WO2020162346A1 - Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 - Google Patents

Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 Download PDF

Info

Publication number
WO2020162346A1
WO2020162346A1 PCT/JP2020/003635 JP2020003635W WO2020162346A1 WO 2020162346 A1 WO2020162346 A1 WO 2020162346A1 JP 2020003635 W JP2020003635 W JP 2020003635W WO 2020162346 A1 WO2020162346 A1 WO 2020162346A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
nitride semiconductor
main surface
semiconductor substrate
Prior art date
Application number
PCT/JP2020/003635
Other languages
English (en)
French (fr)
Inventor
裕輝 後藤
裕次郎 石原
将一 布田
Original Assignee
古河機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河機械金属株式会社 filed Critical 古河機械金属株式会社
Priority to JP2020571155A priority Critical patent/JPWO2020162346A1/ja
Publication of WO2020162346A1 publication Critical patent/WO2020162346A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a group III nitride semiconductor substrate and a method for manufacturing a group III nitride semiconductor substrate.
  • Patent Document 1 and Patent Document 2 Related technologies are disclosed in Patent Document 1 and Patent Document 2.
  • a device eg, an optical device, an electronic device, etc.
  • an internal quantum is generated due to a piezoelectric field. Efficiency is reduced. Therefore, attempts have been made to form devices on so-called semipolar planes (planes different from polar planes and nonpolar planes).
  • Patent Document 3 and Patent Document 4 As disclosed in Patent Document 3 and Patent Document 4, a crystal piece having a semipolar plane as a main surface is cut out from a bulk III-nitride semiconductor crystal and the crystal pieces are bonded to each other to form a semipolar plane. Attempts have been made to manufacture group III nitride semiconductor crystals with the main surface being.
  • Patent Document 5 As disclosed in Patent Document 5, an attempt has been made to manufacture a GaN-based semiconductor optical device having a (20-21) plane, which is a semipolar plane inclined from the c-plane in the m-axis direction, as a main surface. ..
  • JP 2012-160755 A JP, 2016-12717, A JP, 2010-13298, A JP, 2013-82628, A Japanese Patent Laid-Open No. 2012-15555
  • the surface roughness of the main surface of the conventional group III nitride semiconductor substrate having a semipolar surface as the main surface was relatively large. If the surface roughness of the main surface of the substrate is large, the quality of the device (eg, optical device, electronic device, etc.) formed thereon deteriorates.
  • the present invention has an object to improve the quality of a device formed on a group III nitride semiconductor substrate having a semipolar plane as a main surface.
  • a group III nitride semiconductor that is composed of a group III nitride semiconductor, has a semipolar surface as a main surface, and has a surface roughness RMS measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square of the main surface of 0.05 nm or more and 1.50 nm or less.
  • a semiconductor substrate is provided.
  • a preparatory step of preparing a base substrate A group III nitride semiconductor layer forming step of forming a group III nitride semiconductor layer by epitaxially growing a group III nitride semiconductor on the main surface of the base substrate by HVPE.
  • the base substrate is Including a first layer composed of a Group III nitride semiconductor, The main surface of the first layer is the main surface of the underlying substrate, The main surface of the first layer is represented by Miller index (hkml), and l is a semipolar surface less than 0,
  • An X-ray was incident on the main surface of the first layer in parallel with the m-axis of the group III nitride semiconductor crystal, and the angle formed by the incident direction of the X-ray and the main surface was scanned to measure ⁇ 11-22.
  • XRC X-ray Rocking Curve
  • FIG. 5 is a flowchart showing an example of a processing flow of a method for manufacturing a group III nitride semiconductor substrate of the present embodiment.
  • FIG. 6 is a process chart showing an example of a process flow of a method for manufacturing a Group III nitride semiconductor substrate of the present embodiment. It is a flow chart which shows an example of the flow of processing of preparatory process S10 of this embodiment. It is a flow chart which shows an example of the flow of processing of group III nitride semiconductor layer formation process S20 of this embodiment.
  • FIG. 6 is a process chart showing an example of a process flow of a group III nitride semiconductor layer forming process S20 of the present embodiment.
  • the “semipolar surface represented by Miller index (hkml), in which l exceeds 0” may be referred to as the “semipolar surface on the Ga polarity side”.
  • the “semipolar surface represented by Miller index (hkml), where l is less than 0” may be referred to as the “semipolar surface on the N polarity side”.
  • the main surface is made of a group III nitride semiconductor
  • the main surface is a semipolar surface
  • the surface roughness RMS measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square of the main surface is 0.05 nm or more and 1.50 nm or less.
  • a group III nitride semiconductor substrate is provided.
  • a device eg, an optical device, an electronic device, etc.
  • a conventional surface roughness of the main surface is relatively high. The quality of the device is improved as compared with the case where the device is formed on the group III nitride semiconductor substrate.
  • a group III nitride semiconductor is epitaxially grown on a base substrate including a group III nitride semiconductor layer whose exposed surface is a semipolar plane on the N-polar side and has good crystallinity.
  • a group III nitride semiconductor is epitaxially grown on a base substrate including a group III nitride semiconductor layer whose exposed surface is a semipolar plane on the N-polar side and has good crystallinity.
  • a group III nitride semiconductor substrate having a good surface roughness is realized.
  • the method for manufacturing a group III nitride semiconductor substrate includes a preparation step S10, a group III nitride semiconductor layer forming step S20, a cutting step S30, and a processing step S40. ..
  • the preparation step S10 the base substrate 1 is prepared as shown in FIG.
  • the group III nitride semiconductor layer forming step S20 the group III nitride semiconductor layer 2 is formed on the underlying substrate 1, as shown in FIG.
  • the cutting step S30 part or all of the group III nitride semiconductor layer 2 is cut out as a group III nitride semiconductor substrate.
  • the processing step S40 the surface of the group III nitride semiconductor substrate cut out in the cutting step S30 is processed.
  • each step will be described in detail.
  • Preparation process S10 In the preparation step S10, a base substrate in which a group III nitride semiconductor layer and another layer (eg, a buffer layer, a sapphire substrate, etc.) are stacked, or a base substrate made of a single layer of the group III nitride semiconductor layer is prepared. ..
  • the main surface of the group III nitride semiconductor layer included in the base substrate, which is an exposed surface, is a semi-polar surface on the N-polar side. Then, the group III nitride semiconductor layer has good crystallinity. Specifically, an X-ray is incident on the main surface of the Group III nitride semiconductor layer in parallel with the m-axis of the Group III nitride semiconductor crystal, and the angle between the incident direction of the X-ray and the main surface is scanned. The measured full width at half maximum of XRC with respect to the ⁇ 11-22 ⁇ plane is 500 arcsec or less.
  • an X-ray is incident on the main surface of the group III nitride semiconductor layer in parallel with a projection axis obtained by projecting the c-axis of the group III nitride semiconductor crystal on the main surface, and the incident direction of the X-ray and the main surface
  • the full width at half maximum of XRC with respect to the ⁇ 11-22 ⁇ plane measured by scanning the formed angle is 500 arcsec or less.
  • the maximum diameter of the group III nitride semiconductor layer is, for example, ⁇ 50 mm or more and ⁇ 6 inches or less.
  • the thickness of the group III nitride semiconductor layer is, for example, 50 nm or more and 500 ⁇ m or less.
  • the preparation step S10 includes a substrate preparation step S11, a heat treatment step S12, a pre-flow step S13, a buffer layer formation step S14, and a growth step S15.
  • a sapphire substrate is prepared.
  • the diameter of the sapphire substrate is, for example, 1 inch or more.
  • the sapphire substrate has a thickness of, for example, 250 ⁇ m or more.
  • the plane orientation of the main surface of the sapphire substrate is one of a plurality of elements that controls the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown thereon.
  • the relationship between the element and the plane orientation of the growth surface of the group III nitride semiconductor layer will be shown in the following examples.
  • a sapphire substrate whose main surface has a desired plane orientation is prepared.
  • the main surface of the sapphire substrate is, for example, a ⁇ 10-10 ⁇ surface or a surface obtained by inclining the ⁇ 10-10 ⁇ surface in a predetermined direction by a predetermined angle.
  • a plane obtained by inclining the ⁇ 10-10 ⁇ plane in a predetermined direction by a predetermined angle is, for example, a ⁇ 10-10 ⁇ plane inclined in any direction at an angle larger than 0° and not larger than 0.5°. It may be a surface.
  • a plane obtained by inclining the ⁇ 10-10 ⁇ plane in a predetermined direction by a predetermined angle is one of a range greater than 0° and less than 10.5° in the direction in which the ⁇ 10-10 ⁇ plane is parallel to the a-plane. It may be a surface inclined at an angle.
  • the plane obtained by inclining the ⁇ 10-10 ⁇ plane in a predetermined direction by a predetermined angle is one of 0° or more and 10.5° or less in the direction in which the ⁇ 10-10 ⁇ plane is parallel to the a-plane. It may be a surface inclined at an angle.
  • a plane obtained by inclining the ⁇ 10-10 ⁇ plane in a predetermined direction by a predetermined angle has a direction in which the ⁇ 10-10 ⁇ plane is parallel to the a-plane, 0.5° or more and 1.5° or less, 1.5° or less.
  • a surface inclined at any angle of 2.5° or more, 4.5° or more and 5.5° or less, 6.5° or more and 7.5° or less, or 9.5° or more and 10.5° or less May be
  • the heat treatment step S12 is performed after the substrate preparation step S11.
  • the sapphire substrate is heat treated under the following conditions.
  • the heat treatment on the sapphire substrate may be performed while performing the nitriding treatment or may be performed without performing the nitriding treatment.
  • NH 3 of 0.5 slm or more and 20 slm or less is supplied to the sapphire substrate during the heat treatment (however, the supply amount varies depending on the size of the growth apparatus, and thus is not limited thereto). .. Further, when the heat treatment is performed without performing the nitriding treatment, NH 3 is not supplied during the heat treatment.
  • the presence or absence of nitriding treatment during heat treatment may be one of a plurality of factors that control the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate.
  • the relationship between the element and the plane orientation of the growth surface of the group III nitride semiconductor layer will be shown in the following examples.
  • the temperature of 800° C. or more and 930° C. or less during heat treatment is a temperature condition for forming a group III nitride semiconductor layer having a crystallinity of which the main surface (growth surface) is an N-polar semipolar surface. ..
  • the advance process S13 is performed after the heat treatment process S12.
  • the metal-containing gas is supplied onto the main surface of the sapphire substrate under the following conditions.
  • the preparatory step S13 may be performed, for example, in a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus.
  • the above conditions are for supplying trimethylaluminum and triethylaluminum, which are organic metal raw materials, as the metal-containing gas.
  • a metal-containing gas containing another metal is supplied instead of trimethylaluminum triethylaluminum, and another metal film such as a titanium film, a vanadium film or a copper film is used instead of the aluminum film as the main surface of the sapphire substrate. It may be formed on top.
  • another metal carbide film such as aluminum carbide, titanium carbide, vanadium carbide or copper carbide which is a reaction film with a hydrocarbon compound such as methane, ethylene or ethane produced from an organic metal raw material is formed on the main surface of the sapphire substrate. It may be formed.
  • the metal film and the metal carbide film are formed on the main surface of the sapphire substrate by the pre-flow process S13.
  • the presence of the metal film is a condition for reversing the polarity of the crystal grown on it. That is, the pre-flow step S13 is carried out among a plurality of elements for making the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate the semipolar surface on the N polarity side. Is one of.
  • the buffer layer forming step S14 is performed after the preparatory step S13.
  • a buffer layer is formed on the main surface of the sapphire substrate.
  • the thickness of the buffer layer is, for example, 20 nm or more and 300 nm or less.
  • the buffer layer is, for example, an AlN layer.
  • an AlN crystal may be epitaxially grown under the following conditions to form a buffer layer.
  • MOCVD growth temperature 800° C. or more and 950° C. or less Pressure: 30 torr or more and 200 torr or less
  • Trimethylaluminum supply amount 20 ccm or more and 500 ccm or less
  • NH 3 supply amount 0.5 slm or more and 10 slm or less
  • Carrier gas H 2 or H 2 And N 2 (H 2 ratio 0-100%)
  • Carrier gas supply amount 3 slm or more and 50 slm or less (however, the gas supply amount is not limited to this because it varies depending on the size and configuration of the growth apparatus.)
  • the growth condition of the buffer layer forming step S14 may be one of a plurality of factors that control the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate.
  • the relationship between the element and the plane orientation of the growth surface of the group III nitride semiconductor layer will be shown in the following examples.
  • the growth conditions in the buffer layer forming step S14 are for growing AlN while maintaining the N polarity side. It becomes a condition. That is, the growth condition in the buffer layer forming step S14 is a plurality of elements for making the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate the semipolar surface on the N polarity side. It is one of the
  • the growth step S15 is performed after the buffer layer formation step S14.
  • a group III nitride semiconductor crystal eg, GaN crystal
  • the growth surface has a predetermined plane orientation (semipolar surface on the N polarity side).
  • Forming a group III nitride semiconductor layer is, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • Growth method MOCVD growth temperature: 800°C or higher and 1025°C or lower Pressure: 30 torr or more and 200 torr or less TMGa supply amount: 25 sccm or more and 1000 sccm or less NH3 supply amount: 1 slm or more and 20 slm or less
  • Carrier gas H 2 or H 2 and N 2 (H 2 ratio 0 to 100%)
  • Carrier gas supply amount 3 slm or more and 50 slm or less (however, the gas supply amount is not limited to this because it varies depending on the size and configuration of the growth apparatus.) Growth rate: 10 ⁇ m/h or more
  • the growth conditions (relatively low growth temperature, relatively low pressure, relatively fast growth rate) in the growth step S15 are conditions for growing GaN while maintaining the N-polarity side. That is, the growth condition in the growth step S15 is selected from a plurality of elements for making the plane orientation of the growth surface of the group III nitride semiconductor layer epitaxially grown on the main surface of the sapphire substrate the semipolar surface on the N polarity side. Is one of.
  • the preparation step S10 including the substrate preparation step S11, the heat treatment step S12, the pre-flowing step S13, the buffer layer formation step S14, and the growth step S15 described above, the underlying substrate having the above characteristics, specifically, the group III nitride
  • a base substrate in which a semiconductor layer and other layers (eg, buffer layer, sapphire substrate, etc.) are laminated can be obtained.
  • a base substrate composed of a single layer of the group III nitride semiconductor layer can be obtained.
  • the means for removing the other layers above is not particularly limited.
  • the stress due to the difference in linear expansion coefficient between the sapphire substrate and the group III nitride semiconductor layer may be used to separate them.
  • the buffer layer may be removed by polishing or etching.
  • a peeling layer may be formed between the sapphire substrate and the buffer layer.
  • the laminate After forming the buffer layer and the group III nitride semiconductor layer on such a peeling layer, the laminate is heated at a temperature higher than the heating temperature for forming the group III nitride semiconductor layer. Can be separated into a portion on the side of the sapphire substrate and a portion on the side of the group III nitride semiconductor layer with the portion of as a boundary. Then, the buffer layer or the like may be removed from the portion on the side of the group III nitride semiconductor layer by polishing or etching.
  • the group III nitride semiconductor when the group III nitride semiconductor is epitaxially grown on the semipolar plane on the Ga polarity side, the crystallinity deteriorates as the thickness of the group III nitride semiconductor layer increases. As a result, the thicker the III-nitride semiconductor layer, the larger the full width at half maximum of XRC with respect to the ⁇ 11-22 ⁇ plane. Therefore, when the group III nitride semiconductor is epitaxially grown on the Ga-polar semipolar surface, it is difficult to produce a thick group III nitride semiconductor layer with good crystallinity.
  • the crystallinity hardly changes even if the thickness of the group III nitride semiconductor layer increases. Therefore, in the case of the present embodiment in which the group III nitride semiconductor is epitaxially grown on the semipolar plane on the N-polar side, the crystallinity is good and the thick film (eg, 100 ⁇ m or more) group III nitride is used as described above.
  • An object semiconductor layer can be manufactured.
  • the HVPE layer may be formed on the laminated body (on the III-nitride semiconductor layer) by thickly growing the III-nitride semiconductor by, for example, the HVPE (Hydride Vapor Phase Epitaxy) method.
  • HVPE Hadride Vapor Phase Epitaxy
  • the growth conditions for epitaxially growing the group III nitride semiconductor by the HVPE method are not particularly limited, and if the method according to the conventional technique is adopted, the group III nitride semiconductor is grown as a thick film with the semipolar surface on the N polarity side as the growth surface. Can be made. Then, by slicing the HVPE layer or the like, a base substrate having a single layer of the group III nitride semiconductor layer may be obtained.
  • Group III nitride semiconductor layer forming step S20 Returning to FIG. 1, in the group III nitride semiconductor layer forming step S20, a group III nitride semiconductor is epitaxially grown on the main surface of the underlying substrate by the HVPE method to form a group III nitride semiconductor layer.
  • the flowchart of FIG. 4 shows an example of the process flow of the group III nitride semiconductor layer forming step S20.
  • the group III nitride semiconductor layer forming step S20 includes a fixing step S21, a first growth step S22, a cooling step S23, and a second growth step S24.
  • the base substrate is fixed to the susceptor.
  • the base substrate 10 as shown in FIG. 5(1) is fixed to the susceptor 20 as shown in FIG. 5(2).
  • the illustrated base substrate 10 is a laminated body including a group III nitride semiconductor layer 12 and another layer 11.
  • the other layer 11 includes a sapphire substrate, a buffer layer, and the like.
  • the base substrate 10 may be a single layer of the group III nitride semiconductor layer 12.
  • the susceptor 20 has such a characteristic that it is not deformed by the warping force of the base substrate 10, which can warp due to the heating in the first growth step S22 and the second growth step S24.
  • Examples of the susceptor 20 include, but are not limited to, carbon susceptors, silicon carbide coated carbon susceptors, boron nitride coated carbon susceptors, and quartz susceptors.
  • the back surface of the base substrate 10 (exposed surface of the other layer 11) is fixed to the surface of the susceptor 20. This suppresses the deformation of the base substrate 10.
  • a method of fixing a method that does not peel off due to the heating in the first growth step S22 or the second growth step S24 or the warping force of the underlying substrate 10 that may warp due to the heating is required.
  • a method of fixing using an adhesive such as alumina-based, carbon-based, zirconia-based, silica-based, or nitride-based adhesive is exemplified.
  • the HVPE method is performed on the main surface of the group III nitride semiconductor layer 12 with the base substrate 10 fixed to the susceptor 20. Grows a group III nitride semiconductor. As a result, the first growth layer 30 composed of a single crystal group III nitride semiconductor is formed. For example, GaN is epitaxially grown under the following growth conditions to form a GaN layer (first growth layer 30).
  • a polycrystalline group III nitride semiconductor is formed along the side surface of the stacked body including the susceptor 20, the base substrate 10 and the first growth layer 30.
  • the polycrystalline Group III nitride semiconductor adheres to all or most of the side surfaces of the above-mentioned stacked body.
  • the attached polycrystalline group III nitride semiconductors are connected to each other to form a ring.
  • the stacked body is held inside the ring-shaped polycrystalline III-nitride semiconductor.
  • a polycrystalline group III nitride semiconductor may be formed not only on the side surface of the stacked body but also on the back surface of the susceptor 20.
  • the polycrystalline III-nitride semiconductor adheres to all or most of the side surface of the above-mentioned laminated body and the back surface of the susceptor 20.
  • the attached polycrystalline group III nitride semiconductors are connected to each other to form a cup shape. Then, the stacked body is held inside the cup-shaped polycrystalline Group III nitride semiconductor.
  • the stacked body including the susceptor 20, the base substrate 10 and the first growth layer 30 is cooled.
  • the purpose of cooling is to generate cracks in the first growth layer 30 by utilizing the strain (stress) generated due to the difference in linear expansion coefficient between the first growth layer 30 and the sapphire substrate 11. Then, to relax the stress. It is desired that the stress be relaxed before the second growth step S24.
  • the cooling method is not particularly limited as long as the object can be achieved. For example, after the first growth step S22, the stacked body may be once taken out of the HVPE apparatus and cooled to room temperature.
  • cracks (cracks, cracks, etc.) 31 are present in the first growth layer 30 after the cooling step S23.
  • the crack 31 may be present on the surface of the first growth layer 30 as shown.
  • the cracks 31 may be generated during the first growth step S22 or may be generated during the cooling step S23.
  • the HVPE method is used to form III on the first growth layer 30.
  • the second growth layer 40 made of a single crystal group III nitride semiconductor is formed.
  • GaN is epitaxially grown under the following growth conditions to form a GaN layer (second growth layer 40).
  • the growth conditions for forming the first growth layer 30 and the growth conditions for forming the second growth layer 40 may be the same or different.
  • the second growth layer 40 is formed on the first growth layer 30 with the annular polycrystalline III-nitride semiconductor formed in the first growth step S22 remaining.
  • the purpose of leaving the ring-shaped polycrystalline group III nitride semiconductor is to suppress the separation by holding the first growth layer 30 that can be separated into a plurality of parts due to the cracks 31 from the outer periphery. .. If the first growth layer 30 is separated into a plurality of portions, the misalignment of the plane orientation of each of the plurality of portions, the handling property, the workability, etc. are deteriorated. Further, there is a possibility that the original shape cannot be reproduced because some of the parts are missing or shattered. According to the present embodiment, it is possible to suppress the misorientation and separation of the surface orientation, so that the inconvenience can be suppressed.
  • all of the polycrystalline group III nitride semiconductor formed in the first growth step S22 may be left as it is, it is sufficient if the above-mentioned purpose can be achieved, and it is not always necessary to form the polycrystalline group III nitride semiconductor formed in the first growth step S22. It is not necessary to leave all of the crystalline Group III nitride semiconductor. That is, a part of the polycrystalline Group III nitride semiconductor may be removed.
  • a polycrystalline group III nitride semiconductor is formed.
  • the polycrystalline group III nitride semiconductor may be formed along the side surface of the stacked body including the susceptor 20, the base substrate 10, the first growth layer 30, and the second growth layer 40, and the back surface of the susceptor 20.
  • a group III nitride semiconductor is grown by the HVPE method on the surface of the first growth layer 30 in which the cracks 31 exist to form the second growth layer 40.
  • the growth surface (the surface of the first growth layer 30) becomes discontinuous in the crack 31 portion.
  • Group III nitride semiconductors grown from the first surface region and the second surface region, which are separated from each other with the crack 31 as a boundary, are bonded and integrated with each other as the growth progresses.
  • the group III nitride semiconductor substrate is cut out from the group III nitride semiconductor layer (second growth layer 40) formed in the group III nitride semiconductor layer forming step S20.
  • a group III nitride semiconductor substrate whose main surface is a ⁇ 11-2X ⁇ surface or a surface having an off angle of 1° or less with respect to a ⁇ 11-2X ⁇ surface is cut out (X is 1 or more). Integer).
  • the principal surface on the opposite side of the group III nitride semiconductor substrate is the ⁇ -1-12-X ⁇ plane or the plane having an off angle within 1° with respect to the ⁇ -1-12-X ⁇ plane.
  • At least a part of the second growth layer 40 is obtained by slicing a laminated body including the susceptor 20, the base substrate 10, the first growth layer 30, and the second growth layer 40. May be separated from the susceptor 20 to form a group III nitride semiconductor substrate. At least a part of the second growth layer 40 separated from the susceptor 20 may be sliced to obtain a plurality of group III nitride semiconductor substrates. In addition to slicing, at least a part of the second growth layer 40 may be separated from the susceptor 20 by using a method such as grinding, polishing, burning, decomposition, and melting.
  • Processing step S40 the surface of the group III nitride semiconductor substrate cut out in the cutting step S30 is processed.
  • the surface of the group III nitride semiconductor substrate is flattened by using a surface flattening technique such as CMP (chemical mechanical polishing).
  • group III nitride semiconductor substrate of the present embodiment a group III nitride semiconductor substrate manufactured by the method for manufacturing a group III nitride semiconductor substrate
  • the group III nitride semiconductor substrate of this embodiment is composed of a group III nitride semiconductor.
  • the main surface of the group III nitride semiconductor substrate of the present embodiment is a semipolar surface, which is an ⁇ 11-2X ⁇ surface or a surface having an off angle of 1° or less with respect to the ⁇ 11-2X ⁇ surface (X Is an integer of 1 or more).
  • the other main surface, which is in a front-back relationship with the above-mentioned main surface, is a ⁇ -1-12-X ⁇ surface or a surface having an off angle of 1° or less with respect to a ⁇ -1-12-X ⁇ surface.
  • the main surface which is the ⁇ 11-2X ⁇ plane or the surface having an off angle of 1° or less with respect to the ⁇ 11-2X ⁇ plane is referred to as a "Ga polar side main surface".
  • the group III nitride semiconductor substrate of the present embodiment has a diameter of 10 mm or more and 6 inches or less and a thickness of 250 ⁇ m or more and 2 mm or less.
  • the group III nitride semiconductor substrate of the present embodiment is characterized in that the main surface on the Ga polarity side has a surface roughness smaller than that of the conventional semipolar substrate.
  • the measurement result in the central area of the main surface of 5 ⁇ m ⁇ 5 ⁇ m square is 0.05 nm or more and 1.50 nm or less.
  • the measurement result in the area of 1 ⁇ m ⁇ 1 ⁇ m square is 0.05 nm or more and 1.50 nm or less.
  • the measuring method of RMS is an atomic force microscope (Atomic Force Spectroscopy: AFM).
  • the surface roughness Ra of the main surface on the Ga polarity side is 0.05 nm or more and 1.20 nm or less in the central area of the main surface of the area of 5 ⁇ m ⁇ 5 ⁇ m square, and the central area of the main surface is 1 ⁇ m ⁇ 1 ⁇ m.
  • the measurement result in the corner area is 0.05 nm or more and 1.20 nm or less.
  • the Ra measuring method is AFM.
  • the measurement result in an area of 5 ⁇ m ⁇ 5 ⁇ m square in the central portion of the main surface is ⁇ 10.0 nm to ⁇ 0.05 nm, and the central portion of the main surface is 1 ⁇ m.
  • the measurement result in an area of ⁇ 1 ⁇ m square is ⁇ 6.0 nm or more and ⁇ 0.05 nm or less.
  • the measuring method of Rv is AFM.
  • the surface roughness Rp of the main surface on the Ga polarity side is 0.05 nm or more and 5.0 nm or less in the central area of the main surface of the area of 5 ⁇ m ⁇ 5 ⁇ m square, and the central area of the main surface is 1 ⁇ m ⁇ 1 ⁇ m.
  • the measurement result in the corner area is 0.05 nm or more and 5.0 nm or less.
  • the measuring method of Rp is AFM.
  • the dark spot density in the CL (Cathodoluminescence) image of the main surface on the Ga polarity side is 5 ⁇ 10 6 or less. Dark spots indicate defects. That is, the group III nitride semiconductor substrate of the present embodiment has the surface defects sufficiently reduced in this way.
  • the dark spot density in the central area of the main surface of 50 ⁇ m ⁇ 50 ⁇ m square was calculated.
  • the group III nitride It shows that the plane orientation of the growth surface of the semiconductor layer is a semipolar plane on the Ga polarity side.
  • the sapphire substrate had a thickness of 430 ⁇ m and a diameter of 2 inches.
  • the heat treatment step S12 was performed on the prepared sapphire substrate under the following conditions.
  • the buffer layer forming step S14 was performed under the following conditions to form the AlN layer.
  • a growth step S15 was performed under the following conditions to form a group III nitride semiconductor layer.
  • the growth temperature of the first sample was controlled to 900°C ⁇ 25°C
  • the growth temperature of the second sample was controlled to 1050°C ⁇ 25°C. That is, the first sample is a sample that satisfies all of the above-mentioned "plurality of elements for making the plane orientation of the growth surface of the group III nitride semiconductor layer the semipolar plane on the N polarity side".
  • the second sample is a part of the above-mentioned “plurality of elements for making the plane orientation of the growth surface of the group III nitride semiconductor layer a semipolar plane on the N-polar side” (growth temperature in the growth step S15). ) Is not satisfied.
  • the plane orientation of the growth surface of the group III nitride semiconductor layer of the first sample is tilted by 5.0° from the (-1-12-4) plane in the -a plane direction and is in the direction parallel to the m plane.
  • the surface was inclined by 5° or less.
  • the plane orientation of the growth surface of the group III nitride semiconductor layer of the second sample is tilted 5.0° from the (11-24) plane in the a-plane direction and is 8.5° in the direction parallel to the m-plane. It was an inclined surface below.
  • plural of elements for making the plane orientation of the growth surface of the group III nitride semiconductor layer to be the semipolar plane on the N polarity side are determined to be the Ga orientation. It can be seen that it can be adjusted whether it is N polarity or N polarity.
  • the inventors of the present invention do not satisfy the other part of the above-mentioned "plurality of elements for making the plane orientation of the growth surface of the group III nitride semiconductor layer a semipolar plane on the N-polar side". In this case, it was confirmed that the plane orientation of the growth surface has Ga polarity even when not all are satisfied.
  • the plane orientation of the growth surface of the group III nitride semiconductor layer is adjusted by adjusting the “plurality of elements for adjusting the plane orientation of the growth surface of the group III nitride semiconductor layer” described above. Show what you can do.
  • the sapphire substrate had a thickness of 430 ⁇ m and a diameter of 2 inches.
  • the heat treatment step S12 was performed on each of the prepared sapphire substrates under the following conditions.
  • Samples were prepared with or without nitriding during heat treatment. Specifically, both a sample in which 20 slm of NH 3 was supplied during the heat treatment and which was subjected to the nitriding treatment and a sample in which NH 3 was not supplied during the heat treatment and which was not subjected to the nitriding treatment were prepared.
  • a buffer layer (AlN buffer layer) having a thickness of about 150 nm was formed on the main surface (exposed surface) of the sapphire substrate under the following conditions.
  • the growth temperature was varied from 700°C to 1110°C for each sample.
  • a group III nitride semiconductor layer having a thickness of about 15 ⁇ m was formed on the buffer layer under the following conditions.
  • MOCVD growth temperature 900-1100°C Pressure: 100 torr V/III ratio: 321 TMGa supply amount: 50 to 500 ccm (ramp up) NH 3 supply: 5-10 slm (ramp up) Carrier gas: H 2 , N 2 Carrier gas supply: 15 slm
  • the group III nitride semiconductor substrate 1 in which the sapphire substrate, the buffer layer, and the group III nitride semiconductor layer were laminated in this order was manufactured.
  • Tables 1 to 7 show the relationship between "a plurality of elements for adjusting the plane orientation of the growth surface of the group III nitride semiconductor layer" and the plane orientation of the growth surface of the group III nitride semiconductor layer.
  • the plane orientation of the main surface of the sapphire substrate is shown.
  • the column of “nitriding treatment at the time of temperature rise” the presence or absence ("present” or “no") of the nitriding treatment at the time of heat treatment in the heat treatment step 1S0 is shown.
  • the column of “presence/absence of trimethylaluminum pre-flushing process” the presence/absence ("presence” or "absence") of trimethylaluminum pre-flushing process is shown.
  • the column of “AlN buffer growth temperature” shows the growth temperature in the buffer layer forming step.
  • the column of “GaN growth temperature” shows the growth temperature in the GaN layer forming step.
  • the plane orientation of the growth surface of the group III nitride semiconductor layer is shown.
  • the growth surface of the group III nitride semiconductor layer is adjusted to the Ga polarity side. It can be seen that it can be adjusted in the semipolar plane.
  • the growth surface of the group III nitride semiconductor layer is adjusted to the N-polar side. It can be seen that it can be adjusted in the semipolar plane.
  • Sample A was manufactured by the manufacturing method of this embodiment (see the flow of FIG. 3), and was grown using the ⁇ -1-12-3 ⁇ plane as the growth plane.
  • Samples B and C are comparative samples, and sample B is grown using the ⁇ 10-10 ⁇ plane as a growth plane. Further, Sample C was grown with the ⁇ 11-22 ⁇ plane as the growth plane.
  • FIG. 6 shows the XRC full width at half maximum for the ⁇ 11-22 ⁇ plane when X-rays were made parallel to the projection axis of the c-axis of the group III nitride semiconductor crystal at various GaN film thicknesses and measured for each sample.
  • the XRC full width at half maximum of the ⁇ 11-22 ⁇ plane was measured.
  • Sample D (Example) was manufactured by the manufacturing method of this embodiment (see the flow of FIG. 3), and the details are as follows.
  • the sapphire substrate had a thickness of 430 ⁇ m and a diameter of 2 inches.
  • the heat treatment step S12 was performed on the prepared sapphire substrate under the following conditions.
  • the buffer layer forming step S14 was performed under the following conditions to form the AlN layer.
  • a growth step S15 was performed under the following conditions to form a group III nitride semiconductor layer.
  • MOCVD growth temperature 900° C. ⁇ 25° C.
  • Pressure 100 torr TMGa supply amount: 50-500 sccm (continuous change)
  • NH 3 supply 5-10 slm (continuous change)
  • Carrier gas H 2 , N 2 Carrier gas supply: 15 slm Growth rate: 10 ⁇ m/h or more
  • Sample E (Comparative Example) was prepared by the same method as Sample D, but the following points were different.
  • the heat treatment temperature was 1000° C. to 1050° C.
  • the carrier gas flow rate was 15 slm.
  • the supply amount of NH 3 was set to 20 slm.
  • the supply amount of trimethylaluminum was 90 sccm, and the carrier gas flow rate was 15 slm.
  • the trimethylaluminum supply amount was 90 sccm, and the NH 3 supply amount was 5 slm.
  • the half width of XRC with respect to the ⁇ 11-22 ⁇ plane was measured. Specifically, it measured according to the following procedures.
  • (1) X-rays are radiated to the central portions of the prototyped base substrates (each of sample D and sample E), and the (000-2) plane diffraction XRC is measured.
  • the base substrate is set in the X-ray diffractometer, and the detector and the base substrate are set to a theoretical angle with which incident (X-ray) diffraction of the (000-2) plane can be obtained.
  • the base substrate is tilted in the vertical direction at an angle of 40° or more and 50° or less. Further, the base substrate is rotated in the in-plane direction to search for the rotation angle at which the (000-2) plane diffraction peak is obtained.
  • the (000-2) plane diffraction peak is obtained most favorably.
  • the (000-2) plane diffraction peak is obtained only when X-rays are incident parallel to the m-axis. That is, this measurement also serves as axis alignment in the m-axis direction.
  • M-axis incident XRC is measured. Specifically, in the portion where the (000-2) plane XRC is measured (central portion of the base substrate), the ⁇ 11-22 ⁇ plane is axially oriented (in order to obtain the best diffraction, directions other than the in-plane rotation direction of the substrate). Adjust various angles). After that, the ⁇ 11-22 ⁇ plane XRC is measured at a total of three points, that is, the central portion and two points 20 mm apart from the central portion in the m-axis direction.
  • the measurement result of sample D is shown in FIG. 7, and the measurement result of sample E is shown in FIG.
  • the value corresponding to (m) is the half-value width of XRC with respect to the ⁇ 11-22 ⁇ plane measured by injecting an X-ray in parallel with the m-axis of a group III nitride semiconductor crystal, and corresponds to "m-axis incidence".
  • the value to be measured is the average value of three measurement points.
  • the value corresponding to (c) is the half-value width of the XRC with respect to the ⁇ 11-22 ⁇ plane measured by making X-rays incident parallel to the projection axis of the c-axis of the group III nitride semiconductor crystal projected on the main surface.
  • the value corresponding to “c-axis projection axis incidence” is the average value of three measurement points. The outline of the measurement points is as shown.
  • an X-ray is incident on the main surface parallel to the m-axis of the group III nitride semiconductor crystal, and the X-ray is incident. It can be seen that the full width at half maximum of XRC with respect to the ⁇ 11-22 ⁇ plane measured by scanning the angle formed by the direction and the main surface is 500 arcsec or less.
  • an X-ray is incident on the principal surface of the group III nitride semiconductor layer in parallel with a projection axis obtained by projecting the c-axis of the group III nitride semiconductor crystal on the principal surface, and the X-ray incidence direction and the principal surface form It can be seen that the full width at half maximum of XRC for the ⁇ 11-22 ⁇ plane measured by scanning the angle is also 500 arcsec or less.
  • an X-ray is incident on the principal surface of the group III nitride semiconductor layer in parallel with a projection axis obtained by projecting the c-axis of the group III nitride semiconductor crystal onto the principal surface, and the X-ray incidence direction and the principal surface form It can be seen that the full width at half maximum of XRC for the ⁇ 11-22 ⁇ plane measured by scanning the angle also exceeds 500 arcsec.
  • the half width of XRC for the ⁇ 11-22 ⁇ plane becomes favorable by adjusting the temperature of the heat treatment step S12 to 800° C. or higher and 930° C. or lower. It can be seen that the temperature of the heat treatment step S12 has a great influence on the crystallinity and crystallographic axis orientation of the buffer layer and the group III nitride semiconductor crystal.
  • a base substrate was prepared in which a group III nitride semiconductor layer (GaN layer) was formed by a MOCVD method on a sapphire substrate having a diameter of ⁇ 4 inches and a main surface whose plane orientation was m-plane, with a buffer layer interposed therebetween. ..
  • the film forming conditions at this time were the same as those of Sample D.
  • the principal surface of the group III nitride semiconductor layer had a plane orientation of (-1-12-3), a maximum diameter of 4 inches, and a thickness of 15 ⁇ m.
  • the base substrate was fixed to the carbon susceptor.
  • the back surface of the sapphire substrate was attached to the main surface of the carbon susceptor using an alumina adhesive.
  • a group III nitride semiconductor (GaN) was grown by the HVPE method on the main surface of the group III nitride semiconductor layer with the base substrate fixed to the carbon susceptor.
  • a first growth layer (GaN layer) composed of a single crystal group III nitride semiconductor was formed.
  • the growth conditions are as follows.
  • the laminate including the carbon susceptor, the base substrate and the first growth layer was taken out from the HVPE device and cooled to room temperature. There was a crack on the surface of the first growth layer after the cooling.
  • a group III nitride semiconductor (GaN) was grown by the HVPE method on the main surface of the first growth layer where cracks exist.
  • a second growth layer (GaN layer) composed of a single crystal group III nitride semiconductor was formed.
  • the growth conditions are as follows.
  • the maximum diameter of the second growth layer was approximately ⁇ 4 inches.
  • the maximum diameter of the surface including the second growth layer and the polycrystalline III-nitride semiconductor along the outer circumference thereof was about 130 mm. Further, no crack was generated in the second growth layer.
  • the second growth layer was sliced, and the group III nitride semiconductor substrate was taken out so that the ⁇ 11-23 ⁇ plane and the ⁇ -1-12-3 ⁇ plane were the main planes.
  • the main surface of the group III nitride semiconductor substrate was polished by mechanical polishing and chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • the ⁇ 11-23 ⁇ plane and the ⁇ -1-12-3 ⁇ plane were sliced and polished so that the principal planes were the principal planes.
  • the principal planes of the group III nitride semiconductor substrate actually obtained after processing these May be a surface having an off angle of 1° or less from the ⁇ 11-23 ⁇ plane and a surface having an off angle of 1° or less from the ⁇ -1-12-3 ⁇ plane.
  • a plurality of bulk crystals were produced by the same method, and a substrate was produced from each bulk.
  • the base substrate was formed under the same film forming conditions as those of the sample E when forming the group III nitride semiconductor layer by the MOCVD method.
  • the diameter of the sapphire substrate was ⁇ 2 inches.
  • GaN crystal growth was performed on the obtained base substrate by the HVPE method under the following conditions. After the growth, the thick film was peeled from the sapphire substrate by thermal stress during cooling to room temperature to obtain a half-size (semicircular) group III nitride semiconductor free-standing thick film of ⁇ 2 inches.
  • GaN crystal growth was performed twice on the obtained free-standing thick film by the HVPE method using the following conditions to obtain a group III nitride semiconductor bulk crystal.
  • the obtained bulk crystal was sliced, and a group III nitride semiconductor substrate having ⁇ 11-23 ⁇ planes and ⁇ -1-12-3 ⁇ planes as main planes was taken out. After that, the main surface of the group III nitride semiconductor substrate was polished by mechanical polishing and chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • Ra measured in a 1 ⁇ m ⁇ 1 ⁇ m square area was 0.84 nm, 0.89 nm, and 0.85 nm. Further, Ra measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square was 1.03 nm, 0.78 nm, and 0.72 nm.
  • Rv measured in an area of 1 ⁇ m ⁇ 1 ⁇ m square was ⁇ 4.60 nm, ⁇ 5.03 nm, ⁇ 4.35 nm. Further, Rv measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square was ⁇ 7.09 nm, ⁇ 4.43 nm, ⁇ 3.49 nm.
  • Rp measured in an area of 1 ⁇ m ⁇ 1 ⁇ m square was 9.18 nm, 4.06 nm, 4.23 nm. Further, Rp measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square was 2.70 nm, 4.92 nm, and 4.36 nm.
  • FIGS. 9(1) to 9(3) each show a CL image of an area of 50 ⁇ m ⁇ 50 ⁇ m square in the central portion of each of the plurality of group III nitride semiconductor substrates.
  • the dark spot density of the sample in FIG. 9(1) is 1.3 ⁇ 10 6 cm ⁇ 2
  • the dark spot density of the sample in FIG. 9(2) is 0.88 ⁇ 10 6 cm ⁇ 2
  • the dark spot density of the sample of (3) was 1.20 ⁇ 10 6 cm ⁇ 2 .
  • Ra measured in a 1 ⁇ m ⁇ 1 ⁇ m square area was 2.01 nm and 2.05 nm.
  • Ra measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square was 2.27 nm and 2.39 nm.
  • Rv measured in an area of 1 ⁇ m ⁇ 1 ⁇ m square was ⁇ 8.12 nm and ⁇ 7.95 nm.
  • Rv measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square was ⁇ 9.1 nm and ⁇ 9.838 nm.
  • Rp measured in an area of 1 ⁇ m ⁇ 1 ⁇ m square was 1.25 nm and 1.14 nm.
  • Rp measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square was 3.61 nm and 2.41 nm.
  • FIGS. 10A and 10B show CL images of a 50 ⁇ m ⁇ 50 ⁇ m square area on the group III nitride semiconductor substrate.
  • the dark spot density of the sample in FIG. 10(1) was 8.12 ⁇ 10 6 cm ⁇ 2
  • the dark spot density of the sample in FIG. 10(2) was 5.24 ⁇ 10 6 cm ⁇ 2 .
  • the sample of the comparative example contained many dark spots, that is, crystal defects, as compared with the sample of the example.
  • the crystallinity of the self-supporting substrate has a correlation with the crystallinity of the MOCVD underlying substrate, and the surface roughness of the self-supporting substrate is improved by improving the crystallinity of the MOCVD underlying substrate.
  • a group III nitride that is composed of a group III nitride semiconductor has a semipolar surface as a main surface, and has a surface roughness RMS measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square of the main surface that is 0.05 nm or more and 1.50 nm or less.
  • Semiconductor substrate 2.
  • Group III nitride semiconductor substrate according to 1 or 2 A Group III nitride semiconductor substrate having a surface roughness Rv measured in an area of 5 ⁇ m ⁇ 5 ⁇ m square of the main surface of ⁇ 10.0 nm or more and ⁇ 0.05 nm or less. 4.
  • the group III nitride semiconductor substrate according to any one of 1 to 3 A Group III nitride semiconductor substrate having a surface roughness Rp measured in a 5 ⁇ m ⁇ 5 ⁇ m square area of the main surface of 0.05 nm or more and 5.0 nm or less. 5.
  • the group III nitride semiconductor substrate according to any one of 1 to 4 A group III nitride semiconductor substrate having a dark spot density in the CL image of the main surface of 5 ⁇ 10 6 cm ⁇ 2 or less. 6.
  • the group III nitride semiconductor substrate according to any one of 1 to 5 The group III nitride semiconductor substrate, wherein the main surface is a ⁇ 11-2X ⁇ surface or a surface (X is an integer of 1 or more) having an off angle of 1° or less with respect to a ⁇ 11-2X ⁇ surface. 7.
  • a preparatory step of preparing a base substrate A group III nitride semiconductor layer forming step of forming a group III nitride semiconductor layer by epitaxially growing a group III nitride semiconductor on the main surface of the base substrate by HVPE.
  • the base substrate is Including a first layer composed of a Group III nitride semiconductor,
  • the main surface of the first layer is the main surface of the underlying substrate,
  • the main surface of the first layer is represented by Miller index (hkml), and l is a semipolar surface less than 0,
  • An X-ray was incident on the main surface of the first layer in parallel with the m-axis of the group III nitride semiconductor crystal, and the angle formed by the incident direction of the X-ray and the main surface was scanned to measure ⁇ 11-22.
  • the half-width of XRC (X-ray Rocking Curve) with respect to the ⁇ plane is 500 arcsec or less. 8. 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、上記課題を解決するため、III族窒化物半導体で構成され、主面が半極性面であり、主面の5μm×5μm角のエリアで測定した表面粗さRMSは0.05nm以上1.50nm以下であるIII族窒化物半導体基板を提供する。また、本発明は、さらに主面のCL像における暗点密度が5×106cm-2以下であるIII族窒化物半導体基板を提供することができる。本発明が提供するIII族窒化物半導体基板上にデバイスを形成することで、デバイスの品質を向上させることができる。

Description

III族窒化物半導体基板、及び、III族窒化物半導体基板の製造方法
 本発明は、III族窒化物半導体基板、及び、III族窒化物半導体基板の製造方法に関する。
 関連する技術が特許文献1及び特許文献2に開示されている。特許文献1及び特許文献2に開示されているように、III族窒化物半導体結晶のc面上にデバイス(例:光デバイス、電子デバイス等)を形成した場合、ピエゾ電界に起因して内部量子効率が低下する。そこで、いわゆる半極性面(極性面及び無極性面と異なる面)上にデバイスを形成する試みがなされている。
 また、関連する技術が特許文献3及び特許文献4に開示されている。特許文献3と特許文献4に開示されているように、バルク状III族窒化物半導体結晶から半極性面を主面として有する結晶片を切り出して、その結晶片を接合することで、半極性面を主面としたIII族窒化物半導体結晶を製造する試みがなされている。
 また、関連する技術が特許文献5に開示されている。特許文献5に開示されているように、c面からm軸方向に傾斜した半極性面である(20-21)面等を主面としたGaN系半導体光素子を製造する試みがなされている。
特開2012-160755号公報 特開2016-12717号公報 特開2010-13298号公報 特開2013-82628号公報 特開2012-15555号公報
 従来の半極性面を主面とするIII族窒化物半導体基板は、主面の表面粗さが比較的大きかった。基板の主面の表面粗さが大きいと、その上に形成されるデバイス(例:光デバイス、電子デバイス等)の品質が低下する。
 本発明は、半極性面を主面とするIII族窒化物半導体基板上に形成されるデバイスの品質を向上させることを課題とする。
 本発明によれば、
 III族窒化物半導体で構成され、主面が半極性面であり、前記主面の5μm×5μm角のエリアで測定した表面粗さRMSは、0.05nm以上1.50nm以下であるIII族窒化物半導体基板が提供される。
 また、本発明によれば、
 下地基板を準備する準備工程と、
 前記下地基板の主面上にHVPE法でIII族窒化物半導体をエピタキシャル成長してIII族窒化物半導体層を形成するIII族窒化物半導体層形成工程と、
 前記III族窒化物半導体層からIII族窒化物半導体基板を切り出す切出工程と、
 前記III族窒化物半導体基板の表面を加工する加工工程と、
を有し、
 前記下地基板は、
  III族窒化物半導体で構成された第1の層を含み、
  前記第1の層の主面が、前記下地基板の前記主面となり、
  前記第1の層の前記主面は、ミラー指数(hkml)で表され、lは0未満の半極性面であり、
  前記第1の層の前記主面に対してエックス線をIII族窒化物半導体結晶のm軸に平行に入射し、エックス線の入射方向と前記主面のなす角度を走査して測定した{11-22}面に対するXRC(X-ray Rocking Curve)の半値幅は、500arcsec以下であるIII族窒化物半導体基板の製造方法が提供される。
 本発明によれば、半極性面を主面とするIII族窒化物半導体基板上に形成されるデバイスの品質を向上させることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態のIII族窒化物半導体基板の製造方法の処理の流れの一例を示すフローチャートである。 本実施形態のIII族窒化物半導体基板の製造方法の処理の流れの一例を示す工程図である。 本実施形態の準備工程S10の処理の流れの一例を示すフローチャートである。 本実施形態のIII族窒化物半導体層形成工程S20の処理の流れの一例を示すフローチャートである。 本実施形態のIII族窒化物半導体層形成工程S20の処理の流れの一例を示す工程図である。 本実施形態のIII族窒化物半導体基板の特徴を示す図である。 本実施形態の実施例のIII族窒化物半導体基板の特徴を示す図である。 比較例のIII族窒化物半導体基板の特徴を示す図である。 本実施形態の実施例のIII族窒化物半導体基板の特徴を示す図である。 比較例のIII族窒化物半導体基板の特徴を示す図である。
<前提事項>
 以下、本発明のIII族窒化物半導体基板、及び、III族窒化物半導体基板の製造方法の実施形態について図面を用いて説明する。なお、図はあくまで発明の構成を説明するための概略図であり、各部材の大きさ、形状、数、異なる部材の大きさの比率などは図示するものに限定されない。
 本実施形態では、「ミラー指数(hkml)で表され、lが0を超える半極性面」を「Ga極性側の半極性面」と呼ぶ場合がある。また、「ミラー指数(hkml)で表され、lが0未満の半極性面」を「N極性側の半極性面」と呼ぶ場合がある。
<概要>
 まず、本実施形態の概要について説明する。本実施形態では、III族窒化物半導体で構成され、主面が半極性面であり、主面の5μm×5μm角のエリアで測定した表面粗さRMSは0.05nm以上1.50nm以下であるIII族窒化物半導体基板を提供する。このように主面の表面粗さが比較的小さいIII族窒化物半導体基板上にデバイス(例:光デバイス、電子デバイス等)を形成することで、主面の表面粗さが比較的大きい従来のIII族窒化物半導体基板上にデバイスを形成する場合に比べて、デバイスの品質が向上する。
 なお、本実施形態では、「露出面である主面がN極性側の半極性面であり、結晶性が良好なIII族窒化物半導体層を含む下地基板上にIII族窒化物半導体をエピタキシャル成長させる」、「ミラー指数で表される{11-2X}面、又は、{11-2X}面に対し1°以内のオフ角を有する面を主面として基板を製造する(Xは1以上の整数)」({11-2X}面が好ましいが、1°以内程度のオフ角を許容する)等の特徴を有する製造方法でIII族窒化物半導体基板を製造することで、上述のように主面の表面粗さが良好となったIII族窒化物半導体基板を実現する。
<III族窒化物半導体基板の製造方法>
 次に、本実施形態のIII族窒化物半導体基板の製造方法の一例を詳細に説明する。
 図1に示すように、本実施形態のIII族窒化物半導体基板の製造方法は、準備工程S10と、III族窒化物半導体層形成工程S20と、切出工程S30と、加工工程S40とを有する。
 各工程の概要を説明する。準備工程S10では、図2(1)に示すように、下地基板1を準備する。III族窒化物半導体層形成工程S20では、図2(2)に示すように、下地基板1上にIII族窒化物半導体層2を形成する。切出工程S30では、III族窒化物半導体層2の一部又は全部を、III族窒化物半導体基板として切り出す。加工工程S40では、切出工程S30で切り出したIII族窒化物半導体基板の表面を加工する。以下、各工程を詳細に説明する。
「準備工程S10」
 準備工程S10では、III族窒化物半導体層と他の層(例:バッファ層、サファイア基板等)とが積層した下地基板、又は、III族窒化物半導体層の単層からなる下地基板を準備する。
 下地基板に含まれるIII族窒化物半導体層は、露出面である主面がN極性側の半極性面である。そして、当該III族窒化物半導体層は、結晶性が良好である。具体的には、当該III族窒化物半導体層の主面に対してエックス線をIII族窒化物半導体結晶のm軸に平行に入射し、エックス線の入射方向と上記主面のなす角度を走査して測定した{11-22}面に対するXRCの半値幅は、500arcsec以下である。
 また、当該III族窒化物半導体層の主面に対してエックス線をIII族窒化物半導体結晶のc軸を上記主面に投影した投影軸に平行に入射し、エックス線の入射方向と上記主面のなす角度を走査して測定した{11-22}面に対するXRCの半値幅は、500arcsec以下である。
 当該III族窒化物半導体層の最大径は、例えばΦ50mm以上Φ6インチ以下である。III族窒化物半導体層の厚さは、例えば50nm以上500μm以下である。
 ここで、上述のような特徴を有する下地基板の製造方法を説明する。図3のフローチャートは、準備工程S10の処理の流れの一例を示す。図示するように、準備工程S10は、基板準備工程S11と、熱処理工程S12と、先流し工程S13と、バッファ層形成工程S14と、成長工程S15とを有する。
 基板準備工程S11では、サファイア基板を準備する。サファイア基板の直径は、例えば、1インチ以上である。また、サファイア基板の厚さは、例えば、250μm以上である。
 サファイア基板の主面の面方位は、その上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つである。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。基板準備工程S11では、主面が所望の面方位であるサファイア基板を準備する。
 サファイア基板の主面は、例えば{10-10}面、又は、{10-10}面を所定の方向に所定角度傾斜した面である。
 {10-10}面を所定の方向に所定角度傾斜した面は、例えば、{10-10}面を任意の方向に0°より大0.5°以下の中の何れかの角度で傾斜した面であってもよい。
 また、{10-10}面を所定の方向に所定角度傾斜した面は、{10-10}面をa面と平行になる方向に0°より大10.5°未満の中のいずれかの角度で傾斜した面であってもよい。または、{10-10}面を所定の方向に所定角度傾斜した面は、{10-10}面をa面と平行になる方向に0°より大10.5°以下の中のいずれかの角度で傾斜した面であってもよい。例えば、{10-10}面を所定の方向に所定角度傾斜した面は、{10-10}面をa面と平行になる方向に0.5°以上1.5°以下、1.5°以上2.5°以下、4.5°以上5.5°以下、6.5°以上7.5°以下、9.5°以上10.5°以下の中のいずれかの角度で傾斜した面であってもよい。
 熱処理工程S12は、基板準備工程S11の後に行われる。熱処理工程S12では、サファイア基板に対して、以下の条件で熱処理を行う。
 温度:800℃以上930℃以下
 圧力:30torr以上760torr以下
 熱処理時間:5分以上20分以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただし、成長装置のサイズにより供給量は変動する為、これに限定されない。)
 なお、サファイア基板に対する熱処理は、窒化処理を行いながら行う場合と、窒化処理を行わずに行う場合とがある。窒化処理を行いながら熱処理を行う場合、熱処理時に例えば0.5slm以上20slm以下のNHがサファイア基板上に供給される(ただし成長装置のサイズにより供給量は変動する為、これに限定されない。)。また、窒化処理を行わずに熱処理を行う場合、熱処理時にNHが供給されない。
 熱処理時の窒化処理の有無は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つとなる場合がある。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。
 熱処理時の温度800℃以上930℃以下は、主面(成長面)がN極性側の半極性面であって、結晶性が良好なIII族窒化物半導体層を形成するための温度条件である。
 先流し工程S13は、熱処理工程S12の後に行われる。先流し工程S13では、サファイア基板の主面上に以下の条件で金属含有ガスを供給する。先流し工程S13は、例えばMOCVD(Metal Organic Chemical Vapor Deposition)装置内で行われてもよい。
 温度:500℃以上1000℃以下
 圧力:30torr以上200torr以下
 トリメチルアルミニウム供給量、供給時間:20ccm以上500ccm以下、1秒
以上60秒以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
 上記条件は、金属含有ガスとして有機金属原料であるトリメチルアルミニウム、トリエチルアルミニウムを供給する場合のものである。当該工程では、トリメチルアルミニウムトリエチルアルミニウムに代えて他の金属を含有する金属含有ガスを供給し、アルミニウム膜に代えて、チタン膜、バナジウム膜や銅膜等の他の金属膜をサファイア基板の主面上に形成してもよい。また、有機金属原料から生成するメタン、エチレン、エタン等の炭化水素化合物との反応膜である炭化アルミニウム、炭化チタン、炭化バナジウムや炭化銅等の他の炭化金属膜をサファイア基板の主面上に形成してもよい。
 先流し工程S13により、サファイア基板の主面上に金属膜及び炭化金属膜が形成される。当該金属膜の存在が、その上に成長させる結晶の極性を反転させるための条件となる。すなわち、先流し工程S13の実施は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素の中の1つである。
 バッファ層形成工程S14は、先流し工程S13の後に行われる。バッファ層形成工程S14では、サファイア基板の主面上にバッファ層を形成する。バッファ層の厚さは、例えば、20nm以上300nm以下である。
 バッファ層は、例えば、AlN層である。例えば、以下の条件でAlN結晶をエピタキシャル成長させ、バッファ層を形成してもよい。
 成長方法:MOCVD法
 成長温度:800℃以上950℃以下
 圧力:30torr以上200torr以下
 トリメチルアルミニウム供給量:20ccm以上500ccm以下
 NH供給量:0.5slm以上10slm以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
 バッファ層形成工程S14の成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つとなる場合がある。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。
 また、バッファ層形成工程S14における成長条件(比較的低めの所定の成長温度、具体的には800~950℃、および比較的低い圧力)は、N極性側を維持しながらAlNを成長させるための条件となる。すなわち、バッファ層形成工程S14における成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素の中の1つである。
 成長工程S15は、バッファ層形成工程S14の後に行われる。成長工程S15では、バッファ層の上に、以下の成長条件でIII族窒化物半導体結晶(例:GaN結晶)をエピタキシャル成長させ、成長面が所定の面方位(N極性側の半極性面)となっているIII族窒化物半導体層を形成する。III族窒化物半導体層の厚さは、例えば、1μm以上20μm以下である。
 成長方法:MOCVD法
 成長温度:800℃以上1025℃以下 
 圧力:30torr以上200torr以下
 TMGa供給量:25sccm以上1000sccm以下
 NH3供給量:1slm以上20slm以下
 キャリアガス:H、又は、HとN(H比率0~100%)
 キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
 成長速度:10μm/h以上
 成長工程S15における成長条件(比較的低い成長温度、比較的低い圧力、比較的速い成長速度)は、N極性側を維持しながらGaNを成長させるための条件となる。すなわち、成長工程S15における成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素の中の1つである。
 以上説明した基板準備工程S11、熱処理工程S12、先流し工程S13、バッファ層形成工程S14及び成長工程S15を有する準備工程S10により、上述のような特徴を有する下地基板、具体的にはIII族窒化物半導体層と他の層(例:バッファ層、サファイア基板等)とが積層した下地基板が得られる。そして、当該積層体から上記他の層を除去することで、III族窒化物半導体層の単層からなる下地基板が得られる。
 上記他の層を除去する手段は特段制限されない。例えば、サファイア基板とIII族窒化物半導体層との間の線膨張係数差に起因する応力を利用して、これらを分離してもよい。そして、バッファ層を研磨やエッチング等で除去してもよい。
 その他の除去例として、サファイア基板とバッファ層との間に剥離層を形成してもよい。例えば、炭化物(炭化アルミニウム、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウムまたは炭化タンタル)が分散した炭素層、及び、炭化物(炭化アルミニウム、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウムまたは炭化タンタル)の層の積層体をサファイア基板上に形成した後に、窒化処理を行った層を剥離層として形成してもよい。
 このような剥離層の上にバッファ層及びIII族窒化物半導体層を形成した後、当該積層体を、III族窒化物半導体層を形成する際の加熱温度よりも高い温度で加熱すると、剥離層の部分を境界にして、サファイア基板側の部分と、III族窒化物半導体層側の部分とに分離することができる。そして、III族窒化物半導体層側の部分から、バッファ層等を研磨やエッチング等で除去してもよい。
 以下の実施例で示すが、Ga極性側の半極性面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなるほど結晶性が悪化する。結果、III族窒化物半導体層の厚さが厚くなるほど{11-22}面に対するXRCの半値幅は大きくなる。このため、Ga極性側の半極性面上にIII族窒化物半導体をエピタキシャル成長した場合、結晶性が良好で、かつ、厚膜なIII族窒化物半導体層を製造することが困難である。
 一方、以下の実施例で示すが、N極性側の半極性面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなっても結晶性がほとんど変化しない。このため、N極性側の半極性面上にIII族窒化物半導体をエピタキシャル成長する本実施形態の場合、上述のように結晶性が良好で、かつ、厚膜(例:100μm以上)なIII族窒化物半導体層を製造することができる。
 III族窒化物半導体層の単層からなる下地基板の製造方法の他の例として、図3に示すフローでサファイア基板、バッファ層及びIII族窒化物半導体層がこの順に積層した積層体を製造した後、当該積層体の上に(III族窒化物半導体層の上に)、例えばHVPE(Hydride Vapor Phase Epitaxy)法でIII族窒化物半導体を厚膜成長させてHVPE層を形成してもよい。結果、積層体の上に、露出面がN極性側の半極性面となったIII族窒化物半導体のHVPE層が得られる。HVPE法でIII族窒化物半導体をエピタキシャル成長させる成長条件は特段制限されず、従来技術に準じたものを採用すれば、N極性側の半極性面を成長面としてIII族窒化物半導体を厚膜成長させることができる。そして、HVPE層からスライスなどして、III族窒化物半導体層の単層からなる下地基板を得てもよい。
「III族窒化物半導体層形成工程S20」
 図1に戻り、III族窒化物半導体層形成工程S20では、下地基板の主面上にHVPE法でIII族窒化物半導体をエピタキシャル成長してIII族窒化物半導体層を形成する。図4のフローチャートは、III族窒化物半導体層形成工程S20の処理の流れの一例を示す。図示するように、III族窒化物半導体層形成工程S20は、固着工程S21と、第1の成長工程S22と、冷却工程S23と、第2の成長工程S24とを有する。
 固着工程S21では、下地基板をサセプターに固着させる。例えば、図5(1)に示すような下地基板10を、図5(2)に示すようにサセプター20に固着させる。図示する下地基板10は、III族窒化物半導体層12と、他の層11とを含む積層体である。他の層11は、サファイア基板、バッファ層等を含む。なお、下地基板10は、III族窒化物半導体層12の単層であってもよい。
 サセプター20は、第1の成長工程S22や第2の成長工程S24での加熱で反り得る下地基板10の反り力で変形しない特性等を有する。このようなサセプター20の例として、カーボンサセプター、シリコンカーバイドコートカーボンサセプター、ボロンナイトライドコートカーボンサセプター、石英サセプター等が例示されるがこれらに限定されない。
 次に、下地基板10をサセプター20に固着させる方法について説明する。本実施形態では、図5(2)に示すように、下地基板10の裏面(他の層11の露出面)をサセプター20の面に固着する。これにより、下地基板10の変形を抑制する。固着する方法としては、第1の成長工程S22や第2の成長工程S24での加熱や、当該加熱で反り得る下地基板10の反り力等により剥がれない方法が要求される。例えば、アルミナ系、カーボン系、ジルコニア系、シリカ系、ナイトライド系等の接着剤を用いて固着する方法が例示される。
 図4に戻り、第1の成長工程S22では、図5(3)に示すように、サセプター20に下地基板10を固着させた状態で、III族窒化物半導体層12の主面上にHVPE法でIII族窒化物半導体を成長させる。これにより、単結晶のIII族窒化物半導体で構成された第1の成長層30を形成する。例えば、以下の成長条件でGaNをエピタキシャル成長させ、GaN層(第1の成長層30)を形成する。
成長温度:900℃~1100℃
成長時間:1h~50h
V/III比:1~20
成長膜厚:100μm~10mm
 第1の成長工程S22では、サセプター20、下地基板10及び第1の成長層30を含む積層体の側面に沿って、多結晶のIII族窒化物半導体が形成される。多結晶のIII族窒化物半導体は、上記積層体の側面の全部又は大部分に付着する。付着した多結晶のIII族窒化物半導体は互いに繋がり、環状となる。そして、上記積層体は、環状の多結晶のIII族窒化物半導体の内部でホールドされる。
 なお、第1の成長工程S22では、上記積層体の側面に加えて、サセプター20の裏面にも、多結晶のIII族窒化物半導体が形成され得る。多結晶のIII族窒化物半導体は、上記積層体の側面及びサセプター20の裏面の全部又は大部分に付着する。付着した多結晶のIII族窒化物半導体は互いに繋がり、カップ状の形状となる。そして、上記積層体は、カップ状の多結晶のIII族窒化物半導体の内部でホールドされる。
 図4に戻り、冷却工程S23では、サセプター20、下地基板10及び第1の成長層30を含む積層体を冷却する。ここでの冷却の目的は、第1の成長層30とサファイア基板11との線膨張係数差に起因して発生する歪み(応力)を利用して第1の成長層30にクラックを発生させることで、応力を緩和することである。第2の成長工程S24の前に、応力を緩和していることが望まれる。当該目的を達成できれば、その冷却の方法は特段制限されない。例えば、第1の成長工程S22の後、上記積層体をHVPE装置の外に一旦取り出し、室温まで冷却してもよい。
 図5(3)に示すように、冷却工程S23の後の第1の成長層30には、クラック(裂け目、ひび割れ等)31が存在する。クラック31は、図示するように、第1の成長層30の表面に存在し得る。なお、クラック31は、第1の成長工程S22の間に発生したものであってもよいし、冷却工程S23の間に発生したものであってもよい。
 図4に戻り、第2の成長工程S24では、図5(4)に示すように、サセプター20に下地基板10を固着させた状態で、第1の成長層30の上に、HVPE法でIII族窒化物半導体を成長させる。これにより、単結晶のIII族窒化物半導体で構成された第2の成長層40を形成する。例えば、以下の成長条件でGaNをエピタキシャル成長させ、GaN層(第2の成長層40)を形成する。第1の成長層30を形成するための成長条件と第2の成長層40を形成するための成長条件は、同じであってもよいし、異なってもよい。
成長温度:900℃~1100℃
成長時間:1h~50h
V/III比:1~20
成長膜厚:100μm~10mm
 第2の成長工程S24では、第1の成長工程S22で形成された環状の多結晶のIII族窒化物半導体を残した状態で、第1の成長層30の上に第2の成長層40を形成する。環状の多結晶のIII族窒化物半導体を残す目的は、クラック31に起因して複数の部分に分離し得る第1の成長層30を外周からホールドすることで、当該分離を抑制することである。第1の成長層30が複数の部分に分離してしまうと、複数の部分ごとの面方位ずれや、ハンドリング性、作業性等が悪くなる。また、一部の部品がなくなったり、粉々になったりすることで、元の形状を再現できなくなる恐れもある。本実施形態によれば面方位ずれや分離を抑制できるので、当該不都合を抑制できる。
 なお、第1の成長工程S22で形成された多結晶のIII族窒化物半導体の全部をそのまま残してもよいが、上記目的を実現できればよく、必ずしも、第1の成長工程S22で形成された多結晶のIII族窒化物半導体の全部を残さなくてもよい。すなわち、多結晶のIII族窒化物半導体の一部を除去してもよい。
 第2の成長工程S24においても、多結晶のIII族窒化物半導体が形成される。多結晶のIII族窒化物半導体は、サセプター20、下地基板10、第1の成長層30及び第2の成長層40を含む積層体の側面や、サセプター20の裏面に沿って形成され得る。
 また、第2の成長工程S24では、クラック31が存在する第1の成長層30の表面上に、HVPE法でIII族窒化物半導体を成長させ、第2の成長層40を形成する。この場合、成長面(第1の成長層30の表面)は、クラック31部分において不連続となる。クラック31を境に互いに分かれた第1の表面領域及び第2の表面領域各々から成長したIII族窒化物半導体は、成長が進むと互いに接合し、一体化する。
「切出工程S30」
 図1に戻り、切出工程S30では、III族窒化物半導体層形成工程S20で形成されたIII族窒化物半導体層(第2の成長層40)からIII族窒化物半導体基板を切り出す。切出工程S30では、主面が{11-2X}面、又は、{11-2X}面に対し1°以内のオフ角を有する面であるIII族窒化物半導体基板を切り出す(Xは1以上の整数)。III族窒化物半導体基板の反対側の主面は{-1-12-X}面、又は、{-1-12-X}面に対し1°以内のオフ角を有する面となる。
 例えば、図5(5)に示すように、サセプター20、下地基板10、第1の成長層30及び第2の成長層40を含む積層体をスライスして第2の成長層40の少なくとも一部をサセプター20から分離し、III族窒化物半導体基板としてもよい。なお、サセプター20から分離した第2の成長層40の少なくとも一部をスライスして、複数のIII族窒化物半導体基板を得てもよい。また、スライスの他、研削、研磨、燃焼、分解、溶解などの方法を利用して、第2の成長層40の少なくとも一部をサセプター20から分離してもよい。
「加工工程S40」
 図1に戻り、加工工程S40では、切出工程S30で切り出したIII族窒化物半導体基板の表面を加工する。例えば、CMP(chemical mechanical polishing)等の表面平坦化技術を利用して、III族窒化物半導体基板の表面を平坦化する。
<III族窒化物半導体基板の構成>
 次に、上記III族窒化物半導体基板の製造方法で製造されるIII族窒化物半導体基板(以下、「本実施形態のIII族窒化物半導体基板」と呼ぶ)の構成を説明する。
 本実施形態のIII族窒化物半導体基板はIII族窒化物半導体で構成される。本実施形態のIII族窒化物半導体基板の主面は半極性面であり、{11-2X}面、又は、{11-2X}面に対し1°以内のオフ角を有する面である(Xは1以上の整数)。なお、上記主面と表裏の関係にあるもう一方の主面は{-1-12-X}面、又は、{-1-12-X}面に対し1°以内のオフ角を有する面となる。以下、{11-2X}面、又は、{11-2X}面に対し1°以内のオフ角を有する面である主面を「Ga極性側の主面」と呼ぶ。
 本実施形態のIII族窒化物半導体基板の直径は10mm以上6インチ以下、厚さは250μm以上2mm以下である。
 そして、本実施形態のIII族窒化物半導体基板は、Ga極性側の主面の表面粗さが、従来の半極性基板の主面の表面粗さに比べて小さいという特徴を有する。
 具体的には、Ga極性側の主面の表面粗さRMSは、主面の中心部5μm×5μm角のエリアでの測定結果が0.05nm以上1.50nm以下であり、主面の中心部1μm×1μm角のエリアでの測定結果が0.05nm以上1.50nm以下である。RMSの測定方法は、原子間力顕微鏡(Atomic Force Spectroscopy : AFM)である。
 また、Ga極性側の主面の表面粗さRaは、主面の中心部5μm×5μm角のエリアでの測定結果が0.05nm以上1.20nm以下であり、主面の中心部1μm×1μm角のエリアでの測定結果が0.05nm以上1.20nm以下である。Raの測定方法は、AFMである。
 また、Ga極性側の主面の表面粗さRvは、主面の中心部5μm×5μm角のエリアでの測定結果が-10.0nm以上-0.05nm以下であり、主面の中心部1μm×1μm角のエリアでの測定結果が-6.0nm以上-0.05nm以下である。Rvの測定方法は、AFMである。
 また、Ga極性側の主面の表面粗さRpは、主面の中心部5μm×5μm角のエリアでの測定結果が0.05nm以上5.0nm以下であり、主面の中心部1μm×1μm角のエリアでの測定結果が0.05nm以上5.0nm以下である。Rpの測定方法は、AFMである。
 また、Ga極性側の主面のCL(Cathodoluminescence)像における暗点密度は5×10以下である。暗点は欠陥を示す。すなわち、本実施形態のIII族窒化物半導体基板は、表面の欠陥がこのように十分低減されている。なお、主面の中心部50μm×50μm角のエリアでの暗点密度を算出した。
<第1の評価>
 第1の評価では、上述した「下地基板のIII族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素」のすべてを満たすことで、III族窒化物半導体層の成長面の面方位をN極性側の半極性面にできることを示す。また、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素」の中の少なくとも1つを満たさなかった場合、III族窒化物半導体層の成長面の面方位がGa極性側の半極性面になることを示す。
 まず、主面の面方位がm面((10-10)面)からa面と平行になる方向に2°傾斜した面であるサファイア基板を用意した。サファイア基板の厚さは430μmであり、直径は2インチであった。
 そして、用意したサファイア基板に対して、以下の条件で熱処理工程S12を実施した。
 温度:1000~1050℃
 圧力:100torr
 キャリアガス:H、N
 熱処理時間:10分または15分
 キャリアガス供給量:15slm
 なお、熱処理工程S12の際に、20slmのNHを供給し、窒化処理を行った。
 その後、以下の条件で先流し工程S13を行った。
 温度:800~930℃
 圧力:100torr
 トリメチルアルミニウム供給量、供給時間:90sccm、10秒
 キャリアガス:H、N
 キャリアガス供給量:15slm
 その後、以下の条件でバッファ層形成工程S14を行い、AlN層を形成した。
 成長方法:MOCVD法
 成長温度:800~930℃
 圧力:100torr
 トリメチルアルミニウム供給量:90sccm
 NH供給量:5slm
 キャリアガス:H、N
 キャリアガス供給量:15slm
 その後、以下の条件で成長工程S15を行い、III族窒化物半導体層を形成した。
 成長方法:MOCVD法
 圧力:100torr
 TMGa供給量:50~500sccm(連続変化)
 NH供給量:5~10slm(連続変化)
 キャリアガス:H、N
 キャリアガス供給量:15slm
 成長速度:10μm/h以上
 なお、第1のサンプルの成長温度は900℃±25℃に制御し、第2のサンプルの成長温度は1050℃±25℃に制御した。すなわち、第1のサンプルは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素」のすべてを満たすサンプルである。第2のサンプルは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素」の中の一部(成長工程S15における成長温度)を満たさないサンプルである。
 第1のサンプルのIII族窒化物半導体層の成長面の面方位は、(-1-12-4)面から-a面方向5.0°傾斜かつ、m面と平行になる方向に8.5°以下傾斜した面であった。一方、第2のサンプルのIII族窒化物半導体層の成長面の面方位は、(11-24)面からa面方向5.0°傾斜かつ、m面と平行になる方向に8.5°以下傾斜した面であった。すなわち、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素」を満たすか否かにより、成長面の面方位がGa極性となるかN極性となるかを調整できることが分かる。
 なお、本発明者らは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素」の中のその他の一部を満たさない場合、また、全部を満たさない場合においても、成長面の面方位がGa極性となることを確認している。
<第2の評価>
 第2の評価では、上述した「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を調整できることを示す。
 まず、主面の面方位が様々なサファイア基板を複数用意した。サファイア基板の厚さは430μmであり、直径は2インチであった。
 そして、用意したサファイア基板各々に対して、以下の条件で熱処理工程S12を行った。
 温度:1000~1050℃
 圧力:200torr
 熱処理時間:10分
 キャリアガス:H、N
 キャリアガス供給量:15slm
 なお、熱処理時の窒化処理の有無を異ならせたサンプルを作成した。具体的には、熱処理時に20slmのNHを供給し、窒化処理を行うサンプルと、熱処理時にNHを供給せず、窒化処理を行わないサンプルの両方を作成した。
 その後、以下の条件で先流し工程S13を行った。
 温度:880~930℃
 圧力:100torr
 トリメチルアルミニウム供給量、供給時間:90sccm、10秒
 キャリアガス:H、N
 キャリアガス供給量:15slm
 なお、先流し工程S13を行うサンプルと、行わないサンプルの両方を作成した。
 その後、サファイア基板の主面(露出面)上に、以下の条件で、約150nmの厚さのバッファ層(AlNバッファ層)を形成した。
 成長方法:MOCVD法
 圧力:100torr
 V/III比:5184
 TMAl供給量:90ccm
 NH供給量:5slm
 キャリアガス:H、N
 キャリアガス供給量:15slm
 なお、成長温度は、サンプルごとに、700℃以上1110℃以下の範囲で異ならせた。
 その後、バッファ層の上に、以下の条件で、約15μmの厚さのIII族窒化物半導体層(GaN層)を形成した。
 成長方法:MOCVD法
 成長温度:900~1100℃
 圧力:100torr
 V/III比:321
 TMGa供給量:50~500ccm(ランプアップ)
 NH供給量:5~10slm(ランプアップ)
 キャリアガス:H、N
 キャリアガス供給量:15slm
 以上のようにして、サファイア基板と、バッファ層と、III族窒化物半導体層とがこの順に積層したIII族窒化物半導体基板1を製造した。
 表1乃至7に、「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」と、III族窒化物半導体層の成長面の面方位との関係を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表中の「サファイア主面」の欄には、サファイア基板の主面の面方位が示されている。「昇温時の窒化処理」の欄には、熱処理工程1S0の際の昇温時の窒化処理の有無(「有り」または「無し」)が示されている。「トリメチルアルミニウム先流し工程の有無」の欄には、トリメチルアルミニウム先流し工程の有無(「有り」または「無し」)が示されている。「AlNバッファ成長温度」の欄には、バッファ層形成工程における成長温度が示されている。「GaN成長温度」の欄には、GaN層形成工程における成長温度が示されている。「III族窒化物半導体層の成長面」の欄には、III族窒化物半導体層の成長面の面方位が示されている。
 当該結果によれば、上述した「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面をGa極性側の半極性面の中で調整できることが分かる。そして、第1の評価の結果と第2の評価の結果とに基づけば、「III族窒化物半導体層の成長面の面方位を、N極性側の半極性面とするための複数の要素」のすべてを満たしたうえで、「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面をN極性側の半極性面の中で調整できることが分かる。
<第3の評価>
 本手法により作製したサンプル(下地基板のIII族窒化物半導体層)の結晶性について評価した。試料は3種類を準備した。サンプルAは、本実施形態の製造方法(図3のフロー参照)により作製したものであり、{-1-12-3}面を成長面として成長したものである。サンプルB、Cは比較用サンプルであり、サンプルBは{10-10}面を成長面として成長したものである。また、サンプルCは{11-22}面を成長面として成長したものである。
 図6に、各サンプルに対し、各種GaN膜厚時にエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定した場合の{11-22}面に対するXRC半値幅を示す。但し、主面が{11-23}面であるサンプルCは、消滅則により{11-23}面のエックス線回折が得られないため、{11-22}面のXRC半値幅を測定した。
 図6より、サンプルAはGaN層の膜厚が大きくなっても、XRC半値幅がほとんど変化しないことが分かる。これに対し、サンプルB及びCは、GaN層の膜厚が大きくなるにつれて、XRC半値幅が大きくなる傾向が読み取れる。
<第4の評価>
 本手法により作製したサンプルの結晶性について評価した。サンプルD(実施例)は、本実施形態の製造方法(図3のフロー参照)により作製したものであり、その詳細は以下の通りである。
 まず、主面の面方位がm面((10-10)面)からa面と平行になる方向に2°傾斜した面であるサファイア基板を用意した。サファイア基板の厚さは430μmであり、直径は2インチであった。
 そして、用意したサファイア基板に対して、以下の条件で熱処理工程S12を実施した。
 温度:800~930℃
 圧力:100torr
 キャリアガス:H、N
 熱処理時間:10分
 キャリアガス供給量:4slm
 なお、熱処理工程S12の際に、2slmのNHを供給し、窒化処理を行った。
 その後、以下の条件で先流し工程S13を行った。
 温度:800~930℃
 圧力:100torr
 トリメチルアルミニウム供給量、供給時間:50sccm、10秒
 キャリアガス:H、N
 キャリアガス供給量:4slm
 その後、以下の条件でバッファ層形成工程S14を行い、AlN層を形成した。
 成長方法:MOCVD法
 成長温度:800~930℃
 圧力:100torr
 トリメチルアルミニウム供給量:50sccm
 NH供給量:2slm
 キャリアガス:H、N
 キャリアガス供給量:15slm
 その後、以下の条件で成長工程S15を行い、III族窒化物半導体層を形成した。
 成長方法:MOCVD法
 成長温度:900℃±25℃
 圧力:100torr
 TMGa供給量:50~500sccm(連続変化)
 NH供給量:5~10slm(連続変化)
 キャリアガス:H、N
 キャリアガス供給量:15slm
 成長速度:10μm/h以上
 サンプルE(比較例)は、サンプルDと同様の手法により作製したものであるが、下記の点が異なる。
 熱処理工程S12では、熱処理温度を1000℃~1050℃とし、キャリアガス流量を15slmとした。また、NH供給量は20slmとした。
 先流し工程S13では、トリメチルアルミニウム供給量を90sccmとし、キャリアガス流量を15slmとした。
 バッファ層形成工程S14では、トリメチルアルミニウム供給量を90sccmとし、NH供給量を5slmとした。
 サンプルD、サンプルEのそれぞれについてX線極点図を測定した。測定の結果、サンプルDの主面、サンプルEの主面のいずれも{-1-12-4}面から10°以内のオフ角を有する面となっていることを確認した。
 そして、サンプルD及びサンプルE各々について、{11-22}面に対するXRCの半値幅を測定した。具体的には以下の手順で測定した。
(1)試作した下地基板(サンプルD及びサンプルE各々)の中心部にX線を照射し、(000-2)面回折XRCを測定する。具体的には、下地基板をX線回折装置にセットし、入射X線に対し、ディテクタと下地基板を(000-2)面の回折が得られうる理論角度に設定する。その上で、下地基板を鉛直方向に40°以上50°以下の角度で傾ける。更に、下地基板を面内方向に回転させて(000-2)面回折ピークが得られる回転角を探索する。最後に、(000-2)面回折ピークが最も良好に得られるよう、基板面内回転方向以外の各種角度を調整し、測定を行う。下地基板を上記の手順で測定した場合、(000-2)面回折ピークは、X線をm軸に平行に入射した場合にのみ得られる。つまり、この測定は、m軸方向の軸合わせを兼ねる。
(2)m軸入射XRCの測定を行う。具体的には、(000-2)面XRCを測定した部分(下地基板の中心部)で{11-22}面の軸立(最も良好な回折が得られるよう、基板面内回転方向以外の各種角度を調整する)を行う。その後、中心部と、中心部からm軸方向に20mm離れた2点との合計3点について、{11-22}面XRCの測定を行う。
(3)c投影軸入射XRCの測定を行う。具体的には、(2)記載の測定終了後、下地基板を面内方向に90°回転する。これにより、X線はc投影軸(c軸を主面に投影した投影軸)に対して入射する形になる。その後、中心部で{11-22}面の軸立を行い、中心部と、中心部からc投影軸方向に20mm離れた2点との合計3点について、{11-22}面XRCの測定を行う。
 サンプルDの測定結果を図7に、サンプルEの測定結果を図8に示す。(m)に対応付する値は、エックス線をIII族窒化物半導体結晶のm軸に平行に入射して測定した{11-22}面に対するXRCの半値幅であり、「m軸入射」に対応する値は測定点3点の平均値である。(c)に対応する値は、エックス線をIII族窒化物半導体結晶のc軸を上記主面に投影した投影軸に平行に入射して測定した{11-22}面に対するXRCの半値幅であり、「c軸投影軸入射」に対応する値は測定点3点の平均値である。測定点の概略は図示の通りである。
 図7より、本実施形態の製造方法で作製された下地基板のIII族窒化物半導体層は、主面に対してエックス線をIII族窒化物半導体結晶のm軸に平行に入射し、エックス線の入射方向と上記主面のなす角度を走査して測定した{11-22}面に対するXRCの半値幅は500arcsec以下となることが分かる。また、III族窒化物半導体層の主面に対してエックス線をIII族窒化物半導体結晶のc軸を上記主面に投影した投影軸に平行に入射し、エックス線の入射方向と上記主面のなす角度を走査して測定した{11-22}面に対するXRCの半値幅も500arcsec以下となることが分かる。
 さらに、「III族窒化物半導体層の主面に対してエックス線をIII族窒化物半導体結晶のm軸に平行に入射し、エックス線の入射方向と主面のなす角度を走査して測定した{11-22}面に対するXRCの半値幅であって、m軸方向に20mmずつ離れた3点での測定値」、及び、「III族窒化物半導体層の主面に対してエックス線をIII族窒化物半導体結晶のc軸を主面に投影した投影軸に平行に入射し、エックス線の入射方向と主面のなす角度を走査して測定した{11-22}面に対するXRCの半値幅であって、c軸を主面に投影した投影軸方向に20mmずつ離れた3点での測定値」、における最大値と最小値の差が50arcsec.以内であることがわかる。すなわち、両者間の異方性が小さいことがわかる。
 一方、図8より、本実施形態の製造方法で作製されなかった下地基板のIII族窒化物半導体層は、主面に対してエックス線をIII族窒化物半導体結晶のm軸に平行に入射し、エックス線の入射方向と上記主面のなす角度を走査して測定した{11-22}面に対するXRCの半値幅は500arcsecを超えることが分かる。また、III族窒化物半導体層の主面に対してエックス線をIII族窒化物半導体結晶のc軸を上記主面に投影した投影軸に平行に入射し、エックス線の入射方向と上記主面のなす角度を走査して測定した{11-22}面に対するXRCの半値幅も500arcsecを超えることが分かる。
 m面サファイア基板上に窒化物半導体を結晶成長した場合、その窒化の有無や窒化温度、成膜温度の違いにより窒化物半導体の成長面や結晶性、結晶軸の配向性が異なることが知られている。実施例と比較例はバッファ層の成膜温度が同じであることから、製造条件のうち、最も大きな影響を与えているのは熱処理工程S12の温度であると考えられる。
 実施例の結果から、熱処理工程S12の温度を800℃以上930℃以下に調整することにより、{11-22}面に対するXRCの半値幅が良好となることが分かる。熱処理工程S12の温度がバッファ層およびIII族窒化物半導体結晶の結晶性および結晶軸の配向性に大きな影響を与えていることが分かる。
<第5の評価>
 本実施形態の製造方法(図1のフロー参照)により作製したIII族窒化物半導体基板の特性を評価する。
「実施例のサンプルの製造方法」
 実施例のサンプルの製造方法を説明する。まず、径がΦ4インチで、主面の面方位がm面のサファイア基板の上に、バッファ層を介して、MOCVD法でIII族窒化物半導体層(GaN層)を形成した下地基板を準備した。この時の成膜条件はサンプルDと同一とした。III族窒化物半導体層の主面の面方位は(-1-12-3)、最大径はΦ4インチ、厚さは15μmであった。
 次に、当該下地基板をカーボンサセプターに固着した。具体的には、アルミナ系の接着剤を用いて、サファイア基板の裏面をカーボンサセプターの主面に貼りあわせた。
 次に、カーボンサセプターに下地基板を固着させた状態で、III族窒化物半導体層の主面上にHVPE法でIII族窒化物半導体(GaN)を成長させた。これにより、単結晶のIII族窒化物半導体で構成された第1の成長層(GaN層)を形成した。成長条件は以下の通りである。
成長温度:1040℃
成長時間:15時間
V/III比:10
成長膜厚:4.4mm
 次に、カーボンサセプター、下地基板及び第1の成長層を含む積層体を、HVPE装置から取り出し、室温まで冷却した。当該冷却後の第1の成長層の表面にはクラックが存在した。
 次に、クラックが存在する第1の成長層の主面上にHVPE法でIII族窒化物半導体(GaN)を成長させた。これにより、単結晶のIII族窒化物半導体で構成された第2の成長層(GaN層)を形成した。成長条件は以下の通りである。
成長温度:1040℃
成長時間:14時間
V/III比:10
成長膜厚:3.0mm(第1の成長層30と第2の成長層40との合計膜厚は7.4mm)
 第2の成長層の最大径はおよそΦ4インチであった。また、第2の成長層と、その外周沿いの多結晶のIII族窒化物半導体とを含む面の最大径はおよそ130mmであった。また、第2の成長層に割れは生じていなかった。
 次に、第2の成長層をスライスし、{11-23}面及び{-1-12-3}面が主面となるようにIII族窒化物半導体基板を取り出した。その後、III族窒化物半導体基板の主面を機械研磨および化学機械研磨(Chemical Mechanical Polishing:CMP)で研磨した。なお、{11-23}面及び{-1-12-3}面が主面となるようにスライス、研磨等したが、これらの加工後に実際に得られたIII族窒化物半導体基板の主面は、{11-23}面から1°以内のオフ角を有する面、及び、{-1-12-3}面から1°以内のオフ角を有する面となる場合もあった。
 同様の方法によりバルク結晶を複数個作製し、それぞれのバルクより基板を作製した。
「比較例のサンプルの製造方法」
 比較例のサンプルでは、MOCVD法によるIII族窒化物半導体層の成膜時の成膜条件をサンプルEと同一として下地基板を成膜した。サファイア基板の直径はφ2インチとした。
 得られた下地基板上に下記の条件でHVPE法によるGaNの結晶成長を行った。成長後、室温への冷却時に熱応力により厚膜をサファイア基板から剥離させることにより、φ2インチの半分サイズ(半円状)のIII族窒化物半導体自立厚膜を得た。
 成長温度:1040℃
 成長時間:18時間
 V/III比:10
 得られた自立厚膜上に下記条件を用いたHVPE法により2回のGaN結晶成長を行い、III族窒化物半導体バルク結晶を得た。
  成長温度:1040℃
  成長時間:12時間+11.5時間
  V/III比:10
 得られたバルク結晶をスライスし、{11-23}面及び{-1-12-3}面を主面とするIII族窒化物半導体基板を取り出した。その後、III族窒化物半導体基板の主面を機械研磨および化学機械研磨(Chemical Mechanical Polishing:CMP)で研磨した。
「評価結果(実施例)」
 実施例では、上記方法で3枚のIII族窒化物半導体基板を製造した。それぞれの基板について1μm×1μm角のエリアで測定したRMSは1.14nm、1.13nm、1.07nmであった。また、5μm×5μm角のエリアで測定したRMSは1.41nm、0.99nm、0.91nmであった。
 また、1μm×1μm角のエリアで測定したRaは0.84nm、0.89nm、0.85nmであった。また、5μm×5μm角のエリアで測定したRaは1.03nm、0.78nm、0.72nmであった。
 また、1μm×1μm角のエリアで測定したRvは-4.60nm、-5.03nm、-4.35nmであった。また、5μm×5μm角のエリアで測定したRvは-7.09nm、-4.43nm、-3.49nmであった。
 また、1μm×1μm角のエリアで測定したRpは9.18nm、4.06nm、4.23nmであった。また、5μm×5μm角のエリアで測定したRpは2.70nm、4.92nm、4.36nmであった。
 次に、図9(1)乃至(3)各々に、複数のIII族窒化物半導体基板各々の中心部50μm×50μm角のエリアのCL画像を示す。図9(1)のサンプルの暗点密度は1.3×10cm-2であり、図9(2)のサンプルの暗点密度は0.88×10cm-2であり、図9(3)のサンプルの暗点密度は1.20×10cm-2であった。
「評価結果(比較例)」
 比較例では、1μm×1μm角のエリアで測定したRMSは2.53nm、2.62nmであった。また、5μm×5μm角のエリアで測定したRMSは3.10nm、3.12nmであった。
 また、1μm×1μm角のエリアで測定したRaは2.01nm、2.05nmであった。また、5μm×5μm角のエリアで測定したRaは2.27nm、2.39nmであった。
 また、1μm×1μm角のエリアで測定したRvは-8.12nm、-7.95nmであった。また、5μm×5μm角のエリアで測定したRvは-9.1nm、-9.838nmであった。
 また、1μm×1μm角のエリアで測定したRpは1.25nm、1.14nmであった。また、5μm×5μm角のエリアで測定したRpは3.61nm、2.41nmであった。
 次に、図10(1)乃至(2)に、III族窒化物半導体基板における50μm×50μm角のエリアのCL画像を示す。図10(1)のサンプルの暗点密度は8.12×10cm-2であり、図10(2)のサンプルの暗点密度は5.24×10cm-2であった。比較例のサンプルは実施例のサンプルに比べ、多数の暗点、すなわち、結晶欠陥が内包されていた。
 実施例と比較例を比較すると判る通り、自立基板の表面粗さと結晶性には一定の相関が認められる。また、自立基板の結晶性はMOCVD下地基板の結晶性と相関があり、MOCVD下地基板の結晶性を改善することにより、自立基板の表面粗さが改善されることが判る。
 以下、参考形態の例を付記する。
1. III族窒化物半導体で構成され、主面が半極性面であり、前記主面の5μm×5μm角のエリアで測定した表面粗さRMSは、0.05nm以上1.50nm以下であるIII族窒化物半導体基板。
2. 1に記載のIII族窒化物半導体基板において、
 前記主面の5μm×5μm角のエリアで測定した表面粗さRaは0.05nm以上1.20nm以下であるIII族窒化物半導体基板。
3. 1又は2に記載のIII族窒化物半導体基板において、
 前記主面の5μm×5μm角のエリアで測定した表面粗さRvは-10.0nm以上-0.05nm以下であるIII族窒化物半導体基板。
4. 1から3のいずれかに記載のIII族窒化物半導体基板において、
 前記主面の5μm×5μm角のエリアで測定した表面粗さRpは0.05nm以上5.0nm以下であるIII族窒化物半導体基板。
5. 1から4のいずれかに記載のIII族窒化物半導体基板において、
 前記主面のCL像における暗点密度は5×10cm-2以下であるIII族窒化物半導体基板。
6. 1から5のいずれかに記載のIII族窒化物半導体基板において、
 前記主面は、{11-2X}面、又は、{11-2X}面に対し1°以内のオフ角を有する面(Xは1以上の整数)であるIII族窒化物半導体基板。
7. 下地基板を準備する準備工程と、
 前記下地基板の主面上にHVPE法でIII族窒化物半導体をエピタキシャル成長してIII族窒化物半導体層を形成するIII族窒化物半導体層形成工程と、
 前記III族窒化物半導体層からIII族窒化物半導体基板を切り出す切出工程と、
 前記III族窒化物半導体基板の表面を加工する加工工程と、
を有し、
 前記下地基板は、
  III族窒化物半導体で構成された第1の層を含み、
  前記第1の層の主面が、前記下地基板の前記主面となり、
  前記第1の層の前記主面は、ミラー指数(hkml)で表され、lは0未満の半極性面であり、
  前記第1の層の前記主面に対してエックス線をIII族窒化物半導体結晶のm軸に平行に入射し、エックス線の入射方向と前記主面のなす角度を走査して測定した{11-22}面に対するXRC(X-ray Rocking Curve)の半値幅は、500arcsec以下であるIII族窒化物半導体基板の製造方法。
8. 7に記載のIII族窒化物半導体基板の製造方法において、
 前記切出工程では、主面が{11-2X}面、又は、{11-2X}面に対し1°以内のオフ角を有する面(Xは1以上の整数)である前記III族窒化物半導体基板を切り出すIII族窒化物半導体基板の製造方法。
 この出願は、2019年2月7日に出願された日本出願特願2019-020502号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1.  III族窒化物半導体で構成され、主面が半極性面であり、前記主面の5μm×5μm角のエリアで測定した表面粗さRMSは、0.05nm以上1.50nm以下であるIII族窒化物半導体基板。
  2.  請求項1に記載のIII族窒化物半導体基板において、
     前記主面の5μm×5μm角のエリアで測定した表面粗さRaは0.05nm以上1.20nm以下であるIII族窒化物半導体基板。
  3.  請求項1又は2に記載のIII族窒化物半導体基板において、
     前記主面の5μm×5μm角のエリアで測定した表面粗さRvは-10.0nm以上-0.05nm以下であるIII族窒化物半導体基板。
  4.  請求項1から3のいずれか1項に記載のIII族窒化物半導体基板において、
     前記主面の5μm×5μm角のエリアで測定した表面粗さRpは0.05nm以上5.0nm以下であるIII族窒化物半導体基板。
  5.  請求項1から4のいずれか1項に記載のIII族窒化物半導体基板において、
     前記主面のCL(Cathodoluminescence)像における暗点密度は5×10cm-2以下であるIII族窒化物半導体基板。
  6.  請求項1から5のいずれか1項に記載のIII族窒化物半導体基板において、
     前記主面は、{11-2X}面、又は、{11-2X}面に対し1°以内のオフ角を有する面(Xは1以上の整数)であるIII族窒化物半導体基板。
  7.  下地基板を準備する準備工程と、
     前記下地基板の主面上にHVPE法でIII族窒化物半導体をエピタキシャル成長してIII族窒化物半導体層を形成するIII族窒化物半導体層形成工程と、
     前記III族窒化物半導体層からIII族窒化物半導体基板を切り出す切出工程と、
     前記III族窒化物半導体基板の表面を加工する加工工程と、
    を有し、
     前記下地基板は、
      III族窒化物半導体で構成された第1の層を含み、
      前記第1の層の主面が、前記下地基板の前記主面となり、
      前記第1の層の前記主面は、ミラー指数(hkml)で表され、lは0未満の半極性面であり、
      前記第1の層の前記主面に対してエックス線をIII族窒化物半導体結晶のm軸に平行に入射し、エックス線の入射方向と前記主面のなす角度を走査して測定した{11-22}面に対するXRC(X-ray Rocking Curve)の半値幅は、500arcsec以下であるIII族窒化物半導体基板の製造方法。
  8.  請求項7に記載のIII族窒化物半導体基板の製造方法において、
     前記切出工程では、主面が{11-2X}面、又は、{11-2X}面に対し1°以内のオフ角を有する面(Xは1以上の整数)である前記III族窒化物半導体基板を切り出すIII族窒化物半導体基板の製造方法。
PCT/JP2020/003635 2019-02-07 2020-01-31 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 WO2020162346A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020571155A JPWO2020162346A1 (ja) 2019-02-07 2020-01-31 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-020502 2019-02-07
JP2019020502 2019-02-07

Publications (1)

Publication Number Publication Date
WO2020162346A1 true WO2020162346A1 (ja) 2020-08-13

Family

ID=71947460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003635 WO2020162346A1 (ja) 2019-02-07 2020-01-31 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Country Status (3)

Country Link
JP (1) JPWO2020162346A1 (ja)
TW (1) TW202045783A (ja)
WO (1) WO2020162346A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511969A (ja) * 2004-08-31 2008-04-17 本田技研工業株式会社 窒化物半導体結晶の成長
WO2009011100A1 (ja) * 2007-07-19 2009-01-22 Mitsubishi Chemical Corporation Iii族窒化物半導体基板およびその洗浄方法
WO2015193955A1 (ja) * 2014-06-16 2015-12-23 株式会社サイオクス 窒化物半導体単結晶基板の製造方法
JP2018065711A (ja) * 2016-10-18 2018-04-26 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511969A (ja) * 2004-08-31 2008-04-17 本田技研工業株式会社 窒化物半導体結晶の成長
WO2009011100A1 (ja) * 2007-07-19 2009-01-22 Mitsubishi Chemical Corporation Iii族窒化物半導体基板およびその洗浄方法
WO2015193955A1 (ja) * 2014-06-16 2015-12-23 株式会社サイオクス 窒化物半導体単結晶基板の製造方法
JP2018065711A (ja) * 2016-10-18 2018-04-26 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Also Published As

Publication number Publication date
JPWO2020162346A1 (ja) 2021-12-09
TW202045783A (zh) 2020-12-16

Similar Documents

Publication Publication Date Title
JP2006128626A (ja) 窒化物系半導体装置及びその製造方法
US11662374B2 (en) Group III nitride semiconductor substrate
CN110100304B (zh) Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法
KR102425366B1 (ko) Ⅲ족 질화물 반도체 기판 및 ⅲ족 질화물 반도체 기판의 제조방법
WO2020162346A1 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
US10947641B2 (en) Group III nitride semiconductor substrate and method of manufacturing group III nitride semiconductor substrate
JP7084123B2 (ja) Iii族窒化物半導体基板
JP6934802B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6894825B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
US11680339B2 (en) Method of manufacturing group III nitride semiconductor substrate, group III nitride semiconductor substrate, and bulk crystal
JP6982469B2 (ja) Iii族窒化物半導体基板及びiii族窒化物半導体基板の製造方法
JP6865669B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP2011211046A (ja) 窒化物半導体自立基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752170

Country of ref document: EP

Kind code of ref document: A1