JP2018101694A - Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 - Google Patents

Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 Download PDF

Info

Publication number
JP2018101694A
JP2018101694A JP2016246908A JP2016246908A JP2018101694A JP 2018101694 A JP2018101694 A JP 2018101694A JP 2016246908 A JP2016246908 A JP 2016246908A JP 2016246908 A JP2016246908 A JP 2016246908A JP 2018101694 A JP2018101694 A JP 2018101694A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
iii nitride
group iii
substrate
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016246908A
Other languages
English (en)
Other versions
JP6266742B1 (ja
Inventor
行常 住田
Yukitsune Sumida
行常 住田
泰治 藤山
Taiji Fujiyama
泰治 藤山
裕輝 後藤
Hiroki Goto
裕輝 後藤
拓哉 中川
Takuya Nakagawa
拓哉 中川
裕次郎 石原
Yujiro Ishihara
裕次郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016246908A priority Critical patent/JP6266742B1/ja
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to CN201780078734.3A priority patent/CN110100304B/zh
Priority to US16/470,547 priority patent/US20210180211A1/en
Priority to KR1020197018807A priority patent/KR102415252B1/ko
Priority to PCT/JP2017/045391 priority patent/WO2018117050A1/ja
Priority to EP17883435.4A priority patent/EP3561855A4/en
Priority to TW106144759A priority patent/TWI738946B/zh
Application granted granted Critical
Publication of JP6266742B1 publication Critical patent/JP6266742B1/ja
Publication of JP2018101694A publication Critical patent/JP2018101694A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/86Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】III族窒化物半導体基板上に形成されたデバイスの内部量子効率を向上させる。
【解決手段】サファイア基板を準備する基板準備工程S10と、サファイア基板に対して熱処理を行う熱処理工程S20と、サファイア基板上に金属含有ガスを供給する先流し工程S30と、サファイア基板上に、成長温度:800℃以上950℃以下、圧力:30torr以上200torr以下の成長条件で、バッファ層を形成するバッファ層形成工程S40と、バッファ層の上に、成長温度:800℃以上1025℃以下、圧力:30torr以上200torr以下、成長速度:10μm/h以上の成長条件で、III族窒化物半導体層を形成する成長工程S50と、を有するIII族窒化物半導体基板の製造方法を提供する。
【選択図】図3

Description

本発明は、III族窒化物半導体基板、及び、III族窒化物半導体基板の製造方法に関する。
関連する技術が特許文献1と特許文献2に開示されている。特許文献1と特許文献2に開示されているように、III族窒化物半導体結晶のc面上にデバイス(例:光デバイス、電子デバイス等)を形成した場合、ピエゾ電界に起因して内部量子効率が低下する。そこで、いわゆる半極性面(極性面及び無極性面と異なる面)上にデバイスを形成する試みがなされている。
また、関連する技術が特許文献3と特許文献4に開示されている。特許文献3と特許文献4に開示されているように、バルク状III族窒化物半導体結晶から半極性面を主面として有する結晶片を切り出して、その結晶片を接合して作製した、半極性面を主面としたIII族窒化物半導体結晶を製造する試みがなされている。
また、関連する技術が特許文献5に開示されている。特許文献5に開示されているように、c面からm軸方向に傾斜した半極性面である(20−21)面及び(20−2−1)面を主面としたGaN系半導体光素子を製造する試みがなされている。
特開2012−160755号公報 特開2016−12717号公報 特開2010−13298号公報 特開2013−82628号公報 特開2012−15555号公報
本発明は、III族窒化物半導体基板上に形成されたデバイスの内部量子効率を向上させるための技術を提供することを課題とする。
本発明によれば、
III族窒化物半導体結晶で構成され、膜厚が400μm以上であり、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、前記第1及び第2の主面各々に対してエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したXRC(X-ray Rocking Curve)の半値幅の差が、100arcsec以下であるIII族窒化物半導体基板が提供される。
また、本発明によれば、
サファイア基板と、
前記サファイア基板上に形成され、半極性かつN極性の露出した主面を有するIII族窒化物半導体層と、
を有するIII族窒化物半導体基板が提供される。
また、本発明によれば、
サファイア基板を準備する基板準備工程と、
前記基板準備工程の後、前記サファイア基板に対して熱処理を行う熱処理工程と、
前記熱処理工程の後、前記サファイア基板上に金属含有ガスを供給する先流し工程と、
前記先流し工程の後、前記サファイア基板上に、成長温度:800℃以上950℃以下、圧力:30torr以上200torr以下の成長条件で、バッファ層を形成するバッファ層形成工程と、
前記バッファ層形成工程の後、前記バッファ層の上に、成長温度:800℃以上1025℃以下、圧力:30torr以上200torr以下、成長速度:10μm/h以上の成長条件で、III族窒化物半導体層を形成する成長工程と、
を有するIII族窒化物半導体基板の製造方法が提供される。
本発明によれば、III族窒化物半導体基板上に形成されたデバイスの内部量子効率を向上させることができる。
本実施形態のIII族窒化物半導体基板の特性を示す図である。 本実施形態のIII族窒化物半導体基板との相違を示す実施例である。 本実施形態のIII族窒化物半導体基板の製造方法の処理の流れの一例を示すフローチャートである。 本実施形態のIII族窒化物半導体基板の一例を示す側面模式図である。 本実施形態のIII族窒化物半導体基板の一例を示す側面模式図である。 本実施形態のIII族窒化物半導体基板の特性を示す図である。 本実施形態のIII族窒化物半導体基板の特性を示す図である。 本実施形態のIII族窒化物半導体基板との相違を示す図である。 本実施形態のIII族窒化物半導体基板の特性を示す図である。
以下、本発明のIII族窒化物半導体基板、及び、III族窒化物半導体基板の製造方法の実施形態について図面を用いて説明する。なお、図はあくまで発明の構成を説明するための概略図であり、各部材の大きさ、形状、数、異なる部材の大きさの比率などは図示するものに限定されない。
まず、本実施形態の概要について説明する。特徴的な複数の工程を含む本実施形態のIII族窒化物半導体基板の製造方法によれば、サファイア基板上に、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させることができる。結果、露出面がN極性側の半極性面となったIII族窒化物半導体層がサファイア基板上に位置するIII族窒化物半導体基板(テンプレート基板)が得られる。また、当該積層体からサファイア基板を剥離することで、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させることで得られたIII族窒化物半導体層からなるIII族窒化物半導体基板(自立基板)が得られる。
このようなIII族窒化物半導体基板(テンプレート基板、自立基板)上にデバイスを形成することで、内部量子効率の向上が実現される。以下、詳細に説明する。
まず、III族窒化物半導体基板(テンプレート基板)の製造方法を説明する。図3は、III族窒化物半導体基板(テンプレート基板)の製造方法の処理の流れの一例を示すフローチャートである。図示するように、III族窒化物半導体基板(テンプレート基板)の製造方法は、基板準備工程S10と、熱処理工程S20と、先流し工程S30と、バッファ層形成工程S40と、成長工程S50とを有する。
基板準備工程S10では、サファイア基板を準備する。サファイア基板の直径は、例えば、1インチ以上である。また、サファイア基板の厚さは、例えば、250μm以上である。
サファイア基板の主面の面方位は、その上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つである。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。基板準備工程S10では、主面が所望の面方位であるサファイア基板を準備する。
サファイア基板の主面は、例えば{10−10}面、又は、{10−10}面を所定の方向に所定角度傾斜した面である。
{10−10}面を所定の方向に所定角度傾斜した面は、例えば、{10−10}面を任意の方向に0°より大0.5°以下の中の何れかの角度で傾斜した面であってもよい。
また、{10−10}面を所定の方向に所定角度傾斜した面は、{10−10}面をa面と平行になる方向に0°より大10.5°未満の中のいずれかの角度で傾斜した面であってもよい。または、{10−10}面を所定の方向に所定角度傾斜した面は、{10−10}面をa面と平行になる方向に0°より大10.5°以下の中のいずれかの角度で傾斜した面であってもよい。例えば、{10−10}面を所定の方向に所定角度傾斜した面は、{10−10}面をa面と平行になる方向に0.5°以上1.5°以下、1.5°以上2.5°以下、4.5°以上5.5°以下、6.5°以上7.5°以下、9.5°以上10.5°以下の中のいずれかの角度で傾斜した面であってもよい。
熱処理工程S20は、基板準備工程S10の後に行われる。熱処理工程S10では、サファイア基板に対して、以下の条件で熱処理を行う。
温度:800℃以上1200℃以下
圧力:30torr以上760torr以下
熱処理時間:5分以上20分以下
キャリアガス:H、又は、HとN(H比率0〜100%)
キャリアガス供給量:3slm以上50slm以下(ただし、成長装置のサイズにより供給量は変動する為、これに限定されない。)
なお、サファイア基板に対する熱処理は、窒化処理を行いながら行う場合と、窒化処理を行わずに行う場合とがある。窒化処理を行いながら熱処理を行う場合、熱処理時に0.5slm以上20slm以下のNHがサファイア基板上に供給される(ただし成長装置のサイズにより供給量は変動する為、これに限定されない。)。また、窒化処理を行わずに熱処理を行う場合、熱処理時にNHが供給されない。
熱処理時の窒化処理の有無は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つとなる場合がある。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。
先流し工程S30は、熱処理工程S20の後に行われる。先流し工程S30では、サファイア基板の主面上に以下の条件で金属含有ガスを供給する。先流し工程S30は、例えばMOCVD(Metal Organic Chemical Vapor Deposition)装置内で行われてもよい。
温度:500℃以上1000℃以下
圧力:30torr以上200torr以下
トリメチルアルミニウム供給量、供給時間:20ccm以上500ccm以下、1秒
以上60秒以下
キャリアガス:H2、又は、H2とN2(H2比率0〜100%)
キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
上記条件は、金属含有ガスとして有機金属原料であるトリメチルアルミニウム、トリエチルアルミニウムを供給する場合のものである。当該工程では、トリメチルアルミニウムトリエチルアルミニウムに代えて他の金属を含有する金属含有ガスを供給し、アルミニウム膜に代えて、チタン膜、バナジウム膜や銅膜等の他の金属膜をサファイア基板の主面上に形成してもよい。また、有機金属原料から生成するメタン、エチレン、エタン等の炭化水素化合物との反応膜である炭化アルミニウム、炭化チタン、炭化バナジウムや炭化銅等の他の炭化金属膜をサファイア基板の主面上に形成してもよい。
先流し工程S30により、サファイア基板の主面上に金属膜及び炭化金属膜が形成される。当該金属膜の存在が、その上に成長させる結晶の極性を反転させるための条件となる。すなわち、先流し工程S30の実施は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素の中の1つである。
バッファ層形成工程S40は、先流し工程S30の後に行われる。バッファ層形成工程S40では、サファイア基板の主面上にバッファ層を形成する。バッファ層の厚さは、例えば、20nm以上300nm以下である。
バッファ層は、例えば、AlN層である。例えば、以下の条件でAlN結晶をエピタキシャル成長させ、バッファ層を形成してもよい。
成長方法:MOCVD法
成長温度:800℃以上950℃以下
圧力:30torr以上200torr以下
トリメチルアルミニウム供給量:20ccm以上500ccm以下
NH供給量:0.5slm以上10slm以下
キャリアガス:H、又は、HとN(H比率0〜100%)
キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
バッファ層形成工程S40の成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位をコントロールする複数の要素の中の1つとなる場合がある。当該要素とIII族窒化物半導体層の成長面の面方位との関係は、以下の実施例で示す。
また、バッファ層形成工程S40における成長条件(比較的低めの所定の成長温度、具体的には800〜950℃、および比較的低い圧力)は、N極性を維持しながらAlNを成長させるための条件となる。すなわち、バッファ層形成工程S40における成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素の中の1つである。
成長工程S50は、バッファ層形成工程S40の後に行われる。成長工程S50では、バッファ層の上に、以下の成長条件でIII族窒化物半導体結晶(例:GaN結晶)をエピタキシャル成長させ、成長面が所定の面方位(N極性側の半極性面)となっているIII族窒化物半導体層を形成する。III族窒化物半導体層30の厚さは、例えば、1μm以上20μm以下である。
成長方法:MOCVD法
成長温度:800℃以上1025℃以下
圧力:30torr以上200torr以下
TMGa供給量:25sccm以上1000sccm以下
NH3供給量:1slm以上20slm以下
キャリアガス:H、又は、HとN(H比率0〜100%)
キャリアガス供給量:3slm以上50slm以下(ただしガスの供給量は成長装置のサイズや構成により変動する為、これに限定されない。)
成長速度:10μm/h以上
成長工程S50における成長条件(比較的低い成長温度、比較的低い圧力、比較的速い成長速度)は、N極性を維持しながらGaNを成長させるための条件となる。すなわち、成長工程S50における成長条件は、サファイア基板の主面上にエピタキシャル成長されるIII族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素の中の1つである。
以上の条件で製造することで、図4に示すような、サファイア基板21と、バッファ層22と、III族窒化物半導体層23とがこの順に積層し、III族窒化物半導体層23の成長面24の面方位がN極性側の半極性面となっているIII族窒化物半導体基板20を製造することができる。また、製造条件を上記条件の範囲で調整することで、成長面24の面方位を所望の半極性面とすることができる。
次に、III族窒化物半導体基板(自立基板)の製造方法を説明する。
例えば、図3に示すフローで図4に示すような積層体(テンプレート基板)を製造した後、当該積層体からサファイア基板21及びバッファ層22を除去する(剥離工程)ことで、図5に示すようなIII族窒化物半導体層23からなるIII族窒化物半導体基板10(自立基板)を製造することができる。サファイア基板21及びバッファ層22を除去する手段は特段制限されない。例えば、サファイア基板21とIII族窒化物半導体層23との間の線膨張係数差に起因する応力を利用して、これらを分離してもよい。そして、バッファ層22を研磨やエッチング等で除去してもよい。
その他の除去例として、サファイア基板21とバッファ層22との間に剥離層を形成してもよい。例えば、炭化物(炭化アルミニウム、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウムまたは炭化タンタル)が分散した炭素層、及び、炭化物(炭化アルミニウム、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウムまたは炭化タンタル)の層の積層体をサファイア基板21上に形成した後に、窒化処理を行った層を剥離層として形成してもよい。
このような剥離層の上にバッファ層22及びIII族窒化物半導体層23を形成した後、当該積層体を、III族窒化物半導体層23を形成する際の加熱温度よりも高い温度で加熱すると、剥離層の部分を境界にして、サファイア基板21側の部分と、III族窒化物半導体層23側の部分とに分離することができる。III族窒化物半導体層23側の部分から、バッファ層22等を研磨やエッチング等で除去することで、図5に示すようなIII族窒化物半導体層23からなるIII族窒化物半導体基板10(自立基板)を得ることができる。
次に、上記製造方法で得られたIII族窒化物半導体基板20(テンプレート基板)及びIII族窒化物半導体基板10(自立基板)の構成及び特徴を説明する。
図4に示すように、III族窒化物半導体基板20(テンプレート基板)は、サファイア基板21と、サファイア基板21の上に形成されたバッファ層22と、バッファ層22の上に形成されたIII族窒化物半導体層23とを有する。III族窒化物半導体層23の主面(成長面24)の面方位は、半極性かつN極性である。
III族窒化物半導体層23の膜厚は、1μm以上である。そして、III族窒化物半導体層23の主面(成長面24)のXRC(X-ray Rocking Curve)の半値幅は、c軸投影軸方向で500arcsec以下である。
以下の実施例で示すが、半極性かつGa極性の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなるほど結晶性が悪化する。結果、III族窒化物半導体層の厚さが厚くなるほどXRCの半値幅は大きくなる。このため、成長面が半極性かつGa極性の場合、結晶性が良好で、かつ、厚膜なIII族窒化物半導体層を製造することが困難である。
一方、以下の実施例で示すが、半極性かつN極性の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなっても結晶性がほとんど変化しない。半極性かつN極性の成長面上にIII族窒化物半導体をエピタキシャル成長する本実施形態の場合、結晶性が上述(XRCの半値幅が、エックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したエックス線ロッキングカーブ(XRC)半値幅が500arcsec以下)のように良好で、かつ、上述のように厚膜(1μm以上)なIII族窒化物半導体層23を製造することができる。
図5に示すように、III族窒化物半導体基板10(自立基板)は、III族窒化物半導体結晶で構成されたIII族窒化物半導体層23からなる。III族窒化物半導体基板10(自立基板)の膜厚は100μm以上である。そして、表裏の関係にある露出した第1の主面11及び第2の主面12はいずれも半極性面であり、第1の主面11及び第2の主面12各々に対してエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したエックス線ロッキングカーブ(XRC)半値幅の差は、100arcsec以下である。第1の主面11及び第2の主面12のXRCの半値幅は、いずれも、c軸投影軸方向で500arcsec以下である。
例えば、サファイア基板上に、成長面の面方位が半極性かつGa極性となったIII族窒化物半導体をエピタキシャル成長した後、III族窒化物半導体層からサファイア基板を除去すると、外観は、図5に示す本実施形態のIII族窒化物半導体基板10(自立基板)と同じになる。しかし、このような基板と、本実施形態のIII族窒化物半導体基板10(自立基板)とは、III族窒化物半導体をエピタキシャル成長する際の成長面が「半極性かつGa極性」か「半極性かつN極性」かにおいて、相違する。
当該違いは、膜厚と、表裏の関係にある主面のXRCの半値幅の差との関係をみることで確認できる。
上述の通り、半極性かつGa極性の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなるほど結晶性が悪化し、XRCの半値幅は大きくなる。すなわち、膜厚が大きくなるほど、表裏の関係にある主面のXRCの半値幅の差は大きくなる。
一方、半極性かつN極性の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなっても結晶性がほとんど変化しない。すなわち、膜厚が大きくなっても、表裏の関係にある主面のXRCの半値幅の差は所定レベル以下となる。
以上より、膜厚が所定範囲である際の表裏の関係にある主面のXRCの半値幅の差を確認することで、そのIII族窒化物半導体基板が「半極性かつGa極性」の成長面上にエピタキシャル成長してできたものか、それとも、「半極性かつN極性」の成長面上にエピタキシャル成長してできたものかを確認することができる。
具体的には、「膜厚が300μm以上である場合、表裏の関係にある主面のXRCの半値幅の差が100arcsec以下」を満たす場合、「半極性かつN極性」の成長面上にエピタキシャル成長してできたIII族窒化物半導体基板であるといえる。そして、「膜厚が300μm以上である場合、表裏の関係にある主面のXRCの半値幅の差が100arcsecより大」を満たす場合、「半極性かつGa極性」の成長面上にエピタキシャル成長してできたIII族窒化物半導体基板であるといえる。
次に、本実施形態の作用効果を説明する。
本実施形態のIII族窒化物半導体基板の製造方法によれば、サファイア基板上に、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させることができる。結果、図4に示すように、露出面(成長面24)がN極性側の半極性面となったIII族窒化物半導体層23がサファイア基板21上に位置するIII族窒化物半導体基板20(テンプレート基板)が得られる。また、図5に示すように、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させることで得られたIII族窒化物半導体層23からなるIII族窒化物半導体基板10(自立基板)が得られる。
このようなIII族窒化物半導体基板(テンプレート基板、自立基板)上にデバイスを形成することで、内部量子効率の向上が実現される。
また、本実施形態のIII族窒化物半導体基板(テンプレート基板、自立基板)を用いれば、面方位がN極性側の半極性面である主面上にデバイスを形成することができる。かかる場合、半極性面の効果によるピエゾ分極の低減だけでなく、自発分極の低減も実現される。このため、内部電界によっておこるシュタルク効果が抑制できる。
また、本発明者らは、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合、Ga極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合に比べて、表面状態が平坦になりやすいことを確認している。Ga極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合、ピットや、m面成分由来のファセットが発生しやすい。このような点においても、本実施形態のIII族窒化物半導体基板(テンプレート基板、自立基板)は優れる。
また、本発明者らは、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合、Ga極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合に比べて、不純物の取り込みが小さいことを確認している。具体的には、同じ装置及び同じ成長条件で成長させた2種類の極性面(N極性側の半極性面及びGa極性側の半極性面)のHaLL測定を行ったところ、N極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合、Ga極性側の半極性面を成長面としてIII族窒化物半導体を成長させた場合に比べて、キャリア濃度が1ケタ小さいことを確認した。これは、Oの取り込みが低減できたためと推測される。このような点においても、本実施形態のIII族窒化物半導体基板(テンプレート基板、自立基板)は優れる。
また、本実施形態によれば、サファイア基板上に形成され、半極性かつN極性の露出した主面を有するIII族窒化物半導体層と、下地基板としてサファイア基板を有するIII族窒化物半導体基板が提供される。また、上記III族窒化物半導体基板上に結晶成長を行うことにより、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であるIII族窒化物半導体自立基板が提供される。
本実施形態により提供されるIII族窒化物半導体自立基板の表裏の関係にある露出した第1及び第2の主面は、例えば、一方が、c面からa面方向へ38.0°以上53.0°以下かつ、m面方向に−16.0°以上16.0°以下傾いた半極性面であり、もう一方は、−c面から−a面方向へ38.0°以上53.0°以下かつ、m面方向に−16.0°以上16.0°以下傾いた半極性面である。また、下地基板としてサファイア基板を有するIII族窒化物半導体基板の主面は、例えば−c面からa面方向へ38.0°以上53.0°以下かつ、m面方向に−16.0°以上16.0°以下傾いた半極性面である。
特に主面上に発光デバイス(LED、LD)を形成した場合、c面からa面方向へ39.1°傾いた面((11−24)面)は、Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 413-416にて報告されている図1に示すように、ピエゾ電界が0となる為、無極性面のm面及び、a面と同等のシュタルク効果による内部量子効率の低下の抑制効果によって消費電力の低減、発光効率の向上が得られる。また、−c面から−a面方向へ39.1°傾いた半極性かつN極性の主面((−1−12−4)面)は、半極性面の効果によるピエゾ分極の低減だけでなく、窒素原子からガリウム原子の向きに発生している自発分極の低減も実現される。このため、発光デバイス(LED、LD)の活性層に生じる内部電界によっておこるシュタルク効果を更に抑制できるので、更なる発光デバイス(LED、LD)の性能向上が得られる。
特許文献1と特許文献2で提供されるIII族窒化物半導体層は共に半極性かつGa極性である主面を有しており、本実施形態により提供される半極性かつN極性である主面を有するIII族窒化物半導体層及びサファイア基板を有するIII族窒化物半導体基板と比較して、デバイスの内部量子効率は低い。
本実施形態により提供される、下地基板としてサファイア基板を有するIII族窒化物半導体基板を用いれば、サファイア基板を周知技術、慣用技術を含む何らかの方法で除去すれば、用いたサファイア基板の大きさと同等の大口径かつ、基板面内の結晶性、表面平坦性、不純物濃度、面方位の軸ブレが均一かつ、緻密な製造技術を必要としないIII族窒化物半導体自立基板の製造が可能となる。ここでいう周知技術、慣用技術とは、例えば、化学的エッチングや機械研磨、熱応力を利用した結晶剥離などである。
特許文献3と特許文献4の方法で提供されるIII族窒化物半導体自立基板は、c面を主面としたIII族窒化物半導体自立基板から任意の面方位に切出した結晶片を接合して作製した、半極性面を主面としたIII族窒化物半導体自立基板である。これを実現するためには、バルク結晶から結晶片を大量に切出す工程や、結晶片を高同じ結晶軸方向に高い精度で揃えた上で接合する工程が必要となる為、高い歩留りを実現するための緻密な技術が必要となる。また、結晶片を接合して基板の口径を大きくする為、接合部に原子位置のずれが生じ、当該部では高密度の転位が発生する。このため、基板の結晶性の低下と転位密度の面内分布むらが発生してしまう。また、接合面がc面、m面、及び、m面からc面方向へ傾斜した面である場合には{11−22}面や{10−11}面などのファセット面が出現し、図2に示すように大きな窪みや結晶成長異常が発生してしまうため、表面平坦性の顕著な悪化と接合強度不足が生じ、基板のハンドリングに困難が生じる。
また、図2に示すような大きな窪みや結晶成長異常に起因する表面平坦性の顕著な悪化と接合強度不足による基板のハンドリングの困難を解決する為、特許文献3と特許文献4の方法を用いて、接合面をa面及びa面からの傾斜面のみにする事が容易に考えられるが、この場合も、接合面での原子位置のずれによる転位発生と、これに伴う転位密度の面内分布むらは解決できない。また、a面またはa面を傾斜させた面で結晶の接合を行うことから、本実施形態により提供される、a面の傾斜面を主面としたIII族窒化物半導体自立基板の製造はできない。
本実施形態により提供されるIII族窒化物半導体自立基板の第1および第2の主面はいずれも例えばa面の傾斜面である為、側面に劈開面(m面)を有している。劈開面を有した基板を提供することにより、半導体レーザー(LD)において光共振に必要不可欠な、原子が規則的きれいに並んだ、平坦性に優れた反射鏡面を容易に得る事が可能となる。
特許文献5で提供される(20−21)面及び(20−2−1)面を主面としたGaN系半導体レーザー素子は、主面がm面の傾斜面である為に、側面に劈開面を有していない。したがって、光共振が得られる平坦性の高い反射鏡面を得る事が出来ない。よって、製品の製造にあたり側面を平坦化するための高度かつ緻密な技術が必要となり、製造工程が煩雑化している。また、平坦性が劣る反射鏡面を用いる為、劈開面を利用しミラー構造を作製したGaN系半導体光レーザー素子に比べ、性能がおとる。
<第1の評価>
第1の評価では、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たすことで、III族窒化物半導体層の成長面の面方位をN極性側の面にできることを確認した。また、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」の中の少なくとも1つを満たさなかった場合、III族窒化物半導体層の成長面の面方位がGa極性側の面になることを確認した。
まず、主面の面方位がm面((10−10)面)からa面と平行になる方向に2°傾斜した面であるサファイア基板を用意した。サファイア基板の厚さは430μmであり、直径は2インチであった。
そして、用意したサファイア基板に対して、以下の条件で熱処理工程S20を実施した。
温度:1000〜1050℃
圧力:100torr
キャリアガス:H、N
熱処理時間:10分または15分
キャリアガス供給量:15slm
なお、熱処理工程S20の際に、20slmのNHを供給し、窒化処理を行った。
その後、以下の条件で先流し工程S30を行った。
温度:800〜930℃
圧力:100torr
トリメチルアルミニウム供給量、供給時間:90sccm、10秒
キャリアガス:H、N
キャリアガス供給量:15slm
その後、以下の条件でバッファ層形成工程S40を行い、AlN層を形成した。
成長方法:MOCVD法
成長温度:800〜930℃
圧力:100torr
トリメチルアルミニウム供給量:90sccm
NH供給量:5slm
キャリアガス:H、N
キャリアガス供給量:15slm
その後、以下の条件で成長工程S50を行い、III族窒化物半導体層を形成した。
成長方法:MOCVD法
圧力:100torr
TMGa供給量:50〜500sccm(連続変化)
NH供給量:5〜10slm(連続変化)
キャリアガス:H、N
キャリアガス供給量:15slm
成長速度:10μm/h以上
なお、第1のサンプルの成長温度は900℃±25℃に制御し、第2のサンプルの成長温度は1050℃±25℃に制御した。すなわち、第1のサンプルは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たすサンプルである。第2のサンプルは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」の中の一部(成長工程S50における成長温度)を満たさないサンプルである。
第1のサンプルのIII族窒化物半導体層の成長面の面方位は、(−1−12−4)面から−a面方向5.0°傾斜かつ、m面と平行になる方向に8.5°以下傾斜した面であった。一方、第2のサンプルのIII族窒化物半導体層の成長面の面方位は、(11−24)面からa面方向5.0°傾斜かつ、m面と平行になる方向に8.5°以下傾斜した面であった。すなわち、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」を満たすか否かにより、成長面の面方位がGa極性となるかN極性となるかを調整できることが分かる。
図6に第1のサンプルにおける、(−1−12−4)面、又は、(11−24)面のXRD極点測定結果を示す。回折ピークは極点の中心点から数度ずれた位置であることが確認できる。角度のずれを詳細に測定すると−a面方向5.0°かつ、m面と並行になる方向に8.5°又は、a面方向5.0°かつ、m面と並行になる方向に8.5°の位置であることが確認できる。
図7に第1のサンプルにおける、図4に示す露出面(成長面24)がN極性であることを確認した結果を示す。また、比較として図8に+c面の厚膜成長GaN自立基板から第1のサンプルと同等の面方位になるようにスライスを行って作製したIII族窒化物半導体自立基板の結果を示す。第1のサンプル及び、+c面 GaN自立基板からスライスして作製した半極性自立基板ともに、両面(基板の表と裏)に1.5μmダイヤ研磨を施し、りん酸硫酸混合液を150℃に保ち30分間のエッチングを行った。
図7及び図8より、第1のサンプルの露出面(成長面24)と+c面GaN自立基板からスライスして作製した半極性自立基板の裏面(N極性面)のエッチング表面状態が同等であることが確認できる。また、第1のサンプルの剥離面と+c面GaN自立基板からスライスして作製した半極性自立基板の表面(Ga極性面)のエッチング表面状態が同等であることが確認できるので、図4に示す露出面(成長面24)がN極性であることが確認できる。
なお、本発明者らは、上述した「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」の中のその他の一部を満たさない場合、また、全部を満たさない場合においても、成長面の面方位がGa極性となることを確認している。
<第2の評価>
第2の評価では、上述した「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を調整できることを確認した。
まず、主面の面方位が様々なサファイア基板を複数用意した。サファイア基板の厚さは430μmであり、直径は2インチであった。
そして、用意したサファイア基板各々に対して、以下の条件で熱処理工程S20を行った。
温度:1000〜1050℃
圧力:200torr
熱処理時間:10分
キャリアガス:H、N
キャリアガス供給量:15slm
なお、熱処理時の窒化処理の有無を異ならせたサンプルを作成した。具体的には、熱処理時に20slmのNHを供給し、窒化処理を行うサンプルと、熱処理時にNHを供給せず、窒化処理を行わないサンプルの両方を作成した。
その後、以下の条件で先流し工程S30を行った。
温度:880〜930℃
圧力:100torr
トリメチルアルミニウム供給量、供給時間:90sccm、10秒
キャリアガス:H2、N2
キャリアガス供給量:15slm
なお、先流し工程S30を行うサンプルと、行わないサンプルの両方を作成した。
その後、サファイア基板の主面(露出面)上に、以下の条件で、約150nmの厚さのバッファ層(AlNバッファ層)を形成した。
成長方法:MOCVD法
圧力:100torr
V/III比:5184
TMAl供給量:90ccm
NH供給量:5slm
キャリアガス:H、N
キャリアガス供給量:15slm
なお、成長温度は、サンプルごとに、700℃以上1110℃以下の範囲で異ならせた。
その後、バッファ層の上に、以下の条件で、約15μmの厚さのIII族窒化物半導体層(GaN層)を形成した。
成長方法:MOCVD法
成長温度:900〜1100℃
圧力:100torr
V/III比:321
TMGa供給量:50〜500ccm(ランプアップ)
NH供給量:5〜10slm(ランプアップ)
キャリアガス:H、N
キャリアガス供給量:15slm
以上のようにして、サファイア基板と、バッファ層と、III族窒化物半導体層とがこの順に積層したIII族窒化物半導体基板1を製造した。
表1乃至7に、「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」と、III族窒化物半導体層の成長面の面方位との関係を示す。
表中の「サファイア主面」の欄には、サファイア基板の主面の面方位が示されている。「昇温時の窒化処理」の欄には、熱処理工程S20の際の昇温時の窒化処理の有無(「有り」または「無し」)が示されている。「トリメチルアルミニウム先流し工程の有無」の欄には、トリメチルアルミニウム先流し工程の有無(「有り」または「無し」)が示されている。「AlNバッファ成長温度」の欄には、バッファ層形成工程における成長温度が示されている。「GaN成長温度」の欄には、GaN層形成工程における成長温度が示されている。「III族窒化物半導体層の成長面」の欄には、III族窒化物半導体層の成長面の面方位が示されている。
当該結果によれば、上述した「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を半極性かつGa極性の中で調整できることが分かる。そして、第1の評価の結果と第2の評価の結果とに基づけば、「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たしたうえで、「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面の面方位を、半極性かつN極性の中で調整できることが分かる。
<第3の評価>
本手法により作製したサンプルの結晶性について評価した。試料は3種類を準備した。サンプルAは、本明細記載の手法により作製したものであり、{11−23}面を成長面としている。サンプルB、Cは比較用サンプルであり、サンプルBは{10−10}面を成長面とした。また、サンプルCは{11−22}面を成長面とした。
図9に、各サンプルに対し、複数のGaN膜厚時にエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定した場合のXRC半値幅を示す。 但し、主面が{11−23}面であるサンプルCは、消滅則により{11−23}面のエックス線回折が得られないため、{11−22}面のXRC半値幅を測定した。
図9より、サンプルAはGaN層の膜厚が大きくなっても、XRC半値幅がほとんど変化しないことが分かる。これに対し、サンプルB及びCは、GaN層の膜厚が大きくなるにつれて、XRC半値幅が大きくなる傾向が読み取れる。
以下、参考形態の例を付記する。
1. III族窒化物半導体結晶で構成され、膜厚が400μm以上であり、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、前記第1及び第2の主面各々に対してエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したXRC(X-ray Rocking Curve)の半値幅の差が、100arcsec以下であるIII族窒化物半導体基板。
2. 1に記載のIII族窒化物半導体基板において、
前記第1及び第2の主面の前記半値幅は、いずれも、エックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したエックス線ロッキングカーブ(XRC)半値幅が500arcsec以下であるIII族窒化物半導体基板。
3. サファイア基板と、
前記サファイア基板上に形成され、半極性かつN極性の露出した主面を有するIII族窒化物半導体層と、
を有するIII族窒化物半導体基板。
4. 3に記載のIII族窒化物半導体基板において、
前記III族窒化物半導体層の膜厚は、1μm以上であるIII族窒化物半導体基板。
5. 3又は4に記載のIII族窒化物半導体基板において、
前記III族窒化物半導体層の前記主面のXRCの半値幅は、c投影軸方向で500arcsec以下であるIII族窒化物半導体基板。
6. サファイア基板を準備する基板準備工程と、
前記基板準備工程の後、前記サファイア基板に対して熱処理を行う熱処理工程と、
前記熱処理工程の後、前記サファイア基板上に金属含有ガスを供給する先流し工程と、
前記先流し工程の後、前記サファイア基板上に、成長温度:800℃以上950℃以下、圧力:30torr以上200torr以下の成長条件で、バッファ層を形成するバッファ層形成工程と、
前記バッファ層形成工程の後、前記バッファ層の上に、成長温度:800℃以上1025℃以下、圧力:30torr以上200torr以下、成長速度:10μm/h以上の成長条件で、III族窒化物半導体層を形成する成長工程と、
を有するIII族窒化物半導体基板の製造方法。
7. 6に記載のIII族窒化物半導体基板の製造方法において、
前記成長工程の後に、前記III族窒化物半導体層と前記サファイア基板とを含む積層体から、前記サファイア基板を剥離する剥離工程をさらに有するIII族窒化物半導体基板の製造方法。
10 III族窒化物半導体基板
11 第1の主面
12 第2の主面
20 III族窒化物半導体基板
21 サファイア基板
22 バッファ層
23 III族窒化物半導体層
24 成長面
本発明によれば、
III族窒化物半導体結晶で構成され
膜厚が400μm以上であり
表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり
前記第1の主面に対してエックス線をIII族窒化物半導体結晶のc軸を前記第1の主面に投影した投影軸に平行に入射し、エックス線の入射方向と前記第1の主面のなす角度を走査して測定したXRCの半値幅と、前記第2の主面に対してエックス線をIII族窒化物半導体結晶のc軸を前記第2の主面に投影した投影軸に平行に入射し、エックス線の入射方向と前記第2の主面のなす角度を走査して測定したXRCの半値幅との差が、100arcsec以下であるIII族窒化物半導体基板が提供される。
また、本発明によれば、
サファイア基板と、
前記サファイア基板上に形成されIII族窒化物半導体層と、
を有し、
前記III族窒化物半導体層の主面は、半極性面であり、ミラー指数(hkml)で表され、lが0未満であるIII族窒化物半導体基板が提供される。
図4に示すように、III族窒化物半導体基板20(テンプレート基板)は、サファイア基板21と、サファイア基板21の上に形成されたバッファ層22と、バッファ層22の上に形成されたIII族窒化物半導体層23とを有する。III族窒化物半導体層23の主面(成長面24)は、半極性面であり、ミラー指数(hkml)で表され、lが0未満である。
以下の実施例で示すが、半極性面であり、ミラー指数(hkml)で表され、lが0を超える成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなるほど結晶性が悪化する。結果、III族窒化物半導体層の厚さが厚くなるほどXRCの半値幅は大きくなる。このため、成長面が半極性面であり、ミラー指数(hkml)で表され、lが0を超える面の場合、結晶性が良好で、かつ、厚膜なIII族窒化物半導体層を製造することが困難である。
一方、以下の実施例で示すが、半極性面であり、ミラー指数(hkml)で表され、lが0未満の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなっても結晶性がほとんど変化しない。半極性面であり、ミラー指数(hkml)で表され、lが0未満の成長面上にIII族窒化物半導体をエピタキシャル成長する本実施形態の場合、結晶性が上述(XRCの半値幅が、エックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したエックス線ロッキングカーブ(XRC)半値幅が500arcsec以下)のように良好で、かつ、上述のように厚膜(1μm以上)なIII族窒化物半導体層23を製造することができる。
例えば、サファイア基板上に、成長面が半極性面であり、ミラー指数(hkml)で表され、lが0を超えるIII族窒化物半導体をエピタキシャル成長した後、III族窒化物半導体層からサファイア基板を除去すると、外観は、図5に示す本実施形態のIII族窒化物半導体基板10(自立基板)と同じになる。しかし、このような基板と、本実施形態のIII族窒化物半導体基板10(自立基板)とは、III族窒化物半導体をエピタキシャル成長する際の成長面が「半極性面であり、ミラー指数(hkml)で表され、lが0を超える」か「半極性面であり、ミラー指数(hkml)で表され、lが0未満」かにおいて、相違する。
上述の通り、半極性面であり、ミラー指数(hkml)で表され、lが0を超える成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなるほど結晶性が悪化し、XRCの半値幅は大きくなる。すなわち、膜厚が大きくなるほど、表裏の関係にある主面のXRCの半値幅の差は大きくなる。
一方、半極性面であり、ミラー指数(hkml)で表され、lが0未満の成長面上にIII族窒化物半導体をエピタキシャル成長した場合、III族窒化物半導体層の厚さが厚くなっても結晶性がほとんど変化しない。すなわち、膜厚が大きくなっても、表裏の関係にある主面のXRCの半値幅の差は所定レベル以下となる。
以上より、膜厚が所定範囲である際の表裏の関係にある主面のXRCの半値幅の差を確認することで、そのIII族窒化物半導体基板が「半極性面であり、ミラー指数(hkml)で表され、lが0を超える」成長面上にエピタキシャル成長してできたものか、それとも、「半極性面であり、ミラー指数(hkml)で表され、lが0未満」の成長面上にエピタキシャル成長してできたものかを確認することができる。
具体的には、「膜厚が300μm以上である場合、表裏の関係にある主面のXRCの半値幅の差が100arcsec以下」を満たす場合、「半極性面であり、ミラー指数(hkml)で表され、lが0未満」の成長面上にエピタキシャル成長してできたIII族窒化物半導体基板であるといえる。そして、「膜厚が300μm以上である場合、表裏の関係にある主面のXRCの半値幅の差が100arcsecより大」を満たす場合、「半極性面であり、ミラー指数(hkml)で表され、lが0を超える」成長面上にエピタキシャル成長してできたIII族窒化物半導体基板であるといえる。
また、本実施形態によれば、サファイア基板上に形成され、半極性面であり、ミラー指数(hkml)で表され、lが0未満の露出した主面を有するIII族窒化物半導体層と、下地基板としてサファイア基板を有するIII族窒化物半導体基板が提供される。また、上記III族窒化物半導体基板上に結晶成長を行うことにより、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であるIII族窒化物半導体自立基板が提供される。
特に主面上に発光デバイス(LED、LD)を形成した場合、c面からa面方向へ39.1°傾いた面((11−24)面)は、Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 413-416にて報告されている図1に示すように、ピエゾ電界が0となる為、無極性面のm面及び、a面と同等のシュタルク効果による内部量子効率の低下の抑制効果によって消費電力の低減、発光効率の向上が得られる。また、−c面から−a面方向へ39.1°傾いた主面((−1−12−4)面)は、半極性面の効果によるピエゾ分極の低減だけでなく、窒素原子からガリウム原子の向きに発生している自発分極の低減も実現される。このため、発光デバイス(LED、LD)の活性層に生じる内部電界によっておこるシュタルク効果を更に抑制できるので、更なる発光デバイス(LED、LD)の性能向上が得られる。
特許文献1と特許文献2で提供されるIII族窒化物半導体層は共に半極性面であり、ミラー指数(hkml)で表され、lが0を超える主面を有しており、本実施形態により提供される半極性面であり、ミラー指数(hkml)で表され、lが0未満の主面を有するIII族窒化物半導体層及びサファイア基板を有するIII族窒化物半導体基板と比較して、デバイスの内部量子効率は低い。
当該結果によれば、上述した「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面を半極性面であり、ミラー指数(hkml)で表され、lが0を超える面の中で調整できることが分かる。そして、第1の評価の結果と第2の評価の結果とに基づけば、「III族窒化物半導体層の成長面の面方位を、N極性側の面とするための複数の要素」のすべてを満たしたうえで、「III族窒化物半導体層の成長面の面方位を調整するための複数の要素」を調整することで、III族窒化物半導体層の成長面を、半極性面であり、ミラー指数(hkml)で表され、lが0未満の中で調整できることが分かる。
本発明によれば、
サファイア基板と、
前記サファイア基板上に形成されたIII族窒化物半導体層と、
を有し、
前記III族窒化物半導体層の主面は、半極性面であり、ミラー指数(hkml)で表され、lが0未満であり、
前記III族窒化物半導体層の前記主面に対してエックス線をIII族窒化物半導体結晶のc軸を前記主面に投影した投影軸に平行に入射し、エックス線の入射方向と前記主面のなす角度を走査して測定したXRC(X-ray Rocking Curve)の半値幅は、500arcsec以下であるIII族窒化物半導体基板が提供される。
また、本発明によれば、
サファイア基板と、
前記サファイア基板上に形成されたIII族窒化物半導体層と、
を有し、
前記III族窒化物半導体層の主面は、半極性面であり、ミラー指数(hkml)で表され、lが0未満であり、
前記III族窒化物半導体層の膜厚は400μm以上であり、
前記III族窒化物半導体層の前記主面と表裏の関係にある前記III族窒化物半導体層の裏面は半極性面であり、
前記主面に対してエックス線をIII族窒化物半導体結晶のc軸を前記主面に投影した投影軸に平行に入射し、エックス線の入射方向と前記主面のなす角度を走査して測定したXRCの半値幅と、前記裏面に対してエックス線をIII族窒化物半導体結晶のc軸を前記裏面に投影した投影軸に平行に入射し、エックス線の入射方向と前記裏面のなす角度を走査して測定したXRCの半値幅との差が、100arcsec以下であるIII族窒化物半導体基板が提供される。
また、本発明によれば、
サファイア基板を準備する基板準備工程と、
前記基板準備工程の後、前記サファイア基板に対して熱処理を行う熱処理工程と、
前記熱処理工程の後、前記サファイア基板上に金属含有ガスを供給する先流し工程と、
前記先流し工程の後、前記サファイア基板上に、成長温度:800℃以上950℃以下、圧力:30torr以上200torr以下の成長条件で、バッファ層を形成するバッファ層形成工程と、
前記バッファ層形成工程の後、前記バッファ層の上に、成長温度:800℃以上1025℃以下、圧力:30torr以上200torr以下、成長速度:10μm/h以上の成長条件で、III族窒化物半導体層を形成する成長工程と、 を有し、
前記先流し工程では、前記金属含有ガスとしてトリメチルアルミニウムを供給し、
前記バッファ層形成工程では、AlNからなる前記バッファ層を形成するIII族窒化物半導体基板の製造方法が提供される。

Claims (7)

  1. III族窒化物半導体結晶で構成され、膜厚が400μm以上であり、表裏の関係にある露出した第1及び第2の主面はいずれも半極性面であり、前記第1及び第2の主面各々に対してエックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したXRC(X-ray Rocking Curve)の半値幅の差が、100arcsec以下であるIII族窒化物半導体基板。
  2. 請求項1に記載のIII族窒化物半導体基板において、
    前記第1及び第2の主面の前記半値幅は、いずれも、エックス線をIII族窒化物半導体結晶のc軸の投影軸に平行に入射し測定したエックス線ロッキングカーブ(XRC)半値幅が500arcsec以下であるIII族窒化物半導体基板。
  3. サファイア基板と、
    前記サファイア基板上に形成され、半極性かつN極性の露出した主面を有するIII族窒化物半導体層と、
    を有するIII族窒化物半導体基板。
  4. 請求項3に記載のIII族窒化物半導体基板において、
    前記III族窒化物半導体層の膜厚は、1μm以上であるIII族窒化物半導体基板。
  5. 請求項3又は4に記載のIII族窒化物半導体基板において、
    前記III族窒化物半導体層の前記主面のXRCの半値幅は、c投影軸方向で500arcsec以下であるIII族窒化物半導体基板。
  6. サファイア基板を準備する基板準備工程と、
    前記基板準備工程の後、前記サファイア基板に対して熱処理を行う熱処理工程と、
    前記熱処理工程の後、前記サファイア基板上に金属含有ガスを供給する先流し工程と、
    前記先流し工程の後、前記サファイア基板上に、成長温度:800℃以上950℃以下、圧力:30torr以上200torr以下の成長条件で、バッファ層を形成するバッファ層形成工程と、
    前記バッファ層形成工程の後、前記バッファ層の上に、成長温度:800℃以上1025℃以下、圧力:30torr以上200torr以下、成長速度:10μm/h以上の成長条件で、III族窒化物半導体層を形成する成長工程と、
    を有するIII族窒化物半導体基板の製造方法。
  7. 請求項6に記載のIII族窒化物半導体基板の製造方法において、
    前記成長工程の後に、前記III族窒化物半導体層と前記サファイア基板とを含む積層体から、前記サファイア基板を剥離する剥離工程をさらに有するIII族窒化物半導体基板の製造方法。
JP2016246908A 2016-12-20 2016-12-20 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法 Active JP6266742B1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016246908A JP6266742B1 (ja) 2016-12-20 2016-12-20 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
US16/470,547 US20210180211A1 (en) 2016-12-20 2017-12-18 Group iii nitride semiconductor substrate and method for manufacturing group iii nitride semiconductor substrate
KR1020197018807A KR102415252B1 (ko) 2016-12-20 2017-12-18 Ⅲ족 질화물 반도체 기판 및 ⅲ족 질화물 반도체 기판의 제조방법
PCT/JP2017/045391 WO2018117050A1 (ja) 2016-12-20 2017-12-18 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
CN201780078734.3A CN110100304B (zh) 2016-12-20 2017-12-18 Iii族氮化物半导体基板及iii族氮化物半导体基板的制造方法
EP17883435.4A EP3561855A4 (en) 2016-12-20 2017-12-18 GROUP III NITRIDE SEMICONDUCTOR SUBSTRATE AND PROCESS FOR THE PRODUCTION OF GROUP III NITRIDE SEMICONDUCTOR SUBSTRATE
TW106144759A TWI738946B (zh) 2016-12-20 2017-12-20 Iii族氮化物半導體基板及iii族氮化物半導體基板之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246908A JP6266742B1 (ja) 2016-12-20 2016-12-20 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017222472A Division JP6865669B2 (ja) 2017-11-20 2017-11-20 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Publications (2)

Publication Number Publication Date
JP6266742B1 JP6266742B1 (ja) 2018-01-24
JP2018101694A true JP2018101694A (ja) 2018-06-28

Family

ID=61020745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246908A Active JP6266742B1 (ja) 2016-12-20 2016-12-20 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Country Status (7)

Country Link
US (1) US20210180211A1 (ja)
EP (1) EP3561855A4 (ja)
JP (1) JP6266742B1 (ja)
KR (1) KR102415252B1 (ja)
CN (1) CN110100304B (ja)
TW (1) TWI738946B (ja)
WO (1) WO2018117050A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002574A (ja) * 2019-06-21 2021-01-07 古河機械金属株式会社 構造体、光デバイス、光デバイスの製造方法、および構造体の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6831276B2 (ja) 2017-03-17 2021-02-17 古河機械金属株式会社 Iii族窒化物半導体基板
CN109742205B (zh) * 2019-01-07 2020-05-29 江西乾照光电有限公司 一种具有极性反转层的led外延结构及制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
JP2009147271A (ja) * 2007-12-18 2009-07-02 Tohoku Univ 基板製造方法およびiii族窒化物半導体結晶
JP2016121064A (ja) * 2011-09-30 2016-07-07 三菱化学株式会社 GaN単結晶およびウエハ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010029852A (ko) * 1999-06-30 2001-04-16 도다 다다히데 Ⅲ족 질화물계 화합물 반도체 소자 및 그 제조방법
US7186302B2 (en) * 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
JP2009519202A (ja) * 2005-12-12 2009-05-14 キーマ テクノロジーズ, インク. Iii族窒化物製品及び同製品の作製方法
JP4301251B2 (ja) * 2006-02-15 2009-07-22 住友電気工業株式会社 GaN結晶基板
US9670594B2 (en) * 2006-04-07 2017-06-06 Sixpoint Materials, Inc. Group III nitride crystals, their fabrication method, and method of fabricating bulk group III nitride crystals in supercritical ammonia
US8569794B2 (en) * 2008-03-13 2013-10-29 Toyoda Gosei Co., Ltd. Group III nitride semiconductor device and method for manufacturing the same, group III nitride semiconductor light-emitting device and method for manufacturing the same, and lamp
JP5012700B2 (ja) 2008-07-01 2012-08-29 住友電気工業株式会社 Iii族窒化物結晶接合基板およびその製造方法ならびにiii族窒化物結晶の製造方法
US20100025727A1 (en) * 2008-08-04 2010-02-04 Benjamin Allen Haskell Enhanced spontaneous separation method for production of free-standing nitride thin films, substrates, and heterostructures
JP2010263184A (ja) 2008-08-04 2010-11-18 Sumitomo Electric Ind Ltd GaN系半導体光素子、GaN系半導体光素子を作製する方法、エピタキシャルウエハ及びGaN系半導体膜を成長する方法
JP5293591B2 (ja) * 2008-12-26 2013-09-18 豊田合成株式会社 Iii族窒化物半導体の製造方法、およびテンプレート基板
JP2010232609A (ja) * 2009-03-30 2010-10-14 Hitachi Cable Ltd Iii族窒化物半導体複合基板、iii族窒化物半導体基板、及びiii族窒化物半導体複合基板の製造方法
JP2011042542A (ja) * 2009-08-24 2011-03-03 Furukawa Co Ltd Iii族窒化物基板の製造方法およびiii族窒化物基板
WO2012020559A1 (ja) 2010-08-09 2012-02-16 パナソニック株式会社 半導体発光デバイス
JP5665463B2 (ja) * 2010-09-30 2015-02-04 Dowaエレクトロニクス株式会社 Iii族窒化物半導体素子製造用基板およびiii族窒化物半導体自立基板またはiii族窒化物半導体素子の製造方法
KR101105868B1 (ko) * 2010-11-08 2012-01-16 한국광기술원 화학적 리프트 오프 방법을 이용한 ⅰⅰⅰ족 질화물 기판의 제조방법
JP2014009156A (ja) * 2012-06-29 2014-01-20 Samsung Corning Precision Materials Co Ltd 窒化ガリウム基板の製造方法および該方法により製造された窒化ガリウム基板
JP2013082628A (ja) 2013-02-12 2013-05-09 Sumitomo Electric Ind Ltd Iii族窒化物結晶、iii族窒化物結晶基板および半導体デバイスの製造方法
WO2014136602A1 (ja) * 2013-03-08 2014-09-12 国立大学法人山口大学 窒化ガリウム結晶自立基板の製造方法
TWI793382B (zh) * 2013-08-08 2023-02-21 日商三菱化學股份有限公司 自立GaN基板、GaN單結晶之製造方法及半導體裝置之製造方法
JP6573154B2 (ja) 2014-06-05 2019-09-11 パナソニックIpマネジメント株式会社 窒化物半導体構造、窒化物半導体構造を備えた電子デバイス、窒化物半導体構造を備えた発光デバイス、および窒化物半導体構造を製造する方法
CN107251196B (zh) * 2015-02-27 2020-07-31 住友化学株式会社 氮化物半导体模板及其制造方法、以及外延片

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078613A (ja) * 2006-08-24 2008-04-03 Rohm Co Ltd 窒化物半導体の製造方法及び窒化物半導体素子
JP2009147271A (ja) * 2007-12-18 2009-07-02 Tohoku Univ 基板製造方法およびiii族窒化物半導体結晶
JP2016121064A (ja) * 2011-09-30 2016-07-07 三菱化学株式会社 GaN単結晶およびウエハ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PHILIPPE VENNEGUES, ET AL.: "Study of the epitaxial relationships between III-nitrides and M-plane sapphire", JOURNAL OF APPLIED PHYSICS, vol. 108, no. 11, JPN7017002755, November 2010 (2010-11-01), US, pages 1 - 113521, ISSN: 0003625779 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002574A (ja) * 2019-06-21 2021-01-07 古河機械金属株式会社 構造体、光デバイス、光デバイスの製造方法、および構造体の製造方法

Also Published As

Publication number Publication date
US20210180211A1 (en) 2021-06-17
TW201839189A (zh) 2018-11-01
CN110100304B (zh) 2023-10-20
JP6266742B1 (ja) 2018-01-24
KR20190097084A (ko) 2019-08-20
EP3561855A4 (en) 2020-09-30
CN110100304A (zh) 2019-08-06
WO2018117050A1 (ja) 2018-06-28
EP3561855A1 (en) 2019-10-30
KR102415252B1 (ko) 2022-06-29
TWI738946B (zh) 2021-09-11

Similar Documents

Publication Publication Date Title
JP5838523B2 (ja) 半極性(Al,In,Ga,B)NまたはIII族窒化物の結晶
JP5638198B2 (ja) ミスカット基板上のレーザダイオード配向
US9343525B2 (en) Aluminum nitride substrate and group-III nitride laminate
JP2010168273A (ja) Iii族窒化物半導体の製造方法、およびテンプレート基板
JP2011042542A (ja) Iii族窒化物基板の製造方法およびiii族窒化物基板
JP6266742B1 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP2024079871A (ja) エピタキシャル横方向過成長を用いた非極性及び半極性デバイス作成方法
KR102464462B1 (ko) Ⅲ족 질화물 반도체 기판
CN108963042B (zh) Ramo4基板及氮化物半导体装置
US11011374B2 (en) Group III nitride semiconductor substrate and method for manufacturing group III nitride semiconductor substrate
JP2015032730A (ja) 窒化物半導体構造およびそれを製造する方法
JP6865669B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6934802B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP6894825B2 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
WO2018180672A1 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
JP7084123B2 (ja) Iii族窒化物半導体基板
JP6982469B2 (ja) Iii族窒化物半導体基板及びiii族窒化物半導体基板の製造方法
WO2020162346A1 (ja) Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

R150 Certificate of patent or registration of utility model

Ref document number: 6266742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250