CN110635733B - 永磁同步电机高动态响应转矩电流控制方法 - Google Patents

永磁同步电机高动态响应转矩电流控制方法 Download PDF

Info

Publication number
CN110635733B
CN110635733B CN201910871324.5A CN201910871324A CN110635733B CN 110635733 B CN110635733 B CN 110635733B CN 201910871324 A CN201910871324 A CN 201910871324A CN 110635733 B CN110635733 B CN 110635733B
Authority
CN
China
Prior art keywords
permanent magnet
magnet synchronous
torque current
synchronous motor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910871324.5A
Other languages
English (en)
Other versions
CN110635733A (zh
Inventor
吴嘉欣
张懿
魏海峰
李震
李可礼
李垣江
刘维亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHONGSHAN LYUWEI TECHNOLOGY Co.,Ltd.
Original Assignee
Zhongshan Lyuwei Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Lyuwei Technology Co ltd filed Critical Zhongshan Lyuwei Technology Co ltd
Priority to CN201910871324.5A priority Critical patent/CN110635733B/zh
Publication of CN110635733A publication Critical patent/CN110635733A/zh
Application granted granted Critical
Publication of CN110635733B publication Critical patent/CN110635733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种永磁同步电机高动态响应转矩电流控制方法,本发明在得到电机相反电势系数与电流系数的基础上,通过在永磁同步电机电流环内增加转矩电流补偿环节,将一定转速下可以预先计算的与反电势系数及电流系数相关的转矩电流值计算出来,并配合原有的PI控制,减小了电流误差,增加了电流环的响应速度与实现精度,减小了电机抖振,提高了电机的跟随性能,进而改善了永磁同步电机的动态响应性能。

Description

永磁同步电机高动态响应转矩电流控制方法
技术领域
本发明属于永磁同步电机控制技术领域,具体涉及一种永磁同步电机高动态响应转矩电流控制方法。
背景技术
永磁同步电机交流伺服系统中,电流环决定了系统的暂态和稳态性能,如何构造一个稳定性高动态性能良好且控制精度高的电流环成为高性能伺服控制的关键。因此,具有优良暂态性的电流控制成为伺服控制的研究热点。
永磁同步电机的控制算法有很多种,目前研究较为成熟、使用较多的是比例积分(PI)控制和直接转矩控制。PI控制有良好的稳态控制性能,但其动态性能较差,响应很快时会导致系统超调,要想系统无超调就要牺牲响应的快速性。直接转矩控制响应速度快,有较好的参数鲁棒性,但是其本质上是滞环控制,即使在稳态时其电流也在不断波动变化,而且其开关频率始终在改变从而导致电机抖振。随着新型电磁材料的使用,电力器件的升级,在一个电流环周期内完成较为复杂的算法成为可能,使得新的高精度的永磁同步电机控制算法得以应用。
综上所述,提出一种永磁同步电机高动态响应转矩电流控制方法显得尤为重要。
发明内容
本发明公开了一种永磁同步电机高动态响应转矩电流控制方法,解决了动态性能差,导致电机抖振的技术问题。
为了达到上述目的,本发明公开了一种永磁同步电机高动态响应转矩电流控制方法,包括下列步骤:
步骤1:永磁同步电机工作在转速模式下,计算给定转速n*与实际转速n的偏差Δn;
步骤2:将Δn送入PI控制器PI1得到转矩电流给定值
Figure BDA0002202906360000021
步骤3:计算转矩电流给定值
Figure BDA0002202906360000022
与实际转矩电流iq的偏差Δiq
步骤4:将Δiq送入PI控制器PI2得到q轴电压给定值
Figure BDA0002202906360000023
步骤5:对q轴进行转矩电流补偿,得到q轴给定电压
Figure BDA0002202906360000024
步骤6:计算直轴电流给定值
Figure BDA0002202906360000025
与实际直轴电流id的偏差Δid
步骤7:将Δid送入PI控制器PI3得到d轴电压给定值
Figure BDA0002202906360000026
步骤8:将q轴给定电压
Figure BDA0002202906360000027
与d轴给定电压
Figure BDA0002202906360000028
送入SVPWM算法,得到6个PWM 信号,将6个PWM信号送入逆变器得到实际电压值ua、实际电压值ub、实际电压值uc,完成永磁同步电机高动态响应转矩电流控制。
进一步的,所述步骤5中,对q轴进行转矩电流补偿具体步骤为:
步骤51:计算实际转速值n与电机相反电势系数kE的乘积n·kE
步骤52:计算给定转矩电流
Figure BDA0002202906360000029
与电流系数kI的乘积
Figure BDA00022029063600000210
步骤53:将n·kE
Figure BDA00022029063600000211
以及
Figure BDA00022029063600000212
相加。
进一步的,所述步骤51中,获得电机相反电势系数kE方法的具体步骤为:
步骤511:在无电流工况下,通过测功机对永磁同步电机进行对拖,使永磁同步电机在额定转速nN下运转;
步骤512:获取永磁同步电机线反电势幅值E;
步骤513:计算电机相反电势系数
Figure BDA00022029063600000213
进一步的,所述步骤52中,获得电流系数kI方法的具体步骤为:
步骤521:给定永磁同步电机额定转矩电流
Figure BDA0002202906360000031
启用电机制动装置使永磁同步电机转子保持制动状态;
步骤522:在实际转矩电流达到给定值时,测得此时q轴输出给定电压
Figure BDA0002202906360000032
步骤523:计算电流系数
Figure BDA0002202906360000033
进一步的,所述步骤521中,在给定电机额定转矩电流
Figure BDA0002202906360000034
时,保持电机其他输入量均为零,只有给定电机额定转矩电流
Figure BDA0002202906360000035
在使电机运转。
与现有技术相比,本发明的有益效果是:
本发明在得到电机相反电势系数与电流系数的基础上,通过在永磁同步电机电流环内增加转矩电流补偿环节,将一定转速下可以预先计算与反电势系数及电流系数相关的转矩电流值,并配合原有的PI控制,减小了电流误差,增加了电流环的响应速度与实现精度,减小了电机抖振,提高了电机的跟随性能,进而改善了永磁同步电机的动态响应性能。
附图说明
图1为本发明具体实施例的一种永磁同步电机高动态响应转矩电流控制方法的整体流程图;
图2为本发明具体实施例的一种永磁同步电机高动态响应转矩电流控制方法的结构图;
图3为本发明具体实施例的对q轴进行转矩电流补偿方法的流程图;
图4为本发明具体实施例的获得相反电势系数kE方法的流程图;
图5为本发明具体实施例的获得电流系数kI方法的流程图。
具体实施方式
下面结合附图1-5对本发明的永磁同步电机高动态响应转矩电流控制方法作进一步的详细说明。
如图1和图2所示,本发明公开了一种永磁同步电机高动态响应转矩电流控制方法,包括下列步骤:
步骤S1:永磁同步电机工作在转速模式下,计算给定转速n*与实际转速n的偏差Δn;
步骤S2:将Δn送入PI控制器PI1得到转矩电流给定值
Figure BDA0002202906360000041
步骤S3:计算转矩电流给定值
Figure BDA0002202906360000042
与实际转矩电流iq的偏差Δiq
步骤S4:将Δiq送入PI控制器PI2得到q轴电压给定值
Figure BDA0002202906360000043
步骤S5:对q轴进行转矩电流补偿,得到q轴给定电压
Figure BDA0002202906360000044
步骤S6:计算直轴电流给定值
Figure BDA0002202906360000045
与实际直轴电流id的偏差Δid
步骤S7:将Δid送入PI控制器PI3得到d轴电压给定值
Figure BDA0002202906360000046
步骤S8:将q轴给定电压
Figure BDA0002202906360000047
与d轴给定电压
Figure BDA0002202906360000048
送入SVPWM算法,得到6 个PWM信号,将6个PWM信号送入逆变器得到实际电压值ua、实际电压值ub、实际电压值uc,完成永磁同步电机高动态响应转矩电流控制。
不同于常规方法直接将q轴给定电压
Figure BDA0002202906360000049
与d轴给定电压
Figure BDA00022029063600000410
送入SVPWM算法,本发明进一步对q轴进行转矩电流补偿,将反电势及电流的影响纳入考虑能够起到预测控制的效果提高系统实时性,以实现永磁同步电机高动态响应控制。
步骤S5中,当转速发生变化时,为了获得更快的转速转矩响应,需要对q轴转矩电流补偿。根据永磁同步电机的数学模型,将q轴电流公式进行分解可以得到对q轴进行转矩电流补偿,如图3所示具体步骤为:
步骤A1:计算实际转速值n与电机相反电势系数kE的乘积n·kE
步骤A2:计算给定转矩电流
Figure BDA00022029063600000411
与电流系数kI的乘积
Figure BDA00022029063600000412
步骤A3:将
Figure BDA00022029063600000413
以及
Figure BDA00022029063600000414
相加,完成对q轴转矩电流补偿。
上述步骤A1中,获得电机相反电势系数kE方法的具体步骤为:
步骤A11:在无电流工况下,通过测功机对永磁同步电机进行对拖,使永磁同步电机在额定转速nN下运转,这样在发电状态下就可以得到永磁同步电机的反电势,根据两者相除所得系数就可以知道理论上任意转矩电流所对应的电机相反电势;
步骤A12:通过示波器检测得到永磁同步电机线反电势幅值E;
步骤A13:计算电机相反电势系数
Figure BDA0002202906360000051
上述步骤A12中,获得电流系数kI方法的具体步骤为:
步骤A21:给定电机额定转矩电流
Figure BDA0002202906360000052
启用电机制动装置使永磁同步电机转子保持制动状态,这样准确知道给定电机额定转矩电流
Figure BDA0002202906360000053
所对应的q轴给定电压
Figure BDA0002202906360000054
根据两者相除所得系数就可以知道理论上任意转矩电流所对应的给定电压;
步骤A22:在实际转矩电流达到给定值时,测得此时q轴输出给定电压
Figure BDA0002202906360000055
步骤A23:计算电流系数
Figure BDA0002202906360000056
上述步骤A21中,给定电机额定转矩电流
Figure BDA0002202906360000057
时应保持电机其他输入量均为零,只有给定电机额定转矩电流
Figure BDA0002202906360000058
在使电机运转,这样保证电流环是单纯的PI 控制,没有其他控制方式干扰,可以得到最准确的结果。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (2)

1.一种永磁同步电机高动态响应转矩电流控制方法,其特征在于,包括下列步骤:
步骤1:永磁同步电机工作在转速模式下,计算给定转速n*与实际转速n的偏差Δn;
步骤2:将Δn送入PI控制器PI1得到转矩电流给定值
Figure FDA0002951831690000011
步骤3:计算转矩电流给定值
Figure FDA0002951831690000012
与实际转矩电流iq的偏差Δiq
步骤4:将Δiq送入PI控制器PI2得到q轴电压给定值
Figure FDA0002951831690000013
步骤5:对q轴进行转矩电流补偿,得到q轴给定电压
Figure FDA0002951831690000014
其中,对q轴进行转矩电流补偿的具体如步骤51-步骤53;
步骤51:计算实际转速值n与电机相反电势系数kE的乘积n·kE
步骤52:计算转矩电流给定值
Figure FDA0002951831690000015
与电流系数kI的乘积
Figure FDA0002951831690000016
步骤53:将n·kE
Figure FDA0002951831690000017
以及
Figure FDA0002951831690000018
相加;
其中,所述步骤51中获得电机相反电势系数kE的具体如步骤511-步骤513:
步骤511:在无电流工况下,通过测功机对永磁同步电机进行对拖,使永磁同步电机在额定转速nN下运转;
步骤512:获取永磁同步电机线反电势幅值E;
步骤513:计算电机相反电势系数
Figure FDA0002951831690000019
其中,所述步骤52中获得电流系数kI的具体如步骤521-步骤523:
步骤521:给定永磁同步电机额定转矩电流
Figure FDA00029518316900000110
启用电机制动装置使永磁同步电机转子保持制动状态;
步骤522:当实际转矩电流iq等于
Figure FDA00029518316900000111
时,获取q轴输出给定电压
Figure FDA00029518316900000112
步骤523:计算电流系数
Figure FDA0002951831690000021
步骤6:计算直轴电流给定值
Figure FDA0002951831690000022
与实际直轴电流id的偏差Δid
步骤7:将Δid送入PI控制器PI3得到d轴给定电压
Figure FDA0002951831690000023
步骤8:将q轴给定电压
Figure FDA0002951831690000024
与d轴给定电压
Figure FDA0002951831690000025
送入SVPWM算法,得到6个PWM信号,
将6个PWM信号送入逆变器得到实际电压值ua、实际电压值ub、实际电压值uc,完成永磁同步电机高动态响应转矩电流控制。
2.根据权利要求1所述的永磁同步电机高动态响应转矩电流控制方法,其特征在于,所述步骤521中,在给定永磁同步电机额定转矩电流
Figure FDA0002951831690000026
时,保持永磁同步电机其他输入量均为零,只有给定永磁同步电机额定转矩电流
Figure FDA0002951831690000027
在使电机运转。
CN201910871324.5A 2019-09-16 2019-09-16 永磁同步电机高动态响应转矩电流控制方法 Active CN110635733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910871324.5A CN110635733B (zh) 2019-09-16 2019-09-16 永磁同步电机高动态响应转矩电流控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910871324.5A CN110635733B (zh) 2019-09-16 2019-09-16 永磁同步电机高动态响应转矩电流控制方法

Publications (2)

Publication Number Publication Date
CN110635733A CN110635733A (zh) 2019-12-31
CN110635733B true CN110635733B (zh) 2021-04-27

Family

ID=68971405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910871324.5A Active CN110635733B (zh) 2019-09-16 2019-09-16 永磁同步电机高动态响应转矩电流控制方法

Country Status (1)

Country Link
CN (1) CN110635733B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459830B (zh) * 2021-07-30 2023-11-17 潍柴动力股份有限公司 车辆抖动的抑制方法、装置、电子设备及计算机存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100570391C (zh) * 2007-11-02 2009-12-16 清华大学 永磁同步电机永磁磁场畸变实时检测与分析方法及其装置
CN102739147A (zh) * 2011-04-12 2012-10-17 嘉善东菱电子科技有限公司 永磁同步电机反电动势谐波补偿控制方法
CN103312255B (zh) * 2013-06-18 2015-06-03 山东大学(威海) 一种永磁同步电机速度控制方法和装置
CN103997272B (zh) * 2014-06-09 2016-09-14 浙江理工大学 永磁同步电机的负载扰动补偿装置及方法
CN105305918B (zh) * 2015-09-29 2018-08-07 深圳市英威腾电气股份有限公司 一种双馈电机的他控式控制方法及其双馈电机系统
CN105680754B (zh) * 2016-02-25 2017-07-07 清华大学 一种永磁同步电机的直交轴电流矢量复合控制器
JP6740890B2 (ja) * 2016-12-22 2020-08-19 株式会社明電舎 インバータの制御方法およびインバータの制御装置
CN106533299B (zh) * 2016-12-27 2018-10-02 山东大学 同时消除反电势、负载转矩扰动的伺服控制方法及其系统

Also Published As

Publication number Publication date
CN110635733A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN108092567B (zh) 一种永磁同步电动机转速控制系统及方法
CN110350835B (zh) 一种永磁同步电机无位置传感器控制方法
CN107046387B (zh) 一种永磁同步电机的变pid参数电流环启动方法
Lu et al. A new load torque identification sliding mode observer for permanent magnet synchronous machine drive system
CN107659237B (zh) 一种永磁同步电机的无模型无差拍电流预测控制装置及其方法
US9525377B2 (en) System and method of rotor time constant online identification in an AC induction machine
CN102684592B (zh) 一种永磁同步电机转矩磁链控制方法
CN108521243B (zh) 一种基于空间矢量调制的高速永磁同步电机直接功率控制方法
CN103684182A (zh) 一种永磁同步电机参数辨识方法
CN111277180B (zh) 一种方波永磁同步电机两轴旋转坐标系下的转速控制方法
CN108649851B (zh) 一种永磁同步电机最大转矩电流比控制方法
CN111987961A (zh) 一种永磁同步电机无位置传感器直接转矩控制方法
CN105071723A (zh) 三步法设计的有刷直流电机复合控制方法
CN110635733B (zh) 永磁同步电机高动态响应转矩电流控制方法
CN112039386A (zh) 一种基于模糊准比例谐振的永磁同步电机转矩脉动抑制方法
Orr et al. Design of a second-order sliding mode MRAS speed estimator for the induction motor drive
CN112003524A (zh) 一种减少永磁同步电机无速度传感器滑模控制抖振的方法
CN105024612A (zh) 一种基于参数辨识的电机电流控制方法及系统
CN105958875B (zh) 一种无速度传感器永磁同步电机的高精度调速控制方法
Yim et al. A predictive current control associated to EKF for high performance IPMSM drives
Yu et al. Composite sliding mode speed control for sinusoidal doubly salient electromagnetic machine drives using fast reaching law and disturbance compensation
CN112865654B (zh) 永磁聚磁式同步磁阻电机转矩最大化利用控制系统及方法
CN114172425B (zh) 基于扩张状态观测器的永磁同步电机预测控制方法
CN113078851A (zh) 一种基于永磁磁链观测器的有限位置集无位置控制方法
Wang et al. Self-tuning method for PI regulators of PMSM servo system based on frequency-response characteristic

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210412

Address after: Floor 3-4, building B, Ma'an village "three five" project, No. 12, Hexin Road, Cuiheng New District, Zhongshan City, Guangdong Province, 528400

Applicant after: ZHONGSHAN LYUWEI TECHNOLOGY Co.,Ltd.

Address before: Science and Technology Office of Jiangsu University of science and technology, No.2, Mengxi Road, Zhenjiang, Jiangsu, 212003

Applicant before: JIANGSU University OF SCIENCE AND TECHNOLOGY

GR01 Patent grant
GR01 Patent grant