WO2018116663A1 - ガスセンサモジュール及びその製造方法 - Google Patents

ガスセンサモジュール及びその製造方法 Download PDF

Info

Publication number
WO2018116663A1
WO2018116663A1 PCT/JP2017/039870 JP2017039870W WO2018116663A1 WO 2018116663 A1 WO2018116663 A1 WO 2018116663A1 JP 2017039870 W JP2017039870 W JP 2017039870W WO 2018116663 A1 WO2018116663 A1 WO 2018116663A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas sensor
side wall
sensor module
lid
semiconductor chip
Prior art date
Application number
PCT/JP2017/039870
Other languages
English (en)
French (fr)
Inventor
木村 哲平
弘明 鈴木
Original Assignee
Nissha株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha株式会社 filed Critical Nissha株式会社
Priority to EP17884495.7A priority Critical patent/EP3540421A4/en
Priority to US16/472,134 priority patent/US11415536B2/en
Priority to KR1020197011719A priority patent/KR102350203B1/ko
Priority to CN201780074674.8A priority patent/CN110073204A/zh
Publication of WO2018116663A1 publication Critical patent/WO2018116663A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4817Conductive parts for containers, e.g. caps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/782Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, each consisting of a single circuit element
    • H01L21/784Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, each consisting of a single circuit element the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/055Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads having a passage through the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48105Connecting bonding areas at different heights
    • H01L2224/48106Connecting bonding areas at different heights the connector being orthogonal to a side surface of the semiconductor or solid-state body, e.g. parallel layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95001Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate

Definitions

  • the present invention relates to a gas sensor module and a manufacturing method thereof, and more particularly, to a gas sensor module including a semiconductor chip on which gas sensor elements are integrated and a manufacturing method thereof.
  • Patent Document 1 Japanese Patent Laid-Open No. 2014-813657 discloses a gas sensor module including a gas sensor element in which a heater and a sensitive film are formed by a MEMS (Micro Electro Mechanical Systems) structure, and a case that houses the gas sensor element. Is disclosed.
  • MEMS Micro Electro Mechanical Systems
  • the gas sensor module described in Patent Document 1 has a flat outer shape whose length in the direction perpendicular to the semiconductor chip is shorter than the direction parallel to the semiconductor chip in which the gas sensor element is formed.
  • the gas sensor module miniaturized as in Patent Document 1 is incorporated in a small space of various devices. When the space of the device in which the gas sensor module is incorporated becomes substantially the same as the height of the gas sensor module, it becomes difficult for gas to flow through the opening formed in the upper surface of the gas sensor module. If it becomes difficult for gas to flow through the opening, detection by the gas sensor module becomes difficult.
  • An object of the present invention is to provide a gas sensor module that can easily detect a gas even when it is attached to a mounting space having a short length in a direction perpendicular to a semiconductor chip on which a gas sensor element is formed.
  • a gas sensor module includes a semiconductor chip on which a gas sensor element is formed, a substrate to which the semiconductor chip is electrically connected and fixed, a side wall fixed to the substrate, and a side wall. And a flat package having a detection space in which gas flows around the semiconductor chip, the length in the direction parallel to the semiconductor chip being longer than the length in the direction perpendicular to the semiconductor chip, A plurality of openings that communicate with the detection space are provided on the side wall and / or between the side wall and the lid.
  • the gas can flow into the detection space from the outside through some of the plurality of openings communicating with the detection space, and the gas can flow out through the remaining openings.
  • the plurality of openings are not blocked by the casing even when the casing that houses the gas sensor module is in contact with the upper surface of the gas sensor module. Therefore, the gas sensor module can easily detect the gas even when the gas sensor module is attached to the mounting space of the casing whose length in the direction perpendicular to the semiconductor chip is short.
  • the package may have a plurality of openings that communicate with the detection space at least between the side wall and the lid, and the lid may have a thickness of 0.01 mm to 2 mm. .
  • the lid since the lid has a thickness of 0.01 mm or more, even if the gas sensor module is mounted in a narrow mounting space where the casing is in contact with the upper surface of the lid, a plurality of openings are provided. It can be led to the detection space through the part.
  • the thickness of the lid is 2 mm or less, for example, a dicing tape can be attached at the time of package dicing, and foreign matter can be prevented from entering along with cooling water or the like from the opening.
  • the gas sensor module can improve the reliability of gas introduction into the detection space and improve the quality of the gas sensor module when mounted in a mounting space whose length in the direction perpendicular to the semiconductor chip is short. .
  • a gas sensor module includes a semiconductor chip on which a gas sensor element is formed, a substrate to which the semiconductor chip is electrically connected and fixed, a side wall fixed to the substrate, and a side wall. And a flat package having a detection space through which gas flows around the semiconductor chip and having a length in a direction parallel to the semiconductor chip longer than a length in a direction perpendicular to the semiconductor chip.
  • the lid has a plurality of openings communicating with the detection space and a protrusion for forming a passage for guiding gas to the plurality of openings.
  • the gas can flow into the detection space from the outside through a part of the plurality of openings communicating with the detection space, and the gas can flow out through the remaining openings.
  • the plurality of openings are not blocked by the casing even if, for example, the casing housing the gas sensor module contacts the upper portion of the gas sensor module due to the presence of the protrusions. Therefore, the gas sensor module can easily detect the gas even when the gas sensor module is attached to a mounting space whose length in the direction perpendicular to the semiconductor chip is short.
  • the package may be configured such that the height of the protrusion is 0.01 mm or more and 2 mm or less.
  • the protrusion since the protrusion has a height of 0.01 mm or more, even if the gas sensor module is mounted in a narrow mounting space where the housing is in contact with the upper portion of the lid, a plurality of gases are supplied.
  • the detection space can be guided through the opening.
  • the height of the protrusion is 2 mm or less, for example, a dicing tape can be applied at the time of package dicing, and foreign matter can be prevented from entering along with cooling water or the like from the opening.
  • the gas sensor module can improve the reliability of gas introduction into the detection space and improve the quality of the gas sensor module when mounted in a mounting space whose length in the direction perpendicular to the semiconductor chip is short. .
  • a method for manufacturing a gas sensor module includes a side wall forming member having a plurality of depressions corresponding to one chip arrangement space, one collective substrate or one piece so as to surround the plurality of chip arrangement spaces.
  • a plurality of semiconductor chips formed by injection molding on the lid forming member and fixed to a plurality of regions of the collective substrate corresponding to a plurality of chip arrangement spaces by die bonding and terminals of the collective substrate by wire bonding
  • the gas sensor module is assembled by bonding the side wall forming member to the lid, the lid forming member or the collective substrate, and at least the side wall forming member so that the recesses at a plurality of positions become openings communicating with the chip arrangement space.
  • gas sensor module formed on one collective substrate by dicing the collective substrate To separate, it is intended.
  • the gas sensor module manufacturing method since the depression is formed in the sidewall forming member by injection molding, even if the module length in the direction perpendicular to the semiconductor chip is smaller than 3 mm, for example, the sidewall is formed on the sidewall. The opening can be easily formed.
  • a side wall forming member surrounding a plurality of chip arrangement spaces is formed by injection molding on one collective substrate or one lid forming member to form a gas sensor element.
  • a plurality of semiconductor chips are fixed to a plurality of regions of the collective substrate corresponding to the plurality of chip placement spaces by die bonding and electrically connected to terminals of the collective substrate by wire bonding, and a lid corresponding to each of the chip placement spaces;
  • Assemble a plurality of gas sensor modules by bonding the side wall forming member so that a plurality of openings communicating with the chip arrangement space are formed between the side wall forming member and affixing dicing tape so as to close the plurality of openings Apply at least the side wall forming member and the collective substrate to the dicing blade while applying the cooling liquid to the dicing blade.
  • dicing Ri separating a plurality of gas sensor module formed on a single collective substrate, those.
  • the gap is formed between the side wall forming member and the lid, even if the module length in the direction perpendicular to the semiconductor chip is smaller than 3 mm, for example.
  • An opening can be easily formed between the side wall and the lid.
  • the dicing tape can prevent the cooling liquid from entering the chip arrangement space.
  • the gas sensor module of the present invention can easily detect gas even when it is mounted in a mounting space having a short length in a direction perpendicular to the semiconductor chip on which the gas sensor element is formed. Moreover, provision of such a gas sensor module is implement
  • FIG. 3 is a schematic cross-sectional view of a device having a wide space between the mounting surface and the housing in which the gas sensor module according to the first embodiment is incorporated.
  • FIG. 3 is a schematic cross-sectional view of a device having a narrow space between the mounting surface and the housing in which the gas sensor module according to the first embodiment is incorporated.
  • the top view of the gas sensor element formed in the semiconductor chip. Sectional drawing of the gas sensor element cut
  • FIG. 3 is a schematic cross-sectional view of a device having a wide space between the mounting surface and the housing in which the gas sensor module according to the first embodiment is incorporated.
  • FIG. 3 is a schematic cross-sectional view of a device having a narrow space between the mounting surface and the housing in which the gas
  • FIG. 9 is a cross-sectional view of the collective substrate cut along line II-II in FIG. 8.
  • the typical sectional view showing the state where the semiconductor chip was die-bonded to the collective substrate.
  • the typical top view which shows the collective board by which wire bonding was carried out.
  • the typical sectional view showing the collective substrate by which wire bonding was carried out.
  • the top view for demonstrating the assembly process which adheres a lid
  • FIG. 4C is a plan view for explaining an assembly process for fixing the lid to the side wall forming member
  • FIG. 4D is a schematic cross-sectional view of the collective substrate for explaining package dicing.
  • A) A plan view showing a state in which side wall forming members are formed on the collective substrate in the manufacturing method according to Modification 1B, (b) a cross section of the collective substrate cut along line IV-IV in FIG. 18 (a) FIG.
  • FIG. 4C is a schematic plan view showing a state in which the semiconductor chip is die-bonded to the collective substrate.
  • FIG. 4D is a schematic cross-sectional view showing the state in which the semiconductor chip is die-bonded.
  • FIG. The top view which shows a cover,
  • (A) A plan view showing a state in which side wall forming members are formed on the collective substrate in the manufacturing method according to Modification 1C, (b) a cross section of the collective substrate cut along line VV in FIG. 19
  • FIG. 4C is a plan view showing a lid fixed to the side wall forming member, and
  • FIG. 4D is a schematic cross-sectional view of a collective substrate for explaining package dicing.
  • FIG. 21 is a schematic cross-sectional view of the gas sensor module cut along line VI-VI in FIG. 20.
  • (c) Still another example of the gas sensor module according to Modification 2A The top view which shows an example.
  • FIG. 27 is a schematic cross-sectional view of the gas sensor module cut along the line VII-VII in FIG. 26.
  • FIG. 1 schematically shows a cross-sectional shape of the gas sensor module 10 according to the first embodiment.
  • the gas sensor module 10 according to the first embodiment includes a semiconductor chip 20 and a package 30.
  • a gas sensor element 40 is formed on the semiconductor chip 20.
  • the package 30 includes a substrate 31, a side wall 32, and a lid 33.
  • the package 30 is, for example, a rectangular shape having a planar shape of 5 mm ⁇ 5 mm or less and a height of 3 mm or less.
  • a side wall 32 is fixed to the substrate 31.
  • the side wall 32 can be fixed to the substrate 31 by, for example, injection molding the side wall 32 on the substrate 31 as described later. Further, as another fixing method, for example, there is a method of bonding the side wall 32 to the substrate 31 with an adhesive.
  • the semiconductor chip 20 is fixed to the substrate 31 with an adhesive, for example.
  • a lid 33 is fixed to the side wall 32.
  • the lid 33 can be fixed to the side wall 32 by, for example, bonding the lid 33 to the side wall 32 with an adhesive.
  • Terminals 34 are provided on the bottom side of the package 30.
  • the package 30 is a non-lead package.
  • the package 30 has a flat shape in which the length in the direction D1 horizontal to the semiconductor chip 20 is longer than the length in the direction D2 perpendicular to the semiconductor chip 20.
  • the package 30 has a detection space S1 in which a gas flows around the semiconductor chip 20 inside.
  • the package 30 has two openings 32a in the side wall 32 communicating with the detection space S1.
  • the package 30 has two openings 33a in the lid 33 that communicate with the detection space S1.
  • the size of the opening 33a for example, the length in the horizontal direction D1 is 0.1 mm to 0.5 mm.
  • the area of each of the openings 32a and 33a is, for example, 0.001 mm 2 to 0.2 mm 2 .
  • FIG. 2 shows a cross-sectional shape of a device 60 in which the gas sensor module 10 is incorporated.
  • the device 60 includes a printed wiring board 61 and a housing 62.
  • the gas sensor module 10 is mounted on the printed wiring board 61 together with the small solid-state devices 71 and 72.
  • the printed wiring board 61 is an example of a mounting place for the gas sensor module 10.
  • small solid-state devices include chip resistors, chip capacitors, integrated circuits, wireless modules, and MEMS devices.
  • the solid state devices 71 and 72 and the gas sensor module 10 are mounted on the printed wiring board 61 by, for example, soldering.
  • the distance IN1 between the mounting surface 63 of the printed wiring board 61 and the housing 62 of the device 60 shown in FIG. 2 is the lid of the gas sensor module 10 even if the height H1 of the gas sensor module 10 from the mounting surface 63 is subtracted.
  • An interval IN2 sufficient for the gas to flow is left between the upper surface of 33 and the housing 62.
  • a specific type of gas to be detected can be introduced into the detection space S1 through the opening 33a of the lid 33 of the gas sensor module 10 and the opening 32a of the side wall 32.
  • the interval IN3 between the mounting surface 63 of the printed wiring board 61 and the housing 62 is substantially the same as the height H1 of the gas sensor module 10 from the mounting surface 63. It is. Therefore, in the device 65, there is a high possibility that the opening 33a of the lid 33 is blocked by the housing 62.
  • a specific type of the device 65 is provided through the opening 32a of the side wall 32. The gas can be introduced into the detection space S1.
  • FIG. 4 shows an enlarged view of the semiconductor chip 20 of the gas sensor module 10.
  • a plurality of semiconductor chips 20 are formed on one semiconductor wafer 100 shown in FIG.
  • the semiconductor chip 20 has a rectangular shape with one side being, for example, 2 mm or less.
  • a gas sensor element 40 is formed in the central portion of the semiconductor chip 20.
  • the gas sensor element 40 has a planar length of, for example, 0.1 mm or less.
  • An electrode wiring pattern 28 extends from the gas sensor element 40 toward the end of the semiconductor chip 20.
  • a wire 29 is bonded to the electrode wiring pattern 28. By this wire 29, the electrode wiring pattern 28 of the semiconductor chip 20 and the terminal 34 are electrically connected.
  • FIG. 5 shows an enlarged portion of the gas sensor element 40
  • FIG. 6 shows a cross section taken along line II of FIG.
  • a cavity 21 a having an opening on the surface of the base 21 is formed.
  • the cavity 21a is formed, for example, by etching the semiconductor wafer 100.
  • An oxide film 22 is formed on the surface of the base 21.
  • the oxide film 22 is a silicon oxide film.
  • An insulating film 23 is formed on the oxide film 22.
  • a heater electrode 24 is formed on the insulating film 23. By energizing the heater electrode 24, the gas sensitive body 27 can be heated. In order to heat the gas sensitive body 27, a DC voltage is applied to the heater electrodes 24a and 24b in FIG.
  • An insulating film 25 is formed on the heater electrode 24.
  • Sensor electrodes 26 a and 26 b and a gas sensitive body 27 are formed on the insulating film 25, and the sensor electrodes 26 a and 26 b are electrically connected via the gas sensitive body 27.
  • the gas sensitive body 27 is exposed to a specific type of gas, the resistance value of the gas sensitive body 27 changes and the resistance value between the sensor electrodes 26a and 26b changes.
  • the sensor electrodes 26a and 26b are included in the sensor electrode 26 shown in FIG.
  • FIG. 9 is a cross-sectional view taken along the line II-II in FIG.
  • FR4 Flume Retardant Type 4
  • GPY Polyimide resin or a modified polyimide resin
  • the side wall forming member 120 is formed integrally with the collective substrate 110 by, for example, injection molding.
  • an epoxy resin (with filler), a liquid crystal polymer, a phenol resin, or polyester can be used.
  • a plurality of chip arrangement spaces 130 surrounded by the side wall forming member 120 are formed.
  • two recesses 121 are formed for each chip arrangement space 130.
  • the collective substrate 110 is also called a depression.
  • one or a predetermined number of semiconductor chips 20 are allocated to each of the plurality of chip arrangement spaces 130, and the plurality of semiconductor chips 20 are die-bonded to the collective substrate 110.
  • the position where the semiconductor chip 20 is attached is, for example, a position where the gas sensitive body 27 is disposed on a straight line LN1 connecting the recesses 121 as shown in FIG.
  • the wire 29 is connected to the terminal 34 of the collective substrate 110 and the semiconductor chip 20 by wire bonding of the semiconductor chip 20. Therefore, a part of the terminal 34 is exposed to the chip arrangement space 130 of the collective substrate 110.
  • the gas sensor module 10 is assembled by bonding the plurality of lids 33 to the side wall forming member 120. The plurality of chip arrangement spaces 130 are covered with the lid 33 and become the detection space S1 of the gas sensor module 10.
  • Each lid 33 is formed with two openings 33a.
  • a gas sensitive body 27 is disposed below the straight line LN2 connecting the two openings 33a.
  • the lids 33 adjacent to each other are bonded by an adhesive applied to the upper surface of the side wall forming member 120 so that a gap is formed between them.
  • the adhesive is applied to the upper surface of the sidewall forming member 120, the recess 121 is applied so as not to be blocked by the adhesive.
  • the adhesive is applied only to the upper surface of the sidewall forming member 120 while avoiding the depression 121 by screen printing.
  • the gas sensor module 10 is assembled by covering each chip arrangement space 130 with each lid 33.
  • the lid 33 for example, metal, ceramic, or glass can be used. Examples of the metal used for the lid 33 include kovar, stainless steel, and nickel.
  • the lid 33 is bonded to the side wall forming member 120, the lid 33 is affixed to the dicing tape 151 as shown in FIGS. Then, the gas sensor module 10 formed on one collective substrate 110 is separated by package dicing using the blade 152. The location indicated by the arrow Ar1 in FIG. At this time, the terminal 34 is also cut by the blade 152. Here, the case where the terminal 34 is cut by the blade 152 is described. However, by forming the terminal 34 separately for each gas sensor module 10 from the beginning, a manufacturing method that does not cut the terminal 34 by the blade 152 is used.
  • the side wall forming member 120 and the collective substrate 110 are diced by the blade 152 together with the dicing tape 151 so that the two recesses 121 become the opening portions 32 a communicating with the chip arrangement space 130.
  • the blade 152 cuts the central portion of the sidewall forming member 120 along the direction in which the sidewall forming member 120 extends.
  • cooling water is applied to the blade 152.
  • the opening 33 a of the lid 33 that becomes the bottom during dicing is blocked by the dicing tape 151, it is difficult for the cooling water to enter the chip placement space 130.
  • the gas sensor module 10 is dried.
  • FIGS. 18A and 18B show a cross section of the lid forming member 140 cut along the line IV-IV in FIG.
  • the side wall forming member 120 is formed integrally with the lid forming member 140 by insert molding, for example.
  • two recesses 121 are formed in each chip arrangement space 130.
  • two openings 33 a are formed in the lid forming member 140 with respect to each chip arrangement space 130.
  • the semiconductor chip 20 is attached to the collective substrate 110 by die bonding and wire bonding.
  • 18E and 18F the semiconductor chip 20 is arranged in the chip arrangement space 130, and the lid forming member 140 and the side wall forming member 120 are attached to the collective substrate 110.
  • Glued The application of the adhesive at this time is also performed so that the adhesive does not enter the recess 121 as in the manufacturing method of the gas sensor module 10 of the first embodiment.
  • the lid forming member 140 is placed on the collective substrate 110 so that the gas sensitive body 27 is disposed under the straight line LN2 passing through the opening 33a and the recess 121, as in the modification 1A.
  • Modification 1B as shown in FIG. 18 (f)
  • when package dicing is performed not only the collective substrate 110 and the side wall forming member 120 cut by the blade 152 in the first embodiment, but also lid formation.
  • the member 140 is also cut by the blade 152.
  • the recess 121 may be formed shallower than the gas sensor module 10 of Modification 1B.
  • 19A and 19B show a recess 121 that is shallower than the recess 121 shown in FIGS. 18A and 18B.
  • FIG. 19B shows a cross section of the lid forming member 140 cut along the line VV in FIG. 19A.
  • the opening 32a of the side wall 32 reaches the substrate 31 but does not reach the lid 33. Is done.
  • the gas is mainly discharged from the higher opening 32a and the gas is mainly sucked from the lower method opening 32a by the rising air flow generated by heating the gas sensitive body 27. In this way, the gas can be exchanged.
  • FIG. 20 schematically shows a planar shape of the gas sensor module 10A according to the second embodiment
  • FIG. 21 shows an end face that can be cut along the line VI-VI in FIG.
  • the shape of is schematically shown.
  • a gas sensor module 10A according to the second embodiment includes a semiconductor chip 20 and a package 30A.
  • the gas sensor element 40 is formed on the semiconductor chip 20 of the gas sensor module 10A according to the second embodiment.
  • the package 30A includes a substrate 31, a side wall 32A, and a lid 33A.
  • a side wall 32 ⁇ / b> A is fixed to the substrate 31.
  • the side wall 32 of the first embodiment is different from the side wall 32A of the second embodiment in that an opening 32a like the side wall 32 is not formed in the side wall 32A. Further, the opening 33a formed in the lid 33 of the first embodiment is not formed in the lid 33A of the second embodiment.
  • the lid 33A has two recessed portions 33b.
  • the lid 33A has a portion that enters the inside of the side wall 32A when bonded to the side wall 32A, thereby forming an opening 30a between the side wall 32A.
  • the portion that enters the inside is the recess 33 b.
  • the fixing of the side wall 32A to the substrate 31 and the fixing of the lid 33A to the side wall 32A in the second embodiment are performed in the same manner as the fixing of the side wall 32 to the substrate 31 and the fixing of the lid 33 to the side wall 32 of the first embodiment. Is called.
  • the semiconductor chip 20 and the terminal 34 are connected by the bonded wire 29.
  • the package 30 ⁇ / b> A also has a flat shape in which the length in the direction D ⁇ b> 1 horizontal to the semiconductor chip 20 is longer than the length in the direction D ⁇ b> 2 perpendicular to the semiconductor chip 20.
  • the two openings 30a of the gas sensor module 10A communicate with each other so as to connect the outside of the package 30A and the detection space S1 in order to introduce gas around the semiconductor chip 20 into the detection space S1 inside the package 30A. ing.
  • FIG. 22 shows a cross-sectional shape of the device 65 in which the gas sensor module 10A is incorporated.
  • An interval IN4 between the mounting surface 63 of the printed wiring board 61 and the housing 62 of the device 65 shown in FIG. 22 is substantially equal to the height H1 of the gas sensor module 10A from the mounting surface 63.
  • the height H2 from the mounting surface 63 of the printed wiring board 61 to the upper surface 32u of the side wall 32A is smaller than the height H1 of the gas sensor module 10A. That is, H1> H2.
  • a gap G1 is formed between the housing 62 and the upper surface 32u of the side wall 32A by the difference in height (H1-H2), and a passage through which a gas flows is ensured.
  • the distance IN4 between the mounting surface 63 of the printed wiring board 61 and the housing 62 and the height H1 of the gas sensor module 10A from the mounting surface 63 are substantially the same, there is a gap G1 as a gas passage.
  • Gas can be introduced into the detection space S1 from the outside through the opening 30a.
  • the size of the opening 30a for example, the length of one side in the horizontal direction D1 is shorter than the length of one side of the gas sensor module 10A, and the length of the other side is 0.1 mm to 0.4 mm.
  • the area of each opening 30a is, for example, 0.01 mm 2 to 2 mm 2 .
  • the step between the upper surface 32u of the side wall 32A and the upper surface 33u (see FIG. 21) of the lid 33A is large.
  • it is preferably 0.01 mm or more.
  • cover 33A is 0.025 mm or more.
  • the step between the side wall 32A and the lid 33A is substantially equal to the thickness of the lid 33A.
  • the sidewall forming member 125 can be made of the same material as the sidewall forming member 120, and the lid 33A can be made of the same material as the lid 33.
  • the dicing tape 151 is attached to the lid 33A and the side wall forming member 125 as shown in FIG.
  • the step between the side wall forming member 125 (side wall 32A) and the lid 33A is small, for example, 2 mm or less. Furthermore, in order to block the opening 30a and make it difficult to peel off, it is preferably 0.5 mm or less.
  • the side wall forming member 125 and the collective substrate 110 are diced by the blade 152 together with the dicing tape 151.
  • the blade 152 cuts the central portion of the sidewall forming member 125 along the direction in which the sidewall forming member 125 extends. During the timing, cooling water is applied to the blade 152.
  • the opening 33a of the lid 33A that becomes the bottom during dicing is blocked by the dicing tape 151, it is possible to prevent the cooling water from entering the chip arrangement space 130. After the dicing, the gas sensor module 10A is dried.
  • the opening 30a may be formed by a shape other than the recess 33b.
  • the opening 30a may be formed by making the width W1 of the lid 33A smaller than the width W2 of the chip arrangement space 130, for example.
  • openings 30a may be formed at the four corners of the lid 33A by providing, for example, notches 33c at the four corners of the lid 33A.
  • the opening 30a may be formed by rotating the lid 33A shown in FIG. 25 (b) 45 degrees and overlapping the side wall 32A.
  • the gas sensor module 10A that detects a specific type of gas using the gas sensitive body 27 has been described.
  • the gas sensor module of the present invention is not limited to the one that detects a specific type of gas.
  • the present invention can be applied to, for example, a gas sensor module in which the gas sensor element 40 detects a gas flow rate.
  • FIG. 26 schematically shows a planar shape of the gas sensor module 10B according to the third embodiment
  • FIG. 27 shows a cross-sectional shape cut along the line VII-VII in FIG. It is shown schematically.
  • a gas sensor module 10B according to the third embodiment includes a semiconductor chip 20 and a package 30B.
  • the gas sensor element 40 is formed on the semiconductor chip 20 of the gas sensor module 10B according to the third embodiment.
  • the package 30B includes a substrate 31, side walls 32A, and a lid 33B.
  • a side wall 32 ⁇ / b> A is fixed to the substrate 31.
  • the side wall 32A of the third embodiment is the same as the side wall 32A of the second embodiment.
  • Three openings 33a are formed in the lid 33B of the third embodiment.
  • the lid 33B has projections 33d, one at each of the four corners on the top surface. Note that the same material as the lid 33 can be used for the lid 33B.
  • the fixing of the side wall 32A to the substrate 31 and the fixing of the lid 33B to the side wall 32A in the third embodiment are performed in the same manner as the fixing of the side wall 32 to the substrate 31 and the fixing of the lid 33 to the side wall 32 of the first embodiment. Is called. Further, the semiconductor chip 20 and the terminal 34 are connected by the bonded wire 29.
  • the package 30 ⁇ / b> B also has a flat shape in which the length in the direction D ⁇ b> 1 horizontal to the semiconductor chip 20 is longer than the length in the direction D ⁇ b> 2 perpendicular to the semiconductor chip 20.
  • FIG. 28 shows a cross-sectional shape of a device 65 in which the gas sensor module 10B is incorporated.
  • the interval IN5 between the mounting surface 63 of the printed wiring board 61 and the housing 62 of the device 65 shown in FIG. 28 is substantially equal to the height H3 of the gas sensor module 10B from the mounting surface 63.
  • the height H4 from the mounting surface 63 of the printed wiring board 61 to the upper surface 33u (see FIG. 27) of the lid 33B is smaller than the height H3 of the gas sensor module 10B. That is, H3> H4. Due to the difference in height (H3 ⁇ H4), a gap G2 is formed between the housing 62 and the upper surface 33u (see FIG.
  • the side wall 32A Even if the distance IN5 between the mounting surface 63 of the printed wiring board 61 and the housing 62 and the height H3 of the gas sensor module 10B from the mounting surface 63 are substantially the same, there is a gap G2 as a gas passage. Gas can be introduced into the detection space S1 from the outside through the opening 33a.
  • the area of each of the openings 33a is, for example, 0.01 mm 2 to 0.2 mm 2 .
  • the projection 33d is preferably higher, for example, 0.01 mm or more.
  • the height of the protrusion 33d is preferably 0.025 mm or more.
  • the height of the protrusion 33d is preferably 0.5 mm or less.
  • the side wall forming member 125 and the collective substrate 110 are diced by the blade 152 together with the dicing tape 151.
  • the blade 152 cuts the central portion of the sidewall forming member 125 along the direction in which the sidewall forming member 125 extends.
  • cooling water is applied to the blade 152.
  • the opening 33a of the lid 33B that becomes the bottom during dicing is blocked by the dicing tape 151, it is possible to prevent the cooling water from entering the chip arrangement space 130.
  • the gas sensor module 10B is dried.
  • the gas sensor module 10B having the protrusion 33d of the third embodiment may be configured to further form both the opening 32a described in the first embodiment and the opening 30a described in the second embodiment. Good. (13-4) Modification 3D
  • the gas sensor module 10B that detects a specific type of gas using the gas sensitive body 27 has been described.
  • the gas sensor module of the present invention is not limited to that that detects a specific type of gas.
  • the present invention can be applied to, for example, a gas sensor module in which the gas sensor element 40 detects a gas flow rate.
  • the package 30B of the gas sensor module 10 of the first embodiment and the package 30B of the gas sensor module 10B of Modification 3A have a plurality of openings 32a communicating with the detection space S1 on the side wall 32.
  • the package 30A of the gas sensor module 10A of the second embodiment and the package 30B of the gas sensor module 10B described in Modification 3B have a plurality of openings 30a communicating with the detection space S1 between the side wall 32A and the lid 33A. Have.
  • the package 30A of the gas sensor module 10A described in the modified example 2B and the package 30B of the gas sensor module 10B described in the modified example 3C include a plurality of sidewalls 32, a plurality of spaces communicating with the detection space S1 between the sidewall 32A and the lid 33A. Openings 32a and 30a are provided. Gas flows from the outside into the detection space S1 through some of the openings 30a, 32a among the plurality of openings 30a, 32a communicating with the detection space S1, and flows out through the remaining openings 30a, 32a. it can.
  • the plurality of openings 30a and 32a are not blocked by the casing 62 even when the casing 62 is in contact with the upper surfaces of the gas sensor modules 10, 10A, and 10B. Therefore, the gas sensor modules 10, 10 ⁇ / b> A, and 10 ⁇ / b> B described above can easily detect gas even when attached to a mounting space having a short length in the direction perpendicular to the semiconductor chip 20.
  • the gas sensor module 10A having a plurality of openings 30a communicating with the detection space S1 at least between the side wall 32A and the lids 33A and 33B.
  • the thickness of the lids 33A, 33B is preferably 0.01 mm or more and 2 mm or less. Since the lids 33A and 33B have a thickness of 0.01 mm or more, even if the gas sensor modules 10A and 10B are mounted in a narrow mounting space in which the housing 62 is in contact with the upper surfaces of the lids 33A and 33B, the gas is supplied to the plurality of openings.
  • the gas sensor modules 10 ⁇ / b> A and 10 ⁇ / b> B are intended to improve the reliability and quality of gas introduction into the detection space S ⁇ b> 1 when mounted in a mounting space whose length in the direction perpendicular to the semiconductor chip 20 is short. Can do.
  • the package 30B of the gas sensor module 10B of the third embodiment and the modified examples 3A to 3C is for forming a plurality of openings 33a communicating with the detection space S1 and a passage for guiding gas to the plurality of openings 33a in the lid 33B. 33d.
  • Gas can flow into the detection space S1 from the outside through a part of the openings 33a among the plurality of openings 33a communicating with the detection space S1, and the gas can flow out through the remaining openings 33a.
  • the plurality of openings 33a are not blocked by the casing 62 even when the casing 62 is in contact with the upper portion of the gas sensor module 10B due to the presence of the protrusions 33d. Therefore, the gas sensor module 10B described above can easily detect a gas even when attached to a mounting space having a short length in a direction perpendicular to the semiconductor chip 20.
  • the protrusion formed on the upper surface of the cover 33B is 0.01 mm or more and 2 mm or less. Since the height of the protrusion 33d is 0.01 mm or more, even if the gas sensor module 10B is mounted in a narrow mounting space where the casing 62 is in contact with the upper portion of the lid 33B, the gas is detected through the plurality of openings 33a. Can lead to.
  • the gas sensor modules 10 ⁇ / b> A and 10 ⁇ / b> B are intended to improve the reliability and quality of gas introduction into the detection space S ⁇ b> 1 when mounted in a mounting space whose length in the direction perpendicular to the semiconductor chip 20 is short. Can do.
  • the lid 33 is bonded to the side wall forming member 120, and the plurality of chip arrangement spaces 130 are covered with the lid 33, thereby the gas sensor module. 10 is assembled. Then, at least the side wall forming member 120 and the collective substrate 110 are diced so that the plurality of depressions 121 become openings 32 a communicating with the chip arrangement space 130, thereby forming the gas sensor module 10 formed on one collective substrate 110. Isolate. Or in the manufacturing method of the gas sensor module 10 which concerns on the modifications 1B and 1C of 1st Embodiment, it demonstrates using Fig.18 (a) and FIG.18 (b) or FIG.19 (a) and FIG.19 (b).
  • the side wall forming member 120 having a plurality of recesses 121 corresponding to one chip arrangement space 130 is injection-molded with one lid forming member 140 arranged so as to surround the plurality of chip arrangement spaces 130. It is formed by.
  • the plurality of semiconductor chips 20 on which the gas sensor elements 40 are formed are placed in the plurality of regions of the collective substrate 110 corresponding to the plurality of chip arrangement spaces 130.
  • the wires 29 are electrically connected to the terminals 34 of the collective substrate 110 by wire bonding. As described with reference to FIGS. 18E and 18F or FIGS.
  • the side wall forming member 120 is bonded to the collective substrate 110 to assemble a plurality of gas sensor modules 10. . Then, the collective substrate 110, the side wall forming member 120, and the lid forming member 140 are diced so that the recesses 121 at a plurality of locations become openings 32a that communicate with the chip arrangement space 130, and are formed on one collective substrate 110. The gas sensor module 10 is separated. A coolant other than water can be used.
  • the depression 121 is formed in the side wall forming member 120 by injection molding, and thus the direction perpendicular to the semiconductor chip 20 is formed. Even if the length of the gas sensor module 10 is smaller than 3 mm, for example, the opening 32 a can be easily formed in the side wall 32.
  • the side wall forming member 120 surrounding the plurality of chip placement spaces 130 is formed by injection molding on one collective substrate 110 or one lid forming member 140.
  • the plurality of semiconductor chips 20 on which the gas sensor elements 40 are formed correspond to the plurality of chip arrangement spaces 130. It fixes to the several area
  • a plurality of openings 30a communicating with the chip arrangement space 130 are formed between the lid 33A corresponding to each of the chip arrangement spaces 130 and the side wall forming member 125.
  • a plurality of gas sensor modules 10A are assembled by adhering the side wall forming member 125, and a dicing tape 151 is attached so as to close the plurality of openings 30a.
  • the side wall forming member 125 is formed on the collective substrate 110, the side wall forming member 125 and the collective substrate 110 are diced by the dicing blade 152 while a cooling liquid is being applied to the dicing blade 152, and the side wall forming member 125 is also covered.
  • the collective substrate 110, the side wall forming member 125, and the lid forming member 140 are diced by the dicing blade 152 while applying a cooling liquid to the dicing blade 152.
  • the plurality of gas sensor modules 10A are separated.
  • a coolant other than water can be used.
  • the gas sensor module 10 in the direction perpendicular to the semiconductor chip 20 is formed. Even if the length is smaller than 3 mm, for example, the opening 30a can be easily formed between the side wall 32A and the lid 33A. Further, the dicing tape 151 can prevent the coolant from entering the chip arrangement space 130.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ceramic Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

【課題】ガスセンサ素子の形成されている半導体チップに対する垂直な方向の長さが短い実装スペースに取り付けられたときでもガスに関する検出を容易に行えるガスセンサモジュールを提供する。 【解決手段】半導体チップ20に平行な方向D1の長さが半導体チップ20に垂直な方向D2の長さよりも長い扁平なパッケージ30は、半導体チップ20が電気的に接続され且つ固定されている基板31、基板31に固着されている側壁32及び側壁32に固着されている蓋33を含んでいる。パッケージ30は、半導体チップ20の周囲にガスが流れる検出空間S1を有し、側壁32に及び/または側壁32と蓋33との間に、検出空間S1に連通する複数の開口部32aを有する。

Description

ガスセンサモジュール及びその製造方法
 本発明は、ガスセンサモジュール及びその製造方法に関し、特にガスセンサ素子が集積されている半導体チップを備えるガスセンサモジュール及びその製造方法に関する。
 従来から、ガスに関する検出を行うために、半導体基板上に、立体形状をエッチングプロセスなどにより形成した集積化デバイスとしてガスセンサモジュールが提案されている。例えば、特許文献1(特開2014-81367号公報)には、ヒータと感応膜とがMEMS(Micro Electro Mechanical Systems)構造により形成されたガスセンサ素子と、ガスセンサ素子を収納するケースとを備えるガスセンサモジュールが開示されている。
特開2014-81367号公報
 特許文献1に記載されているガスセンサモジュールは、ガスセンサ素子の形成されている半導体チップに平行な方向よりも半導体チップに垂直な方向の長さが短い扁平な外形を有している。特許文献1のように小型化されたガスセンサモジュールは、様々な機器の小さなスペースに組み込まれることになる。ガスセンサモジュールが組み込まれる機器のスペースがガスセンサモジュールの高さとほぼ同じになると、ガスセンサモジュールの上面に形成されている開口部を通してガスが流通し難くなる。開口部を通してガスが流通し難くなるとガスセンサモジュールによる検出が難しくなる。
 本発明の課題は、ガスセンサ素子の形成されている半導体チップに対する垂直な方向の長さが短い実装スペースに取り付けられたときでもガスに関する検出を容易に行えるガスセンサモジュールを提供することにある。
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係るガスセンサモジュールは、ガスセンサ素子の形成されている半導体チップと、半導体チップが電気的に接続され且つ固定されている基板、基板に固着されている側壁及び側壁に固着されている蓋を含み、半導体チップの周囲にガスが流れる検出空間を有し、半導体チップに平行な方向の長さが半導体チップに垂直な方向の長さよりも長い扁平なパッケージとを備え、パッケージは、側壁に及び/または側壁と蓋との間に、検出空間に連通する複数の開口部を有する。
 一見地に係るガスセンサモジュールでは、検出空間に連通する複数の開口部のうちの一部の開口部を通して外部から検出空間にガスが流入して残りの開口部を通してガスを流出させることができる。そして、これら複数の開口部は、例えばガスセンサモジュールを収納する筐体がガスセンサモジュールの上面に接しても筐体によって塞がれない。従って、ガスセンサモジュールは、半導体チップに対する垂直な方向の長さが短い筐体の実装スペースに取り付けられたときでもガスに関する検出を容易に行える。
 上述のガスセンサモジュールにおいて、パッケージは、少なくとも側壁と蓋との間に、検出空間に連通する複数の開口部を有し、蓋の厚みが0.01mm以上2mm以下になるように構成されてもよい。このように構成されたガスセンサモジュールでは、蓋の厚みが0.01mm以上あることによって、蓋の上面に例えば筐体が接するような狭い実装スペースにガスセンサモジュールが実装されても、ガスを複数の開口部を通して検出空間に導くことができる。また、蓋の厚みが2mm以下であることによって、例えばパッケージダイシング時にダイシングテープを貼り付けて開口部から冷却水などとともに異物が侵入するのを防止することができる。それらの結果、ガスセンサモジュールは、半導体チップに対する垂直な方向の長さが短い実装スペースに実装されたときの検出空間へのガス導入の確実性と、ガスセンサモジュールの品質の向上とを図ることができる。
 本発明の他の見地に係るガスセンサモジュールは、ガスセンサ素子の形成されている半導体チップと、半導体チップが電気的に接続され且つ固定されている基板、基板に固着されている側壁及び側壁に固着されている蓋からなり、半導体チップの周囲にガスが流れる検出空間を有し、半導体チップに平行な方向の長さが半導体チップに垂直な方向の長さよりも長い扁平なパッケージとを備え、パッケージは、蓋に、検出空間に連通する複数の開口部と、複数の開口部にガスを導く通路を形成するための突起とを有する。
 他の見地に係るガスセンサモジュールでは、検出空間に連通する複数の開口部のうちの一部の開口部を通して外部から検出空間にガスが流入して残りの開口部を通してガスを流出させることができる。そして、これら複数の開口部は、突起が存在することによって、例えばガスセンサモジュールを収納する筐体がガスセンサモジュールの上部に接しても筐体によって塞がれない。従って、このガスセンサモジュールは、半導体チップに対する垂直な方向の長さが短い実装スペースに取り付けられたときでもガスに関する検出を容易に行える。
 他の見地のガスセンサモジュールにおいて、パッケージは、突起の高さが0.01mm以上2mm以下になるように構成されてもよい。このように構成されたガスセンサモジュールでは、突起の高さが0.01mm以上あることによって、蓋の上部に例えば筐体が接するような狭い実装スペースにガスセンサモジュールが実装されても、ガスを複数の開口部を通して検出空間に導くことができる。また、突起の高さが2mm以下であることによって、例えばパッケージダイシング時にダイシングテープを貼り付けて開口部から冷却水などとともに異物が侵入するのを防止することができる。それらの結果、ガスセンサモジュールは、半導体チップに対する垂直な方向の長さが短い実装スペースに実装されたときの検出空間へのガス導入の確実性と、ガスセンサモジュールの品質の向上とを図ることができる。
 本発明の一見地に係るガスセンサモジュールの製造方法は、1つのチップ配置空間に対応して複数箇所の窪みを持つ側壁形成部材を、複数のチップ配置空間を囲むように1つの集合基板または1つの蓋形成部材に射出成形により形成し、ガスセンサ素子が形成されている複数の半導体チップを複数のチップ配置空間に対応する集合基板の複数の領域にダイボンディングにより固定するとともにワイヤボンディングにより集合基板の端子に電気的に接続し、側壁形成部材を、蓋、蓋形成部材または集合基板に接着してガスセンサモジュールを組み立て、複数箇所の窪みがチップ配置空間に連通する開口部になるように少なくとも側壁形成部材及び集合基板をダイシングすることによって、1つの集合基板に形成されているガスセンサモジュールを分離する、ものである。
 一見地に係るガスセンサモジュールの製造方法では、射出成形によって側壁形成部材に窪みを形成しているので、半導体チップに対して垂直な方向のモジュール長さが例えば3mmよりも小さくなっても、側壁に開口部を容易に形成することができる。
 本発明の他の見地に係るガスセンサモジュールの製造方法は、1つの集合基板または1つの蓋形成部材に複数のチップ配置空間を囲む側壁形成部材を射出成形により形成し、ガスセンサ素子が形成されている複数の半導体チップを複数のチップ配置空間に対応する集合基板の複数の領域にダイボンディングにより固定するとともにワイヤボンディングにより集合基板の端子に電気的に接続し、チップ配置空間の各々に対応する蓋と側壁形成部材との間にチップ配置空間に連通する複数の開口部が形成されるように側壁形成部材を接着して複数のガスセンサモジュールを組み立て、複数の開口部を塞ぐようにダイシングテープを貼り付け、ダイシングブレードに冷却液を掛けながら少なくとも側壁形成部材及び集合基板をダイシングブレードによりダイシングすることによって、1つの集合基板に形成されている複数のガスセンサモジュールを分離する、ものである。
 他の見地に係るガスセンサモジュールの製造方法では、側壁形成部材と蓋との間に隙間を形成しているので、半導体チップに対して垂直な方向のモジュール長さが例えば3mmよりも小さくなっても、側壁と蓋との間に開口部を容易に形成することができる。また、ダイシングテープにより、冷却液がチップ配置空間の中に侵入するのを防ぐことができる。
 本発明のガスセンサモジュールは、ガスセンサ素子の形成されている半導体チップに対する垂直な方向の長さが短い実装スペースに取り付けられたときでもガスに関する検出を容易に行える。また、本発明のガスセンサモジュールの製造方法により、このようなガスセンサモジュールの提供が実現される。
第1実施形態に係るガスセンサモジュールの模式的な断面図。 第1実施形態のガスセンサモジュールが組み込まれた実装面と筐体の間隔の広い機器の模式的な断面図。 第1実施形態のガスセンサモジュールが組み込まれた実装面と筐体の間隔の狭い機器の模式的な断面図。 ガスセンサモジュール内の半導体チップの平面図。 半導体チップに形成されたガスセンサ素子の平面図。 図5のI-I線に沿って切断したガスセンサ素子の断面図。 半導体ウェーハのダイシングを示す模式的な斜視図。 側壁形成部材が射出成形された集合基板の平面図。 図8のII-II線に沿って切断した集合基板の断面図。 半導体チップが集合基板にダイボンディングされた状態を示す模式的な断面図。 ワイヤボンディングされた集合基板を示す模式的な平面図。 ワイヤボンディングされた集合基板を示す模式的な断面図。 側壁形成部材に蓋を固着する組立工程を説明するための平面図。 側壁形成部材に蓋を固着する組立工程を説明するための模式的な断面図。 パッケージダイシングを示す模式的な斜視図。 パッケージダイシングを説明するための集合基板の模式的な断面図。 (a)変形例1Aに係る製造方法において集合基板に側壁形成部材が形成された状態を示す平面図、(b)図17(a)のIII-III線に沿って切断された集合基板の断面図、(c)側壁形成部材に蓋を固着する組立工程を説明するための平面図、(d)パッケージダイシングを説明するための集合基板の模式的な断面図。 (a)変形例1Bに係る製造方法において集合基板に側壁形成部材が形成された状態を示す平面図、(b)図18(a)のIV-IV線に沿って切断された集合基板の断面図、(c)半導体チップが集合基板にダイボンディングされた状態を示す模式的な平面図、(d)ダイボンディングされた状態を示す模式的な断面図、(e)側壁形成部材に固着された蓋を示す平面図、(f)パッケージダイシングを説明するための集合基板の模式的な断面図。 (a)変形例1Cに係る製造方法において集合基板に側壁形成部材が形成された状態を示す平面図、(b)図19(a)のV-V線に沿って切断された集合基板の断面図、(c)側壁形成部材に固着された蓋を示す平面図、(d)パッケージダイシングを説明するための集合基板の模式的な断面図。 第2実施形態係るガスセンサモジュールの平面図。 図20のVI-VI線に沿って切断したガスセンサモジュールの模式的な断面図。 第2実施形態のガスセンサモジュールが組み込まれた実装面と筐体の間隔の狭い機器の模式的な断面図。 側壁形成部材に蓋が固着された状態を示す平面図。 蓋と蓋に貼り付けられたダイシングテープを示す模式的な断面図。 (a)変形例2Aに係るガスセンサモジュールの一例を示す平面図、(b)変形例2Aに係るガスセンサモジュールの他の例を示す平面図、(c)変形例2Aに係るガスセンサモジュールのさらに他の例を示す平面図。 第3実施形態に係るガスセンサモジュールを示す平面図。 図26のVII-VII線に沿って切断したガスセンサモジュールの模式的な断面図。 第3実施形態のガスセンサモジュールが組み込まれた実装面と筐体の間隔の狭い機器の模式的な断面図。 蓋と蓋に貼り付けられたダイシングテープを示す模式的な断面図。
〈第1実施形態〉
 本発明の第1実施形態に係るガスセンサモジュールについて図1乃至図19を用いて説明する。
(1)ガスセンサモジュールの構成
 図1には、第1実施形態に係るガスセンサモジュール10の断面形状が模式的に示されている。第1実施形態に係るガスセンサモジュール10は、半導体チップ20とパッケージ30とを備えている。
 半導体チップ20には、ガスセンサ素子40が形成されている。
 パッケージ30は、基板31と側壁32と蓋33とを含んでいる。パッケージ30は、例えば、平面形状が5mm×5mm以下の矩形であり、高さが3mm以下である。基板31には、側壁32が固着されている。基板31への側壁32の固着は、例えば後述するように基板31に側壁32を射出成形することによって行うことができる。また、他の固着方法としては、例えば、接着剤により基板31に側壁32を接着する方法がある。
 基板31には、半導体チップ20が例えば接着剤によって固定されている。側壁32には、蓋33が固着されている。この側壁32への蓋33の固着は、例えば接着剤により側壁32に蓋33を接着することにより行うことができる。また、他の固着方法としては、例えば、蓋33に側壁32を射出成形する方法がある。
 パッケージ30の底部側には、端子34が設けられている。パッケージ30は、ノンリードパッケージである。この端子34を外部回路に接続することによって、ガスセンサモジュール10と外部回路との電気的接続が行われる。例えばボンディングされたワイヤ29によって、端子34と半導体チップ20とが電気的に接続されている。
 パッケージ30は、半導体チップ20に水平な方向D1の長さが、半導体チップ20に垂直な方向D2の長さよりも長い扁平な形状を呈する。パッケージ30は、その内部に、半導体チップ20の周囲にガスが流れる検出空間S1を有する。パッケージ30は、検出空間S1に連通する2つの開口部32aを側壁32に有している。さらに、パッケージ30は、検出空間S1に連通する2つの開口部33aを蓋33に有している。開口部33aの大きさは、例えば水平方向D1の長さが0.1mm~0.5mmである。これら開口部32a,33aの各々の面積は、例えば0.001mm~0.2mmである。
(2)ガスセンサモジュールの使用形態
 図1に示されているガスセンサモジュール10は、例えば特定種類のガスを検知するガスセンサ素子40を有する場合には、検出空間S1に流入するガスの中に特定種類のガスが存在するか否かの検出を行う。このようなガスセンサモジュール10が組み込まれる機器には、例えばガス警報器、アルコールチェッカー、自動車、医療機器、空気調和機及び各種測定器などがある。
 図2には、ガスセンサモジュール10が組み込まれた機器60の断面形状が示されている。機器60は、プリント配線板61と筐体62とを備えている。プリント配線板61には、小型の固体デバイス71,72とともにガスセンサモジュール10が実装されている。言い換えると、プリント配線板61は、ガスセンサモジュール10にとっての実装場所の一例である。小型の固体デバイスとしては、例えばチップ抵抗、チップコンデンサ、集積回路、無線モジュール及びMEMSデバイスなどがある。プリント配線板61への固体デバイス71,72及びガスセンサモジュール10の実装は、例えば半田付けにより行われる。
 図2に示されている機器60のプリント配線板61の実装面63と筐体62との間隔IN1は、実装面63からのガスセンサモジュール10の高さH1を差し引いても、ガスセンサモジュール10の蓋33の上面と筐体62との間に、ガスが流れるのに十分な間隔IN2が残る。このような場合には、ガスセンサモジュール10の蓋33の開口部33aと側壁32の開口部32aとを通して検出対象の特定種類のガスを検出空間S1に導入することができる。それに対して、図3に示されている機器65は、プリント配線板61の実装面63と筐体62との間隔IN3が、実装面63からのガスセンサモジュール10の高さH1と実質的に同じである。そのため、機器65においては筐体62によって蓋33の開口部33aが塞がる可能性が高いが、そのような機器65にガスセンサモジュール10が実装されても、側壁32の開口部32aを通じて、特定種類のガスを検出空間S1に導入することができるように構成されている。
(3)ガスセンサモジュールの詳細構成
 図4には、ガスセンサモジュール10の半導体チップ20が拡大して示されている。半導体チップ20は、後ほど説明する図7に示されている1つの半導体ウェーハ100に、複数形成される。半導体ウェーハ100としては、例えばシリコンウェーハが用いられる。半導体チップ20は、1辺が例えば2mm以下の矩形形状を呈する。半導体チップ20の中央部分にはガスセンサ素子40が形成されている。ガスセンサ素子40は、平面方向の長さが例えば0.1mm以下である。このガスセンサ素子40から半導体チップ20の端部に向かって電極配線パターン28が延びている。電極配線パターン28には、ワイヤ29がボンディングされている。このワイヤ29によって、半導体チップ20の電極配線パターン28と端子34とが電気的に接続されている。
 図5には、ガスセンサ素子40の部分が拡大して示されており、図6には、図5のI-I線断面が示されている。シリコンからなるベース21には、ベース21の表面に開口部を有する空洞部21aが形成されている。空洞部21aは、例えば半導体ウェーハ100がエッチングされることで形成される。ベース21の表面には酸化膜22が形成されている。ベース21がシリコンからなる場合には、酸化膜22はシリコン酸化膜になる。酸化膜22の上に絶縁膜23が形成されている。絶縁膜23の上にヒータ電極24が形成されている。ヒータ電極24に通電することにより、感ガス体27に対する加熱を行うことができる。感ガス体27を加熱するために、図5のヒータ電極24a,24bに直流電圧が印加される。ヒータ電極24の上には絶縁膜25が形成されている。この絶縁膜25の上にセンサ電極26a,26bと感ガス体27が形成され、センサ電極26a、26bは感ガス体27を介して電気的に接続されている。感ガス体27が特定種類のガスに曝されることにより感ガス体27の抵抗値が変化し、センサ電極26a,26b間の抵抗値が変化する。なお、センサ電極26a,26bは、図6に示されているセンサ電極26に含まれるものである。
(4)ガスセンサモジュールの製造方法
 第1実施形態に係るガスセンサモジュール10の製造方法について図7乃至図16を用いて説明する。図7に示されている半導体ウェーハ100には、図4に示されている半導体チップ20が多数形成されている。半導体ウェーハ100は、ダイシングテープ101に貼り付けられている。ダイシングテープ101に貼り付けられた状態で半導体ウェーハ100がブレード102によりダイシングされることにより、複数の半導体チップ20が半導体ウェーハ100から切り出される。
 また、複数の半導体チップ20が準備されるのと並行して、図8及び図9に示されている集合基板110に側壁形成部材120が形成される。図9は、図8のII-II線に沿って切断した断面図である。集合基板110には、例えばガラスクロスにエポキシ樹脂をしみ込ませて硬化処理されたFR4(Flame Retardant Type 4)又はガラスクロスにポリイミド樹脂又は変性ポリイミド樹脂をしみ込ませて硬化処理されたGPYを主材として用いることができる。側壁形成部材120は、例えば射出成形により集合基板110に一体に形成される。側壁形成部材120には、例えば、エポキシ系樹脂(フィラー入り)、液晶ポリマー、フェノール樹脂、又はポリエステルを用いることができる。側壁形成部材120に囲まれた複数のチップ配置空間130が形成されている。側壁形成部材120には、各チップ配置空間130に対して2箇所の窪み121が形成されている。なお、本明細書では集合基板110に達するものも窪みと呼ぶ。図10に示されているように、複数のチップ配置空間130の各々に半導体チップ20が一つまたは所定の個数ずつ割り当てられ、集合基板110に複数の半導体チップ20がダイボンディングされる。半導体チップ20が取り付けられる位置は、例えば、図11に示されているように感ガス体27が窪み121を結ぶ直線LN1上に配置される位置である。
 図11及び図12に示されているように、半導体チップ20のワイヤボンディングにより、ワイヤ29が集合基板110の端子34と半導体チップ20に接続される。そのために、端子34の一部は、集合基板110のチップ配置空間130に対して露出している。
 図13及び図14に示されているように、複数の蓋33が側壁形成部材120に接着されてガスセンサモジュール10が組み立てられる。複数のチップ配置空間130は、蓋33によって覆われてガスセンサモジュール10の検出空間S1になる。各蓋33には、2つの開口部33aが形成されている。2つの開口部33aを結ぶ直線LN2の下には、感ガス体27が配置されている。互いに隣接する蓋33は、それらの間に隙間ができるように側壁形成部材120の上面に塗布された接着剤により接着される。側壁形成部材120の上面に接着剤を塗布するときは、窪み121を接着剤で塞がないように塗布する。例えば、スクリーン印刷によって窪み121の部分を避けて側壁形成部材120の上面にのみ接着剤を塗布する。このように、各チップ配置空間130を各蓋33で覆ってガスセンサモジュール10が組み立てられる。蓋33には、例えば金属、セラミック又はガラスを用いることができる。蓋33に用いられる金属としては、例えばコバール、ステンレス及びニッケルがある。
 側壁形成部材120に蓋33が接着された後、図15及び図16に示されているように、蓋33をダイシングテープ151に貼り付ける。そして、ブレード152を用いたパッケージダイシングにより、1つの集合基板110に形成されているガスセンサモジュール10が分離される。図16の矢印Ar1の箇所が切断された箇所である。このとき、端子34もブレード152によって切断される。なお、ここでは端子34がブレード152によって切断される場合について説明しているが、端子34を始めからガスセンサモジュール10ごとに分離して形成することで、ブレード152により端子34を切断しない製造方法にすることもできる。このパッケージダイシングでは、2箇所の窪み121がチップ配置空間130に連通する開口部32aになるように、ダイシングテープ151とともに側壁形成部材120と集合基板110がブレード152によりダイシングされる。ブレード152は、側壁形成部材120が延びる方向に沿って側壁形成部材120の中央部を切断する。タイシング時には、ブレード152には、冷却水が掛けられる。しかしながら、ダイシング時に底になる蓋33の開口部33aがダイシングテープ151によって塞がれるので冷却水がチップ配置空間130の中には入り難くなる。ダイシング後には、ガスセンサモジュール10の乾燥が行われる。
(5)変形例
(5-1)変形例1A
 上記第1実施形態のガスセンサモジュール10の製造方法では、側壁形成部材120に設けられている窪み121が集合基板110にまで達している。しかし、窪み121の深さは、図17(a)及び図17(b)に示されているように浅く形成することもできる。図17(b)には図17(a)のIII-III線に沿って切断した集合基板110の断面が示されている。変形例1Aで説明しているガスセンサモジュール10は、図17(c)に示されているようにダイボンディングとワイヤボンディングの後に蓋33を側壁形成部材120に接着し、その後に図17(d)に示されているようにパッケージダイシングすることにより得られる。窪み121の深さが浅いことから、側壁32の開口部32aが基板31よりも上に配置される。なお、第1実施形態と同様の箇所には同様の符号を付している。
(5-2)変形例1B
 上記第1実施形態及び変形例1Aのガスセンサモジュール10の製造方法では、集合基板110に側壁形成部材120を形成する場合について説明した。しかし、側壁形成部材120は、例えば図18(a)及び図18(b)に示されているように、蓋形成部材140に側壁形成部材120が形成されてもよい。図18(b)には図18(a)のIV-IV線に沿って切断した蓋形成部材140の断面が示されている。側壁形成部材120は、例えばインサートモールド成形により蓋形成部材140と一体に成形される。側壁形成部材120には、各チップ配置空間130に2つの窪み121が形成されている。また、蓋形成部材140には、各チップ配置空間130に対して、2つの開口部33aが形成されている。図18(c)及び図18(d)に示されているように、半導体チップ20は、ダイボンディング及びワイヤボンディングにより、集合基板110に取り付けられる。そして、図18(e)及び図18(f)に示されているように、チップ配置空間130の中に半導体チップ20が配置されて、蓋形成部材140及び側壁形成部材120が集合基板110に接着される。このときの接着剤の塗布も、第1実施形態のガスセンサモジュール10の製造方法と同様に、窪み121に接着剤が入り込まないように行われる。開口部33a及び窪み121を通る直線LN2の下に感ガス体27が配置されるように、蓋形成部材140が集合基板110に被せられるのは、変形例1Aと同様である。図18(f)に示されているように変形例1Bの場合には、パッケージダイシングのときには、第1実施形態においてブレード152によって切断された集合基板110と側壁形成部材120だけでなく、蓋形成部材140もブレード152によって切断される。
(5-3)変形例1C 
 第1実施形態と変形例1Aのガスセンサモジュール10の関係のように、変形例1Bのガスセンサモジュール10よりも窪み121を浅く形成してもよい。図19(a)及び図19(b)には、図18(a)及び図18(b)に示されている窪み121よりも浅い窪み121が示されている。図19(b)には、図19(a)のV-V線に沿って切断した蓋形成部材140の断面が示されている。変形例1Cのガスセンサモジュール10においては、図19(c)及び図19(d)に示されているように、側壁32の開口部32aが基板31に達するが蓋33には達しないように形成される。
(5-4)変形例1D
 第1実施形態のガスセンサモジュール10には、側壁32だけでなく、蓋33にも開口部33aが形成されているが、本発明のガスセンサモジュールは、側壁32のみに開口部32aが形成されている構成を採ることもできる。
(5-5)変形例1E
 上記第1実施形態では、感ガス体27によって特定種類のガスを検知するガスセンサモジュール10について説明したが、本発明のガスセンサモジュールは、特定種類のガスを検知するものに限られない。本発明は、例えば、ガスセンサ素子40がガスの流量を検出するガスセンサモジュールに適用することもできる。
(5-6)変形例1F
 上記第1実施形態では、複数の蓋33を側壁形成部材120に接着する態様を説明したが、複数の蓋33を接着する替わりに、例えば図18(a)又は図19(a)に示されている複数のチップ配置空間130を覆う大きさの蓋形成部材140(側壁形成部材120が射出成形されていないもの)を1つ用いることもできる。
(5-7)変形例1G
 上記第1実施形態及び各変形例においては、窪み121の深さを同じにしているが、窪み121の深さを変えることで、ガスセンサモジュール10の側壁32に複数形成される開口部32aの高さを互いに異ならせてもよい。開口部32aの高さを異ならせることで、感ガス体27の加熱によって生じる上昇気流により、高い方の開口部32aから気体が主に排出され、低い方法開口部32aから気体が主に吸入されるようにして、気体を入れ換えることができる。
〈第2実施形態〉
 本発明の第2実施形態に係るガスセンサモジュールについて図20乃至図25を用いて説明する。
(6)ガスセンサモジュールの構成
 図20には第2実施形態に係るガスセンサモジュール10Aの平面形状が模式的に示され、図21には、図20のVI-VI線に沿って切断してできる端面の形状が模式的に示されている。第2実施形態に係るガスセンサモジュール10Aは、半導体チップ20とパッケージ30Aとを備えている。
 第2実施形態に係るガスセンサモジュール10Aの半導体チップ20には、第1実施形態に係るガスセンサモジュール10と同様に、ガスセンサ素子40が形成されている。
 パッケージ30Aは、基板31と側壁32Aと蓋33Aとを含んでいる。基板31には、側壁32Aが固着されている。第1実施形態の側壁32と第2実施形態の側壁32Aが異なるのは、側壁32Aには側壁32のような開口部32aが形成されていない点である。また、第2実施形態の蓋33Aにも、第1実施形態の蓋33に形成されていた開口部33aが形成されていない。蓋33Aには、2箇所に凹み部33bが形成されている。蓋33Aは、側壁32Aに接着されたときに側壁32Aよりも内側に入り込む部分を有していることにより、側壁32Aとの間に開口部30aを形成する。図20と図21に示されているガスセンサモジュール10Aでは、この内側に入り込む部分が凹み部33bである。
 第2実施形態における基板31への側壁32Aの固着と側壁32Aへの蓋33Aの固着は、第1実施形態の基板31への側壁32の固着と側壁32への蓋33の固着と同様に行われる。また、半導体チップ20と端子34の接続もボンディングされたワイヤ29によって行われる。
 パッケージ30Aも、パッケージ30と同様に、半導体チップ20に水平な方向D1の長さが、半導体チップ20に垂直な方向D2の長さよりも長い扁平な形状を呈する。そして、ガスセンサモジュール10Aの2つの開口部30aは、パッケージ30Aの内部の検出空間S1に半導体チップ20の周囲にガスを導入するため、パッケージ30Aの外部と検出空間S1とを繋ぐようにそれぞれ連通している。
(7)ガスセンサモジュールの使用形態
 図22には、ガスセンサモジュール10Aが組み込まれた機器65の断面形状が示されている。図22に示されている機器65のプリント配線板61の実装面63と筐体62との間隔IN4は、実装面63からのガスセンサモジュール10Aの高さH1と実質的に等しい。しかし、プリント配線板61の実装面63から側壁32Aの上面32uまでの高さH2は、ガスセンサモジュール10Aの高さH1より小さくなっている。つまり、H1>H2である。これらの高さの差(H1-H2)によって筐体62と側壁32Aの上面32uとの間に隙間G1が形成されて、ガスの流れる通路が確保される。プリント配線板61の実装面63と筐体62との間隔IN4と実装面63からのガスセンサモジュール10Aの高さH1が実質的に同じになっても、ガスの通路としての隙間G1があるので、開口部30aを通して外部からガスを検出空間S1に導き入れることができる。この開口部30aの大きさは、例えば水平方向D1の一辺の長さがガスセンサモジュール10Aの一辺の長さより短く、他辺の長さが0.1mm~0.4mmである。これら開口部30aの各々の面積は、例えば0.01mm~2mmである。
 開口部30aを通して外部からガスを検出空間S1に導き入れるための隙間G1を確保するためには、側壁32Aの上面32uと蓋33Aの上面33u(図21参照)との段差が大きい方が好ましく、例えば0.01mm以上であることが好ましい。また、良好な通気性を確保するには、側壁32Aと蓋33Aの段差が0.025mm以上であることが好ましい。第2実施形態では、側壁32Aと蓋33Aの段差は、実質的には蓋33Aの厚みに等しい。
(8)ガスセンサモジュールの製造方法
 第2実施形態に係るガスセンサモジュール10Aの製造方法について図23及び図24を用いて説明する。図23に示されている側壁形成部材125に蓋33Aを接着する工程までは第1実施形態のガスセンサモジュール10と同様に行えるので、次のパッケージダイシングの工程について説明する。なお、側壁形成部材125には、側壁形成部材120と同じ材料を用いることができ、蓋33Aには、蓋33と同じ材料を用いることができる。
 パッケージダイシングにおいて、ブレード152(図15参照)により切断する前に、図24に示されているように、ダイシングテープ151が蓋33Aと側壁形成部材125に貼り付けられる。ダイシングテープ151で開口部30aを塞ぐために、側壁形成部材125(側壁32A)と蓋33Aの段差が小さい方が好ましく、例えば2mm以下であることが好ましい。さらに、開口部30aを塞いで剥がれ難くするためには、0.5mm以下であることが好ましい。
 このパッケージダイシングでは、ダイシングテープ151とともに側壁形成部材125と集合基板110がブレード152によりダイシングされる。ブレード152は、側壁形成部材125が延びる方向に沿って側壁形成部材125の中央部を切断する。タイシング時には、ブレード152には、冷却水が掛けられる。しかしながら、ダイシング時に底になる蓋33Aの開口部33aがダイシングテープ151によって塞がれるので冷却水がチップ配置空間130の中に入るのを防止することができる。ダイシング後には、ガスセンサモジュール10Aの乾燥が行われる。
(9)変形例
(9-1)変形例2A
 上記第2実施形態では、凹み部33bによって開口部30aを形成する場合について説明したが、凹み部33b以外の形状によって開口部30aを形成してもよい。図25(a)に示されているように、例えば蓋33Aの幅W1をチップ配置空間130の幅W2よりも小さくすることにより開口部30aを形成してもよい。また、図25(b)に示されているように、例えば蓋33Aの四隅に切欠き部33cを設けることにより、蓋33Aの四隅に開口部30aを形成してもよい。さらには、図25(c)に示されているように、図25(b)に示されている蓋33Aを45度回転させて側壁32Aと重ねることにより開口部30aを形成してもよい。
(9-2)変形例2B
 上記第2実施形態及び変形例2Aでは、側壁32Aには開口部が形成されていないが、第2実施形態及び変形例2Aのガスセンサモジュール10Aにおいて、第1実施形態と同様に側壁形成部材125に窪みを形成し、側壁32Aに開口部を形成してもよい。
(9-3)変形例2C
 上記第2実施形態及び変形例2A,2Bでは、蓋33Aに開口部が形成されていないが、第2実施形態及び変形例2A,2Bのガスセンサモジュール10Aに対して、さらに蓋33Aに、第1実施形態で説明した開口部33aと同様の開口部を形成してもよい。
(9-4)変形例2D
 上記第2実施形態のガスセンサモジュール10Aの製造方法では、複数の蓋33Aを側壁形成部材125に接着する場合が示されている。しかし、第2実施形態のガスセンサモジュール10Aの製造方法は、複数の蓋33Aを一つずつ接着する以外に、変形例1B,1Cで説明したように、1つの蓋形成部材に複数の開口部を形成しておいて開口部が側壁形成部材125と重なるように配置してブレードにより切断することによって開口部30aを形成するようにしてもよい。
(9-5)変形例2E
 上記第2実施形態では、感ガス体27によって特定種類のガスを検知するガスセンサモジュール10Aについて説明したが、本発明のガスセンサモジュールは、特定種類のガスを検知するものに限られない。本発明は、例えば、ガスセンサ素子40がガスの流量を検出するガスセンサモジュールに適用することができる。
〈第3実施形態〉
 本発明の第3実施形態に係るガスセンサモジュールについて図26乃至図29を用いて説明する。
(10)ガスセンサモジュールの構成
 図26には第3実施形態に係るガスセンサモジュール10Bの平面形状が模式的に示され、図27には、図26のVII-VII線に沿って切断した断面形状が模式的に示されている。第3実施形態に係るガスセンサモジュール10Bは、半導体チップ20とパッケージ30Bとを備えている。
 第3実施形態に係るガスセンサモジュール10Bの半導体チップ20には、第1実施形態に係るガスセンサモジュール10と同様に、ガスセンサ素子40が形成されている。
 パッケージ30Bは、基板31と側壁32Aと蓋33Bとを含んでいる。基板31には、側壁32Aが固着されている。第3実施形態の側壁32Aは第2実施形態の側壁32Aと同様のものである。第3実施形態の蓋33Bには、開口部33aが3つ形成されている。さらに、蓋33Bには、その上面の4つの隅部にそれぞれ1つずつ突起33dが形成されている。なお、蓋33Bには、蓋33と同じ材料を用いることができる。
 第3実施形態における基板31への側壁32Aの固着と側壁32Aへの蓋33Bの固着は、第1実施形態の基板31への側壁32の固着と側壁32への蓋33の固着と同様に行われる。また、半導体チップ20と端子34の接続もボンディングされたワイヤ29によって行われる。
 パッケージ30Bも、パッケージ30と同様に、半導体チップ20に水平な方向D1の長さが、半導体チップ20に垂直な方向D2の長さよりも長い扁平な形状を呈する。
(11)ガスセンサモジュールの使用形態
 図28には、ガスセンサモジュール10Bが組み込まれた機器65の断面形状が示されている。図28に示されている機器65のプリント配線板61の実装面63と筐体62との間隔IN5は、実装面63からのガスセンサモジュール10Bの高さH3と実質的に等しい。しかし、プリント配線板61の実装面63から蓋33Bの上面33u(図27参照)までの高さH4は、ガスセンサモジュール10Bの高さH3より小さくなっている。つまり、H3>H4である。これらの高さの差(H3-H4)によって筐体62と側壁32Aの上面33u(図27参照)との間に隙間G2が形成されて、ガスが流れる通路が確保される。プリント配線板61の実装面63と筐体62との間隔IN5と実装面63からのガスセンサモジュール10Bの高さH3が実質的に同じになっても、ガスの通路としての隙間G2があるので、開口部33aを通して外部からガスを検出空間S1に導き入れることができる。これら開口部33aの各々の面積は、例えば0.01mm~0.2mmである。
 開口部33aを通して外部からガスを検出空間S1に導き入れるための通路としての隙間G2を確保するためには、突起33dが高い方が好ましく、例えば0.01mm以上であることが好ましい。また、良好な通気性を確保するには、突起33dの高さが0.025mm以上であることが好ましい。
(12)ガスセンサモジュールの製造方法
 第3実施形態に係るガスセンサモジュール10Bの製造方法について図29を用いて説明する。図29に示されている側壁形成部材125に蓋33Bを接着する工程までは第1実施形態のガスセンサモジュール10と同様に行えるので、次のパッケージダイシングの工程について説明する。パッケージダイシングにおいて、ブレード152(図15参照)により切断する前に、ダイシングテープ151が蓋33Bに貼り付けられる。ダイシングテープ151で開口部33aを塞ぐために、突起33dが低い方が好ましく、例えば2mm以下であることが好ましい。さらに、開口部33aを塞いで剥がれ難くするためには、突起33dの高さが0.5mm以下であることが好ましい。
 このパッケージダイシングでは、ダイシングテープ151とともに側壁形成部材125と集合基板110がブレード152によりダイシングされる。ブレード152は、側壁形成部材125が延びる方向に沿って側壁形成部材125の中央部を切断する。タイシング時には、ブレード152には、冷却水が掛けられる。しかしながら、ダイシング時に底になる蓋33Bの開口部33aがダイシングテープ151によって塞がれるので冷却水がチップ配置空間130の中に入るのを防止することができる。ダイシング後には、ガスセンサモジュール10Bの乾燥が行われる。
(13)変形例
(13-1)変形例3A
 上記第3実施形態では、側壁32Aには開口部が形成されていないが、第3実施形態のガスセンサモジュール10Bにおいて、第1実施形態と同様に側壁形成部材125に窪みを形成し、ガスセンサモジュール10Bの側壁に開口部を形成してもよい。
 また、蓋33Bに開口部を形成せずに、蓋33Bの開口部33aを形成する代わりに第1実施形態で説明したような開口部を側壁32Aに形成してもよい。このように形成したガスセンサモジュール10Bでは、周囲が電気部品などで囲まれていても、突起33dによって形成された隙間G2を通って側壁の開口部にガスを導きやすくなる。
(13-2)変形例3B
 上記第3実施形態では、側壁32Aと蓋33Bの間に開口部が形成されていないが、第3実施形態及び変形例3Aのガスセンサモジュール10Bに対して、さらに第2実施形態で説明したような側壁23Aと蓋33Bの間の開口部を形成してもよい。
 また、蓋33Bに開口部を形成せずに、蓋33Bの開口部33aを形成する代わりに第2実施形態で説明したような側壁32Aと蓋33Bの間の開口部を形成してもよい。この場合には、蓋33Bの厚みに加えて突起33dの高さによってガスの通り道が確保されるので、第2実施形態のガスセンサモジュール10Aよりもさらにガスを導き易くなる。
(13-3)変形例3C
 上記第3実施形態の突起33dを有するガスセンサモジュール10Bに対して、さらに第1実施形態で説明した開口部32a及び第2実施形態で説明した開口部30aの両方を形成するように構成してもよい。
(13-4)変形例3D
 上記第3実施形態では、感ガス体27によって特定種類のガスを検知するガスセンサモジュール10Bについて説明したが、本発明のガスセンサモジュールは、特定種類のガスを検知するものに限られない。本発明は、例えば、ガスセンサ素子40がガスの流量を検出するガスセンサモジュールに適用することができる。
(14)特徴
(14-1)
 第1実施形態のガスセンサモジュール10のパッケージ30及び変形例3Aのガスセンサモジュール10Bのパッケージ30Bは、側壁32に、検出空間S1に連通する複数の開口部32aを有している。また、第2実施形態のガスセンサモジュール10Aのパッケージ30A及び変形例3Bで説明したガスセンサモジュール10Bのパッケージ30Bは、側壁32Aと蓋33Aとの間に、検出空間S1に連通する複数の開口部30aを有している。さらに、変形例2Bで説明したガスセンサモジュール10Aのパッケージ30A及び変形例3Cで説明したガスセンサモジュール10Bのパッケージ30Bは、側壁32及び側壁32Aと蓋33Aとの間に、検出空間S1に連通する複数の開口部32a,30aを有している。
 検出空間S1に連通する複数の開口部30a,32aのうちの一部の開口部30a,32aを通して外部から検出空間S1にガスが流入して残りの開口部30a,32aを通してガスを流出させることができる。そして、これら複数の開口部30a,32aは、筐体62がガスセンサモジュール10,10A,10Bの上面に接しても筐体62によって塞がれない。従って、上述のガスセンサモジュール10,10A,10Bは、半導体チップ20に対する垂直な方向の長さが短い実装スペースに取り付けられたときでもガスに関する検出を容易に行える。
(14-2)
 第2実施形態、変形例2B、変形例3B及び変形例3Cにおいて説明したように、少なくとも側壁32Aと蓋33A,33Bとの間に検出空間S1に連通する複数の開口部30aを有するガスセンサモジュール10A,10Bにおいては、蓋33A,33Bの厚みが0.01mm以上2mm以下であることが好ましい。蓋33A,33Bの厚みが0.01mm以上あることによって、蓋33A,33Bの上面に筐体62が接するような狭い実装スペースにガスセンサモジュール10A,10Bが実装されても、ガスを複数の開口部30aを通して検出空間S1に導くことができる。また、蓋33A,33Bの厚みが2mm以下であることによって、パッケージダイシング時にダイシングテープ151を貼り付けて開口部30aから冷却水などとともに異物が侵入するのを防止することができる。それらの結果、ガスセンサモジュール10A,10Bは、半導体チップ20に対する垂直な方向の長さが短い実装スペースに実装されたときの検出空間S1へのガス導入の確実性と、品質の向上とを図ることができる。
(14-3)
 第3実施形態及び変形例3A~3Cのガスセンサモジュール10Bのパッケージ30Bは、蓋33Bに、検出空間S1に連通する複数の開口部33aと、複数の開口部33aにガスを導く通路を形成するための突起33dとを有している。
 検出空間S1に連通する複数の開口部33aのうちの一部の開口部33aを通して外部から検出空間S1にガスが流入して残りの開口部33aを通してガスを流出させることができる。そして、これら複数の開口部33aは、突起33dが存在することによって、筐体62がガスセンサモジュール10Bの上部に接しても筐体62によって塞がれない。従って、上述のガスセンサモジュール10Bは、半導体チップ20に対する垂直な方向の長さが短い実装スペースに取り付けられたときでもガスに関する検出を容易に行える。
(14-4)
 第3実施形態、変形例3A~3Cにおいて説明したように、蓋33Bとの間に検出空間S1に連通する複数の開口部33aを有するガスセンサモジュール10Bにおいては、蓋33Bの上面に形成された突起33dの高さが0.01mm以上2mm以下であることが好ましい。突起33dの高さが0.01mm以上あることによって、蓋33Bの上部に筐体62が接するような狭い実装スペースにガスセンサモジュール10Bが実装されても、ガスを複数の開口部33aを通して検出空間S1に導くことができる。また、突起33dの高さが2mm以下であることによって、パッケージダイシング時にダイシングテープを貼り付けて開口部30aから冷却水などとともに異物が侵入するのを防止することができる。それらの結果、ガスセンサモジュール10A,10Bは、半導体チップ20に対する垂直な方向の長さが短い実装スペースに実装されたときの検出空間S1へのガス導入の確実性と、品質の向上とを図ることができる。
(14-5)
 第1実施形態に係るガスセンサモジュール10の製造方法においては、図8及び図9または図17(a)及び図17(b)を用いて説明したように、1つのチップ配置空間130に対応して複数箇所の窪み121を持つ側壁形成部材120を、複数のチップ配置空間130を囲むように1つの集合基板110に射出成形により形成している。図11及び図12を用いて説明したように、ガスセンサ素子40が形成されている複数の半導体チップ20を複数のチップ配置空間130に対応する集合基板110の複数の領域にダイボンディングにより固定するとともにワイヤボンディングにより集合基板110の端子34にワイヤ29によって電気的に接続する。図13及び図14または図17(c)及び図17(d)を用いて説明したように、側壁形成部材120に蓋33を接着して複数のチップ配置空間130を蓋33で覆ってガスセンサモジュール10を組み立てる。そして、複数箇所の窪み121がチップ配置空間130に連通する開口部32aになるように少なくとも側壁形成部材120及び集合基板110をダイシングすることによって、1つの集合基板110に形成されているガスセンサモジュール10を分離する。
 または、第1実施形態の変形例1B,1Cに係るガスセンサモジュール10の製造方法においては、図18(a)及び図18(b)または図19(a)及び図19(b)を用いて説明したように、1つのチップ配置空間130に対応して複数箇所の窪み121を持つ側壁形成部材120が、複数のチップ配置空間130を囲むように配置されている1つの蓋形成部材140を射出成形により形成している。図18(c)及び図18(d)を用いて説明したように、ガスセンサ素子40が形成されている複数の半導体チップ20を複数のチップ配置空間130に対応する集合基板110の複数の領域にダイボンディングにより固定するとともにワイヤボンディングにより集合基板110の端子34にワイヤ29によって電気的に接続する。図18(e)及び図18(f)または図19(c)及び図19(d)を用いて説明したように、側壁形成部材120を集合基板110に接着して複数のガスセンサモジュール10を組み立てる。そして、複数箇所の窪み121がチップ配置空間130に連通する開口部32aになるように集合基板110、側壁形成部材120及び蓋形成部材140をダイシングすることによって、1つの集合基板110に形成されているガスセンサモジュール10を分離する。
 なお、冷却液としては水以外のものを使用することもできる。
 このような第1実施形態または変形例1B,1Cに係るガスセンサモジュール10の製造方法では、射出成形によって側壁形成部材120に窪み121を形成しているので、半導体チップ20に対して垂直な方向のガスセンサモジュール10の長さが例えば3mmよりも小さくなっても、側壁32に開口部32aを容易に形成することができる。
(14-6)
 上記第2実施形態及び変形例2B~2Dに係るガスセンサモジュール10Aの製造方法においては、図8及び図9、図17(a)及び図17(b)図18(a)及び図18(b)、または図19(a)及び図19(b)を用いて説明したように、1つの集合基板110または1つの蓋形成部材140に複数のチップ配置空間130を囲む側壁形成部材120を射出成形により形成する。図11及び図12または図18(c)及び図18(d)を用いて説明したように、ガスセンサ素子40が形成されている複数の半導体チップ20を複数のチップ配置空間130に対応する集合基板110の複数の領域にダイボンディングにより固定するとともにワイヤボンディングにより集合基板110の端子34にワイヤ29によって電気的に接続する。
 図23及び図24に示されているように、チップ配置空間130の各々に対応する蓋33Aと側壁形成部材125との間にチップ配置空間130に連通する複数の開口部30aが形成されるように側壁形成部材125を接着して複数のガスセンサモジュール10Aを組み立て、複数の開口部30aを塞ぐようにダイシングテープ151を貼り付ける。側壁形成部材125を集合基板110に形成した場合には、ダイシングブレード152に冷却液を掛けながら側壁形成部材125及び集合基板110をダイシングブレード152によりダイシングすることによって、また、側壁形成部材125を蓋形成部材140に形成した場合には、ダイシングブレード152に冷却液を掛けながら集合基板110、側壁形成部材125及び蓋形成部材140をダイシングブレード152によりダイシングすることによって、1つの集合基板110に形成されている複数のガスセンサモジュール10Aを分離する。
 なお、冷却液としては水以外のものを使用することもできる。
 このような第2実施形態に係るガスセンサモジュール10Aの製造方法では、側壁形成部材125と蓋33Aとの間に隙間を形成しているので、半導体チップ20に対して垂直な方向のガスセンサモジュール10の長さが例えば3mmよりも小さくなっても、側壁32Aと蓋33Aとの間に開口部30aを容易に形成することができる。
 また、ダイシングテープ151により、冷却液がチップ配置空間130の中に侵入するのを防ぐことができる。
10,10A,10B  ガスセンサモジュール
20  半導体チップ
30,30A,30B  パッケージ
30a  開口部
31  基板
32,32A  側壁
32a  開口部
33,33A,33B  蓋
33a  開口部
34  端子
40  ガスセンサ素子
60,65  機器
110  集合基板
120,125  側壁形成部材
121  窪み
130  チップ配置空間
140  蓋形成部材
151  ダイシングテープ
S1  検出空間

Claims (6)

  1.  ガスセンサ素子の形成されている半導体チップと、
     前記半導体チップが電気的に接続され且つ固定されている基板、前記基板に固着されている側壁及び前記側壁に固着されている蓋を含み、前記半導体チップの周囲にガスが流れる検出空間を有し、前記半導体チップに平行な方向の長さが前記半導体チップに垂直な方向の長さよりも長い扁平なパッケージと
    を備え、
     前記パッケージは、前記側壁に及び/または前記側壁と前記蓋との間に、前記検出空間に連通する複数の開口部を有する、ガスセンサモジュール。
  2.  前記パッケージは、少なくとも前記側壁と前記蓋との間に、前記検出空間に連通する複数の開口部を有し、前記蓋の厚みが0.01mm以上2mm以下である、
    請求項1に記載のガスセンサモジュール。
  3.  ガスセンサ素子の形成されている半導体チップと、
     前記半導体チップが電気的に接続され且つ固定されている基板、前記基板に固着されている側壁及び前記側壁に固着されている蓋からなり、前記半導体チップの周囲にガスが流れる検出空間を有し、前記半導体チップに平行な方向の長さが前記半導体チップに垂直な方向の長さよりも長い扁平なパッケージと
    を備え、
     前記パッケージは、前記蓋に、前記検出空間に連通する複数の開口部と、複数の前記開口部にガスを導く通路を形成するための突起とを有する、ガスセンサモジュール。
  4.  前記パッケージは、前記突起の高さが0.01mm以上2mm以下である、
    請求項3に記載のガスセンサモジュール。
  5.  1つのチップ配置空間に対応して複数箇所の窪みを持つ側壁形成部材を、複数の前記チップ配置空間を囲むように1つの集合基板または1つの蓋形成部材に射出成形により形成し、
     ガスセンサ素子が形成されている複数の半導体チップを複数の前記チップ配置空間に対応する前記集合基板の複数の領域にダイボンディングにより固定するとともにワイヤボンディングにより前記集合基板の端子に電気的に接続し、
     前記側壁形成部材を、蓋、前記蓋形成部材又は前記集合基板に接着してガスセンサモジュールを組み立て、
     前記複数箇所の窪みが前記チップ配置空間に連通する開口部になるように少なくとも前記側壁形成部材及び前記集合基板をダイシングすることによって、1つの前記集合基板に形成されている前記ガスセンサモジュールを分離する、ガスセンサモジュールの製造方法。
  6.  1つの集合基板または1つの蓋形成部材に複数のチップ配置空間を囲む側壁形成部材を射出成形により形成し、
     ガスセンサ素子が形成されている複数の半導体チップを複数の前記チップ配置空間に対応する前記集合基板の複数の領域にダイボンディングにより固定するとともにワイヤボンディングにより前記集合基板の端子に電気的に接続し、
     前記チップ配置空間の各々に対応する蓋と前記側壁形成部材との間に前記チップ配置空間に連通する複数の開口部が形成されるように前記側壁形成部材を接着して複数のガスセンサモジュールを組み立て、
     複数の前記開口部を塞ぐようにダイシングテープを貼り付け、
     ダイシングブレードに冷却液を掛けながら少なくとも前記側壁形成部材及び前記集合基板を前記ダイシングブレードによりダイシングすることによって、1つの前記集合基板に形成されている複数の前記ガスセンサモジュールを分離する、ガスセンサモジュールの製造方法。
PCT/JP2017/039870 2016-12-20 2017-11-06 ガスセンサモジュール及びその製造方法 WO2018116663A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17884495.7A EP3540421A4 (en) 2016-12-20 2017-11-06 GAS SENSOR MODULE AND METHOD FOR THE PRODUCTION THEREOF
US16/472,134 US11415536B2 (en) 2016-12-20 2017-11-06 Gas sensor module and method of manufacturing gas sensor module
KR1020197011719A KR102350203B1 (ko) 2016-12-20 2017-11-06 가스 센서 모듈 및 그 제조 방법
CN201780074674.8A CN110073204A (zh) 2016-12-20 2017-11-06 气体传感器模块及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016246958A JP6553587B2 (ja) 2016-12-20 2016-12-20 ガスセンサモジュール及びその製造方法
JP2016-246958 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018116663A1 true WO2018116663A1 (ja) 2018-06-28

Family

ID=62626142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039870 WO2018116663A1 (ja) 2016-12-20 2017-11-06 ガスセンサモジュール及びその製造方法

Country Status (6)

Country Link
US (1) US11415536B2 (ja)
EP (1) EP3540421A4 (ja)
JP (1) JP6553587B2 (ja)
KR (1) KR102350203B1 (ja)
CN (1) CN110073204A (ja)
WO (1) WO2018116663A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730743A (zh) * 2019-12-19 2022-07-08 Ev 集团 E·索尔纳有限责任公司 经切割的封装组件及其制造方法
CN111044576B (zh) * 2019-12-27 2020-07-31 安徽芯淮电子有限公司 基于mems集成式的气体传感器及其制作方法
JP2022020159A (ja) * 2020-07-20 2022-02-01 Tdk株式会社 センサーモジュール
US20240116046A1 (en) 2021-02-17 2024-04-11 Kyocera Corporation Sensor package, sensor module, and sensor device
WO2024162055A1 (ja) * 2023-01-30 2024-08-08 京セラ株式会社 パッケージ、母基板、ガスセンサモジュール、および電子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249057A (ja) * 1991-07-26 1993-09-28 Ricoh Seiki Kk センサー及びその製造方法
JP2008026876A (ja) * 2004-09-27 2008-02-07 Idc Llc 封止されたmemsデバイス内の湿度を検査するシステム及び方法
JP2012078089A (ja) * 2010-09-30 2012-04-19 Figaro Eng Inc ガスセンサ
JP2012517600A (ja) * 2009-02-12 2012-08-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ガスセンサのセンサ素子及びその作動方法
JP2014070945A (ja) * 2012-09-28 2014-04-21 Denso Corp 湿度センサモジュール
JP2014081367A (ja) 2012-09-25 2014-05-08 Hokuriku Electric Ind Co Ltd ガスセンサ
JP2014092403A (ja) * 2012-11-01 2014-05-19 Denso Corp 湿度センサ装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569667A (ja) 1991-09-17 1993-03-23 Oji Paper Co Ltd 感熱記録材料
JPH0633410Y2 (ja) * 1992-10-29 1994-08-31 新コスモス電機株式会社 ガスセンサ
JP3366098B2 (ja) * 1994-02-25 2003-01-14 積水化学工業株式会社 多機能センサ
WO2001040784A2 (de) 1999-11-30 2001-06-07 Sensirion Ag Sensor in einem gehäuse
JP2004177263A (ja) * 2002-11-27 2004-06-24 Matsushita Electric Ind Co Ltd 湿度センサおよびそれを用いた燃料電池システム、自動車および調理機器
KR20060004885A (ko) 2005-12-24 2006-01-16 최현규 반도체 패키지, 그 제조방법 및 이미지 센서용 반도체패키지 모듈
US20080283952A1 (en) 2005-12-24 2008-11-20 Choi Hyun-Kyu Semiconductor Package, Method of Fabricating the Same and Semiconductor Package Module For Image Sensor
WO2008029654A1 (en) * 2006-09-06 2008-03-13 Hitachi Metals, Ltd. Semiconductor sensor device and method for manufacturing same
JP5476205B2 (ja) * 2010-05-07 2014-04-23 エフアイエス株式会社 ガス検出装置
JP2012051760A (ja) 2010-09-01 2012-03-15 Bridgestone Corp 炭化ケイ素単結晶の製造方法
WO2012049742A1 (ja) * 2010-10-13 2012-04-19 日立オートモティブシステムズ株式会社 流量センサおよびその製造方法並びに流量センサモジュールおよびその製造方法
JP5590460B2 (ja) * 2010-12-08 2014-09-17 株式会社リコー 露点計測装置および気体特性測定装置
JP5763575B2 (ja) * 2012-03-19 2015-08-12 日立オートモティブシステムズ株式会社 流量センサおよびその製造方法
US9970911B2 (en) * 2013-09-16 2018-05-15 Lg Innotek Co., Ltd. Gas sensor package
KR102152716B1 (ko) * 2013-09-16 2020-09-07 엘지이노텍 주식회사 가스센서패키지 및 그 제조방법
DE102013218840A1 (de) * 2013-09-19 2015-03-19 Robert Bosch Gmbh Mikroheizplattenvorrichtung und Sensor mit einer Mikroheizplattenvorrichtung
JP6266351B2 (ja) * 2014-01-08 2018-01-24 新日本無線株式会社 センサ装置およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249057A (ja) * 1991-07-26 1993-09-28 Ricoh Seiki Kk センサー及びその製造方法
JP2008026876A (ja) * 2004-09-27 2008-02-07 Idc Llc 封止されたmemsデバイス内の湿度を検査するシステム及び方法
JP2012517600A (ja) * 2009-02-12 2012-08-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ガスセンサのセンサ素子及びその作動方法
JP2012078089A (ja) * 2010-09-30 2012-04-19 Figaro Eng Inc ガスセンサ
JP2014081367A (ja) 2012-09-25 2014-05-08 Hokuriku Electric Ind Co Ltd ガスセンサ
JP2014070945A (ja) * 2012-09-28 2014-04-21 Denso Corp 湿度センサモジュール
JP2014092403A (ja) * 2012-11-01 2014-05-19 Denso Corp 湿度センサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3540421A4

Also Published As

Publication number Publication date
KR102350203B1 (ko) 2022-01-13
JP6553587B2 (ja) 2019-07-31
EP3540421A4 (en) 2019-11-20
US11415536B2 (en) 2022-08-16
JP2018100900A (ja) 2018-06-28
US20190383761A1 (en) 2019-12-19
CN110073204A (zh) 2019-07-30
EP3540421A1 (en) 2019-09-18
KR20190096943A (ko) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2018116663A1 (ja) ガスセンサモジュール及びその製造方法
JP5643880B2 (ja) Memsデバイスおよびその製造方法
KR100918745B1 (ko) 반도체 장치 및 그 제조 방법
KR100677651B1 (ko) 반도체 소자 및 패키지와 그 제조방법
JP4242401B2 (ja) 半導体装置
US8426930B2 (en) Sensor module
KR101740014B1 (ko) 압력센서장치 및 그 제조방법
JP4933934B2 (ja) 半導体装置及び半導体装置の製造方法
EP3029928B1 (en) Imaging device
JP2010166061A (ja) 電子デバイスの製造方法及び電子モジュールの製造方法
US9941182B2 (en) Electronic device and method for manufacturing same
JP2007227596A (ja) 半導体モジュール及びその製造方法
JP2008113009A (ja) 外部コンタクトを有する電気的構成エレメント
KR20060044222A (ko) 가스센서용 초소형 패키지 및 그 제조방법
JP5626109B2 (ja) モールドパッケージ
JP6569610B2 (ja) 電子装置
US10260974B2 (en) Electronic part with sensor exposed to ambient air
JP2016025202A (ja) 半導体装置およびその製造方法
JP2006303183A (ja) 面実装型フォトインタラプタとその製造方法
TWI570855B (zh) 微電子封裝以及製造其之方法
KR100391124B1 (ko) 반도체 패키지의 베이스, 이를 이용한 반도체 패키지 및그 제조방법
JP2008166525A (ja) 電子回路モジュール
JP2001358258A (ja) Bga型半導体装置
TW202315481A (zh) 配線基板集合體、蓋體集合體、封裝組及電子零件之製造方法
JP3754430B2 (ja) 光受信器及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011719

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017884495

Country of ref document: EP

Effective date: 20190613

NENP Non-entry into the national phase

Ref country code: DE