WO2021015378A1 - 수산화 리튬의 제조 방법 - Google Patents

수산화 리튬의 제조 방법 Download PDF

Info

Publication number
WO2021015378A1
WO2021015378A1 PCT/KR2020/001504 KR2020001504W WO2021015378A1 WO 2021015378 A1 WO2021015378 A1 WO 2021015378A1 KR 2020001504 W KR2020001504 W KR 2020001504W WO 2021015378 A1 WO2021015378 A1 WO 2021015378A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
filtrate
hydroxide
lithium hydroxide
carbonate
Prior art date
Application number
PCT/KR2020/001504
Other languages
English (en)
French (fr)
Inventor
전웅
Original Assignee
전웅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전웅 filed Critical 전웅
Priority to CN202080052000.XA priority Critical patent/CN114144379B/zh
Priority to JP2022502297A priority patent/JP7442617B2/ja
Priority to US17/597,692 priority patent/US20220274842A1/en
Priority to EP20844051.1A priority patent/EP4001217A4/en
Publication of WO2021015378A1 publication Critical patent/WO2021015378A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/30Alkali metal phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • It relates to a method for producing lithium hydroxide.
  • lithium secondary batteries are being used in various ways as a power source for IT devices such as mobile phones and notebook computers, and are attracting attention as a power source for electric vehicles.
  • Lithium hydroxide is used as a raw material for cathode materials, anode materials, and electrolytes, which are important parts of electric vehicles and electric storage systems. Accordingly, there is a need to develop a technology capable of economically manufacturing lithium hydroxide in order to smoothly supply electric vehicles and electric storage systems that are expected to increase in demand to the market.
  • lithium naturally evaporates natural brine containing about 0.2 to 1.5 g/L of lithium, concentrates lithium to a high concentration of about 60 g/L, and then adds carbonate to lithium carbonate (Li 2 CO 3 ). Is extracted in the form of.
  • Various methods have been devised for preparing lithium hydroxide from the lithium carbonate extracted in this way.
  • Korean Patent Registration No. 10-0725589 discloses that lithium carbonate is eluted from lithium carbonate waste to a lithium carbonate solubility (13 g/L) to obtain a lithium carbonate aqueous solution having a lithium concentration of 2.5 g/L, and reacted with calcium hydroxide to obtain a lithium concentration of 2.5 g/L. It introduces a technology for producing lithium hydroxide by preparing a low-concentration lithium hydroxide aqueous solution below L and evaporating moisture.
  • Korean Patent Registration No. 10-1873933 is prepared by mixing lithium carbonate slurry and calcium hydroxide slurry, reacting at 70° C. for 2 hours, and filtering to obtain a lithium carbonate aqueous solution having a lithium concentration of 3.75 g/L or more, and evaporating the lithium hydroxide powder. Introducing how to do it.
  • this method requires heating the reaction solution to 70°C in order to react with lithium carbonate and lithium hydroxide, resulting in a high energy cost, and a large amount of lithium hydroxide is eluted and lost in the process of washing the produced lithium hydroxide to achieve high purity. Therefore, there is a problem that the lithium recovery rate is lowered.
  • Japanese Patent No. 05769409 provides a method of preparing lithium hydroxide by reacting lithium carbonate with an organic acid to prepare a lithium organic acid solution and then electrodialysis in an electrodialysis machine equipped with a bipolar membrane.
  • this method not only requires the use of an expensive electrodialysis facility, but also requires excessive electricity costs and is expensive and difficult to maintain and repair the bipolar membrane, which is not economical.
  • the present invention proposes a method for economically producing lithium hydroxide from lithium carbonate with low energy consumption and high lithium recovery rate.
  • An embodiment of the present invention provides a method for economically producing lithium hydroxide.
  • preparing lithium carbonate and calcium hydroxide And reacting the lithium carbonate and calcium hydroxide in a solvent to obtain a lithium hydroxide aqueous solution; including, reacting the lithium carbonate and calcium hydroxide in a solvent to obtain a lithium hydroxide aqueous solution; in, the lithium carbonate in the solvent It provides a method for producing lithium hydroxide that has a concentration of 110 g/L or less.
  • the concentration of lithium carbonate in the solvent may be 25 to 110 g/L.
  • the concentration of lithium carbonate in the solvent may be 25 to 80 g/L.
  • the concentration of calcium hydroxide in the solvent may be 27g/L to 115g/L.
  • the concentration of calcium hydroxide may be related to the concentration of lithium carbonate. That is, the amount of calcium hydroxide that can be reacted can be controlled according to the amount of lithium carbonate.
  • the reaction time may be 1 to 5 hours. A description of the reaction time will be described later.
  • the reaction temperature may be room temperature. That is, separate energy for activating the reaction atmosphere may not be consumed.
  • the step of recovering lithium in the washing filtrate after washing the lithium hydroxide may include recovering lithium in the form of lithium carbonate by adding a carbonic acid supply material to the first filtrate or the washing filtrate.
  • a phosphorus supply material is added to It may include; recovering lithium in the form of lithium.
  • the step of recovering lithium in the washing filtrate after washing the lithium hydroxide may include a step of recovering lithium in the form of lithium phosphate by adding a phosphorus supply material to the first filtrate or the washing filtrate.
  • One embodiment of the present invention provides a method for economically producing lithium hydroxide by reducing energy cost, equipment investment cost, and lithium loss.
  • Figure 1 shows the lithium hydroxide conversion rate of the reaction filtrate obtained by adding different amounts of lithium carbonate and calcium hydroxide to 1L of distilled water, and then stirring at room temperature (21°C) for 5 hours.
  • 3 is a reaction precipitate obtained by adding 54 g of lithium carbonate and 57 g of calcium hydroxide to 1 L of water at room temperature (21° C.) and stirring for 5 hours to prepare a high-concentration lithium solution having a lithium concentration of 10 g/L and washing at 105° C. It shows the X-ray diffraction pattern obtained by the X-ray diffraction analyzer after drying for 24 hours.
  • lithium hydroxide 4 is a high-concentration lithium hydroxide solution having a lithium concentration of 9.4 g/L in a flask reduced to 35 mbar in order to prepare a lithium hydroxide powder, and the flask is immersed in water heated to 50° C. and the moisture is evaporated while rotating to precipitate lithium hydroxide. After filtering and washing, the precipitated lithium hydroxide is washed and dried, and the measured X-ray diffraction pattern is shown.
  • FIG. 5 shows an X-ray diffraction pattern of a reaction precipitate obtained by adding 340 g of sodium carbonate to 1 L of a mixture of a lithium hydroxide filtrate and a lithium hydroxide washing filtrate, and stirring at room temperature for 4 hours.
  • FIG. 6 shows an X-ray diffraction pattern of a reaction precipitate obtained by adding 351 g of sodium phosphate to 1 L of a mixture of a lithium hydroxide filtrate and a lithium hydroxide washing filtrate, and stirring at room temperature for 4 hours.
  • FIG. 7 shows an X-ray diffraction pattern of a reaction precipitate obtained by adding 26 g of sodium phosphate to 1 L of a mixture of a lithium carbonate filtrate and a lithium carbonate washing filtrate and stirring at room temperature for 4 hours.
  • reaction of lithium carbonate and calcium hydroxide in a suspension at room temperature eg, 20 to 25° C.
  • room temperature eg, 20 to 25° C.
  • the lithium carbonate reacts with calcium hydroxide to generate a lithium hydroxide aqueous solution, and calcium carbonate is precipitated.
  • the reaction may be carried out at room temperature.
  • the reaction solution at room temperature is filtered to separate the precipitated calcium carbonate, thereby obtaining a lithium hydroxide solution.
  • the solubility of lithium hydroxide is 128 g/L, which is 37.1 g/L in terms of lithium concentration.
  • the lithium hydroxide aqueous solution in order to precipitate and separate lithium hydroxide from the lithium hydroxide solution in a solid state, the lithium hydroxide aqueous solution must be heated so that the lithium concentration is 37.1 g/L or higher to evaporate moisture.
  • the amount of lithium carbonate added to 1 L of the reaction solution is limited to 110 g/L or less. More specifically, it may range from 25g to 110g.
  • the precipitation of lithium hydroxide powder by evaporation and concentration of the lithium hydroxide solution according to an embodiment of the present invention may be performed by the following Reaction Scheme 2 or Scheme 3.
  • the lithium hydroxide precipitation solution according to an embodiment of the present invention may be filtered and separated into lithium hydroxide (solid) and a filtrate.
  • the lithium hydroxide precipitate according to the embodiment of the present invention may be washed by mixing with water.
  • the lithium hydroxide and the washing filtrate can be separated by filtering the washing solution in which the precipitated lithium hydroxide and water are mixed.
  • lithium hydroxide has a high solubility of 128 g/L, a large amount of lithium remains at a lithium concentration of 37 g/L in the lithium hydroxide filtrate according to an embodiment of the present invention, and a high concentration of lithium in the lithium hydroxide washing filtrate It exists in large quantities.
  • lithium carbonate synerglycerol
  • lithium phosphate synerglycerol
  • Lithium can be effectively recovered by depositing lithium carbonate by adding a carbonic acid supply material to a lithium hydroxide solution obtained by mixing the lithium hydroxide filtrate and the lithium hydroxide washing filtrate according to the embodiment of the present invention.
  • the lithium carbonate precipitation reaction may be performed according to Reaction Scheme 4 below.
  • Sodium carbonate an example of a carbonic acid feed material, reacts with lithium at room temperature to generate and precipitate lithium carbonate.
  • carbonic acid supply material examples include carbon dioxide gas and carbonate.
  • the carbonate may be sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, ammonium carbonate, or a combination thereof.
  • the amount of the carbonic acid supply material may be 1 equivalent or more based on the lithium content of the lithium hydroxide solution. If the above range is satisfied, it may be advantageous in terms of reaction rate.
  • the precipitated lithium carbonate may be separated from the reaction solution by filtration.
  • the step of recovering lithium by generating and depositing lithium carbonate by adding a carbonic acid supply material to the lithium hydroxide solution may be performed at room temperature.
  • lithium carbonate After thus obtaining lithium carbonate, it can be filtered and washed again.
  • residual lithium may also be present in the filtrate and washing filtrate.
  • Such residual lithium can be recovered using lithium phosphate having a lower solubility than lithium carbonate.
  • a phosphorus supply material may be added to a lithium hydroxide solution obtained by mixing the lithium hydroxide filtrate and the lithium hydroxide washing filtrate according to an embodiment of the present invention to recover lithium in the form of lithium phosphate.
  • the lithium phosphate precipitation reaction may be performed according to Reaction Scheme 5 below.
  • Sodium phosphate an example of a phosphorus supply material, reacts with lithium at room temperature to generate and precipitate lithium phosphate.
  • phosphorus supply material examples include phosphorus, phosphoric acid, phosphate or a solution containing phosphorus.
  • the phosphate salt include potassium phosphate, sodium phosphate, ammonium phosphate (specific example, the ammonium may be (NR 4 ) 3 PO 4 , and R is independently hydrogen, deuterium, substituted or unsubstituted C1 to It may be a C10 alkyl group) and the like.
  • the phosphate is potassium monophosphate, potassium diphosphate, potassium triphosphate, sodium monophosphate, sodium diphosphate, sodium triphosphate, aluminum phosphate, zinc phosphate, ammonium polyphosphate, sodium hexametaphosphate, sodium monophosphate, calcium monophosphate, It may be calcium diphosphate, calcium triphosphate, and the like.
  • the phosphorus supplying material may be an aqueous solution containing phosphorus.
  • the phosphorus supplying material is an aqueous solution containing phosphorus, it can easily react with lithium contained in the lithium hydroxide solution to generate and precipitate lithium phosphate.
  • the input amount of the phosphorus supply material may be 1 equivalent or more based on the lithium content of the lithium hydroxide solution. If the above range is satisfied, it may be advantageous in terms of reaction rate.
  • the precipitated lithium phosphate may be separated from the reaction solution by filtration.
  • the step of recovering dissolved lithium by depositing and recovering dissolved lithium as lithium phosphate by introducing a phosphorus supply material to the lithium hydroxide solution may be performed at room temperature.
  • room temperature does not mean a constant temperature, but means a temperature in a state in which external energy is not added. Therefore, the room temperature may change depending on the location and time.
  • lithium carbonate and calcium hydroxide were added to 1 L of water as shown in Table 1 in order to check the lithium hydroxide conversion rate of lithium carbonate according to the amount of lithium carbonate input, and then at room temperature (21). °C) for 5 hours.
  • Lithium carbonate input amount (g) 10.75 26.88 53.77 80.65 107.53 134.41 161.30 188.18 Calcium hydroxide input amount (g) 11.35 28.37 56.75 85.12 113.50 141.87 170.24 198.62 Lithium concentration in reaction filtrate (mg/L) 1,997 4,988 9,308 14,038 14,295 13,741 13,231 13,913 Lithium hydroxide conversion (%) 99.85 99.76 93.08 93.59 71.48 54.96 44.10 39.75
  • lithium hydroxide solution 54 g of lithium carbonate and 57 g of calcium hydroxide were added to 1 L of distilled water, followed by stirring at room temperature (21° C.) for 5 hours.
  • lithium carbonate reacts with calcium hydroxide at room temperature to produce lithium hydroxide. Meanwhile, the precipitate obtained by filtering the reaction solution was washed with distilled water and dried at 105° C. for 24 hours, and the mineral phase was analyzed using an X-ray diffractometer.
  • Reaction time (hours) 0 0.5 One 1.5 2 2.5 3 3.5 4 4.5 5 Reaction filtrate lithium concentration (mg/L) 0 7,516 8,767 8,913 9,040 9,121 9,230 9,357 9,441 9,415 9,335
  • lithium hydroxide monohydrate (LiOHH 2 O) powder the high-concentration lithium hydroxide solution was placed in a flask reduced to 35 mbar, and then the flask was immersed in water heated to 50° C. and water was evaporated while rotating to concentrate lithium.
  • lithium hydroxide solution As the moisture evaporated, the lithium concentration in the lithium hydroxide solution increased, and after the lithium concentration reached 37 g/L, lithium hydroxide began to precipitate.
  • the evaporated slurry in which lithium hydroxide was deposited was filtered and separated into a lithium hydroxide precipitate and a filtrate.
  • 100 g of filtered lithium hydroxide and 100 ml of distilled water were mixed and stirred. After stirring for 1 hour, the lithium hydroxide washing solution was filtered and separated into lithium hydroxide and washing filtrate.
  • the washed lithium hydroxide was dried in a vacuum desiccator at room temperature, and the mineral phase of the dried lithium hydroxide powder was analyzed using an X-ray diffractometer, and the results are shown in FIG. 4.
  • Lithium concentrations of the lithium hydroxide filtrate and lithium hydroxide washing filtrate of Example 3 were analyzed, and the results are shown in Table 3.
  • Lithium hydroxide filtrate and lithium hydroxide washing filtrate contained a large amount of lithium, and the lithium concentration was observed to be very high, 37.1g/L and 36.8g/L, respectively.
  • the lithium hydroxide filtrate and the lithium hydroxide washing filtrate were mixed. After 340 g/L of sodium carbonate was added to this mixture, the mixture was stirred at room temperature for 4 hours to precipitate lithium carbonate. The precipitated lithium carbonate was filtered, washed, and dried, and then the mineral phase was analyzed using an X-ray diffractometer, and the results are shown in FIG. 5.
  • Table 4 shows the lithium concentration of the mixed solution of the lithium hydroxide filtrate and the lithium hydroxide washing filtrate and the reaction after adding 340 g of sodium carbonate to 1 L of the mixed solution and stirring at room temperature for 4 hours to precipitate lithium carbonate to recover the lithium contained in the mixed solution. Represents the filtrate lithium concentration.
  • Lithium concentration (mg/L) Mixed solution of lithium hydroxide filtrate and lithium hydroxide washing filtrate 36,800 After adding sodium carbonate, a mixture of lithium hydroxide filtrate and lithium hydroxide washing filtrate 2,900 Lithium recovery rate 92.1%
  • lithium hydroxide precipitation filtrate As shown in Table 4, sodium carbonate was added to the lithium hydroxide precipitation filtrate and the lithium hydroxide washing filtrate to precipitate lithium carbonate. As a result, lithium could be recovered with a high recovery rate of 92.1%.
  • Table 5 shows the lithium concentration of the mixed solution of the lithium hydroxide filtrate and the lithium hydroxide washing filtrate, and 351 g of sodium phosphate was added to 1 L of the mixed solution to recover the lithium contained in the mixed solution, followed by stirring at room temperature for 4 hours to precipitate lithium phosphate. Represents the lithium concentration.
  • Lithium concentration (mg/L) Mixed solution of lithium hydroxide filtrate and lithium hydroxide washing filtrate 36,800 After sodium phosphate is added, lithium hydroxide filtrate and lithium hydroxide washing filtrate mixture 700 Lithium recovery rate 98.1%
  • the lithium concentration of the lithium hydroxide filtrate and the lithium hydroxide washing filtrate was very high, 37g/L and 36.8g/L, and it was observed that a large amount of lithium was contained.
  • the lithium hydroxide filtrate at room temperature and the lithium hydroxide washing filtrate were mixed, and 351 g of sodium phosphate was added to 1 L of the mixture to precipitate lithium phosphate.
  • the precipitated lithium phosphate was filtered, washed, and dried, and then the mineral phase was analyzed using an X-ray diffractometer, and the results are shown in FIG. 6.
  • lithium hydroxide filtrate sodium phosphate was added to the lithium hydroxide filtrate and the lithium hydroxide washing filtrate to precipitate lithium phosphate. As a result, lithium could be recovered with a high recovery rate of 98.1%.
  • lithium contained in the lithium hydroxide filtrate and washing filtrate is mostly recovered in the form of lithium phosphate at room temperature, a large amount of lithium loss that may occur in the lithium hydroxide manufacturing process can be effectively prevented with simple equipment and low energy cost.
  • the lithium carbonate slurry prepared by adding sodium carbonate to the lithium hydroxide filtrate and lithium hydroxide washing filtrate of Example 4 was filtered and separated into a lithium carbonate precipitate and a filtrate.
  • the lithium carbonate filtrate and lithium carbonate washing filtrate contained lithium, and the lithium concentration was observed to be 2.9g/L and 2.45g/L, respectively.
  • the lithium carbonate filtrate and the lithium carbonate washing filtrate were mixed. After 26 g/L of sodium phosphate was added to this mixture, it was stirred at room temperature for 4 hours to precipitate lithium phosphate. The precipitated lithium phosphate was filtered, washed, and dried, and then the mineral phase was analyzed using an X-ray diffractometer, and the results are shown in FIG. 7.
  • Table 7 shows the lithium concentration of the lithium carbonate filtrate and the washing filtrate mixture and the reaction filtrate lithium after 26 g of sodium phosphate was added to 1 L of the mixed solution and stirred at room temperature for 4 hours to precipitate lithium phosphate to recover the lithium contained in the mixed solution. Indicates the concentration.
  • Lithium concentration (mg/L) A mixture of lithium carbonate filtrate and lithium carbonate washing filtrate 2,680 After adding sodium phosphate, a mixture of lithium carbonate filtrate and lithium carbonate washing filtrate 790 Lithium recovery rate 70%
  • lithium carbonate precipitation filtrate As shown in Table 7, sodium phosphate was added to the lithium carbonate precipitation filtrate and the lithium carbonate washing filtrate to precipitate lithium phosphate, and as a result, lithium could be recovered with a high recovery rate of 70%.
  • lithium contained in the lithium carbonate filtrate and washing filtrate is mostly recovered in the form of lithium phosphate at room temperature, lithium loss that may occur in the lithium hydroxide manufacturing process can be effectively prevented with simple equipment and low energy cost.

Abstract

수산화 리튬의 제조 방법에 대한 것으로, 탄산 리튬 및 수산화 칼슘을 준비하는 단계; 및 상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;를 포함하고, 상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;에서, 상기 용매 내 탄산 리튬의 농도는 110g/L 이하인 것인 수산화 리튬의 제조 방법을 제공한다.

Description

수산화 리튬의 제조 방법
수산화 리튬의 제조 방법에 대한 것이다.
최근 리튬 2차전지는 휴대폰, 노트북 등의 IT 기기의 전원으로도 다양하게 활용되고 있을 뿐 아니라 전기 자동차의 동력원으로도 주목 받고 있다.
가까운 미래에는 전기 자동차 및 신재생에너지 전기저장시스템(Electricity Storage System)이 크게 활성화되어 그 수요가 급증할 것으로 예상되고 있다.
전기자동차 및 전기저장시스템의 중요부품인 양극재, 음극재, 전해질의 원료로서 수산화 리튬이 사용된다. 따라서, 수요가 크게 증가할 것으로 예상되는 전기자동차 및 전기저장시스템을 시장에 원활하게 공급하기 위하여 수산화 리튬을 경제적으로 제조할 수 있는 기술의 개발이 필요하다.
일반적으로 리튬은 리튬을 0.2 내지 1.5g/L 정도 함유하고 있는 천연의 염수(Brine)를 자연증발 시켜 리튬을 60g/L 정도의 고농도로 농축시킨 후 탄산염을 투입하여 탄산 리튬(Li2CO3)의 형태로 추출된다. 이렇게 추출된 탄산 리튬으로부터 수산화 리튬을 제조하는 여러 가지 방법이 고안되었다.
한국 등록특허 제 10-0725589는 탄산 리튬 폐기물로부터 탄산 리튬을 탄산 리튬 용해도 (13g/L) 만큼만 용출시켜 리튬농도 2.5g/L의 탄산 리튬 수용액을 얻은 후 이를 수산화 칼슘과 반응시켜 리튬농도 2.5g/L 이하인 저농도 수산화 리튬 수용액을 제조하고 수분을 증발시켜 수산화 리튬을 얻는 기술을 소개하고 있다.
그러나, 이러한 방법을 이용할 시, 수산화 리튬 수용액의 리튬 농도가 낮아 많은 증발비용이 발생하는 문제가 있다.
또한, 한국 등록특허 제10-1873933는 탄산 리튬 슬러리와 수산화 칼슘 슬러리를 혼합하고 70℃에서 2시간 동안 반응 및 여과하여 리튬농도 3.75g/L 이상인 탄산 리튬 수용액을 얻고 이를 증발시켜 수산화 리튬 분말을 제조하는 방법을 소개하고 있다. 그러나, 이 방법은 탄산 리튬과 수산화 리튬을 반응시키기 위하여 반응용액을 70℃로 가열하여야 하므로 많은 에너지 비용이 발생하고 제조된 수산화 리튬을 고순도화 하기 위하여 세척하는 과정에서 다량의 수산화 리튬이 용출되어 소실되므로 리튬 회수율이 낮아지는 문제가 있다.
한편, 한국 등록특허 제10-1179505호에서는 탄산 리튬을 물에 용해시켜 탄산 리튬 수용액을 제조하고 과산화수소를 혼합한 후 수분을 증발시켜 과산화리튬을 얻는다. 이렇게 얻어진 과산화리튬을 물과 반응시켜 수산화 리튬 일수화물을 얻는 제조방법이 소개된다. 그러나, 이러한 방법은 산화성이 강한 과산화수소를 사용함에 따라 폭발의 위험성이 있고 이를 방지하기 위하여 매우 낮은 리튬농도에서 반응을 진행시켜야 하므로 수산화 리튬을 결정화 하는데 많은 에너지 비용이 발생하는 문제가 있다.
일본 등록특허 제05769409는 탄산 리튬을 유기산과 반응시켜 유기산 리튬용액을 제조한 후 이를 바이폴라막이 장착된 전기투석기에서 전기투석함으로써 수산화 리튬을 제조하는 방법을 제공한다. 그러나, 이 방법은 고가의 전기투석설비를 이용해야 할 뿐 아니라 전기비용이 과다하고 바이폴라막을 유지, 보수하는 것 또한 비싸고 까다로워 경제적이지 못하다.
상술한 것과 같이 현재까지 개발된 탄산 리튬을 이용한 수산화 리튬의 제조방법을 사용할 시, 높은 에너지 비용, 낮은 리튬회수율 및 많은 설비투자비용 등으로 경제성이 저하되는 문제가 있다. 따라서, 탄산 리튬을 이용하여 수산화 리튬을 경제적으로 생산할 수 있는 기술의 개발이 절실히 요구된다.
이에, 본 발명에서는 적은 에너지 사용량과 높은 리튬회수율로 탄산 리튬으로부터 수산화 리튬을 경제적으로 제조할 수 있는 방법을 제시한다.
본 발명의 일 구현예에서는 수산화 리튬을 경제적으로 제조하는 방법을 제공한다.
본 발명의 일 구현예에서는, 탄산 리튬 및 수산화 칼슘을 준비하는 단계; 및 상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;를 포함하고, 상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;에서, 상기 용매 내 탄산 리튬의 농도는 110g/L 이하인 것인 수산화 리튬의 제조 방법을 제공한다.
보다 구체적으로, 상기 용매 내 탄산 리튬의 농도는 25 내지 110g/L 일 수 있다.
보다 구체적으로, 상기 용매 내 탄산 리튬의 농도는 25 내지 80g/L 일 수 있다.
상기 용매 내 수산화 칼슘의 농도는 27g/L 내지 115g/L 일 수 있다. 수산화 칼슘의 농도는 상기 탄산 리튬의 농도와 연관될 수 있다. 즉, 탄산 리튬의 양에 따라 반응할 수 있는 수산화 칼슘의 투입량이 제어될 수 있다.
상기 탄산 리튬의 투입량에 대한 설명은 후술하도록 한다.
상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;에서, 반응 시간은 1 내지 5시간일 수 있다. 반응 시간과 관련된 설명은 후술하도록 한다.
상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;에서, 반응 온도는 상온일 수 있다. 즉, 반응 분위기를 활성화시키기 위한 별도의 에너지가 소모되지 않을 수 있다.
상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계; 이후, 상기 수산화 리튬 수용액을 농축시켜 고상의 수산화 리튬 및 제1 여과액으로 분리하는 단계; 및 상기 제1 여과액 내 리튬을 회수하는 단계;를 더 포함할 수 있다.
상기 수산화 리튬 수용액을 농축시켜 고상의 수산화 리튬 및 제1 여과액으로 분리하는 단계; 이후, 상기 고상의 수산화 리튬을 세척하는 단계; 및 상기 수산화 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;를 더 포함할 수 있다.
상기 제1 여과액 내 리튬을 회수하는 단계; 또는 상기 수산화 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;는, 상기 제1 여과액 또는 상기 세척 여액에 탄산 공급 물질을 투입하여 탄산 리튬 형태로 리튬을 회수하는 단계;를 포함할 수 있다.
상기 제1 여과액 또는 상기 세척 여액에 탄산 공급 물질을 투입하여 탄산 리튬 형태로 리튬을 회수하는 단계; 이후, 고상의 탄산 리튬 및 제2 여과액을 분리하는 단계; 상기 고상의 탄산 리튬을 세척하는 단계; 및 상기 제2 여과액 또는 상기 고상의 탄산 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;를 더 포함할 수 있다.
상기 제2 여과액 또는 상기 고상의 탄산 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;는, 상기 제2 여과액 또는 상기 고상의 탄산 리튬을 세척한 세척 여액에 인 공급 물질을 투입하여, 인산 리튬 형태로 리튬을 회수하는 단계;를 포함할 수 있다.
상기 제1 여과액 내 리튬을 회수하는 단계; 또는 상기 수산화 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;는, 상기 제1 여과액 또는 상기 세척 여액에 인 공급 물질을 투입하여, 인산 리튬 형태로 리튬을 회수하는 단계;를 포함할 수 있다.
본 발명의 일 구현예에서는 에너지 비용, 설비투자비용 및 리튬 손실을 저감하여 수산화 리튬을 경제적으로 제조할 수 있는 방법을 제공한다.
도 1은 서로 다른 양의 탄산 리튬과 수산화 칼슘을 증류수 1L에 각각 투입한 후, 상온(21℃)에서 5시간 동안 교반하여 얻어진 반응 여액의 수산화 리튬 전환율을 나타낸다.
도 2는 리튬 농도 10g/L의 고농도 리튬 용액을 제조하기 위하여 탄산 리튬 54g과 수산화 칼슘 57g을 상온(21℃)의 물 1L에 투입한 후 5시간 동안 교반하는 동안 30분 간격으로 채취한 반응 여액의 리튬 농도를 나타낸다.
도 3는 리튬 농도 10g/L의 고농도 리튬 용액을 제조하기 위하여 탄산 리튬 54g과 수산화 칼슘 57g을 상온(21℃)의 물 1L에 투입한 후 5시간 동안 교반하여 얻어진 반응 석출물을 세척하고 105℃에서 24시간 동안 건조한 후 X선 회절분석기에서 얻어진 X선 회절패턴을 나타낸다.
도 4는 수산화 리튬 분말을 제조하기 위하여 상기 리튬 농도 9.4g/L의 고농도 수산화 리튬 용액을 35mbar로 감압한 플라스크에 넣고 플라스크를 50℃로 가열된 물에 담그고 회전시키면서 수분을 증발시켜 수산화 리튬을 석출 시키고 여과한 후, 석출된 수산화 리튬을 세척, 건조한 후 측정된 X선 회절패턴을 나타낸다.
도 5는 수산화 리튬 여과액과 수산화 리튬 세척 여액의 혼합액 1L에 탄산 나트륨을 340g을 투입하고 상온에서 4시간 교반하여 얻어진 반응석출물의 X선 회절패턴을 나타낸다.
도 6은 수산화 리튬 여과액과 수산화 리튬 세척 여액의 혼합액 1L에 인산 나트륨을 351g을 투입하고 상온에서 4시간 교반하여 얻어진 반응석출물의 X선 회절패턴을 나타낸다.
도 7은 탄산 리튬 여과액과 탄산 리튬 세척 여액의 혼합액 1L에 인산 나트륨을 26g을 투입하고 상온에서 4시간 교반하여 얻어진 반응석출물의 X선 회절패턴을 나타낸다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
상기 본 발명의 일 구현예에 따른 상온(예를 들어, 20 내지 25℃) 현탁액에서의 탄산 리튬과 수산화 칼슘 반응은 하기 반응식 1에 의해 진행될 수 있다.
[반응식 1]
Li2CO3 + Ca(OH)2 -> 2Li+ + 2OH- + CaCO3
즉, 상기 탄산 리튬은 수산화 칼슘과 반응하여 수산화 리튬 수용액을 생성하고 탄산칼슘이 석출된다.
공정의 에너지 비용을 절감하기 위하여 상기 반응은 상온에서 진행될 수 있다.
상기 상온 반응용액을 여과하여 석출된 탄산 칼슘을 분리하고 수산화 리튬 용액을 얻을 수 있다.
수산화 리튬의 용해도는 128g/L로 리튬농도로 환산하면 37.1g/L이다.
따라서, 상기 수산화 리튬 용액으로부터 수산화 리튬을 고체상태로 석출시켜 분리하기 위하여 리튬 농도가 37.1g/L 이상이 되도록 수산화 리튬 수용액을 가열하여 수분을 증발 시켜야 한다.
그러므로, 수산화 리튬 용액의 리튬 농도가 낮으면 많은 양의 물을 증발시켜야 하므로 에너지 비용이 증가하는 문제점이 있다. 그러나, 수분 증발량을 감소시키기 위하여 탄산 리튬과 수산화 칼슘 분말을 지나치게 많이 투입하여 수산화 리튬 수용액의 리튬 농도를 과도하게 증가시키고자 하면 반응용액의 점도가 증가하여 반응이 잘 진행되지 않을 뿐 아니라 석출되는 탄산칼슘의 양이 너무 많아져 여과가 어려워지고 층간수가 많아져 다량의 리튬 손실이 발생한다.
또한, 다량의 리튬과 탄산이 수용액으로 방출되어 수산화 리튬 용액으로부터 탄산 리튬이 재석출하므로써 반응의 효율성이 떨어지고 리튬 손실이 증가하는 문제점이 있다.
따라서, 본 발명에서는 반응용액 1L에 투입되는 탄산 리튬의 양을 110g/L 이하로 한정한다. 보다 구체적으로, 25g 내지 110g 범위일 수 있다.
상기 본 발명의 일 구현예에 따른 수산화 리튬 용액의 증발, 농축에 의한 수산화 리튬 분말의 석출은 하기 반응식 2 또는 반응식 3에 의해 진행될 수 있다.
[반응식 2]
Li+ + OH- -> LiOH
[반응식 3]
Li+ + OH- + H2O -> LiOHH2O
상기 본 발명의 일 구현예에 따른 수산화 리튬 석출용액은 여과되어 수산화 리튬(고상)과 여과액으로 분리될 수 있다.
상기 본 발명의 일 구현예에 따른 수산화 리튬 석출물은 물과 혼합되어 세척될 수 있다. 석출된 수산화 리튬과 물이 혼합된 세척용액을 여과하여 수산화 리튬과 세척 여액을 분리할 수 있다.
상술한 것과 같이 수산화 리튬은 128g/L의 높은 용해도를 가지기 때문에 상기 본 발명의 일 구현예에 따른 수산화 리튬 여과액에는 리튬농도 37g/L로 다량의 리튬이 잔류하고 수산화 리튬 세척 여액에도 리튬이 고농도로 다량 존재한다.
따라서, 수산화 리튬 여과액과 세척 여액으로부터 리튬을 회수하지 않으면 다량의 리튬이 손실되어 수산화 리튬 제조공정의 효율성과 경제성이 저하한다.
그러므로, 다량의 리튬을 함유한 수산화 리튬 여과액과 세척 여액으로부터 리튬을 회수하는 것이 수산화 리튬 제조공정에서 발생하는 리튬 손실을 억제하기 위해 필수적이다.
수산화 리튬 여과액과 세척 여액으로부터 리튬을 회수할 시, 수산화 리튬 대비 용해도가 크게 낮아 대부분의 리튬을 석출 시킬 수 있는 탄산 리튬(용해도 13g/L) 또는 인산리튬(용해도 0.39g/L)으로 리튬을 회수할 수 있다.
상기 본 발명의 일 구현예에 따른 수산화 리튬 여과액과 수산화 리튬 세척 여액을 혼합한 수산화 리튬 용액에 탄산 공급 물질을 투입하여 탄산 리튬을 석출시켜 리튬을 효과적으로 회수할 수 있다.
상기 탄산 리튬 석출반응은 아래의 반응식 4에 의해 진행될 수 있다.
[반응식 4]
2Li+ + 2OH- + Na2CO3 -> Li2CO3 + 2Na+ + 2OH-
탄산 공급물질의 일례인 탄산나트륨은 상온에서 리튬과 반응하여 탄산 리튬을 생성, 석출시킨다.
상기 탄산 공급 물질의 구체적인 예는 이산화탄소 가스와 탄산염이다.
보다 구체적으로 상기 탄산염은 중탄산나트륨, 탄산나트륨, 중탄산칼륨, 탄산칼륨, 탄산암모늄 또는 이들의 조합일 수 있다.
상기 탄산 공급 물질의 투입량은 상기 수산화 리튬 용액의 리튬 함량에 대해 1당량 이상일 수 있다. 상기 범위를 만족하는 경우 반응속도 측면에서 유리할 수 있다.
상기 석출된 탄산 리튬은 여과에 의해 상기 반응 용액으로부터 분리 될 수 있다.
상기 수산화 리튬 용액에 탄산 공급물질을 투입하여 탄산 리튬을 생성, 석출시켜 리튬을 회수하는 단계는 상온에서 수행 될 수 있다.
이렇게 탄산 리튬을 수득 후 이를 다시 여과 및 세척을 할 수 있다.
이때 여과 여액 및 세척 여액에서도 잔류 리튬이 존재할 수 있다. 이러한 잔류 리튬은 용해도가 탄산 리튬보다 더 낮은 인산 리튬을 이용해 회수할 수 있다.
인산 리튬의 회수 방법에 대해서는 후술하도록 한다.
또한, 상기 본 발명의 일 구현예에 따른 수산화 리튬 여과액과 수산화 리튬 세척 여액을 혼합한 수산화 리튬 용액에 인 공급물질을 투입하여 인산 리튬 형태로 리튬을 회수할 수 있다.
상기 인산리튬 석출반응은 아래의 반응식 5에 의해 진행될 수 있다.
[반응식 5]
3Li+ + 3OH- + Na3PO4 -> Li3PO4 + 3Na+ + 3OH-
인 공급 물질의 일례인 인산 나트륨은 상온에서 리튬과 반응하여 인산 리튬을 생성 및 석출시킨다.
상기 인 공급물질의 구체적인 예는 인, 인산, 인산염 또는 인 함유 용액 등이다.
상기 인산염의 구체적인 예로는 인산칼륨, 인산 나트륨, 인산암모늄(구체적인 예를 들어, 상기 암모늄은 (NR4)3PO4일 수 있으며, 상기 R은 독립적으로 수소, 중수소, 치환또는 비 치환된 C1 내지 C10 알킬기일 수 있음) 등이다.
보다 구체적으로 상기 인산염은 1인산칼륨, 2인산칼륨, 3인산칼륨, 1인산소다, 2인산소다, 3인산소다, 인산알루미늄, 인산아연, 폴리인산암모늄, 소디움헥사메타인산소다, 1인산칼슘, 2인산칼슘, 3인산칼슘 등일 수 있다.
상기 인 공급 물질은 인 함유 수용액일 수 있다. 상기 인 공급 물질이 인 함유 수용액인 경우 상기 수산화 리튬 용액에 포함된 리튬과 용이하게 반응하여 인산 리튬을 생성, 석출 시킬 수 있다.
상기 인 공급물질의 투입량은 상기 수산화 리튬 용액의 리튬 함량에 대해 1당량 이상일 수 있다. 상기 범위를 만족하는 경우 반응속도 측면에서 유리할 수 있다.
상기, 석출된 인산 리튬은 여과에 의해 상기 반응용액으로부터 분리 될 수 있다.
또한, 상기 수산화 리튬 용액에 인 공급 물질을 투입하여 용존 리튬을 인산 리튬으로 석출시켜 회수하는 단계는 상온에서 수행 될 수 있다.
본 명세서에서 상온은 일정한 온도를 의미하는 것이 아니며, 외부적인 에너지의 부가 없는 상태의 온도를 의미한다. 따라서, 장소, 시간에 따라 상온은 변화될 수 있다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
[실시예 1]
상기 반응식 (1)에 따라 수산화 리튬 수용액을 제조 시, 탄산 리튬 투입량에 따른 탄산 리튬의 수산화 리튬 전환율을 확인하기 위하여 탄산 리튬과 수산화 칼슘을 표 1에 나타난 것과 같이 물 1L에 투입한 후 상온(21℃)에서 5시간 동안 교반하였다.
반응이 완료된 후 반응용액 시료가 채취되었고 시료들을 여과하여 반응 여액의 리튬 농도를 측정하였다. 각각의 반응용액의 탄산 리튬 투입량과 반응이 완료된 용액의 리튬 농도를 이용하여 탄산 리튬의 수산화 리튬으로의 전환율이 산출되었고 그 결과는 표 1과 도 1에 보여졌다.
도 1에 나타난 것과 같이 탄산 리튬 투입량이 80g 이하인 경우 투입된 모든 탄산 리튬이 거의 모두 수산화 리튬으로 전환되어 수산화 리튬 전환율이 거의 100%인 것으로 나타났다.
탄산 리튬 투입량(g) 10.75 26.88 53.77 80.65 107.53 134.41 161.30 188.18
수산화 칼슘 투입량(g) 11.35 28.37 56.75 85.12 113.50 141.87 170.24 198.62
반응여액의 리튬 농도(mg/L) 1,997 4,988 9,308 14,038 14,295 13,741 13,231 13,913
수산화 리튬 전환(%) 99.85 99.76 93.08 93.59 71.48 54.96 44.10 39.75
그러나, 탄산 리튬 투입량이 80g 이상인 경우에는 수산화 리튬 전환율이 감소하는 경향을 나타내었고 탄산 리튬 투입량 188g에서는 수산화 리튬 전환율이 39.8%로 급감하는 것이 관찰되었다. 이러한 결과로부터 상기 반응식 (1)에 따라 수산화 리튬 수용액을 제조 시, 탄산 리튬 투입량을 일정 범위로 제한하는 것이 바람직한 것을 확인하였다.
[실시예 2]
고농도 수산화 리튬 용액을 제조하기 위하여 탄산 리튬 54g과 수산화 칼슘 57g을 증류수 1L에 투입한 후 상온(21℃)에서 5시간 동안 교반하였다.
30분 간격으로 반응용액 시료가 채취되었고 시료들을 여과하여 pH와 리튬 농도를 측정하였다. 그 결과를 아래 표 2 및 도 2에 나타내었다. 도 2에 나타난 것과 같이 반응시간이 증가함에 따라 반응 용액 중에 용존된 리튬 농도가 점차적으로 증가하여 반응시간 4시간 이후에는 더 이상 증가하지 않는 양상을 보였다.
이러한 결과로부터 탄산 리튬이 수산화 칼슘과 상온에서 반응하여 수산화 리튬을 생성한다는 것을 알 수 있다. 한편, 상기 반응용액을 여과하여 얻어진 석출물은 증류수로 세척된 후 105℃에서 24시간 동안 건조되었고 X선 회절분석기를 이용하여 광물상이 분석되었다.
도 3에 나타난 것과 같이 탄산 리튬과 수산화 칼슘이 반응하여 탄산칼슘이 생성된 것을 확인할 수 있었다. 상술한 것과 같이 탄산 리튬과 수산화 칼슘을 이용하여 상온에서 간단한 설비와 적은 에너지 비용으로 고농도 수산화 리튬 수용액을 경제적으로 제조할 수 있는 것이 확인되었다.
반응시간(시간) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
반응여액리튬농도(mg/L) 0 7,516 8,767 8,913 9,040 9,121 9,230 9,357 9,441 9,415 9,335
[실시예 3]
수산화 리튬 일수화물 (LiOHH2O)분말을 제조하기 위하여 상기 고농도 수산화 리튬 용액을 35mbar로 감압한 플라스크에 넣은 후, 플라스크를 50℃로 가열된 물에 담그고 회전시키면서 수분을 증발시켜 리튬을 농축하였다.
수분이 증발함에 따라 수산화 리튬 용액의 리튬 농도가 증가하였고 리튬 농도가 37g/L 도달한 후 수산화 리튬이 석출하기 시작했다.
수산화 리튬이 석출된 증발 슬러리를 여과하여 수산화 리튬 석출물과 여과액으로 분리하였다. 상기 여과된 수산화 리튬을 세척하기 위하여 여과된 수산화 리튬 100g과 증류수 100ml를 혼합하여 교반하였다. 1시간 동안 교반한 후 수산화 리튬 세척용액을 여과하여 수산화 리튬과 세척 여액으로 분리하였다.
세척이 완료된 수산화 리튬은 상온, 진공 데시케이터 내에서 건조되었고 건조가 완료된 수산화 리튬 분말의 광물상을 X선 회절분석기를 이용하여 분석하고 그 결과를 도 4에 나타내었다.
[실시예 4]
상기 실시예 3의 수산화 리튬 여과액과 수산화 리튬 세척 여액의 리튬 농도를 분석하였고 그 결과를 표 3에 나타내었다.
구 분 리튬 농도 (mg/L)
수산화 리튬 여과액 37,100
수산화 리튬 세척 여액 36,800
수산화 리튬 여과액 및 수산화 리튬 세척 여액에는 리튬이 다량 함유되어 리튬 농도가 각각 37.1g/L과 36.8g/L로 매우 높게 관찰되었다.
따라서, 이들로부터 리튬을 회수하기 위하여 수산화 리튬 여과액과 수산화 리튬 세척 여액을 혼합하였다. 이 혼합액에 탄산나트륨을 340g/L 투입한 후, 상온에서 4시간 교반하여 탄산 리튬을 석출시켰다. 석출된 탄산 리튬은 여과, 세척, 건조된 후 X선 회절분석기를 이용하여 광물상이 분석되었고 그 결과는 도 5에 보여졌다.
하기 표 4는 수산화 리튬 여과액과 수산화 리튬 세척 여액의 혼합액의 리튬 농도와 혼합액에 포함되어 있는 리튬을 회수하기 위하여 혼합액 1L에 탄산나트륨을 340g투입하고 상온에서 4시간 교반하여 탄산 리튬을 석출시킨 후의 반응여액 리튬 농도를 나타낸다.
구 분 리튬 농도 (mg/L)
수산화 리튬 여과액과수산화 리튬 세척 여액의 혼합액 36,800
탄산나트륨 투입 후, 수산화 리튬 여과액 및 수산화 리튬 세척 여액의 혼합액 2,900
리튬 회수율 92.1%
표 4에 나타난 것과 같이 수산화 리튬 석출여액과 수산화 리튬 세척 여액에 탄산나트륨을 투입하여 탄산 리튬을 석출시킨 결과, 92.1%의 높은 회수율로 리튬을 회수할 수 있었다.
따라서, 수산화 리튬 여과액 및 세척 여액에 다량 함유된 리튬을 상온에서 탄산 리튬 형태로 대부분 회수함에 따라 수산화 리튬 제조공정에서 발생할 수 있는 다량의 리튬 손실을 간단한 설비와 적은 에너지 비용으로 효과적으로 방지할 수 있었다.
[실시예 5]
하기 표 5는 수산화 리튬 여과액과 수산화 리튬 세척 여액의 혼합액의 리튬 농도와 혼합액에 포함되어 있는 리튬을 회수하기 위하여 혼합액 1L에 인산 나트륨 351g을 투입하고 상온에서 4시간 교반하여 인산 리튬을 석출시킨 후의 리튬 농도를 나타낸다.
구 분 리튬 농도 (mg/L)
수산화 리튬 여과액과수산화 리튬 세척 여액의 혼합액 36,800
인산 나트륨 투입 후, 수산화 리튬 여과액 및 수산화 리튬 세척 여액 혼합액 700
리튬 회수율 98.1%
수산화 리튬 여과액 및 수산화 리튬 세척 여액의 리튬농도는 37g/L과 36.8g/L로 매우 높아 리튬이 다량 함유된 것이 관찰되었다.
따라서, 이를 회수하기 위하여 상온의 수산화 리튬 여과액과 수산화 리튬 세척 여액을 혼합하고 혼합액 1L에 인산 나트륨 351g을 투입하여 인산 리튬을 석출시켰다.
석출된 인산 리튬은 여과, 세척, 건조된 후 X선 회절분석기를 이용하여 광물상이 분석되었고 그 결과는 도 6에 보여졌다.
표 5에 나타난 것과 같이 수산화 리튬 여과액과 수산화 리튬 세척 여액에 인산 나트륨을 투입하여 인산리튬을 석출시킨 결과, 98.1%의 높은 회수율로 리튬을 회수할 수 있었다.
따라서, 수산화 리튬 여과액 및 세척 여액에 함유된 리튬을 상온에서 인산리튬 형태로 대부분 회수함에 따라 수산화 리튬 제조공정에서 발생할 수 있는 다량의 리튬 손실을 간단한 설비와 작은 에너지 비용으로 효과적으로 방지할 수 있었다.
[실시예 6]
상기 실시예 4의 수산화 리튬 여과액 및 수산화리튬 세척 여액에 탄산나트륨을 투입하여 제조된 탄산 리튬 슬러리를 여과하여 탄산 리튬 석출물과 여과액으로 분리하였다.
상기 여과된 탄산 리튬을 세척하기 위하여 탄산리튬 100g과 증류수 100ml를 혼합하여 교반하였다. 1시간 동안 교반한 후 탄산리튬 세척용액을 여과하여 탄산리튬과 세척 여액으로 분리하였다. 상기 탄산 리튬 여과액과 세척 여액의 리튬 농도를 분석하였고 그 결과를 표 6에 나타내었다.
구 분 리튬 농도 (mg/L)
탄산 리튬 여과액 2,900
탄산 리튬 세척 여액 2,450
탄산 리튬 여과액 및 탄산 리튬 세척 여액에는 리튬이 함유되어 리튬 농도가 각각 2.9g/L과 2.45g/L로 관찰되었다.
따라서, 이들로부터 리튬을 회수하기 위하여 탄산 리튬 여과액과 탄산 리튬 세척 여액을 혼합하였다. 이 혼합액에 인산나트륨을 26g/L 투입한 후, 상온에서 4시간 교반하여 인산 리튬을 석출시켰다. 석출된 인산 리튬은 여과, 세척, 건조된 후 X선 회절분석기를 이용하여 광물상이 분석되었고 그 결과는 도 7에 보여졌다.
하기 표 7은 탄산 리튬 여과액과 세척 여액 혼합액의 리튬 농도와 혼합액에 포함되어 있는 리튬을 회수하기 위하여 혼합액 1L에 인산나트륨을 26g 투입하고 상온에서 4시간 교반하여 인산 리튬을 석출시킨 후의 반응여액 리튬 농도를 나타낸다.
구 분 리튬 농도 (mg/L)
탄산 리튬 여과액과탄산 리튬 세척 여액의 혼합액 2,680
인산나트륨 투입 후, 탄산 리튬 여과액 및 탄산 리튬 세척 여액의 혼합액 790
리튬 회수율 70%
표 7에 나타난 것과 같이 탄산 리튬 석출여액과 탄산 리튬 세척 여액에 인산나트륨을 투입하여 인산 리튬을 석출시킨 결과, 70%의 높은 회수율로 리튬을 회수할 수 있었다.
따라서, 탄산 리튬 여과액 및 세척 여액에 함유된 리튬을 상온에서 인산 리튬 형태로 대부분 회수함에 따라 수산화 리튬 제조공정에서 발생할 수 있는 리튬 손실을 간단한 설비와 적은 에너지 비용으로 효과적으로 방지할 수 있었다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (12)

  1. 탄산 리튬 및 수산화 칼슘을 준비하는 단계; 및
    상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;를 포함하고,
    상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;에서,
    상기 용매 내 탄산 리튬의 농도는 110g/L 이하인 것인 수산화 리튬의 제조 방법.
  2. 제1항에 있어서,
    상기 용매 내 탄산 리튬의 농도는 25 내지 110g/L 인 것인 수산화 리튬의 제조 방법.
  3. 제1항에 있어서,
    상기 용매 내 탄산 리튬의 농도는 25 내지 80g/L 인 것인 수산화 리튬의 제조 방법.
  4. 제1항에 있어서,
    상기 용매 내 수산화 칼슘의 농도는 27g/L 내지 115g/L 인 것인 수산화 리튬의 제조 방법.
  5. 제1항에 있어서,
    상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;에서,
    반응 시간은 1 내지 5시간인 것인 수산화 리튬의 제조 방법.
  6. 제1항에 있어서,
    상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계;에서,
    반응 온도는 상온인 것인 수산화 리튬의 제조 방법.
  7. 제1항에 있어서,
    상기 탄산 리튬 및 수산화 칼슘을 용매 내에 반응시켜 수산화 리튬 수용액을 수득하는 단계; 이후,
    상기 수산화 리튬 수용액을 농축시켜 고상의 수산화 리튬 및 제1 여과액으로 분리하는 단계; 및
    상기 제1 여과액 내 리튬을 회수하는 단계;를 더 포함하는 것인 수산화 리튬의 제조 방법.
  8. 제7항에 있어서,
    상기 수산화 리튬 수용액을 농축시켜 고상의 수산화 리튬 및 제1 여과액으로 분리하는 단계; 이후,
    상기 고상의 수산화 리튬을 세척하는 단계; 및
    상기 수산화 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;를 더 포함하는 것인 수산화 리튬의 제조 방법.
  9. 제7항 또는 제8항에 있어서,
    상기 제1 여과액 내 리튬을 회수하는 단계; 또는 상기 수산화 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;는,
    상기 제1 여과액 또는 상기 세척 여액에 탄산 공급 물질을 투입하여 탄산 리튬 형태로 리튬을 회수하는 단계;를 포함하는 것인 수산화 리튬의 제조 방법.
  10. 제9항에 있어서,
    상기 제1 여과액 또는 상기 세척 여액에 탄산 공급 물질을 투입하여 탄산 리튬 형태로 리튬을 회수하는 단계; 이후,
    고상의 탄산 리튬 및 제2 여과액을 분리하는 단계;
    상기 고상의 탄산 리튬을 세척하는 단계; 및
    상기 제2 여과액 또는 상기 고상의 탄산 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;를 더 포함하는 것인 수산화 리튬의 제조 방법.
  11. 제10항에 있어서,
    상기 제2 여과액 또는 상기 고상의 탄산 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;는,
    상기 제2 여과액 또는 상기 고상의 탄산 리튬을 세척한 세척 여액에 인 공급 물질을 투입하여, 인산 리튬 형태로 리튬을 회수하는 단계;를 포함하는 것인 수산화 리튬의 제조 방법.
  12. 제7항 또는 제8항에 있어서,
    상기 제1 여과액 내 리튬을 회수하는 단계; 또는 상기 수산화 리튬을 세척한 세척 여액 내 리튬을 회수하는 단계;는,
    상기 제1 여과액 또는 상기 세척 여액에 인 공급 물질을 투입하여, 인산 리튬 형태로 리튬을 회수하는 단계;를 포함하는 것인 수산화 리튬의 제조 방법.
PCT/KR2020/001504 2019-07-19 2020-01-31 수산화 리튬의 제조 방법 WO2021015378A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080052000.XA CN114144379B (zh) 2019-07-19 2020-01-31 用于生产氢氧化锂的方法
JP2022502297A JP7442617B2 (ja) 2019-07-19 2020-01-31 水酸化リチウムの製造方法
US17/597,692 US20220274842A1 (en) 2019-07-19 2020-01-31 Method for producing lithium hydroxide
EP20844051.1A EP4001217A4 (en) 2019-07-19 2020-01-31 PROCESS FOR PRODUCTION OF LITHIUM HYDROXIDE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0087629 2019-07-19
KR1020190087629A KR102122156B1 (ko) 2019-07-19 2019-07-19 수산화 리튬의 제조 방법

Publications (1)

Publication Number Publication Date
WO2021015378A1 true WO2021015378A1 (ko) 2021-01-28

Family

ID=71070584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001504 WO2021015378A1 (ko) 2019-07-19 2020-01-31 수산화 리튬의 제조 방법

Country Status (7)

Country Link
US (1) US20220274842A1 (ko)
EP (1) EP4001217A4 (ko)
JP (1) JP7442617B2 (ko)
KR (1) KR102122156B1 (ko)
CN (1) CN114144379B (ko)
CL (1) CL2021003459A1 (ko)
WO (1) WO2021015378A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382209B1 (ko) * 2021-10-28 2022-04-05 주식회사 리켐텍 고순도 수산화리튬 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725589B1 (ko) 2006-04-19 2007-06-08 한밭대학교 산학협력단 리튬 폐기물로부터 고순도 수산화 리튬 제일수화물의제조방법
KR101179505B1 (ko) 2010-12-14 2012-09-07 서강대학교산학협력단 탄산 리튬으로부터 수산화 리튬 제일수화물 제조 방법
KR20130113287A (ko) * 2012-04-05 2013-10-15 주식회사 포스코 수산화리튬의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
JP5769409B2 (ja) 2010-12-13 2015-08-26 株式会社アストム 水酸化リチウムの製造方法
KR20160002573A (ko) * 2014-06-30 2016-01-08 재단법인 포항산업과학연구원 고순도 수산화 리튬 수용액의 제조 방법 및 이를 이용한 염수로부터 탄산 리튬의 효율적 추출 방법
KR101839460B1 (ko) * 2017-10-24 2018-03-16 성일하이텍㈜ 리튬 함유 용액으로부터 고순도의 탄산리튬 회수방법
KR20180074075A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 수산화 리튬 수용액의 제조 방법 및 이를 이용한 탄산 리튬의 제조 방법
KR101873933B1 (ko) 2017-12-07 2018-07-03 주식회사 에코프로이노베이션 탄산리튬을 이용한 수산화리튬의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1226189C (zh) 2003-03-26 2005-11-09 邓月金 从碳酸锂混盐中制取锂化合物的方法
JP2012106874A (ja) 2010-11-15 2012-06-07 Sumitomo Metal Mining Co Ltd 水酸化リチウムの精製方法
CN102351160B (zh) * 2011-05-06 2013-10-30 江西赣锋锂业股份有限公司 利用高纯碳酸锂沉锂母液制备电池级磷酸二氢锂的方法
CN109312483B (zh) 2016-06-07 2021-06-22 浦项产业科学研究院 金属锂的制备方法
CN108341420B (zh) 2017-01-24 2022-02-08 马培华 从高镁锂比盐湖卤水中直接制取氢氧化锂和碳酸锂的方法
CN106745097B (zh) * 2017-02-17 2017-12-22 谭春波 一种从锂云母精矿提取锂的方法
JP2019178395A (ja) 2018-03-30 2019-10-17 Jx金属株式会社 リチウムイオン電池スクラップからのリチウムの回収方法
CN108658099A (zh) 2018-05-24 2018-10-16 白银中天化工有限责任公司 一种电池级单水氢氧化锂提纯工艺
CN109824066A (zh) * 2019-04-18 2019-05-31 王东升 一种由工业级碳酸锂制备电池级氢氧化锂的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725589B1 (ko) 2006-04-19 2007-06-08 한밭대학교 산학협력단 리튬 폐기물로부터 고순도 수산화 리튬 제일수화물의제조방법
JP5769409B2 (ja) 2010-12-13 2015-08-26 株式会社アストム 水酸化リチウムの製造方法
KR101179505B1 (ko) 2010-12-14 2012-09-07 서강대학교산학협력단 탄산 리튬으로부터 수산화 리튬 제일수화물 제조 방법
KR20130113287A (ko) * 2012-04-05 2013-10-15 주식회사 포스코 수산화리튬의 제조 방법 및 이를 이용한 탄산리튬의 제조 방법
KR20160002573A (ko) * 2014-06-30 2016-01-08 재단법인 포항산업과학연구원 고순도 수산화 리튬 수용액의 제조 방법 및 이를 이용한 염수로부터 탄산 리튬의 효율적 추출 방법
KR20180074075A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 수산화 리튬 수용액의 제조 방법 및 이를 이용한 탄산 리튬의 제조 방법
KR101839460B1 (ko) * 2017-10-24 2018-03-16 성일하이텍㈜ 리튬 함유 용액으로부터 고순도의 탄산리튬 회수방법
KR101873933B1 (ko) 2017-12-07 2018-07-03 주식회사 에코프로이노베이션 탄산리튬을 이용한 수산화리튬의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4001217A4

Also Published As

Publication number Publication date
EP4001217A4 (en) 2022-09-14
CN114144379A (zh) 2022-03-04
KR102122156B1 (ko) 2020-06-11
US20220274842A1 (en) 2022-09-01
CN114144379B (zh) 2023-12-15
JP7442617B2 (ja) 2024-03-04
CL2021003459A1 (es) 2022-10-14
EP4001217A1 (en) 2022-05-25
JP2023522285A (ja) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2021153816A1 (ko) 리튬 추출 방법
WO2020116795A1 (ko) 리튬 정광으로부터 황산나트튬 혼합 배소에 의한 수산화리튬 제조방법
WO2019198972A1 (ko) 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법
WO2018110974A1 (ko) 인산리튬으로부터 수산화리튬을 제조하는 방법
JP5311169B2 (ja) リチウムイオン伝導性固体電解質、その製造方法及び該固体電解質を用いたリチウム二次電池用固体電解質並びに該二次電池用固体電解質を用いた全固体リチウム電池
US20070160911A1 (en) Lithium ion conducting sulfide based crystallized glass and method for production thereof
WO2013089400A1 (en) Method for extraction of lithium from lithium bearing solution
WO2017090877A1 (ko) 리튬 비스(플루오르술포닐)이미드의 신규한 제조방법
WO2021015378A1 (ko) 수산화 리튬의 제조 방법
WO2013165071A1 (ko) 고순도 황산망간일수화물의 제조방법 및 그 제조방법에 의하여 제조된 고순도 황산망간일수화물
WO2012005548A2 (en) Method for economical extraction of magnesium,boron and calcium from lithium bearing solution
WO2023191414A1 (ko) 블랙 매스로부터 이차전지 소재의 제조방법
WO2015152541A1 (ko) 1,5-디아미노펜탄의 정제방법
WO2021256732A1 (ko) 리튬 이차 전지의 활성 금속 회수 방법
CN112897494B (zh) 二氟磷酸锂的合成工艺及合成装置
WO2019013570A2 (ko) 인산을 발효액 또는 발효 폐액으로부터 회수 및 재사용하는 방법
US3594402A (en) Tetraacetonitrilolithiumhexafluorophosphate and method for the preparation thereof
WO2019151643A1 (ko) 층상형 znbi, znbi 나노시트 및 이들의 제조방법
WO2021145488A1 (ko) 리튬 추출 방법
WO2021080134A1 (ko) 리튬 이차전지용 lpscl 고체전해질의 제조방법
WO2023191416A1 (ko) 황화물계 고체 전해질의 제조 방법
WO2022045747A1 (ko) 리튬을 함유하는 원료에서 수산화리튬을 제조하는 방법
WO2022131505A1 (ko) 고체전해질 및 그를 포함하는 전고체전지
WO2022255762A1 (ko) 황화물계 고체 전해질의 제조 방법
WO2023211260A1 (ko) 아연 제련 공정의 부산물로부터 황산망간 일수화물을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020844051

Country of ref document: EP

Effective date: 20220221