WO2018117050A1 - Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 - Google Patents

Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 Download PDF

Info

Publication number
WO2018117050A1
WO2018117050A1 PCT/JP2017/045391 JP2017045391W WO2018117050A1 WO 2018117050 A1 WO2018117050 A1 WO 2018117050A1 JP 2017045391 W JP2017045391 W JP 2017045391W WO 2018117050 A1 WO2018117050 A1 WO 2018117050A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
group iii
iii nitride
substrate
growth
Prior art date
Application number
PCT/JP2017/045391
Other languages
English (en)
French (fr)
Inventor
行常 住田
泰治 藤山
裕輝 後藤
拓哉 中川
裕次郎 石原
Original Assignee
古河機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河機械金属株式会社 filed Critical 古河機械金属株式会社
Priority to KR1020197018807A priority Critical patent/KR102415252B1/ko
Priority to US16/470,547 priority patent/US20210180211A1/en
Priority to CN201780078734.3A priority patent/CN110100304B/zh
Priority to EP17883435.4A priority patent/EP3561855A4/en
Publication of WO2018117050A1 publication Critical patent/WO2018117050A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/86Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Definitions

  • the present invention relates to a group III nitride semiconductor substrate and a method for manufacturing a group III nitride semiconductor substrate.
  • Patent Document 1 and Patent Document 2 Related techniques are disclosed in Patent Document 1 and Patent Document 2.
  • a device eg, an optical device, an electronic device, etc.
  • the internal quantum is caused by the piezoelectric field. Efficiency is reduced. Therefore, an attempt has been made to form a device on a so-called semipolar surface (a surface different from a polar surface and a nonpolar surface).
  • Patent Document 3 and Patent Document 4 Related techniques are disclosed in Patent Document 3 and Patent Document 4.
  • a semipolar material produced by cutting out a crystal piece having a semipolar surface as a main surface from a bulk group III nitride semiconductor crystal and joining the crystal pieces Attempts have been made to produce a group III nitride semiconductor crystal having a main surface.
  • Patent Document 5 a related technique is disclosed in Patent Document 5.
  • a GaN-based semiconductor optical device having a (20-21) plane and a (20-2-1) plane as main surfaces, which are semipolar planes inclined in the m-axis direction from the c-plane Attempts have been made to manufacture.
  • JP 2012-160755 A Japanese Unexamined Patent Publication No. 2016-12717 JP 2010-13298 A JP 2013-82628 A JP 2012-15555 A
  • An object of the present invention is to provide a technique for improving the internal quantum efficiency of a device formed on a group III nitride semiconductor substrate.
  • the exposed first and second main surfaces which are made of a group III nitride semiconductor crystal and have a film thickness of 400 ⁇ m or more and are in a relation of front and back, are both semipolar surfaces, and the first and second main surfaces are A group III nitride semiconductor in which the X-ray rocking curve (XRC) half-value width difference measured with an X-ray incident parallel to the c-axis projection axis of the group III nitride semiconductor crystal is 100 arcsec or less.
  • XRC X-ray rocking curve
  • a substrate preparation step of preparing a sapphire substrate After the substrate preparation step, a heat treatment step for performing heat treatment on the sapphire substrate, After the heat treatment step, a pre-flow step of supplying a metal-containing gas onto the sapphire substrate;
  • the group III nitride semiconductor layer is grown on the buffer layer under the growth conditions of growth temperature: 800 ° C. or more and 1025 ° C. or less, pressure: 30 torr or more and 200 torr or less, growth rate: 10 ⁇ m / h or more.
  • Forming a growth process There is provided a method for producing a group III nitride semiconductor substrate having:
  • the internal quantum efficiency of a device formed on a group III nitride semiconductor substrate can be improved.
  • 3 is an example showing a difference from the group III nitride semiconductor substrate of the present embodiment.
  • It is a flowchart which shows an example of the flow of a process of the manufacturing method of the group III nitride semiconductor substrate of this embodiment.
  • It is a side surface schematic diagram which shows an example of the group III nitride semiconductor substrate of this embodiment.
  • It is a figure which shows the characteristic of the group III nitride semiconductor substrate of this embodiment.
  • It is a figure which shows the difference with the group III nitride semiconductor substrate of this embodiment.
  • It is a figure which shows the characteristic of the group III nitride semiconductor substrate of this embodiment.
  • a group III nitride semiconductor substrate of this embodiment including a plurality of characteristic steps, a group III nitride semiconductor is grown on a sapphire substrate using a semipolar surface on the N polarity side as a growth surface. Can do.
  • a group III nitride semiconductor substrate template substrate
  • the group III nitride semiconductor layer whose exposed surface is a semipolar surface on the N polarity side is positioned on the sapphire substrate.
  • a group III nitride composed of a group III nitride semiconductor layer obtained by growing a group III nitride semiconductor using the semipolar surface on the N polarity side as a growth surface by peeling the sapphire substrate from the laminate.
  • a semiconductor substrate self-supporting substrate
  • the internal quantum efficiency can be improved by forming a device on such a group III nitride semiconductor substrate (template substrate, free-standing substrate). Details will be described below.
  • FIG. 3 is a flowchart showing an example of a process flow of a method for manufacturing a group III nitride semiconductor substrate (template substrate).
  • the method for manufacturing a group III nitride semiconductor substrate (template substrate) includes a substrate preparation step S10, a heat treatment step S20, a pre-flow step S30, a buffer layer formation step S40, and a growth step S50. .
  • a sapphire substrate is prepared.
  • the diameter of the sapphire substrate is, for example, 1 inch or more.
  • the thickness of the sapphire substrate is, for example, 250 ⁇ m or more.
  • the surface orientation of the main surface of the sapphire substrate is one of a plurality of elements that control the surface orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown thereon.
  • the relationship between the element and the plane orientation of the growth surface of the group III nitride semiconductor layer is shown in the following examples.
  • a sapphire substrate whose main surface has a desired plane orientation is prepared.
  • the main surface of the sapphire substrate is, for example, a ⁇ 10-10 ⁇ plane or a plane inclined by a predetermined angle in a predetermined direction from the ⁇ 10-10 ⁇ plane.
  • the ⁇ 10-10 ⁇ plane is inclined at a predetermined angle in a predetermined direction, for example, the ⁇ 10-10 ⁇ plane is inclined at any angle between 0 ° and 0.5 ° in any direction. It may be a surface.
  • a surface in which the ⁇ 10-10 ⁇ plane is inclined by a predetermined angle in a predetermined direction is any of the ⁇ 10-10 ⁇ plane in a direction parallel to the a-plane and greater than 0 ° and less than 10.5 °
  • the surface may be inclined at an angle.
  • a surface in which the ⁇ 10-10 ⁇ plane is inclined at a predetermined angle in a predetermined direction is any of the ⁇ 10-10 ⁇ plane in a direction parallel to the a-plane and greater than 0 ° and less than 10.5 °
  • the surface may be inclined at an angle.
  • a surface obtained by inclining the ⁇ 10-10 ⁇ plane by a predetermined angle in a predetermined direction is 0.5 ° or more and 1.5 ° or less, 1.5 ° in the direction parallel to the a10 Surface inclined at any angle from 2.5 ° to 2.5 °, 4.5 ° to 5.5 °, 6.5 ° to 7.5 °, 9.5 ° to 10.5 ° It may be.
  • the heat treatment step S20 is performed after the substrate preparation step S10.
  • heat treatment is performed on the sapphire substrate under the following conditions.
  • Carrier gas H 2 or H 2 and N 2 (H 2 ratio 0 to 100%)
  • Carrier gas supply amount 3 slm or more and 50 slm or less (however, the supply amount varies depending on the size of the growth apparatus, and is not limited to this).
  • the heat treatment for the sapphire substrate may be performed while performing nitriding treatment or may be performed without performing nitriding treatment.
  • NH 3 of 0.5 slm or more and 20 slm or less is supplied onto the sapphire substrate during the heat treatment (however, the supply amount varies depending on the size of the growth apparatus, and is not limited to this).
  • heat treatment is performed without performing nitriding treatment, NH 3 is not supplied during the heat treatment.
  • the presence or absence of the nitriding treatment during the heat treatment may be one of a plurality of elements that control the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate.
  • the relationship between the element and the plane orientation of the growth surface of the group III nitride semiconductor layer is shown in the following examples.
  • the pre-flow process S30 is performed after the heat treatment process S20.
  • a metal-containing gas is supplied on the main surface of the sapphire substrate under the following conditions.
  • the pre-flow process S30 may be performed in, for example, an MOCVD (Metal-Organic-Chemical-Vapor-Deposition) apparatus.
  • the above conditions are for supplying trimethylaluminum and triethylaluminum, which are organic metal raw materials, as a metal-containing gas.
  • a metal-containing gas containing another metal is supplied instead of trimethylaluminum triethylaluminum, and another metal film such as a titanium film, a vanadium film, or a copper film is used instead of the aluminum film as the main surface of the sapphire substrate. It may be formed on top.
  • other metal carbide films such as aluminum carbide, titanium carbide, vanadium carbide and copper carbide, which are reaction films with hydrocarbon compounds such as methane, ethylene, and ethane generated from organometallic raw materials, are formed on the main surface of the sapphire substrate. It may be formed.
  • a pre-flow process S30 forms a metal film and a metal carbide film on the main surface of the sapphire substrate.
  • the presence of the metal film is a condition for reversing the polarity of the crystal grown on the metal film. That is, the implementation of the pre-flow step S30 is one of a plurality of elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate to the N-polar side surface.
  • the buffer layer forming step S40 is performed after the pre-streaming step S30.
  • a buffer layer is formed on the main surface of the sapphire substrate.
  • the thickness of the buffer layer is, for example, not less than 20 nm and not more than 300 nm.
  • the buffer layer is, for example, an AlN layer.
  • the buffer layer may be formed by epitaxially growing an AlN crystal under the following conditions.
  • MOCVD growth temperature 800 ° C. or more and 950 ° C. or less Pressure: 30 to 200 torr
  • Trimethylaluminum supply amount 20 ccm or more and 500 ccm or less
  • NH 3 supply amount 0.5 slm or more and 10 slm or less
  • Carrier gas H 2 or H 2 And N 2 (H 2 ratio 0-100%)
  • Carrier gas supply amount 3 slm to 50 slm (However, the gas supply amount varies depending on the size and configuration of the growth apparatus, and is not limited to this.)
  • the growth condition of the buffer layer forming step S40 may be one of a plurality of elements that control the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate.
  • the relationship between the element and the plane orientation of the growth surface of the group III nitride semiconductor layer is shown in the following examples.
  • the growth conditions (relatively low predetermined growth temperature, specifically 800 to 950 ° C. and relatively low pressure) in the buffer layer forming step S40 are conditions for growing AlN while maintaining N polarity. It becomes. That is, the growth conditions in the buffer layer forming step S40 are a plurality of elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate to the N polarity side surface. It is one of.
  • the growth step S50 is performed after the buffer layer formation step S40.
  • a group III nitride semiconductor crystal eg, GaN crystal
  • the growth surface has a predetermined plane orientation (N-polar semipolar surface).
  • a group III nitride semiconductor layer is formed.
  • the thickness of the group III nitride semiconductor layer 30 is, for example, not less than 1 ⁇ m and not more than 20 ⁇ m.
  • Growth method MOCVD method Growth temperature: 800 ° C or higher and 1025 ° C or lower Pressure: 30 to 200 torr TMGa supply amount: 25 sccm to 1000 sccm NH3 supply amount: 1 slm to 20 slm
  • Carrier gas H 2 or H 2 and N 2 (H 2 ratio 0 to 100%)
  • Carrier gas supply amount 3 slm to 50 slm (However, the gas supply amount varies depending on the size and configuration of the growth apparatus, and is not limited to this.) Growth rate: 10 ⁇ m / h or more
  • the growth conditions (relatively low growth temperature, relatively low pressure, and relatively fast growth rate) in the growth step S50 are conditions for growing GaN while maintaining N polarity. That is, the growth condition in the growth step S50 is one of a plurality of elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate to the N-polar side surface.
  • the growth condition in the growth step S50 is one of a plurality of elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate to the N-polar side surface.
  • the sapphire substrate 21, the buffer layer 22, and the group III nitride semiconductor layer 23 are stacked in this order as shown in FIG.
  • the group III nitride semiconductor substrate 20 in which the plane orientation of 24 is a semipolar plane on the N polarity side can be manufactured.
  • the plane orientation of the growth surface 24 can be a desired semipolar plane.
  • the sapphire substrate 21 and the buffer layer 22 are removed from the laminated body (peeling step), as shown in FIG. 5.
  • a group III nitride semiconductor substrate 10 (self-supporting substrate) made of such a group III nitride semiconductor layer 23 can be manufactured.
  • the means for removing the sapphire substrate 21 and the buffer layer 22 is not particularly limited.
  • the sapphire substrate 21 and the group III nitride semiconductor layer 23 may be separated using a stress caused by a difference in linear expansion coefficient. Then, the buffer layer 22 may be removed by polishing or etching.
  • a release layer may be formed between the sapphire substrate 21 and the buffer layer 22.
  • the laminate is heated at a temperature higher than the heating temperature for forming the group III nitride semiconductor layer 23.
  • the separation layer portion can be separated into a portion on the sapphire substrate 21 side and a portion on the group III nitride semiconductor layer 23 side.
  • the group III nitride semiconductor substrate 20 (template substrate) includes a sapphire substrate 21, a buffer layer 22 formed on the sapphire substrate 21, and a group III formed on the buffer layer 22.
  • the plane orientation of the main surface (growth surface 24) of group III nitride semiconductor layer 23 is semipolar and N-polar.
  • the film thickness of the group III nitride semiconductor layer 23 is 1 ⁇ m or more.
  • the half width of XRC (X-ray Rocking Curve) of the main surface (growth surface 24) of the group III nitride semiconductor layer 23 is 500 arcsec or less in the c-axis projection axis direction.
  • the crystallinity hardly changes even if the thickness of the group III nitride semiconductor layer is increased.
  • the crystallinity is the above-mentioned (the half width of XRC is the X-ray projected on the c-axis projection axis of the group III nitride semiconductor crystal).
  • An X-ray rocking curve (XRC) half-value width measured in parallel and measured is as good as a 500 arcsec or less, and a thick film (1 ⁇ m or more) group III nitride semiconductor layer 23 can be manufactured as described above. .
  • the group III nitride semiconductor substrate 10 (free-standing substrate) is composed of a group III nitride semiconductor layer 23 composed of a group III nitride semiconductor crystal.
  • Group III nitride semiconductor substrate 10 (free-standing substrate) has a thickness of 100 ⁇ m or more.
  • the exposed first main surface 11 and second main surface 12 that are in a relation of front and back are both semipolar surfaces, and X-rays are respectively applied to the first main surface 11 and the second main surface 12.
  • the difference in X-ray rocking curve (XRC) half-value width which is measured by entering parallel to the c-axis projection axis of the group III nitride semiconductor crystal, is 100 arcsec or less.
  • the XRC half-value widths of the first main surface 11 and the second main surface 12 are both 500 arcsec or less in the c-axis projection axis direction.
  • the appearance is as shown in FIG. This is the same as the group III nitride semiconductor substrate 10 (free-standing substrate) of this embodiment shown.
  • the group III nitride semiconductor substrate 10 (free-standing substrate) of the present embodiment have a growth surface of “semipolar and Ga polarity” when the group III nitride semiconductor is epitaxially grown.
  • N polarity a growth surface of “semipolar and Ga polarity” when the group III nitride semiconductor is epitaxially grown.
  • the crystallinity deteriorates as the thickness of the group III nitride semiconductor layer increases, and the half width of XRC increases. That is, as the film thickness increases, the difference in the XRC half-value widths of the main surfaces that are in a front-back relationship increases.
  • the crystallinity hardly changes even when the thickness of the group III nitride semiconductor layer is increased. That is, even if the film thickness increases, the difference in the XRC half-value widths of the main surfaces that are in a front-back relationship remains below a predetermined level.
  • the group III nitride semiconductor substrate has a “semipolar and Ga polar” growth surface. It can be confirmed whether it is formed by epitaxial growth on the upper surface or it is formed by epitaxial growth on a “semipolar and N-polar” growth surface.
  • the XRC half-value width difference between the main surfaces in the front and back relations satisfies the epitaxial growth on the “semipolar and N-polar” growth surface.
  • this is a group III nitride semiconductor substrate.
  • the XRC half-value width difference between the main surfaces of the front and back surfaces is satisfied”, epitaxial growth is performed on the “semipolar and Ga polar” growth surface. It can be said that this is a group III nitride semiconductor substrate.
  • a group III nitride semiconductor can be grown on the sapphire substrate using the N-polar semipolar surface as the growth surface.
  • the group III nitride semiconductor substrate 20 (group III nitride semiconductor substrate 20) on which the exposed surface (growth surface 24) is a semipolar surface on the N polarity side is positioned on the sapphire substrate 21. Template substrate).
  • a group III nitride semiconductor substrate 10 (comprising a group III nitride semiconductor layer 23 obtained by growing a group III nitride semiconductor using a semipolar surface on the N polarity side as a growth surface) A self-supporting substrate) is obtained.
  • the internal quantum efficiency can be improved by forming a device on such a group III nitride semiconductor substrate (template substrate, free-standing substrate).
  • the group III nitride semiconductor substrate (template substrate, free-standing substrate) of this embodiment when used, a device can be formed on the main surface whose surface orientation is a semipolar surface on the N polarity side. In this case, not only the reduction of piezo polarization due to the effect of the semipolar plane, but also the reduction of spontaneous polarization is realized. For this reason, the Stark effect caused by the internal electric field can be suppressed.
  • the inventors have grown the group III nitride semiconductor using the semipolar surface on the Ga polarity side as the growth surface. Compared to the case, it has been confirmed that the surface state tends to be flat.
  • a group III nitride semiconductor is grown with the semipolar surface on the Ga polarity side as the growth surface, pits and facets derived from m-plane components are likely to occur. Also in such a point, the group III nitride semiconductor substrate (template substrate, free-standing substrate) of this embodiment is excellent.
  • the group III nitride semiconductor substrate (template substrate, free-standing substrate) of this embodiment is excellent.
  • a group III nitride semiconductor layer formed on a sapphire substrate and having a semipolar and N-polar exposed main surface, and a group III nitride semiconductor substrate having a sapphire substrate as a base substrate are provided.
  • a group III nitride semiconductor free-standing substrate in which the exposed first and second main surfaces in front and back are both semipolar surfaces. Is done.
  • one of the exposed first and second main surfaces in a front-back relationship of the group III nitride semiconductor free-standing substrate provided by the present embodiment is 38.0 ° or more 53 in the a-plane direction from the c-plane.
  • the main surface of the group III nitride semiconductor substrate having a sapphire substrate as the base substrate is, for example, from 38.0 ° to 53.0 ° in the a-plane direction from the ⁇ c plane and ⁇ 16.0 ° in the m-plane direction. This is a semipolar plane inclined at 16.0 ° or less.
  • the semipolar and N-polar main surface ((-1-12-4) plane) inclined by 39.1 ° from the -c plane to the -a plane only reduces piezo polarization due to the effect of the semipolar plane.
  • the spontaneous polarization generated in the direction from the nitrogen atom to the gallium atom can be reduced. For this reason, since the Stark effect which arises by the internal electric field which arises in the active layer of a light emitting device (LED, LD) can be further suppressed, the performance improvement of the further light emitting device (LED, LD) is obtained.
  • the group III nitride semiconductor layers provided in Patent Document 1 and Patent Document 2 both have a semipolar and Ga-polar main surface, and are provided by the present embodiment as a semi-polar and N-polar main surface.
  • the internal quantum efficiency of the device is lower than that of a group III nitride semiconductor layer having sapphire and a group III nitride semiconductor substrate having a sapphire substrate.
  • the size of the sapphire substrate is the same as the size of the sapphire substrate used if the sapphire substrate is removed by some method including well-known techniques and conventional techniques. It is possible to manufacture a group III nitride semiconductor self-supporting substrate having a large diameter, uniform crystallinity in the substrate surface, surface flatness, impurity concentration, and axial blurring of the plane orientation, and does not require a precise manufacturing technique.
  • the well-known technique and the conventional technique referred to here are, for example, chemical etching, mechanical polishing, crystal peeling using thermal stress, and the like.
  • the group III nitride semiconductor free-standing substrate provided by the methods of Patent Document 3 and Patent Document 4 is obtained by joining crystal pieces cut in an arbitrary plane orientation from a group III nitride semiconductor free-standing substrate having a c-plane as a main surface.
  • This is a group III nitride semiconductor free-standing substrate having a semipolar plane as a main surface.
  • a process of cutting a large amount of crystal pieces from a bulk crystal and a process of joining the crystal pieces with high precision aligned in the same crystal axis direction are required, so a high yield is achieved. It is necessary to have precise technology to do this.
  • the crystal pieces are bonded to increase the diameter of the substrate, the atomic position shifts in the bonded portion, and high-density dislocation occurs in the bonded portion. For this reason, the crystallinity of the substrate is lowered and the in-plane distribution unevenness of the dislocation density occurs.
  • the joint surface is a c-plane, m-plane, or a plane inclined from the m-plane toward the c-plane, facet surfaces such as ⁇ 11-22 ⁇ plane and ⁇ 10-11 ⁇ plane appear, and FIG. As shown in FIG. 2, large depressions and abnormal crystal growth occur, resulting in a significant deterioration in surface flatness and insufficient bonding strength, which makes it difficult to handle the substrate.
  • Patent Document 3 and Patent Document 4 are used. In this case, it is easy to use only the a-plane and the inclined plane from the a-plane. However, in this case as well, the generation of dislocations due to the displacement of atomic positions on the junction plane and the in-plane dislocation density associated therewith Uneven distribution cannot be solved.
  • first and second main surfaces of the group III nitride semiconductor free-standing substrate are both a-plane inclined surfaces, for example, they have a cleavage plane (m-plane) on their side surfaces.
  • m-plane cleavage plane
  • the GaN-based semiconductor laser device having the (20-21) plane and the (20-2-1) plane as the main surface provided in Patent Document 5 is cleaved on the side surface because the main surface is an inclined surface of m-plane. Does not have a surface. Therefore, it is not possible to obtain a highly flat reflecting mirror surface that provides optical resonance. Therefore, an advanced and precise technique for flattening the side surface is necessary for manufacturing the product, and the manufacturing process is complicated. Further, since a reflecting mirror surface with poor flatness is used, the performance is better than that of a GaN-based semiconductor optical laser device using a cleavage plane to produce a mirror structure.
  • a sapphire substrate was prepared in which the surface orientation of the main surface was inclined by 2 ° from the m-plane ((10-10) plane) in a direction parallel to the a-plane.
  • the thickness of the sapphire substrate was 430 ⁇ m and the diameter was 2 inches.
  • the heat treatment step S20 was performed on the prepared sapphire substrate under the following conditions.
  • the pre-streaming step S30 was performed under the following conditions. Temperature: 800-930 ° C Pressure: 100 torr Trimethylaluminum supply amount, supply time: 90 sccm, 10 seconds Carrier gas: H 2 , N 2 Carrier gas supply amount: 15 slm
  • the buffer layer forming step S40 was performed under the following conditions to form an AlN layer.
  • a growth step S50 was performed under the following conditions to form a group III nitride semiconductor layer.
  • the growth temperature of the first sample was controlled to 900 ° C. ⁇ 25 ° C.
  • the growth temperature of the second sample was controlled to 1050 ° C. ⁇ 25 ° C. That is, the first sample is a sample that satisfies all of the above-mentioned “plural elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer to the N-polar surface”.
  • the second sample has a part (growth temperature in the growth step S50) in the above-mentioned “plural elements for setting the plane orientation of the growth surface of the group III nitride semiconductor layer to the N-polar side surface”. The sample is not satisfied.
  • the plane orientation of the growth surface of the Group III nitride semiconductor layer of the first sample is 8. ° in the direction parallel to the m-plane and inclined by 5.0 ° from the ( ⁇ 1-12-4) plane in the ⁇ a plane direction. The surface was inclined by 5 ° or less.
  • the plane orientation of the growth surface of the group III nitride semiconductor layer of the second sample is 8.5 ° in a direction inclined 5.0 ° from the (11-24) plane in the a-plane direction and parallel to the m-plane. The surface was inclined below.
  • the plane orientation of the growth plane becomes Ga polarity depending on whether or not the above-mentioned “plural elements for making the plane orientation of the growth plane of the group III nitride semiconductor layer the N-polar side plane” is satisfied. It can be seen that the N polarity can be adjusted.
  • FIG. 6 shows the XRD pole measurement result of the (-1-12-4) plane or the (11-24) plane in the first sample. It can be confirmed that the diffraction peak is shifted by several degrees from the center point of the pole.
  • -a plane direction is 5.0 ° and 8.5 ° is parallel to the m plane, or a plane direction is 5.0 ° and 8 ° is parallel to the m plane. It can be confirmed that the position is 5 °.
  • FIG. 7 shows the result of confirming that the exposed surface (growth surface 24) shown in FIG. 4 is N-polar in the first sample.
  • FIG. 8 shows a result of a group III nitride semiconductor free-standing substrate manufactured by slicing a + c-plane thick-film-grown GaN free-standing substrate to have a plane orientation equivalent to that of the first sample.
  • Both the first sample and the semipolar free-standing substrate prepared by slicing from the + c-plane GaN free-standing substrate were subjected to 1.5 ⁇ m diamond polishing on both surfaces (front and back of the substrate), and the phosphoric acid-sulfuric acid mixture was kept at 150 ° C. Etching was performed for 30 minutes.
  • the exposed surface (growth surface 24) of the first sample and the etched surface state of the back surface (N-polar surface) of the semipolar free-standing substrate prepared by slicing from the + c-plane GaN free-standing substrate are equivalent.
  • I can confirm that.
  • the etching surface state of the surface (Ga polarity surface) of the semipolar self-supporting substrate produced by slicing the separation surface of the first sample and the + c-plane GaN self-supporting substrate is shown in FIG. It can be confirmed that the exposed surface (growth surface 24) is N-polar.
  • the present inventors when not satisfying the other part in the above-mentioned "a plurality of elements for making the plane orientation of the growth surface of the group III nitride semiconductor layer N-side surface", Moreover, even when not satisfy
  • the plane orientation of the growth surface of the group III nitride semiconductor layer is adjusted by adjusting the “plural elements for adjusting the plane orientation of the growth surface of the group III nitride semiconductor layer” described above. I confirmed that I can do it.
  • the thickness of the sapphire substrate was 430 ⁇ m and the diameter was 2 inches.
  • each heat treatment process S20 was performed on the following conditions with respect to each prepared sapphire substrate.
  • Samples with different nitriding treatment during heat treatment were prepared. Specifically, both a sample in which 20 slm NH 3 was supplied during heat treatment to perform nitriding treatment and a sample in which NH 3 was not supplied during heat treatment and nitriding treatment was not performed were prepared.
  • the pre-streaming step S30 was performed under the following conditions. Temperature: 880-930 ° C Pressure: 100 torr Trimethylaluminum supply amount, supply time: 90 sccm, 10 seconds Carrier gas: H2, N2 Carrier gas supply amount: 15 slm
  • a buffer layer (AlN buffer layer) having a thickness of about 150 nm was formed on the main surface (exposed surface) of the sapphire substrate under the following conditions.
  • the growth temperature was varied between 700 ° C. and 1110 ° C. for each sample.
  • GaN layer group III nitride semiconductor layer having a thickness of about 15 ⁇ m was formed on the buffer layer under the following conditions.
  • the group III nitride semiconductor substrate 1 in which the sapphire substrate, the buffer layer, and the group III nitride semiconductor layer were stacked in this order was manufactured.
  • Tables 1 to 7 show the relationship between “a plurality of elements for adjusting the plane orientation of the growth surface of the group III nitride semiconductor layer” and the plane orientation of the growth surface of the group III nitride semiconductor layer.
  • the surface orientation of the main surface of the sapphire substrate is shown.
  • the presence / absence of the nitriding treatment at the time of temperature rise in the heat treatment step S20 (“present” or “absent”) is shown.
  • the presence / absence of trimethylaluminum pre-flow process (“Yes” or “No”) is shown.
  • the growth temperature in the buffer layer forming step is shown.
  • the growth temperature in the GaN layer forming step is shown.
  • the plane orientation of the growth surface of group III nitride semiconductor layer is shown.
  • the plane orientation of the growth surface of the group III nitride semiconductor layer is reduced by adjusting the above-mentioned “plural elements for adjusting the plane orientation of the growth surface of the group III nitride semiconductor layer”. It turns out that it can adjust in polarity and Ga polarity.
  • Sample A was produced by the method described in this specification, and has a ⁇ 11-23 ⁇ plane as a growth plane.
  • Samples B and C are comparative samples, and sample B has a ⁇ 10-10 ⁇ plane as a growth plane.
  • Sample C the ⁇ 11-22 ⁇ plane was the growth plane.
  • FIG. 9 shows the XRC half-value width when X-rays are incident on and parallel to the c-axis projection axis of the group III nitride semiconductor crystal for each sample at a plurality of GaN film thicknesses.
  • the XRC half-value width of the ⁇ 11-22 ⁇ plane was measured.
  • FIG. 9 shows that the XRC half-value width of sample A hardly changes even when the film thickness of the GaN layer increases.
  • Samples B and C it can be seen that the XRC half-value width tends to increase as the film thickness of the GaN layer increases.
  • the exposed first and second main surfaces which are made of a group III nitride semiconductor crystal and have a film thickness of 400 ⁇ m or more and are in a relation of front and back, are both semipolar surfaces, and the first and second main surfaces are A group III nitride semiconductor in which the X-ray rocking curve (XRC) half-value width difference measured with an X-ray incident parallel to the c-axis projection axis of the group III nitride semiconductor crystal is 100 arcsec or less. substrate.
  • XRC X-ray rocking curve
  • the full width at half maximum of the first and second main surfaces is an X-ray rocking curve (XRC) half width of 500 arcsec or less measured with an X-ray incident parallel to the c-axis projection axis of the group III nitride semiconductor crystal.
  • Group III nitride semiconductor substrate. 3. A sapphire substrate, A group III nitride semiconductor layer formed on the sapphire substrate and having a semipolar and N-polar exposed main surface; A group III nitride semiconductor substrate having: 4).
  • a group III nitride semiconductor substrate, wherein the group III nitride semiconductor layer has a thickness of 1 ⁇ m or more.
  • the group III nitride semiconductor substrate wherein a half width of XRC of the main surface of the group III nitride semiconductor layer is 500 arcsec or less in the c projection axis direction. 6).
  • the group III nitride semiconductor layer is grown on the buffer layer under the growth conditions of growth temperature: 800 ° C. or more and 1025 ° C. or less, pressure: 30 torr or more and 200 torr or less, growth rate: 10 ⁇ m / h or more. Forming a growth process; A method for producing a group III nitride semiconductor substrate having: 7).
  • a method for producing a group III nitride semiconductor substrate further comprising a peeling step of peeling the sapphire substrate from a stacked body including the group III nitride semiconductor layer and the sapphire substrate after the growth step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

サファイア基板を準備する基板準備工程S10と、サファイア基板に対して熱処理を行う熱処理工程S20と、サファイア基板上に金属含有ガスを供給する先流し工程S30と、サファイア基板上に、成長温度:800℃以上950℃以下、圧力:30torr以上200torr以下の成長条件で、バッファ層を形成するバッファ層形成工程S40と、バッファ層の上に、成長温度:800℃以上1025℃以下、圧力:30torr以上200torr以下、成長速度:10μm/h以上の成長条件で、III族窒化物半導体層を形成する成長工程S50と、を有するIII族窒化物半導体基板の製造方法を提供する。

Description

III族窒化物半導体基板、及び、III族窒化物半導体基板の製造方法
 本発明は、III族窒化物半導体基板、及び、III族窒化物半導体基板の製造方法に関する。
 関連する技術が特許文献1と特許文献2に開示されている。特許文献1と特許文献2に開示されているように、III族窒化物半導体結晶のc面上にデバイス(例:光デバイス、電子デバイス等)を形成した場合、ピエゾ電界に起因して内部量子効率が低下する。そこで、いわゆる半極性面(極性面及び無極性面と異なる面)上にデバイスを形成する試みがなされている。
 また、関連する技術が特許文献3と特許文献4に開示されている。特許文献3と特許文献4に開示されているように、バルク状III族窒化物半導体結晶から半極性面を主面として有する結晶片を切り出して、その結晶片を接合して作製した、半極性面を主面としたIII族窒化物半導体結晶を製造する試みがなされている。
 また、関連する技術が特許文献5に開示されている。特許文献5に開示されているように、c面からm軸方向に傾斜した半極性面である(20-21)面及び(20-2-1)面を主面としたGaN系半導体光素子を製造する試みがなされている。
特開2012-160755号公報 特開2016-12717号公報 特開2010-13298号公報 特開2013-82628号公報 特開2012-15555号公報
 本発明は、III族窒化物半導体基板上に形成されたデバイスの内部量子効率を向上させるための技術を提供することを課題とする。
 本発明によれば、
 III族窒化物半導体結晶で構成され、膜厚が400μm以上であり、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、前記第1及び第2の主面各々に対してエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したXRC(X-ray Rocking Curve)の半値幅の差が、100arcsec以下であるIII族窒化物半導体基板が提供される。 
 また、本発明によれば、
 サファイア基板と、
 前記サファイア基板上に形成され、半極性かつN極性の露出した主面を有するIII族窒化物半導体層と、
を有するIII族窒化物半導体基板が提供される。
 また、本発明によれば、
 サファイア基板を準備する基板準備工程と、
 前記基板準備工程の後、前記サファイア基板に対して熱処理を行う熱処理工程と、
 前記熱処理工程の後、前記サファイア基板上に金属含有ガスを供給する先流し工程と、
 前記先流し工程の後、前記サファイア基板上に、成長温度:800℃以上950℃以下、圧力:30torr以上200torr以下の成長条件で、バッファ層を形成するバッファ層形成工程と、
 前記バッファ層形成工程の後、前記バッファ層の上に、成長温度:800℃以上1025℃以下、圧力:30torr以上200torr以下、成長速度:10μm/h以上の成長条件で、III族窒化物半導体層を形成する成長工程と、
を有するIII族窒化物半導体基板の製造方法が提供される。
 本発明によれば、III族窒化物半導体基板上に形成されたデバイスの内部量子効率を向上させることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態のIII族窒化物半導体基板の特性を示す図である。 本実施形態のIII族窒化物半導体基板との相違を示す実施例である。 本実施形態のIII族窒化物半導体基板の製造方法の処理の流れの一例を示すフローチャートである。 本実施形態のIII族窒化物半導体基板の一例を示す側面模式図である。 本実施形態のIII族窒化物半導体基板の一例を示す側面模式図である。 本実施形態のIII族窒化物半導体基板の特性を示す図である。 本実施形態のIII族窒化物半導体基板の特性を示す図である。 本実施形態のIII族窒化物半導体基板との相違を示す図である。 本実施形態のIII族窒化物半導体基板の特性を示す図である。
 以下、本発明のIII族窒化物半導体基板、及び、III族窒化物半導体基板の製造方法の実施形態について図面を用いて説明する。なお、図はあくまで発明の構成を説明するための概略図であり、各部材の大きさ、形状、数、異なる部材の大きさの比率などは図示するものに限定されない。
 まず、本実施形態の概要について説明する。特徴的な複数の工程を含む本実施形態のIII族窒化物半導体基板の製造方法によれば、サファイア基板上に、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させることができる。結果、露出面がN極性側の半極性面となったIII族窒化物半導体層がサファイア基板上に位置するIII族窒化物半導体基板(テンプレート基板)が得られる。また、当該積層体からサファイア基板を剥離することで、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させることで得られたIII族窒化物半導体層からなるIII族窒化物半導体基板(自立基板)が得られる。
 このようなIII族窒化物半導体基板(テンプレート基板、自立基板)上にデバイスを形成することで、内部量子効率の向上が実現される。以下、詳細に説明する。
 まず、III族窒化物半導体基板(テンプレート基板)の製造方法を説明する。図3は、III族窒化物半導体基板(テンプレート基板)の製造方法の処理の流れの一例を示すフローチャートである。図示するように、III族窒化物半導体基板(テンプレート基板)の製造方法は、基板準備工程S10と、熱処理工程S20と、先流し工程S30と、バッファ層形成工程S40と、成長工程S50とを有する。
 基板準備工程S10では、サファイア基板を準備する。サファイア基板の直径は、例えば、1インチ以上である。また、サファイア基板の厚さは、例えば、250μm以上である。
 サファイア基板の主面の面方位は、その上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つである。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。基板準備工程S10では、主面が所望の面方位であるサファイア基板を準備する。
 サファイア基板の主面は、例えば{10-10}面、又は、{10-10}面を所定の方向に所定角度傾斜した面である。
 {10-10}面を所定の方向に所定角度傾斜した面は、例えば、{10-10}面を任意の方向に0°より大0.5°以下の中の何れかの角度で傾斜した面であってもよい。
 また、{10-10}面を所定の方向に所定角度傾斜した面は、{10-10}面をa面と平行になる方向に0°より大10.5°未満の中のいずれかの角度で傾斜した面であってもよい。または、{10-10}面を所定の方向に所定角度傾斜した面は、{10-10}面をa面と平行になる方向に0°より大10.5°以下の中のいずれかの角度で傾斜した面であってもよい。例えば、{10-10}面を所定の方向に所定角度傾斜した面は、{10-10}面をa面と平行になる方向に0.5°以上1.5°以下、1.5°以上2.5°以下、4.5°以上5.5°以下、6.5°以上7.5°以下、9.5°以上10.5°以下の中のいずれかの角度で傾斜した面であってもよい。
 熱処理工程S20は、基板準備工程S10の後に行われる。熱処理工程S10では、サファイア基板に対して、以下の条件で熱処理を行う。
 温度:800℃以上1200℃以下
 圧力:30torr以上760torr以下
 熱処理時間:5分以上20分以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただし、成長装置のサイズにより供給量は変動する為、これに限定されない。)
 なお、サファイア基板に対する熱処理は、窒化処理を行いながら行う場合と、窒化処理を行わずに行う場合とがある。窒化処理を行いながら熱処理を行う場合、熱処理時に0.5slm以上20slm以下のNHがサファイア基板上に供給される(ただし成長装置のサイズにより供給量は変動する為、これに限定されない。)。また、窒化処理を行わずに熱処理を行う場合、熱処理時にNHが供給されない。
 熱処理時の窒化処理の有無は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つとなる場合がある。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。
 先流し工程S30は、熱処理工程S20の後に行われる。先流し工程S30では、サファイア基板の主面上に以下の条件で金属含有ガスを供給する。先流し工程S30は、例えばMOCVD(Metal Organic Chemical Vapor Deposition)装置内で行われてもよい。
 温度:500℃以上1000℃以下
 圧力:30torr以上200torr以下
 トリメチルアルミニウム供給量、供給時間:20ccm以上500ccm以下、1秒
以上60秒以下
 キャリアガス:H2、又は、H2とN2(H2比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
 上記条件は、金属含有ガスとして有機金属原料であるトリメチルアルミニウム、トリエチルアルミニウムを供給する場合のものである。当該工程では、トリメチルアルミニウムトリエチルアルミニウムに代えて他の金属を含有する金属含有ガスを供給し、アルミニウム膜に代えて、チタン膜、バナジウム膜や銅膜等の他の金属膜をサファイア基板の主面上に形成してもよい。また、有機金属原料から生成するメタン、エチレン、エタン等の炭化水素化合物との反応膜である炭化アルミニウム、炭化チタン、炭化バナジウムや炭化銅等の他の炭化金属膜をサファイア基板の主面上に形成してもよい。
 先流し工程S30により、サファイア基板の主面上に金属膜及び炭化金属膜が形成される。当該金属膜の存在が、その上に成長させる結晶の極性を反転させるための条件となる。すなわち、先流し工程S30の実施は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素の中の1つである。
 バッファ層形成工程S40は、先流し工程S30の後に行われる。バッファ層形成工程S40では、サファイア基板の主面上にバッファ層を形成する。バッファ層の厚さは、例えば、20nm以上300nm以下である。
 バッファ層は、例えば、AlN層である。例えば、以下の条件でAlN結晶をエピタキシャル成長させ、バッファ層を形成してもよい。
 成長方法:MOCVD法
 成長温度:800℃以上950℃以下
 圧力:30torr以上200torr以下
 トリメチルアルミニウム供給量:20ccm以上500ccm以下
 NH供給量:0.5slm以上10slm以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
 バッファ層形成工程S40の成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つとなる場合がある。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。
 また、バッファ層形成工程S40における成長条件(比較的低めの所定の成長温度、具体的には800~950℃、および比較的低い圧力)は、N極性を維持しながらAlNを成長させるための条件となる。すなわち、バッファ層形成工程S40における成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素の中の1つである。
 成長工程S50は、バッファ層形成工程S40の後に行われる。成長工程S50では、バッファ層の上に、以下の成長条件でIII族窒化物半導体結晶(例:GaN結晶)をエピタキシャル成長させ、成長面が所定の面方位(N極性側の半極性面)となっているIII族窒化物半導体層を形成する。III族窒化物半導体層30の厚さは、例えば、1μm以上20μm以下である。
 成長方法:MOCVD法
 成長温度:800℃以上1025℃以下 
 圧力:30torr以上200torr以下
 TMGa供給量:25sccm以上1000sccm以下
 NH3供給量:1slm以上20slm以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
 成長速度:10μm/h以上
 成長工程S50における成長条件(比較的低い成長温度、比較的低い圧力、比較的速い成長速度)は、N極性を維持しながらGaNを成長させるための条件となる。すなわち、成長工程S50における成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素の中の1つである。
 以上の条件で製造することで、図4に示すような、サファイア基板21と、バッファ層22と、III族窒化物半導体層23とがこの順に積層し、III族窒化物半導体層23の成長面24の面方位がN極性側の半極性面となっているIII族窒化物半導体基板20を製造することができる。また、製造条件を上記条件の範囲で調整することで、成長面24の面方位を所望の半極性面とすることができる。
 次に、III族窒化物半導体基板(自立基板)の製造方法を説明する。
 例えば、図3に示すフローで図4に示すような積層体(テンプレート基板)を製造した後、当該積層体からサファイア基板21及びバッファ層22を除去する(剥離工程)ことで、図5に示すようなIII族窒化物半導体層23からなるIII族窒化物半導体基板10(自立基板)を製造することができる。サファイア基板21及びバッファ層22を除去する手段は特段制限されない。例えば、サファイア基板21とIII族窒化物半導体層23との間の線膨張係数差に起因する応力を利用して、これらを分離してもよい。そして、バッファ層22を研磨やエッチング等で除去してもよい。
 その他の除去例として、サファイア基板21とバッファ層22との間に剥離層を形成してもよい。例えば、炭化物(炭化アルミニウム、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウムまたは炭化タンタル)が分散した炭素層、及び、炭化物(炭化アルミニウム、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウムまたは炭化タンタル)の層の積層体をサファイア基板21上に形成した後に、窒化処理を行った層を剥離層として形成してもよい。
 このような剥離層の上にバッファ層22及びIII族窒化物半導体層23を形成した後、当該積層体を、III族窒化物半導体層23を形成する際の加熱温度よりも高い温度で加熱すると、剥離層の部分を境界にして、サファイア基板21側の部分と、III族窒化物半導体層23側の部分とに分離することができる。III族窒化物半導体層23側の部分から、バッファ層22等を研磨やエッチング等で除去することで、図5に示すようなIII族窒化物半導体層23からなるIII族窒化物半導体基板10(自立基板)を得ることができる。
 次に、上記製造方法で得られたIII族窒化物半導体基板20(テンプレート基板)及びIII族窒化物半導体基板10(自立基板)の構成及び特徴を説明する。
 図4に示すように、III族窒化物半導体基板20(テンプレート基板)は、サファイア基板21と、サファイア基板21の上に形成されたバッファ層22と、バッファ層22の上に形成されたIII族窒化物半導体層23とを有する。III族窒化物半導体層23の主面(成長面24)の面方位は、半極性かつN極性である。
 III族窒化物半導体層23の膜厚は、1μm以上である。そして、III族窒化物半導体層23の主面(成長面24)のXRC(X-ray Rocking Curve)の半値幅は、c軸投影軸方向で500arcsec以下である。
 以下の実施例で示すが、半極性かつGa極性の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなるほど結晶性が悪化する。結果、III族窒化物半導体層の厚さが厚くなるほどXRCの半値幅は大きくなる。このため、成長面が半極性かつGa極性の場合、結晶性が良好で、かつ、厚膜なIII族窒化物半導体層を製造することが困難である。
 一方、以下の実施例で示すが、半極性かつN極性の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなっても結晶性がほとんど変化しない。半極性かつN極性の成長面上にIII族窒化物半導体をエピタキシャル成長する本実施形態の場合、結晶性が上述(XRCの半値幅が、エックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したエックス線ロッキングカーブ(XRC)半値幅が500arcsec以下)のように良好で、かつ、上述のように厚膜(1μm以上)なIII族窒化物半導体層23を製造することができる。
 図5に示すように、III族窒化物半導体基板10(自立基板)は、III族窒化物半導体結晶で構成されたIII族窒化物半導体層23からなる。III族窒化物半導体基板10(自立基板)の膜厚は100μm以上である。そして、表裏の関係にある露出した第1の主面11及び第2の主面12はいずれも半極性面であり、第1の主面11及び第2の主面12各々に対してエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したエックス線ロッキングカーブ(XRC)半値幅の差は、100arcsec以下である。第1の主面11及び第2の主面12のXRCの半値幅は、いずれも、c軸投影軸方向で500arcsec以下である。
 例えば、サファイア基板上に、成長面の面方位が半極性かつGa極性となったIII族窒化物半導体をエピタキシャル成長した後、III族窒化物半導体層からサファイア基板を除去すると、外観は、図5に示す本実施形態のIII族窒化物半導体基板10(自立基板)と同じになる。しかし、このような基板と、本実施形態のIII族窒化物半導体基板10(自立基板)とは、III族窒化物半導体をエピタキシャル成長する際の成長面が「半極性かつGa極性」か「半極性かつN極性」かにおいて、相違する。
 当該違いは、膜厚と、表裏の関係にある主面のXRCの半値幅の差との関係をみることで確認できる。
 上述の通り、半極性かつGa極性の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなるほど結晶性が悪化し、XRCの半値幅は大きくなる。すなわち、膜厚が大きくなるほど、表裏の関係にある主面のXRCの半値幅の差は大きくなる。
 一方、半極性かつN極性の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなっても結晶性がほとんど変化しない。すなわち、膜厚が大きくなっても、表裏の関係にある主面のXRCの半値幅の差は所定レベル以下となる。
 以上より、膜厚が所定範囲である際の表裏の関係にある主面のXRCの半値幅の差を確認することで、そのIII族窒化物半導体基板が「半極性かつGa極性」の成長面上にエピタキシャル成長してできたものか、それとも、「半極性かつN極性」の成長面上にエピタキシャル成長してできたものかを確認することができる。
 具体的には、「膜厚が300μm以上である場合、表裏の関係にある主面のXRCの半値幅の差が100arcsec以下」を満たす場合、「半極性かつN極性」の成長面上にエピタキシャル成長してできたIII族窒化物半導体基板であるといえる。そして、「膜厚が300μm以上である場合、表裏の関係にある主面のXRCの半値幅の差が100arcsecより大」を満たす場合、「半極性かつGa極性」の成長面上にエピタキシャル成長してできたIII族窒化物半導体基板であるといえる。
 次に、本実施形態の作用効果を説明する。
 本実施形態のIII族窒化物半導体基板の製造方法によれば、サファイア基板上に、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させることができる。結果、図4に示すように、露出面(成長面24)がN極性側の半極性面となったIII族窒化物半導体層23がサファイア基板21上に位置するIII族窒化物半導体基板20(テンプレート基板)が得られる。また、図5に示すように、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させることで得られたIII族窒化物半導体層23からなるIII族窒化物半導体基板10(自立基板)が得られる。
 このようなIII族窒化物半導体基板(テンプレート基板、自立基板)上にデバイスを形成することで、内部量子効率の向上が実現される。
 また、本実施形態のIII族窒化物半導体基板(テンプレート基板、自立基板)を用いれば、面方位がN極性側の半極性面である主面上にデバイスを形成することができる。かかる場合、半極性面の効果によるピエゾ分極の低減だけでなく、自発分極の低減も実現される。このため、内部電界によっておこるシュタルク効果が抑制できる。
 また、本発明者らは、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合、Ga極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合に比べて、表面状態が平坦になりやすいことを確認している。Ga極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合、ピットや、m面成分由来のファセットが発生しやすい。このような点においても、本実施形態のIII族窒化物半導体基板(テンプレート基板、自立基板)は優れる。
 また、本発明者らは、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合、Ga極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合に比べて、不純物の取り込みが小さいことを確認している。具体的には、同じ装置及び同じ成長条件で成長させた2種類の極性面(N極性側の半極性面及びGa極性側の半極性面)のHaLL測定を行ったところ、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合、Ga極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合に比べて、キャリア濃度が1ケタ小さいことを確認した。これは、Oの取り込みが低減できたためと推測される。このような点においても、本実施形態のIII族窒化物半導体基板(テンプレート基板、自立基板)は優れる。
 また、本実施形態によれば、サファイア基板上に形成され、半極性かつN極性の露出した主面を有するIII族窒化物半導体層と、下地基板としてサファイア基板を有するIII族窒化物半導体基板が提供される。また、上記III族窒化物半導体基板上に結晶成長を行うことにより、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であるIII族窒化物半導体自立基板が提供される。
 本実施形態により提供されるIII族窒化物半導体自立基板の表裏の関係にある露出した第1及び第2の主面は、例えば、一方が、c面からa面方向へ38.0°以上53.0°以下かつ、m面方向に-16.0°以上16.0°以下傾いた半極性面であり、もう一方は、-c面から-a面方向へ38.0°以上53.0°以下かつ、m面方向に-16.0°以上16.0°以下傾いた半極性面である。また、下地基板としてサファイア基板を有するIII族窒化物半導体基板の主面は、例えば-c面からa面方向へ38.0°以上53.0°以下かつ、m面方向に-16.0°以上16.0°以下傾いた半極性面である。
 特に主面上に発光デバイス(LED、LD)を形成した場合、c面からa面方向へ39.1°傾いた面((11-24)面)は、Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 413-416にて報告されている図1に示すように、ピエゾ電界が0となる為、無極性面のm面及び、a面と同等のシュタルク効果による内部量子効率の低下の抑制効果によって消費電力の低減、発光効率の向上が得られる。また、-c面から-a面方向へ39.1°傾いた半極性かつN極性の主面((-1-12-4)面)は、半極性面の効果によるピエゾ分極の低減だけでなく、窒素原子からガリウム原子の向きに発生している自発分極の低減も実現される。このため、発光デバイス(LED、LD)の活性層に生じる内部電界によっておこるシュタルク効果を更に抑制できるので、更なる発光デバイス(LED、LD)の性能向上が得られる。
 特許文献1と特許文献2で提供されるIII族窒化物半導体層は共に半極性かつGa極性である主面を有しており、本実施形態により提供される半極性かつN極性である主面を有するIII族窒化物半導体層及びサファイア基板を有するIII族窒化物半導体基板と比較して、デバイスの内部量子効率は低い。
 本実施形態により提供される、下地基板としてサファイア基板を有するIII族窒化物半導体基板を用いれば、サファイア基板を周知技術、慣用技術を含む何らかの方法で除去すれば、用いたサファイア基板の大きさと同等の大口径かつ、基板面内の結晶性、表面平坦性、不純物濃度、面方位の軸ブレが均一かつ、緻密な製造技術を必要としないIII族窒化物半導体自立基板の製造が可能となる。ここでいう周知技術、慣用技術とは、例えば、化学的エッチングや機械研磨、熱応力を利用した結晶剥離などである。
 特許文献3と特許文献4の方法で提供されるIII族窒化物半導体自立基板は、c面を主面としたIII族窒化物半導体自立基板から任意の面方位に切出した結晶片を接合して作製した、半極性面を主面としたIII族窒化物半導体自立基板である。これを実現するためには、バルク結晶から結晶片を大量に切出す工程や、結晶片を高同じ結晶軸方向に高い精度で揃えた上で接合する工程が必要となる為、高い歩留りを実現するための緻密な技術が必要となる。また、結晶片を接合して基板の口径を大きくする為、接合部に原子位置のずれが生じ、当該部では高密度の転位が発生する。このため、基板の結晶性の低下と転位密度の面内分布むらが発生してしまう。また、接合面がc面、m面、及び、m面からc面方向へ傾斜した面である場合には{11-22}面や{10-11}面などのファセット面が出現し、図2に示すように大きな窪みや結晶成長異常が発生してしまうため、表面平坦性の顕著な悪化と接合強度不足が生じ、基板のハンドリングに困難が生じる。
 また、図2に示すような大きな窪みや結晶成長異常に起因する表面平坦性の顕著な悪化と接合強度不足による基板のハンドリングの困難を解決する為、特許文献3と特許文献4の方法を用いて、接合面をa面及びa面からの傾斜面のみにする事が容易に考えられるが、この場合も、接合面での原子位置のずれによる転位発生と、これに伴う転位密度の面内分布むらは解決できない。また、a面またはa面を傾斜させた面で結晶の接合を行うことから、本実施形態により提供される、a面の傾斜面を主面としたIII族窒化物半導体自立基板の製造はできない。
 本実施形態により提供されるIII族窒化物半導体自立基板の第1および第2の主面はいずれも例えばa面の傾斜面である為、側面に劈開面(m面)を有している。劈開面を有した基板を提供することにより、半導体レーザー(LD)において光共振に必要不可欠な、原子が規則的きれいに並んだ、平坦性に優れた反射鏡面を容易に得る事が可能となる。
 特許文献5で提供される(20-21)面及び(20-2-1)面を主面としたGaN系半導体レーザー素子は、主面がm面の傾斜面である為に、側面に劈開面を有していない。したがって、光共振が得られる平坦性の高い反射鏡面を得る事が出来ない。よって、製品の製造にあたり側面を平坦化するための高度かつ緻密な技術が必要となり、製造工程が煩雑化している。また、平坦性が劣る反射鏡面を用いる為、劈開面を利用しミラー構造を作製したGaN系半導体光レーザー素子に比べ、性能がおとる。
<第1の評価>
 第1の評価では、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たすことで、III族窒化物半導体層の成長面の面方位をN極性側の面にできることを確認した。また、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」の中の少なくとも1つを満たさなかった場合、III族窒化物半導体層の成長面の面方位がGa極性側の面になることを確認した。
 まず、主面の面方位がm面((10-10)面)からa面と平行になる方向に2°傾斜した面であるサファイア基板を用意した。サファイア基板の厚さは430μmであり、直径は2インチであった。
 そして、用意したサファイア基板に対して、以下の条件で熱処理工程S20を実施した。
 温度:1000~1050℃
 圧力:100torr
 キャリアガス:H、N
 熱処理時間:10分または15分
 キャリアガス供給量:15slm
 なお、熱処理工程S20の際に、20slmのNHを供給し、窒化処理を行った。
 その後、以下の条件で先流し工程S30を行った。
 温度:800~930℃
 圧力:100torr
 トリメチルアルミニウム供給量、供給時間:90sccm、10秒
 キャリアガス:H、N
 キャリアガス供給量:15slm
 その後、以下の条件でバッファ層形成工程S40を行い、AlN層を形成した。
 成長方法:MOCVD法
 成長温度:800~930℃
 圧力:100torr
 トリメチルアルミニウム供給量:90sccm
 NH供給量:5slm
 キャリアガス:H、N
 キャリアガス供給量:15slm
 その後、以下の条件で成長工程S50を行い、III族窒化物半導体層を形成した。
 成長方法:MOCVD法
 圧力:100torr
 TMGa供給量:50~500sccm(連続変化)
 NH供給量:5~10slm(連続変化)
 キャリアガス:H、N
 キャリアガス供給量:15slm
 成長速度:10μm/h以上
 なお、第1のサンプルの成長温度は900℃±25℃に制御し、第2のサンプルの成長温度は1050℃±25℃に制御した。すなわち、第1のサンプルは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たすサンプルである。第2のサンプルは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」の中の一部(成長工程S50における成長温度)を満たさないサンプルである。
 第1のサンプルのIII族窒化物半導体層の成長面の面方位は、(-1-12-4)面から-a面方向5.0°傾斜かつ、m面と平行になる方向に8.5°以下傾斜した面であった。一方、第2のサンプルのIII族窒化物半導体層の成長面の面方位は、(11-24)面からa面方向5.0°傾斜かつ、m面と平行になる方向に8.5°以下傾斜した面であった。すなわち、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」を満たすか否かにより、成長面の面方位がGa極性となるかN極性となるかを調整できることが分かる。
 図6に第1のサンプルにおける、(-1-12-4)面、又は、(11-24)面のXRD極点測定結果を示す。回折ピークは極点の中心点から数度ずれた位置であることが確認できる。角度のずれを詳細に測定すると-a面方向5.0°かつ、m面と並行になる方向に8.5°又は、a面方向5.0°かつ、m面と並行になる方向に8.5°の位置であることが確認できる。
 図7に第1のサンプルにおける、図4に示す露出面(成長面24)がN極性であることを確認した結果を示す。また、比較として図8に+c面の厚膜成長GaN自立基板から第1のサンプルと同等の面方位になるようにスライスを行って作製したIII族窒化物半導体自立基板の結果を示す。第1のサンプル及び、+c面 GaN自立基板からスライスして作製した半極性自立基板ともに、両面(基板の表と裏)に1.5μmダイヤ研磨を施し、りん酸硫酸混合液を150℃に保ち30分間のエッチングを行った。
 図7及び図8より、第1のサンプルの露出面(成長面24)と+c面GaN自立基板からスライスして作製した半極性自立基板の裏面(N極性面)のエッチング表面状態が同等であることが確認できる。また、第1のサンプルの剥離面と+c面GaN自立基板からスライスして作製した半極性自立基板の表面(Ga極性面)のエッチング表面状態が同等であることが確認できるので、図4に示す露出面(成長面24)がN極性であることが確認できる。
 なお、本発明者らは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」の中のその他の一部を満たさない場合、また、全部を満たさない場合においても、成長面の面方位がGa極性となることを確認している。
<第2の評価>
 第2の評価では、上述した「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を調整できることを確認した。
 まず、主面の面方位が様々なサファイア基板を複数用意した。サファイア基板の厚さは430μmであり、直径は2インチであった。
 そして、用意したサファイア基板各々に対して、以下の条件で熱処理工程S20を行った。
 温度:1000~1050℃
 圧力:200torr
 熱処理時間:10分
 キャリアガス:H、N
 キャリアガス供給量:15slm
 なお、熱処理時の窒化処理の有無を異ならせたサンプルを作成した。具体的には、熱処理時に20slmのNHを供給し、窒化処理を行うサンプルと、熱処理時にNHを供給せず、窒化処理を行わないサンプルの両方を作成した。
 その後、以下の条件で先流し工程S30を行った。
 温度:880~930℃
 圧力:100torr
 トリメチルアルミニウム供給量、供給時間:90sccm、10秒
 キャリアガス:H2、N2
 キャリアガス供給量:15slm
 なお、先流し工程S30を行うサンプルと、行わないサンプルの両方を作成した。
 その後、サファイア基板の主面(露出面)上に、以下の条件で、約150nmの厚さのバッファ層(AlNバッファ層)を形成した。
 成長方法:MOCVD法
 圧力:100torr
 V/III比:5184
 TMAl供給量:90ccm
 NH供給量:5slm
 キャリアガス:H、N
 キャリアガス供給量:15slm
 なお、成長温度は、サンプルごとに、700℃以上1110℃以下の範囲で異ならせた。
 その後、バッファ層の上に、以下の条件で、約15μmの厚さのIII族窒化物半導体層(GaN層)を形成した。
 成長方法:MOCVD法
 成長温度:900~1100℃
 圧力:100torr
 V/III比:321
 TMGa供給量:50~500ccm(ランプアップ)
 NH供給量:5~10slm(ランプアップ)
 キャリアガス:H、N
 キャリアガス供給量:15slm
 以上のようにして、サファイア基板と、バッファ層と、III族窒化物半導体層とがこの順に積層したIII族窒化物半導体基板1を製造した。
 表1乃至7に、「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」と、III族窒化物半導体層の成長面の面方位との関係を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表中の「サファイア主面」の欄には、サファイア基板の主面の面方位が示されている。「昇温時の窒化処理」の欄には、熱処理工程S20の際の昇温時の窒化処理の有無(「有り」または「無し」)が示されている。「トリメチルアルミニウム先流し工程の有無」の欄には、トリメチルアルミニウム先流し工程の有無(「有り」または「無し」)が示されている。「AlNバッファ成長温度」の欄には、バッファ層形成工程における成長温度が示されている。「GaN成長温度」の欄には、GaN層形成工程における成長温度が示されている。「III族窒化物半導体層の成長面」の欄には、III族窒化物半導体層の成長面の面方位が示されている。
 当該結果によれば、上述した「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を半極性かつGa極性の中で調整できることが分かる。そして、第1の評価の結果と第2の評価の結果とに基づけば、「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たしたうえで、「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を、半極性かつN極性の中で調整できることが分かる。
<第3の評価>
 本手法により作製したサンプルの結晶性について評価した。試料は3種類を準備した。サンプルAは、本明細記載の手法により作製したものであり、{11-23}面を成長面としている。サンプルB、Cは比較用サンプルであり、サンプルBは{10-10}面を成長面とした。また、サンプルCは{11-22}面を成長面とした。
 図9に、各サンプルに対し、複数のGaN膜厚時にエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定した場合のXRC半値幅を示す。 但し、主面が{11-23}面であるサンプルCは、消滅則により{11-23}面のエックス線回折が得られないため、{11-22}面のXRC半値幅を測定した。
 図9より、サンプルAはGaN層の膜厚が大きくなっても、XRC半値幅がほとんど変化しないことが分かる。これに対し、サンプルB及びCは、GaN層の膜厚が大きくなるにつれて、XRC半値幅が大きくなる傾向が読み取れる。
 以下、参考形態の例を付記する。
1. III族窒化物半導体結晶で構成され、膜厚が400μm以上であり、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、前記第1及び第2の主面各々に対してエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したXRC(X-ray Rocking Curve)の半値幅の差が、100arcsec以下であるIII族窒化物半導体基板。 
2. 1に記載のIII族窒化物半導体基板において、
 前記第1及び第2の主面の前記半値幅は、いずれも、エックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したエックス線ロッキングカーブ(XRC)半値幅が500arcsec以下であるIII族窒化物半導体基板。
3. サファイア基板と、
 前記サファイア基板上に形成され、半極性かつN極性の露出した主面を有するIII族窒化物半導体層と、
を有するIII族窒化物半導体基板。
4. 3に記載のIII族窒化物半導体基板において、
 前記III族窒化物半導体層の膜厚は、1μm以上であるIII族窒化物半導体基板。
5. 3又は4に記載のIII族窒化物半導体基板において、
 前記III族窒化物半導体層の前記主面のXRCの半値幅は、c投影軸方向で500arcsec以下であるIII族窒化物半導体基板。
6. サファイア基板を準備する基板準備工程と、
 前記基板準備工程の後、前記サファイア基板に対して熱処理を行う熱処理工程と、
 前記熱処理工程の後、前記サファイア基板上に金属含有ガスを供給する先流し工程と、
 前記先流し工程の後、前記サファイア基板上に、成長温度:800℃以上950℃以下、圧力:30torr以上200torr以下の成長条件で、バッファ層を形成するバッファ層形成工程と、
 前記バッファ層形成工程の後、前記バッファ層の上に、成長温度:800℃以上1025℃以下、圧力:30torr以上200torr以下、成長速度:10μm/h以上の成長条件で、III族窒化物半導体層を形成する成長工程と、
を有するIII族窒化物半導体基板の製造方法。
7. 6に記載のIII族窒化物半導体基板の製造方法において、
 前記成長工程の後に、前記III族窒化物半導体層と前記サファイア基板とを含む積層体から、前記サファイア基板を剥離する剥離工程をさらに有するIII族窒化物半導体基板の製造方法。
 この出願は、2016年12月20日に出願された日本出願特願2016-246908号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (7)

  1.  III族窒化物半導体結晶で構成され、膜厚が400μm以上であり、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、前記第1及び第2の主面各々に対してエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したXRC(X-ray Rocking Curve)の半値幅の差が、100arcsec以下であるIII族窒化物半導体基板。 
  2.  請求項1に記載のIII族窒化物半導体基板において、
     前記第1及び第2の主面の前記半値幅は、いずれも、エックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したエックス線ロッキングカーブ(XRC)半値幅が500arcsec以下であるIII族窒化物半導体基板。
  3.  サファイア基板と、
     前記サファイア基板上に形成され、半極性かつN極性の露出した主面を有するIII族窒化物半導体層と、
    を有するIII族窒化物半導体基板。
  4.  請求項3に記載のIII族窒化物半導体基板において、
     前記III族窒化物半導体層の膜厚は、1μm以上であるIII族窒化物半導体基板。
  5.  請求項3又は4に記載のIII族窒化物半導体基板において、
     前記III族窒化物半導体層の前記主面のXRCの半値幅は、c投影軸方向で500arcsec以下であるIII族窒化物半導体基板。
  6.  サファイア基板を準備する基板準備工程と、
     前記基板準備工程の後、前記サファイア基板に対して熱処理を行う熱処理工程と、
     前記熱処理工程の後、前記サファイア基板上に金属含有ガスを供給する先流し工程と、
     前記先流し工程の後、前記サファイア基板上に、成長温度:800℃以上950℃以下、圧力:30torr以上200torr以下の成長条件で、バッファ層を形成するバッファ層形成工程と、
     前記バッファ層形成工程の後、前記バッファ層の上に、成長温度:800℃以上1025℃以下、圧力:30torr以上200torr以下、成長速度:10μm/h以上の成長条件で、III族窒化物半導体層を形成する成長工程と、
    を有するIII族窒化物半導体基板の製造方法。
  7.  請求項6に記載のIII族窒化物半導体基板の製造方法において、
     前記成長工程の後に、前記III族窒化物半導体層と前記サファイア基板とを含む積層体から、前記サファイア基板を剥離する剥離工程をさらに有するIII族窒化物半導体基板の製造方法。
PCT/JP2017/045391 2016-12-20 2017-12-18 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 WO2018117050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197018807A KR102415252B1 (ko) 2016-12-20 2017-12-18 Ⅲ족 질화물 반도체 기판 및 ⅲ족 질화물 반도체 기판의 제조방법
US16/470,547 US20210180211A1 (en) 2016-12-20 2017-12-18 Group iii nitride semiconductor substrate and method for manufacturing group iii nitride semiconductor substrate
CN201780078734.3A CN110100304B (zh) 2016-12-20 2017-12-18 Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法
EP17883435.4A EP3561855A4 (en) 2016-12-20 2017-12-18 GROUP III NITRIDE SEMICONDUCTOR SUBSTRATE AND PROCESS FOR THE PRODUCTION OF GROUP III NITRIDE SEMICONDUCTOR SUBSTRATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016246908A JP6266742B1 (ja) 2016-12-20 2016-12-20 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP2016-246908 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018117050A1 true WO2018117050A1 (ja) 2018-06-28

Family

ID=61020745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045391 WO2018117050A1 (ja) 2016-12-20 2017-12-18 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Country Status (7)

Country Link
US (1) US20210180211A1 (ja)
EP (1) EP3561855A4 (ja)
JP (1) JP6266742B1 (ja)
KR (1) KR102415252B1 (ja)
CN (1) CN110100304B (ja)
TW (1) TWI738946B (ja)
WO (1) WO2018117050A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6831276B2 (ja) * 2017-03-17 2021-02-17 古河機械金属株式会社 Iii族窒化物半導体基板
CN109742205B (zh) * 2019-01-07 2020-05-29 江西乾照光电有限公司 一种具有极性反转层的led外延结构及制作方法
JP2021002574A (ja) * 2019-06-21 2021-01-07 古河機械金属株式会社 構造体、光デバイス、光デバイスの製造方法、および構造体の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
JP2009147271A (ja) * 2007-12-18 2009-07-02 Tohoku Univ 基板製造方法およびiii族窒化物半導体結晶
JP2010013298A (ja) 2008-07-01 2010-01-21 Sumitomo Electric Ind Ltd Iii族窒化物結晶接合基板およびその製造方法ならびにiii族窒化物結晶の製造方法
JP2011042542A (ja) * 2009-08-24 2011-03-03 Furukawa Co Ltd Iii族窒化物基板の製造方法およびiii族窒化物基板
JP2012015555A (ja) 2008-08-04 2012-01-19 Sumitomo Electric Ind Ltd GaN系半導体光素子、GaN系半導体光素子を作製する方法、エピタキシャルウエハ及びGaN系半導体膜を成長する方法
JP2012160755A (ja) 2010-08-09 2012-08-23 Panasonic Corp 半導体発光デバイス
JP2013082628A (ja) 2013-02-12 2013-05-09 Sumitomo Electric Ind Ltd Iii族窒化物結晶、iii族窒化物結晶基板および半導体デバイスの製造方法
JP2016012717A (ja) 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 窒化物半導体構造、窒化物半導体構造を備えた電子デバイス、窒化物半導体構造を備えた発光デバイス、および窒化物半導体構造を製造する方法
JP2016121064A (ja) * 2011-09-30 2016-07-07 三菱化学株式会社 GaN単結晶およびウエハ
WO2016136548A1 (ja) * 2015-02-27 2016-09-01 住友化学株式会社 窒化物半導体テンプレート及びその製造方法、並びにエピタキシャルウエハ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010029852A (ko) * 1999-06-30 2001-04-16 도다 다다히데 Ⅲ족 질화물계 화합물 반도체 소자 및 그 제조방법
US7186302B2 (en) * 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US8435879B2 (en) * 2005-12-12 2013-05-07 Kyma Technologies, Inc. Method for making group III nitride articles
JP4301251B2 (ja) * 2006-02-15 2009-07-22 住友電気工業株式会社 GaN結晶基板
US9822465B2 (en) * 2006-04-07 2017-11-21 Sixpoint Materials, Inc. Method of fabricating group III nitride with gradually degraded crystal structure
KR101159995B1 (ko) * 2008-03-13 2012-06-25 쇼와 덴코 가부시키가이샤 Ⅲ족 질화물 반도체 소자 및 그 제조 방법, ⅲ족 질화물 반도체 발광 소자 및 그 제조 방법, 및 램프
US20100025727A1 (en) * 2008-08-04 2010-02-04 Benjamin Allen Haskell Enhanced spontaneous separation method for production of free-standing nitride thin films, substrates, and heterostructures
JP5293591B2 (ja) * 2008-12-26 2013-09-18 豊田合成株式会社 Iii族窒化物半導体の製造方法、およびテンプレート基板
JP2010232609A (ja) * 2009-03-30 2010-10-14 Hitachi Cable Ltd Iii族窒化物半導体複合基板、iii族窒化物半導体基板、及びiii族窒化物半導体複合基板の製造方法
JP5665463B2 (ja) * 2010-09-30 2015-02-04 Dowaエレクトロニクス株式会社 Iii族窒化物半導体素子製造用基板およびiii族窒化物半導体自立基板またはiii族窒化物半導体素子の製造方法
KR101105868B1 (ko) * 2010-11-08 2012-01-16 한국광기술원 화학적 리프트 오프 방법을 이용한 ⅰⅰⅰ족 질화물 기판의 제조방법
JP2014009156A (ja) * 2012-06-29 2014-01-20 Samsung Corning Precision Materials Co Ltd 窒化ガリウム基板の製造方法および該方法により製造された窒化ガリウム基板
JP6346457B2 (ja) * 2013-03-08 2018-06-20 国立大学法人山口大学 窒化ガリウム結晶自立基板の製造方法
EP3031958B1 (en) * 2013-08-08 2017-11-01 Mitsubishi Chemical Corporation Self-standing gan substrate and method for producing semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
JP2009147271A (ja) * 2007-12-18 2009-07-02 Tohoku Univ 基板製造方法およびiii族窒化物半導体結晶
JP2010013298A (ja) 2008-07-01 2010-01-21 Sumitomo Electric Ind Ltd Iii族窒化物結晶接合基板およびその製造方法ならびにiii族窒化物結晶の製造方法
JP2012015555A (ja) 2008-08-04 2012-01-19 Sumitomo Electric Ind Ltd GaN系半導体光素子、GaN系半導体光素子を作製する方法、エピタキシャルウエハ及びGaN系半導体膜を成長する方法
JP2011042542A (ja) * 2009-08-24 2011-03-03 Furukawa Co Ltd Iii族窒化物基板の製造方法およびiii族窒化物基板
JP2012160755A (ja) 2010-08-09 2012-08-23 Panasonic Corp 半導体発光デバイス
JP2016121064A (ja) * 2011-09-30 2016-07-07 三菱化学株式会社 GaN単結晶およびウエハ
JP2013082628A (ja) 2013-02-12 2013-05-09 Sumitomo Electric Ind Ltd Iii族窒化物結晶、iii族窒化物結晶基板および半導体デバイスの製造方法
JP2016012717A (ja) 2014-06-05 2016-01-21 パナソニックIpマネジメント株式会社 窒化物半導体構造、窒化物半導体構造を備えた電子デバイス、窒化物半導体構造を備えた発光デバイス、および窒化物半導体構造を製造する方法
WO2016136548A1 (ja) * 2015-02-27 2016-09-01 住友化学株式会社 窒化物半導体テンプレート及びその製造方法、並びにエピタキシャルウエハ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN. J. APPL. PHYS., vol. 39, 2000, pages 413 - 416
VENNEGUES, PHILIPPE ET AL.: "Study of the epitaxial relationships between III-nitrides and M-plane sapphire", JOURNAL OF APPLIED PHYSICS, vol. 108, no. 11, January 2010 (2010-01-01), pages 113521 - 1 - 113521-6, XP012142049, DOI: 10.1063/1.3514095 *

Also Published As

Publication number Publication date
EP3561855A4 (en) 2020-09-30
JP2018101694A (ja) 2018-06-28
US20210180211A1 (en) 2021-06-17
CN110100304B (zh) 2023-10-20
EP3561855A1 (en) 2019-10-30
KR20190097084A (ko) 2019-08-20
TWI738946B (zh) 2021-09-11
KR102415252B1 (ko) 2022-06-29
JP6266742B1 (ja) 2018-01-24
TW201839189A (zh) 2018-11-01
CN110100304A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
JP5896442B2 (ja) Iii族窒化物膜の成長方法
JP5638198B2 (ja) ミスカット基板上のレーザダイオード配向
WO2018117050A1 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP2010168273A (ja) Iii族窒化物半導体の製造方法、およびテンプレート基板
JP2011042542A (ja) Iii族窒化物基板の製造方法およびiii族窒化物基板
JP2009238772A (ja) エピタキシャル基板及びエピタキシャル基板の製造方法
KR102464462B1 (ko) Ⅲ족 질화물 반도체 기판
US11011374B2 (en) Group III nitride semiconductor substrate and method for manufacturing group III nitride semiconductor substrate
CN108963042B (zh) Ramo4基板及氮化物半导体装置
JP2015032730A (ja) 窒化物半導体構造およびそれを製造する方法
JP6865669B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6934802B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6894825B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP7084123B2 (ja) Iii族窒化物半導体基板
JP6982469B2 (ja) Iii族窒化物半導体基板及びiii族窒化物半導体基板の製造方法
WO2020162346A1 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
WO2018180672A1 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197018807

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017883435

Country of ref document: EP

Effective date: 20190722