WO2018120323A1 - 同时消除反电势、负载转矩扰动的伺服控制策略及其系统 - Google Patents

同时消除反电势、负载转矩扰动的伺服控制策略及其系统 Download PDF

Info

Publication number
WO2018120323A1
WO2018120323A1 PCT/CN2017/071270 CN2017071270W WO2018120323A1 WO 2018120323 A1 WO2018120323 A1 WO 2018120323A1 CN 2017071270 W CN2017071270 W CN 2017071270W WO 2018120323 A1 WO2018120323 A1 WO 2018120323A1
Authority
WO
WIPO (PCT)
Prior art keywords
disturbance
load torque
extended state
armature
back emf
Prior art date
Application number
PCT/CN2017/071270
Other languages
English (en)
French (fr)
Inventor
刘锦波
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US16/304,622 priority Critical patent/US10411628B2/en
Publication of WO2018120323A1 publication Critical patent/WO2018120323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/12Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/12Control or stabilisation of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings

Definitions

  • the invention relates to a servo control strategy and a system thereof for simultaneously eliminating back EMF and load torque disturbance.
  • Servo control technology is widely used in robotics, high-speed rail, electric vehicles, CNC machine tools, and aviation and aerospace.
  • the following two basic problems need to be solved: (1) how to obtain the feedback information needed to form a closed loop of the system; and (2) how to design the control strategy of the servo control system.
  • the required feedback information relates to current, voltage, speed and position, etc., wherein current (or voltage) information can be directly measured by sensors (such as Hall or transformer, sense resistor, etc.) obtain.
  • the position information can be directly measured by sensors such as a tachogenerator, an encoder or a resolver.
  • the speed feedback information the feedback information of the speed is obtained indirectly through the difference of the position information or using the observer technology in the modern control theory.
  • the position feedback information can also be obtained indirectly by the observation of the current and voltage using the observer technology, realizing a so-called position sensorless solution.
  • a linear control strategy including pole placement and other nonlinear control strategies such as a sliding mode variable structure control strategy for implementing switching, a model reference adaptive control strategy based on a reference model, and the like may be employed.
  • PID control has the following advantages: (1) good followability to step input; (2) steady state without static difference; (3) certain immunity to intra-ring disturbance.
  • PID control is only suitable for linear objects and nonlinear objects with little change in operating point. Once the disturbance is too large, the working point varies widely, and the degree of nonlinearity is large, the PID control strategy will fail. Since the PID control algorithm is based on the object model, its control strategy is powerless for unmodeled dynamics.
  • sliding mode variable structure control can be applied to nonlinear objects and dynamic response is fast, it is also robust to changes in servo system structure parameters.
  • the sliding mode control has chattering phenomenon and Problems such as steady state deviation.
  • the model reference adaptive control is robust to changes in the parameters of the controlled object, but it is at the expense of dynamic performance and thus has certain limitations.
  • the servo control system implemented by the high performance servo control algorithm has the following features:
  • the design of the PID control parameters of the current loop in the classical servo control scheme is designed according to the resistance and inductance parameters of the armature (or stator) winding, and the influence of the back EMF is not considered; while the PID control parameters in the speed loop are based on the drag.
  • the inertia of the dynamic system and the damping coefficient are determined without considering the effects of load torque; typically, these systems treat the back EMF of the armature winding and the load torque as disturbances. They use the PID control strategy to be robust and eliminated by the system.
  • the existing scheme has not considered the influence of the back EMF disturbance and the load torque disturbance of the electric part at the same time, and they have not been separately processed. So far, the servo system schemes that can be seen are basically through a single feedforward compensation measure, either directly adding the speed-dependent back EMF feedforward term to counteract the influence of the back EMF; or using the detection (or observation) load transfer Moment, then offset the effect of load torque through feedforward control;
  • the existing scheme adopts the disturbance observer scheme for the acquisition of disturbance information.
  • This scheme adopts the inverse model of the mechanical or electrical part of the controlled motor, either estimating the load torque or estimating the back potential itself, and then adopting The feedforward control scheme eliminates a single disturbance. Once the unknown disturbance is included and the model parameters change, the disturbance compensation scheme is greatly discounted.
  • the actual motion control system has unmodeled dynamics and other nonlinear factors in the electrical and mechanical parts (such as the influence of saturation nonlinearity on the inductance parameters, the nonlinearity of the dynamic and static friction on the load torque), etc.
  • the traditional disturbance observer scheme cannot do anything about this;
  • the present invention proposes a servo control strategy and system for simultaneously eliminating back EMF and load torque disturbance.
  • the invention can quickly eliminate the back-potential disturbance caused by different rotational speeds of the electrical (ie winding) part of the motor through the inner ring; at the same time, eliminate the load transfer caused by factors such as load and load change of the mechanical part of the motor through the outer ring. Moment perturbation.
  • the basic idea of the invention is that, considering that the disturbances of the electrical part and the mechanical part belong to different time scales respectively, the characteristics of the former change faster and the latter change slowly, different disturbance estimation and control schemes can be used to eliminate the reverse respectively.
  • the influence of disturbances such as potential and load torque on the system. Therefore, based on the traditional cascade system structure, a new set of servo control scheme and system based on extended state observer is established.
  • a state space model of the armature winding including the back EMF is first established.
  • an extended state space model describing the electrical part is established.
  • a first extended state observer that estimates the back EMF is designed using the structure of the extended state space model and the nominal value of the armature winding structure parameters.
  • the first extended state observer utilizes the detected values and nominal models applied to the voltage across the armature and the armature current to ultimately obtain information on all electrical disturbances including the back EMF.
  • An inner loop of the system is established from the detected current feedback information and the first extended state observer.
  • the current is regulated by feedback control, and the back-potential disturbance is eliminated by feedforward control.
  • the specific solution is: the given current is compared with the actual armature current of the feedback, and the deviation is input to the current regulator.
  • the current regulator can be a PI controller that is resistant to integral saturation.
  • the output of the current regulator is added to the back EMF estimate obtained by the first extended state observer, the sum of which is taken as a given value of the armature voltage.
  • the above current regulator adopts an anti-integral saturation PI regulator, which utilizes the PI controller to be robust to disturbances in the loop, and eliminates the part of the back EMF disturbance that is not eliminated by the feedforward control.
  • PI controller to be robust to disturbances in the loop, and eliminates the part of the back EMF disturbance that is not eliminated by the feedforward control.
  • Other robust control controllers such as predictive control and deadbeat control, under the guidance of the working principle of the present invention. (Dead-Beat), pole configuration control, and adaptive controller are all simple replacements and improvements. These substitutions and improvements are also intended to fall within the scope of the invention.
  • the first extended state observer described above uses the nominal value of the armature winding structure parameters instead of the true value.
  • the first extended state observer is not affected by the structural parameters of the electrical part (motor stator winding resistance, armature inductance) And the robustness of the control strategy.
  • This means that the present invention does not affect the performance of the system even if the armature inductance changes due to saturation of the magnetic circuit or the resistance of the armature winding is changed by temperature.
  • replacing the calibration values with other values are simple replacements that do not require creative labor.
  • a state space model based on the drive train is established.
  • an extended state space model describing the mechanical part is established.
  • a second extended state observer that estimates the load torque is designed using the structure of the extended state space model of the mechanical portion and the nominal value of the structural parameters of the mechanical transmission portion.
  • the second extended state observer utilizes the applied armature current and rotor speed information and nominal model from the encoder or resolver to ultimately obtain information on all mechanical disturbances including load torque.
  • An outer loop of the system is established from the detected rotor speed information and a second extended state observer.
  • the rotor speed is adjusted by feedback control, and the load torque disturbance is eliminated by feedforward control.
  • the specific solution is: the given speed is compared with the actual speed of the feedback, and the deviation is input to the speed regulator.
  • the speed regulator can be used with a PI controller that is resistant to integral saturation.
  • the output of the speed regulator is added to the current converted from the obtained load torque disturbance estimate, and the sum is taken as a given value of the armature current.
  • the speed regulator adopts a PI controller that is resistant to integral saturation.
  • the PI controller is robust to disturbances in the loop, eliminating the part of the load torque disturbance that is not eliminated by the feedforward control.
  • those skilled in the art are fully capable of replacing the PI controller with other speed regulators, such as predictive control, deadbeat control, pole placement control, and adaptive controller, all inspired by the working principle of the present invention. Simple replacement and improvement. These substitutions and improvements are also intended to fall within the scope of the invention.
  • the second extended state observer described above uses the nominal value of the structural parameters of the mechanical transmission portion instead of the true value.
  • the second extended state observer is utilized without being affected by the structural parameters of the mechanical transmission part (the total inertia of the transmission system and the stick-slip damping coefficient) and the robustness of the control strategy.
  • This means that the present invention does not affect the performance of the system even if the total inertia of the transmission system changes due to changes in the load state and the stick-slip damping coefficient due to the operating state.
  • replacing the calibration values with other values are simple replacements that do not require creative labor.
  • the above-mentioned cascade servo control system capable of simultaneously eliminating the influence of the inner loop back EMF and the outer loop load torque disturbance includes an inner loop feedback control link and an outer loop feedback control link, and the inner loop feedback control link includes a current regulator and the first Extended state observer.
  • the first extended state observer is based on a nominal value model of the armature winding, and determines the total disturbance of the electrical portion based on the voltage applied to the voltage across the armature and the actual value of the armature current.
  • feedforward compensation is performed to eliminate the total back disturbance of the back EMF;
  • the outer loop feedback control link includes a speed regulator and a second extended state observer, and the second extended state observer determines a total disturbance of the mechanical portion based on the armature current and the actual speed information based on the nominal value model of the transmission system. Combined with the speed regulator to adjust the speed, feedforward compensation is performed to eliminate the total load torque disturbance;
  • the nominal value model of the armature winding is derived from the nominal values of the armature inductance and resistance.
  • the nominal value model of the transmission system is derived from the nominal inertia of the transmission system and the nominal value of the stick-slip damping coefficient.
  • the control parameters of the first extended state observer are determined based on a desired cutoff frequency, armature inductance, and resistance value of the current loop.
  • the control parameters of the second extended state observer are determined based on a desired cutoff frequency of the speed loop, a total inertia of the transmission system, and a stick-slip damping coefficient.
  • the present invention is widely applicable, and all methods and systems of the present invention can be applied to all AC servo systems that utilize DC servo systems and vector controls. Therefore, those skilled in the art, based on the working principle of the present invention, apply it to a servo system (including a position servo and a speed servo system) composed of an induction motor, a permanent magnet brushless DC motor, and a permanent magnet synchronous motor. It is a simple replacement that does not require creative labor.
  • the present invention can overcome the influence of the conventional disturbance observer on the estimation accuracy of the disturbance due to the inaccuracy or variation of the system structural parameters (such as the moment of inertia of the load torque and the damping coefficient).
  • the present invention can overcome the chattering phenomenon and steady-state deviation problem using sliding mode variable structure control and the limitation of adopting the model reference adaptive control scheme.
  • the extended state disturbance observer can take into account the back EMF and various nonlinear factors in the load as well as the perturbation of the parameters, which avoids the traditional disturbance observer being affected by the changes of the parameters of the motor and the transmission system, greatly improving the Including system dynamics, static performance, immunity to grid voltage fluctuations, load disturbance immunity, and parameter perturbation robustness;
  • the present invention estimates the back EMF and the load torque disturbance separately by using two extended state observers, and separately compensates, thereby eliminating the disturbance of two different time scales (or different bandwidths), which is beneficial to further improve The anti-interference ability and dynamic and static performance of the servo system;
  • the present invention separates the electrical disturbance including the electrical potential from the electrical potential with the mechanical disturbance including the load torque, and uses the inner loop to eliminate the electrical disturbance and the outer loop cancellation mechanism.
  • Disturbed cascade control scheme Combining the back EMF and the load torque to disturb the two extended state observers, for the first time, the servo control including the inner ring disturbance including the back EMF with the rotational speed and the outer ring disturbance including the load torque and its variation is eliminated. Policy slightly;
  • the servo control system of the present invention is not affected by changes in motor winding resistance (temperature influence), inductance change (saturation effect), and load variation, and is not modeled for including dynamic and static friction.
  • Non-linear factors such as dynamics have certain robustness and strong immunity to large disturbances.
  • the invention has wide application, and all the AC servo systems using DC servo system and vector control can apply the method or system of the invention, such as robot operation control, numerical control machine tool (CNC) and drone servo drive. field.
  • CNC numerical control machine tool
  • FIG. 1 is a block diagram of a current inner loop control strategy of the present invention
  • FIG. 2 is a block diagram of a control strategy for a rotational speed outer loop of the present invention
  • FIG. 3 is an overall block diagram of the system of the present invention.
  • 9 is an experimental result of a speed response curve of a slow wire feed speed of 3 m in a pulsating wire feeding mode of the present invention, given a normal wire feed speed of 10 m, a double pulse of 2 Hz, and an offset of 2 m.
  • the traditional back EMF perturbation observer uses the inverse model of the system to estimate the back EMF.
  • the disadvantage is that the variation of the system parameters (armature inductance, winding resistance) will affect the estimation accuracy of the back EMF.
  • the back EMF estimation is based on the ESO of the state part model based on the electrical part state space model, which can include the back EMF information in the controlled motor. The disturbance of the electrical part is observed.
  • the system block diagram is shown in Figure 1.
  • the dotted line contains the ESO1 for estimating the total disturbance of the electrical part (including the back EMF), which uses the nominal model of the armature winding (where The nominal values of the armature inductance and resistance, respectively, are described in section (3.1).
  • ⁇ 1 and ⁇ 2 are coefficients of ESO1.
  • the ESO1 observes the total disturbance of the electrical part by means of the information applied to the voltage u * a across the armature and the actual value i a of the armature current (obtained by the current transformer or other detection method). Information (except for the back electromotive force, the disturbance of other electrical parts is reflected in in). See Section 3.1 for the detailed design of ESO1.
  • the given current i * a is compared with the actual armature current i a of the feedback, the deviation is input to the current regulator, and the current regulator can be a PI controller that is resistant to integral saturation.
  • the output of the current regulator and the back EMF estimate obtained by ESO1 Armature voltage can be obtained by adding a desired value u * a, feedforward control scheme to eliminate most of the back EMF thereby by means of e a disturbance.
  • the PI controller can be eliminated with some robustness to the disturbance in the ring.
  • the ESO1 part in Figure 1 uses the nominal value of the motor stator winding parameters (La, Ra) instead of the true value. This means that even if these parameters change due to magnetic saturation or temperature changes, they will not affect the performance of the system.
  • the traditional torque disturbance observer uses the inverse model of the system to estimate the load torque. The disadvantage is that the variation of the system parameters (moment of inertia, damping coefficient, etc.) will affect the estimation accuracy of the load torque. Different from the traditional disturbance observer scheme, the load torque estimation is different.
  • the present invention uses the ESO2 based on the mechanical partial state space model to observe the disturbances of all mechanical parts including the load torque information in the drag system.
  • the system block diagram is shown in Figure 2.
  • ESO2 that estimates the total disturbance of the mechanical part (including the load torque), which uses the nominal model of the transmission system (where They are the total inertia of the transmission system and the nominal value of the stick-slip damping coefficient.
  • the description of the state space is given in Section 3.2.
  • ⁇ 3 and ⁇ 4 are coefficients of ESO 2 and K T is a torque coefficient.
  • ESO2 observes the total disturbance of the mechanical part by means of the information of the applied armature current i * a and the actual speed information n (obtained by the encoder, resolver or other speed measuring method mounted on the motor shaft) Information (except for load torque, the disturbance of other mechanical parts is reflected in in).
  • the detailed design of ESO2 is described in section 3.2.
  • the given speed n * is compared with the actual speed n of the feedback, the deviation is input to the speed regulator, and the speed regulator can be a PI controller that is resistant to integral saturation.
  • the output of the speed regulator and the estimated load torque disturbance obtained by ESO2
  • the converted current (by The addition of the armature current i * a can be obtained by adding in addition to K T , whereby the majority of the load torque disturbance T L is eliminated by means of the feedforward control scheme.
  • the PI controller can be eliminated with some robustness to the disturbance in the ring.
  • ESO2 part of Figure 2 uses the nominal value of the mechanical parameters (J, B) of the transmission system, not the actual value. This means that even if these parameters change due to load changes, it will not affect the performance of the system. As for the speed regulator, other control schemes with certain robustness can also be used.
  • the extended state observers ESO1 and ESO2 in Figures 1 and 2 can utilize the state space model of the electrical and mechanical parts, respectively, and select parameters according to the pole configuration scheme.
  • the specific process is introduced as follows:
  • e a is taken as the disturbance term and is represented by the extended state x 2 .
  • ⁇ 1 and ⁇ 2 are the coefficients of the observer.
  • z 1 ⁇ i a , z 2 ⁇ e a , ⁇ 1 , ⁇ 2 should satisfy the following formula:
  • ESO2 extended state observer
  • ⁇ 1 and ⁇ 2 are the coefficients of the observer.
  • z 3 ⁇ r , z 4 ⁇ T L , ⁇ 3 , ⁇ 4 should satisfy the following formula:
  • the prototype uses a speed servo control system consisting of a permanent magnet brushed DC motor for the wire feeding mechanism of the MIG/MAG gas shielded welder.
  • the servo system uses a DC/DC converter with an H-bridge topology to power the permanent magnet motor.
  • the speed feedback information is obtained by an encoder mounted on the motor shaft. The number of encoders is 60ppr.
  • the prototype parameters are shown in Table 1.
  • Figures 4 to 6 show the partial simulation results of the prototype, respectively, to illustrate the effectiveness of the proposed invention.
  • Figure 4 The estimated effect of the extended state observer on the back EMF disturbance is compared when the armature winding resistance changes over a wide range.
  • Figure 5 compares the effect of the extended state observer on the load torque disturbance and the estimated value of the load torque disturbance when the transmission system's stick-slip damping coefficient changes over a wide range.
  • Figure 6 shows the dynamic and steady-state response of the prototype after four-quadrant operation (positive, reversal, and respective starting and braking) of the prototype after using the proposed scheme.
  • FIG. 8 is a speed response curve when the wire feeding mechanism operates in the jog wire feeding mode.
  • Figure 9 shows the speed response curve of the wire feeding mechanism operating in the switch mode.
  • Figure 10 is a velocity response curve of the wire feeding mechanism operating in the pulsating wire feeding mode.
  • the present invention proposes a new observer-based servo control scheme based on the traditional cascade control structure.
  • the solution can quickly eliminate the back EMF disturbance caused by different speeds of the motor electrical (ie winding) part through the inner ring; at the same time, eliminate the load transfer caused by the load and load changes of the mechanical part of the motor through the outer ring. Moment perturbation.
  • the present invention separates the electrical disturbance including the electrical potential from the electrical potential with the mechanical disturbance including the load torque, and uses the inner loop to eliminate the electrical disturbance and the outer loop cancellation mechanism.
  • Disturbed cascade control scheme Combining the back EMF and the load torque to disturb the two extended state observers, for the first time, the servo control including the inner ring disturbance including the back EMF with the rotational speed and the outer ring disturbance including the load torque and its variation is eliminated.
  • the servo control system composed of the proposed control algorithm has strong anti-interference performance for large disturbances such as back EMF change and load torque fluctuation.
  • the prototype is designed and manufactured.
  • the simulation and experimental results of the prototype show that the proposed scheme has universality and is suitable not only for DC servo but also for various magnetic field oriented AC servo systems.
  • the invention comprehensively improves the dynamic and static performance of the existing servo system, and also overcomes the influence of electrical parameters, mechanical parameter perturbation, grid voltage variation and load variation on system performance.
  • the above scheme has been successfully applied to the servo system of the MIG and CO 2 gas shielded welding wire feeding mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Feedback Control In General (AREA)

Abstract

一种同时消除反电势、负载转矩扰动的伺服控制策略及系统,基于电枢绕组的标称模型,根据外加至电枢两端电压以及电枢电流的检测值,估计电气部分的总扰动,并通过前馈补偿部分抵消这些扰动。结合对电枢电流的反馈调节,消除剩余反电势扰动。将消除电气总扰动的前馈控制与电流反馈控制结合环节构建系统内环。基于传动系统的标称模型,根据电枢电流以及实际转速信息,确定机械部分的总扰动,并通过前馈补偿部分抵消这些扰动。结合对转速的反馈调节,消除剩余负载转矩扰动。将消除机械总扰动的前馈控制与转速反馈控制结合环节构建系统外环。该策略及系统消除了两个不同时间尺度的扰动,大大提升了伺服系统的抗扰能力和动、静态性能。

Description

同时消除反电势、负载转矩扰动的伺服控制策略及其系统 技术领域
本发明涉及一种同时消除反电势、负载转矩扰动的伺服控制策略及其系统。
背景技术
伺服控制技术广泛应用于机器人、高铁、电动汽车、数控机床以及航空、航天等领域。为了获得高性能的闭环伺服控制系统,就需要解决下面两个基本问题:(1)如何获得构成系统闭环所需要的反馈信息;(2)如何设计伺服控制系统的控制策略。
对于前者,就伺服系统而言,所需要的反馈信息涉及诸如电流、电压、转速以及位置等,其中,电流(或电压)信息可以通过传感器(如霍尔或互感器、检测电阻等)直接测量获得。位置信息则可采用测速发电机、编码器(Encoder)或旋变(Resolver)等传感器直接测量获得。至于速度反馈信息,则是通过位置信息的差分或利用现代控制理论中的观测器技术间接获得速度的反馈信息。当然,在有些特殊场合下,位置反馈信息也可以采用观测器技术通过电流和电压的测量值间接获得,实现所谓的无位置传感器方案。
对于后者,工程实际中采用最多的伺服控制策略仍然是以PID为主的控制策略。此外,也可以采用包括极点配置的线性控制策略以及其它非线性控制策略诸如实现开关切换的滑模变结构控制策略、基于参考模型的模型参考自适应控制策略等。
应该讲,PID控制具有下列优点:(1)对阶跃输入具有良好的跟随性;(2)稳态无静差;(3)对环内扰动具有一定的抗扰性。但PID控制仅适应于线性对象以及工作点变化不大的非线性对象。一旦扰动过大、工作点变化范围宽,非线性程度大,则PID控制策略便会失效。由于PID控制算法是基于对象模型的,对于未建模动态,其控制策略则无能为力。
滑模变结构控制虽然可以应用于非线性对象、动态响应也较快,对伺服系统结构参数变化也具有鲁棒性,但由于受实际开关以及控制周期的影响,滑模控制存在抖振现象以及稳态偏差等问题。
模型参考自适应控制对被控对象参数的变化具有较强的鲁棒性,但它是以牺牲动态性能为代价的,因而具有一定的局限性。
由高性能的伺服控制算法所实现的伺服控制系统具有如下特征:
(1)良好的动、静态性能;(2)较宽的调速范围;(3)对各类扰动具有较强的抗扰 性;(4)对电机及拖动负载的结构参数变化不敏感;(5)不受未建模动态以及其它非线性因素的影响。
随着科技的进步,各类设备对伺服系统的性能也提出了更高的要求,现有控制算法已难以进一步满足高性能伺服控制系统的需求。
经典的伺服控制方案中电流环的PID控制参数的设计是根据电枢(或定子)绕组的电阻和电感参数设计的,未考虑反电势的影响;而速度环中的PID控制参数则是根据拖动系统的惯量以及阻尼系数确定的,并未考虑负载转矩的影响;通常,这些系统将电枢绕组的反电势以及负载转矩作为扰动项处理。它们利用的是PID控制策略具有一定鲁棒性的特点,通过系统加以消除的。
但实际情况是,当电机的转速较高或转速变化较大时,反电势在整个输入电压中所占比重较大;同样,当负载转矩较大或负载转矩变化较大时,负载转矩会在整个电磁转矩中占据主要地位。如何处理这两部分的扰动项,进一步提升系统的性能,对现有伺服控制方案则是一个挑战。
通过对现有伺服系统的全面分析,可以发现其存在如下问题:
(1)现有的方案尚未同时考虑电气部分的反电势扰动和负载转矩扰动的影响,尚未对它们分别处理。迄今为止,所能见到的伺服系统方案基本上是通过单一的前馈补偿措施,要么直接加入与转速有关的反电势前馈项抵消反电势的影响;要么利用通过检测(或观测)负载转矩,然后通过前馈控制抵消负载转矩的影响;
(2)现有的方案尚未同时考虑被控电机(包括直流、交流异步和同步以及永磁无刷等)电气参数(如电阻、电感)的变化以及机械参数(如转动惯量、粘滑阻尼系数)的变化;
(3)现有方案对于扰动信息的获得多采用扰动观测器方案,这种方案采用被控电机机械或电气部分的逆模型,要么对负载转矩估计,要么对反电势本身进行估计,然后采用前馈控制方案消除单一扰动。一旦包含未知扰动以及模型参数发生变化,扰动补偿方案则大大折扣。而实际的运动控制系统在电气部分和机械部分均存在未建模动态以及其它非线性因素(诸如饱和非线性对于电感参数的影响、动、静摩擦的非线性对负载转矩的影响)等因素,传统扰动观测器方案对此无能为力;
(4)目前也有部分方案单独采用扩展状态观测器观测负载转矩或反电势扰动,应该讲,利用扩展状态观测器替代传统的扰动观测器对反电势或(和)负载转矩估计的方案,考虑了未建模动态以及传动系统参数变化等的影响,能够对变化的反电势或(和)负载转矩加以估 计。但迄今为止,尚未发现同时对负载转矩和反电势扰动采用两个扩展状态观测器分别估计的方案。
发明内容
针对上述问题,本发明提出了一种同时消除反电势、负载转矩扰动的伺服控制策略及其系统。本发明能够通过内环快速消除电机电气(即绕组)部分由不同转速所引起的反电势扰动;与此同时,通过外环消除电机的机械部分由负载以及负载的改变等因素所引起的负载转矩扰动。
本发明的基本理念是:考虑到电气部分与机械部分的扰动分别隶属于不同的时间尺度,具有前者变化较快,后者变化慢的特点,可以采用不同的扰动估计和控制方案以分别消除反电势等扰动与负载转矩等扰动对系统的影响。为此,在传统串级系统结构的基础上,建立了一套全新的基于扩展状态观测器的伺服控制方案和系统。
具体内容如下:
对于电气部分,首先建立包括反电势在内的电枢绕组的状态空间模型。利用该模型,同时结合反电势的特点,建立描述电气部分的扩展的状态空间模型。
利用扩展的状态空间模型的结构和电枢绕组结构参数的标称值,设计估计反电势的第一扩展状态观测器。第一扩展状态观测器利用外加至电枢两端电压以及电枢电流的检测值和标称模型,最终得到包括反电势在内的所有电气扰动的信息。
由所检测的电流反馈信息和第一扩展状态观测器建立系统的内环。在内环控制环节中,电流的调节采用反馈控制,而反电势扰动的消除则采用前馈控制。具体方案是:给定电流与反馈的实际电枢电流相比较,其偏差输入电流调节器。电流调节器可以采用抗积分饱和的PI控制器。将电流调节器的输出与由第一扩展状态观测器所获得的反电势估计值相加,其和值作为电枢电压的给定值。
上述电流调节器采用抗积分饱和的PI调节器,利用了PI控制器对于环内的扰动具有一定鲁棒性的特点,消除反电势扰动中未被前馈控制消除的部分。需说明的是:本领域技术人员完全能够在本发明的工作原理的启示下,将其中的抗饱和PI电流控制器替换为其它具有鲁棒性的调节控制器,如预测控制、无差拍控制(Dead-Beat)、极点配置控制以及自适应控制器等,均为简单替换与改进。这些替换与改进,也应隶属于本发明的保护范围。
上述第一扩展状态观测器采用的是电枢绕组结构参数的标称值,而不是真实值。利用的是第一扩展状态观测器不受电气部分结构参数(电机定子绕组电阻、电枢电感)影响的特点 和控制策略的鲁棒性。这就意味着:本发明即使电枢电感因磁路饱和或电枢绕组电阻受温度变化而改变,也不会对系统的性能造成影响。当然,本领域技术人员在本发明的工作原理的启示下,将标定值替换为其它值的改动,均属于不需要付出创造性劳动的简单替换。
对于机械部分,建立基于传动系统的状态空间模型。利用该模型,同时结合负载转矩的特点,建立描述机械部分的扩展的状态空间模型。
利用机械部分的扩展的状态空间模型的结构和机械传动部分结构参数的标称值,设计估计负载转矩的第二扩展状态观测器。第二扩展状态观测器利用外加电枢电流以及来自编码器或旋变的转子转速信息和标称模型,最终得到包括负载转矩在内的所有机械扰动的信息。
由所检测的转子转速信息和第二扩展状态观测器建立系统的外环。在外环控制环节中,转子转速的调节采用反馈控制,而负载转矩扰动的消除则采用前馈控制。具体方案是:给定转速与反馈的实际转速相比较,其偏差输入转速调节器。转速调节器可以采用抗积分饱和的PI控制器。转速调节器的输出与获得的负载转矩扰动估计值所转化而来的电流相加,其和值作为电枢电流的给定值。
转速调节器采用抗积分饱和的PI控制器,利用PI控制器对于环内的扰动具有一定鲁棒性的特点,消除负载转矩扰动中未被前馈控制消除的部分。当然,本领域技术人员完全能够在本发明的工作原理的启示下,将PI控制器替换为其它转速调节器,如预测控制、无差拍控制、极点配置控制以及自适应控制器等,均为简单替换与改进。这些替换与改进,也应隶属于本发明的保护范围。
上述第二扩展状态观测器采用的是机械传动部分结构参数的标称值,而不是真实值。利用的是第二扩展状态观测器不受机械传动部分结构参数(传动系统的总惯量和粘滑阻尼系数)影响的特点和控制策略的鲁棒性。这就意味着:本发明即使传动系统的总惯量因负载状态和粘滑阻尼系数因运行状态发生变化而改变,也不会对系统的性能造成影响。当然,本领域技术人员在本发明的工作原理的启示下,将标定值替换为其它值的改动,均属于不需要付出创造性劳动的简单替换。
上述能够同时消除内环反电势、外环负载转矩扰动影响的串级伺服控制系统,包括内环反馈控制环节和外环反馈控制环节,所述内环反馈控制环节包括电流调节器和第一扩展状态观测器。第一扩展状态观测器基于电枢绕组的标称值模型,根据外加至电枢两端电压以及电枢电流的实际值,确定电气部分的总扰动。结合电流调节器对电枢电流的调节,进行前馈补偿以消除反电势总扰动;
所述外环反馈控制环节包括转速调节器和第二扩展状态观测器,第二扩展状态观测器基于传动系统的标称值模型,根据电枢电流以及实际转速的信息确定机械部分的总扰动。结合转速调节器对转速的调节,进行前馈补偿以消除负载转矩总扰动;
通过内外环的调控,同时消除内、外环反电势和负载转矩扰动的影响。
所述电枢绕组的标称值模型根据电枢电感和电阻的标称值得到。
所述传动系统的标称值模型根据传动系统的总惯量和粘滑阻尼系数的标称值得到。
所述第一扩展状态观测器的控制参数根据电流环期望的截止频率、电枢电感和电阻值确定。
所述第二扩展状态观测器的控制参数根据转速环期望的截止频率、传动系统的总惯量和粘滑阻尼系数确定。
需要说明的是:本发明应用广泛,所有利用直流伺服系统、矢量控制的交流伺服系统均可以应用本发明的方法或系统。因此,本领域技术人员在本发明的工作原理的启示下,将其应用于由感应电机、永磁无刷直流电机以及永磁同步电机组成的伺服系统(包括位置伺服、速度伺服系统),均属于不需要付出创造性劳动的简单替换。
本发明的有益效果为:
(1)本发明可以克服传统的扰动观测器因采用系统逆模型其扰动估计精度受系统结构参数不准确或变化的影响(如负载转矩的转动惯量、阻尼系数会发生改变);
(2)本发明可以克服采用滑模变结构控制的抖振现象和稳态偏差问题以及采用模型参考自适应控制方案的局限性。所采用的扩展状态扰动观测器可以将反电势以及负载中的各种非线性因素以及参数的摄动考虑在内,避免了传统的扰动观测器受电机及传动系统参数变化的影响,大大提升了包括系统动、静态性能、对电网电压波动、负载扰动的抗扰性以及参数摄动鲁棒性在内的系统整体性能;
(3)本发明因采用两个扩展状态观测器对反电势和负载转矩扰动分别进行估计,并单独加以补偿,从而消除了两个不同时间尺度(或不同带宽)的扰动,有利于进一步提升伺服系统的抗扰能力和动、静态性能;
(4)与以往采用单一抗扰方案不同,本发明将电气部分包括反电势在内的电气扰动与机械部分包括负载转矩在内的机械扰动分开,采用内环消除电气扰动和外环抵消机械扰动的串级控制方案。结合反电势和负载转矩扰动两个扩展状态观测器,首次实现了同时消除了包括随转速变化反电势在内的内环扰动和包括负载转矩及其变化在内的外环扰动的伺服控制策 略;
(5)本发明的伺服控制系统,其性能不受电机绕组电阻的变化(温度的影响)、电感的变化(饱和的影响)以及负载变化的影响,对于包括动、静摩擦在内的未建模动态等非线性因素具有一定的鲁棒性,对于大扰动也具有较强的抗扰性;
(6)本发明的应用广泛,所有利用直流伺服系统、矢量控制的交流伺服系统都可以应用本发明的方法或系统,如机器人运行控制、数控机床(CNC)以及无人机伺服驱动等多个领域。
附图说明
图1为本发明的电流内环控制策略框图;
图2为本发明的转速外环控制策略框图;
图3为本发明的系统的整体框图;
图4(a)为本发明的Ra=0.22Ω时反电势的实际波形与估计波形的仿真结果;
图4(b)为本发明的Ra=0Ω时反电势的实际波形与估计波形的仿真结果;
图5(a)为本发明的B=0.0001时负载转矩的实际波形与估计波形的仿真结果;
图5(b)为本发明的B=0时负载转矩的实际波形与估计波形的仿真结果;
图6为本发明的转速给定与响应特性、转子位置以及电流参考值的仿真结果;
图7为本发明的点动送丝的给定送丝速度为10m/s时速度响应曲线的实验结果;
图8为本发明的开关模式下慢送丝速度3m/s,给定正常送丝速度20m/s时速度响应曲线的实验结果;
图9为本发明的脉动送丝模式下慢送丝速度3m,给定正常送丝速度10m,双脉冲2Hz,偏移量2m时速度响应曲线的实验结果。
具体实施方式:
下面结合附图与实例对本发明作进一步说明。
(1)传统的反电势扰动观测器是利用系统的逆模型对反电势进行估计,其缺点是:系统参数(电枢电感、绕组电阻)的变化会影响对反电势的估计精度。与传统的扰动观测器方案仅对反电势估计不同,本发明采用基于电气部分状态空间模型的扩展状态观测器(ESO,Extended State Observer)ESO1,可以对被控电机中包括反电势信息在内所有电气部分的扰动均进行观测,其系统框图如图1所示。
图1中,虚线框内为估计电气部分总扰动(包括反电势在内)的ESO1,它采用的是电枢 绕组的标称模型(其中,
Figure PCTCN2017071270-appb-000001
分别为电枢电感和电阻的标称值),其状态空间描述见(3.1)节。其中,β1、β2为ESO1的系数。ESO1借助于外加至电枢两端电压u* a以及电枢电流的实际值ia(由电流互感器或其它检测方法获得)的信息,观测出电气部分总扰动
Figure PCTCN2017071270-appb-000002
的信息(除反电势外,其它电气部分的扰动均反映在
Figure PCTCN2017071270-appb-000003
中)。ESO1的详细设计方案见3.1节
图1中,电流的调节采用反馈控制方案,而反电势扰动的消除则采用前馈控制方案。具体方案介绍如下:
给定电流i* a与反馈的实际电枢电流ia相比较,其偏差输入电流调节器,电流调节器可采用抗积分饱和的PI控制器。电流调节器的输出与由ESO1所获得的反电势估计值
Figure PCTCN2017071270-appb-000004
相加便可获得电枢电压的期望值u* a,由此借助于前馈控制方案消除反电势扰动ea的大部分。至于未消除部分的扰动,由于数值较小,可利用PI控制器对于环内的扰动具有一定鲁棒性的特点加以消除。
需要说明的是:图1中的ESO1部分采用的是电机定子绕组参数(La、Ra)的标称值,而不是真实值。这意味着即使这些参数因磁路饱和或温度变化而改变,也不会对系统的性能造成影响。(2)传统的转矩扰动观测器采用的是系统的逆模型对负载转矩进行估计,其缺点是:系统参数(转动惯量、阻尼系数等)的变化会影响对负载转矩的估计精度。与传统的扰动观测器方案仅对负载转矩估计不同,本发明采用基于机械部分状态空间模型的ESO2,对拖动系统中包括负载转矩信息在内的所有机械部分的扰动均进行观测,其系统框图如图2所示。
图2中,虚线框内为估计机械部分总扰动(包括负载转矩在内)的ESO2,它采用的是传动系统的标称模型(其中,
Figure PCTCN2017071270-appb-000005
分别为传动系统的总惯量和粘滑阻尼系数的标称值),其状态空间描述见3.2节。其中,β3、β4为ESO2的系数,KT为转矩系数。ESO2借助于外加电枢电流i* a的信息以及实际转速信息n(由安装在电机轴上的编码器、旋变或其它测速方法获得),观测出机械部分总扰动
Figure PCTCN2017071270-appb-000006
的信息(除负载转矩外,其它机械部分的扰动均反映在
Figure PCTCN2017071270-appb-000007
中)。ESO2的详细设计方案见3.2节。
图2中,转速的调节采用反馈控制方案,而负载转矩扰动的消除则采用前馈控制方案。具体方案介绍如下:
给定转速n*与反馈的实际转速n相比较,其偏差输入转速调节器,转速调节器可采用抗积分饱和的PI控制器。转速调节器的输出与由ESO2所获得的负载转矩扰动估计值
Figure PCTCN2017071270-appb-000008
所转化而来的电流(由
Figure PCTCN2017071270-appb-000009
除以KT获得)相加便可获得电枢电流的期望值i* a,由此借助于前馈控制方案消除负载转矩扰动TL的大部分。至于未消除部分的扰动,由于数值较小,可利用PI控制器对于环内的扰动具有一定鲁棒性的特点加以消除。
需要说明的是:图2中的ESO2部分采用的是传动系统的机械参数(J、B)的标称值,而不是真实值。这意味着即使这些参数因负载变化而改变,也不会对系统的性能造成影响。至于转速调节器,也可采用具有一定的鲁棒性的其它控制方案。
用上述两种ESO观测器估计所有扰动项(反电势和负载转矩),并分别通过前馈补偿抵消扰动项。对于剩余未抵消的扰动,则分别利用内、外环PI调节器本身具有的鲁棒性特点加以消除,从而达到了分别对电气部分和机械部分扰动分别快速处理的目的,提高了系统的整体性能,系统地整体框图如图3所示。图3中的转速调节器以及电流调节器可以采用具有一定鲁棒性的PI调节器,也可以采用其它鲁棒控制方案。
(3)扩展状态观测器ESO1与ESO2的设计及其参数的选择方法:
图1与图2中的扩展状态观测器ESO1与ESO2可分别利用电气部分和机械部分的状态空间模型,并按照极点配置的方案选取参数。具体过程介绍如下:
3.1估计包括反电势在内电气部分总扰动的扩展状态观测器(ESO1)设计
取状态量为:x1=ia,x2=ea,其中,将ea作为扰动项,并将其用扩展状态x2表示。考虑到在电流的刷新周期内ea基本不变,故令
Figure PCTCN2017071270-appb-000010
于是得传动系统电气部分的状态空间方程为:
Figure PCTCN2017071270-appb-000011
Figure PCTCN2017071270-appb-000012
则扩展状态观测器的状态方程为:
Figure PCTCN2017071270-appb-000013
其中,β1、β2为观测器的系数。为了确保z1→ia,z2→ea,β1、β2应满足下列下式:
λ(s)=|sI-(A-LC)|==(s+ω01)2
于是有:
Figure PCTCN2017071270-appb-000014
其中,ω01为电流环期望的截止频率,通常取ω01=1000~5000rad/s。
3.2估计包括负载扰动在内机械部分总扰动的扩展状态观测器(ESO2)设计
取状态量为:x3=ωr,x4=TL,其中,将TL作为扰动项,并将其用扩展状态x4表示。考虑到在电流的刷新周期内TL基本不变,故令
Figure PCTCN2017071270-appb-000015
于是得传动系统机械部分的状态空间方程为:
Figure PCTCN2017071270-appb-000016
Figure PCTCN2017071270-appb-000017
则扩展状态观测器的状态方程为:
Figure PCTCN2017071270-appb-000018
其中,β1、β2为观测器的系数。为了确保z3→ωr,z4→TL,β3、β4应满足下列下式:
λ(s)=|sI-(A-LC)|==(s+ω02)2
于是有:
Figure PCTCN2017071270-appb-000019
其中,ω02为转速环期望的截止频率,通常取ω01=100~1000rad/s。
(4)仿真与实验结果
为验证所提方案的有效性,笔者制作了样机。样机采用永磁有刷直流电机组成的速度伺服控制系统,用于MIG/MAG气体保护焊机的送丝机构。该伺服系统采用H桥拓扑结构的DC/DC变换器为永磁电机供电,转速反馈信息通过安装在电机轴上的编码器获得,编码器的线数为:60ppr。样机参数如表1所示。
图4~图6分别给出了样机的部分仿真结果,旨在说明所提发明的有效性。其中,图4 比较了电枢绕组电阻大范围内变化时扩展状态观测器对反电势扰动的估计效果。图5比较了传动系统粘滑阻尼系数大范围内变化时扩展状态观测器对负载转矩扰动的影响结果以及负载转矩扰动的估计值。图6给出了样机在采用所提方案后系统作四象限运行(正、反转及各自起、制动)时的动态及稳态响应。
图8~图9分别所提方案用于MIG/MAG逆变焊机送丝机构伺服系统的典型实验结果。其中,图8为送丝机构工作在点动送丝模式时的速度响应曲线。图9为送丝机构工作在开关模式下的速度响应曲线。图10为送丝机构工作在脉动送丝模式下的速度响应曲线。
表1仿真及实验样机的有关参数
Figure PCTCN2017071270-appb-000020
综上所述,本发明在传统的串级控制结构的基础上提出了一种全新的基于观测器的伺服控制方案。该方案能够通过内环快速消除电机电气(即绕组)部分由不同转速所引起的反电势扰动;与此同时,通过外环消除电机的机械部分由负载以及负载的改变等因素所引起的负载转矩扰动。
(1)与以往采用单一抗扰方案不同,本发明将电气部分包括反电势在内的电气扰动与机械部分包括负载转矩在内的机械扰动分开,采用内环消除电气扰动和外环抵消机械扰动的串级控制方案。结合反电势和负载转矩扰动两个扩展状态观测器,首次实现了同时消除了包括随转速变化反电势在内的内环扰动和包括负载转矩及其变化在内的外环扰动的伺服控制策略。
(2)由所提出的控制算法所组成的伺服控制系统,其性能不受电机绕组电阻的变化(温度的影响)、电感的变化(饱和的影响)以及转动惯量、粘滑阻尼系数的影响。
(3)由所提出的控制算法所组成的伺服控制系统,其性能对反电势变化、负载转矩波动等大扰动也具有较强的抗扰性。
(4)系统对于包括动、静摩擦在内的未建模动态等非线性因素具有一定的鲁棒性;
根据上述控制方案,设计制作样机。样机的仿真和实验结果表明:本发明所提方案具有通用性,不仅适应于直流伺服也适应于各类磁场定向的交流伺服系统。本发明全面提升了现有伺服系统的动、静态性能,同时也克服了因电气参数、机械参数摄动以及电网电压变化、负载变化对系统性能的影响。目前,上述方案已成功应用于MIG和CO2气体保护焊送丝机构的伺服系统中。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制。所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 同时消除反电势、负载转矩扰动的伺服控制策略,其特征是:通过内环快速消除电机电气部分由不同转速所引起的反电势扰动,与此同时,通过外环消除电机的机械部分由负载以及负载的改变而所引起的负载转矩扰动;
    基于电气部分与机械部分的扰动分别隶属于不同的时间尺度,采用对应的不同的扰动估计以分别消除反电势等扰动与负载转矩扰动对系统的影响。
  2. 如权利要求1所述的同时消除反电势、负载转矩扰动的伺服控制策略,其特征是:包括电气部分和机械部分的控制,其中:
    电气部分,建立包括反电势在内的电枢绕组的状态空间模型,利用该模型,结合反电势的特点,建立描述电气部分的扩展的状态空间模型,利用扩展模型结构和电枢绕组结构参数的标称值,构建估计反电势的第一扩展状态观测器,第一扩展状态观测器利用外加至电枢两端电压以及电枢电流的检测值和标称模型,最终得到包括反电势在内的所有电气扰动的信息;
    机械部分,建立基于传动系统的状态空间模型,利用该模型,同时结合负载转矩的特点,建立描述机械部分的扩展的状态空间模型,利用机械部分的扩展的状态空间模型的结构和机械传动部分结构参数的标称值,构建估计负载转矩的第二扩展状态观测器,第二扩展状态观测器利用外加电枢电流以及来自编码器或旋变的转子转速信息和标称模型,最终得到包括负载转矩在内的所有机械扰动的信息。
  3. 如权利要求2所述的同时消除反电势、负载转矩扰动的伺服控制策略,其特征是:所检测的电流反馈信息和第一扩展状态观测器建立系统的内环,在内环控制环节中,电流的调节采用反馈控制,反电势扰动的消除采用前馈控制。
  4. 如权利要求2所述的同时消除反电势、负载转矩扰动的伺服控制策略,其特征是:给定电流与反馈的实际电枢电流相比较,其偏差输入电流调节器,将电流调节器的输出与由第一扩展状态观测器所获得的反电势估计值相加,其和值作为电枢电压的给定值。
  5. 如权利要求4所述的同时消除反电势、负载转矩扰动的伺服控制策略,其特征是:电流调节器采用抗积分饱和的PI控制器,利用PI控制器对于环内的扰动具有一定鲁棒性的特点,消除反电势扰动中未被消除的部分。
  6. 如权利要求2所述的同时消除反电势、负载转矩扰动的伺服控制策略,其特征是:所检测的转子转速信息和第二扩展状态观测器建立系统的外环,在外环控制环节中,转子转速的调节采用反馈控制,负载转矩扰动的消除采用前馈控制。
  7. 如权利要求6所述的同时消除反电势、负载转矩扰动的伺服控制策略,其特征是:将给定转速与反馈的实际转速相比较,其偏差输入转速调节器,转速调节器的输出与获得的负载转矩扰动估计值所转化而来的电流相加,其和值作为电枢电流的给定值。
  8. 能够同时消除内环反电势、外环负载转矩扰动影响的串级伺服控制系统,其特征是:包括内环反馈控制环节和外环反馈控制环节,所述内环反馈控制环节包括电流调节器和第一扩展状态观测器;第一扩展状态观测器基于电枢绕组的标称值模型,根据外加至电枢两端电压以及电枢电流的实际值,确定电气部分的总扰动,结合电流调节器对电枢电流的调节,进行前馈补偿以消除反电势总扰动;
    所述外环反馈控制环节包括转速调节器和第二扩展状态观测器,第二扩展状态观测器基于传动系统的标称值模型,根据电枢电流以及实际转速的信息确定机械部分的总扰动,结合转速调节器对转速的调节,进行前馈补偿以消除负载转矩总扰动;
    通过内外环的调控,同时消除内、外环反电势和负载转矩扰动的影响。
  9. 如权利要求8所述的控制系统,其特征是:所述电枢绕组的标称值模型根据电枢电感和电阻的标称值得到;
    所述传动系统的标称值模型根据传动系统的总惯量和粘滑阻尼系数的标称值得到。
  10. 如权利要求8所述的控制系统,其特征是:所述第一扩展状态观测器的控制参数根据电流环期望的截止频率、电枢电感和电阻值确定;
    所述第二扩展状态观测器的控制参数根据转速环期望的截止频率、传动系统的总惯量和粘滑阻尼系数确定。
PCT/CN2017/071270 2016-12-27 2017-01-16 同时消除反电势、负载转矩扰动的伺服控制策略及其系统 WO2018120323A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/304,622 US10411628B2 (en) 2016-12-27 2017-01-16 Servo control strategy and system for simultaneously eliminating counter- electromagnetic force (CEMF) and load torque disturbances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611224504.7A CN106533299B (zh) 2016-12-27 2016-12-27 同时消除反电势、负载转矩扰动的伺服控制方法及其系统
CN201611224504.7 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018120323A1 true WO2018120323A1 (zh) 2018-07-05

Family

ID=58337614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071270 WO2018120323A1 (zh) 2016-12-27 2017-01-16 同时消除反电势、负载转矩扰动的伺服控制策略及其系统

Country Status (3)

Country Link
US (1) US10411628B2 (zh)
CN (1) CN106533299B (zh)
WO (1) WO2018120323A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194233A (zh) * 2018-09-30 2019-01-11 深圳市英威腾电动汽车驱动技术有限公司 一种永磁同步电机的转矩闭环控制系统及方法
CN112234820A (zh) * 2020-11-11 2021-01-15 重庆邮电大学 一种基于时变负载的dc-dc降压转换器系统控制方法
CN112688599A (zh) * 2020-12-25 2021-04-20 湖南科技大学 一种提高无刷直流电机抗扰能力的复合控制方法
CN112886889A (zh) * 2021-01-15 2021-06-01 湖南大学 模块化多绕组永磁电机系统参数免疫预测控制方法及系统
CN113131814A (zh) * 2021-04-25 2021-07-16 中南大学 用于低精度编码器场合的异步电机负载转矩观测方法
CN113467229A (zh) * 2021-07-13 2021-10-01 南京信息职业技术学院 一种交流伺服驱动方法
CN114035621A (zh) * 2021-11-15 2022-02-11 青岛大学 考虑集合扰动的四容液位系统无差拍模型预测控制方法
CN114347972A (zh) * 2022-01-07 2022-04-15 扬州大学 基于干扰补偿的混合动力汽车e-h切换协调控制方法
CN114706299A (zh) * 2021-12-21 2022-07-05 天津大学 基于轴齿啮合应力多信息融合观测的发动机-isg扭矩动态协调控制算法
CN117997206A (zh) * 2024-04-03 2024-05-07 潍柴动力股份有限公司 一种永磁同步电机的转速控制方法、装置、电子设备和存储介质

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107134964B (zh) * 2017-04-26 2020-08-28 江苏大学 基于扩张状态观测器的五相容错永磁电机无位置传感器控制方法
EP3441829B1 (en) 2017-08-08 2020-11-11 Siemens Aktiengesellschaft System state prediction
CN110070785A (zh) * 2018-01-20 2019-07-30 东华理工大学 一种教学用的直流电机数字pid调速实验箱
CN108873698B (zh) * 2018-07-07 2021-06-01 福州大学 一种抗扰动两阶段定点伺服控制方法
JP2020108255A (ja) * 2018-12-27 2020-07-09 富士電機株式会社 サーボアンプ及びサーボシステム
CN109885876B (zh) * 2019-01-15 2023-10-13 江苏大学 一种用于电动助力转向系统故障诊断的滑模观测器实时建模方法
CN109921669A (zh) * 2019-03-12 2019-06-21 南京工程学院 一种基于神经网络和eso的pwm逆变器控制方法
CN110635733B (zh) * 2019-09-16 2021-04-27 中山绿威科技有限公司 永磁同步电机高动态响应转矩电流控制方法
CN110597064B (zh) * 2019-09-24 2021-04-16 燕山大学 基于非线性和不确定模型的主动悬挂输出反馈控制方法
CN110635738B (zh) * 2019-10-12 2020-12-18 东南大学溧阳研究院 一种永磁同步电机定子电阻及电机温度的实时辨识方法
CN111262487B (zh) * 2020-03-02 2022-03-08 南京工程学院 一种智能化大功率交流伺服驱动系统及伺服驱动控制方法
CN111355407B (zh) * 2020-03-03 2021-11-12 武汉理工大学 一种车载无刷直流电机负载自适应软起动控制系统及方法
CN111478636B (zh) * 2020-04-15 2021-07-16 北京理工大学 一种永磁同步电机单电流传感器预测控制方法
CN111965972B (zh) * 2020-06-12 2022-11-15 南京工程学院 基于干扰观测器的储能反步控制方法
CN111781836B (zh) * 2020-07-22 2022-05-27 安徽工业大学 一种液压力预设性能自适应渐近控制方法
CN111736472B (zh) * 2020-07-22 2022-05-27 安徽工业大学 一种基于rise的电机自适应预设性能渐近控制方法
CN112415891B (zh) * 2020-10-20 2022-05-31 安徽工业大学 一种电液伺服系统自适应输出反馈渐近控制方法
CN112422006B (zh) * 2020-10-27 2022-02-15 大连理工大学 一种考虑电流饱和以及干扰抑制的永磁同步电机速度控制方法
CN112431779A (zh) * 2020-11-06 2021-03-02 苏州浪潮智能科技有限公司 一种服务器风扇的转动控制方法和系统
CN112398397B (zh) * 2020-11-27 2022-06-10 浙江工业大学 一种基于模型辅助的线性自抗扰永磁同步电机控制方法
CN112564565B (zh) * 2020-12-07 2022-07-05 北京航空航天大学 一种永磁同步电机伺服系统的全回路抗干扰鲁棒控制方法
CN112701968B (zh) * 2020-12-24 2022-08-02 西安理工大学 一种永磁同步电机模型预测控制鲁棒性能提升方法
CN112695842B (zh) * 2021-01-11 2022-09-20 锦霸科技股份有限公司 一种无压力罐恒压供水控制方法
CN112953323B (zh) * 2021-02-07 2022-05-27 清华大学深圳国际研究生院 一种三坐标测量机的控制方法及系统
CN113078864B (zh) * 2021-04-06 2022-09-09 安徽大学 一种永磁同步电机转动惯量的动态识别方法
CN113517835B (zh) * 2021-04-22 2023-06-06 湖南工业大学 Pmsm驱动系统失磁故障控制方法、永磁同步电机
CN113110512B (zh) * 2021-05-19 2022-08-26 哈尔滨工程大学 一种减弱未知干扰与抖振影响的可底栖式auv自适应轨迹跟踪控制方法
CN113517836B (zh) * 2021-06-17 2023-12-05 北京自动化控制设备研究所 基于降维观测器的电机调速控制方法
CN113472242B (zh) * 2021-07-05 2022-07-15 江南大学 基于多智能体的抗干扰自适应模糊滑模协同控制方法
CN113489403B (zh) * 2021-07-06 2022-02-15 中铁工程装备集团有限公司 一种盾构机驱动系统的多电机均载协同控制装置及方法
CN113556068B (zh) * 2021-07-12 2022-06-17 武汉市正弦电气技术有限公司 一种永磁同步电机伺服控制方法及伺服系统
CN113691178B (zh) * 2021-07-13 2023-10-20 上海电力大学 一种永磁无刷直流电机转速波动抑制方法
CN113791537B (zh) * 2021-08-03 2023-12-15 北京航空航天大学 一种克服间隙扰动的电动舵机伺服系统及其控制方法
CN113965109B (zh) * 2021-08-12 2023-10-10 湖南工业大学 一种多电机分层式总量最优协同的抗饱和控制方法
CN113691187B (zh) * 2021-09-13 2023-09-01 东南大学深圳研究院 一种无差拍预测转速伺服永磁电机控制方法及系统
CN113872477B (zh) * 2021-10-26 2023-10-31 长春工业大学 一种永磁同步电机滑模控制方法及其应用
CN114104013B (zh) * 2021-11-12 2024-04-09 中国矿业大学 一种抑制矿用无人驾驶电机车车轮滑动的速度控制方法
CN114488779B (zh) * 2022-02-08 2023-05-05 中国科学院赣江创新研究院 一种汽油发电系统的动力链串级前馈控制方法及系统装置
CN114614712B (zh) * 2022-03-27 2023-06-30 西北工业大学 基于模型预测-观测器的飞机电推进系统扰动抑制方法
CN114884418B (zh) * 2022-06-09 2023-05-23 南京航空航天大学 基于改进型降阶观测器的低速直驱电机扰动抑制方法
CN115793600B (zh) * 2022-11-15 2024-05-14 北京精密机电控制设备研究所 一种基于数据和模型的伺服控制系统测试平台及方法
CN116224802B (zh) * 2023-03-31 2023-12-05 上海理工大学 基于干扰观测器和管道模型预测的车队纵向复合控制方法
CN117997177B (zh) * 2024-04-03 2024-06-21 潍柴动力股份有限公司 永磁同步电机的控制方法、电流环及永磁同步电机控制系统、可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140195013A1 (en) * 2002-04-18 2014-07-10 Cleveland State University Extended active disturbance rejection controller
CN104052363A (zh) * 2013-03-15 2014-09-17 德克萨斯仪器股份有限公司 自动化电机控制
CN105577058A (zh) * 2015-12-28 2016-05-11 江苏大学 基于新型模糊自抗扰控制器的五相容错永磁电机速度控制方法
CN106026822A (zh) * 2016-06-13 2016-10-12 上海电气集团股份有限公司 伺服电机驱动系统的惯量在线辨识方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100421373B1 (ko) * 2001-06-20 2004-03-06 엘지전자 주식회사 동기 릴럭턴스 모터의 회전 속도 제어장치
JP4033030B2 (ja) * 2003-04-21 2008-01-16 株式会社ジェイテクト 電動パワーステアリング装置
US7256564B2 (en) * 2005-09-29 2007-08-14 Agile Systems Inc. System and method for attenuating noise associated with a back electromotive force signal in a motor
JP2013121280A (ja) * 2011-12-08 2013-06-17 Samsung Yokohama Research Institute Co Ltd モータ制御装置
CN105262393B (zh) * 2015-08-07 2018-04-24 江苏大学 一种采用新型过渡过程的容错永磁电机速度控制方法
US10097116B2 (en) * 2015-09-11 2018-10-09 Canon Kabushiki Kaisha Motor control apparatus for controlling motor based on counter-electromotive voltage generated in winding of motor
JP6742834B2 (ja) * 2016-06-24 2020-08-19 キヤノン株式会社 モータ制御装置及びモータ制御装置の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140195013A1 (en) * 2002-04-18 2014-07-10 Cleveland State University Extended active disturbance rejection controller
CN104052363A (zh) * 2013-03-15 2014-09-17 德克萨斯仪器股份有限公司 自动化电机控制
CN105577058A (zh) * 2015-12-28 2016-05-11 江苏大学 基于新型模糊自抗扰控制器的五相容错永磁电机速度控制方法
CN106026822A (zh) * 2016-06-13 2016-10-12 上海电气集团股份有限公司 伺服电机驱动系统的惯量在线辨识方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
22 December 2010 (2010-12-22) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194233A (zh) * 2018-09-30 2019-01-11 深圳市英威腾电动汽车驱动技术有限公司 一种永磁同步电机的转矩闭环控制系统及方法
CN112234820A (zh) * 2020-11-11 2021-01-15 重庆邮电大学 一种基于时变负载的dc-dc降压转换器系统控制方法
CN112688599A (zh) * 2020-12-25 2021-04-20 湖南科技大学 一种提高无刷直流电机抗扰能力的复合控制方法
CN112688599B (zh) * 2020-12-25 2022-08-09 湖南科技大学 一种提高无刷直流电机抗扰能力的复合控制方法
CN112886889B (zh) * 2021-01-15 2022-05-17 湖南大学 模块化多绕组永磁电机系统参数免疫预测控制方法及系统
CN112886889A (zh) * 2021-01-15 2021-06-01 湖南大学 模块化多绕组永磁电机系统参数免疫预测控制方法及系统
CN113131814A (zh) * 2021-04-25 2021-07-16 中南大学 用于低精度编码器场合的异步电机负载转矩观测方法
CN113131814B (zh) * 2021-04-25 2022-11-18 中南大学 用于低精度编码器场合的异步电机负载转矩观测方法
CN113467229A (zh) * 2021-07-13 2021-10-01 南京信息职业技术学院 一种交流伺服驱动方法
CN113467229B (zh) * 2021-07-13 2023-07-21 南京信息职业技术学院 一种交流伺服驱动方法
CN114035621A (zh) * 2021-11-15 2022-02-11 青岛大学 考虑集合扰动的四容液位系统无差拍模型预测控制方法
CN114035621B (zh) * 2021-11-15 2023-08-11 青岛大学 考虑集合扰动的四容液位系统无差拍模型预测控制方法
CN114706299A (zh) * 2021-12-21 2022-07-05 天津大学 基于轴齿啮合应力多信息融合观测的发动机-isg扭矩动态协调控制算法
CN114706299B (zh) * 2021-12-21 2024-06-11 天津大学 基于轴齿啮合应力多信息融合观测的发动机-isg扭矩动态协调控制算法
CN114347972A (zh) * 2022-01-07 2022-04-15 扬州大学 基于干扰补偿的混合动力汽车e-h切换协调控制方法
CN114347972B (zh) * 2022-01-07 2023-11-10 扬州大学 基于干扰补偿的混合动力汽车e-h切换协调控制方法
CN117997206A (zh) * 2024-04-03 2024-05-07 潍柴动力股份有限公司 一种永磁同步电机的转速控制方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
US20190222155A1 (en) 2019-07-18
CN106533299A (zh) 2017-03-22
CN106533299B (zh) 2018-10-02
US10411628B2 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2018120323A1 (zh) 同时消除反电势、负载转矩扰动的伺服控制策略及其系统
CN110429881B (zh) 一种永磁同步电机的自抗扰控制方法
CN108233781B (zh) 基于干扰观测器的直流电机自适应反演滑模控制方法
CN104242769A (zh) 基于连续终端滑模技术的永磁同步电机速度复合控制方法
CN113206623B (zh) 基于快速积分终端滑模及干扰估计的永磁同步电机有限时间调速控制方法
CN105071723B (zh) 三步法设计的有刷直流电机复合控制方法
CN105262393A (zh) 一种采用新型过渡过程的容错永磁电机速度控制方法
CN112039390A (zh) 基于负载转矩观测的永磁同步电机滑模控制方法
Hashim Speed sensorless vector control of induction motors using rotor flux based model reference adaptive system
Minghe et al. Proportional resonant-based active disturbance rejection control for speed fluctuation suppression of PMSM drives
CN106817054B (zh) 一种基于参数辨识的机械弹性储能用pmsg控制方法
Aghaee et al. BLDC motor speed control based on MPC sliding mode multi-loop control strategy–implementation on Matlab and Arduino software
CN108448978B (zh) 一种有刷直流电机强化学习自适应控制方法
CN112039388B (zh) 工业机器人用永磁同步电机控制方法
CN112039389B (zh) 矿用牵引永磁同步电机驱动控制方法
Liu Research on h infinity robust tracking controller for permanent magnet synchronous motor servo system
Naik et al. Speed control of DC motor using linear and non-linear controllers
Sutnar et al. Comparison of sliding mode observer and extended Kaiman filter for sensorless DTC-controlled induction motor drive
CN115001335A (zh) 基于神经网络的无轴承磁通切换电机转子悬浮控制方法
CN113890451A (zh) 一种永磁同步电动机一阶线性自抗扰控制器参数调节方法
Gu et al. Brushless DC motor speed control based on predictive functional control
Paul et al. Synthesis of induction motor adaptive field-oriented control system with the method of signal-adaptive inverse model
Wang et al. A new method for PI parameter adjustment of induction motor based on MRAS
Han et al. Research on PMSM sensor-less system based on ADRC strategy
Khajorntraidet et al. Alternative technique for DC servo motor control using adaptive load torque compensator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887287

Country of ref document: EP

Kind code of ref document: A1