • the present technology relates to a semiconductor device, a method for manufacturing a semiconductor device, and a solid-state imaging element.
  • the three-dimensional mounting technique is a technique for stacking and joining a plurality of manufactured chips in the thickness direction of the substrate, and is expected as a technique for improving the degree of integration of semiconductor devices and realizing high functionality.
  • a through electrode (silicon through electrode or chip through electrode) as a vertical electrode is used as an electrical connection between stacked chips.
  • the through electrode is generally formed by a manufacturing method including a step of drilling in a chip thickness direction by a plasma etching method to form a through hole that leads to a wiring portion to be connected.
  • the electric charge of the plasma colliding with the bottom of the hole during excavation may be charged inside the through hole, and damage may be caused to other parts via the wiring part to be connected.
  • a thin insulating film (such as a gate insulating film) in contact with any part electrically connected to the wiring portion to be connected may be destroyed or deteriorated.
  • Patent Documents 1 and 2 are disclosed as techniques for preventing destruction or deterioration due to charging damage inside the through hole.
  • Patent Document 1 discloses a technique for preventing charging inside a through hole in a step of cleaning a via hole bottom after forming a through hole and before embedding an electrode material in the via hole. Specifically, after forming a conductive film covering the inner surface of the via hole by sputtering of TiN, the conductive film deposited on the bottom surface of the via hole is removed by anisotropic ion etching, and the via hole is formed at the final stage of anisotropic ion etching. The surface of the lower layer wiring exposed on the bottom is cleaned.
  • anisotropic ion etching is performed with the inner surface of the via hole covered with the conductive film in this way, the surface of the lower layer wiring exposed to the bottom of the via hole is cleaned by anisotropic ion etching without charging the lower layer wiring. it can.
  • Patent Document 2 discloses an etching process in which a plasma etching process using C 4 F 6 , O 2 , and Ar and a charge-up mitigation process using only Ar are alternately performed when processing a fine contact hole of submicron or less. Is disclosed.
  • the wafer is etched, negative charges are accumulated around the resist mask, positive charges are accumulated at the bottom of the contact hole, and a fluorocarbon film is formed on the inner wall of the contact hole.
  • the charge-up mitigation process ions generated only in the Ar state sputter the fluorocarbon film to improve the film quality of the fluorocarbon film and improve the conductivity, and negative charges around the resist mask are guided to the bottom of the contact hole. It is neutralized. Thereby, the distortion of the contact hole resulting from the charge-up can be reduced.
  • Patent Document 1 is effective in relaxing charging inside the through hole in the via hole bottom surface cleaning process, but does not mention charging during plasma etching for forming the via hole.
  • a structure that is strict against charging such as a through electrode
  • a thin insulating film in contact with any part electrically connected to the wiring part to be connected at the time of opening to the wiring part by etching has been destroyed or deteriorated
  • a countermeasure only at the time of cleaning before sputtering is insufficient as a countermeasure against charging damage.
  • Patent Document 2 Although the technique described in Patent Document 2 is presumed to have a certain effect in reducing charging damage during formation of the through electrode, the conductivity of the carbon polymer called a fluorocarbon film is not so high. There are limits to mitigation. Further, when used in actual production, a large amount of reaction products in which a carbon polymer that is difficult to remove and a wiring metal (mainly Cu wiring is assumed) are generated, which adversely affects yield and reliability. In addition, since the etching and the formation of the fluorocarbon film are repeated, there is a demerit that the processing time becomes long.
  • the present technology has been made in view of the above problems, and suppresses that a thin insulating film in contact with any portion electrically connected to a wiring portion to be connected to a vertical electrode is destroyed or deteriorated due to charging damage. Accordingly, it is an object of the present invention to ease design restrictions necessary for avoiding charging damage and to improve the degree of freedom related to the design for increasing the degree of semiconductor integration.
  • barrier metal film and the barrier metal film are formed in order from the side close to the insulating film exposed to the vertical hole formed in the vertical hole extending from the opening portion toward the connection target site along the thickness direction of the base body.
  • a vertical electrode having a structure in which conductive materials are laminated, and a low resistance having a resistance value lower than that of the insulating film provided between the barrier metal film and the insulating film except for the vicinity of the connection target portion A semiconductor device.
  • One aspect of the present technology includes a first step of forming a preliminary vertical hole in the base body having a depth at which the insulating film is exposed at the hole wall and the bottom of the hole does not reach the connection target site; A second step of forming a low resistance film having a resistance value lower than that of the insulating film inside the preliminary vertical hole, and etching the bottom of the preliminary vertical hole together with the low resistance film and the insulating film to the connection target site; A third step of forming a vertical hole by opening, forming a barrier metal film in the vertical hole communicating with the connection target site, and depositing or filling a conductive material on the barrier metal film to form a vertical type
  • a method for manufacturing a semiconductor device comprising: a fourth step of forming an electrode.
  • one of the selective aspects of the present technology is that from the opening on the back surface of the semiconductor substrate along the thickness direction of the semiconductor substrate toward the connection target site in the wiring layer stacked on the surface of the semiconductor substrate.
  • a solid-state imaging device having a vertical electrode formed in an extending vertical hole, wherein the vertical electrode has a structure in which a barrier metal film and an electrode material are laminated in order from the side close to the insulating film exposed in the vertical hole.
  • the solid-state imaging device is provided such that a low resistance film having a resistance value lower than that of the insulating film is interposed between the barrier metal film and the insulating film except in the vicinity of the connection target portion.
  • semiconductor device and the solid-state imaging device described above include various modes such as being implemented in another device or implemented together with another method.
  • the present technology it is possible to suppress a variation in transistor characteristics due to charging damage, thereby relaxing design restrictions necessary for avoiding charging damage and improving the degree of freedom in designing to increase the degree of semiconductor integration.
  • the effects described in the present specification are merely examples and are not limited, and may have additional effects.
  • FIG. 1 is a diagram for explaining a cross-section of a main part of a semiconductor device 100 according to the present embodiment.
  • the semiconductor device 100 is a semiconductor chip formed of silicon or the like, and has a vertical electrode 30 extending along the thickness direction.
  • the base portion before the vertical electrode 30 is formed in the semiconductor chip is referred to as the base 10.
  • the vertical electrode 30 is for electrically connecting the wiring 11 extending along one surface 10A of the base 10 and the connection target site T such as an electrode pad inside the base 10.
  • the vertical electrode 30 is a concept including various aspects, and includes a bottomed via and a contact formed in a bottomed hole extending along the thickness direction of the substrate 10.
  • the connection target portion T the connection target portion T
  • the vertical electrode 30 is a semiconductor. An explanation will be given by taking as an example a case of a through electrode penetrating from the back surface of the substrate 10a (corresponding to one surface 10A of the base body 10) to a specific wiring in the wiring layer 10b.
  • the vertical electrode 30 has a substantially cylindrical shape that covers most of the insulating film 13 from the inner side of the insulating film 13 as the first insulating film that covers the inner surface of the vertical hole 12 communicating with the connection target site T of the base body 10.
  • a low resistance film 14 is provided as a film, and a cylindrical or columnar electrode portion 15 is further provided in the cylinder of the low resistance film 14 in a nested manner.
  • the insulating film 13 may be laminated in the vertical hole 12, or the insulating film of the base body 10 itself may be exposed by forming the vertical hole 12. Below, the case where the insulating film 13 is laminated and formed in the vertical hole 12 will be described as an example.
  • the electrode part 15 has a barrier metal film 15a and a conductive part 15b.
  • the barrier metal film 15a is a member that isolates the metal material of the conductive portion 15b so as not to diffuse to the base-side member, and the conductive portion 15b and other members (the low resistance film 14, the insulating film 13, and the connection target portion T) Between.
  • the barrier metal film 15a is formed of at least one of Ti, TiN, Ta, and TaN, for example.
  • the conductive portion 15b is formed of at least one of Cu and W, for example.
  • the conductive portion 15b in the vertical hole 12 may be in the form of a film, or may be in the form of a column filled in a cylindrical space surrounded by the barrier metal film 15a.
  • the resin is filled in the cavity inside the conductive portion 15b continuously with the resin covering the wiring 11.
  • Other films may be interposed between the insulating film 13, the barrier metal film 15a, and the conductive portion 15b.
  • the vertical electrode 30 has a diameter of 10 ⁇ m or more and an aspect ratio of 1 or more, more preferably an aspect ratio of 3 or more.
  • the insulating film 13 formed on the inner wall of the vertical hole 12 has a tapered shape in which the thickness gradually decreases from the opening 12a of the vertical hole 12 toward the hole bottom 12b. That is, the vertical hole 12 has an overhang shape in which the inner wall gradually protrudes from the hole bottom 12b toward the opening 12a.
  • the insulating film 13 has an extending portion 13a that bends and extends substantially in the radial direction of the vertical hole 12 from the insulating film 13 that covers the inner wall of the vertical hole 12 in the vicinity of the hole bottom 12b.
  • the extending portion 13a has a length that does not reach the substantially radial center of the vertical hole 12, and has a ring-like flange shape that protrudes inward from the inner wall of the vertical hole 12 in the vicinity of the hole bottom 12b of the vertical hole 12. .
  • the vicinity of the hole bottom 12b of the vertical hole 12 has an opening H1 that is not covered with an insulating film.
  • a low resistance film 14 is continuously provided from the vicinity of the opening 12a of the vertical hole 12 to the vicinity of the hole bottom 12b.
  • the low resistance film 14 is provided along the inner side of the insulating film 13 extending along the inner wall of the vertical hole 12, and the opening of the extending portion 13 a extending along the hole bottom 12 b of the vertical hole 12. It is provided along the side surface 13a1 on the part 12a side.
  • the low resistance film 14 is not provided on the end surface 13a2 on the opening H1 side of the extending portion 13a, and the low resistance film 14 provided on the side surface 13a1 is an opening having substantially the same shape as the opening H1 of the extending portion 13a. H2.
  • the low resistance film 14 extends from the vicinity of the opening of the vertical hole 12 to the vicinity of the hole bottom 12b, but is not in contact with the hole bottom 12b. There is a portion where the resistance film 14 is not provided.
  • a portion of the vertical hole 12 where the low resistance film 14 is not provided on the side wall (a portion closer to the connection target portion T than the end of the low resistance film 14) has an aspect ratio of less than 1 (excluding 0).
  • the aspect ratio is preferably 0.1 to 0.2 (excluding 0).
  • the aspect ratio of the portion where the low resistance film 14 is not provided on the side wall in the vertical hole 12 is low, the charge charged in the vicinity of the hole bottom 12b of the vertical hole 12 after the low resistance film 14 is formed is Neutralization is achieved by charge transfer through the low resistance film 14.
  • the low resistance film 14 formed on the inner wall of the insulating film 13 is thicker at a portion closer to the opening 12a of the vertical hole 12 in the depth direction of the vertical hole 12, and gradually becomes thicker as it approaches the hole bottom 12b. It is a tapered shape that becomes thinner.
  • the low resistance film 14 has a lower resistance than the insulating film 13 and the extended portion 13a, and (metal) diffusion and interaction with the insulating film 13, the extended portion 13a, the semiconductor substrate 10a, and the like are less likely to occur.
  • Various materials can be used as long as the adhesion between the laminated film (in the example shown in FIG. 1, the insulating film 13 or the extension 13 a and the barrier metal film 15 a) is good.
  • the resistance value of the low resistance film 14 is less than 10 6 ⁇ cm.
  • the material of the low resistance film 14 include Ti, TiN, Ta, TaN, Zr, ZrN, Hf, HfN, Ru, Co, W, WN, Mn, MnN, Al, Sn, Zn, Si, Ge, Ga, SiN, etc. are mentioned.
  • SiN it is desirable to use, for example, SiN having an atomic ratio of N of 50% or less instead of stoichiometric SiN.
  • the low resistance film 14 may itself have the same barrier property as the barrier metal film 15a that prevents metal diffusion of the conductive portion 15b.
  • Specific examples of the material of the low resistance film 14 having barrier metal properties include Ti, TiN, Ta, TaN, Zr, ZrN, Hf, HfN, Ru, Co, W, WN, Mn, and MnN.
  • an insulating film 16 (a premetal interlayer insulating film or the like) as a second insulating film is interposed between the connection target site T and the extending portion 13a. Also in the insulating film 16, an opening H3 is formed in a substantially same position and shape as the opening H1 of the extending portion 13a and the opening H2 of the low resistance film 14 in a plan view. That is, the hole bottom 12b is provided with an opening penetrating vertically (in the depth direction of the vertical hole 12) as a whole in the laminated portion of the extending portion 13a, the low resistance film 14 and the insulating film 16.
  • the insulating film 17, the low resistance film 18, the barrier metal film 19, and the conductive portion 20 are sequentially laminated on one surface 10 ⁇ / b> A of the substrate 10. Other films may be interposed between these films. These films are integrally formed continuously with the corresponding films in the vertical hole 12. That is, the insulating film 17 is formed integrally with the insulating film 13, the low resistance film 18 is formed with the low resistance film 14, the barrier metal film 19 is formed with the barrier metal film 15a, and the conductive portion 20 is formed with the conductive portion 15b. Yes. Bumps 21 are provided on the wiring 11 formed by the conductive portion 20 on the surface 10A.
  • FIGS 2 to 7 are diagrams for explaining an example of the manufacturing method of the semiconductor device 100 according to the present embodiment.
  • an insulating film 16 (premetal interlayer insulating film) made of a silicon oxide film is formed on a semiconductor substrate 10a on which elements such as MOS transistors are formed, and a wiring layer 10b is sequentially stacked on the insulating film 16.
  • a specific wiring of the lower device serving as the connection target site T is formed near the boundary with the wiring layer 10 b.
  • the substrate 10 thus created is reversed so that the state shown in FIG. 2 is obtained.
  • a through hole 12 'as a preliminary vertical hole penetrating the semiconductor substrate 10a is formed by lithography and plasma etching.
  • the through hole 12 ′ is formed with a depth that penetrates the semiconductor substrate 10 a and does not reach the connection target site T.
  • an insulating film 13 for insulating the semiconductor substrate 10a and the vertical electrode 30 is formed.
  • the insulating film 13 is a silicon oxide film, for example, and is laminated by a PE-CVD (Plasma-enhanced chemical vapor deposition) method.
  • the insulating film 13 formed by the PE-CVD method has an overhang shape that gradually protrudes from the bottom of the through hole 12 ′ toward the opening.
  • the insulating film 17 is laminated on one surface 10A of the semiconductor substrate 10a, and a part of the entire bottom of the through-hole 12 ′ is left as an extended portion 13a in a later step. An insulating film that is removed while being stacked is formed.
  • a low resistance film 14 is formed on the insulating film 13.
  • the low resistance film 14 is formed by a low coverage film forming method such as PE-CVD.
  • the low resistance film 14 is highly compatible with a semiconductor process, and various materials having a resistance value of less than 10 6 ⁇ cm can be used. Specifically, for example, Ti, TiN, Ta, TaN, Zr, ZrN, Hf, HfN, Ru, Co, W, WN, Mn, MnN, Al, Sn, Zn, Si, Ge, Ga, SiN are used. be able to.
  • As SiN it is desirable to use, for example, SiN having an atomic ratio of N of 50% or less instead of stoichiometric SiN.
  • SiN it is desirable to use, for example, SiN having an atomic ratio of N of 50% or less instead of stoichiometric SiN.
  • SiN it is desirable to use, for example, SiN having an atomic ratio of N of 50% or less instead of s
  • an opening is formed in the bottom of the through hole 12 ′ to expose the connection target portion T in the hole, and the vertical hole 12 is formed.
  • the low resistance film 14 and the insulating film 13 at the bottom of the through hole 12 ′ and the insulating film 16 which is a premetal interlayer insulating film on the connection target site T are removed by, for example, plasma etching.
  • etching is performed using at least one kind of rare gas such as fluorocarbon gas, hydrofluorocarbon gas, and Ar as an etching gas.
  • the low resistance film 14 and the insulating films 13 and 16 are processed separately, the low resistance film 14 is etched using at least one kind of rare gas such as Cl 2 , BCl 3 , HBr, Ar, etc. as an etching gas. Thereafter, the insulating film 13.16 is etched using at least one kind of a rare gas such as a fluorocarbon gas, a hydrofluorocarbon gas, and Ar as an etching gas.
  • a rare gas such as a fluorocarbon gas, a hydrofluorocarbon gas, and Ar
  • the low resistance film 14 formed by the PE-CVD method is formed thicker in the field portion of the semiconductor substrate 10a than the bottom of the through hole 12 ', the low resistance film 14 remains in the field portion even after etching.
  • the effect of a so-called hard mask that suppresses the abrasion of the insulating film 17 in the field portion can also be expected.
  • a cleaning process is performed to remove the polymer adhering to the side surfaces of the vertical holes 12 and the residue of the connection target site T by etching.
  • the cleaning step is performed by cleaning with an organic chemical solution or dilute hydrofluoric acid.
  • a metal material having a diffusibility such as Cu is used for the connection target portion T, and Ti, TiN, Ta, TaN, Zr, ZrN, Hf, HfN, Ru, Co, W, WN, which have barrier metal properties,
  • Mn, MnN, or the like is used as the low resistance film 14, there is also an effect of preventing diffusion of the metal material adhering to the side surface during etching into the substrate 10.
  • a barrier metal film 15 a is formed in the vertical hole 12 and in the field portion of the substrate 10.
  • the barrier metal film 15a is formed by depositing at least one of Ti, TiN, Ta, and TaN by, for example, PE-CVD.
  • the conductive portion 15b is formed.
  • the conductive portion 15b is produced by, for example, forming a conductive material made of at least one of Cu and W by a plating method. Thereby, as shown in FIG. 7, a conductive material is formed or filled in the vertical holes 12 to form the conductive portions 15b. Thereafter, unnecessary portions of the conductive portion 15b, the barrier metal film 15a, and the low resistance film 14 formed in the field portion are removed by wet etching, and the wiring 11 is formed in the field portion.
  • the semiconductor device 100 described above is created by the manufacturing method described above.
  • FIG. 8 is a diagram for explaining a cross-section of the main part of the semiconductor device 200 according to the present embodiment.
  • the semiconductor device 200 has the same configuration as the semiconductor device 100 described above except for the low resistance film near the hole bottom, the insulating film, and the shape of the barrier metal film and conductive portion formed thereon.
  • the low resistance film near the hole bottom of the semiconductor device 200 the insulating film, the shape of the barrier metal film formed on the insulating film and the conductive part, and the manufacturing method will be described. A detailed description is omitted, and a reference numeral with 2 added to the head of the reference numeral of the configuration of the semiconductor device 100 as necessary.
  • the low resistance film 214 of the semiconductor device 200 is continuously provided inside the insulating film 213 from the vicinity of the opening 212a of the vertical hole 212 to the vicinity of the hole bottom 212b. Similar to membrane 14.
  • the low resistance film 214 is provided along the inner side of the insulating film 213 extending along the inner wall of the vertical hole 212, and the side surface near the opening 212 a of the extending part 213 a extending along the hole bottom 212 b of the vertical hole 212. Further, an opening end surface cover 221 extending toward the connection target site 2T is provided along the end surface on the opening 2H1 side of the extending portion 213a.
  • the insulating film 216 is provided with a recess 222 continuously formed with substantially the same width as the opening 2H1 of the extending portion 213a, and the opening end surface cover portion 221 is formed of the extending portion. It extends so as to cover both the opening 2H1 of 213a and the inner surface of the recess 222.
  • the concave portion 222 does not reach the connection target site 2T, and thus has a length that does not reach the connection target site 2T.
  • the portion closer to the connection target portion T than the end portion of the opening end surface cover portion 221 in the vertical hole 212 has an aspect ratio of less than 1 (excluding 0), and more preferably the aspect ratio is 0.1. ⁇ 0.2 or less (excluding 0).
  • the recess 222 does not necessarily have to be formed in the insulating film 216, and the opening end face cover lid 221 may have a shape extending partway in the thickness direction of the extension 213a.
  • the hole bottom 212b of the vertical hole 212 is formed after the low resistance film 214 is formed.
  • the charge charged in the vicinity is easily transferred through the low resistance film 214, and the charge relaxation effect is improved.
  • FIG. 9 to 11 are views for explaining an example of a method for manufacturing the semiconductor device 200 according to the present embodiment.
  • the manufacturing method of the semiconductor device 200 is the same as the manufacturing method of the semiconductor device 100 until the preparation of the base 210, the formation of the vertical holes 212, and the formation of the insulating film 213.
  • the insulating film 213 and the insulating film 216 at the bottom of the through hole 212 ′ as a preliminary vertical hole are insulated so as not to reach the insulating film 216.
  • the film 213 only) is removed by plasma etching halfway toward the connection target site 2T to form a recess 222 at the bottom of the through hole 212 ′.
  • This plasma etching is performed using at least one of Cl 2 , BCl 3 , HBr, and Ar as an etching gas.
  • a low resistance film 214 is laminated on the insulating film 213 and in the recess 222.
  • etching is performed using at least one kind of a rare gas such as a fluorocarbon gas, a hydrofluorocarbon gas, and Ar as an etching gas.
  • the low resistance film 214 and the insulating film 216 are processed separately, after etching the low resistance film 214 using at least one of Cl 2 , BCl 3 , HBr, and Ar as an etching gas, a fluorocarbon gas,
  • the insulating film 216 is etched using at least one of a rare gas such as a hydrofluorocarbon gas and Ar as an etching gas.
  • the barrier metal film 215a, the conductive portion 215b, and the wiring 211 are formed, whereby the semiconductor device 200 shown in FIG. 8 is created.
  • FIG. 12 is a diagram for explaining a cross-section of the main part of the semiconductor device 300 according to the present embodiment.
  • the semiconductor device 300 has the same configuration as that of the semiconductor device 100 described above except for the number of times the low resistance film is stacked.
  • the low resistance film 314 of the semiconductor device 300 is continuously provided on the inner side of the insulating film 313 from the vicinity of the opening 312a of the vertical hole 312 to the vicinity of the hole bottom 312b with respect to the low resistance film 14 of the semiconductor device 100. It is the same.
  • the low resistance film 314 includes an opening 312a of the low resistance film 314a provided along the inner side of the insulating film 313 extending along the inner wall of the vertical hole 312 and the insulating film 313a extending along the hole bottom 312b of the vertical hole 312. It has a low resistance film 314b provided along the side surface close to it, and an opening end face cover 314c extending toward the connection target site 3T along the end face on the opening 3H1 side of the insulating film 313a.
  • the low resistance film 314 has a multi-layer structure formed in two or more times. In the case where the low resistance film 314 is laminated in three times, if the first layer L1, the second layer L2, and the third layer L3 are formed in the order of lamination, the low resistance films 314a and 314b are the first layer L1 and the second layer L2.
  • the third layer L3 has a laminated structure in which all three layers are laminated.
  • the opening end face cover portion 314c has a laminated structure in which two layers of the second layer L2 and the third layer L3 excluding the first layer L1 laminated first are laminated.
  • the connection target of the third layer L3 stacked later near the center of the vertical hole 312 than the end of the second layer L2 stacked earlier than the connection target portion T.
  • the end portion closer to the portion T has a structure that extends longer to the vicinity of the connection target portion 3T, and the first layer L1, the second layer L2, and the third layer L3 of the low resistance film 314 as a whole are also seen.
  • a layer having a step-like lower structure in which the end portion closer to the connection target site T gradually becomes longer toward the connection target site T as the layers are stacked in order.
  • the portion of the vertical hole 312 closer to the connection target portion T than the entire low resistance film 314 has an aspect ratio of less than 1 (excluding 0), and more preferably the aspect ratio is 0.1 to 0. 0. 0. 2 or less (excluding 0).
  • the hole bottom 312b of the vertical hole 312 is formed after the low resistance film 314 is formed.
  • the charge charged in the vicinity is easily transferred through the low resistance film 314, and the effect of relaxing the charge in the vicinity of the hole bottom 312b of the vertical hole 312 is improved.
  • the manufacturing method of the semiconductor device 300 includes the steps of preparing the base 310, forming the vertical holes 312, forming the insulating film 313, and forming the low-resistance film 314 (first layer L1). It is the same.
  • a recess 322a is formed.
  • the etching method of the low resistance film 314 and the insulating films 313 and 316 is the same as that in the first embodiment.
  • a low resistance film 314 corresponding to the second layer L2 is laminated and formed on the entire through hole 312 'including the inside of the first recess 322a. That is, at the portion where the first layer L1 remains, the second layer L2 is laminated on the first layer L1, and the low resistance film 314 has a multilayer structure.
  • a second recess 322b is formed mainly at the bottom of the first recess 322a so as not to reach the connection target site 3T.
  • a low resistance film 314 corresponding to the third layer L3 is laminated and formed on the entire through hole 312 'including the inside of the second recess 322b. That is, for the remaining part of the second layer L2, the third layer L3 is laminated on the second layer L2, and the three layers of the first layer L1, the second layer L2, and the third layer L3 are laminated.
  • the barrier metal film 315a, the conductive portion 315b, and the wiring 311 are formed, whereby the semiconductor device 300 shown in FIG. 12 is formed.
  • FIG. 18 is a diagram for explaining a cross-section of the main part of the semiconductor device 400 according to the present embodiment.
  • the semiconductor device 400 has the same configuration as the semiconductor device 100 described above except for the overall shape of the low resistance film and the manufacturing method.
  • the overall shape and manufacturing method of the low-resistance film in the semiconductor device 400 will be mainly described, detailed description of other configurations will be omitted, and 4 at the top of the reference numerals of the configuration of the semiconductor device 100 as necessary.
  • symbol with attached is shown.
  • the low resistance film 414 of the semiconductor device 400 is continuously provided inside the insulating film 413 from the vicinity of the opening 412a of the vertical hole 412 to the vicinity of the hole bottom 412b. It is the same.
  • An insulating film 417, a barrier metal film 419, and a conductive portion 420 are sequentially stacked on one surface 410A of the base 410. Other films may be interposed between these films, but the low resistance film 414 is not laminated on one surface 410A. However, since the low resistance film 414 provided along the inner side of the insulating film 413 extending along the inner wall of the vertical hole 412 has a substantially uniform film thickness in the entire depth direction of the hole, the low resistance film After the formation of 414, the relaxation property of the electric charge charged near the hole bottom 412b of the vertical hole 412 is stabilized.
  • the manufacturing method of the semiconductor device 400 is the same as the manufacturing method of the semiconductor device 100 until the base 410 is prepared, the vertical holes 412 are formed, and the insulating film 413 is formed.
  • a low resistance film 414 is stacked on the insulating film 413.
  • the material of the low resistance film 414 is the same as that of the low resistance film 14 according to the first embodiment, but includes the low resistance film 418 by using a high coverage ALD (Atomic Layer Deposition) method as a film formation method. It is formed with a substantially uniform film thickness as a whole.
  • ALD Atomic Layer Deposition
  • an opening is formed at the bottom of the through hole 412 ′ as a preliminary vertical hole, for example, by plasma etching to expose the connection target portion 4 ⁇ / b> T.
  • the low resistance film 14 according to the present embodiment is formed by a high coverage film forming method, the low resistance film 414 formed in the field portion of the substrate 10 is removed by this etching, and the inside of the vertical hole 412 is removed. Only the low resistance film 414 remains.
  • an opening is formed in the bottom of the through hole 412 ′ to expose the connection target portion 4T, and after cleaning, the barrier metal film 415a, the conductive portion 415b, and the wiring 411 are formed.
  • a semiconductor device 400 shown in FIG. 18 is created.
  • FIG. 19 is a diagram for explaining a cross-section of the main part of the solid-state imaging device 500 according to the present embodiment.
  • the vertical electrode 530 of the solid-state imaging device 500 according to the present embodiment is connected to a connection target site provided in another semiconductor element that penetrates the wiring layer from the back surface of the semiconductor substrate and is bonded to the back surface of the semiconductor substrate. In that respect, it differs greatly from the vertical electrode 30 of the first embodiment described above.
  • a wiring layer 510b is stacked on the surface 10B of a semiconductor substrate 510a provided with a photoelectric conversion element, a pixel transistor, and the like, and then another semiconductor element is bonded onto the wiring layer 510b by bonding.
  • This is an example in which a through electrode reaching a metal electrode pad as a connection target portion provided in a semiconductor element that is bonded and bonded through the wiring layer 510b from the back surface 510A side of the substrate 510a is formed.
  • 20 to 23 are diagrams schematically showing a method for manufacturing the main part of the solid-state imaging device 500 according to the present embodiment.
  • a through hole 512 ′ as a preliminary vertical hole penetrating the semiconductor substrate 510a is formed, and the back surface 510A of the semiconductor substrate 510a and the through hole 512 ′ are formed.
  • An insulating film 513 is stacked over the entire inner surface of the substrate.
  • the bottom of the through hole 512 ′ is excavated and extended by plasma etching to form a through hole 512 ′′ as a preliminary vertical hole that reaches the vicinity of the metal electrode pad as the connection target portion 5T through the wiring layer 510b (FIG. 21)
  • the through hole 512 ′′ as a vertical hole formed in this way has an insulating film exposed on the entire inner wall of the hole.
  • a low resistance film 514 is formed inside the through hole 512 ′′ and on the insulating film 513 in the field portion of the semiconductor substrate 510a (FIG. 22). Thereafter, the low resistance film formed on the bottom of the through hole 512 ′′.
  • connection target portion 5T The insulating film between 514 and the low-resistance film 514 and the connection target portion 5T is removed by etching to expose the connection target portion 5T (FIG. 23).
  • a barrier metal film is formed in the vertical hole 512 penetrating to such a connection target site 5T, and a conductive portion is formed or filled to form an electrode portion 515 (FIG. 19). ).
  • a through electrode reaching up to can be formed.
  • present technology is not limited to the above-described embodiments, and includes configurations in which the configurations disclosed in the above-described embodiments are mutually replaced or combinations are changed, known technologies, and the above-described embodiments. Also included are configurations in which the configurations disclosed in 1 are replaced with each other or combinations are changed. Further, the technical scope of the present technology is not limited to the above-described embodiments, but extends to the matters described in the claims and equivalents thereof.
  • a semiconductor device comprising:
  • the low resistance film is at least one of Ti, TiN, Ta, TaN, Zr, ZrN, Hf, HfN, Ru, Co, W, WN, Mn, MnN, Al, Sn, Zn, Si, Ge, Ga, and SiN.
  • the semiconductor device according to (1) configured by two.
  • the first insulating film and the barrier metal film have an extending part extending along a field part of the base body,
  • the low resistance film is also provided so as to be interposed between the first insulating film and the barrier metal film along the field portion of the substrate.
  • the first insulating film and the barrier metal film have an extending part extending along a field part of the base body, The low resistance film is not provided between the first insulating film and the barrier metal film along the field portion of the base body.
  • the film thickness of the low resistance film is thicker as the portion is closer to the opening of the vertical hole in the depth direction of the vertical hole.
  • the film thickness of the low resistance film is substantially uniform in the depth direction of the vertical hole.
  • the semiconductor device according to any one of (1) to (6).
  • the low resistance film has a laminated structure in which a plurality of low resistance films are laminated.
  • the end of the low-resistance film laminated closer to the center of the vertical hole is formed so as to extend to the vicinity of the connection target site.
  • the vertical electrode has a diameter of 10 ⁇ m or more and an aspect ratio of 1 or more.
  • the semiconductor device according to any one of (1) to (9).
  • the aspect ratio of the portion where the low resistance film is not provided on the side wall at the bottom of the vertical hole is less than 1 (excluding 0), according to any one of (1) to (10) above Semiconductor device.
  • the bottom of the preliminary vertical hole is etched to the extent that it does not reach the connection target site together with the low resistance film and the insulating film, and further from the top of the preliminary vertical hole.
  • the low resistance film and the insulating film are removed by plasma etching,
  • An imaging device The vertical electrode has a structure in which a barrier metal film and an electrode material are laminated in order from the side close to the insulating film exposed in the vertical hole,
  • a solid-state imaging device wherein a low resistance film having a resistance value lower than that of the insulating film is interposed between the barrier metal film and the insulating film except in the vicinity of the connection target portion.
  • solid-state imaging device 510A ... back surface, 510a ... half Body substrate, 510b ... wiring layer, 530 ... vertical electrode, 512 ... vertical hole, 512 '... through hole, 512 "... through hole, 512b ... hole bottom, 513 ... insulating film, 514 ... low resistance film, 515 ... electrode Part, H1 ... opening, H2 ... opening, H3 ... opening, L1 ... first layer, L2 ... second layer, L3 ... third layer, T ... connection target site, 2T ... connection target site, 2H1 ... opening, 3T ... Connection target part, 3H1 ... opening, 4T ... connection target part, 5T ... connection target part

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

帯電ダメージによるトランジスタ特性の変動を抑制し、これにより帯電ダメージの回避に必要な設計上の制限を緩和し、半導体集積度を高める設計に係る自由度を向上する。 基体の厚み方向に沿って開口部から接続対象部位に向けて延びる縦孔内に形成され、前記縦孔に露出した絶縁膜に近い側から順にバリアメタル膜と導電材料を積層した構造の縦型電極と、前記バリアメタル膜と前記絶縁膜の間に、前記接続対象部位の近傍を除いて介在するように設けた、抵抗値が前記絶縁膜より低い低抵抗膜と、を備える半導体装置。

Description

半導体装置、半導体装置の製造方法、及び、固体撮像素子
 本技術は、半導体装置、半導体装置の製造方法、及び、固体撮像素子に関する。
 近年、微細加工の限界、製造コストの上昇等の様々な要因から半導体集積度の向上に陰りが見え始めている。この状況を打破する技術として3次元実装技術が注目されている。3次元実装技術は、各々製造された複数のチップを基板厚み方向に積層接合して集積する技術であり、半導体デバイスの集積度を向上して高機能化を実現する技術として期待されている。
 3次元実装された半導体装置では積層したチップ間の電気的接続として縦型電極としての貫通電極(シリコン貫通電極やチップ貫通電極)を用いる。貫通電極は、一般にプラズマエッチング法でチップ厚み方向に掘削して接続対象の配線部まで通じる貫通孔を形成する工程を含む製造方法により形成される。その際、掘削時に孔底に衝突するプラズマの電荷が貫通孔の内部に帯電し、接続対象の配線部を介して他の部位にダメージを与える可能性がある。具体的には、例えば、接続対象の配線部に電気的に接続した何れかの部位に接する薄い絶縁膜(ゲート絶縁膜等)が破壊又は劣化される可能性が有る。
 このような貫通孔内部への帯電ダメージによる破壊又は劣化を防止する技術として、特許文献1、2が開示されている。
 特許文献1には、貫通孔を形成した後、ビアホールへの電極材料の埋め込み前に行うビアホール底面の清浄化工程における貫通孔内部への帯電を防止する技術が開示されている。具体的には、TiNのスパッタによりビアホール内面を覆う導電成膜を形成した後、異方性イオンエッチングでビアホール底面に堆積した導電性膜を除去するとともに、異方性イオンエッチングの最終段階でビアホール底面に表出する下層配線の表面を清浄化している。このようにビアホール内側面を導電成膜を覆った状態で異方性イオンエッチングを行うため、異方性イオンエッチングにより下層配線を帯電することなくビアホール底面に表出する下層配線の表面を清浄化できる。
 特許文献2には、サブミクロン以下の微細なコンタクトホール加工時に、CとO、Arを用いたプラズマエッチング工程と、Arのみを用いたチャージアップ緩和工程とを交互に行うエッチング処理について開示されている。プラズマエッチング工程では、ウェハのエッチングが行われると共に、レジストマスク周辺に負電荷が、コンタクトホール底部には正電荷が蓄積し、コンタクトホール内側壁にはフロロカーボン膜が形成される。チャージアップ緩和工程では、Arのみの状態で生成されたイオンがフロロカーボン膜をスパッタすることでフロロカーボン膜の膜質が改質して導電性が向上し、レジストマスク周辺の負電荷がコンタクトホール底部に導かれて中和される。これにより、チャージアップに起因するコンタクトホールの歪みを緩和することができる。
特開平9-246380号公報 特開2007-134530号公報
 特許文献1に記載の技術は、ビアホール底面の清浄化工程における貫通孔内部への帯電緩和には効果的であるが、ビアホールを形成するプラズマエッチング時の帯電については触れられていない。貫通電極のように帯電に対し厳しい構造では、エッチングにより配線部まで開口した時点で接続対象の配線部に電気的に接続した何れかの部位に接する薄い絶縁膜が破壊又は劣化が生じており、スパッタ前の清浄化時のみの対策では帯電ダメージの対策としては不十分である。
 特許文献2に記載の技術は、貫通電極の形成時の帯電ダメージの緩和にも一定の効果は得られると推測されるが、フロロカーボン膜というカーボンポリマーの導電性はさほど高く無いため、帯電ダメージの緩和に限界がある。また、実際の生産に用いる場合、除去が困難なカーボンポリマーと配線金属(主にCu配線が想定される)が混在した反応生成物を多量に発生し、歩留まりや信頼性に悪影響がある。加えて、エッチングとフロロカーボン膜の成膜を繰り返すため、処理時間が長くなるデメリットもある。
 本技術は、前記課題に鑑みてなされたもので、縦型電極の接続対象の配線部に電気的に接続した何れかの部位に接する薄い絶縁膜が帯電ダメージによって破壊又は劣化することを抑制し、これにより帯電ダメージの回避に必要な設計上の制限を緩和し、半導体集積度を高める設計に係る自由度を向上することを目的とする。
 本技術の態様の1つは、基体の厚み方向に沿って開口部から接続対象部位に向けて延びる縦孔内に形成され、前記縦孔に露出した絶縁膜に近い側から順にバリアメタル膜と導電材料を積層した構造の縦型電極と、前記バリアメタル膜と前記絶縁膜の間に、前記接続対象部位の近傍を除いて介在するように設けた、抵抗値が前記絶縁膜より低い低抵抗膜と、を備える半導体装置である。
 本技術の態様の1つは、孔壁に絶縁膜が露出し、孔底が接続対象部位に達しない深さの予備縦孔を基体に形成する第1工程と、前記絶縁膜の上から前記予備縦孔の内部に前記絶縁膜より抵抗値が低い低抵抗膜を成膜する第2工程と、前記低抵抗膜と前記絶縁膜ごと前記予備縦孔の孔底を前記接続対象部位までエッチングにより開口して縦孔を形成する第3工程と、前記接続対象部位に連通した前記縦孔にバリアメタル膜を成膜し、前記バリアメタル膜の上から導電材料を成膜又は充填して縦型電極を形成する第4工程と、とを含んで構成される、半導体装置の製造方法である。
 また、本技術の選択的な態様の1つは、半導体基板の厚み方向に沿って当該半導体基板の裏面の開口部から半導体基板の表面上に積層された配線層中の接続対象部位に向けて延びる縦孔内に形成された縦型電極を有する固体撮像素子であって、前記縦型電極は、縦孔に露出した絶縁膜に近い側から順にバリアメタル膜と電極材料を積層した構造であり、前記バリアメタル膜と前記絶縁膜の間に、前記接続対象部位の近傍を除いて、抵抗値が前記絶縁膜より低い低抵抗膜を介在するように設けてある、固体撮像素子である。
 なお、以上説明した半導体装置や固体撮像素子は、他の機器に組み込まれた状態で実施されたり他の方法とともに実施されたりする等の各種の態様を含む。
 本技術によれば、帯電ダメージによるトランジスタ特性の変動を抑制し、これにより帯電ダメージの回避に必要な設計上の制限を緩和し、半導体集積度を高める設計に係る自由度を向上することができる。なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また付加的な効果があってもよい。
第1の実施形態に係る半導体装置の要部断面を説明する図である。 第1の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第1の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第1の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第1の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第1の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第1の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第2の実施形態に係る半導体装置の要部断面を説明する図である。 第2の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第2の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第2の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第3の実施形態に係る半導体装置の要部断面を説明する図である。 第3の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第3の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第3の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第3の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第3の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第4の実施形態に係る半導体装置の要部断面を説明する図である。 第5の実施形態に係る半導体装置の要部断面を説明する図である。 第5の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第5の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第5の実施形態に係る半導体装置の製造方法の一例を説明する図である。 第5の実施形態に係る半導体装置の製造方法の一例を説明する図である。
 以下、下記の順序に従って本技術を説明する。
(A)第1の実施形態:
(B)第2の実施形態:
(C)第3の実施形態:
(D)第4の実施形態:
(E)第5の実施形態:
(A)第1の実施形態: 
 図1は、本実施形態に係る半導体装置100の要部断面を説明する図である。
 半導体装置100は、シリコン等で形成された半導体チップであり、その厚み方向に沿って延びる縦型電極30を有している。以下では半導体チップにおいて縦型電極30を形成する前のベースとなる部分を基体10と呼ぶ。
 縦型電極30は、基体10の一方の面10Aに沿って延びる配線11と、基体10の内部の電極パッド等の接続対象部位Tとの間を電気的に接続するものである。縦型電極30は各種の態様を含む概念であり、基体10の厚み方向に沿って延びる有底孔内に形成された有底ビアやコンタクトを含む。
 なお、以下では、シリコン基板等の半導体基板10aの表面に積層形成された配線層10b内の特定配線が接続対象部位Tとなる場合を例に取り説明を行うものとし、縦型電極30が半導体基板10aの裏面(基体10の一方の面10Aに対応)から配線層10b内の特定配線まで貫通する貫通電極である場合を例に取り説明を行う。
 縦型電極30は、基体10の接続対象部位Tに連通した縦孔12の内側面を覆う第1絶縁膜としての絶縁膜13の内側に当該絶縁膜13の大部分を内側から覆う略筒状の膜としての低抵抗膜14が設けられており、その低抵抗膜14の筒内に更に入れ子状に筒状又は円柱状の電極部15が設けられている。
 なお、絶縁膜13は、縦孔12の中に積層形成されたものであってもよいし、縦孔12を形成することで基体10自体の絶縁膜が露出したものであってもよい。以下では、縦孔12の中に絶縁膜13を積層形成する場合を例に取り説明する。
 電極部15は、バリアメタル膜15aと導電部15bとを有する。バリアメタル膜15aは、導電部15bの金属材料が基体側部材へ拡散しないように隔離する部材であり、導電部15bと他の部材(低抵抗膜14、絶縁膜13及び接続対象部位T)との間に設けられる。バリアメタル膜15aは、例えばTi、TiN、Ta、TaNの少なくとも1つで形成される。導電部15bは、例えばCu、Wの少なくとも1つで形成される。
 なお、縦孔12内の導電部15bは膜状でもよいし、バリアメタル膜15aに囲われる筒状空間内に充填された柱状でもよい。導電部15bを膜状とする場合は、配線11を被覆する樹脂と一体連続的に導電部15b内側の空洞にも樹脂が充填されている。絶縁膜13、バリアメタル膜15a及び導電部15bのそれぞれの間には他の膜が介在してもよい。
 縦型電極30は、径が10μm以上で且つアスペクト比が1以上であり、より好ましくはアスペクト比が3以上とする。
 縦孔12の内側壁に成膜された絶縁膜13は、縦孔12の開口部12aから孔底12bに近づくにつれて徐々に厚みが薄くなるテーパー形状になっている。すなわち、縦孔12は、内側壁が孔底12bから開口部12aに向けて徐々に迫り出すオーバーハング形状になっている。
 絶縁膜13は、孔底12b付近において、縦孔12の内側壁を覆う絶縁膜13から縦孔12の径方向において略中央に向けて屈曲延出する延出部13aを有している。延出部13aは、縦孔12の径方向略中央に達しない長さであり、縦孔12の孔底12b付近において縦孔12の内側壁から内方へ突出したリング状のフランジ形状となる。逆に、縦孔12の孔底12b付近は、絶縁膜で覆われない開口H1を有することになる。
 絶縁膜13の内側には、縦孔12の開口部12a付近から孔底12b付近まで連続的に低抵抗膜14が設けられている。
 低抵抗膜14は、具体的には、縦孔12の内側壁に沿って延びる絶縁膜13の内側に沿って設けられるとともに、縦孔12の孔底12bに沿って延びる延出部13aの開口部12a側の側面13a1に沿って設けられている。延出部13aの開口H1側の端面13a2には低抵抗膜14は設けられておらず、側面13a1に設けられた低抵抗膜14は、延出部13aの開口H1と略同等の形状の開口H2を有する。
 以上のように、低抵抗膜14は、縦孔12の開口付近から孔底12b付近まで延びているものの孔底12bには接しておらず、縦孔12の孔底12bには、側壁に低抵抗膜14が設けられていない部位がある。この縦孔12において側壁に低抵抗膜14が設けられていない部位(低抵抗膜14の端部より接続対象部位T寄りの部位)は、アスペクト比が1未満(0を除く)であり、より好ましくはアスペクト比が0.1~0.2以下(0を除く)とする。このように縦孔12において側壁に低抵抗膜14が設けられていない部位のアスペクト比が低いため、低抵抗膜14が形成された後、縦孔12の孔底12b付近に帯電する電荷は、低抵抗膜14を介した電荷移動により中和される。
 絶縁膜13の内側壁に成膜された低抵抗膜14は、縦孔12深さ方向において縦孔12の開口部12aに近い部位ほど肉厚であり、孔底12bに近づくにつれて徐々に厚みが薄くなるテーパー形状である。
 低抵抗膜14は、絶縁膜13や延出部13aに比べて低抵抗であり、絶縁膜13や延出部13aや半導体基板10a等への(金属)拡散や相互反応が発生しにくく、両側の積層膜(図1に示す例では絶縁膜13や延出部13aとバリアメタル膜15a)との密着性が良好であれば様々な材料を用いることができる。低抵抗膜14の抵抗値は、例えば10Ωcm未満であることが目安となる。
 低抵抗膜14の材質の具体例としては、Ti,TiN,Ta,TaN,Zr,ZrN,Hf,HfN,Ru,Co,W,WN,Mn,MnN,Al,Sn,Zn,Si,Ge,Ga,SiN等が挙げられる。なお、SiNとしては、ストイキオメトリックなSiNではなく、例えばNの原子比率が50%以下のSiNを用いることが望ましい。
 低抵抗膜14は、それ自体が導電部15bの金属拡散を防止するバリアメタル膜15aと同様のバリア性を有してもよい。バリアメタル性を有する低抵抗膜14の材質の具体例としては、Ti,TiN,Ta,TaN,Zr,ZrN,Hf,HfN,Ru,Co,W,WN,Mn,MnNが挙げられる。
 縦孔12の孔底12bにおいて、接続対象部位Tと延出部13aとの間には、第2絶縁膜としての絶縁膜16(プリメタル層間絶縁膜等)が介在している。この絶縁膜16にも、平面視、延出部13aの開口H1や低抵抗膜14の開口H2とほぼ同じ位置と形状で開口H3が形成されている。すなわち、孔底12bには、延出部13a、低抵抗膜14及び絶縁膜16の積層部位には、全体として上下(縦孔12の深さ方向)に貫通する開口が設けられている。
 基体10の一方の面10Aには、絶縁膜17、低抵抗膜18、バリアメタル膜19、導電部20が順次積層されている。これら膜の間に他の膜が介在してもよい。これら膜は、縦孔12内の対応する各膜と一体連続的に形成されている。すなわち、絶縁膜17は絶縁膜13と、低抵抗膜18は低抵抗膜14と、バリアメタル膜19はバリアメタル膜15aと、導電部20は導電部15bと、それぞれ一体連続的に形成されている。面10A上の導電部20により形成された配線11にはバンプ21が設けられている。
 図2~図7は、本実施形態に係る半導体装置100の製造方法の一例を説明する図である。
 まず、MOSトランジスタ等の素子が形成された半導体基板10aの上に酸化シリコン膜から成る絶縁膜16(プリメタル層間絶縁膜)を形成し、絶縁膜16の上に配線層10bを順次積層形成する。絶縁膜16において配線層10bとの境界付近には接続対象部位Tとなる下部デバイスの特定配線が形成される。このようにして作成した基体10を表裏反転させて図2の状態とする。
 次に、図3に示すように、リソグラフィとプラズマエッチングにより半導体基板10aを貫通する予備縦孔としての貫通孔12’を形成する。貫通孔12’は、半導体基板10aを貫通し、接続対象部位Tに達しない程度の深さで形成される。
 次に、図4に示すように、半導体基板10aと縦型電極30とを絶縁するための絶縁膜13を形成する。絶縁膜13は、例えば酸化シリコン膜であり、PE-CVD(Plasma-enhanced chemical vapor deposition)法により積層形成される。PE-CVD法で形成された絶縁膜13は、貫通孔12’の底から開口に向けて徐々に迫り出すオーバーハング形状となる。また、絶縁膜13の形成と同時に、半導体基板10aの一方の面10Aにも絶縁膜17が積層形成され、貫通孔12’の底全体にも後の工程で一部を延出部13aとして残しつつ除去される絶縁膜が積層形成される。
 次に、図5に示すように、絶縁膜13の上に低抵抗膜14を積層形成する。低抵抗膜14は、例えばPE-CVD等の低カバレッジな成膜法で形成される。低抵抗膜14は、半導体プロセスとの適合性が高く、抵抗値が10Ωcm未満の様々な材料を使用可能である。具体的には、例えば、Ti,TiN,Ta,TaN,Zr,ZrN,Hf,HfN,Ru,Co,W,WN,Mn,MnN,Al,Sn,Zn,Si,Ge,Ga,SiNを用いることができる。なお、SiNとしては、ストイキオメトリックなSiNではなく、例えばNの原子比率が50%以下のSiNを用いることが望ましい。以下では、TiNで低抵抗膜14を形成した場合を例に取り説明する。
 次に、図6に示すように、貫通孔12’の底に開口を形成して接続対象部位Tを孔に露出させ、縦孔12を形成する。貫通孔12’の底の低抵抗膜14及び絶縁膜13並びに接続対象部位T上のプリメタル層間絶縁膜である絶縁膜16は、例えばプラズマエッチングにより除去する。
 低抵抗膜14と絶縁膜13、16を一括で加工する場合、フルオロカーボンガス、ハイドロフルオロカーボンガス、Ar等の希ガスの少なくとも1種類以上をエッチングガスとして使用してエッチングを行う。
 低抵抗膜14と絶縁膜13、16を別々に加工する場合、Cl、BCl、HBr、Ar等の希ガスの少なくとも1種類以上をエッチングガスとして使用して低抵抗膜14のエッチングを行った後、フルオロカーボンガス、ハイドロフルオロカーボンガス、Ar等の希ガスの少なくとも1種類以上をエッチングガスとして使用して絶縁膜13.16のエッチングを行う。
 PE-CVD法で形成した低抵抗膜14は、貫通孔12’の底に比べて半導体基板10aのフィールド部に厚く成膜されるため、エッチング後もフィールド部に低抵抗膜14が残存し、フィールド部の絶縁膜17削れを抑制する所謂ハードマスクの効果も期待できる。
 次に、エッチングにより縦孔12の側面等に付着したポリマーや接続対象部位Tの残渣を除去する洗浄工程を行う。洗浄工程は、有機薬液または希フッ酸による洗浄により行う。なお、接続対象部位TにCu等の拡散性を有する金属材料を用いており、バリアメタル性を有するTi,TiN,Ta,TaN,Zr,ZrN,Hf,HfN,Ru,Co,W,WN,Mn,MnN等を低抵抗膜14として用いている場合、エッチング中に側面に付着した金属材料の基体10への拡散を防止する効果もある。
 次に、縦孔12内及び基体10のフィールド部にバリアメタル膜15aを成膜する。バリアメタル膜15aは、例えばPE-CVD法で、Ti、TiN、Ta、TaNの少なくとも1種類を成膜することにより作成される。次いで、導電部15bを形成する。導電部15bは、例えば、Cu、Wの少なくとも一方からなる導電材料をめっき法により成膜することにより作製される。これにより、図7に示すように、縦孔12の中に導電材料が成膜又は充填されて導電部15bが形成される。その後、フィールド部に製膜された導電部15b、バリアメタル膜15a、低抵抗膜14の不要部分をウェットエッチングにより除去し、フィールド部に配線11を形成する。
 以上説明した製造方法により、上述した半導体装置100が作成される。
(B)第2の実施形態: 
 図8は、本実施形態に係る半導体装置200の要部断面を説明する図である。半導体装置200は、孔底付近の低抵抗膜、絶縁膜、並びにその上に成膜されるバリアメタル膜や導電部の形状を除くと、上述した半導体装置100と同様の構成である。
 そこで、以下では主に、半導体装置200の孔底付近の低抵抗膜、絶縁膜、並びにその上に成膜されるバリアメタル膜や導電部の形状及び製造方法について説明し、その他の構成については詳細な説明を省略し、必要に応じて半導体装置100の構成の符号先頭に2を付けた符号を示す。
 半導体装置200の低抵抗膜214は、絶縁膜213の内側に、縦孔212の開口部212a付近から孔底212b付近まで連続的に設けられている点は、第1の実施形態に係る低抵抗膜14と同様である。
 低抵抗膜214は、縦孔212の内側壁に沿って延びる絶縁膜213の内側に沿って設けられるとともに、縦孔212の孔底212bに沿って延びる延出部213aの開口部212a寄りの側面に沿って設けられ、更に、延出部213aの開口2H1側の端面に沿って接続対象部位2Tに向けて延びる開口端面覆蓋部221が設けられている。
 図8に示す半導体装置200では、絶縁膜216に、延出部213aの開口2H1と略同幅で連続的に形成された凹部222が設けられており、開口端面覆蓋部221は、延出部213aの開口2H1及び凹部222の内側面の双方を覆うように延びている。凹部222は接続対象部位2Tには達しておらず、従って、開口端面覆蓋部221も接続対象部位2Tには達しない程度の長さである。この場合においても、縦孔212のうち開口端面覆蓋部221の端部より接続対象部位T寄りの部位は、アスペクト比が1未満(0を除く)であり、より好ましくはアスペクト比が0.1~0.2以下(0を除く)とする。
 なお、絶縁膜216に凹部222は必ずしも形成されなくともよく、開口端面覆蓋部221は延出部213aの厚み方向途中まで延びる形状であってもよい。
 以上のような半導体装置200は、半導体装置100に比べて低抵抗膜214が、より接続対象部位2T近くまで延びているため、低抵抗膜214が形成された後、縦孔212の孔底212b付近に帯電する電荷が低抵抗膜214を介して電荷移動しやすくなり、帯電緩和効果が向上する。
 図9~図11は、本実施形態に係る半導体装置200の製造方法の一例を説明する図である。半導体装置200の製造方法は、基体210の用意、縦孔212の形成、絶縁膜213の成膜、までの工程は半導体装置100の製造方法と同様である。
 絶縁膜213の形成後、本実施形態では、図9に示すように、予備縦孔としての貫通孔212’の底部の絶縁膜213及び絶縁膜216(又は、絶縁膜216に達しないように絶縁膜213のみ)を接続対象部位2Tに向けて途中までプラズマエッチングにより除去して貫通孔212’の底部に凹部222を形成する。このプラズマエッチングは、Cl、BCl、HBr、Arの少なくとも1種類以上をエッチングガスとして使用して行う。
 次に、図10に示すように、絶縁膜213の上及び凹部222の中に低抵抗膜214を積層形成する。
 その後、図11に示すように、凹部222の底に開口を形成して接続対象部位2Tを露出させる。低抵抗膜214と絶縁膜216を一括で加工する場合、フルオロカーボンガス、ハイドロフルオロカーボンガス、Ar等の希ガスの少なくとも1種類以上をエッチングガスとして使用してエッチングを行う。低抵抗膜214と絶縁膜216を別々に加工する場合、Cl、BCl、HBr、Arの少なくとも1種類以上をエッチングガスとして使用して低抵抗膜214のエッチングを行った後、フルオロカーボンガス、ハイドロフルオロカーボンガス、Ar等の希ガスの少なくとも1種類以上をエッチングガスとして使用して絶縁膜216のエッチングを行う。
 その後、半導体装置100と同様に、洗浄した後、バリアメタル膜215a及び導電部215b並びに配線211を形成することで、図8に示す半導体装置200が作成される。
(C)第3の実施形態:
 図12は、本実施形態に係る半導体装置300の要部断面を説明する図である。半導体装置300は、低抵抗膜の積層回数を除くと、上述した半導体装置100と同様の構成である。
 そこで、以下では主に、半導体装置300の低抵抗膜の積層に係る形状及び製造方法について説明し、その他の構成については詳細な説明を省略し、必要に応じて半導体装置100の構成の符号先頭に3を付けた符号を示す。
 半導体装置300の低抵抗膜314は、絶縁膜313の内側に、縦孔312の開口部312a付近から孔底312b付近まで連続的に設けられている点は、半導体装置100の低抵抗膜14と同様である。
 低抵抗膜314は、縦孔312の内側壁に沿って延びる絶縁膜313の内側に沿って設けられる低抵抗膜314aと、縦孔312の孔底312bに沿って延びる絶縁膜313aの開口部312a寄りの側面に沿って設けられる低抵抗膜314bと、更に、絶縁膜313aの開口3H1側の端面に沿って接続対象部位3Tに向けて延びる開口端面覆蓋部314cと、を有する。
 低抵抗膜314は、2回以上の複数回に分けて成膜された多層構造を有する。低抵抗膜314を3回に分けて積層した場合、積層した順に第1層L1、第2層L2、第3層L3とすると、低抵抗膜314a、314bは第1層L1、第2層L2及び第3層L3の3層が全て積層形成された積層構造になっている。
 一方、開口端面覆蓋部314cでは、最初に積層される第1層L1を除く第2層L2、第3層L3の2層が積層形成された積層構造になっている。また、開口端面覆蓋部314cでは、先に積層された第2層L2の接続対象部位T寄りの端部に比べて、縦孔312の中心寄りに後で積層された第3層L3の接続対象部位T寄りの端部の方が、より接続対象部位3T近くまで長く延びた構造になっており、低抵抗膜314全体で見ても第1層L1、第2層L2、第3層L3の順に積層順が後の層ほど徐々に接続対象部位T寄りの端部が接続対象部位Tに向けて長くなる階段状の下部構造を有する。
 この場合においても、縦孔312のうち低抵抗膜314全体より接続対象部位T寄りの部位は、アスペクト比が1未満(0を除く)であり、より好ましくはアスペクト比が0.1~0.2以下(0を除く)とする。
 以上のような半導体装置300は、半導体装置100に比べて低抵抗膜314が、より接続対象部位3T近くまで延びているため、低抵抗膜314が形成された後、縦孔312の孔底312b付近に帯電する電荷が低抵抗膜314を介して電荷移動しやすくなり、縦孔312の孔底312b付近における帯電を緩和する効果が向上する。
 図13~図17は、本実施形態に係る半導体装置300の製造方法の一例を説明する図である。半導体装置300の製造方法は、基体310の用意、縦孔312の形成、絶縁膜313の成膜、低抵抗膜314(第1層L1)の成膜、までの工程は半導体装置100の製造方法と同様である。
 第1層L1に相当する低抵抗膜314の形成後、本実施形態では、図13に示すように、予備縦孔としての貫通孔312’の底に接続対象部位3Tに達しない程度の第1凹部322aを形成する。低抵抗膜314や絶縁膜313、316のエッチング方法は、第1の実施形態と同様である。
 そして、図14に示すように、第1凹部322aの中を含めた貫通孔312’の全体に、第2層L2に相当する低抵抗膜314を積層して成膜する。すなわち、第1層L1の残存している部位については、第1層L1の上に第2層L2が積層され、低抵抗膜314が多層構造となる。
 次に、図15に示すように、主に第1凹部322aの底に、接続対象部位3Tに達しない程度の第2凹部322bを形成する。
 そして、図16に示すように、第2凹部322bの中を含めた貫通孔312’の全体に、第3層L3に相当する低抵抗膜314を積層して成膜する。すなわち、第2層L2の残存している部位については、第2層L2の上に第3層L3が積層され、第1層L1、第2層L2、第3層L3の3層が積層した多層構造、又は第2層L2、第3層L3の2層が積層した多層構造となる。
 その後、図17に示すように、第2凹部322bの底に開口を形成して接続対象部位3Tを露出させる。
 その後、半導体装置100と同様に、洗浄した後、バリアメタル膜315a及び導電部315b並びに配線311を形成することで、図12に示す半導体装置300が作成される。
(D)第4の実施形態: 
 図18は、本実施形態に係る半導体装置400の要部断面を説明する図である。半導体装置400は、低抵抗膜の全体形状及び製造方法を除くと、上述した半導体装置100と同様の構成である。
 そこで、以下では主に、半導体装置400における低抵抗膜の全体形状及び製造方法について説明し、その他の構成については詳細な説明を省略し、必要に応じて半導体装置100の構成の符号先頭に4を付けた符号を示す。
 半導体装置400の低抵抗膜414は、絶縁膜413の内側に、縦孔412の開口部412a付近から孔底412b付近まで連続的に設けられている点は、半導体装置100の低抵抗膜14と同様である。
 基体410の一方の面410Aには、絶縁膜417、バリアメタル膜419、導電部420が順次積層されている。これら膜の間に他の膜が介在してもよいが、一方の面410Aには低抵抗膜414は積層されていない。ただし、縦孔412の内側壁に沿って延びる絶縁膜413の内側に沿って設けられる低抵抗膜414は、孔の深さ方向全体で略均一な膜厚を有しているため、低抵抗膜414が形成された後、縦孔412の孔底412b付近に帯電する電荷の緩和特性が安定する。
 半導体装置400の製造方法は、基体410の用意、縦孔412の形成、絶縁膜413の成膜、までの工程は半導体装置100の製造方法と同様である。
 絶縁膜413の形成後、本実施形態では、絶縁膜413の上に低抵抗膜414を積層形成する。低抵抗膜414は、材質は第1の実施形態に係る低抵抗膜14と同様であるが、成膜法として高カバレッジなALD(Atomic Layer Deposition)法を用いて、低抵抗膜418も含めて全体的に略均一な膜厚で形成される。
 次に、第1の実施形態と同様に、例えばプラズマエッチングにより予備縦孔としての貫通孔412’の底に開口を形成して接続対象部位4Tを露出させる。ただし、本実施形態に係る低抵抗膜14は高カバレッジな成膜法で作成されているため、基体10のフィールド部に形成された低抵抗膜414は、このエッチングによって除去され、縦孔412内の低抵抗膜414のみが残存する。
 その後、半導体装置100の場合と同様に、貫通孔412’の底に開口を形成して接続対象部位4Tを露出させ、洗浄後、バリアメタル膜415a及び導電部415b並びに配線411を形成することで、図18に示す半導体装置400が作成される。
(E)第5の実施形態:
 図19は、本実施形態に係る固体撮像素子500の要部断面を説明する図である。本実施形態に係る固体撮像素子500の縦型電極530は、半導体基板の裏面から配線層を貫通し半導体基板の裏面に貼り合せた他の半導体素子内に設けられた接続対象部位に接続されている点で、上述した第1の実施形態の縦型電極30と大きく異なる。
 そこで、以下では主に、縦型電極530の概略構成と製造方法について説明し、その他の構成については詳細な説明を省略し、半導体装置100と同様の構成には必要に応じて半導体装置100の符号先頭に5を付けた符号を示す。
 固体撮像素子500は、光電変換素子や画素トランジスタ等を設けた半導体基板510aの表面10Bに配線層510bを積層形成した後、配線層510bの上に他の半導体素子を貼り合せにより接合し、半導体基板510aの裏面510A側から配線層510bを貫通して貼り合せ接合された半導体素子内に設けられた接続対象部位としての金属電極パッドまで達する貫通電極を形成する例である。
 図20~図23は、本実施形態に係る固体撮像素子500の要部の製造方法を模式的に示す図である。
 図20に示すように、固体撮像素子500の製造方法においては、まず、半導体基板510aを貫通する予備縦孔としての貫通孔512’を形成し、半導体基板510aの裏面510A、及び貫通孔512’の内側面の全面に、絶縁膜513を積層成膜する。
 その後、貫通孔512’の底部をプラズマエッチングにより掘削延伸し、配線層510bを貫通して接続対象部位5Tとしての金属電極パッドの近傍に達する予備縦孔としての貫通孔512”を形成する(図21)このようにして形成した縦孔としての貫通孔512”は、その孔内壁全体に絶縁膜が露出している。この貫通孔512”内部及び半導体基板510aのフィールド部の絶縁膜513の上に低抵抗膜514を成膜する(図22)。その後、貫通孔512”の孔底に成膜された低抵抗膜514及び当該低抵抗膜514と接続対象部位5Tの間の絶縁膜をエッチングにより除去し、接続対象部位5Tを露出させる(図23)。このような接続対象部位5Tまで貫通した縦孔512に、第1の実施形態と同様に、バリアメタル膜を成膜し、導電部を成膜又は充填して電極部515を形成する(図19)。
 これにより、貫通電極形成中の帯電ダメージを緩和しつつ、半導体基板510aの裏面510A側から配線層510bを貫通して貼り合せ接合された半導体素子内に設けられた接続対象部位としての金属電極パッドまで達する貫通電極を形成することができる。
 なお、本技術は上述した各実施形態に限られず、上述した各実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した各実施形態の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も含まれる。また、本技術の技術的範囲は上述した各実施形態に限定されず、請求の範囲に記載された事項とその均等物まで及ぶものである。
 そして、本技術は、以下のような構成を取ることができる。
(1)
 基体の厚み方向に沿って開口部から接続対象部位に向けて延びる縦孔内に形成され、前記縦孔に露出した第1絶縁膜に近い側から順にバリアメタル膜と導電材料を積層した構造の縦型電極と、
 前記バリアメタル膜と前記第1絶縁膜の間に、前記接続対象部位の近傍を除いて介在するように設けた、抵抗値が前記第1絶縁膜より低い低抵抗膜と、
を備える半導体装置。
(2)
 前記低抵抗膜は、Ti、TiN、Ta、TaN、Zr、ZrN、Hf、HfN、Ru、Co、W、WN、Mn、MnN、Al、Sn、Zn、Si、Ge、Ga、SiNの少なくとも1つにより構成される、前記(1)に記載の半導体装置。
(3)
 前記第1絶縁膜及び前記バリアメタル膜は、前記基体のフィールド部に沿って延びる延出部を有し、
 前記低抵抗膜も、前記基体のフィールド部に沿って前記第1絶縁膜及び前記バリアメタル膜の間に介在するように設けられている、
前記(1)又は前記(2)に記載の半導体装置。
(4)
 前記第1絶縁膜及び前記バリアメタル膜は、前記基体のフィールド部に沿って延びる延出部を有し、
 前記低抵抗膜は、前記基体のフィールド部に沿う前記第1絶縁膜及び前記バリアメタル膜の間には設けられていない、
前記(1)又は前記(2)に記載の半導体装置。
(5)
 前記低抵抗膜の膜厚は、前記縦孔の深さ方向において前記縦孔の開口に近い部位ほど肉厚である、
前記(1)~前記(4)の何れか1つに記載の半導体装置。
(6)
 前記低抵抗膜の膜厚は、前記縦孔の深さ方向において略均一である、
前記(1)~前記(5)の何れか1つに記載の半導体装置。
(7)
 前記低抵抗膜の前記接続対象部位寄りの端部は、前記接続対象部位の前記開口部側の側面に積層された第2絶縁膜に達していない、
前記(1)~前記(6)の何れか1つに記載の半導体装置。
(8)
 前記低抵抗膜の前記接続対象部位寄りの端部は、前記接続対象部位の前記開口部側の側面に積層された第2絶縁膜に達している、
前記(1)~前記(6)の何れか1つに記載の半導体装置。
(9)
 前記低抵抗膜は、複数の低抵抗膜を積層形成した積層構造を有し、
 前記縦孔の中心寄りに積層された低抵抗膜の端部ほど前記接続対象部位の近くまで長く延びるように形成されている、
前記(1)~前記(8)の何れか1つに記載の半導体装置。
(10)
 前記縦型電極は、径が10μm以上で、アスペクト比が1以上である、
前記(1)~前記(9)の何れか1つに記載の半導体装置。
(11)
 前記縦孔の孔底において側壁に前記低抵抗膜が設けられてない部位のアスペクト比が1未満(0を除く)である、前記(1)~前記(10)の何れか1つに記載の半導体装置。
(12)
 孔壁に絶縁膜が露出し、孔底が接続対象部位に達しない深さの予備縦孔を基体に形成する第1工程と、
 前記絶縁膜の上から前記予備縦孔の内部に前記絶縁膜より抵抗値が低い低抵抗膜を成膜する第2工程と、
 前記低抵抗膜と前記絶縁膜ごと前記予備縦孔の孔底を前記接続対象部位までエッチングにより開口して縦孔を形成する第3工程と、
 前記接続対象部位に連通した前記縦孔にバリアメタル膜を成膜し、前記バリアメタル膜の上から導電材料を成膜又は充填して縦型電極を形成する第4工程と、
を含んで構成される、半導体装置の製造方法。
(13)
 前記第2工程と前記第3工程の間に、前記低抵抗膜と前記絶縁膜ごと前記予備縦孔の孔底を前記接続対象部位に達しない程度にエッチングしその上から更に前記予備縦孔の内部に前記低抵抗膜を成膜する工程を、1回以上繰り返し行う、前記(12)に記載の半導体装置の製造方法。
(14)
 前記低抵抗膜と前記絶縁膜の除去をプラズマエッチングにより行い、
 前記プラズマエッチングでは、フルオロカーボンガス、ハイドロフルオロカーボンガス、希ガスの何れか1つ以上を用いる、前記(12)又は前記(13)に記載の半導体装置の製造方法。
(15)
 半導体基板の厚み方向に沿って当該半導体基板の裏面の開口部から半導体基板の表面上に積層された配線層中の接続対象部位に向けて延びる縦孔内に形成された縦型電極を有する固体撮像素子であって、
 前記縦型電極は、縦孔に露出した絶縁膜に近い側から順にバリアメタル膜と電極材料を積層した構造であり、
 前記バリアメタル膜と前記絶縁膜の間に、前記接続対象部位の近傍を除いて、抵抗値が前記絶縁膜より低い低抵抗膜を介在するように設けてある、固体撮像素子。
10…基体、10A…面、10B…表面、10a…半導体基板、10b…配線層、11…配線、12…縦孔、12’…貫通孔、12a…開口部、12b…孔底、13…絶縁膜、13a…延出部、13a1…側面、13a2…端面、14…低抵抗膜、15…電極部、15a…バリアメタル膜、15b…導電部、16…絶縁膜、17…絶縁膜、18…低抵抗膜、19…バリアメタル膜、20…導電部、21…バンプ、30…縦型電極、100…半導体装置、200…半導体装置、210…基体、211…配線、212…縦孔、212’…貫通孔、212a…開口部、212b…孔底、213…絶縁膜、213a…延出部、214…低抵抗膜、215a…バリアメタル膜、215b…導電部、216…絶縁膜、221…開口端面覆蓋部、222…凹部、300…半導体装置、310…基体、311…配線、312…縦孔、312’…貫通孔、312a…開口部、312b…孔底、313…絶縁膜、313a…絶縁膜、314…低抵抗膜、314a…低抵抗膜、314b…低抵抗膜、314c…開口端面覆蓋部、315a…バリアメタル膜、315b…導電部、316…絶縁膜、322a…第1凹部、322b…第2凹部、400…半導体装置、410…基体、410A…面、411…配線、412…縦孔、412’…貫通孔、412a…開口部、412b…孔底、413…絶縁膜、414…低抵抗膜、415a…バリアメタル膜、415b…導電部、417…絶縁膜、418…低抵抗膜、419…バリアメタル膜、420…導電部、500…固体撮像素子、510A…裏面、510a…半導体基板、510b…配線層、530…縦型電極、512…縦孔、512’…貫通孔、512”…貫通孔、512b…孔底、513…絶縁膜、514…低抵抗膜、515…電極部、H1…開口、H2…開口、H3…開口、L1…第1層、L2…第2層、L3…第3層、T…接続対象部位、2T…接続対象部位、2H1…開口、3T…接続対象部位、3H1…開口、4T…接続対象部位、5T…接続対象部位

Claims (15)

  1.  基体の厚み方向に沿って開口部から接続対象部位に向けて延びる縦孔内に形成され、前記縦孔に露出した第1絶縁膜に近い側から順にバリアメタル膜と導電材料を積層した構造の縦型電極と、
     前記バリアメタル膜と前記第1絶縁膜の間に、前記接続対象部位の近傍を除いて介在するように設けた、抵抗値が前記第1絶縁膜より低い低抵抗膜と、
    を備える半導体装置。
  2.  前記低抵抗膜は、Ti、TiN、Ta、TaN、Zr、ZrN、Hf、HfN、Ru、Co、W、WN、Mn、MnN、Al、Sn、Zn、Si、Ge、Ga、SiNの少なくとも1つにより構成される、請求項1に記載の半導体装置。
  3.  前記第1絶縁膜及び前記バリアメタル膜は、前記基体のフィールド部に沿って延びる延出部を有し、
     前記低抵抗膜も、前記基体のフィールド部に沿って前記第1絶縁膜及び前記バリアメタル膜の間に介在するように設けられている、
    請求項1に記載の半導体装置。
  4.  前記第1絶縁膜及び前記バリアメタル膜は、前記基体のフィールド部に沿って延びる延出部を有し、
     前記低抵抗膜は、前記基体のフィールド部に沿う前記第1絶縁膜及び前記バリアメタル膜の間には設けられていない、
    請求項1に記載の半導体装置。
  5.  前記低抵抗膜の膜厚は、前記縦孔の深さ方向において前記縦孔の開口に近い部位ほど肉厚である、
    請求項1に記載の半導体装置。
  6.  前記低抵抗膜の膜厚は、前記縦孔の深さ方向において略均一である、
    請求項1に記載の半導体装置。
  7.  前記低抵抗膜の前記接続対象部位寄りの端部は、前記接続対象部位の前記開口部側の側面に積層された第2絶縁膜に達していない、
    請求項1に記載の半導体装置。
  8.  前記低抵抗膜の前記接続対象部位寄りの端部は、前記接続対象部位の前記開口部側の側面に積層された第2絶縁膜に達している、
    請求項1記載の半導体装置。
  9.  前記低抵抗膜は、複数の低抵抗膜を積層形成した積層構造を有し、
     前記縦孔の中心寄りに積層された低抵抗膜の端部ほど前記接続対象部位の近くまで長く延びるように形成されている、
    請求項1に記載の半導体装置。
  10.  前記縦型電極は、径が10μm以上で、アスペクト比が1以上である、
    請求項1に記載の半導体装置。
  11.  前記縦孔の孔底において側壁に前記低抵抗膜が設けられてない部位のアスペクト比が1未満(0を除く)である、請求項1に記載の半導体装置。
  12.  孔壁に絶縁膜が露出し、孔底が接続対象部位に達しない深さの予備縦孔を基体に形成する第1工程と、
     前記絶縁膜の上から前記予備縦孔の内部に前記絶縁膜より抵抗値が低い低抵抗膜を成膜する第2工程と、
     前記低抵抗膜と前記絶縁膜ごと前記予備縦孔の孔底を前記接続対象部位までエッチングにより開口して縦孔を形成する第3工程と、
     前記接続対象部位に連通した前記縦孔にバリアメタル膜を成膜し、前記バリアメタル膜の上から導電材料を成膜又は充填して縦型電極を形成する第4工程と、
    を含んで構成される、半導体装置の製造方法。
  13.  前記第2工程と前記第3工程の間に、前記低抵抗膜と前記絶縁膜ごと前記予備縦孔の孔底を前記接続対象部位に達しない程度にエッチングしその上から更に前記予備縦孔の内部に前記低抵抗膜を成膜する工程を、1回以上繰り返し行う、請求項12に記載の半導体装置の製造方法。
  14.  前記低抵抗膜と前記絶縁膜の除去をプラズマエッチングにより行い、
     前記プラズマエッチングでは、フルオロカーボンガス、ハイドロフルオロカーボンガス、希ガスの何れか1つ以上を用いる、請求項12に記載の半導体装置の製造方法。
  15.  半導体基板の厚み方向に沿って当該半導体基板の裏面の開口部から半導体基板の表面上に積層された配線層中の接続対象部位に向けて延びる縦孔内に形成された縦型電極を有する固体撮像素子であって、
     前記縦型電極は、縦孔に露出した絶縁膜に近い側から順にバリアメタル膜と電極材料を積層した構造であり、
     前記バリアメタル膜と前記絶縁膜の間に、前記接続対象部位の近傍を除いて、抵抗値が前記絶縁膜より低い低抵抗膜を介在するように設けてある、固体撮像素子。
PCT/JP2017/040764 2016-12-26 2017-11-13 半導体装置、半導体装置の製造方法、及び、固体撮像素子 WO2018123299A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780075272.XA CN110088883B (zh) 2016-12-26 2017-11-13 半导体装置、制造半导体装置的方法和固态摄像元件
US16/349,886 US11335720B2 (en) 2016-12-26 2017-11-13 Vertical electrode structure comprising low-resistance film for preventing damage during etching
US17/661,950 US20220262842A1 (en) 2016-12-26 2022-05-04 Semiconductor device, method of manufacturing semiconductor device, and solid-state image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016250522A JP2018107227A (ja) 2016-12-26 2016-12-26 半導体装置、半導体装置の製造方法、及び、固体撮像素子
JP2016-250522 2016-12-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/349,886 A-371-Of-International US11335720B2 (en) 2016-12-26 2017-11-13 Vertical electrode structure comprising low-resistance film for preventing damage during etching
US17/661,950 Division US20220262842A1 (en) 2016-12-26 2022-05-04 Semiconductor device, method of manufacturing semiconductor device, and solid-state image sensor

Publications (1)

Publication Number Publication Date
WO2018123299A1 true WO2018123299A1 (ja) 2018-07-05

Family

ID=62708157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040764 WO2018123299A1 (ja) 2016-12-26 2017-11-13 半導体装置、半導体装置の製造方法、及び、固体撮像素子

Country Status (4)

Country Link
US (2) US11335720B2 (ja)
JP (1) JP2018107227A (ja)
CN (1) CN110088883B (ja)
WO (1) WO2018123299A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598482A1 (en) * 2018-07-19 2020-01-22 Samsung Electronics Co., Ltd. Integrated circuit device and method of manufacturing the same
EP3671823A1 (en) * 2018-12-21 2020-06-24 ams AG Semiconductor device with through-substrate via and method of manufacturing a semiconductor device with through-substrate via
US12100644B2 (en) 2018-12-21 2024-09-24 Ams Ag Semiconductor device with through-substrate via and method of manufacturing a semiconductor device with through-substrate via

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236025B (zh) * 2020-12-09 2021-03-16 武汉大学 高温电路器件的加工方法
WO2022218610A1 (en) * 2021-04-12 2022-10-20 Ams-Osram Ag Semiconductor device with sealed through-substrate via and method for producing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152967A (ja) * 2002-10-30 2004-05-27 Fujikura Ltd 反応性イオンエッチングによる貫通孔の形成方法及び反応性イオンエッチングにより形成された貫通孔を有する基板
JP2008210952A (ja) * 2007-02-26 2008-09-11 Sanyo Electric Co Ltd 半導体装置の製造方法、シリコンインターポーザの製造方法および半導体モジュールの製造方法
JP2010135348A (ja) * 2008-12-02 2010-06-17 Panasonic Corp 貫通電極形成方法
WO2012090292A1 (ja) * 2010-12-28 2012-07-05 富士通セミコンダクター株式会社 半導体装置の製造方法
JP2013239589A (ja) * 2012-05-15 2013-11-28 Rohm Co Ltd 半導体装置およびその製造方法、電子部品
WO2015025723A1 (ja) * 2013-08-19 2015-02-26 ソニー株式会社 固体撮像素子および電子機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100225946B1 (ko) * 1996-06-27 1999-10-15 김영환 반도체 소자의 금속 배선 형성방법
KR100273989B1 (ko) * 1997-11-25 2001-01-15 윤종용 반도체장치의콘택형성방법
US6759325B2 (en) * 2000-05-15 2004-07-06 Asm Microchemistry Oy Sealing porous structures
US8138082B2 (en) * 2006-02-28 2012-03-20 Stmicroelectronics (Crolles 2) Sas Method for forming metal interconnects in a dielectric material
US7528066B2 (en) * 2006-03-01 2009-05-05 International Business Machines Corporation Structure and method for metal integration
US20080242078A1 (en) * 2007-03-30 2008-10-02 Asm Nutool, Inc. Process of filling deep vias for 3-d integration of substrates
US20090001584A1 (en) * 2007-06-26 2009-01-01 Sang-Chul Kim Semiconductor device and method for fabricating the same
KR101002158B1 (ko) * 2008-07-29 2010-12-17 주식회사 동부하이텍 이미지센서 및 그 제조방법
JPWO2010070826A1 (ja) * 2008-12-17 2012-05-24 パナソニック株式会社 貫通電極の形成方法及び半導体装置
US7964966B2 (en) * 2009-06-30 2011-06-21 International Business Machines Corporation Via gouged interconnect structure and method of fabricating same
CN102157483B (zh) * 2010-01-20 2015-11-25 精材科技股份有限公司 晶片封装体及其形成方法
US10128261B2 (en) * 2010-06-30 2018-11-13 Sandisk Technologies Llc Cobalt-containing conductive layers for control gate electrodes in a memory structure
CN106611742B (zh) * 2015-10-26 2020-05-08 中芯国际集成电路制造(上海)有限公司 接触孔的形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152967A (ja) * 2002-10-30 2004-05-27 Fujikura Ltd 反応性イオンエッチングによる貫通孔の形成方法及び反応性イオンエッチングにより形成された貫通孔を有する基板
JP2008210952A (ja) * 2007-02-26 2008-09-11 Sanyo Electric Co Ltd 半導体装置の製造方法、シリコンインターポーザの製造方法および半導体モジュールの製造方法
JP2010135348A (ja) * 2008-12-02 2010-06-17 Panasonic Corp 貫通電極形成方法
WO2012090292A1 (ja) * 2010-12-28 2012-07-05 富士通セミコンダクター株式会社 半導体装置の製造方法
JP2013239589A (ja) * 2012-05-15 2013-11-28 Rohm Co Ltd 半導体装置およびその製造方法、電子部品
WO2015025723A1 (ja) * 2013-08-19 2015-02-26 ソニー株式会社 固体撮像素子および電子機器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598482A1 (en) * 2018-07-19 2020-01-22 Samsung Electronics Co., Ltd. Integrated circuit device and method of manufacturing the same
US20200027784A1 (en) * 2018-07-19 2020-01-23 Samsung Electronics Co., Ltd. Integrated circuit device and method of manufacturing the same
KR20200009644A (ko) * 2018-07-19 2020-01-30 삼성전자주식회사 집적회로 장치 및 이의 제조 방법
CN110739290A (zh) * 2018-07-19 2020-01-31 三星电子株式会社 集成电路器件及其制造方法
US10763163B2 (en) * 2018-07-19 2020-09-01 Samsung Electronics Co., Ltd. Integrated circuit device and method of manufacturing the same
US11488860B2 (en) * 2018-07-19 2022-11-01 Samsung Electronics Co., Ltd. Integrated circuit device and method of manufacturing the same
KR102493464B1 (ko) * 2018-07-19 2023-01-30 삼성전자 주식회사 집적회로 장치 및 이의 제조 방법
TWI812759B (zh) * 2018-07-19 2023-08-21 南韓商三星電子股份有限公司 積體電路裝置及其製造方法
EP3671823A1 (en) * 2018-12-21 2020-06-24 ams AG Semiconductor device with through-substrate via and method of manufacturing a semiconductor device with through-substrate via
WO2020127988A1 (en) * 2018-12-21 2020-06-25 Ams Ag Semiconductor device with through-substrate via and method of manufacturing a semiconductor device with through-substrate via
US12100644B2 (en) 2018-12-21 2024-09-24 Ams Ag Semiconductor device with through-substrate via and method of manufacturing a semiconductor device with through-substrate via

Also Published As

Publication number Publication date
US20220262842A1 (en) 2022-08-18
CN110088883A (zh) 2019-08-02
US20200083273A1 (en) 2020-03-12
CN110088883B (zh) 2023-09-15
JP2018107227A (ja) 2018-07-05
US11335720B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2018123299A1 (ja) 半導体装置、半導体装置の製造方法、及び、固体撮像素子
US10541230B2 (en) Semiconductor device and method for manufacturing same
JP5412506B2 (ja) 半導体装置
JP5964040B2 (ja) 分離トレンチの形成方法
TWI463627B (zh) 導電疊層結構,電氣互連及形成電氣互連之方法
KR102274775B1 (ko) 반도체 장치 및 그 제조 방법
CN103035615B (zh) 半导体装置及其制造方法
US7919834B2 (en) Edge seal for thru-silicon-via technology
US8207595B2 (en) Semiconductor having a high aspect ratio via
US9972528B2 (en) Semiconductor devices
JP2014033053A (ja) 半導体装置及びその製造方法
US9865534B2 (en) Stress reduction apparatus
CN108630647B (zh) 半导体装置及其制造方法
TWI792419B (zh) 互連結構及其形成方法
JP2013157540A (ja) 半導体装置およびその製造方法
JP2009253052A (ja) 半導体装置及びその製造方法
CN102420105B (zh) 铜大马士革工艺金属-绝缘层-金属电容制造工艺及结构
TWI786655B (zh) 具有銲墊層的半導體元件及其製備方法
TW201447990A (zh) 半導體裝置及其製造方法
US20200357765A1 (en) Method of manufacturing semiconductor device
US20200185345A1 (en) Semiconductor device
TW202305942A (zh) 電晶體、半導體裝置及半導體結構
US20150221593A1 (en) Semiconductor device and method of manufacturing the same
JP2016046372A (ja) 半導体装置
JP2014103214A (ja) 半導体装置、および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887888

Country of ref document: EP

Kind code of ref document: A1