WO2018110974A1 - 인산리튬으로부터 수산화리튬을 제조하는 방법 - Google Patents

인산리튬으로부터 수산화리튬을 제조하는 방법 Download PDF

Info

Publication number
WO2018110974A1
WO2018110974A1 PCT/KR2017/014652 KR2017014652W WO2018110974A1 WO 2018110974 A1 WO2018110974 A1 WO 2018110974A1 KR 2017014652 W KR2017014652 W KR 2017014652W WO 2018110974 A1 WO2018110974 A1 WO 2018110974A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium hydroxide
lithium phosphate
acid
added
Prior art date
Application number
PCT/KR2017/014652
Other languages
English (en)
French (fr)
Inventor
김경훈
이상민
이종학
김기영
최재혁
손수환
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201780077954.4A priority Critical patent/CN110088043B/zh
Priority to US16/469,807 priority patent/US11554965B2/en
Publication of WO2018110974A1 publication Critical patent/WO2018110974A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • C01B25/305Preparation from phosphorus-containing compounds by alkaline treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for producing lithium hydroxide from lithium phosphate, and more particularly to a method for converting a lithium phosphate slurry containing lithium phosphate particles into an aqueous solution containing lithium hydroxide.
  • the lithium contained in the brine is extracted in the form of lithium phosphate and then converted to lithium hydroxide.
  • a method using an electrolysis process or an anion precipitant has been proposed.
  • the technical problem to be achieved by the present invention is to efficiently convert chemically stable lithium phosphate to lithium hydroxide, and provides a method for increasing the conversion rate with a minimum of energy and a simplified process.
  • Method of producing a lithium hydroxide is a step of injecting at least one acid selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid to the lithium phosphate slurry containing lithium phosphate particles, to the lithium phosphate slurry It may include the step of converting the lithium hydroxide into an aqueous solution of lithium hydroxide.
  • the lithium concentration of the acid-injected lithium phosphate slurry may be 4,000 mg / L or more.
  • the amount of the acid added may be 0.5 equivalent or more based on the amount of lithium phosphate introduced.
  • the amount of the alkali substance to be added may be 0.8 to 1.5 equivalents based on the amount of lithium phosphate introduced.
  • the alkaline substance may be at least one selected from the group consisting of Ca (OH) 2 , NaOH and CaO.
  • Gypsum and hydroxyapatite may be precipitated in the step of converting the lithium material into the lithium phosphate slurry to which the acid is added and converting into an aqueous lithium hydroxide solution.
  • the method may further include preparing lithium hydroxide by concentrating the lithium hydroxide aqueous solution after the step of converting an acid into the lithium phosphate slurry into which the acid is added to convert the lithium hydroxide into an aqueous lithium hydroxide solution.
  • a method of preparing lithium hydroxide may include preparing a lithium phosphate slurry including lithium phosphate particles, preparing a milling filtrate by introducing the lithium phosphate slurry and an alkali material into a mill, and milling Injecting the filtrate into the reactor to obtain a reaction product and converting the reaction product to lithium hydroxide.
  • the preparing of the lithium phosphate slurry may further include adding one or more acids selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid to the lithium phosphate slurry.
  • the amount of the added acid may be in the range of 0.012 equivalents to 0.3 equivalents based on the amount of lithium phosphate introduced.
  • the lithium concentration of the lithium phosphate slurry may be 4,000 mg / L or more.
  • the amount of the alkaline substance to be added may be in the range of 0.8 to 1.5 equivalents based on the amount of lithium phosphate introduced.
  • the alkaline substance may be at least one selected from the group consisting of Ca (OH) 2 , NaOH and CaO.
  • gypsum and hydroxyapatite may be precipitated.
  • the step of converting the reaction product into lithium hydroxide may be carried out by a method of concentrating the aqueous lithium hydroxide solution obtained after the liquid-liquid separation of the reaction product.
  • the method for producing lithium hydroxide according to the present invention can increase the conversion rate of lithium phosphate to lithium hydroxide with minimal energy and simplified process.
  • FIG. 1 exemplarily illustrates a process of preparing lithium phosphate with lithium hydroxide according to an exemplary embodiment.
  • a method of preparing lithium hydroxide may include adding one or more acids selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid to a lithium phosphate slurry including lithium phosphate particles, and an alkaline material in the lithium phosphate slurry to which the acid is added. Including the step of converting into an aqueous lithium hydroxide solution.
  • lithium phosphate slurry refers to a state in which solid lithium phosphate particles are not dissolved in an aqueous solution in which lithium phosphate is saturated.
  • Lithium phosphate has low solubility in water. That is, at room temperature (20 ° C), the solubility of lithium phosphate (Li 3 PO 4 ) in water is 0.039g / L level.
  • solubility improves solubility. That is, when lithium phosphate reacts with an acid to form Li 2 HPO 4 or LiH 2 PO 4 , solubility becomes high. Specifically, the solubility of Li 2 HPO 4 is 44.3 g / L (0 ° C.), and the solubility of LiH 2 PO 4 is 1,260 g / L (0 ° C.).
  • an acid is added to the lithium phosphate slurry to increase the solubility of the lithium phosphate.
  • the acid added in this step may be one or more selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid.
  • the amount of acid added may be at least 0.5 equivalents, more specifically, from 0.5 equivalents to 1.1 equivalents or from 0.5 equivalents to 1 equivalents, based on the amount of lithium phosphate particles.
  • the amount of acid added is preferably not more than 10% of the total slurry. If the amount of acid added is less than 0.5 equivalent, there is a problem that the conversion rate for converting lithium phosphate to lithium hydroxide is lowered.
  • the acid added in this step may be sulfuric acid.
  • a reaction scheme in which lithium phosphate is completely reacted with sulfuric acid is shown in Scheme 1 below, and a reaction formula in which lithium phosphate with low solubility in water reacts with a minimum amount of sulfuric acid to produce a high solubility lithium compound is shown in Scheme 2 below.
  • the lithium concentration of the lithium phosphate slurry in which the acid is added may be in a range of 4,000 mg / L or more, specifically, 4,000 mg / L to 20,000 mg / L or 5,000 mg / L to 15,000 mg / L.
  • the lithium concentration of the lithium phosphate slurry into which the acid is added exceeds 20,000 mg / L, the viscosity of the lithium phosphate slurry is too high, such that a process such as stirring does not proceed smoothly.
  • the lithium concentration of the lithium phosphate slurry is less than 4,000 mg / L, there is a problem that the amount of lithium remaining in the milling process is small and the final conversion rate from lithium phosphate to lithium hydroxide is lowered.
  • an alkaline substance is added to the lithium phosphate slurry to which the acid is added to convert the lithium hydroxide aqueous solution.
  • the alkaline material introduced in this step may be one or more selected from the group consisting of Ca (OH) 2 , NaOH and CaO.
  • the amount of the alkali substance to be added may be in the range of 0.8 to 1.5 equivalents, more specifically 1 to 1.2 equivalents based on the amount of lithium phosphate introduced.
  • the rate of conversion from lithium phosphate to lithium hydroxide is high.
  • the alkali material introduced in this step may be Ca (OH) 2 , and the reactions of Schemes 3 and 4 may be performed.
  • lithium hydroxide (LiOH) is formed through the same reaction as in Schemes 3 and 4.
  • gypsum (CaSO 4 ) and hydroxyapatite (Ca 5 (PO 4 ) 3 OH) formed together with lithium hydroxide (LiOH) in the reaction can be separated in a solid-liquid separator.
  • Lithium hydroxide may be produced by crystallizing a lithium hydroxide (LiOH) aqueous solution in which the solid phase component is separated.
  • FIG. 1 exemplarily illustrates a process of preparing lithium phosphate with lithium hydroxide according to an exemplary embodiment.
  • lithium phosphate particles, an acid, and an alkaline substance are added to the mixer 100.
  • lithium phosphate particles and an acid may be first introduced, followed by an alkaline substance.
  • the lithium phosphate introduced may be a lithium phosphate cake.
  • the acid may be one or more selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid.
  • the alkaline material may be one or more selected from the group consisting of Ca (OH) 2 , NaOH and CaO. After the addition of the alkaline material, it is mixed in the mixer 100 and transferred to the reactor 200. In the reactor 200, reactions of Schemes 3 and 4 occur, and the reaction may be performed at atmospheric pressure and room temperature.
  • the products obtained after the reaction in the reactor 200 is transferred to the solid-liquid separator 300.
  • the solid-liquid separator 300 LiOH in the liquid phase and gypsum (CaSO 4 ) and hydroxyapatite (Ca 5 (PO 4 ) 3 OH) in the solid phase are separated.
  • the separated LiOH aqueous solution may be produced as lithium carbonate or lithium hydroxide through a carbonation or crystallization process.
  • Gypsum and hydroxyapatite can be produced with phosphoric acid and gypsum by reaction with sulfuric acid.
  • a method of preparing lithium hydroxide includes preparing a lithium phosphate slurry including lithium phosphate particles and converting the lithium phosphate slurry into lithium hydroxide by introducing an alkaline material into the lithium phosphate slurry.
  • the step of converting to lithium hydroxide can be carried out using a milling machine.
  • lithium phosphate slurry refers to a state in which solid lithium phosphate particles are not dissolved in an aqueous solution in which lithium phosphate is saturated.
  • Lithium phosphate has low solubility in water. That is, at room temperature (20 ° C), the solubility of lithium phosphate (Li 3 PO 4 ) in water is 0.039g / L level.
  • the dissolution rate of lithium phosphate is improved to rapidly increase the concentration of lithium in the milled filtrate. Therefore, when using this to convert to lithium hydroxide it is possible to improve the conversion rate from lithium phosphate to lithium hydroxide.
  • the preparing of the lithium phosphate slurry may further include adding one or more acids selected from the group consisting of hydrochloric acid, sulfuric acid, and nitric acid to the lithium phosphate slurry.
  • adding some acid to lithium phosphate improves the solubility of lithium phosphate as described in one embodiment. That is, when lithium phosphate reacts with an acid to form Li 2 HPO 4 or LiH 2 PO 4 , solubility becomes high. Specifically, the solubility of Li 2 HPO 4 is 44.3 g / L (0 ° C.), and the solubility of LiH 2 PO 4 is 1,260 g / L (0 ° C.).
  • the solubility of lithium phosphate can be increased by further adding an acid.
  • the amount of acid added may be 0.12 equivalents or more, more specifically, 0.12 equivalents to 0.3 equivalents or 0.013 equivalents to 0.2 equivalents, based on the amount of lithium phosphate particles.
  • the amount of acid added is preferably not more than 10% of the total slurry.
  • the conversion rate from lithium phosphate to lithium hydroxide can be further improved.
  • a process for removing impurities from a reaction product obtained in a reactor to be described later may be performed.
  • an acid-added lithium phosphate slurry as described above there is an advantage that the desired effect can be obtained even if a small amount of an additive for removing impurities in such a post-process.
  • the acid added may be sulfuric acid.
  • the reaction scheme in which lithium phosphate is completely reacted with sulfuric acid is the same as in Scheme 1 above, and the reaction scheme in which lithium phosphate having low solubility in water reacts with minimal sulfuric acid to produce a high solubility lithium compound is shown in Scheme 2 above.
  • the lithium concentration of the lithium phosphate slurry in which the acid is added may be in a range of 4,000 mg / L or more, specifically, 4,000 mg / L to 20,000 mg / L or 5,000 mg / L to 15,000 mg / L.
  • the lithium concentration of the lithium phosphate slurry into which the acid is added exceeds 20,000 mg / L, the viscosity of the lithium phosphate slurry is too high, such that a process such as stirring does not proceed smoothly.
  • the lithium concentration of the lithium phosphate slurry is less than 4,000 mg / L, there is a problem that the amount of lithium remaining in the milling process is small and the final conversion rate from lithium phosphate to lithium hydroxide is lowered.
  • the lithium phosphate slurry and the alkali material are added to a mill to prepare a milling filtrate, and the milling filtrate is added to a reactor to obtain a reaction product. To perform.
  • the mill may be, for example, at least one of an attrition mill and a ball mill.
  • the lithium phosphate dissolution rate may be improved to increase the lithium content in the milled filtrate, and thus the subsequent process may be performed to improve the conversion rate of the finally obtained lithium hydroxide.
  • the alkaline substance may be at least one selected from the group consisting of Ca (OH) 2 , NaOH and CaO.
  • the amount of the alkali substance to be added may be in the range of 0.8 to 1.5 equivalents, more specifically 1 to 1.2 equivalents based on the amount of lithium phosphate introduced.
  • the rate of conversion from lithium phosphate to lithium hydroxide is high.
  • the alkaline material introduced in this step may be Ca (OH) 2 .
  • Ca (OH) 2 may be added in a powder type, in which case it may be mixed in a mill.
  • the mill and the reactor may be connected to a pipe so that milling filtrate production and a reaction product obtaining process using a reactor may be performed in a circulation process.
  • the mixture of the lithium phosphate slurry and the alkali material is introduced into the reactor after milling, the reaction product generated in the reactor is pumped to the bottom of the mill and discharged to the top, and the discharged milling filtrate is introduced into the reactor.
  • the contact area is increased while the lithium phosphate slurry and the alkaline material are milled, thereby promoting the reactions of the schemes 3 and 4.
  • hydroxyapatite a by-product generated on the surface of lithium phosphate by the reaction, has an effect of being removed from the surface of lithium phosphate by milling, the surface area from which lithium may be dissolved does not become small. Therefore, the dissolution reaction rate of lithium, which is determined to be the slowest in the entire reaction process of converting lithium phosphate to lithium hydroxide, is accelerated, and thus, the final conversion rate of lithium phosphate to lithium hydroxide can be increased within the same time.
  • Lithium hydroxide (LiOH) is formed through the same reaction as in Schemes 3 and 4, and gypsum (CaSO 4 ) and hydroxyapatite (Ca 5 (PO 4 ) 3 OH) are formed.
  • gypsum (CaSO 4 ) and hydroxyapatite (Ca 5 (PO 4 ) 3 OH) formed together with lithium hydroxide (LiOH) may be separated in a solid-liquid separator.
  • the reaction product may be subjected to solid-liquid separation to concentrate and crystallize the lithium hydroxide (LiOH) aqueous solution in which the solid phase component is separated, thereby producing lithium hydroxide.
  • LiOH lithium hydroxide
  • lithium phosphate particles and an alkaline substance are added to the mixer 100, and an acid is added if necessary.
  • an acid is added, lithium phosphate particles and an acid may be added first, followed by an alkaline substance.
  • the lithium phosphate introduced may be a lithium phosphate cake.
  • the acid may be one or more selected from the group consisting of hydrochloric acid, sulfuric acid and nitric acid.
  • the alkaline material may be one or more selected from the group consisting of Ca (OH) 2 , NaOH and CaO. After the addition of the alkaline substance, it is mixed in the mixer 100.
  • the mixture mixed in the mixer 100 is introduced into the mill 400 to produce a milled filtrate.
  • the milled filtrate is then introduced into the reactor 200.
  • the mill 400 and the reactor 200 may be connected to each other to be performed in a circulation process in which the mixture is circulated several times between the mill 400 and the reactor 200.
  • the milling process is carried out in the range of 50 ° C. to 99 ° C., and the time for the mixture to stay in the mill in the whole circulation reaction is about 10 minutes to 1 hour.
  • the circulating reaction that is, in the mill 400 and the reactor 200, the reactions of the above-described reaction formulas 3 and 4 occur, respectively, and the reaction may be performed at atmospheric pressure (1 atm) and at room temperature (25 ° C) to 90 ° C. .
  • the milling filtrate in which some lithium has already been converted to lithium hydroxide through a circulation process between the mill 400 and the reactor 200, is converted to lithium hydroxide after the reaction product is obtained using the reactor 200. Therefore, compared with the case where it does not go through a milling process, the conversion rate of the finally obtained lithium hydroxide can be improved more.
  • the reaction products obtained after the reaction in the reactor 200 are transferred to the solid-liquid separator 300.
  • the solid-liquid separator 300 LiOH in the liquid phase and gypsum (CaSO 4 ) and hydroxyapatite (Ca 5 (PO 4 ) 3 OH) in the solid phase are separated.
  • the separated LiOH aqueous solution may be produced as lithium carbonate or lithium hydroxide through a carbonation or crystallization process.
  • Gypsum and hydroxyapatite can be produced with phosphoric acid and gypsum by reaction with sulfuric acid.
  • Example 1 acid-infused Lithium phosphate ⁇ lithium hydroxide conversion reaction
  • Lithium phosphate in the slurry to the sulfuric acid solution prepared as described above was added to the amount of lithium 10g / L and stirred for 30 minutes at 90 °C to prepare a slurry.
  • the slurry was sampled to analyze the dissolution rate of lithium phosphate, and the dissolution rate of lithium phosphate was 81%.
  • Lithium hydroxide aqueous solution was prepared in the same manner as in Example 1 except that sulfuric acid solution was prepared by changing the amount of sulfuric acid based on lithium phosphate as shown in Table 1 to prepare 1 L of a diluted sulfuric acid solution. Prepared.
  • Example 1 Example 2
  • Example 3 Lithium Phosphate Based Sulfuric Acid Input [Equivalent] 0.33 0.5 0.67 0.83 1.0 Sulfuric acid input amount (purity 95%) [g] 24.79 37.18 49.58 61.97 74.36 Solution Sulfuric Acid Concentration [wt%] 2.5 3.7 5.0 6.2 7.4
  • Example 1 Example 2
  • Example 3 Example 4 Lithium Phosphate Based Sulfuric Acid Input [Equivalent] 0.33 0.5 0.67 0.83 1.0 LP dissolution rate [%] 53 81 100 100 100
  • Lithium phosphate and distilled water were added so that the amount of lithium in the slurry was 10 g / L, and the mixture was stirred at 90 ° C. for 30 minutes to prepare a slurry.
  • Example 1 Example 2
  • Example 3 Example 4 Sulfuric acid input amount [equivalent] 0 0.33 0.5 0.67 0.83 1.0 LP-LH conversion rate [%] 27 32 50 59 68 82
  • the lithium hydroxide aqueous solution prepared according to Examples 1 to 4 in which 0.5 equivalent or more of acid was added based on the amount of lithium phosphate added, showed a conversion ratio of 50% or more, so that the conversion was 2 It is confirmed that the conversion rate is increased by 1.5 times or more even when compared with the reference example 1, which is injected close to the acid and added less than 0.5 equivalent even if acid is added.
  • sulfuric acid was added at least 0.67 equivalent, although the dissolution rate of lithium phosphate is the same, it can be seen that the conversion rate increases as the acid input amount increases.
  • Example 5 to 6 and Reference Example 2 to 3 Acid free Lithium phosphate ⁇ lithium hydroxide conversion reaction (using milling machine)
  • Lithium phosphate and distilled water were added so that the amount of lithium in the slurry was 10 g / L, and the mixture was stirred at 90 ° C. for 30 minutes to prepare a slurry.
  • the milled filtrate was added to a reactor, stirred at 90 ° C. for one hour, and then solid-liquid separation was performed using a reduced pressure filter to prepare an aqueous lithium hydroxide solution.
  • Example 6 Sulfuric acid input equivalence ratio based on LP 0 0.01 0.016 0.18 Li conversion rate in milling filtrate [%] 14.7 14.9 27.6 28.8
  • the conversion of lithium in the milled filtrate introduced into the reactor is at least 14% or more. This is because reactions of Schemes 3 and 4 have already been carried out in the milling and reactor circulation processes, since part of the lithium phosphate is converted to lithium hydroxide.
  • lithium phosphate slurry and an alkaline substance after the reactor subjected to the milling process can significantly improve the conversion of the lithium phosphate (LP) ⁇ lithium hydroxide (LH) It can be seen.

Abstract

본 발명의 일 실시예에 따른 수산화리튬의 제조 방법은, 인산리튬 입자를 포함하는 인산리튬 슬러리에 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상의 산을 투입하는 단계 및 상기 산이 투입된 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화리튬 수용액으로 전환하는 단계를 포함한다.

Description

인산리튬으로부터 수산화리튬을 제조하는 방법
본 발명은 인산리튬으로부터 수산화리튬을 제조하는 방법에 대한 것으로, 보다 구체적으로 인산리튬 입자를 포함하는 인산리튬 슬러리를, 수산화리튬을 포함하는 수용액으로 전환하는 방법에 대한 것이다.
최근 IT 및 전기차 시장의 급속한 성장에 따라 이차전지의 핵심 원료인 리튬의 수요가 대폭 증가될 전망이다. 이차 전지용 리튬 시장은 한국, 중국, 일본에 높게 편중되어있으나, 한국은 전량 수입에 의존하고 있어 안정적 수급방법이 필요한 실정이다. 따라서 광석 및 염수로부터의 리튬추출 기술 개발이 진행되고 있으며, 그 중 염수로부터 리튬추출 기술이 제조원가에서 우위를 차지하고 있다. 남미, 중국 등에서 몇몇 회사가 많은 양의 리튬을 생산하고 있는 중이며 국내에서도 리튬 생산에 대한 연구가 이루어지고 있다.
일반적으로, 염수에 포함된 리튬은 인산 리튬 형태로 추출한 후 수산화 리튬으로 전환시키는 방법을 이용한다. 이를 위하여, 종래에는 전기분해 공정을 이용하거나 음이온 침전제를 투입하는 방법 등이 제안된 바 있다.
그러나, 전기분해 공정을 이용하는 경우 많은 양의 에너지가 소비되고, 음이온 침전제를 투입하는 경우 반응 시간이 지나치게 길어 실제 공정에 적용하기에는 무리가 있다.
따라서, 인산 리튬을 효율적으로 수산화 리튬 수용액으로 전화하는 기술에 대한 개발이 시급하다.
본 발명이 이루고자 하는 기술적 과제는 화학적으로 안정한 인산리튬을 수산화리튬으로 효과적으로 전환하기 위한 것으로서, 최소한의 에너지 및 단순화된 공정으로 전환율을 높일 수 있는 방법을 제공한다.
본 발명의 일 실시예에 따른 수산화리튬의 제조 방법은 인산리튬 입자를 포함하는 인산리튬 슬러리에 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상의 산을 투입하는 단계, 상기 산이 투입된 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화리튬 수용액으로 전환하는 단계를 포함할 수 있다.
상기 산이 투입된 인산리튬 슬러리의 리튬 농도는 4,000mg/L 이상일 수 있다.
상기 투입되는 산의 양은 투입한 인산리튬의 양 기준 0.5 당량 이상일 수 있다.
상기 투입되는 알칼리 물질의 양은 투입한 인산리튬의 양을 기준으로 하여 0.8 내지 1.5당량일 수 있다.
상기 알칼리 물질은 Ca(OH)2, NaOH 및 CaO로 이루어진 군에서 선택되는 하나 이상일 수 있다.
상기 산이 투입된 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화리튬 수용액으로 전환하는 단계에서, 석고 및 하이드록시아파타이트가 석출될 수 있다.
상기 산이 투입된 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화리튬 수용액으로 전환하는 단계 이후에, 상기 수산화리튬 수용액을 농축시켜 수산화리튬을 제조하는 단계를 더 포함할 수 있다.
본 발명의 다른 실시예에 따른 수산화리튬의 제조 방법은, 인산리튬 입자를 포함하는 인산리튬 슬러리를 준비하는 단계, 상기 인산리튬 슬러리 및 알칼리 물질을 밀링기에 투입하여 밀링 여액을 제조하는 단계, 상기 밀링 여액을 반응기에 투입하여 반응 생성물을 수득하는 단계 및 상기 반응 생성물을 수산화 리튬으로 전환하는 단계를 포함할 수 있다.
본 실시예에서, 상기 인산리튬 슬러리를 준비하는 단계는, 상기 인산리튬 슬러리에 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상의 산을 투입하는 단계를 더 포함할 수 있다.
이때, 상기 투입되는 산의 양은 투입한 인산리튬의 양을 기준으로 0.012 당량 내지 0.3 당량 범위일 수 있다.
상기 인산리튬 슬러리의 리튬 농도는 4,000mg/L 이상일 수 있다.
상기 투입되는 알칼리 물질의 양은 투입한 인산리튬의 양을 기준으로 하여 0.8 내지 1.5당량 범위일 수 있다.
상기 알칼리 물질은 Ca(OH)2, NaOH 및 CaO로 이루어진 군에서 선택되는 하나 이상일 수 있다.
상기 반응 생성물을 수득하는 단계에서, 석고 및 하이드록시아파타이트가 석출될 수 있다.
상기 반응 생성물을 수산화리튬으로 전환하는 단계는, 상기 반응 생성물을 고액 분리 후 얻어진 수산화리튬 수용액을 농축시키는 방법으로 수행될 수 있다.
이상과 같이 본 발명에 의한 수산화리튬의 제조 방법은 최소한의 에너지 및 단순화된 공정으로 인산리튬에서 수산화리튬으로의 전환율을 높일 수 있다.
도 1은 일 실시예에 따라 인산리튬을 수산화리튬으로 제조하는 공정을 예시적으로 나타낸 것이다.
도 2는 다른 실시예에 따라 인산리튬을 수산화리튬으로 제조하는 공정을 예시적으로 나타낸 것이다.
첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
이하 본 발명의 실시예에 따른 수산화리튬의 제조 방법에 상세하게 설명한다.
일 실시예에 따른 수산화리튬의 제조 방법은, 인산리튬 입자를 포함하는 인산리튬 슬러리에 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상의 산을 투입하는 단계, 상기 산이 투입된 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화리튬 수용액으로 전환하는 단계를 포함한다.
먼저, 인산리튬 입자를 포함하는 인산리튬 슬러리에 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상의 산을 투입하는 단계에 대하여 설명한다.
본 명세서에서 사용되는 용어 "인산리튬 슬러리" 는, 인산 리튬이 포화된 수용액에 용해되지 않은 고체의 인산리튬 입자가 섞인 상태를 의미한다.
인산리튬은 물에 대한 용해도가 낮다. 즉, 상온(20°C)에서, 인산리튬(Li3PO4)의 물에 대한 용해도는 0.039g/L 수준이다.
그러나, 인산리튬에 약간의 산을 첨가해주면, 용해도가 개선된다. 즉, 인산리튬이 산과 반응하여 Li2HPO4 또는 LiH2PO4를 형성하는 경우, 용해도가 높아진다. 구체적으로, Li2HPO4의 용해도는 44.3g/L (0°C)이고, LiH2PO4의 용해도는 1,260g/L (0°C)이다.
즉, 본 단계에서는 인산리튬 슬러리에 산을 첨가하여 인산리튬의 용해도를 높인다.
본 단계에서 첨가되는 산은 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상일 수 있다. 첨가되는 산의 양은 인산리튬 입자의 양 기준 0.5 당량 이상, 보다 구체적으로, 0.5 당량 내지 1.1 당량 또는 0.5 당량 내지 1 당량 범위일 수 있다. 다만, 첨가되는 산의 양은 전체 슬러리에 대하여 10%를 넘지 않는 것이 바람직하다. 첨가되는 산의 양이 0.5 당량 미만이면 인산리튬을 수산화리튬으로 전환하는 전환율이 낮아지는 문제점이 있다. 또한, 첨가되는 산의 양이 지나치게 많으면 산이 투입된 용액에서 산 이온의 농도가 높아지기 때문에 불순물 제거 공정을 필수적으로 거쳐야 하고, 이 경우 불순물 제거를 위한 첨가제 사용량이 증가하는 문제점이 있다.
일례로, 본 단계에서 첨가되는 산은 황산일 수 있다. 인산리튬이 완전히 황산과 반응하는 반응식은 하기 반응식 1과 같으며, 물에 대한 용해도가 낮은 인산리튬이 최소한의 황산과 반응하여 용해도가 높은 리튬 화합물이 되는 반응식은 하기 반응식 2와 같다.
본 단계에서는, 상기 반응식 1과 반응식 2의 반응이 모두 이루어질 수 있다.
[반응식 1]
6Li3PO4 + 9H2SO4 → 9Li2SO4 + 6H3PO4
[반응식 2]
xLi3PO4 + yH2SO4 → zLi2HPO4 + vLiH2PO4 + wLi2SO4
상기 산이 투입된 인산리튬 슬러리의 리튬 농도는 4,000mg/L 이상, 구체적으로, 4,000mg/L 내지 20,000mg/L 또는 5,000mg/L 내지 15,000mg/L 범위일 수 있다. 산이 투입된 인산리튬 슬러리의 리튬 농도가 20,000mg/L를 초과하는 경우, 인산리튬 슬러리의 점도가 지나치게 높아 교반 등의 공정이 원활하게 진행되지 않는 문제점이 있다. 또한, 인산리튬 슬러리의 리튬 농도가 4,000mg/L 미만인 경우, 밀링 공정에 머무는 리튬의 양이 적어 인산리튬으로부터 수산화리튬으로의 최종 전환율이 저하되는 문제점이 있다.
다음, 산이 투입된 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화리튬 수용액으로 전환한다. 본 단계에서 투입되는 알칼리 물질은 Ca(OH)2, NaOH 및 CaO로 이루어진 군에서 선택되는 하나 이상일 수 있다.
또한, 투입되는 알칼리 물질의 양은 투입된 인산리튬의 양을 기준으로 하여 0.8 내지 1.5당량, 보다 구체적으로 1 당량 내지 1.2 당량 범위일 수 있다. 알칼리 물질의 투입 양이 상기 범위를 만족하는 경우, 인산리튬에서 수산화리튬으로 전환되는 속도가 빠르다.
일례로, 본 단계에서 투입되는 알칼리 물질은 Ca(OH)2일 수 있으며, 하기 반응식 3 및 반응식 4의 반응이 이루어질 수 있다.
[반응식 3]
xLi2HPO4 + yLiH2PO4 + zCa(OH)2 → vLiOH + wCa5(PO4)3OH + qH2O
[반응식 4]
3Li2SO4 + 3Ca(OH)2 → 6LiOH + 3CaSO4
본 단계에서, Ca(OH)2는 파우더 타입으로 투입될 수 있고, 믹서에서 혼합될 수 있다. 이후 대기압(1 기압) 및 상온(25℃) 조건에서, 상기 반응식 3 및 반응식 4의 반응이 이루어질 수 있다.
즉, 상기 반응식 3 및 반응식 4와 같은 반응을 통해 수산화리튬(LiOH)이 형성된다. 또한, 상기 반응에서 수산화리튬(LiOH)과 함께 형성된 석고(CaSO4) 및 하이드록시아파타이트(Ca5(PO4)3OH)는 고상이기 때문에, 고액분리기에서 분리할 수 있다. 고상 성분이 분리된 수산화리튬(LiOH) 수용액을 결정화하여 수산화리튬을 생성할 수 있다.
그러면 이하에서 도 1을 참고로 하여, 본 실시예에 따른 인산리튬으로부터 수산화리튬을 제조하는 방법에 대하여 보다 상세하게 설명한다. 도 1은 일 실시예에 따라 인산리튬을 수산화리튬으로 제조하는 공정을 예시적으로 나타낸 것이다.
도 1을 참고로 하면 믹서(100)에 인산리튬 입자, 산, 알칼리 물질을 투입한다. 이때, 인산리튬 입자와 산이 먼저 투입된 후, 알칼리 물질이 투입될 수 있다. 인산리튬 입자와 산이 투입된 후, 상기 반응식 1 및 반응식 2의 반응이 이루어진다. 투입되는 인산리튬은 인산리튬 cake일 수 있다. 산은 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상일 수 있다.
알칼리 물질은 Ca(OH)2, NaOH 및 CaO로 이루어진 군에서 선택되는 하나 이상일 수 있다. 알칼리 물질의 투입 후, 믹서(100)에서 혼합되고, 반응기(200)로 옮겨진다. 반응기(200)에서는 상기 반응식 3 및 반응식 4의 반응이 일어나며, 상기 반응은 대기압, 상온에서 이루어질 수 있다.
다음, 반응기(200)에서 반응 후 수득된 생산물들은 고액분리기(300)로 이송된다. 고액분리기(300)에서 생산물 중 액상인 LiOH와, 고상인 석고(CaSO4) 및 하이드록시아파타이트(Ca5(PO4)3OH)가 분리된다.
분리된 LiOH 수용액은 탄산화 또는 결정화 공정을 거쳐 탄산리튬 또는 수산화리튬으로 생산될 수 있다. 석고 및 하이드록시아파타이트는 황산과 반응하여 인산 및 석고로 생산될 수 있다.
본 발명의 다른 실시예에 따른 수산화리튬의 제조 방법은, 인산리튬 입자를 포함하는 인산리튬 슬러리를 준비하는 단계 및 상기 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화 리튬으로 전환하는 단계를 포함하고, 상기 수산화 리튬으로 전환하는 단계는 밀링기를 이용하여 수행될 수 있다.
먼저, 인산리튬 입자를 포함하는 인산리튬 슬러리를 준비하는 단계를 설명한다.
본 명세서에서 사용되는 용어 "인산리튬 슬러리" 는, 인산 리튬이 포화된 수용액에 용해되지 않은 고체의 인산리튬 입자가 섞인 상태를 의미한다.
인산리튬은 물에 대한 용해도가 낮다. 즉, 상온(20°C)에서, 인산리튬(Li3PO4)의 물에 대한 용해도는 0.039g/L 수준이다.
그러나, 인산리튬 슬러리를 후술할 알칼리 물질과 함께 밀링기에 투입하여 밀링 공정을 거치는 경우에는 인산리튬의 용해속도가 개선되어 밀링 여액 내 리튬의 농도가 빠르게 증가한다. 따라서, 이를 이용하여 수산화리튬으로 전환하는 경우 인산리튬으로부터 수산화리튬으로의 전환율을 향상시킬 수 있다.
한편, 상기 인산리튬 슬러리를 준비하는 단계는, 상기 인산리튬 슬러리에 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상의 산을 투입하는 단계를 더 포함할 수 있다.
이와 같이, 인산리튬에 약간의 산을 첨가해주면, 일 실시예에서 설명한 바와 같이 인산리튬의 용해도가 개선된다. 즉, 인산리튬이 산과 반응하여 Li2HPO4 또는 LiH2PO4를 형성하는 경우, 용해도가 높아진다. 구체적으로, Li2HPO4의 용해도는 44.3g/L (0°C)이고, LiH2PO4의 용해도는 1,260g/L (0°C)이다.
즉, 인산리튬 슬러리를 준비하는 단계에서, 산을 추가로 첨가함으로써 인산리튬의 용해도를 높일 수 있다.
이때, 첨가되는 산의 양은 인산리튬 입자의 양 기준 0.12 당량 이상, 보다 구체적으로, 0.12 당량 내지 0.3 당량 또는 0.013 당량 내지 0.2 당량 범위일 수 있다. 다만, 첨가되는 산의 양은 전체 슬러리에 대하여 10%를 넘지 않는 것이 바람직하다. 첨가되는 산의 양이 상기 범위를 만족하는 경우, 인산리튬에서 수산화리튬으로의 전환율을 보다 향상시킬 수 있다. 또한, 필요에 따라 후술할 반응기에서 수득된 반응 생성물에서 불순물을 제거하기 위한 공정을 추가로 수행할 수 있는데. 상기와 같이 산을 첨가한 인산리튬 슬러리를 이용하는 경우 이와 같은 후공정에서 불순물 제거를 위한 첨가제를 소량 사용하여도 원하는 효과를 얻을 수 있는 장점이 있다.
일례로, 상기 첨가되는 산은 황산일 수 있다. 인산리튬이 완전히 황산과 반응하는 반응식은 전술한 반응식 1과 같으며, 물에 대한 용해도가 낮은 인산리튬이 최소한의 황산과 반응하여 용해도가 높은 리튬 화합물이 되는 반응식은 전술한 반응식 2와 같다.
이때, 상기 산이 투입된 인산리튬 슬러리의 리튬 농도는 4,000mg/L 이상, 구체적으로, 4,000mg/L 내지 20,000mg/L 또는 5,000mg/L 내지 15,000mg/L 범위일 수 있다. 산이 투입된 인산리튬 슬러리의 리튬 농도가 20,000mg/L를 초과하는 경우, 인산리튬 슬러리의 점도가 지나치게 높아 교반 등의 공정이 원활하게 진행되지 않는 문제점이 있다. 또한, 인산리튬 슬러리의 리튬 농도가 4,000mg/L 미만인 경우, 밀링 공정에 머무는 리튬의 양이 적어 인산리튬으로부터 수산화리튬으로의 최종 전환율이 저하되는 문제점이 있다.
다음으로, 상기와 같이 인산리튬 슬러리를 준비한 후, 상기 인산리튬 슬러리 및 알칼리 물질을 밀링기에 투입하여 밀링 여액을 제조하는 단계를 수행하고, 상기 밀링 여액을 반응기에 투입하여 반응 생성물을 수득하는 단계를 수행한다.
이때, 밀링기는, 예를 들면, 어트리션 밀(Attrition mill) 및 볼 밀(ball mill) 중 적어도 하나일 수 있다.
전술한 바와 같이 밀링 여액을 제조하면 인산리튬의 용해 속도를 개선하여 밀링 여액 내 리튬의 함량을 증가시킨 후 이후의 공정을 진행하기 때문에 최종적으로 수득되는 수산화리튬의 전환율을 향상시킬 수 있다.
상기 알칼리 물질은 Ca(OH)2, NaOH 및 CaO로 이루어진 군에서 선택되는 하나 이상일 수 있다.
또한, 투입되는 알칼리 물질의 양은 투입된 인산리튬의 양을 기준으로 하여 0.8 내지 1.5당량, 보다 구체적으로 1 당량 내지 1.2 당량 범위일 수 있다. 알칼리 물질의 투입 양이 상기 범위를 만족하는 경우, 인산리튬에서 수산화리튬으로 전환되는 속도가 빠르다.
일례로, 본 단계에서 투입되는 알칼리 물질은 Ca(OH)2일 수 있다. 상기 Ca(OH)2는 파우더 타입으로 투입될 수 있고, 이 경우 밀링기 내에서 혼합될 수 있다.
밀링기 내에서는 전술한 반응식 3 및 반응식 4의 반응이 이루어질 수 있다.
또한, 상기 밀링기와 상기 반응기는 배관이 연결되어 밀링 여액 제조 및 반응기를 이용한 반응 생성물 수득 공정은 순환 공정으로 수행될 수 있다.
이때, 인산리튬 슬러리 및 알칼리 물질의 혼합물은 밀링 후 반응기에 투입되고, 반응기에서 생성된 반응 생성물은 밀링기 하부로 펌핑되어 상부로 배출되며, 배출된 밀링 여액이 반응기로 투입되는 것이 반복된다.
이와 같이 밀링 공정을 거치는 경우, 인산리튬 슬러리 및 알칼리 물질이 밀링되면서 접촉면적이 증가되어 전술한 반응식 3 및 4의 반응이 촉진된다. 또한, 상기 반응으로 인산리튬의 표면에 생성되는 부산물인 하이드록시아파타이트(Hydroxyapatite)가 밀링으로 인산리튬의 표면에서 제거되는 효과가 있기 때문에 리튬이 용해되어 나올 수 있는 표면적이 작아지지 않는다. 따라서, 인산리튬에서 수산화리튬으로 전환되는 전체 반응 과정에서 가장 느리다고 판단되는 리튬의 용해반응 속도가 촉진되어 같은 시간 내에 인산리튬에서 수산화리튬으로의 최종 전환율이 높아지는 효과를 얻을 수 있다.
한편, 반응기 내에서도, 전술한 반응식 3 및 반응식 4의 반응이 이루어질 수 있다. 즉, 대기압(1기압) 및 상온(25℃) 조건에서, 상기 반응식 3 및 반응식 4의 반응이 이루어질 수 있다.
상기 반응식 3 및 반응식 4와 같은 반응을 통해 수산화리튬(LiOH)이 형성되고, 이와 함께 석고(CaSO4) 및 하이드록시아파타이트(Ca5(PO4)3OH)가 형성된다.
다음으로, 상기와 같은 반응 생성물을 수산화리튬으로 전환하는 단계를 수행한다.
상기 반응에서 수산화리튬(LiOH)과 함께 형성된 석고(CaSO4) 및 하이드록시아파타이트(Ca5(PO4)3OH)는 고상이기 때문에, 고액분리기에서 분리할 수 있다.
따라서, 반응 생성물을 고액 분리하여 고상 성분이 분리된 수산화리튬(LiOH) 수용액을 농축 및 결정화하여 수산화리튬을 생성할 수 있다.
그러면 이하에서 도 2를 참고로 하여, 본 실시예에 따른 인산리튬으로부터 수산화리튬을 제조하는 방법에 대하여 보다 상세하게 설명한다. 도 2는 다른 실시예에 따라 인산리튬을 수산화리튬으로 제조하는 공정을 예시적으로 나타낸 것이다.
도 2를 참고로 하면 믹서(100)에 인산리튬 입자 및 알칼리 물질을 투입하고, 필요에 따라 산을 투입한다. 산이 투입되는 경우 인산리튬 입자와 산이 먼저 투입된 후, 알칼리 물질이 투입될 수 있다.
인산리튬 입자와 산이 투입되는 경우에는, 상기 반응식 1 및 반응식 2의 반응이 이루어진다. 투입되는 인산리튬은 인산리튬 케이크(cake)일 수 있다. 산은 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상일 수 있다.
알칼리 물질은 Ca(OH)2, NaOH 및 CaO로 이루어진 군에서 선택되는 하나 이상일 수 있다. 알칼리 물질의 투입 후, 믹서(100)에서 혼합된다.
믹서(100)에서 혼합된 혼합물은 밀링기(400)에 투입되어 밀링 여액이 제조된다.
이후 상기 밀링 여액은 반응기(200)에 투입된다.
이때, 상기 밀링기(400) 및 반응기(200)는 서로 연결되어 상기 혼합물이 밀링기(400) 및 반응기(200) 사이를 몇 차례 순환하는 순환 공정으로 수행될 수 있다. 예를 들면, 밀링 공정은, 50℃ 내지 99℃ 범위에서 수행되며, 전체 순환 반응에서 혼합물이 밀링기에 머무는 시간은 10분 내지 1시간 정도이다. 순환 반응시, 즉, 밀링기(400) 및 반응기(200) 내에서는 각각 전술한 반응식 3 및 4의 반응이 일어나며, 상기 반응은 대기압(1기압), 상온(25℃)내지 90℃에서 이루어질 수 있다.
본 실시예에서는, 밀링기(400) 및 반응기(200) 사이의 순환 공정을 통해 이미 일부 리튬이 수산화리튬으로 전환된 밀링 여액을 반응기(200)를 이용하여 반응 생성물 수득 후 수산화리튬으로 전환한다. 따라서, 밀링 공정을 거치지 않는 경우와 비교하면, 최종 수득된 수산화리튬의 전환율을 보다 향상시킬 수 있다.
다음, 반응기(200)에서 반응 후 수득된 반응 생성물들은 고액분리기(300)로 이송된다. 고액분리기(300)에서 생산물 중 액상인 LiOH와, 고상인 석고(CaSO4) 및 하이드록시아파타이트(Ca5(PO4)3OH)가 분리된다.
분리된 LiOH 수용액은 탄산화 또는 결정화 공정을 거쳐 탄산리튬 또는 수산화리튬으로 생산될 수 있다. 석고 및 하이드록시아파타이트는 황산과 반응하여 인산 및 석고로 생산될 수 있다.
이하 실시예를 통하여 본 기재를 구체적으로 살펴보기로 한다.
실시예 1: 산이 투입된 인산리튬 → 수산화리튬 전환 반응
인산리튬을 기준으로 0.5 당량의 황산을 증류수와 혼합하여 묽은 황산 용액 1L를 제조하였다. 구체적으로, 순도 95%의 황산을 37.18g 투입하였으며, 제조된 황산 용액의 황산농도는 3.7wt%였다.
상기와 같이 제조된 황산 용액에 슬러리 내 인산리튬을 리튬의 양이 10g/L가 되도록 투입하여 90℃에서 30분 동안 교반하여 슬러리를 제조하였다.
상기 슬러리를 샘플링하여 인산리튬의 용해율을 분석한 결과 인산리튬의 용해율은 81% 였다.
이어서, 상기 투입한 인산리튬의 양을 기준으로 1.1당량의 수산화칼슘(Ca(OH)2)과 상기 슬러리를 반응기에 투입하여 상온(25℃)에서 한 시간 동안 교반한 후 감압 필터를 이용하여 고액 분리함으로써 수산화리튬 수용액을 제조하였다.
실시예 2 내지 4 및 참고예 1
인산리튬을 기준으로 황산의 투입량을 하기 표 1과 같이 변경하여 묽은 황산 용액 1L를 제조하여 하기 표 1과 같은 농도로 황산 용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 수산화리튬 수용액을 제조하였다.
실시예 2 내지 4 및 참고예 1에서 제조된 황산 용액에 인산리튬을 투입하여 제조한 슬러리를 샘플링하여 인산리튬의 용해율을 분석한 결과는 하기 표 2와 같다.
구분 참고예 1 실시예 1 실시예 2 실시예 3 실시예 4
인산리튬 기준 황산 투입량[당량] 0.33 0.5 0.67 0.83 1.0
황산 투입량(순도 95%) [g] 24.79 37.18 49.58 61.97 74.36
제조된 용액 황산농도 [wt%] 2.5 3.7 5.0 6.2 7.4
구분 참고예 1 실시예 1 실시예 2 실시예 3 실시예 4
인산리튬 기준 황산 투입량[당량] 0.33 0.5 0.67 0.83 1.0
LP 용해율 [%] 53 81 100 100 100
표 2를 참고하면, 황산의 투입량이 증가함에 따라 인산리튬의 용해율도 증가하는 것을 알 수 있다. 또한, 인산리튬 대비 황산 투입량이 0.67 당량 이상에는 인산리튬이 완전히 용해됨을 확인할 수 있다.
비교예 1 - 산이 투입되지 않은 인산리튬 → 수산화리튬 전환 반응
슬러리 내 리튬의 양이 10g/L가 되도록 인산리튬 및 증류수를 투입하여 90℃에서 30분 동안 교반하여 슬러리를 제조하였다.
이어서, 상기 투입한 인산리튬의 양을 기준으로 1.1 당량의 수산화칼슘(Ca(OH)2)과 상기 슬러리를 반응기에 투입하여 상온(25℃)에서 한 시간 동안 교반한 후 감압 필터를 이용하여 고액 분리함으로써 수산화리튬 수용액을 제조하였다.
실험예 1 - 인산리튬에서 수산화리튬으로의 전환율 계산
실시예 1 내지 4, 비교예 1 및 참고예 1에 따라 제조된 수산화리튬 수용액에 대하여 전환율을 계산하였다.
구체적으로, 처음 투입된 인산리튬의 총 리튬의 양과, 수산화리튬 수용액 제조 후 수용액 상에 존재하는 리튬의 양을 이용하여, 인산리튬(LP) 수산화리튬(LH)의 전환율을 계산하였다. 전환율 계산에 사용된 식은 하기 수학식 1과 같으며 계산한 결과는 하기 표 3에 나타내었다.
[수학식 1]
Figure PCTKR2017014652-appb-I000001
구분 비교예 1 참고예 1 실시예 1 실시예 2 실시예 3 실시예 4
LP 기준 황산 투입량[당량] 0 0.33 0.5 0.67 0.83 1.0
LP-LH 전환율 [%] 27 32 50 59 68 82
표 3을 참고하면, 동일한 조건에서 산을 사용하지 않은 비교예 1의 경우는 27% 정도의 전환율을 나타내었다.
이에 반해, 산을 투입한 경우니 실시예 1 내지 4와 참고예 1에 따라 제조한 수산화 리튬 수용액의 경우 모두 전환율이 비교예 1에 비해 상승하였다.
특히, 투입한 인산리튬의 양을 기준으로 0.5 당량 이상의 산을 투입한 실시예 1 내지 4에 따라 제조된 수산화 리튬 수용액의 경우 50% 이상의 전환율을 나타냄으로써 산을 투입하지 않은 경우에 비해 전환율이 2배 가까이 상승하며, 산을 투입하더라도 0.5 당량 미만을 투입한 참고예 1과 비교하여도 전환율이 1.5배 이상 상승하는 것을 확인할 수 있다. 또한, 황산을 0.67 당량 이상 투입한 실시예 2 내지 4의 경우, 인산리튬의 용해율이 동일함에도 불구하고 산 투입량이 증가함에 따라 전화율이 증가하는 것을 알 수 있다.
실시예 5 내지 6 및 참고예 2 내지 3: 산이 투입되지 않은 인산리튬 → 수산화리튬 전환 반응 (밀링기 이용)
슬러리 내 리튬의 양이 10g/L가 되도록 인산리튬 및 증류수를 투입하여 90℃에서 30분 동안 교반하여 슬러리를 제조하였다.
이어서, 상기 투입한 인산리튬의 양을 기준으로 1.1 당량의 수산화칼슘(Ca(OH)2)과 상기 슬러리를 밀링기에 투입하여 90℃에서 15분 동안 밀링하며 반응기와 순환 반응하여 밀링 여액을 제조하였다.
이어서, 상기 밀링 여액을 반응기에 투입하여 90℃에서 한 시간 동안 교반한 후 감압 필터를 이용하여 고액 분리함으로써 수산화리튬 수용액을 제조하였다.
실시예 5 내지 6 및 참고예 2 내지 3에서 제조된 밀링 여액 내 리튬의 전환율 전술한 수학식 1을 이용하여 계산하여 하기 표 4에 나타내었다.
구분 참고예 2 참고예 3 실시예 5 실시예 6
LP 기준 황산 투입 당량비 0 0.01 0.016 0.18
밀링 여액 내 Li 전환율 [%] 14.7 14.9 27.6 28.8
실시예 1 내지 4 및 참고예 1에서는 반응기에 투입한 후 전술한 반응식 3 및 4의 반응이 이루어지는 바, 반응기에 투입되는 슬러리 내의 리튬 전환율은 0%에 가깝다.
그러나, 표 4를 참고하면, 반응기에 투입되는 밀링 여액 내 리튬의 전환율은 적어도 14% 이상이다. 이는 밀링 및 반응기 순환 공정에서 이미 반응식 3 및 4의 반응이 이루어지는 바, 인산리튬의 일부가 수산화리튬으로 전환되기 때문이다.
따라서, 반응기에서 반응 후 최종 수득되는 수산화리튬 수용액에서의 리튬의 양을 이용하여 인산리튬(LP) 수산화리튬(LH)의 전환율을 계산하면 실시예 1 내지 4 보다는 증가할 것임을 쉽게 추론할 수 있다.
따라서, 본 실시예와 같이 산을 투입하지 않더라도 인산리튬 슬러리 및 알칼리 물질의 혼합물을 밀링 공정을 거친 후 반응기에 투입하면 인산리튬(LP) 수산화리튬(LH)의 전환율을 현저하게 향상시킬 수 있음을 알 수 있다.
또한, 밀링 공정을 거치더라도 산을 투입하는 경우, 특히, 0.015 당량 이상의 산을 투입한 실시예 5 및 6과 0.015 미만의 산을 투입한 참고예 2 및 3을 비교하면, 밀링 공정을 거침과 동시에 0.015 당량 이상의 산을 투입하는 것만으로도 대략 2배 가까이 전환율을 향상시킬 수 있음을 알 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
100: 믹서
200: 반응기
300: 고액분리기
400: 밀링기

Claims (15)

  1. 인산리튬 입자를 포함하는 인산리튬 슬러리에 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상의 산을 투입하는 단계;
    상기 산이 투입된 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화리튬 수용액으로 전환하는 단계;를 포함하는 수산화리튬의 제조 방법.
  2. 제1항에서,
    상기 산이 투입된 인산리튬 슬러리의 리튬 농도는 4,000mg/L 이상인 수산화리튬의 제조 방법.
  3. 제1항에서,
    상기 투입되는 산의 양은 투입한 인산리튬의 양을 기준으로 0.5 당량 이상인 수산화리튬의 제조 방법.
  4. 제1항에서,
    상기 투입되는 알칼리 물질의 양은 투입한 인산리튬의 양을 기준으로 하여 0.8 내지 1.5당량인 수산화리튬의 제조 방법.
  5. 제1항에서,
    상기 알칼리 물질은 Ca(OH)2, NaOH 및 CaO로 이루어진 군에서 선택되는 하나 이상인 수산화리튬의 제조 방법.
  6. 제1항에서,
    상기 산이 투입된 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화리튬 수용액으로 전환하는 단계에서,
    석고 및 하이드록시아파타이트가 석출되는 수산화리튬의 제조 방법.
  7. 제1항에서,
    상기 산이 투입된 인산리튬 슬러리에 알칼리 물질을 투입하여 수산화리튬 수용액으로 전환하는 단계 이후에,
    상기 수산화리튬 수용액을 농축시켜 수산화리튬을 제조하는 단계를 더 포함하는 수산화리튬의 제조 방법.
  8. 인산리튬 입자를 포함하는 인산리튬 슬러리를 준비하는 단계;
    상기 인산리튬 슬러리 및 알칼리 물질을 밀링기에 투입하여 밀링 여액을 제조하는 단계;
    상기 밀링 여액을 반응기에 투입하여 반응 생성물을 수득하는 단계; 및
    상기 반응 생성물을 수산화 리튬으로 전환하는 단계를 포함하는 수산화리튬의 제조 방법.
  9. 제8항에 있어서,
    상기 인산리튬 슬러리를 준비하는 단계는,
    상기 인산리튬 슬러리에 염산, 황산 및 질산으로 이루어진 군에서 선택되는 하나 이상의 산을 투입하는 단계를 더 포함하는 수산화리튬의 제조 방법.
  10. 제9항에서,
    상기 투입되는 산의 양은 투입한 인산리튬의 양을 기준으로 0.012 당량 내지 0.3 당량 범위인 수산화리튬의 제조 방법.
  11. 제8항에서,
    상기 인산리튬 슬러리의 리튬 농도는 4,000mg/L 이상인 수산화리튬의 제조 방법.
  12. 제8항에서,
    상기 투입되는 알칼리 물질의 양은 투입한 인산리튬의 양을 기준으로 하여 0.8 내지 1.5당량인 수산화리튬의 제조 방법.
  13. 제8항에서,
    상기 알칼리 물질은 Ca(OH)2, NaOH 및 CaO로 이루어진 군에서 선택되는 하나 이상인 수산화리튬의 제조 방법.
  14. 제8항에서,
    상기 반응 생성물을 수득하는 단계에서,
    석고 및 하이드록시아파타이트가 석출되는 수산화리튬의 제조 방법.
  15. 제8항에서,
    상기 반응 생성물을 수산화리튬으로 전환하는 단계는,
    상기 반응 생성물을 고액 분리 후 얻어진 수산화리튬 수용액을 농축시키는 방법으로 수행되는 수산화리튬의 제조 방법.
PCT/KR2017/014652 2016-12-15 2017-12-13 인산리튬으로부터 수산화리튬을 제조하는 방법 WO2018110974A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780077954.4A CN110088043B (zh) 2016-12-15 2017-12-13 从磷酸锂制备氢氧化锂的方法
US16/469,807 US11554965B2 (en) 2016-12-15 2017-12-13 Method for producing lithium hydroxide from lithium phosphate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160171619 2016-12-15
KR10-2016-0171619 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110974A1 true WO2018110974A1 (ko) 2018-06-21

Family

ID=62559430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014652 WO2018110974A1 (ko) 2016-12-15 2017-12-13 인산리튬으로부터 수산화리튬을 제조하는 방법

Country Status (5)

Country Link
US (1) US11554965B2 (ko)
KR (1) KR102043792B1 (ko)
CN (1) CN110088043B (ko)
AR (1) AR110525A1 (ko)
WO (1) WO2018110974A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153419A (zh) * 2018-11-07 2020-05-15 全雄 提取锂的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101944518B1 (ko) 2018-07-23 2019-02-01 한국지질자원연구원 탄산리튬으로부터 고농도 리튬 수용액 제조방법
KR101944522B1 (ko) 2018-07-31 2019-02-01 한국지질자원연구원 인산리튬으로부터 고농도 리튬 수용액 제조 방법
KR102178438B1 (ko) * 2019-06-19 2020-11-13 주식회사 포스코 수산화리튬 제조방법
EP4098758A4 (en) 2020-01-29 2023-01-04 Uong Chon LITHIUM EXTRACTION PROCESS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931703A (en) * 1957-04-03 1960-04-05 Foote Mineral Co Process for recovery of lithium hydroxide from lithium phosphates
US20080157024A1 (en) * 2003-10-21 2008-07-03 George Adamson Product and method for the processing of precursors for lithium phosphate active materials
US20090117022A1 (en) * 2005-03-18 2009-05-07 Sud-Chemie Ag Cyclic process for wet-chemically producing lithium metal phosphates
KR20130113287A (ko) * 2012-04-05 2013-10-15 주식회사 포스코 수산화리튬의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
KR101604954B1 (ko) * 2015-09-22 2016-03-18 강원대학교산학협력단 폐전지의 리튬폐액을 활용한 고순도 인산리튬 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100468833C (zh) 2003-10-21 2009-03-11 威伦斯技术公司 磷酸锂电极活性材料前体的制造方法与产物
JP2009269810A (ja) 2008-05-07 2009-11-19 Kee:Kk 高純度水酸化リチウムの製造法
CN101302018B (zh) * 2008-07-02 2010-08-11 江西赣锋锂业股份有限公司 从锂云母提锂制备碳酸锂的方法
JP5632169B2 (ja) 2010-02-22 2014-11-26 エコシステムリサイクリング株式会社 リチウム含有液からのリチウム濃縮液の製造方法および炭酸リチウムの製造方法
KR101181922B1 (ko) 2010-12-07 2012-09-11 재단법인 포항산업과학연구원 염수로부터 고순도 수산화리튬과 탄산리튬 제조 방법
KR101193142B1 (ko) 2010-08-12 2012-10-22 재단법인 포항산업과학연구원 인산리튬 수용액의 전기분해에 의한 리튬 제조 방법
KR101256623B1 (ko) 2010-12-07 2013-04-19 재단법인 포항산업과학연구원 염수로부터 고순도의 리튬 수용액을 제조하는 방법
KR101432793B1 (ko) 2012-01-06 2014-08-22 재단법인 포항산업과학연구원 고순도 리튬 화합물의 제조 방법 및 이를 이용한 시스템
KR101405484B1 (ko) * 2012-07-31 2014-06-13 재단법인 포항산업과학연구원 리튬 함유 용액으로부터 리튬을 추출하는 방법
KR20140144380A (ko) 2013-06-10 2014-12-19 재단법인 포항산업과학연구원 염수로부터 수산화 리튬의 효율적 추출 방법
KR102273769B1 (ko) 2013-12-30 2021-07-07 삼성에스디아이 주식회사 리튬 전이금속 인산화물, 그 제조방법 및 이를 이용하여 제조된 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2931703A (en) * 1957-04-03 1960-04-05 Foote Mineral Co Process for recovery of lithium hydroxide from lithium phosphates
US20080157024A1 (en) * 2003-10-21 2008-07-03 George Adamson Product and method for the processing of precursors for lithium phosphate active materials
US20090117022A1 (en) * 2005-03-18 2009-05-07 Sud-Chemie Ag Cyclic process for wet-chemically producing lithium metal phosphates
KR20130113287A (ko) * 2012-04-05 2013-10-15 주식회사 포스코 수산화리튬의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
KR101604954B1 (ko) * 2015-09-22 2016-03-18 강원대학교산학협력단 폐전지의 리튬폐액을 활용한 고순도 인산리튬 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153419A (zh) * 2018-11-07 2020-05-15 全雄 提取锂的方法
CN111153419B (zh) * 2018-11-07 2022-08-09 全雄 提取锂的方法

Also Published As

Publication number Publication date
CN110088043A (zh) 2019-08-02
CN110088043B (zh) 2022-03-25
AR110525A1 (es) 2019-04-10
KR102043792B1 (ko) 2019-11-12
US11554965B2 (en) 2023-01-17
KR20180069736A (ko) 2018-06-25
US20200079657A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2018110974A1 (ko) 인산리튬으로부터 수산화리튬을 제조하는 방법
WO2011065682A2 (ko) 리튬이온전지 및 3원계 양극활물질로부터 cmb 촉매 제조방법
WO2017090877A1 (ko) 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법
WO2023191414A1 (ko) 블랙 매스로부터 이차전지 소재의 제조방법
WO2018088698A1 (ko) 합성-헥토라이트의 저온 상압 제조방법
WO2017078308A1 (ko) 화력발전소의 바닥재를 이용한 합성 제올라이트 제조방법
WO2021153816A1 (ko) 리튬 추출 방법
WO2012005548A2 (en) Method for economical extraction of magnesium,boron and calcium from lithium bearing solution
WO2021256888A1 (ko) 리튬 비스옥살레이토보레이트를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액
WO2017069545A1 (ko) 경석을 이용한 합성 제올라이트 제조방법
WO2018164340A1 (ko) 리튬 함유 폐기물로부터 리튬 화합물을 회수하는 방법
WO2023158008A1 (ko) 니켈, 코발트 및 망간의 분리 회수를 위한 2단 추출을 이용한 용매추출방법
WO2013089400A1 (en) Method for extraction of lithium from lithium bearing solution
WO2021256732A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
WO2023243827A1 (ko) 니켈 또는 코발트 수용액 제조 방법
WO2019013570A2 (ko) 인산을 발효액 또는 발효 폐액으로부터 회수 및 재사용하는 방법
WO2023234623A1 (ko) 웰즈 산화물로부터 할로겐화물을 제거하는 방법
WO2001077021A1 (en) Production of strontium carbonate from celestite
WO2021015378A1 (ko) 수산화 리튬의 제조 방법
JP3806258B2 (ja) Ga,Inの溶媒抽出方法
WO2022234884A1 (ko) 건식용융 방법을 이용한 폐리튬이차전지로부터 리튬을 회수하는 방법
WO2022045747A1 (ko) 리튬을 함유하는 원료에서 수산화리튬을 제조하는 방법
WO2018190461A1 (ko) 질산을 이용하여 폐 ito스크랩으로부터 높은 상대밀도를 가지는 고순도 ito타겟용 분말의 제조방법 및 그 분말
WO2014017729A1 (en) Method for preparing electrode material using hydrothermal synthesis process
WO2023211260A1 (ko) 아연 제련 공정의 부산물로부터 황산망간 일수화물을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881242

Country of ref document: EP

Kind code of ref document: A1