CN110100304A - Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法 - Google Patents

Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法 Download PDF

Info

Publication number
CN110100304A
CN110100304A CN201780078734.3A CN201780078734A CN110100304A CN 110100304 A CN110100304 A CN 110100304A CN 201780078734 A CN201780078734 A CN 201780078734A CN 110100304 A CN110100304 A CN 110100304A
Authority
CN
China
Prior art keywords
nitride semiconductor
iii nitride
substrate
face
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780078734.3A
Other languages
English (en)
Other versions
CN110100304B (zh
Inventor
住田行常
藤山泰治
后藤裕辉
中川拓哉
石原裕次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Publication of CN110100304A publication Critical patent/CN110100304A/zh
Application granted granted Critical
Publication of CN110100304B publication Critical patent/CN110100304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/86Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种III族氮化物半导体基板的制造方法,其具有:准备蓝宝石基板的基板准备工序(S10);对蓝宝石基板进行热处理的热处理工序(S20);向蓝宝石基板上供给含金属气体的预流工序(S30);在蓝宝石基板上,在生长温度:800℃以上且950℃以下、压力:30torr以上且200torr以下的生长条件下,形成缓冲层的缓冲层形成工序(S40);以及在缓冲层上,在生长温度:800℃以上且1025℃以下、压力:30torr以上且200torr以下、生长速度:10μm/h以上的生长条件下,形成III族氮化物半导体层的生长工序(S50)。

Description

III族氮化物半导体基板及III族氮化物半导体基板的制造 方法
技术领域
本发明涉及一种III族氮化物半导体基板及III族氮化物半导体基板的制造方法。
背景技术
相关技术公开于专利文献1和专利文献2。如专利文献1和专利文献2中公开的,在III族氮化物半导体晶体的c面上形成设备(例:光设备、电子设备等)的情况下,压电电场会引起内部量子效率降低。因此,尝试在所谓的半极性面(不同于极性面和非极性面的面)上形成设备。
另外,相关技术公开于专利文献3和专利文献4。如专利文献3和专利文献4中所公开的那样,从块状III族氮化物半导体晶体切出具有半极性面作为主表面的晶体片,尝试制造将该晶体片接合而制作的以半极性面作为主表面的III族氮化物半导体晶体。
另外,相关技术公开于专利文献5。如专利文献5中公开的那样,尝试制造了以从c面朝m轴方向倾斜的作为半极性面的(20-21)面和(20-2-1)面作为主表面的GaN系半导体光元件。
现有技术文献
专利文献
专利文献1:日本特开2012-160755号公报;
专利文献2:日本特开2016-12717号公报;
专利文献3:日本特开2010-13298号公报;
专利文献4:日本特开2013-82628号公报;
专利文献5:日本特开2012-15555号公报。
发明内容
发明要解决的课题
本发明的课题是提供一种用于提高在III族氮化物半导体基板上所形成的设备的内量子效率的技术。
解决课题的技术方案
根据本发明,提供一种III族氮化物半导体基板,其中,
所述III族氮化物半导体基板通过III族氮化物半导体晶体构成,膜厚为400μm以上,有正背关系的露出的第一主表面和第二主表面均为半极性面,使X射线与III族氮化物半导体晶体的c轴的投影轴平行地入射而分别对所述第一主表面和第二主表面进行测量所得的X射线摇摆曲线(XRC,X-ray Rocking Curve)的半值宽度的差为100arcsec以下。
另外,根据本发明,提供一种III族氮化物半导体基板,其中,
其具有:
蓝宝石基板;和
III族氮化物半导体层,所述III族氮化物半导体层形成于所述蓝宝石基板上,并且具有既是半极性又是N极性的露出的主表面。
另外,根据本发明,提供一种III族氮化物半导体基板的制造方法,其中,
具有:
准备蓝宝石基板的基板准备工序;
在所述基板准备工序之后,对所述蓝宝石基板进行热处理的热处理工序;
在所述热处理工序之后,向所述蓝宝石基板上供给含金属气体的预流工序;
在所述预流工序之后,在所述蓝宝石基板上,在生长温度:800℃以上且950℃以下,压力:30torr以上且200torr以下的生长条件下,形成缓冲层的缓冲层形成工序;和
在所述缓冲层形成工序之后,在所述缓冲层上,在生长温度:800℃以上且1025℃以下、压力:30torr以上且200torr以下、生长速度:10μm/h以上的生长条件下,形成III族氮化物半导体层的生长工序。
发明效果
根据本发明,能够提高在III族氮化物半导体基板上所形成的设备的内量子效率。
附图说明
通过如下所述的适宜的实施方式及其附带的如下附图进一步阐明上述目的、其他目的、特征和优点。
图1是表示本实施方式的III族氮化物半导体基板特性的图。
图2是示出与本实施方式的III族氮化物半导体基板的差异的实施例。
图3是表示本实施方式的III族氮化物半导体基板的制造方法的处理流程的一个例子的流程图。
图4是表示本实施方式的III族氮化物半导体基板的一个例子的侧面示意图。
图5是表示本实施方式的III族氮化物半导体基板的一个例子的侧面示意图。
图6是表示本实施方式的III族氮化物半导体基板的特性的图。
图7是表示本实施方式的III族氮化物半导体基板的特性的图。
图8是示出与本实施方式的III族氮化物半导体基板的差异的图。
图9是表示本实施方式的III族氮化物半导体基板的特性的图。
具体实施方式
下面,使用附图对本发明的III族氮化物半导体基板及III族氮化物半导体基板的制造方法的实施方式进行说明。图仅仅是为了充分说明发明构成的概略图,各构件的大小、形状、数量、不同构件的大小比例等不限定于图示。
首先,对本实施方式的内容进行说明。根据包含多个特征性工序的本实施方式的III族氮化物半导体基板的制造方法,能够在蓝宝石基板上,以N极性侧的半极性面作为生长面,使III族氮化物半导体生长。结果,可获得露出面为N极性侧的半极性面的III族氮化物半导体层位于蓝宝石基板上而成的III族氮化物半导体基板(模板基板)。进一步,通过使蓝宝石基板从该层积体剥离,并以N极性侧的半极性面作为生长面使III族氮化物半导体生长,获得III族氮化物半导体层,进而可获得由该III族氮化物半导体层构成的III族氮化物半导体基板(自支撑基板)。
通过在这样的III族氮化物半导体基板(模板基板、自支撑基板)上形成设备,从而实现内量子效率的提高。下面进行详细的说明。
首先,说明III族氮化物半导体基板(模板基板)的制造方法。图3是表示III族氮化物半导体基板(模板基板)制造方法的处理流程的一个例子的流程图。如图所示,III族氮化物半导体基板(模板基板)的制造方法具有基板准备工序S10、热处理工序S20、预流工序S30、缓冲层形成工序S40、和生长工序S50。
在基板准备工序S10中,准备蓝宝石基板。蓝宝石基板的直径,例如为1英寸以上。另外,蓝宝石基板的厚度,例如为250μm以上。
蓝宝石基板的主表面的面方位是控制在其上外延生长的III族氮化物半导体层的生长面的面方位的多个要素中的一个要素。该要素与III族氮化物半导体层的生长面的面方位的关系,如下面的实施例所示。在基板准备工序S10中,准备主表面为所期望的面方位的蓝宝石基板。
蓝宝石基板的主表面,例如为{10-10}面或{10-10}面在规定的方向上倾斜了规定角度的面。
{10-10}面在规定的方向上倾斜了规定角度的面,例如,可以是{10-10}面在任意方向上以大于0°且0.5°以下范围内任意角度倾斜的面。
另外,{10-10}面在规定的方向上倾斜了规定角度的面,可以是{10-10}面在与a面平行的方向上以大于0°且小于10.5°范围内的任意角度倾斜的面。或者,{10-10}面在规定的方向上倾斜了规定角度的面,也可以是{10-10}面在与a面平行的方向上以大于0°且10.5°以下范围内的任意角度倾斜的面。例如,{10-10}面在规定的方向上倾斜了规定角度的面,可以是{10-10}面在与a面平行的方向上以0.5°以上且1.5°以下、1.5°以上且2.5°以下、4.5°以上且5.5°以下、6.5°以上且7.5°以下、9.5°以上且10.5°以下范围内的任意角度倾斜的面。
在基板准备工序S10之后,进行热处理工序S20。在热处理工序S10中,在以下条件下对蓝宝石基板进行热处理。
温度:800℃以上且1200℃以下
压力:30torr以上且760torr以下
热处理时间:5分钟以上且20分钟以下
载气:H2,或者,H2和N2(H2比率0~100%)
载气供给量:3slm以上且50slm以下(但是,由于供给量根据生长装置的尺寸而变动,因此不限定于此)
需要说明的是,对蓝宝石基板的热处理,有一边进行氮化处理一边进行热处理的情况和不进行氮化处理而进行热处理的情况。在一边进行氮化处理一边进行热处理的情况下,热处理时向蓝宝石基板上供给0.5slm以上且20slm以下的NH3(但是,由于供给量根据生长装置的尺寸而变动,因此不限定于此)。另外,不进行氮化处理而进行热处理的情况下,热处理时不供给NH3
有时热处理时有无氮化处理是控制在蓝宝石基板的主表面上外延生长的III族氮化物半导体层的生长面的面方位的多个要素中的一个要素。该要素与III族氮化物半导体层的生长面的面方位的关系,如下实施例所示。
在热处理工序S20之后,进行预流工序S30。在预流工序S30中,在以下的条件下向蓝宝石基板的主表面上供给含金属气体。预流工序S30也可以在例如金属有机化学气相沉积(MOCVD,Metal Organic Chemical Vapor Deposition)装置内进行。
温度:500℃以上且1000℃以下
压力:30torr以上且200torr以下
三甲基铝供给量、供给时间:20ccm以上且500ccm以下、1秒钟以上且60秒钟以下
载气:H2,或者,H2和N2(H2比率0~100%)
载气供给量:3slm以上且50slm以下(但是,由于气体的供给量根据生长装置的尺寸和构成而变动,因此不限定于此)
上述条件有时是供给作为有机金属原料的三甲基铝、三乙基铝作为含金属气体。该工序中,也可以供给含其他金属的含金属气体来替代三甲基铝、三乙基铝,从而在蓝宝石基板的主表面上形成钛膜、钒膜、铜膜等其他的金属膜来代替铝膜。另外,也可以在蓝宝石基板的主表面上,形成由有机金属原料生成的作为与甲烷、乙烯、乙烷等碳氢化合物的反应膜的碳化铝、碳化钛、碳化钒、碳化铜等其他的碳化金属膜。
通过预流工序S30,在蓝宝石基板的主表面上形成金属膜和碳化金属膜。该金属膜的存在是使在其上生长的晶体的极性反转的条件。即,预流工序S30的实施是为了使在蓝宝石基板的主表面上外延生长的III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素中的一个要素。
在预流工序S30之后,进行缓冲层形成工序S40。在缓冲层形成工序S40中,在蓝宝石基板的主表面上形成缓冲层。缓冲层的厚度,例如为20nm以上且300nm以下。
例如,缓冲层为AlN层。例如,也可以在以下条件下使AlN晶体外延生长,从而形成缓冲层。
生长方法:MOCVD法
生长温度:800℃以上且950℃以下
压力:30torr以上且200torr以下
三甲基铝供给量:20ccm以上且500ccm以下
NH3供给量:0.5slm以上且10slm以下
载气:H2,或者H2和N2(H2比率0~100%)
载气供给量:3slm以上且50slm以下(但是,由于气体的供给量根据生长装置的尺寸和构成而变动,因此不限定于此)
缓冲层形成工序S40的生长条件是控制在蓝宝石基板的主表面上外延生长的III族氮化物半导体层的生长面的面方位的多个要素中一个要素。该要素和III族氮化物半导体层的生长面的面方位的关系,如下实施例所示。
另外,缓冲层形成工序S40中的生长条件(相对低的规定生长温度,具体而言为800~950℃,和相对低的压力),是为了一边保持N极性一边使AlN生长的条件。即,缓冲层形成工序S40中的生长条件,是为了使在蓝宝石基板的主表面上外延生长的III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素中的一个要素。
在缓冲层形成工序S40之后,进行生长工序S50。在生长工序S50中,在缓冲层上,在以下的生长条件下使III族氮化物半导体晶体(例:GaN晶体)外延生长,从而形成生长面处于规定的面方位(N极性侧的半极性面)的III族氮化物半导体层。III族氮化物半导体层30的厚度,例如为1μm以上且20μm以下。
生长方法:MOCVD法
生长温度:800℃以上且1025℃以下
压力:30torr以上且200torr以下
TMGa供给量:25sccm以上且1000sccm以下
NH3供给量:1slm以上且20slm以下
载气:H2,或者,H2和N2(H2比率0~100%)
载气供给量:3slm以上且50slm以下(但是,由于气体的供给量根据生长装置的尺寸和构成而变动,因此不限定于此)
生长速度:10μm/h以上
生长工序S50中的生长条件(相对低的生长温度、相对低的压力、相对快的生长速度)是为了一边保持N极性一边使GaN生长的条件。即,生长工序S50中的生长条件,是为了使在蓝宝石基板的主表面上外延生长的III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素中的一个。
通过在以上的条件下制造,能够制造如图4所示的III族氮化物半导体基板20,其按照蓝宝石基板21、缓冲层22、和III族氮化物半导体层23的顺序层积,且III族氮化物半导体层23的生长面24的面方位是N极性侧的半极性面。另外,通过将制造条件调整到上述条件范围,能够使生长面24的面方位成为所期望的半极性面。
下面,说明III族氮化物半导体基板(自支撑基板)的制造方法。
例如,以如图3所示的流程来制造如图4所示的层积体(模板基板)之后,从该层积体除去蓝宝石基板21和缓冲层22(剥离工序),能够制造由如图5所示的由III族氮化物半导体层23构成的III族氮化物半导体基板10(自支撑基板)。对除去蓝宝石基板21和缓冲层22的手段没有特别的限制。例如,也可以利用蓝宝石基板21与III族氮化物半导体层23之间的线膨胀系数差带来的应力,将它们分离。另外,也可以以研磨或蚀刻等方式除去缓冲层22。
作为其他的除去例,也可以在蓝宝石基板21与缓冲层22之间形成剥离层。例如,也可以在蓝宝石基板21上形成碳化物(碳化铝、碳化钛、碳化锆、碳化铪、碳化钒、碳化钽)分散而成的碳层、以及碳化物(碳化铝、碳化钛、碳化锆、碳化铪、碳化钒、碳化钽)层的层积体之后,进行氮化处理,从而形成进行了该氮化处理的层作为剥离层。
如果在这样的剥离层上形成缓冲层22和III族氮化物半导体层23之后,在比形成III族氮化物半导体层23时的加热温度还高的温度下,对将该层积体加热,那么就能够以剥离层部分作为分界,使蓝宝石基板21侧的部分和III族氮化物半导体层23侧的部分分离。再通过从III族氮化物半导体层23侧的部分将缓冲层22等以研磨和蚀刻等方式除去,就能够获得如图5所示的由III族氮化物半导体层23构成的III族氮化物半导体基板10(自支撑基板)。
下面,说明由上述制造方法获得的III族氮化物半导体基板20(模板基板)和III族氮化物半导体基板10(自支撑基板)的构成和特征。
如图4所示,III族氮化物半导体基板20(模板基板)具有蓝宝石基板21、在蓝宝石基板21上形成的缓冲层22、和在缓冲层22上形成的III族氮化物半导体层23。III族氮化物半导体层23的主表面(生长面24)的面方位既是半极性又是N极性。
III族氮化物半导体层23的膜厚为1μm以上。进一步,III族氮化物半导体层23的主表面(生长面24)的XRC(X-ray Rocking Curve)的半值宽度,在c轴投影轴方向上为500arcsec以下。
如下实施例所示,在半极性且Ga极性的生长面上使III族氮化物半导体外延生长的情况下,III族氮化物半导体层的厚度越厚晶体性就越差。结果,III族氮化物半导体层的厚度越厚XRC的半值宽度就越大。因此,在生长面为半极性且Ga极性的情况下,难以制造晶体性良好且厚膜的III族氮化物半导体层。
另一方面,如下实施例所示,在半极性且N极性的生长面上使III族氮化物半导体外延生长的情况下,即使III族氮化物半导体层的厚度变厚晶体性也几乎不变化。在半极性且N极性的生长面上使III族氮化物半导体外延生长的本实施方式的情况下,能够制造晶体性如上述(XRC半值宽度,使X射线与III族氮化物半导体晶体的c轴的投影轴平行地入射而测量所得的X射线摇摆曲线(XRC)的半值宽度,为500arcsec以下)一样良好且如上述一样厚膜(1μm以上)的III族氮化物半导体层23。
如图5所示,III族氮化物半导体基板10(自支撑基板)是通过由III族氮化物半导体晶体构成的III族氮化物半导体层23而构成的。III族氮化物半导体基板10(自支撑基板)的膜厚为100μm以上。另外,有正背关系的露出的第一主表面11和第二主表面12均为半极性面,分别针对第一主表面11和第二主表面12,使X射线与III族氮化物半导体晶体的c轴的投影轴平行地入射而测量所得的X射线摇摆曲线的(XRC)半值宽度的差为100arcsec以下。第一主表面11和第二主表面12的XRC的半值宽度,在c轴投影轴方向上均为500arcsec以下。
例如,如果在蓝宝石基板上使生长面的面方位为半极性且Ga极性的III族氮化物半导体外延生长后,从III族氮化物半导体层除去蓝宝石基板,那么外观会与图5所示的本实施方式的III族氮化物半导体基板10(自支撑基板)相同。但是,这样的基板与本实施方式的III族氮化物半导体基板10(自支撑基板),在使III族氮化物半导体外延生长时的生长面是“半极性且Ga极性”还是“半极性且N极性”方面,存在差异。
该差异能够通过观察膜厚与有正背关系的主表面的XRC的半值宽度的差之间的关系来确认。
如上所述,在半极性且Ga极性的生长面上使III族氮化物半导体外延生长的情况下,III族氮化物半导体层的厚度越厚晶体性越差,XRC的半值宽度则变大。即,膜厚越大,有正背关系的主表面的XRC的半值宽度的差越大。
另一方面,在半极性且N极性的生长面上使III族氮化物半导体外延生长的情况下,即使III族氮化物半导体层的厚度变厚晶体性也几乎不变化。即,即使膜厚变大,有正背关系的主表面的XRC的半值宽度的差也在规定水平以下。
根据以上,能够通过确认膜厚在规定范围时有正背关系的主表面的XRC的半值宽度的差,确认该III族氮化物半导体基板是在“半极性且Ga极性”的生长面上外延生长而成的,还是在“半极性且N极性”的生长面上外延生长而成的。
具体而言,在满足“膜厚为300μm以上的情况下,有正背关系的主表面的XRC的半值宽度的差为100arcsec以下”的情况下,可以说是在“半极性且N极性”的生长面上外延生长而成的III族氮化物半导体基板。另外,在满足“膜厚为300μm以上的情况下,有正背关系的主表面的XRC的半值宽度的差比100arcsec大”的情况下,可以说是在“半极性且Ga极性”的生长面上外延生长而成的III族氮化物半导体基板。
下面,说明本实施方式的作用效果。
根据本实施方式的III族氮化物半导体基板的制造方法,能够在蓝宝石基板上以N极性侧的半极性面作为生长面使III族氮化物半导体生长。结果,如图4所示,可获得露出面(生长面24)为N极性侧的半极性面的III族氮化物半导体层23位于蓝宝石基板21上的III族氮化物半导体基板20(模板基板)。另外,如图5所示,可获得由以N极性侧的半极性面作为生长面使III族氮化物半导体生长而获得的III族氮化物半导体层23构成的III族氮化物半导体基板10(自支撑基板)。
通过在这样的III族氮化物半导体基板(模板基板、自支撑基板)上形成设备,来实现内量子效率的提高。
另外,若使用本实施方式的III族氮化物半导体基板(模板基板、自支撑基板),能够在面方位为N极性侧的半极性面的主表面上形成设备。在该情况下,不仅可实现由半极性面的效果带来的压电极化的减少,还可实现自发极化的减少。因此,能够抑制由内部电场引起的斯塔克效应。
另外,本发明人们确认了,以N极性侧的半极性面作为生长面使III族氮化物半导体生长的情况,与以Ga极性侧的半极性面作为生长面使III族氮化物半导体生长的情况相比,更易使表面状态平坦。在以Ga极性侧的半极性面作为生长面使III族氮化物半导体生长的情况下,易产生坑和来自m面成分的小平面(ファセット)。在此方面,本实施方式的III族氮化物半导体基板(模板基板、自支撑基板)也优异。
另外,本发明人们确认了,以N极性侧的半极性面作为生长面使III族氮化物半导体生长的情况,与以Ga极性侧的半极性面作为生长面使III族氮化物半导体生长的情况相比,引入的杂质更少。具体而言,对在相同装置和相同生长条件下生长的两种极性面(N极性侧的半极性面和Ga极性侧的半极性面)的HaLL进行测量后,确认了以N极性侧的半极性面作为生长面使III族氮化物半导体生长的情况,与以Ga极性侧的半极性面作为生长面使III族氮化物半导体生长的情况相比,载流子浓度小一位数。据推测,这是由于能够减少O的引入。在此方面,本实施方式的III族氮化物半导体基板(模板基板、自支撑基板)也优异。
另外,根据本实施方式,可提供一种III族氮化物半导体基板,其形成于蓝宝石基板上,并且具备:具有半极性且N极性的露出的主表面的III族氮化物半导体层,和作为基底基板的蓝宝石基板。另外,可提供一种基于在上述III族氮化物半导体基板上进行晶体生长而有正背关系的露出的第一主表面和第二主表面均为半极性面的III族氮化物半导体自支撑基板。
由本实施方式提供的III族氮化物半导体自支撑基板的有正背关系的露出的第一主表面和第二主表面,例如,一个面是从c面向a面方向倾斜了38.0°以上且53.0°以下,并且向m面方向倾斜了-16.0°以上且16.0°以下的半极性面,而另一个面是从-c面向-a面方向倾斜了38.0°以上且53.0°以下,并且向m面方向倾斜了-16.0°以上且16.0°以下的半极性面。另外,具有蓝宝石基板作为基底基板的III族氮化物半导体基板的主表面,例如,是从-c面向a面方向倾斜了38.0°以上且53.0°以下,并且向m面方向倾斜了-16.0°以上且16.0°以下的半极性面。
尤其是在主表面上形成发光设备(LED、LD)的情况下,从c面向a面方向倾斜了39.1°的面((11-24)面),如Jpn.J.Appl.Phys.Vol.39(2000)pp.413-416中报告的图1所示,由于压电电场为0,基于非极性面的m面以及与a面同等的斯塔克效应带来的抑制内量子效率降低的效果,能够减少耗电,提高发光效率。另外,从-c面向-a面方向倾斜了39.1°的半极性且N极性的主表面((-1-12-4)面),不仅可实现由半极性面的效果带来的压电极化的减少,还可实现从氮原子朝向镓原子产生的自发极化的减少。因此,由于能够进一步抑制由发光设备(LED、LD)的活性层产生的内部电场引起的斯塔克效应,因此能够进一步使发光设备(LED、LD)的性能提高。
专利文献1和专利文献2中提供的III族氮化物半导体层都具有半极性且Ga极性的主表面,其与由本实施方式提供的具备具有半极性且N极性的主表面的III族氮化物半导体层以及蓝宝石基板的III族氮化物半导体基板相比较,设备的内量子效率低。
如果使用由本实施方式提供的具有蓝宝石基板作为基底基板的III族氮化物半导体基板,只要将蓝宝石基板用包含周知技术、惯用技术在内的任意方法除去,不需要与所使用的蓝宝石基板的大小同等的大口径,并且不需要使基板面内的晶体性、表面平坦性、杂质浓度、面方位的轴振动均匀且精密的制造技术,就能够制造III族氮化物半导体自支撑基板。在此所说的周知技术、惯用技术,例如为化学蚀刻、机械研磨、利用热应力的晶体剥离等。
专利文献3和专利文献4的方法中提供的III族氮化物半导体自支撑基板是将从以c面作为主表面的III族氮化物半导体自支撑基板在任意的面方位切出的晶体片接合而制作成的以半极性面作为主表面的III族氮化物半导体自支撑基板。由于为了将其实现,需要从块状晶体大量地切出晶体片的工序,和将晶体片在高度地相同的晶体轴方向上使其高精度地一致的基础上进行接合的工序,因此需要用于实现高成品率的精密的技术。另外,为了接合晶体片使基板口径变大,在接合部会产生原子位置偏移,在该部分将产生高密度的位错。因此,导致发生基板的晶体性降低和位错密度的面内分布不均匀。另外,接合面为c面、m面、以及从m面向c面方向倾斜的面的情况下,由于出现{11-22}面和{10-11}面等面,产生如图2所示的大凹坑和晶体生长异常,因此产生表面平坦性的显著劣化和接合强度的不足,在基板的处理上产生困难。
另外,为了解决由如图2所示的大凹坑和晶体生长异常引起的表面平坦性的显著劣化和接合强度不足导致的基板处理的困难,可容易想到使用专利文献3和专利文献4的方法,并使接合面仅为a面和从a面的倾斜面,但是在这种情况下,并不能够解决由接合面的原子位置偏移引起的位错的发生,和伴随与此的位错密度的面内分布的不均匀。另外,不能够通过在a面或使a面倾斜的面上进行晶体接合,来制造由本实施方式提供的以a面的倾斜面作为主表面的III族氮化物半导体自支撑基板。
由于本实施方式提供的III族氮化物半导体自支撑基板的第一主表面和第二主表面例如均为a面的倾斜面,因此侧面具有解理面(m面)。通过提供具有解理面的基板,能够易于获得半导体激光(LD)中光学共振所必不可少的、原子规则且整齐地排列、平坦性优异的反射镜面。
将由专利文献5提供的(20-21)面和(20-2-1)面作为主表面的GaN系半导体激光元件,由于主表面为m面的倾斜面,因此侧面不具有解理面。因此,不能够获得可得到光学共振的平坦性高的反射镜面。因此,在制造产品时需要用于使侧面平坦化的高超且精密的技术,导致制造工序繁杂化。另外,由于使用平坦性差的反射镜面,因此与利用解理面来制作镜子结构的GaN系半导体光激光元件相比,性能差。
实施例
<第一评价>
第一评价中,确认了,通过满足所有的上述“用于使III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素”,能够使III族氮化物半导体层的生长面的面方位为N极性侧的面。另外,确认了,在不满足上述“用于使III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素”中的至少一个要素的情况下,III族氮化物半导体层的生长面的面方位为Ga极性侧的面。
首先,准备蓝宝石基板,其主表面的面方位为从m面((10-10)面)向与a面平行的方向倾斜了2°的面。蓝宝石基板的厚度为430μm,直径为2英寸。
另外,对准备的蓝宝石基板,在以下的条件下实施热处理工序S20。
温度:1000~1050℃
压力:100torr
载气:H2、N2
热处理时间:10分钟或15分钟
载气供给量:15slm
需要说明的是,在热处理工序S20时,供给20slm的NH3,进行氮化处理。
之后,在以下的条件下进行预流工序S30。
温度:800~930℃
压力:100torr
三甲基铝供给量、供给时间:90sccm、10秒钟
载气:H2、N2
载气供给量:15slm
之后,在以下的条件下进行缓冲层形成工序S40,形成AlN层。
生长方法:MOCVD法
生长温度:800~930℃
压力:100torr
三甲基铝供给量:90sccm
NH3供给量:5slm
载气:H2、N2
载气供给量:15slm
之后,在以下的条件下进行生长工序S50,形成III族氮化物半导体层。
生长方法:MOCVD法
压力:100torr
TMGa供给量:50~500sccm(连续变化)
NH3供给量:5~10slm(连续变化)
载气:H2、N2
载气供给量:15slm
生长速度:10μm/h以上
需要说明的是,第一样品的生长温度控制为900℃±25℃,第二样品的生长温度控制为1050℃±25℃。即,第一样品是满足所有的上述“用于使III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素”的样品。第二样品是不满足一部分的上述“用于使III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素”(生长工序S50中的生长温度)的样品。
第一样品的III族氮化物半导体层的生长面的面方位为从(-1-12-4)面向-a面方向倾斜了5.0°,且向与m面平行的方向倾斜了8.5°以下的面。另一方面,第二样品的III族氮化物半导体层的生长面的面方位是从(11-24)面向a面方向倾斜5.0°,且向与m面平行的方向倾斜了8.5°以下的面。即,根据是否满足上述“用于使III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素”,可知生长面的面方位能调整为Ga极性还是调整为N极性。
图6表示第一样品中(-1-12-4)面或(11-24)面的XRD极点测量结果。能够确认衍射峰在从极点的中心点偏移数度的位置。详细测量角度的偏移,能够确认是在-a面方向5.0°且与m面并行的方向呈8.5°、或者在a面方向5.0°且与m面并行的方向呈8.5°的位置。
图7表示基于第一样品的对图4所示的露出面(生长面24)为N极性进行确认后的结果。另外,作为比较,图8表示从+c面的厚膜生长GaN自支撑基板以使其成为与第一样品同等的面方位的方式进行切片制作的III族氮化物半导体自支撑基板的结果。对第一样品和从+c面GaN自支撑基板切片来制作的半极性自支撑基板都在两面(基板的正面和背面)实施1.5μm金刚石抛光,并将磷酸硫酸混合液保持在150℃进行30分钟的蚀刻。
由图7和图8,能够确认第一样品的露出面(生长面24)和从+c面GaN自支撑基板切片来制作的半极性自支撑基板的背面(N极性面)的蚀刻表面状态相同。另外,由于能够确认第一样品的剥离面和从+c面GaN自支撑基板切片来制作的半极性自支撑基板的正面(Ga极性面)的蚀刻表面状态相同,因此能够确认图4所示的露出面(生长面24)为N极性。
此外,本发明等确认了,在不满足上述“用于使III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素”中的其他部分要素的情况下,或者,在全部不满足的情况下,生长面的面方位也为Ga极性。
<第二评价>
第二评价中,确认了通过调整上述“用于调整III族氮化物半导体层的生长面的面方位的多个要素”,能够调整III族氮化物半导体层的生长面的面方位。
首先,准备多个主表面的面方位是各种各样的蓝宝石基板。蓝宝石基板的厚度为430μm,直径为2英寸。
另外,对准备的各个蓝宝石基板,在以下的条件下进行热处理工序S20。
温度:1000~1050℃
压力:200torr
热处理时间:10分钟
载气:H2、N2
载气供给量:15slm
需要说明的是,制成了在热处理时有无氮化处理的方面存在不同的样品。具体而言,制成了两种样品:热处理时供给20slm的NH3进行氮化处理的样品、和热处理时不供给NH3不进行氮化处理的样品。
之后,在以下的条件下进行预流工序S30。
温度:880~930℃
压力:100torr
三甲基铝供给量、供给时间:90sccm、10秒钟
载气:H2、N2
载气供给量:15slm
需要说明的是,制成了两种样品:进行预流工序S30的样品、和不进行预流工序S30的样品。
之后,在以下的条件下,在蓝宝石基板的主表面(露出面)上,形成了约150nm厚度的缓冲层(AlN缓冲层)。
生长方法:MOCVD法
压力:100torr
V/III比:5184
TMAl供给量:90ccm
NH3供给量:5slm
载气:H2、N2
载气供给量:15slm
需要说明的是,使每个样品的生长温度在700℃以上且1110℃以下的范围内变化。
之后,在以下的条件下,在缓冲层上形成了约15μm厚度的III族氮化物半导体层(GaN层)。
生长方法:MOCVD法
生长温度:900~1100℃
压力:100torr
V/III比:321
TMGa供给量:50~500ccm(斜坡上升)
NH3供给量:5~10slm(斜坡上升)
载气:H2、N2
载气供给量:15slm
如上所述地制造了按照蓝宝石基板、缓冲层和III族氮化物半导体层的顺序层积而成的III族氮化物半导体基板1。
表1~7表示“用于调整III族氮化物半导体层的生长面的面方位的多个要素”与III族氮化物半导体层的生长面的面方位之间的关系。
表中的“蓝宝石主表面”栏,表示蓝宝石基板主表面的面方位。“升温时的氮化处理”栏,表示热处理工序S20的过程中升温时有无氮化处理(“有”或“无”)。“有无三甲基铝预流工序”栏,表示有无三甲基铝预流工序(“有”或“无”)。“AlN缓冲生长温度”栏,表示缓冲层形成工序中的生长温度。“GaN生长温度”栏,表示GaN层形成工序中的生长温度。“III族氮化物半导体层的生长面”栏,表示III族氮化物半导体层的生长面的面方位。
根据该结果可知,通过调整上述“用于调整III族氮化物半导体层的生长面的面方位的多个要素”,能够在半极性且Ga极性之中调整III族氮化物半导体层的生长面的面方位。另外,基于第一评价的结果和第二评价的结果,可知在全部满足“用于使III族氮化物半导体层的生长面的面方位成为N极性侧的面的多个要素”的基础上,通过调整“用于调整III族氮化物半导体层的生长面的面方位的多个要素”,能够在半极性且N极性之中调整III族氮化物半导体层的生长面的面方位。
<第三评价>
对通过本手法制作的样品的晶体性进行评价。准备了三种试样。样品A是通过本说明书记载的手法制成的,以{11-23}面作为生长面。样品B、C为比较用样品,样品B以{10-10}面作为生长面。另外,样品C以{11-22}面作为生长面。
图9表示在多个GaN膜厚时,使X射线与III族氮化物半导体晶体c轴的投影轴平行地入射而对各样品进行测量的情况下的XRC的半值宽度。但是,由于主表面为{11-23}面的样品C不能够通过消光规则来获得{11-23}面的X射线衍射,因此测量了{11-22}面的XRC的半值宽度。
由图9可知,对于样品A,即使GaN层的膜厚变大,XRC的半值宽度也几乎不变化。相对于此,对于样品B和C,看到了随着GaN层膜厚变大,XRC的半值宽度变大的倾向。
下面,附上参考方式的例子。
1.一种III族氮化物半导体基板,其中,
所述III族氮化物半导体基板通过III族氮化物半导体晶体构成,膜厚为400μm以上,有正背关系的露出的第一主表面和第二主表面均为半极性面,使X射线与III族氮化物半导体晶体的c轴的投影轴平行地入射而分别对所述第一主表面和第二主表面进行测量所得的XRC(X-ray Rocking Curve)的半值宽度的差为100arcsec以下。
2.如1所述的III族氮化物半导体基板,其中,
所述第一主表面和第二主表面的所述半值宽度是使X射线与III族氮化物半导体晶体的c轴的投影轴平行地入射而测量所得的X射线摇摆曲线(XRC)的半值宽度,均为500arcsec以下。
3.一种III族氮化物半导体基板,其中,
具有:
蓝宝石基板;和
III族氮化物半导体层,所述III族氮化物半导体层形成于所述蓝宝石基板上,并且具有既是半极性又是N极性的露出的主表面。
4.如3所述的III族氮化物半导体基板,其中,
所述III族氮化物半导体层的膜厚为1μm以上。
5.如3或4所述的III族氮化物半导体基板,其中,
所述III族氮化物半导体层的所述主表面的XRC的半值宽度,在c投影轴方向为500arcsec以下。
6.一种III族氮化物半导体基板的制造方法,其中,
具有:
准备蓝宝石基板的基板准备工序;
在所述基板准备工序之后,对所述蓝宝石基板进行热处理的热处理工序;
在所述热处理工序之后,向所述蓝宝石基板上供给含金属气体的预流工序;
在所述预流工序之后,在所述蓝宝石基板上,在生长温度:800℃以上且950℃以下、压力:30torr以上且200torr以下的生长条件下、形成缓冲层的缓冲层形成工序;和
在所述缓冲层形成工序之后,在所述缓冲层上,在生长温度:800℃以上且1025℃以下、压力:30torr以上且200torr以下、生长速度:10μm/h以上的生长条件下,形成III族氮化物半导体层的生长工序。
7.如6所述的III族氮化物半导体基板的制造方法,其中,
在所述生长工序之后,还具有从包含所述III族氮化物半导体层和所述蓝宝石基板的层积体剥离所述蓝宝石基板的剥离工序。
本申请以2016年12月20日申请的日本申请特愿2016-246908号为基础主张优先权,其公开的内容全部包含于此。

Claims (7)

1.一种III族氮化物半导体基板,其中,
所述III族氮化物半导体基板通过III族氮化物半导体晶体构成,膜厚为400μm以上,有正背关系的露出的第一主表面和第二主表面均为半极性面,使X射线与III族氮化物半导体晶体的c轴的投影轴平行地入射而分别对所述第一主表面和第二主表面进行测量所得的X射线摇摆曲线的半值宽度的差为100arcsec以下。
2.如权利要求1所述的III族氮化物半导体基板中,其中,
所述第一主表面和第二主表面的所述半值宽度是使X射线与III族氮化物半导体晶体的c轴的投影轴平行地入射而测量所得的X射线摇摆曲线的半值宽度,均为500arcsec以下。
3.一种III族氮化物半导体基板,其中,
具有:
蓝宝石基板;和
III族氮化物半导体层,其形成于所述蓝宝石基板上,并且具有既是半极性又是N极性的露出的主表面。
4.如权利要求3所述的III族氮化物半导体基板,其中,
所述III族氮化物半导体层的膜厚为1μm以上。
5.如权利要求3或4所述的III族氮化物半导体基板,其中,
所述III族氮化物半导体层的所述主表面的X射线摇摆曲线的半值宽度,在c投影轴方向为500arcsec以下。
6.一种III族氮化物半导体基板的制造方法,其中,
具有:
准备蓝宝石基板的基板准备工序;
在所述基板准备工序之后,对所述蓝宝石基板进行热处理的热处理工序;
在所述热处理工序之后,向所述蓝宝石基板上供给含金属气体的预流工序;
在所述预流工序之后,在所述蓝宝石基板上,在生长温度:800℃以上且950℃以下、压力:30torr以上且200torr以下的生长条件下,形成缓冲层的缓冲层形成工序;和
在所述缓冲层形成工序之后,在所述缓冲层上,在生长温度:800℃以上且1025℃以下、压力:30torr以上且200torr以下、生长速度:10μm/h以上的生长条件下,形成III族氮化物半导体层的生长工序。
7.如权利要求6所述的III族氮化物半导体基板的制造方法,其中,
在所述生长工序之后,还具有从包含所述III族氮化物半导体层和所述蓝宝石基板的层积体,剥离所述蓝宝石基板的剥离工序。
CN201780078734.3A 2016-12-20 2017-12-18 Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法 Active CN110100304B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-246908 2016-12-20
JP2016246908A JP6266742B1 (ja) 2016-12-20 2016-12-20 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
PCT/JP2017/045391 WO2018117050A1 (ja) 2016-12-20 2017-12-18 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Publications (2)

Publication Number Publication Date
CN110100304A true CN110100304A (zh) 2019-08-06
CN110100304B CN110100304B (zh) 2023-10-20

Family

ID=61020745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780078734.3A Active CN110100304B (zh) 2016-12-20 2017-12-18 Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法

Country Status (7)

Country Link
US (1) US20210180211A1 (zh)
EP (1) EP3561855A4 (zh)
JP (1) JP6266742B1 (zh)
KR (1) KR102415252B1 (zh)
CN (1) CN110100304B (zh)
TW (1) TWI738946B (zh)
WO (1) WO2018117050A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742205A (zh) * 2019-01-07 2019-05-10 江西乾照光电有限公司 一种具有极性反转层的led外延结构及制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6831276B2 (ja) 2017-03-17 2021-02-17 古河機械金属株式会社 Iii族窒化物半導体基板
JP2021002574A (ja) * 2019-06-21 2021-01-07 古河機械金属株式会社 構造体、光デバイス、光デバイスの製造方法、および構造体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525532A (zh) * 1999-06-30 2004-09-01 ������������ʽ���� 第三族氮化物半导体器件和其生产方法
JP2010168273A (ja) * 2008-12-26 2010-08-05 Toyoda Gosei Co Ltd Iii族窒化物半導体の製造方法、およびテンプレート基板
WO2014136602A1 (ja) * 2013-03-08 2014-09-12 国立大学法人山口大学 窒化ガリウム結晶自立基板の製造方法
JP2016121064A (ja) * 2011-09-30 2016-07-07 三菱化学株式会社 GaN単結晶およびウエハ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7186302B2 (en) * 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
WO2008048303A2 (en) * 2005-12-12 2008-04-24 Kyma Technologies, Inc. Group iii nitride articles and methods for making same
JP4301251B2 (ja) * 2006-02-15 2009-07-22 住友電気工業株式会社 GaN結晶基板
US9670594B2 (en) * 2006-04-07 2017-06-06 Sixpoint Materials, Inc. Group III nitride crystals, their fabrication method, and method of fabricating bulk group III nitride crystals in supercritical ammonia
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
JP5099763B2 (ja) * 2007-12-18 2012-12-19 国立大学法人東北大学 基板製造方法およびiii族窒化物半導体結晶
EP2273536B1 (en) * 2008-03-13 2013-10-30 Toyoda Gosei Co., Ltd. Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp
JP5012700B2 (ja) 2008-07-01 2012-08-29 住友電気工業株式会社 Iii族窒化物結晶接合基板およびその製造方法ならびにiii族窒化物結晶の製造方法
US20100025727A1 (en) * 2008-08-04 2010-02-04 Benjamin Allen Haskell Enhanced spontaneous separation method for production of free-standing nitride thin films, substrates, and heterostructures
JP2010263184A (ja) 2008-08-04 2010-11-18 Sumitomo Electric Ind Ltd GaN系半導体光素子、GaN系半導体光素子を作製する方法、エピタキシャルウエハ及びGaN系半導体膜を成長する方法
JP2010232609A (ja) * 2009-03-30 2010-10-14 Hitachi Cable Ltd Iii族窒化物半導体複合基板、iii族窒化物半導体基板、及びiii族窒化物半導体複合基板の製造方法
JP2011042542A (ja) * 2009-08-24 2011-03-03 Furukawa Co Ltd Iii族窒化物基板の製造方法およびiii族窒化物基板
US20130126900A1 (en) 2010-08-09 2013-05-23 Panasonic Corporation Semiconductor light-emitting device
JP5665463B2 (ja) * 2010-09-30 2015-02-04 Dowaエレクトロニクス株式会社 Iii族窒化物半導体素子製造用基板およびiii族窒化物半導体自立基板またはiii族窒化物半導体素子の製造方法
KR101105868B1 (ko) * 2010-11-08 2012-01-16 한국광기술원 화학적 리프트 오프 방법을 이용한 ⅰⅰⅰ족 질화물 기판의 제조방법
JP2014009156A (ja) * 2012-06-29 2014-01-20 Samsung Corning Precision Materials Co Ltd 窒化ガリウム基板の製造方法および該方法により製造された窒化ガリウム基板
JP2013082628A (ja) 2013-02-12 2013-05-09 Sumitomo Electric Ind Ltd Iii族窒化物結晶、iii族窒化物結晶基板および半導体デバイスの製造方法
TWI679320B (zh) * 2013-08-08 2019-12-11 日商三菱化學股份有限公司 自立GaN基板、GaN結晶、GaN單結晶之製造方法及半導體裝置之製造方法
JP6573154B2 (ja) 2014-06-05 2019-09-11 パナソニックIpマネジメント株式会社 窒化物半導体構造、窒化物半導体構造を備えた電子デバイス、窒化物半導体構造を備えた発光デバイス、および窒化物半導体構造を製造する方法
JP6704386B2 (ja) * 2015-02-27 2020-06-03 住友化学株式会社 窒化物半導体テンプレート及びその製造方法、並びにエピタキシャルウエハ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525532A (zh) * 1999-06-30 2004-09-01 ������������ʽ���� 第三族氮化物半导体器件和其生产方法
JP2010168273A (ja) * 2008-12-26 2010-08-05 Toyoda Gosei Co Ltd Iii族窒化物半導体の製造方法、およびテンプレート基板
JP2016121064A (ja) * 2011-09-30 2016-07-07 三菱化学株式会社 GaN単結晶およびウエハ
WO2014136602A1 (ja) * 2013-03-08 2014-09-12 国立大学法人山口大学 窒化ガリウム結晶自立基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R KUCHARSKI等: "《Non-polar and semi-polar ammonothermal GaN substrates》", 《SEMICONDUCTOR SCIENCE & TECHNOLOGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742205A (zh) * 2019-01-07 2019-05-10 江西乾照光电有限公司 一种具有极性反转层的led外延结构及制作方法
CN109742205B (zh) * 2019-01-07 2020-05-29 江西乾照光电有限公司 一种具有极性反转层的led外延结构及制作方法

Also Published As

Publication number Publication date
TWI738946B (zh) 2021-09-11
TW201839189A (zh) 2018-11-01
WO2018117050A1 (ja) 2018-06-28
EP3561855A1 (en) 2019-10-30
JP6266742B1 (ja) 2018-01-24
US20210180211A1 (en) 2021-06-17
KR102415252B1 (ko) 2022-06-29
JP2018101694A (ja) 2018-06-28
EP3561855A4 (en) 2020-09-30
KR20190097084A (ko) 2019-08-20
CN110100304B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
TWI490918B (zh) 半極性氮化(鋁,銦,鎵,硼)之改良成長方法
US20100075175A1 (en) Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture
EP2322699B1 (en) Process for producing III-N substrates and free-standing III-N layers
KR20070058465A (ko) Ga 함유 질화물 반도체 단결정, 그 제조 방법, 그리고 그결정을 사용한 기판 및 디바이스
CN110100304A (zh) Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法
KR102464462B1 (ko) Ⅲ족 질화물 반도체 기판
WO2020194803A1 (ja) 下地基板及びその製造方法
CN110168701A (zh) Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法
KR20030077435A (ko) Ⅲ족 내지 ⅴ족 화합물 반도체의 제조방법
JP2023532799A (ja) 窒化された界面層を有する半導体基板
JP5929434B2 (ja) AlN系膜の製造方法およびそれに用いられる複合基板
JP6894825B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6934802B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6865669B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
TWI755508B (zh) 三族氮化物半導體基板、及三族氮化物半導體基板之製造方法
JP6982469B2 (ja) Iii族窒化物半導体基板及びiii族窒化物半導体基板の製造方法
JP7084123B2 (ja) Iii族窒化物半導体基板
WO2021064817A1 (ja) 下地基板及びその製造方法
KR20060074754A (ko) 질화갈륨 단결정 후막의 제조 방법
WO2011111647A1 (ja) 窒化物系化合物半導体基板の製造方法、窒化物系化合物半導体基板及び窒化物系化合物半導体自立基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant